1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/kstatcom.h> 72 73 #include <netinet/igmp_var.h> 74 #include <netinet/ip6.h> 75 #include <netinet/icmp6.h> 76 #include <netinet/sctp.h> 77 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip6_asp.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_ire.h> 87 #include <inet/ip_rts.h> 88 #include <inet/optcom.h> 89 #include <inet/ip_ndp.h> 90 #include <inet/ip_listutils.h> 91 #include <netinet/igmp.h> 92 #include <netinet/ip_mroute.h> 93 #include <inet/ipp_common.h> 94 95 #include <net/pfkeyv2.h> 96 #include <inet/ipsec_info.h> 97 #include <inet/sadb.h> 98 #include <inet/ipsec_impl.h> 99 #include <sys/iphada.h> 100 #include <inet/tun.h> 101 #include <inet/ipdrop.h> 102 103 #include <sys/ethernet.h> 104 #include <net/if_types.h> 105 #include <sys/cpuvar.h> 106 107 #include <ipp/ipp.h> 108 #include <ipp/ipp_impl.h> 109 #include <ipp/ipgpc/ipgpc.h> 110 111 #include <sys/multidata.h> 112 #include <sys/pattr.h> 113 114 #include <inet/ipclassifier.h> 115 #include <inet/sctp_ip.h> 116 #include <inet/sctp/sctp_impl.h> 117 #include <inet/udp_impl.h> 118 119 #include <sys/tsol/label.h> 120 #include <sys/tsol/tnet.h> 121 122 #include <rpc/pmap_prot.h> 123 124 /* 125 * Values for squeue switch: 126 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 127 * IP_SQUEUE_ENTER: squeue_enter 128 * IP_SQUEUE_FILL: squeue_fill 129 */ 130 int ip_squeue_enter = 2; 131 squeue_func_t ip_input_proc; 132 /* 133 * IP statistics. 134 */ 135 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 136 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 137 138 typedef struct ip_stat { 139 kstat_named_t ipsec_fanout_proto; 140 kstat_named_t ip_udp_fannorm; 141 kstat_named_t ip_udp_fanmb; 142 kstat_named_t ip_udp_fanothers; 143 kstat_named_t ip_udp_fast_path; 144 kstat_named_t ip_udp_slow_path; 145 kstat_named_t ip_udp_input_err; 146 kstat_named_t ip_tcppullup; 147 kstat_named_t ip_tcpoptions; 148 kstat_named_t ip_multipkttcp; 149 kstat_named_t ip_tcp_fast_path; 150 kstat_named_t ip_tcp_slow_path; 151 kstat_named_t ip_tcp_input_error; 152 kstat_named_t ip_db_ref; 153 kstat_named_t ip_notaligned1; 154 kstat_named_t ip_notaligned2; 155 kstat_named_t ip_multimblk3; 156 kstat_named_t ip_multimblk4; 157 kstat_named_t ip_ipoptions; 158 kstat_named_t ip_classify_fail; 159 kstat_named_t ip_opt; 160 kstat_named_t ip_udp_rput_local; 161 kstat_named_t ipsec_proto_ahesp; 162 kstat_named_t ip_conn_flputbq; 163 kstat_named_t ip_conn_walk_drain; 164 kstat_named_t ip_out_sw_cksum; 165 kstat_named_t ip_in_sw_cksum; 166 kstat_named_t ip_trash_ire_reclaim_calls; 167 kstat_named_t ip_trash_ire_reclaim_success; 168 kstat_named_t ip_ire_arp_timer_expired; 169 kstat_named_t ip_ire_redirect_timer_expired; 170 kstat_named_t ip_ire_pmtu_timer_expired; 171 kstat_named_t ip_input_multi_squeue; 172 kstat_named_t ip_tcp_in_full_hw_cksum_err; 173 kstat_named_t ip_tcp_in_part_hw_cksum_err; 174 kstat_named_t ip_tcp_in_sw_cksum_err; 175 kstat_named_t ip_tcp_out_sw_cksum_bytes; 176 kstat_named_t ip_udp_in_full_hw_cksum_err; 177 kstat_named_t ip_udp_in_part_hw_cksum_err; 178 kstat_named_t ip_udp_in_sw_cksum_err; 179 kstat_named_t ip_udp_out_sw_cksum_bytes; 180 kstat_named_t ip_frag_mdt_pkt_out; 181 kstat_named_t ip_frag_mdt_discarded; 182 kstat_named_t ip_frag_mdt_allocfail; 183 kstat_named_t ip_frag_mdt_addpdescfail; 184 kstat_named_t ip_frag_mdt_allocd; 185 } ip_stat_t; 186 187 static ip_stat_t ip_statistics = { 188 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 189 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 190 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 191 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 192 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 193 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 194 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 195 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 196 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 197 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 198 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 199 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 200 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 201 { "ip_db_ref", KSTAT_DATA_UINT64 }, 202 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 203 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 204 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 205 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 206 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 207 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 208 { "ip_opt", KSTAT_DATA_UINT64 }, 209 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 210 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 211 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 212 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 213 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 214 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 215 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 216 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 217 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 218 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 219 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 220 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 221 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 222 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 223 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 224 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 225 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 226 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 229 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 230 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 231 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 232 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 234 }; 235 236 static kstat_t *ip_kstat; 237 238 #define TCP6 "tcp6" 239 #define TCP "tcp" 240 #define SCTP "sctp" 241 #define SCTP6 "sctp6" 242 243 major_t TCP6_MAJ; 244 major_t TCP_MAJ; 245 major_t SCTP_MAJ; 246 major_t SCTP6_MAJ; 247 248 int ip_poll_normal_ms = 100; 249 int ip_poll_normal_ticks = 0; 250 251 /* 252 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 253 */ 254 255 struct listptr_s { 256 mblk_t *lp_head; /* pointer to the head of the list */ 257 mblk_t *lp_tail; /* pointer to the tail of the list */ 258 }; 259 260 typedef struct listptr_s listptr_t; 261 262 /* 263 * This is used by ip_snmp_get_mib2_ip_route_media and 264 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 265 */ 266 typedef struct iproutedata_s { 267 uint_t ird_idx; 268 listptr_t ird_route; /* ipRouteEntryTable */ 269 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 270 listptr_t ird_attrs; /* ipRouteAttributeTable */ 271 } iproutedata_t; 272 273 /* 274 * Cluster specific hooks. These should be NULL when booted as a non-cluster 275 */ 276 277 /* 278 * Hook functions to enable cluster networking 279 * On non-clustered systems these vectors must always be NULL. 280 * 281 * Hook function to Check ip specified ip address is a shared ip address 282 * in the cluster 283 * 284 */ 285 int (*cl_inet_isclusterwide)(uint8_t protocol, 286 sa_family_t addr_family, uint8_t *laddrp) = NULL; 287 288 /* 289 * Hook function to generate cluster wide ip fragment identifier 290 */ 291 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 292 uint8_t *laddrp, uint8_t *faddrp) = NULL; 293 294 /* 295 * Synchronization notes: 296 * 297 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 298 * MT level protection given by STREAMS. IP uses a combination of its own 299 * internal serialization mechanism and standard Solaris locking techniques. 300 * The internal serialization is per phyint (no IPMP) or per IPMP group. 301 * This is used to serialize plumbing operations, IPMP operations, certain 302 * multicast operations, most set ioctls, igmp/mld timers etc. 303 * 304 * Plumbing is a long sequence of operations involving message 305 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 306 * involved in plumbing operations. A natural model is to serialize these 307 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 308 * parallel without any interference. But various set ioctls on hme0 are best 309 * serialized. However if the system uses IPMP, the operations are easier if 310 * they are serialized on a per IPMP group basis since IPMP operations 311 * happen across ill's of a group. Thus the lowest common denominator is to 312 * serialize most set ioctls, multicast join/leave operations, IPMP operations 313 * igmp/mld timer operations, and processing of DLPI control messages received 314 * from drivers on a per IPMP group basis. If the system does not employ 315 * IPMP the serialization is on a per phyint basis. This serialization is 316 * provided by the ipsq_t and primitives operating on this. Details can 317 * be found in ip_if.c above the core primitives operating on ipsq_t. 318 * 319 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 320 * Simiarly lookup of an ire by a thread also returns a refheld ire. 321 * In addition ipif's and ill's referenced by the ire are also indirectly 322 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 323 * the ipif's address or netmask change as long as an ipif is refheld 324 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 325 * address of an ipif has to go through the ipsq_t. This ensures that only 326 * 1 such exclusive operation proceeds at any time on the ipif. It then 327 * deletes all ires associated with this ipif, and waits for all refcnts 328 * associated with this ipif to come down to zero. The address is changed 329 * only after the ipif has been quiesced. Then the ipif is brought up again. 330 * More details are described above the comment in ip_sioctl_flags. 331 * 332 * Packet processing is based mostly on IREs and are fully multi-threaded 333 * using standard Solaris MT techniques. 334 * 335 * There are explicit locks in IP to handle: 336 * - The ip_g_head list maintained by mi_open_link() and friends. 337 * 338 * - The reassembly data structures (one lock per hash bucket) 339 * 340 * - conn_lock is meant to protect conn_t fields. The fields actually 341 * protected by conn_lock are documented in the conn_t definition. 342 * 343 * - ire_lock to protect some of the fields of the ire, IRE tables 344 * (one lock per hash bucket). Refer to ip_ire.c for details. 345 * 346 * - ndp_g_lock and nce_lock for protecting NCEs. 347 * 348 * - ill_lock protects fields of the ill and ipif. Details in ip.h 349 * 350 * - ill_g_lock: This is a global reader/writer lock. Protects the following 351 * * The AVL tree based global multi list of all ills. 352 * * The linked list of all ipifs of an ill 353 * * The <ill-ipsq> mapping 354 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 355 * * The illgroup list threaded by ill_group_next. 356 * * <ill-phyint> association 357 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 358 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 359 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 360 * will all have to hold the ill_g_lock as writer for the actual duration 361 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 362 * may be found in the IPMP section. 363 * 364 * - ill_lock: This is a per ill mutex. 365 * It protects some members of the ill and is documented below. 366 * It also protects the <ill-ipsq> mapping 367 * It also protects the illgroup list threaded by ill_group_next. 368 * It also protects the <ill-phyint> assoc. 369 * It also protects the list of ipifs hanging off the ill. 370 * 371 * - ipsq_lock: This is a per ipsq_t mutex lock. 372 * This protects all the other members of the ipsq struct except 373 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 374 * 375 * - illgrp_lock: This is a per ill_group mutex lock. 376 * The only thing it protects is the illgrp_ill_schednext member of ill_group 377 * which dictates which is the next ill in an ill_group that is to be chosen 378 * for sending outgoing packets, through creation of an IRE_CACHE that 379 * references this ill. 380 * 381 * - phyint_lock: This is a per phyint mutex lock. Protects just the 382 * phyint_flags 383 * 384 * - ip_g_nd_lock: This is a global reader/writer lock. 385 * Any call to nd_load to load a new parameter to the ND table must hold the 386 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 387 * as reader. 388 * 389 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 390 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 391 * uniqueness check also done atomically. 392 * 393 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 394 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 395 * as a writer when adding or deleting elements from these lists, and 396 * as a reader when walking these lists to send a SADB update to the 397 * IPsec capable ills. 398 * 399 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 400 * group list linked by ill_usesrc_grp_next. It also protects the 401 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 402 * group is being added or deleted. This lock is taken as a reader when 403 * walking the list/group(eg: to get the number of members in a usesrc group). 404 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 405 * field is changing state i.e from NULL to non-NULL or vice-versa. For 406 * example, it is not necessary to take this lock in the initial portion 407 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 408 * ip_sioctl_flags since the these operations are executed exclusively and 409 * that ensures that the "usesrc group state" cannot change. The "usesrc 410 * group state" change can happen only in the latter part of 411 * ip_sioctl_slifusesrc and in ill_delete. 412 * 413 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 414 * 415 * To change the <ill-phyint> association, the ill_g_lock must be held 416 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 417 * must be held. 418 * 419 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 420 * and the ill_lock of the ill in question must be held. 421 * 422 * To change the <ill-illgroup> association the ill_g_lock must be held as 423 * writer and the ill_lock of the ill in question must be held. 424 * 425 * To add or delete an ipif from the list of ipifs hanging off the ill, 426 * ill_g_lock (writer) and ill_lock must be held and the thread must be 427 * a writer on the associated ipsq,. 428 * 429 * To add or delete an ill to the system, the ill_g_lock must be held as 430 * writer and the thread must be a writer on the associated ipsq. 431 * 432 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 433 * must be a writer on the associated ipsq. 434 * 435 * Lock hierarchy 436 * 437 * Some lock hierarchy scenarios are listed below. 438 * 439 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 440 * ill_g_lock -> illgrp_lock -> ill_lock 441 * ill_g_lock -> ill_lock(s) -> phyint_lock 442 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 443 * ill_g_lock -> ip_addr_avail_lock 444 * conn_lock -> irb_lock -> ill_lock -> ire_lock 445 * ill_g_lock -> ip_g_nd_lock 446 * 447 * When more than 1 ill lock is needed to be held, all ill lock addresses 448 * are sorted on address and locked starting from highest addressed lock 449 * downward. 450 * 451 * Mobile-IP scenarios 452 * 453 * irb_lock -> ill_lock -> ire_mrtun_lock 454 * irb_lock -> ill_lock -> ire_srcif_table_lock 455 * 456 * IPsec scenarios 457 * 458 * ipsa_lock -> ill_g_lock -> ill_lock 459 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 460 * ipsec_capab_ills_lock -> ipsa_lock 461 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 462 * 463 * Trusted Solaris scenarios 464 * 465 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 466 * igsa_lock -> gcdb_lock 467 * gcgrp_rwlock -> ire_lock 468 * gcgrp_rwlock -> gcdb_lock 469 * 470 * IPSEC notes : 471 * 472 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 473 * in front of the actual packet. For outbound datagrams, the M_CTL 474 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 475 * information used by the IPSEC code for applying the right level of 476 * protection. The information initialized by IP in the ipsec_out_t 477 * is determined by the per-socket policy or global policy in the system. 478 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 479 * ipsec_info.h) which starts out with nothing in it. It gets filled 480 * with the right information if it goes through the AH/ESP code, which 481 * happens if the incoming packet is secure. The information initialized 482 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 483 * the policy requirements needed by per-socket policy or global policy 484 * is met or not. 485 * 486 * If there is both per-socket policy (set using setsockopt) and there 487 * is also global policy match for the 5 tuples of the socket, 488 * ipsec_override_policy() makes the decision of which one to use. 489 * 490 * For fully connected sockets i.e dst, src [addr, port] is known, 491 * conn_policy_cached is set indicating that policy has been cached. 492 * conn_in_enforce_policy may or may not be set depending on whether 493 * there is a global policy match or per-socket policy match. 494 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 495 * Once the right policy is set on the conn_t, policy cannot change for 496 * this socket. This makes life simpler for TCP (UDP ?) where 497 * re-transmissions go out with the same policy. For symmetry, policy 498 * is cached for fully connected UDP sockets also. Thus if policy is cached, 499 * it also implies that policy is latched i.e policy cannot change 500 * on these sockets. As we have the right policy on the conn, we don't 501 * have to lookup global policy for every outbound and inbound datagram 502 * and thus serving as an optimization. Note that a global policy change 503 * does not affect fully connected sockets if they have policy. If fully 504 * connected sockets did not have any policy associated with it, global 505 * policy change may affect them. 506 * 507 * IP Flow control notes: 508 * 509 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 510 * cannot be sent down to the driver by IP, because of a canput failure, IP 511 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 512 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 513 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 514 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 515 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 516 * the queued messages, and removes the conn from the drain list, if all 517 * messages were drained. It also qenables the next conn in the drain list to 518 * continue the drain process. 519 * 520 * In reality the drain list is not a single list, but a configurable number 521 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 522 * list. If the ip_wsrv of the next qenabled conn does not run, because the 523 * stream closes, ip_close takes responsibility to qenable the next conn in 524 * the drain list. The directly called ip_wput path always does a putq, if 525 * it cannot putnext. Thus synchronization problems are handled between 526 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 527 * functions that manipulate this drain list. Furthermore conn_drain_insert 528 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 529 * running on a queue at any time. conn_drain_tail can be simultaneously called 530 * from both ip_wsrv and ip_close. 531 * 532 * IPQOS notes: 533 * 534 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 535 * and IPQoS modules. IPPF includes hooks in IP at different control points 536 * (callout positions) which direct packets to IPQoS modules for policy 537 * processing. Policies, if present, are global. 538 * 539 * The callout positions are located in the following paths: 540 * o local_in (packets destined for this host) 541 * o local_out (packets orginating from this host ) 542 * o fwd_in (packets forwarded by this m/c - inbound) 543 * o fwd_out (packets forwarded by this m/c - outbound) 544 * Hooks at these callout points can be enabled/disabled using the ndd variable 545 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 546 * By default all the callout positions are enabled. 547 * 548 * Outbound (local_out) 549 * Hooks are placed in ip_wput_ire and ipsec_out_process. 550 * 551 * Inbound (local_in) 552 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 553 * TCP and UDP fanout routines. 554 * 555 * Forwarding (in and out) 556 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 557 * 558 * IP Policy Framework processing (IPPF processing) 559 * Policy processing for a packet is initiated by ip_process, which ascertains 560 * that the classifier (ipgpc) is loaded and configured, failing which the 561 * packet resumes normal processing in IP. If the clasifier is present, the 562 * packet is acted upon by one or more IPQoS modules (action instances), per 563 * filters configured in ipgpc and resumes normal IP processing thereafter. 564 * An action instance can drop a packet in course of its processing. 565 * 566 * A boolean variable, ip_policy, is used in all the fanout routines that can 567 * invoke ip_process for a packet. This variable indicates if the packet should 568 * to be sent for policy processing. The variable is set to B_TRUE by default, 569 * i.e. when the routines are invoked in the normal ip procesing path for a 570 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 571 * ip_policy is set to B_FALSE for all the routines called in these two 572 * functions because, in the former case, we don't process loopback traffic 573 * currently while in the latter, the packets have already been processed in 574 * icmp_inbound. 575 * 576 * Zones notes: 577 * 578 * The partitioning rules for networking are as follows: 579 * 1) Packets coming from a zone must have a source address belonging to that 580 * zone. 581 * 2) Packets coming from a zone can only be sent on a physical interface on 582 * which the zone has an IP address. 583 * 3) Between two zones on the same machine, packet delivery is only allowed if 584 * there's a matching route for the destination and zone in the forwarding 585 * table. 586 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 587 * different zones can bind to the same port with the wildcard address 588 * (INADDR_ANY). 589 * 590 * The granularity of interface partitioning is at the logical interface level. 591 * Therefore, every zone has its own IP addresses, and incoming packets can be 592 * attributed to a zone unambiguously. A logical interface is placed into a zone 593 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 594 * structure. Rule (1) is implemented by modifying the source address selection 595 * algorithm so that the list of eligible addresses is filtered based on the 596 * sending process zone. 597 * 598 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 599 * across all zones, depending on their type. Here is the break-up: 600 * 601 * IRE type Shared/exclusive 602 * -------- ---------------- 603 * IRE_BROADCAST Exclusive 604 * IRE_DEFAULT (default routes) Shared (*) 605 * IRE_LOCAL Exclusive 606 * IRE_LOOPBACK Exclusive 607 * IRE_PREFIX (net routes) Shared (*) 608 * IRE_CACHE Exclusive 609 * IRE_IF_NORESOLVER (interface routes) Exclusive 610 * IRE_IF_RESOLVER (interface routes) Exclusive 611 * IRE_HOST (host routes) Shared (*) 612 * 613 * (*) A zone can only use a default or off-subnet route if the gateway is 614 * directly reachable from the zone, that is, if the gateway's address matches 615 * one of the zone's logical interfaces. 616 * 617 * Multiple zones can share a common broadcast address; typically all zones 618 * share the 255.255.255.255 address. Incoming as well as locally originated 619 * broadcast packets must be dispatched to all the zones on the broadcast 620 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 621 * since some zones may not be on the 10.16.72/24 network. To handle this, each 622 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 623 * sent to every zone that has an IRE_BROADCAST entry for the destination 624 * address on the input ill, see conn_wantpacket(). 625 * 626 * Applications in different zones can join the same multicast group address. 627 * For IPv4, group memberships are per-logical interface, so they're already 628 * inherently part of a zone. For IPv6, group memberships are per-physical 629 * interface, so we distinguish IPv6 group memberships based on group address, 630 * interface and zoneid. In both cases, received multicast packets are sent to 631 * every zone for which a group membership entry exists. On IPv6 we need to 632 * check that the target zone still has an address on the receiving physical 633 * interface; it could have been removed since the application issued the 634 * IPV6_JOIN_GROUP. 635 */ 636 637 /* 638 * Squeue Fanout flags: 639 * 0: No fanout. 640 * 1: Fanout across all squeues 641 */ 642 boolean_t ip_squeue_fanout = 0; 643 644 /* 645 * Maximum dups allowed per packet. 646 */ 647 uint_t ip_max_frag_dups = 10; 648 649 #define IS_SIMPLE_IPH(ipha) \ 650 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 651 652 /* RFC1122 Conformance */ 653 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 654 655 #define ILL_MAX_NAMELEN LIFNAMSIZ 656 657 /* Leave room for ip_newroute to tack on the src and target addresses */ 658 #define OK_RESOLVER_MP(mp) \ 659 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 660 661 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 662 663 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 664 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 665 666 static void icmp_frag_needed(queue_t *, mblk_t *, int); 667 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 668 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 669 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 670 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 671 mblk_t *, int); 672 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 673 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 674 ill_t *, zoneid_t); 675 static void icmp_options_update(ipha_t *); 676 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t); 677 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t); 678 static mblk_t *icmp_pkt_err_ok(mblk_t *); 679 static void icmp_redirect(mblk_t *); 680 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 681 682 static void ip_arp_news(queue_t *, mblk_t *); 683 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 684 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 685 char *ip_dot_addr(ipaddr_t, char *); 686 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 687 int ip_close(queue_t *, int); 688 static char *ip_dot_saddr(uchar_t *, char *); 689 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 690 boolean_t, boolean_t, ill_t *, zoneid_t); 691 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 692 boolean_t, boolean_t, zoneid_t); 693 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 694 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 695 static void ip_lrput(queue_t *, mblk_t *); 696 ipaddr_t ip_massage_options(ipha_t *); 697 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 698 ipaddr_t ip_net_mask(ipaddr_t); 699 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 700 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 701 conn_t *, uint32_t); 702 static int ip_hdr_complete(ipha_t *, zoneid_t); 703 char *ip_nv_lookup(nv_t *, int); 704 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 705 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 706 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 707 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 708 size_t); 709 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 710 void ip_rput(queue_t *, mblk_t *); 711 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 712 void *dummy_arg); 713 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 714 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 715 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 716 ire_t *); 717 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 718 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 719 uint16_t *); 720 int ip_snmp_get(queue_t *, mblk_t *); 721 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 722 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 723 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 724 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 725 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 726 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 727 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 728 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 729 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 730 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 731 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 732 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 733 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 734 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 735 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 736 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 737 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 738 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 739 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 740 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 741 static boolean_t ip_source_routed(ipha_t *); 742 static boolean_t ip_source_route_included(ipha_t *); 743 744 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t); 745 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 746 static void ip_wput_local_options(ipha_t *); 747 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 748 zoneid_t); 749 750 static void conn_drain_init(void); 751 static void conn_drain_fini(void); 752 static void conn_drain_tail(conn_t *connp, boolean_t closing); 753 754 static void conn_walk_drain(void); 755 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 756 zoneid_t); 757 758 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 759 zoneid_t); 760 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 761 void *dummy_arg); 762 763 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 764 765 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 766 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 767 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 768 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 769 770 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 771 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 772 caddr_t, cred_t *); 773 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 774 caddr_t cp, cred_t *cr); 775 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 776 cred_t *); 777 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 778 caddr_t cp, cred_t *cr); 779 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 780 cred_t *); 781 static squeue_func_t ip_squeue_switch(int); 782 783 static void ip_kstat_init(void); 784 static void ip_kstat_fini(void); 785 static int ip_kstat_update(kstat_t *kp, int rw); 786 static void icmp_kstat_init(void); 787 static void icmp_kstat_fini(void); 788 static int icmp_kstat_update(kstat_t *kp, int rw); 789 790 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 791 792 static boolean_t ip_no_forward(ipha_t *, ill_t *); 793 static boolean_t ip_loopback_src_or_dst(ipha_t *, ill_t *); 794 795 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 796 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 797 798 void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 799 800 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 801 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 802 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 803 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 804 805 uint_t ip_ire_default_count; /* Number of IPv4 IRE_DEFAULT entries. */ 806 uint_t ip_ire_default_index; /* Walking index used to mod in */ 807 808 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 809 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 810 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 811 812 /* How long, in seconds, we allow frags to hang around. */ 813 #define IP_FRAG_TIMEOUT 60 814 815 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 816 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 817 818 /* 819 * Threshold which determines whether MDT should be used when 820 * generating IP fragments; payload size must be greater than 821 * this threshold for MDT to take place. 822 */ 823 #define IP_WPUT_FRAG_MDT_MIN 32768 824 825 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 826 827 /* Protected by ip_mi_lock */ 828 static void *ip_g_head; /* Instance Data List Head */ 829 kmutex_t ip_mi_lock; /* Lock for list of instances */ 830 831 /* Only modified during _init and _fini thus no locking is needed. */ 832 caddr_t ip_g_nd; /* Named Dispatch List Head */ 833 834 835 static long ip_rput_pullups; 836 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 837 838 vmem_t *ip_minor_arena; 839 840 /* 841 * MIB-2 stuff for SNMP (both IP and ICMP) 842 */ 843 mib2_ip_t ip_mib; 844 mib2_icmp_t icmp_mib; 845 846 #ifdef DEBUG 847 uint32_t ipsechw_debug = 0; 848 #endif 849 850 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 851 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 852 853 uint_t loopback_packets = 0; 854 855 /* 856 * Multirouting/CGTP stuff 857 */ 858 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 859 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 860 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 861 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 862 hrtime_t ip_multirt_log_interval = 1000; 863 /* Time since last warning issued. */ 864 static hrtime_t multirt_bad_mtu_last_time = 0; 865 866 kmutex_t ip_trash_timer_lock; 867 krwlock_t ip_g_nd_lock; 868 869 /* 870 * XXX following really should only be in a header. Would need more 871 * header and .c clean up first. 872 */ 873 extern optdb_obj_t ip_opt_obj; 874 875 ulong_t ip_squeue_enter_unbound = 0; 876 877 /* 878 * Named Dispatch Parameter Table. 879 * All of these are alterable, within the min/max values given, at run time. 880 */ 881 static ipparam_t lcl_param_arr[] = { 882 /* min max value name */ 883 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 884 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 885 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 886 { 0, 1, 0, "ip_respond_to_timestamp"}, 887 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 888 { 0, 1, 1, "ip_send_redirects"}, 889 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 890 { 0, 10, 0, "ip_debug"}, 891 { 0, 10, 0, "ip_mrtdebug"}, 892 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 893 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 894 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 895 { 1, 255, 255, "ip_def_ttl" }, 896 { 0, 1, 0, "ip_forward_src_routed"}, 897 { 0, 256, 32, "ip_wroff_extra" }, 898 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 899 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 900 { 0, 1, 1, "ip_path_mtu_discovery" }, 901 { 0, 240, 30, "ip_ignore_delete_time" }, 902 { 0, 1, 0, "ip_ignore_redirect" }, 903 { 0, 1, 1, "ip_output_queue" }, 904 { 1, 254, 1, "ip_broadcast_ttl" }, 905 { 0, 99999, 100, "ip_icmp_err_interval" }, 906 { 1, 99999, 10, "ip_icmp_err_burst" }, 907 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 908 { 0, 1, 0, "ip_strict_dst_multihoming" }, 909 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 910 { 0, 1, 0, "ipsec_override_persocket_policy" }, 911 { 0, 1, 1, "icmp_accept_clear_messages" }, 912 { 0, 1, 1, "igmp_accept_clear_messages" }, 913 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 914 "ip_ndp_delay_first_probe_time"}, 915 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 916 "ip_ndp_max_unicast_solicit"}, 917 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 918 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 919 { 0, 1, 0, "ip6_forward_src_routed"}, 920 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 921 { 0, 1, 1, "ip6_send_redirects"}, 922 { 0, 1, 0, "ip6_ignore_redirect" }, 923 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 924 925 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 926 927 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 928 929 { 0, 1, 1, "pim_accept_clear_messages" }, 930 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 931 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 932 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 933 { 0, 15, 0, "ip_policy_mask" }, 934 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 935 { 0, 255, 1, "ip_multirt_ttl" }, 936 { 0, 1, 1, "ip_multidata_outbound" }, 937 #ifdef DEBUG 938 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 939 #endif 940 }; 941 942 ipparam_t *ip_param_arr = lcl_param_arr; 943 944 /* Extended NDP table */ 945 static ipndp_t lcl_ndp_arr[] = { 946 /* getf setf data name */ 947 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 948 "ip_forwarding" }, 949 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 950 "ip6_forwarding" }, 951 { ip_ill_report, NULL, NULL, 952 "ip_ill_status" }, 953 { ip_ipif_report, NULL, NULL, 954 "ip_ipif_status" }, 955 { ip_ire_report, NULL, NULL, 956 "ipv4_ire_status" }, 957 { ip_ire_report_mrtun, NULL, NULL, 958 "ipv4_mrtun_ire_status" }, 959 { ip_ire_report_srcif, NULL, NULL, 960 "ipv4_srcif_ire_status" }, 961 { ip_ire_report_v6, NULL, NULL, 962 "ipv6_ire_status" }, 963 { ip_conn_report, NULL, NULL, 964 "ip_conn_status" }, 965 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 966 "ip_rput_pullups" }, 967 { ndp_report, NULL, NULL, 968 "ip_ndp_cache_report" }, 969 { ip_srcid_report, NULL, NULL, 970 "ip_srcid_status" }, 971 { ip_param_generic_get, ip_squeue_profile_set, 972 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 973 { ip_param_generic_get, ip_squeue_bind_set, 974 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 975 { ip_param_generic_get, ip_input_proc_set, 976 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 977 { ip_param_generic_get, ip_int_set, 978 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 979 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 980 "ip_cgtp_filter" }, 981 { ip_param_generic_get, ip_int_set, 982 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 983 }; 984 985 /* 986 * ip_g_forward controls IP forwarding. It takes two values: 987 * 0: IP_FORWARD_NEVER Don't forward packets ever. 988 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 989 * 990 * RFC1122 says there must be a configuration switch to control forwarding, 991 * but that the default MUST be to not forward packets ever. Implicit 992 * control based on configuration of multiple interfaces MUST NOT be 993 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 994 * and, in fact, it was the default. That capability is now provided in the 995 * /etc/rc2.d/S69inet script. 996 */ 997 int ip_g_forward = IP_FORWARD_DEFAULT; 998 999 /* It also has an IPv6 counterpart. */ 1000 1001 int ipv6_forward = IP_FORWARD_DEFAULT; 1002 1003 /* Following line is external, and in ip.h. Normally marked with * *. */ 1004 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 1005 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 1006 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 1007 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 1008 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 1009 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 1010 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 1011 #define ip_debug ip_param_arr[7].ip_param_value /* */ 1012 #define ip_mrtdebug ip_param_arr[8].ip_param_value /* */ 1013 #define ip_timer_interval ip_param_arr[9].ip_param_value /* */ 1014 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value /* */ 1015 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 1016 #define ip_def_ttl ip_param_arr[12].ip_param_value 1017 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 1018 #define ip_wroff_extra ip_param_arr[14].ip_param_value 1019 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 1020 #define ip_icmp_return ip_param_arr[16].ip_param_value 1021 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value /* */ 1022 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value /* */ 1023 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 1024 #define ip_output_queue ip_param_arr[20].ip_param_value 1025 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 1026 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 1027 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 1028 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 1029 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 1030 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 1031 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value /* */ 1032 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 1033 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 1034 1035 /* IPv6 configuration knobs */ 1036 #define delay_first_probe_time ip_param_arr[30].ip_param_value 1037 #define max_unicast_solicit ip_param_arr[31].ip_param_value 1038 #define ipv6_def_hops ip_param_arr[32].ip_param_value 1039 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 1040 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 1041 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 1042 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 1043 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 1044 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 1045 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 1046 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 1047 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 1048 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 1049 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 1050 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 1051 #define ip_policy_mask ip_param_arr[45].ip_param_value 1052 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 1053 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 1054 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 1055 #ifdef DEBUG 1056 #define ipv6_drop_inbound_icmpv6 ip_param_arr[49].ip_param_value 1057 #else 1058 #define ipv6_drop_inbound_icmpv6 0 1059 #endif 1060 1061 1062 /* 1063 * Table of IP ioctls encoding the various properties of the ioctl and 1064 * indexed based on the last byte of the ioctl command. Occasionally there 1065 * is a clash, and there is more than 1 ioctl with the same last byte. 1066 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1067 * ioctls are encoded in the misc table. An entry in the ndx table is 1068 * retrieved by indexing on the last byte of the ioctl command and comparing 1069 * the ioctl command with the value in the ndx table. In the event of a 1070 * mismatch the misc table is then searched sequentially for the desired 1071 * ioctl command. 1072 * 1073 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1074 */ 1075 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1076 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1083 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 1087 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1088 MISC_CMD, ip_siocaddrt, NULL }, 1089 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1090 MISC_CMD, ip_siocdelrt, NULL }, 1091 1092 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1093 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1094 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1095 IF_CMD, ip_sioctl_get_addr, NULL }, 1096 1097 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1098 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1099 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1100 IPI_GET_CMD | IPI_REPL, 1101 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1102 1103 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1104 IPI_PRIV | IPI_WR | IPI_REPL, 1105 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1106 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1107 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1108 IF_CMD, ip_sioctl_get_flags, NULL }, 1109 1110 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* copyin size cannot be coded for SIOCGIFCONF */ 1114 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1115 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1116 1117 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1118 IF_CMD, ip_sioctl_mtu, NULL }, 1119 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1120 IF_CMD, ip_sioctl_get_mtu, NULL }, 1121 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1122 IPI_GET_CMD | IPI_REPL, 1123 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1124 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1125 IF_CMD, ip_sioctl_brdaddr, NULL }, 1126 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1127 IPI_GET_CMD | IPI_REPL, 1128 IF_CMD, ip_sioctl_get_netmask, NULL }, 1129 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1130 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1131 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1132 IPI_GET_CMD | IPI_REPL, 1133 IF_CMD, ip_sioctl_get_metric, NULL }, 1134 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1135 IF_CMD, ip_sioctl_metric, NULL }, 1136 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1137 1138 /* See 166-168 below for extended SIOC*XARP ioctls */ 1139 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1140 MISC_CMD, ip_sioctl_arp, NULL }, 1141 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1142 MISC_CMD, ip_sioctl_arp, NULL }, 1143 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1144 MISC_CMD, ip_sioctl_arp, NULL }, 1145 1146 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1157 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1158 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1159 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1160 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1161 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 1168 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1169 MISC_CMD, if_unitsel, if_unitsel_restart }, 1170 1171 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1188 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1189 1190 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1191 IPI_PRIV | IPI_WR | IPI_MODOK, 1192 IF_CMD, ip_sioctl_sifname, NULL }, 1193 1194 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1200 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1201 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1202 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1203 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1204 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1205 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1206 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1207 1208 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1209 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1210 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1211 IF_CMD, ip_sioctl_get_muxid, NULL }, 1212 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1213 IPI_PRIV | IPI_WR | IPI_REPL, 1214 IF_CMD, ip_sioctl_muxid, NULL }, 1215 1216 /* Both if and lif variants share same func */ 1217 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1218 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1219 /* Both if and lif variants share same func */ 1220 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1221 IPI_PRIV | IPI_WR | IPI_REPL, 1222 IF_CMD, ip_sioctl_slifindex, NULL }, 1223 1224 /* copyin size cannot be coded for SIOCGIFCONF */ 1225 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1226 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1227 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1228 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1229 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1230 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1231 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1232 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1233 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1234 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1235 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1236 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1237 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1238 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1239 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1241 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1242 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1243 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1244 1245 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1246 IPI_PRIV | IPI_WR | IPI_REPL, 1247 LIF_CMD, ip_sioctl_removeif, 1248 ip_sioctl_removeif_restart }, 1249 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1250 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1251 LIF_CMD, ip_sioctl_addif, NULL }, 1252 #define SIOCLIFADDR_NDX 112 1253 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1254 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1255 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1256 IPI_GET_CMD | IPI_REPL, 1257 LIF_CMD, ip_sioctl_get_addr, NULL }, 1258 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1259 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1260 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1261 IPI_GET_CMD | IPI_REPL, 1262 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1263 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1264 IPI_PRIV | IPI_WR | IPI_REPL, 1265 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1266 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1267 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1268 LIF_CMD, ip_sioctl_get_flags, NULL }, 1269 1270 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1271 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1272 1273 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1274 ip_sioctl_get_lifconf, NULL }, 1275 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1276 LIF_CMD, ip_sioctl_mtu, NULL }, 1277 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1278 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1279 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1280 IPI_GET_CMD | IPI_REPL, 1281 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1282 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1283 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1284 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1285 IPI_GET_CMD | IPI_REPL, 1286 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1287 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1288 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1289 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1290 IPI_GET_CMD | IPI_REPL, 1291 LIF_CMD, ip_sioctl_get_metric, NULL }, 1292 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1293 LIF_CMD, ip_sioctl_metric, NULL }, 1294 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1295 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1296 LIF_CMD, ip_sioctl_slifname, 1297 ip_sioctl_slifname_restart }, 1298 1299 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1300 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1301 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1302 IPI_GET_CMD | IPI_REPL, 1303 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1304 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1305 IPI_PRIV | IPI_WR | IPI_REPL, 1306 LIF_CMD, ip_sioctl_muxid, NULL }, 1307 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1308 IPI_GET_CMD | IPI_REPL, 1309 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1310 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1311 IPI_PRIV | IPI_WR | IPI_REPL, 1312 LIF_CMD, ip_sioctl_slifindex, 0 }, 1313 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1314 LIF_CMD, ip_sioctl_token, NULL }, 1315 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1316 IPI_GET_CMD | IPI_REPL, 1317 LIF_CMD, ip_sioctl_get_token, NULL }, 1318 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1319 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1320 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1321 IPI_GET_CMD | IPI_REPL, 1322 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1323 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1324 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1325 1326 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1327 IPI_GET_CMD | IPI_REPL, 1328 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1329 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1330 LIF_CMD, ip_siocdelndp_v6, NULL }, 1331 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1332 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1333 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1334 LIF_CMD, ip_siocsetndp_v6, NULL }, 1335 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1336 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1337 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1338 MISC_CMD, ip_sioctl_tonlink, NULL }, 1339 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1340 MISC_CMD, ip_sioctl_tmysite, NULL }, 1341 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1342 TUN_CMD, ip_sioctl_tunparam, NULL }, 1343 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1344 IPI_PRIV | IPI_WR, 1345 TUN_CMD, ip_sioctl_tunparam, NULL }, 1346 1347 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1348 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1349 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1350 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1351 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1352 1353 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1354 IPI_PRIV | IPI_WR | IPI_REPL, 1355 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1356 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1357 IPI_PRIV | IPI_WR | IPI_REPL, 1358 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1359 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1360 IPI_PRIV | IPI_WR, 1361 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1362 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1363 IPI_GET_CMD | IPI_REPL, 1364 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1365 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1366 IPI_GET_CMD | IPI_REPL, 1367 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1368 1369 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1370 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1371 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1372 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1373 1374 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1375 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1376 1377 /* These are handled in ip_sioctl_copyin_setup itself */ 1378 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1379 MISC_CMD, NULL, NULL }, 1380 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1381 MISC_CMD, NULL, NULL }, 1382 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1383 1384 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1385 ip_sioctl_get_lifconf, NULL }, 1386 1387 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1388 MISC_CMD, ip_sioctl_xarp, NULL }, 1389 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1390 MISC_CMD, ip_sioctl_xarp, NULL }, 1391 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1392 MISC_CMD, ip_sioctl_xarp, NULL }, 1393 1394 /* SIOCPOPSOCKFS is not handled by IP */ 1395 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1396 1397 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1398 IPI_GET_CMD | IPI_REPL, 1399 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1400 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1401 IPI_PRIV | IPI_WR | IPI_REPL, 1402 LIF_CMD, ip_sioctl_slifzone, 1403 ip_sioctl_slifzone_restart }, 1404 /* 172-174 are SCTP ioctls and not handled by IP */ 1405 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1406 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1407 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1408 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1409 IPI_GET_CMD, LIF_CMD, 1410 ip_sioctl_get_lifusesrc, 0 }, 1411 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1412 IPI_PRIV | IPI_WR, 1413 LIF_CMD, ip_sioctl_slifusesrc, 1414 NULL }, 1415 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1416 ip_sioctl_get_lifsrcof, NULL }, 1417 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1418 MISC_CMD, ip_sioctl_msfilter, NULL }, 1419 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1420 MISC_CMD, ip_sioctl_msfilter, NULL }, 1421 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1422 MISC_CMD, ip_sioctl_msfilter, NULL }, 1423 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1424 MISC_CMD, ip_sioctl_msfilter, NULL }, 1425 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1426 ip_sioctl_set_ipmpfailback, NULL } 1427 }; 1428 1429 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1430 1431 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1432 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1433 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1434 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1435 TUN_CMD, ip_sioctl_tunparam, NULL }, 1436 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1437 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1438 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1439 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1440 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1441 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1442 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1443 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1444 MISC_CMD, mrt_ioctl}, 1445 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1446 MISC_CMD, mrt_ioctl}, 1447 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1448 MISC_CMD, mrt_ioctl} 1449 }; 1450 1451 int ip_misc_ioctl_count = 1452 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1453 1454 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1455 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1456 static int conn_drain_list_index; /* Next drain_list to be used */ 1457 int conn_drain_nthreads; /* Number of drainers reqd. */ 1458 /* Settable in /etc/system */ 1459 1460 /* Defined in ip_ire.c */ 1461 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1462 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1463 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1464 1465 static nv_t ire_nv_arr[] = { 1466 { IRE_BROADCAST, "BROADCAST" }, 1467 { IRE_LOCAL, "LOCAL" }, 1468 { IRE_LOOPBACK, "LOOPBACK" }, 1469 { IRE_CACHE, "CACHE" }, 1470 { IRE_DEFAULT, "DEFAULT" }, 1471 { IRE_PREFIX, "PREFIX" }, 1472 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1473 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1474 { IRE_HOST, "HOST" }, 1475 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1476 { 0 } 1477 }; 1478 1479 nv_t *ire_nv_tbl = ire_nv_arr; 1480 1481 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1482 extern krwlock_t ipsec_capab_ills_lock; 1483 1484 /* Packet dropper for IP IPsec processing failures */ 1485 ipdropper_t ip_dropper; 1486 1487 /* Simple ICMP IP Header Template */ 1488 static ipha_t icmp_ipha = { 1489 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1490 }; 1491 1492 struct module_info ip_mod_info = { 1493 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1494 }; 1495 1496 static struct qinit rinit = { 1497 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1498 &ip_mod_info 1499 }; 1500 1501 static struct qinit winit = { 1502 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1503 &ip_mod_info 1504 }; 1505 1506 static struct qinit lrinit = { 1507 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1508 &ip_mod_info 1509 }; 1510 1511 static struct qinit lwinit = { 1512 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1513 &ip_mod_info 1514 }; 1515 1516 struct streamtab ipinfo = { 1517 &rinit, &winit, &lrinit, &lwinit 1518 }; 1519 1520 #ifdef DEBUG 1521 static boolean_t skip_sctp_cksum = B_FALSE; 1522 #endif 1523 /* 1524 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1525 */ 1526 mblk_t * 1527 ip_copymsg(mblk_t *mp) 1528 { 1529 mblk_t *nmp; 1530 ipsec_info_t *in; 1531 1532 if (mp->b_datap->db_type != M_CTL) 1533 return (copymsg(mp)); 1534 1535 in = (ipsec_info_t *)mp->b_rptr; 1536 1537 /* 1538 * Note that M_CTL is also used for delivering ICMP error messages 1539 * upstream to transport layers. 1540 */ 1541 if (in->ipsec_info_type != IPSEC_OUT && 1542 in->ipsec_info_type != IPSEC_IN) 1543 return (copymsg(mp)); 1544 1545 nmp = copymsg(mp->b_cont); 1546 1547 if (in->ipsec_info_type == IPSEC_OUT) 1548 return (ipsec_out_tag(mp, nmp)); 1549 else 1550 return (ipsec_in_tag(mp, nmp)); 1551 } 1552 1553 /* Generate an ICMP fragmentation needed message. */ 1554 static void 1555 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu) 1556 { 1557 icmph_t icmph; 1558 mblk_t *first_mp; 1559 boolean_t mctl_present; 1560 1561 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1562 1563 if (!(mp = icmp_pkt_err_ok(mp))) { 1564 if (mctl_present) 1565 freeb(first_mp); 1566 return; 1567 } 1568 1569 bzero(&icmph, sizeof (icmph_t)); 1570 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1571 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1572 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1573 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1574 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1575 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 1576 } 1577 1578 /* 1579 * icmp_inbound deals with ICMP messages in the following ways. 1580 * 1581 * 1) It needs to send a reply back and possibly delivering it 1582 * to the "interested" upper clients. 1583 * 2) It needs to send it to the upper clients only. 1584 * 3) It needs to change some values in IP only. 1585 * 4) It needs to change some values in IP and upper layers e.g TCP. 1586 * 1587 * We need to accomodate icmp messages coming in clear until we get 1588 * everything secure from the wire. If icmp_accept_clear_messages 1589 * is zero we check with the global policy and act accordingly. If 1590 * it is non-zero, we accept the message without any checks. But 1591 * *this does not mean* that this will be delivered to the upper 1592 * clients. By accepting we might send replies back, change our MTU 1593 * value etc. but delivery to the ULP/clients depends on their policy 1594 * dispositions. 1595 * 1596 * We handle the above 4 cases in the context of IPSEC in the 1597 * following way : 1598 * 1599 * 1) Send the reply back in the same way as the request came in. 1600 * If it came in encrypted, it goes out encrypted. If it came in 1601 * clear, it goes out in clear. Thus, this will prevent chosen 1602 * plain text attack. 1603 * 2) The client may or may not expect things to come in secure. 1604 * If it comes in secure, the policy constraints are checked 1605 * before delivering it to the upper layers. If it comes in 1606 * clear, ipsec_inbound_accept_clear will decide whether to 1607 * accept this in clear or not. In both the cases, if the returned 1608 * message (IP header + 8 bytes) that caused the icmp message has 1609 * AH/ESP headers, it is sent up to AH/ESP for validation before 1610 * sending up. If there are only 8 bytes of returned message, then 1611 * upper client will not be notified. 1612 * 3) Check with global policy to see whether it matches the constaints. 1613 * But this will be done only if icmp_accept_messages_in_clear is 1614 * zero. 1615 * 4) If we need to change both in IP and ULP, then the decision taken 1616 * while affecting the values in IP and while delivering up to TCP 1617 * should be the same. 1618 * 1619 * There are two cases. 1620 * 1621 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1622 * failed), we will not deliver it to the ULP, even though they 1623 * are *willing* to accept in *clear*. This is fine as our global 1624 * disposition to icmp messages asks us reject the datagram. 1625 * 1626 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1627 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1628 * to deliver it to ULP (policy failed), it can lead to 1629 * consistency problems. The cases known at this time are 1630 * ICMP_DESTINATION_UNREACHABLE messages with following code 1631 * values : 1632 * 1633 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1634 * and Upper layer rejects. Then the communication will 1635 * come to a stop. This is solved by making similar decisions 1636 * at both levels. Currently, when we are unable to deliver 1637 * to the Upper Layer (due to policy failures) while IP has 1638 * adjusted ire_max_frag, the next outbound datagram would 1639 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1640 * will be with the right level of protection. Thus the right 1641 * value will be communicated even if we are not able to 1642 * communicate when we get from the wire initially. But this 1643 * assumes there would be at least one outbound datagram after 1644 * IP has adjusted its ire_max_frag value. To make things 1645 * simpler, we accept in clear after the validation of 1646 * AH/ESP headers. 1647 * 1648 * - Other ICMP ERRORS : We may not be able to deliver it to the 1649 * upper layer depending on the level of protection the upper 1650 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1651 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1652 * should be accepted in clear when the Upper layer expects secure. 1653 * Thus the communication may get aborted by some bad ICMP 1654 * packets. 1655 * 1656 * IPQoS Notes: 1657 * The only instance when a packet is sent for processing is when there 1658 * isn't an ICMP client and if we are interested in it. 1659 * If there is a client, IPPF processing will take place in the 1660 * ip_fanout_proto routine. 1661 * 1662 * Zones notes: 1663 * The packet is only processed in the context of the specified zone: typically 1664 * only this zone will reply to an echo request, and only interested clients in 1665 * this zone will receive a copy of the packet. This means that the caller must 1666 * call icmp_inbound() for each relevant zone. 1667 */ 1668 static void 1669 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1670 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1671 ill_t *recv_ill, zoneid_t zoneid) 1672 { 1673 icmph_t *icmph; 1674 ipha_t *ipha; 1675 int iph_hdr_length; 1676 int hdr_length; 1677 boolean_t interested; 1678 uint32_t ts; 1679 uchar_t *wptr; 1680 ipif_t *ipif; 1681 mblk_t *first_mp; 1682 ipsec_in_t *ii; 1683 ire_t *src_ire; 1684 boolean_t onlink; 1685 timestruc_t now; 1686 uint32_t ill_index; 1687 1688 ASSERT(ill != NULL); 1689 1690 first_mp = mp; 1691 if (mctl_present) { 1692 mp = first_mp->b_cont; 1693 ASSERT(mp != NULL); 1694 } 1695 1696 ipha = (ipha_t *)mp->b_rptr; 1697 if (icmp_accept_clear_messages == 0) { 1698 first_mp = ipsec_check_global_policy(first_mp, NULL, 1699 ipha, NULL, mctl_present); 1700 if (first_mp == NULL) 1701 return; 1702 } 1703 1704 /* 1705 * On a labeled system, we have to check whether the zone itself is 1706 * permitted to receive raw traffic. 1707 */ 1708 if (is_system_labeled()) { 1709 if (zoneid == ALL_ZONES) 1710 zoneid = tsol_packet_to_zoneid(mp); 1711 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1712 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1713 zoneid)); 1714 BUMP_MIB(&icmp_mib, icmpInErrors); 1715 freemsg(first_mp); 1716 return; 1717 } 1718 } 1719 1720 /* 1721 * We have accepted the ICMP message. It means that we will 1722 * respond to the packet if needed. It may not be delivered 1723 * to the upper client depending on the policy constraints 1724 * and the disposition in ipsec_inbound_accept_clear. 1725 */ 1726 1727 ASSERT(ill != NULL); 1728 1729 BUMP_MIB(&icmp_mib, icmpInMsgs); 1730 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1731 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1732 /* Last chance to get real. */ 1733 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1734 BUMP_MIB(&icmp_mib, icmpInErrors); 1735 freemsg(first_mp); 1736 return; 1737 } 1738 /* Refresh iph following the pullup. */ 1739 ipha = (ipha_t *)mp->b_rptr; 1740 } 1741 /* ICMP header checksum, including checksum field, should be zero. */ 1742 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1743 IP_CSUM(mp, iph_hdr_length, 0)) { 1744 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1745 freemsg(first_mp); 1746 return; 1747 } 1748 /* The IP header will always be a multiple of four bytes */ 1749 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1750 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1751 icmph->icmph_code)); 1752 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1753 /* We will set "interested" to "true" if we want a copy */ 1754 interested = B_FALSE; 1755 switch (icmph->icmph_type) { 1756 case ICMP_ECHO_REPLY: 1757 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1758 break; 1759 case ICMP_DEST_UNREACHABLE: 1760 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1761 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1762 interested = B_TRUE; /* Pass up to transport */ 1763 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1764 break; 1765 case ICMP_SOURCE_QUENCH: 1766 interested = B_TRUE; /* Pass up to transport */ 1767 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1768 break; 1769 case ICMP_REDIRECT: 1770 if (!ip_ignore_redirect) 1771 interested = B_TRUE; 1772 BUMP_MIB(&icmp_mib, icmpInRedirects); 1773 break; 1774 case ICMP_ECHO_REQUEST: 1775 /* 1776 * Whether to respond to echo requests that come in as IP 1777 * broadcasts or as IP multicast is subject to debate 1778 * (what isn't?). We aim to please, you pick it. 1779 * Default is do it. 1780 */ 1781 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1782 /* unicast: always respond */ 1783 interested = B_TRUE; 1784 } else if (CLASSD(ipha->ipha_dst)) { 1785 /* multicast: respond based on tunable */ 1786 interested = ip_g_resp_to_echo_mcast; 1787 } else if (broadcast) { 1788 /* broadcast: respond based on tunable */ 1789 interested = ip_g_resp_to_echo_bcast; 1790 } 1791 BUMP_MIB(&icmp_mib, icmpInEchos); 1792 break; 1793 case ICMP_ROUTER_ADVERTISEMENT: 1794 case ICMP_ROUTER_SOLICITATION: 1795 break; 1796 case ICMP_TIME_EXCEEDED: 1797 interested = B_TRUE; /* Pass up to transport */ 1798 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1799 break; 1800 case ICMP_PARAM_PROBLEM: 1801 interested = B_TRUE; /* Pass up to transport */ 1802 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1803 break; 1804 case ICMP_TIME_STAMP_REQUEST: 1805 /* Response to Time Stamp Requests is local policy. */ 1806 if (ip_g_resp_to_timestamp && 1807 /* So is whether to respond if it was an IP broadcast. */ 1808 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1809 int tstamp_len = 3 * sizeof (uint32_t); 1810 1811 if (wptr + tstamp_len > mp->b_wptr) { 1812 if (!pullupmsg(mp, wptr + tstamp_len - 1813 mp->b_rptr)) { 1814 BUMP_MIB(&ip_mib, ipInDiscards); 1815 freemsg(first_mp); 1816 return; 1817 } 1818 /* Refresh ipha following the pullup. */ 1819 ipha = (ipha_t *)mp->b_rptr; 1820 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1821 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1822 } 1823 interested = B_TRUE; 1824 } 1825 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1826 break; 1827 case ICMP_TIME_STAMP_REPLY: 1828 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1829 break; 1830 case ICMP_INFO_REQUEST: 1831 /* Per RFC 1122 3.2.2.7, ignore this. */ 1832 case ICMP_INFO_REPLY: 1833 break; 1834 case ICMP_ADDRESS_MASK_REQUEST: 1835 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1836 /* TODO m_pullup of complete header? */ 1837 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1838 interested = B_TRUE; 1839 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1840 break; 1841 case ICMP_ADDRESS_MASK_REPLY: 1842 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1843 break; 1844 default: 1845 interested = B_TRUE; /* Pass up to transport */ 1846 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1847 break; 1848 } 1849 /* See if there is an ICMP client. */ 1850 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1851 /* If there is an ICMP client and we want one too, copy it. */ 1852 mblk_t *first_mp1; 1853 1854 if (!interested) { 1855 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1856 ip_policy, recv_ill, zoneid); 1857 return; 1858 } 1859 first_mp1 = ip_copymsg(first_mp); 1860 if (first_mp1 != NULL) { 1861 ip_fanout_proto(q, first_mp1, ill, ipha, 1862 0, mctl_present, ip_policy, recv_ill, zoneid); 1863 } 1864 } else if (!interested) { 1865 freemsg(first_mp); 1866 return; 1867 } else { 1868 /* 1869 * Initiate policy processing for this packet if ip_policy 1870 * is true. 1871 */ 1872 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1873 ill_index = ill->ill_phyint->phyint_ifindex; 1874 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1875 if (mp == NULL) { 1876 if (mctl_present) { 1877 freeb(first_mp); 1878 } 1879 BUMP_MIB(&icmp_mib, icmpInErrors); 1880 return; 1881 } 1882 } 1883 } 1884 /* We want to do something with it. */ 1885 /* Check db_ref to make sure we can modify the packet. */ 1886 if (mp->b_datap->db_ref > 1) { 1887 mblk_t *first_mp1; 1888 1889 first_mp1 = ip_copymsg(first_mp); 1890 freemsg(first_mp); 1891 if (!first_mp1) { 1892 BUMP_MIB(&icmp_mib, icmpOutDrops); 1893 return; 1894 } 1895 first_mp = first_mp1; 1896 if (mctl_present) { 1897 mp = first_mp->b_cont; 1898 ASSERT(mp != NULL); 1899 } else { 1900 mp = first_mp; 1901 } 1902 ipha = (ipha_t *)mp->b_rptr; 1903 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1904 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1905 } 1906 switch (icmph->icmph_type) { 1907 case ICMP_ADDRESS_MASK_REQUEST: 1908 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1909 if (ipif == NULL) { 1910 freemsg(first_mp); 1911 return; 1912 } 1913 /* 1914 * outging interface must be IPv4 1915 */ 1916 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1917 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1918 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1919 ipif_refrele(ipif); 1920 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1921 break; 1922 case ICMP_ECHO_REQUEST: 1923 icmph->icmph_type = ICMP_ECHO_REPLY; 1924 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1925 break; 1926 case ICMP_TIME_STAMP_REQUEST: { 1927 uint32_t *tsp; 1928 1929 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1930 tsp = (uint32_t *)wptr; 1931 tsp++; /* Skip past 'originate time' */ 1932 /* Compute # of milliseconds since midnight */ 1933 gethrestime(&now); 1934 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1935 now.tv_nsec / (NANOSEC / MILLISEC); 1936 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1937 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1938 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1939 break; 1940 } 1941 default: 1942 ipha = (ipha_t *)&icmph[1]; 1943 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1944 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1945 BUMP_MIB(&ip_mib, ipInDiscards); 1946 freemsg(first_mp); 1947 return; 1948 } 1949 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1950 ipha = (ipha_t *)&icmph[1]; 1951 } 1952 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1953 BUMP_MIB(&ip_mib, ipInDiscards); 1954 freemsg(first_mp); 1955 return; 1956 } 1957 hdr_length = IPH_HDR_LENGTH(ipha); 1958 if (hdr_length < sizeof (ipha_t)) { 1959 BUMP_MIB(&ip_mib, ipInDiscards); 1960 freemsg(first_mp); 1961 return; 1962 } 1963 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1964 if (!pullupmsg(mp, 1965 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1966 BUMP_MIB(&ip_mib, ipInDiscards); 1967 freemsg(first_mp); 1968 return; 1969 } 1970 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1971 ipha = (ipha_t *)&icmph[1]; 1972 } 1973 switch (icmph->icmph_type) { 1974 case ICMP_REDIRECT: 1975 /* 1976 * As there is no upper client to deliver, we don't 1977 * need the first_mp any more. 1978 */ 1979 if (mctl_present) { 1980 freeb(first_mp); 1981 } 1982 icmp_redirect(mp); 1983 return; 1984 case ICMP_DEST_UNREACHABLE: 1985 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1986 if (!icmp_inbound_too_big(icmph, ipha, ill, 1987 zoneid, mp, iph_hdr_length)) { 1988 freemsg(first_mp); 1989 return; 1990 } 1991 /* 1992 * icmp_inbound_too_big() may alter mp. 1993 * Resynch ipha and icmph accordingly. 1994 */ 1995 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1996 ipha = (ipha_t *)&icmph[1]; 1997 } 1998 /* FALLTHRU */ 1999 default : 2000 /* 2001 * IPQoS notes: Since we have already done IPQoS 2002 * processing we don't want to do it again in 2003 * the fanout routines called by 2004 * icmp_inbound_error_fanout, hence the last 2005 * argument, ip_policy, is B_FALSE. 2006 */ 2007 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2008 ipha, iph_hdr_length, hdr_length, mctl_present, 2009 B_FALSE, recv_ill, zoneid); 2010 } 2011 return; 2012 } 2013 /* Send out an ICMP packet */ 2014 icmph->icmph_checksum = 0; 2015 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2016 if (icmph->icmph_checksum == 0) 2017 icmph->icmph_checksum = 0xFFFF; 2018 if (broadcast || CLASSD(ipha->ipha_dst)) { 2019 ipif_t *ipif_chosen; 2020 /* 2021 * Make it look like it was directed to us, so we don't look 2022 * like a fool with a broadcast or multicast source address. 2023 */ 2024 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2025 /* 2026 * Make sure that we haven't grabbed an interface that's DOWN. 2027 */ 2028 if (ipif != NULL) { 2029 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2030 ipha->ipha_src, zoneid); 2031 if (ipif_chosen != NULL) { 2032 ipif_refrele(ipif); 2033 ipif = ipif_chosen; 2034 } 2035 } 2036 if (ipif == NULL) { 2037 ip0dbg(("icmp_inbound: " 2038 "No source for broadcast/multicast:\n" 2039 "\tsrc 0x%x dst 0x%x ill %p " 2040 "ipif_lcl_addr 0x%x\n", 2041 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2042 (void *)ill, 2043 ill->ill_ipif->ipif_lcl_addr)); 2044 freemsg(first_mp); 2045 return; 2046 } 2047 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2048 ipha->ipha_dst = ipif->ipif_src_addr; 2049 ipif_refrele(ipif); 2050 } 2051 /* Reset time to live. */ 2052 ipha->ipha_ttl = ip_def_ttl; 2053 { 2054 /* Swap source and destination addresses */ 2055 ipaddr_t tmp; 2056 2057 tmp = ipha->ipha_src; 2058 ipha->ipha_src = ipha->ipha_dst; 2059 ipha->ipha_dst = tmp; 2060 } 2061 ipha->ipha_ident = 0; 2062 if (!IS_SIMPLE_IPH(ipha)) 2063 icmp_options_update(ipha); 2064 2065 /* 2066 * ICMP echo replies should go out on the same interface 2067 * the request came on as probes used by in.mpathd for detecting 2068 * NIC failures are ECHO packets. We turn-off load spreading 2069 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2070 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2071 * function. This is in turn handled by ip_wput and ip_newroute 2072 * to make sure that the packet goes out on the interface it came 2073 * in on. If we don't turnoff load spreading, the packets might get 2074 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2075 * to go out and in.mpathd would wrongly detect a failure or 2076 * mis-detect a NIC failure for link failure. As load spreading 2077 * can happen only if ill_group is not NULL, we do only for 2078 * that case and this does not affect the normal case. 2079 * 2080 * We turn off load spreading only on echo packets that came from 2081 * on-link hosts. If the interface route has been deleted, this will 2082 * not be enforced as we can't do much. For off-link hosts, as the 2083 * default routes in IPv4 does not typically have an ire_ipif 2084 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2085 * Moreover, expecting a default route through this interface may 2086 * not be correct. We use ipha_dst because of the swap above. 2087 */ 2088 onlink = B_FALSE; 2089 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2090 /* 2091 * First, we need to make sure that it is not one of our 2092 * local addresses. If we set onlink when it is one of 2093 * our local addresses, we will end up creating IRE_CACHES 2094 * for one of our local addresses. Then, we will never 2095 * accept packets for them afterwards. 2096 */ 2097 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2098 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2099 if (src_ire == NULL) { 2100 ipif = ipif_get_next_ipif(NULL, ill); 2101 if (ipif == NULL) { 2102 BUMP_MIB(&ip_mib, ipInDiscards); 2103 freemsg(mp); 2104 return; 2105 } 2106 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2107 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2108 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2109 ipif_refrele(ipif); 2110 if (src_ire != NULL) { 2111 onlink = B_TRUE; 2112 ire_refrele(src_ire); 2113 } 2114 } else { 2115 ire_refrele(src_ire); 2116 } 2117 } 2118 if (!mctl_present) { 2119 /* 2120 * This packet should go out the same way as it 2121 * came in i.e in clear. To make sure that global 2122 * policy will not be applied to this in ip_wput_ire, 2123 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2124 */ 2125 ASSERT(first_mp == mp); 2126 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2127 BUMP_MIB(&ip_mib, ipInDiscards); 2128 freemsg(mp); 2129 return; 2130 } 2131 ii = (ipsec_in_t *)first_mp->b_rptr; 2132 2133 /* This is not a secure packet */ 2134 ii->ipsec_in_secure = B_FALSE; 2135 if (onlink) { 2136 ii->ipsec_in_attach_if = B_TRUE; 2137 ii->ipsec_in_ill_index = 2138 ill->ill_phyint->phyint_ifindex; 2139 ii->ipsec_in_rill_index = 2140 recv_ill->ill_phyint->phyint_ifindex; 2141 } 2142 first_mp->b_cont = mp; 2143 } else if (onlink) { 2144 ii = (ipsec_in_t *)first_mp->b_rptr; 2145 ii->ipsec_in_attach_if = B_TRUE; 2146 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2147 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2148 } else { 2149 ii = (ipsec_in_t *)first_mp->b_rptr; 2150 } 2151 ii->ipsec_in_zoneid = zoneid; 2152 ASSERT(zoneid != ALL_ZONES); 2153 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2154 BUMP_MIB(&ip_mib, ipInDiscards); 2155 return; 2156 } 2157 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2158 put(WR(q), first_mp); 2159 } 2160 2161 static ipaddr_t 2162 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2163 { 2164 conn_t *connp; 2165 connf_t *connfp; 2166 ipaddr_t nexthop_addr = INADDR_ANY; 2167 int hdr_length = IPH_HDR_LENGTH(ipha); 2168 uint16_t *up; 2169 uint32_t ports; 2170 2171 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2172 switch (ipha->ipha_protocol) { 2173 case IPPROTO_TCP: 2174 { 2175 tcph_t *tcph; 2176 2177 /* do a reverse lookup */ 2178 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2179 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2180 TCPS_LISTEN); 2181 break; 2182 } 2183 case IPPROTO_UDP: 2184 { 2185 uint32_t dstport, srcport; 2186 2187 ((uint16_t *)&ports)[0] = up[1]; 2188 ((uint16_t *)&ports)[1] = up[0]; 2189 2190 /* Extract ports in net byte order */ 2191 dstport = htons(ntohl(ports) & 0xFFFF); 2192 srcport = htons(ntohl(ports) >> 16); 2193 2194 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2195 mutex_enter(&connfp->connf_lock); 2196 connp = connfp->connf_head; 2197 2198 /* do a reverse lookup */ 2199 while ((connp != NULL) && 2200 (!IPCL_UDP_MATCH(connp, dstport, 2201 ipha->ipha_src, srcport, ipha->ipha_dst) || 2202 connp->conn_zoneid != zoneid)) { 2203 connp = connp->conn_next; 2204 } 2205 if (connp != NULL) 2206 CONN_INC_REF(connp); 2207 mutex_exit(&connfp->connf_lock); 2208 break; 2209 } 2210 case IPPROTO_SCTP: 2211 { 2212 in6_addr_t map_src, map_dst; 2213 2214 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2215 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2216 ((uint16_t *)&ports)[0] = up[1]; 2217 ((uint16_t *)&ports)[1] = up[0]; 2218 2219 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2220 0, zoneid)) == NULL) { 2221 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2222 zoneid, ports, ipha); 2223 } else { 2224 CONN_INC_REF(connp); 2225 SCTP_REFRELE(CONN2SCTP(connp)); 2226 } 2227 break; 2228 } 2229 default: 2230 { 2231 ipha_t ripha; 2232 2233 ripha.ipha_src = ipha->ipha_dst; 2234 ripha.ipha_dst = ipha->ipha_src; 2235 ripha.ipha_protocol = ipha->ipha_protocol; 2236 2237 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2238 mutex_enter(&connfp->connf_lock); 2239 connp = connfp->connf_head; 2240 for (connp = connfp->connf_head; connp != NULL; 2241 connp = connp->conn_next) { 2242 if (IPCL_PROTO_MATCH(connp, 2243 ipha->ipha_protocol, &ripha, ill, 2244 0, zoneid)) { 2245 CONN_INC_REF(connp); 2246 break; 2247 } 2248 } 2249 mutex_exit(&connfp->connf_lock); 2250 } 2251 } 2252 if (connp != NULL) { 2253 if (connp->conn_nexthop_set) 2254 nexthop_addr = connp->conn_nexthop_v4; 2255 CONN_DEC_REF(connp); 2256 } 2257 return (nexthop_addr); 2258 } 2259 2260 /* Table from RFC 1191 */ 2261 static int icmp_frag_size_table[] = 2262 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2263 2264 /* 2265 * Process received ICMP Packet too big. 2266 * After updating any IRE it does the fanout to any matching transport streams. 2267 * Assumes the message has been pulled up till the IP header that caused 2268 * the error. 2269 * 2270 * Returns B_FALSE on failure and B_TRUE on success. 2271 */ 2272 static boolean_t 2273 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2274 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length) 2275 { 2276 ire_t *ire, *first_ire; 2277 int mtu; 2278 int hdr_length; 2279 ipaddr_t nexthop_addr; 2280 2281 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2282 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2283 2284 hdr_length = IPH_HDR_LENGTH(ipha); 2285 2286 /* Drop if the original packet contained a source route */ 2287 if (ip_source_route_included(ipha)) { 2288 return (B_FALSE); 2289 } 2290 /* 2291 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2292 * header. 2293 */ 2294 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2295 mp->b_wptr) { 2296 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2297 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2298 BUMP_MIB(&ip_mib, ipInDiscards); 2299 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2300 return (B_FALSE); 2301 } 2302 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2303 ipha = (ipha_t *)&icmph[1]; 2304 } 2305 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2306 if (nexthop_addr != INADDR_ANY) { 2307 /* nexthop set */ 2308 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2309 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2310 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2311 } else { 2312 /* nexthop not set */ 2313 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2314 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2315 } 2316 2317 if (!first_ire) { 2318 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2319 ntohl(ipha->ipha_dst))); 2320 return (B_FALSE); 2321 } 2322 /* Check for MTU discovery advice as described in RFC 1191 */ 2323 mtu = ntohs(icmph->icmph_du_mtu); 2324 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2325 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2326 ire = ire->ire_next) { 2327 /* 2328 * Look for the connection to which this ICMP message is 2329 * directed. If it has the IP_NEXTHOP option set, then the 2330 * search is limited to IREs with the MATCH_IRE_PRIVATE 2331 * option. Else the search is limited to regular IREs. 2332 */ 2333 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2334 (nexthop_addr != ire->ire_gateway_addr)) || 2335 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2336 (nexthop_addr != INADDR_ANY))) 2337 continue; 2338 2339 mutex_enter(&ire->ire_lock); 2340 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2341 /* Reduce the IRE max frag value as advised. */ 2342 ip1dbg(("Received mtu from router: %d (was %d)\n", 2343 mtu, ire->ire_max_frag)); 2344 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2345 } else { 2346 uint32_t length; 2347 int i; 2348 2349 /* 2350 * Use the table from RFC 1191 to figure out 2351 * the next "plateau" based on the length in 2352 * the original IP packet. 2353 */ 2354 length = ntohs(ipha->ipha_length); 2355 if (ire->ire_max_frag <= length && 2356 ire->ire_max_frag >= length - hdr_length) { 2357 /* 2358 * Handle broken BSD 4.2 systems that 2359 * return the wrong iph_length in ICMP 2360 * errors. 2361 */ 2362 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2363 length, ire->ire_max_frag)); 2364 length -= hdr_length; 2365 } 2366 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2367 if (length > icmp_frag_size_table[i]) 2368 break; 2369 } 2370 if (i == A_CNT(icmp_frag_size_table)) { 2371 /* Smaller than 68! */ 2372 ip1dbg(("Too big for packet size %d\n", 2373 length)); 2374 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2375 ire->ire_frag_flag = 0; 2376 } else { 2377 mtu = icmp_frag_size_table[i]; 2378 ip1dbg(("Calculated mtu %d, packet size %d, " 2379 "before %d", mtu, length, 2380 ire->ire_max_frag)); 2381 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2382 ip1dbg((", after %d\n", ire->ire_max_frag)); 2383 } 2384 /* Record the new max frag size for the ULP. */ 2385 icmph->icmph_du_zero = 0; 2386 icmph->icmph_du_mtu = 2387 htons((uint16_t)ire->ire_max_frag); 2388 } 2389 mutex_exit(&ire->ire_lock); 2390 } 2391 rw_exit(&first_ire->ire_bucket->irb_lock); 2392 ire_refrele(first_ire); 2393 return (B_TRUE); 2394 } 2395 2396 /* 2397 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2398 * calls this function. 2399 */ 2400 static mblk_t * 2401 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2402 { 2403 ipha_t *ipha; 2404 icmph_t *icmph; 2405 ipha_t *in_ipha; 2406 int length; 2407 2408 ASSERT(mp->b_datap->db_type == M_DATA); 2409 2410 /* 2411 * For Self-encapsulated packets, we added an extra IP header 2412 * without the options. Inner IP header is the one from which 2413 * the outer IP header was formed. Thus, we need to remove the 2414 * outer IP header. To do this, we pullup the whole message 2415 * and overlay whatever follows the outer IP header over the 2416 * outer IP header. 2417 */ 2418 2419 if (!pullupmsg(mp, -1)) { 2420 BUMP_MIB(&ip_mib, ipInDiscards); 2421 return (NULL); 2422 } 2423 2424 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2425 ipha = (ipha_t *)&icmph[1]; 2426 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2427 2428 /* 2429 * The length that we want to overlay is following the inner 2430 * IP header. Subtracting the IP header + icmp header + outer 2431 * IP header's length should give us the length that we want to 2432 * overlay. 2433 */ 2434 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2435 hdr_length; 2436 /* 2437 * Overlay whatever follows the inner header over the 2438 * outer header. 2439 */ 2440 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2441 2442 /* Set the wptr to account for the outer header */ 2443 mp->b_wptr -= hdr_length; 2444 return (mp); 2445 } 2446 2447 /* 2448 * Try to pass the ICMP message upstream in case the ULP cares. 2449 * 2450 * If the packet that caused the ICMP error is secure, we send 2451 * it to AH/ESP to make sure that the attached packet has a 2452 * valid association. ipha in the code below points to the 2453 * IP header of the packet that caused the error. 2454 * 2455 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2456 * in the context of IPSEC. Normally we tell the upper layer 2457 * whenever we send the ire (including ip_bind), the IPSEC header 2458 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2459 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2460 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2461 * same thing. As TCP has the IPSEC options size that needs to be 2462 * adjusted, we just pass the MTU unchanged. 2463 * 2464 * IFN could have been generated locally or by some router. 2465 * 2466 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2467 * This happens because IP adjusted its value of MTU on an 2468 * earlier IFN message and could not tell the upper layer, 2469 * the new adjusted value of MTU e.g. Packet was encrypted 2470 * or there was not enough information to fanout to upper 2471 * layers. Thus on the next outbound datagram, ip_wput_ire 2472 * generates the IFN, where IPSEC processing has *not* been 2473 * done. 2474 * 2475 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2476 * could have generated this. This happens because ire_max_frag 2477 * value in IP was set to a new value, while the IPSEC processing 2478 * was being done and after we made the fragmentation check in 2479 * ip_wput_ire. Thus on return from IPSEC processing, 2480 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2481 * and generates the IFN. As IPSEC processing is over, we fanout 2482 * to AH/ESP to remove the header. 2483 * 2484 * In both these cases, ipsec_in_loopback will be set indicating 2485 * that IFN was generated locally. 2486 * 2487 * ROUTER : IFN could be secure or non-secure. 2488 * 2489 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2490 * packet in error has AH/ESP headers to validate the AH/ESP 2491 * headers. AH/ESP will verify whether there is a valid SA or 2492 * not and send it back. We will fanout again if we have more 2493 * data in the packet. 2494 * 2495 * If the packet in error does not have AH/ESP, we handle it 2496 * like any other case. 2497 * 2498 * * NON_SECURE : If the packet in error has AH/ESP headers, 2499 * we attach a dummy ipsec_in and send it up to AH/ESP 2500 * for validation. AH/ESP will verify whether there is a 2501 * valid SA or not and send it back. We will fanout again if 2502 * we have more data in the packet. 2503 * 2504 * If the packet in error does not have AH/ESP, we handle it 2505 * like any other case. 2506 */ 2507 static void 2508 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2509 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2510 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2511 zoneid_t zoneid) 2512 { 2513 uint16_t *up; /* Pointer to ports in ULP header */ 2514 uint32_t ports; /* reversed ports for fanout */ 2515 ipha_t ripha; /* With reversed addresses */ 2516 mblk_t *first_mp; 2517 ipsec_in_t *ii; 2518 tcph_t *tcph; 2519 conn_t *connp; 2520 2521 first_mp = mp; 2522 if (mctl_present) { 2523 mp = first_mp->b_cont; 2524 ASSERT(mp != NULL); 2525 2526 ii = (ipsec_in_t *)first_mp->b_rptr; 2527 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2528 } else { 2529 ii = NULL; 2530 } 2531 2532 switch (ipha->ipha_protocol) { 2533 case IPPROTO_UDP: 2534 /* 2535 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2536 * transport header. 2537 */ 2538 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2539 mp->b_wptr) { 2540 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2541 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2542 BUMP_MIB(&ip_mib, ipInDiscards); 2543 goto drop_pkt; 2544 } 2545 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2546 ipha = (ipha_t *)&icmph[1]; 2547 } 2548 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2549 2550 /* 2551 * Attempt to find a client stream based on port. 2552 * Note that we do a reverse lookup since the header is 2553 * in the form we sent it out. 2554 * The ripha header is only used for the IP_UDP_MATCH and we 2555 * only set the src and dst addresses and protocol. 2556 */ 2557 ripha.ipha_src = ipha->ipha_dst; 2558 ripha.ipha_dst = ipha->ipha_src; 2559 ripha.ipha_protocol = ipha->ipha_protocol; 2560 ((uint16_t *)&ports)[0] = up[1]; 2561 ((uint16_t *)&ports)[1] = up[0]; 2562 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2563 ntohl(ipha->ipha_src), ntohs(up[0]), 2564 ntohl(ipha->ipha_dst), ntohs(up[1]), 2565 icmph->icmph_type, icmph->icmph_code)); 2566 2567 /* Have to change db_type after any pullupmsg */ 2568 DB_TYPE(mp) = M_CTL; 2569 2570 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2571 mctl_present, ip_policy, recv_ill, zoneid); 2572 return; 2573 2574 case IPPROTO_TCP: 2575 /* 2576 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2577 * transport header. 2578 */ 2579 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2580 mp->b_wptr) { 2581 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2582 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2583 BUMP_MIB(&ip_mib, ipInDiscards); 2584 goto drop_pkt; 2585 } 2586 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2587 ipha = (ipha_t *)&icmph[1]; 2588 } 2589 /* 2590 * Find a TCP client stream for this packet. 2591 * Note that we do a reverse lookup since the header is 2592 * in the form we sent it out. 2593 */ 2594 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2595 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2596 if (connp == NULL) { 2597 BUMP_MIB(&ip_mib, ipInDiscards); 2598 goto drop_pkt; 2599 } 2600 2601 /* Have to change db_type after any pullupmsg */ 2602 DB_TYPE(mp) = M_CTL; 2603 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2604 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2605 return; 2606 2607 case IPPROTO_SCTP: 2608 /* 2609 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2610 * transport header. 2611 */ 2612 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2613 mp->b_wptr) { 2614 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2615 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2616 BUMP_MIB(&ip_mib, ipInDiscards); 2617 goto drop_pkt; 2618 } 2619 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2620 ipha = (ipha_t *)&icmph[1]; 2621 } 2622 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2623 /* 2624 * Find a SCTP client stream for this packet. 2625 * Note that we do a reverse lookup since the header is 2626 * in the form we sent it out. 2627 * The ripha header is only used for the matching and we 2628 * only set the src and dst addresses, protocol, and version. 2629 */ 2630 ripha.ipha_src = ipha->ipha_dst; 2631 ripha.ipha_dst = ipha->ipha_src; 2632 ripha.ipha_protocol = ipha->ipha_protocol; 2633 ripha.ipha_version_and_hdr_length = 2634 ipha->ipha_version_and_hdr_length; 2635 ((uint16_t *)&ports)[0] = up[1]; 2636 ((uint16_t *)&ports)[1] = up[0]; 2637 2638 /* Have to change db_type after any pullupmsg */ 2639 DB_TYPE(mp) = M_CTL; 2640 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2641 mctl_present, ip_policy, 0, zoneid); 2642 return; 2643 2644 case IPPROTO_ESP: 2645 case IPPROTO_AH: { 2646 int ipsec_rc; 2647 2648 /* 2649 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2650 * We will re-use the IPSEC_IN if it is already present as 2651 * AH/ESP will not affect any fields in the IPSEC_IN for 2652 * ICMP errors. If there is no IPSEC_IN, allocate a new 2653 * one and attach it in the front. 2654 */ 2655 if (ii != NULL) { 2656 /* 2657 * ip_fanout_proto_again converts the ICMP errors 2658 * that come back from AH/ESP to M_DATA so that 2659 * if it is non-AH/ESP and we do a pullupmsg in 2660 * this function, it would work. Convert it back 2661 * to M_CTL before we send up as this is a ICMP 2662 * error. This could have been generated locally or 2663 * by some router. Validate the inner IPSEC 2664 * headers. 2665 * 2666 * NOTE : ill_index is used by ip_fanout_proto_again 2667 * to locate the ill. 2668 */ 2669 ASSERT(ill != NULL); 2670 ii->ipsec_in_ill_index = 2671 ill->ill_phyint->phyint_ifindex; 2672 ii->ipsec_in_rill_index = 2673 recv_ill->ill_phyint->phyint_ifindex; 2674 DB_TYPE(first_mp->b_cont) = M_CTL; 2675 } else { 2676 /* 2677 * IPSEC_IN is not present. We attach a ipsec_in 2678 * message and send up to IPSEC for validating 2679 * and removing the IPSEC headers. Clear 2680 * ipsec_in_secure so that when we return 2681 * from IPSEC, we don't mistakenly think that this 2682 * is a secure packet came from the network. 2683 * 2684 * NOTE : ill_index is used by ip_fanout_proto_again 2685 * to locate the ill. 2686 */ 2687 ASSERT(first_mp == mp); 2688 first_mp = ipsec_in_alloc(B_TRUE); 2689 if (first_mp == NULL) { 2690 freemsg(mp); 2691 BUMP_MIB(&ip_mib, ipInDiscards); 2692 return; 2693 } 2694 ii = (ipsec_in_t *)first_mp->b_rptr; 2695 2696 /* This is not a secure packet */ 2697 ii->ipsec_in_secure = B_FALSE; 2698 first_mp->b_cont = mp; 2699 DB_TYPE(mp) = M_CTL; 2700 ASSERT(ill != NULL); 2701 ii->ipsec_in_ill_index = 2702 ill->ill_phyint->phyint_ifindex; 2703 ii->ipsec_in_rill_index = 2704 recv_ill->ill_phyint->phyint_ifindex; 2705 } 2706 ip2dbg(("icmp_inbound_error: ipsec\n")); 2707 2708 if (!ipsec_loaded()) { 2709 ip_proto_not_sup(q, first_mp, 0, zoneid); 2710 return; 2711 } 2712 2713 if (ipha->ipha_protocol == IPPROTO_ESP) 2714 ipsec_rc = ipsecesp_icmp_error(first_mp); 2715 else 2716 ipsec_rc = ipsecah_icmp_error(first_mp); 2717 if (ipsec_rc == IPSEC_STATUS_FAILED) 2718 return; 2719 2720 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2721 return; 2722 } 2723 default: 2724 /* 2725 * The ripha header is only used for the lookup and we 2726 * only set the src and dst addresses and protocol. 2727 */ 2728 ripha.ipha_src = ipha->ipha_dst; 2729 ripha.ipha_dst = ipha->ipha_src; 2730 ripha.ipha_protocol = ipha->ipha_protocol; 2731 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2732 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2733 ntohl(ipha->ipha_dst), 2734 icmph->icmph_type, icmph->icmph_code)); 2735 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2736 ipha_t *in_ipha; 2737 2738 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2739 mp->b_wptr) { 2740 if (!pullupmsg(mp, (uchar_t *)ipha + 2741 hdr_length + sizeof (ipha_t) - 2742 mp->b_rptr)) { 2743 2744 BUMP_MIB(&ip_mib, ipInDiscards); 2745 goto drop_pkt; 2746 } 2747 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2748 ipha = (ipha_t *)&icmph[1]; 2749 } 2750 /* 2751 * Caller has verified that length has to be 2752 * at least the size of IP header. 2753 */ 2754 ASSERT(hdr_length >= sizeof (ipha_t)); 2755 /* 2756 * Check the sanity of the inner IP header like 2757 * we did for the outer header. 2758 */ 2759 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2760 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2761 BUMP_MIB(&ip_mib, ipInDiscards); 2762 goto drop_pkt; 2763 } 2764 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2765 BUMP_MIB(&ip_mib, ipInDiscards); 2766 goto drop_pkt; 2767 } 2768 /* Check for Self-encapsulated tunnels */ 2769 if (in_ipha->ipha_src == ipha->ipha_src && 2770 in_ipha->ipha_dst == ipha->ipha_dst) { 2771 2772 mp = icmp_inbound_self_encap_error(mp, 2773 iph_hdr_length, hdr_length); 2774 if (mp == NULL) 2775 goto drop_pkt; 2776 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2777 ipha = (ipha_t *)&icmph[1]; 2778 hdr_length = IPH_HDR_LENGTH(ipha); 2779 /* 2780 * The packet in error is self-encapsualted. 2781 * And we are finding it further encapsulated 2782 * which we could not have possibly generated. 2783 */ 2784 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2785 BUMP_MIB(&ip_mib, ipInDiscards); 2786 goto drop_pkt; 2787 } 2788 icmp_inbound_error_fanout(q, ill, first_mp, 2789 icmph, ipha, iph_hdr_length, hdr_length, 2790 mctl_present, ip_policy, recv_ill, zoneid); 2791 return; 2792 } 2793 } 2794 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2795 ipha->ipha_protocol == IPPROTO_IPV6) && 2796 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2797 ii != NULL && 2798 ii->ipsec_in_loopback && 2799 ii->ipsec_in_secure) { 2800 /* 2801 * For IP tunnels that get a looped-back 2802 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2803 * reported new MTU to take into account the IPsec 2804 * headers protecting this configured tunnel. 2805 * 2806 * This allows the tunnel module (tun.c) to blindly 2807 * accept the MTU reported in an ICMP "too big" 2808 * message. 2809 * 2810 * Non-looped back ICMP messages will just be 2811 * handled by the security protocols (if needed), 2812 * and the first subsequent packet will hit this 2813 * path. 2814 */ 2815 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2816 ipsec_in_extra_length(first_mp)); 2817 } 2818 /* Have to change db_type after any pullupmsg */ 2819 DB_TYPE(mp) = M_CTL; 2820 2821 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2822 ip_policy, recv_ill, zoneid); 2823 return; 2824 } 2825 /* NOTREACHED */ 2826 drop_pkt:; 2827 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2828 freemsg(first_mp); 2829 } 2830 2831 /* 2832 * Common IP options parser. 2833 * 2834 * Setup routine: fill in *optp with options-parsing state, then 2835 * tail-call ipoptp_next to return the first option. 2836 */ 2837 uint8_t 2838 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2839 { 2840 uint32_t totallen; /* total length of all options */ 2841 2842 totallen = ipha->ipha_version_and_hdr_length - 2843 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2844 totallen <<= 2; 2845 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2846 optp->ipoptp_end = optp->ipoptp_next + totallen; 2847 optp->ipoptp_flags = 0; 2848 return (ipoptp_next(optp)); 2849 } 2850 2851 /* 2852 * Common IP options parser: extract next option. 2853 */ 2854 uint8_t 2855 ipoptp_next(ipoptp_t *optp) 2856 { 2857 uint8_t *end = optp->ipoptp_end; 2858 uint8_t *cur = optp->ipoptp_next; 2859 uint8_t opt, len, pointer; 2860 2861 /* 2862 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2863 * has been corrupted. 2864 */ 2865 ASSERT(cur <= end); 2866 2867 if (cur == end) 2868 return (IPOPT_EOL); 2869 2870 opt = cur[IPOPT_OPTVAL]; 2871 2872 /* 2873 * Skip any NOP options. 2874 */ 2875 while (opt == IPOPT_NOP) { 2876 cur++; 2877 if (cur == end) 2878 return (IPOPT_EOL); 2879 opt = cur[IPOPT_OPTVAL]; 2880 } 2881 2882 if (opt == IPOPT_EOL) 2883 return (IPOPT_EOL); 2884 2885 /* 2886 * Option requiring a length. 2887 */ 2888 if ((cur + 1) >= end) { 2889 optp->ipoptp_flags |= IPOPTP_ERROR; 2890 return (IPOPT_EOL); 2891 } 2892 len = cur[IPOPT_OLEN]; 2893 if (len < 2) { 2894 optp->ipoptp_flags |= IPOPTP_ERROR; 2895 return (IPOPT_EOL); 2896 } 2897 optp->ipoptp_cur = cur; 2898 optp->ipoptp_len = len; 2899 optp->ipoptp_next = cur + len; 2900 if (cur + len > end) { 2901 optp->ipoptp_flags |= IPOPTP_ERROR; 2902 return (IPOPT_EOL); 2903 } 2904 2905 /* 2906 * For the options which require a pointer field, make sure 2907 * its there, and make sure it points to either something 2908 * inside this option, or the end of the option. 2909 */ 2910 switch (opt) { 2911 case IPOPT_RR: 2912 case IPOPT_TS: 2913 case IPOPT_LSRR: 2914 case IPOPT_SSRR: 2915 if (len <= IPOPT_OFFSET) { 2916 optp->ipoptp_flags |= IPOPTP_ERROR; 2917 return (opt); 2918 } 2919 pointer = cur[IPOPT_OFFSET]; 2920 if (pointer - 1 > len) { 2921 optp->ipoptp_flags |= IPOPTP_ERROR; 2922 return (opt); 2923 } 2924 break; 2925 } 2926 2927 /* 2928 * Sanity check the pointer field based on the type of the 2929 * option. 2930 */ 2931 switch (opt) { 2932 case IPOPT_RR: 2933 case IPOPT_SSRR: 2934 case IPOPT_LSRR: 2935 if (pointer < IPOPT_MINOFF_SR) 2936 optp->ipoptp_flags |= IPOPTP_ERROR; 2937 break; 2938 case IPOPT_TS: 2939 if (pointer < IPOPT_MINOFF_IT) 2940 optp->ipoptp_flags |= IPOPTP_ERROR; 2941 /* 2942 * Note that the Internet Timestamp option also 2943 * contains two four bit fields (the Overflow field, 2944 * and the Flag field), which follow the pointer 2945 * field. We don't need to check that these fields 2946 * fall within the length of the option because this 2947 * was implicitely done above. We've checked that the 2948 * pointer value is at least IPOPT_MINOFF_IT, and that 2949 * it falls within the option. Since IPOPT_MINOFF_IT > 2950 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2951 */ 2952 ASSERT(len > IPOPT_POS_OV_FLG); 2953 break; 2954 } 2955 2956 return (opt); 2957 } 2958 2959 /* 2960 * Use the outgoing IP header to create an IP_OPTIONS option the way 2961 * it was passed down from the application. 2962 */ 2963 int 2964 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2965 { 2966 ipoptp_t opts; 2967 const uchar_t *opt; 2968 uint8_t optval; 2969 uint8_t optlen; 2970 uint32_t len = 0; 2971 uchar_t *buf1 = buf; 2972 2973 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2974 len += IP_ADDR_LEN; 2975 bzero(buf1, IP_ADDR_LEN); 2976 2977 /* 2978 * OK to cast away const here, as we don't store through the returned 2979 * opts.ipoptp_cur pointer. 2980 */ 2981 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2982 optval != IPOPT_EOL; 2983 optval = ipoptp_next(&opts)) { 2984 int off; 2985 2986 opt = opts.ipoptp_cur; 2987 optlen = opts.ipoptp_len; 2988 switch (optval) { 2989 case IPOPT_SSRR: 2990 case IPOPT_LSRR: 2991 2992 /* 2993 * Insert ipha_dst as the first entry in the source 2994 * route and move down the entries on step. 2995 * The last entry gets placed at buf1. 2996 */ 2997 buf[IPOPT_OPTVAL] = optval; 2998 buf[IPOPT_OLEN] = optlen; 2999 buf[IPOPT_OFFSET] = optlen; 3000 3001 off = optlen - IP_ADDR_LEN; 3002 if (off < 0) { 3003 /* No entries in source route */ 3004 break; 3005 } 3006 /* Last entry in source route */ 3007 bcopy(opt + off, buf1, IP_ADDR_LEN); 3008 off -= IP_ADDR_LEN; 3009 3010 while (off > 0) { 3011 bcopy(opt + off, 3012 buf + off + IP_ADDR_LEN, 3013 IP_ADDR_LEN); 3014 off -= IP_ADDR_LEN; 3015 } 3016 /* ipha_dst into first slot */ 3017 bcopy(&ipha->ipha_dst, 3018 buf + off + IP_ADDR_LEN, 3019 IP_ADDR_LEN); 3020 buf += optlen; 3021 len += optlen; 3022 break; 3023 3024 case IPOPT_COMSEC: 3025 case IPOPT_SECURITY: 3026 /* if passing up a label is not ok, then remove */ 3027 if (is_system_labeled()) 3028 break; 3029 /* FALLTHROUGH */ 3030 default: 3031 bcopy(opt, buf, optlen); 3032 buf += optlen; 3033 len += optlen; 3034 break; 3035 } 3036 } 3037 done: 3038 /* Pad the resulting options */ 3039 while (len & 0x3) { 3040 *buf++ = IPOPT_EOL; 3041 len++; 3042 } 3043 return (len); 3044 } 3045 3046 /* 3047 * Update any record route or timestamp options to include this host. 3048 * Reverse any source route option. 3049 * This routine assumes that the options are well formed i.e. that they 3050 * have already been checked. 3051 */ 3052 static void 3053 icmp_options_update(ipha_t *ipha) 3054 { 3055 ipoptp_t opts; 3056 uchar_t *opt; 3057 uint8_t optval; 3058 ipaddr_t src; /* Our local address */ 3059 ipaddr_t dst; 3060 3061 ip2dbg(("icmp_options_update\n")); 3062 src = ipha->ipha_src; 3063 dst = ipha->ipha_dst; 3064 3065 for (optval = ipoptp_first(&opts, ipha); 3066 optval != IPOPT_EOL; 3067 optval = ipoptp_next(&opts)) { 3068 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3069 opt = opts.ipoptp_cur; 3070 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3071 optval, opts.ipoptp_len)); 3072 switch (optval) { 3073 int off1, off2; 3074 case IPOPT_SSRR: 3075 case IPOPT_LSRR: 3076 /* 3077 * Reverse the source route. The first entry 3078 * should be the next to last one in the current 3079 * source route (the last entry is our address). 3080 * The last entry should be the final destination. 3081 */ 3082 off1 = IPOPT_MINOFF_SR - 1; 3083 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3084 if (off2 < 0) { 3085 /* No entries in source route */ 3086 ip1dbg(( 3087 "icmp_options_update: bad src route\n")); 3088 break; 3089 } 3090 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3091 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3092 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3093 off2 -= IP_ADDR_LEN; 3094 3095 while (off1 < off2) { 3096 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3097 bcopy((char *)opt + off2, (char *)opt + off1, 3098 IP_ADDR_LEN); 3099 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3100 off1 += IP_ADDR_LEN; 3101 off2 -= IP_ADDR_LEN; 3102 } 3103 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3104 break; 3105 } 3106 } 3107 } 3108 3109 /* 3110 * Process received ICMP Redirect messages. 3111 */ 3112 /* ARGSUSED */ 3113 static void 3114 icmp_redirect(mblk_t *mp) 3115 { 3116 ipha_t *ipha; 3117 int iph_hdr_length; 3118 icmph_t *icmph; 3119 ipha_t *ipha_err; 3120 ire_t *ire; 3121 ire_t *prev_ire; 3122 ire_t *save_ire; 3123 ipaddr_t src, dst, gateway; 3124 iulp_t ulp_info = { 0 }; 3125 int error; 3126 3127 ipha = (ipha_t *)mp->b_rptr; 3128 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3129 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3130 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3131 BUMP_MIB(&icmp_mib, icmpInErrors); 3132 freemsg(mp); 3133 return; 3134 } 3135 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3136 ipha_err = (ipha_t *)&icmph[1]; 3137 src = ipha->ipha_src; 3138 dst = ipha_err->ipha_dst; 3139 gateway = icmph->icmph_rd_gateway; 3140 /* Make sure the new gateway is reachable somehow. */ 3141 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3142 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3143 /* 3144 * Make sure we had a route for the dest in question and that 3145 * that route was pointing to the old gateway (the source of the 3146 * redirect packet.) 3147 */ 3148 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3149 NULL, MATCH_IRE_GW); 3150 /* 3151 * Check that 3152 * the redirect was not from ourselves 3153 * the new gateway and the old gateway are directly reachable 3154 */ 3155 if (!prev_ire || 3156 !ire || 3157 ire->ire_type == IRE_LOCAL) { 3158 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3159 freemsg(mp); 3160 if (ire != NULL) 3161 ire_refrele(ire); 3162 if (prev_ire != NULL) 3163 ire_refrele(prev_ire); 3164 return; 3165 } 3166 3167 /* 3168 * Should we use the old ULP info to create the new gateway? From 3169 * a user's perspective, we should inherit the info so that it 3170 * is a "smooth" transition. If we do not do that, then new 3171 * connections going thru the new gateway will have no route metrics, 3172 * which is counter-intuitive to user. From a network point of 3173 * view, this may or may not make sense even though the new gateway 3174 * is still directly connected to us so the route metrics should not 3175 * change much. 3176 * 3177 * But if the old ire_uinfo is not initialized, we do another 3178 * recursive lookup on the dest using the new gateway. There may 3179 * be a route to that. If so, use it to initialize the redirect 3180 * route. 3181 */ 3182 if (prev_ire->ire_uinfo.iulp_set) { 3183 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3184 } else { 3185 ire_t *tmp_ire; 3186 ire_t *sire; 3187 3188 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3189 ALL_ZONES, 0, NULL, 3190 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3191 if (sire != NULL) { 3192 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3193 /* 3194 * If sire != NULL, ire_ftable_lookup() should not 3195 * return a NULL value. 3196 */ 3197 ASSERT(tmp_ire != NULL); 3198 ire_refrele(tmp_ire); 3199 ire_refrele(sire); 3200 } else if (tmp_ire != NULL) { 3201 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3202 sizeof (iulp_t)); 3203 ire_refrele(tmp_ire); 3204 } 3205 } 3206 if (prev_ire->ire_type == IRE_CACHE) 3207 ire_delete(prev_ire); 3208 ire_refrele(prev_ire); 3209 /* 3210 * TODO: more precise handling for cases 0, 2, 3, the latter two 3211 * require TOS routing 3212 */ 3213 switch (icmph->icmph_code) { 3214 case 0: 3215 case 1: 3216 /* TODO: TOS specificity for cases 2 and 3 */ 3217 case 2: 3218 case 3: 3219 break; 3220 default: 3221 freemsg(mp); 3222 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3223 ire_refrele(ire); 3224 return; 3225 } 3226 /* 3227 * Create a Route Association. This will allow us to remember that 3228 * someone we believe told us to use the particular gateway. 3229 */ 3230 save_ire = ire; 3231 ire = ire_create( 3232 (uchar_t *)&dst, /* dest addr */ 3233 (uchar_t *)&ip_g_all_ones, /* mask */ 3234 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3235 (uchar_t *)&gateway, /* gateway addr */ 3236 NULL, /* no in_srcaddr */ 3237 &save_ire->ire_max_frag, /* max frag */ 3238 NULL, /* Fast Path header */ 3239 NULL, /* no rfq */ 3240 NULL, /* no stq */ 3241 IRE_HOST_REDIRECT, 3242 NULL, 3243 NULL, 3244 NULL, 3245 0, 3246 0, 3247 0, 3248 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3249 &ulp_info, 3250 NULL, 3251 NULL); 3252 3253 if (ire == NULL) { 3254 freemsg(mp); 3255 ire_refrele(save_ire); 3256 return; 3257 } 3258 error = ire_add(&ire, NULL, NULL, NULL); 3259 ire_refrele(save_ire); 3260 if (error == 0) { 3261 ire_refrele(ire); /* Held in ire_add_v4 */ 3262 /* tell routing sockets that we received a redirect */ 3263 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3264 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3265 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3266 } 3267 3268 /* 3269 * Delete any existing IRE_HOST_REDIRECT for this destination. 3270 * This together with the added IRE has the effect of 3271 * modifying an existing redirect. 3272 */ 3273 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 3274 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3275 if (prev_ire) { 3276 ire_delete(prev_ire); 3277 ire_refrele(prev_ire); 3278 } 3279 3280 freemsg(mp); 3281 } 3282 3283 /* 3284 * Generate an ICMP parameter problem message. 3285 */ 3286 static void 3287 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr) 3288 { 3289 icmph_t icmph; 3290 boolean_t mctl_present; 3291 mblk_t *first_mp; 3292 3293 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3294 3295 if (!(mp = icmp_pkt_err_ok(mp))) { 3296 if (mctl_present) 3297 freeb(first_mp); 3298 return; 3299 } 3300 3301 bzero(&icmph, sizeof (icmph_t)); 3302 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3303 icmph.icmph_pp_ptr = ptr; 3304 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3305 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3306 } 3307 3308 /* 3309 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3310 * the ICMP header pointed to by "stuff". (May be called as writer.) 3311 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3312 * an icmp error packet can be sent. 3313 * Assigns an appropriate source address to the packet. If ipha_dst is 3314 * one of our addresses use it for source. Otherwise pick a source based 3315 * on a route lookup back to ipha_src. 3316 * Note that ipha_src must be set here since the 3317 * packet is likely to arrive on an ill queue in ip_wput() which will 3318 * not set a source address. 3319 */ 3320 static void 3321 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3322 boolean_t mctl_present) 3323 { 3324 ipaddr_t dst; 3325 icmph_t *icmph; 3326 ipha_t *ipha; 3327 uint_t len_needed; 3328 size_t msg_len; 3329 mblk_t *mp1; 3330 ipaddr_t src; 3331 ire_t *ire; 3332 mblk_t *ipsec_mp; 3333 ipsec_out_t *io = NULL; 3334 boolean_t xmit_if_on = B_FALSE; 3335 zoneid_t zoneid; 3336 3337 if (mctl_present) { 3338 /* 3339 * If it is : 3340 * 3341 * 1) a IPSEC_OUT, then this is caused by outbound 3342 * datagram originating on this host. IPSEC processing 3343 * may or may not have been done. Refer to comments above 3344 * icmp_inbound_error_fanout for details. 3345 * 3346 * 2) a IPSEC_IN if we are generating a icmp_message 3347 * for an incoming datagram destined for us i.e called 3348 * from ip_fanout_send_icmp. 3349 */ 3350 ipsec_info_t *in; 3351 ipsec_mp = mp; 3352 mp = ipsec_mp->b_cont; 3353 3354 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3355 ipha = (ipha_t *)mp->b_rptr; 3356 3357 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3358 in->ipsec_info_type == IPSEC_IN); 3359 3360 if (in->ipsec_info_type == IPSEC_IN) { 3361 /* 3362 * Convert the IPSEC_IN to IPSEC_OUT. 3363 */ 3364 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3365 BUMP_MIB(&ip_mib, ipOutDiscards); 3366 return; 3367 } 3368 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3369 } else { 3370 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3371 io = (ipsec_out_t *)in; 3372 if (io->ipsec_out_xmit_if) 3373 xmit_if_on = B_TRUE; 3374 /* 3375 * Clear out ipsec_out_proc_begin, so we do a fresh 3376 * ire lookup. 3377 */ 3378 io->ipsec_out_proc_begin = B_FALSE; 3379 } 3380 zoneid = io->ipsec_out_zoneid; 3381 ASSERT(zoneid != ALL_ZONES); 3382 } else { 3383 /* 3384 * This is in clear. The icmp message we are building 3385 * here should go out in clear. 3386 * 3387 * Pardon the convolution of it all, but it's easier to 3388 * allocate a "use cleartext" IPSEC_IN message and convert 3389 * it than it is to allocate a new one. 3390 */ 3391 ipsec_in_t *ii; 3392 ASSERT(DB_TYPE(mp) == M_DATA); 3393 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3394 freemsg(mp); 3395 BUMP_MIB(&ip_mib, ipOutDiscards); 3396 return; 3397 } 3398 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3399 3400 /* This is not a secure packet */ 3401 ii->ipsec_in_secure = B_FALSE; 3402 if (CONN_Q(q)) { 3403 zoneid = Q_TO_CONN(q)->conn_zoneid; 3404 } else { 3405 zoneid = GLOBAL_ZONEID; 3406 } 3407 ii->ipsec_in_zoneid = zoneid; 3408 ASSERT(zoneid != ALL_ZONES); 3409 ipsec_mp->b_cont = mp; 3410 ipha = (ipha_t *)mp->b_rptr; 3411 /* 3412 * Convert the IPSEC_IN to IPSEC_OUT. 3413 */ 3414 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3415 BUMP_MIB(&ip_mib, ipOutDiscards); 3416 return; 3417 } 3418 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3419 } 3420 3421 /* Remember our eventual destination */ 3422 dst = ipha->ipha_src; 3423 3424 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3425 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3426 if (ire != NULL && 3427 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3428 src = ipha->ipha_dst; 3429 } else if (!xmit_if_on) { 3430 if (ire != NULL) 3431 ire_refrele(ire); 3432 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3433 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3434 if (ire == NULL) { 3435 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3436 freemsg(ipsec_mp); 3437 return; 3438 } 3439 src = ire->ire_src_addr; 3440 } else { 3441 ipif_t *ipif = NULL; 3442 ill_t *ill; 3443 /* 3444 * This must be an ICMP error coming from 3445 * ip_mrtun_forward(). The src addr should 3446 * be equal to the IP-addr of the outgoing 3447 * interface. 3448 */ 3449 if (io == NULL) { 3450 /* This is not a IPSEC_OUT type control msg */ 3451 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3452 freemsg(ipsec_mp); 3453 return; 3454 } 3455 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3456 NULL, NULL, NULL, NULL); 3457 if (ill != NULL) { 3458 ipif = ipif_get_next_ipif(NULL, ill); 3459 ill_refrele(ill); 3460 } 3461 if (ipif == NULL) { 3462 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3463 freemsg(ipsec_mp); 3464 return; 3465 } 3466 src = ipif->ipif_src_addr; 3467 ipif_refrele(ipif); 3468 } 3469 3470 if (ire != NULL) 3471 ire_refrele(ire); 3472 3473 /* 3474 * Check if we can send back more then 8 bytes in addition 3475 * to the IP header. We will include as much as 64 bytes. 3476 */ 3477 len_needed = IPH_HDR_LENGTH(ipha); 3478 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3479 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3480 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3481 } 3482 len_needed += ip_icmp_return; 3483 msg_len = msgdsize(mp); 3484 if (msg_len > len_needed) { 3485 (void) adjmsg(mp, len_needed - msg_len); 3486 msg_len = len_needed; 3487 } 3488 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3489 if (mp1 == NULL) { 3490 BUMP_MIB(&icmp_mib, icmpOutErrors); 3491 freemsg(ipsec_mp); 3492 return; 3493 } 3494 /* 3495 * On an unlabeled system, dblks don't necessarily have creds. 3496 */ 3497 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3498 if (DB_CRED(mp) != NULL) 3499 mblk_setcred(mp1, DB_CRED(mp)); 3500 mp1->b_cont = mp; 3501 mp = mp1; 3502 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3503 ipsec_mp->b_rptr == (uint8_t *)io && 3504 io->ipsec_out_type == IPSEC_OUT); 3505 ipsec_mp->b_cont = mp; 3506 3507 /* 3508 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3509 * node generates be accepted in peace by all on-host destinations. 3510 * If we do NOT assume that all on-host destinations trust 3511 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3512 * (Look for ipsec_out_icmp_loopback). 3513 */ 3514 io->ipsec_out_icmp_loopback = B_TRUE; 3515 3516 ipha = (ipha_t *)mp->b_rptr; 3517 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3518 *ipha = icmp_ipha; 3519 ipha->ipha_src = src; 3520 ipha->ipha_dst = dst; 3521 ipha->ipha_ttl = ip_def_ttl; 3522 msg_len += sizeof (icmp_ipha) + len; 3523 if (msg_len > IP_MAXPACKET) { 3524 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3525 msg_len = IP_MAXPACKET; 3526 } 3527 ipha->ipha_length = htons((uint16_t)msg_len); 3528 icmph = (icmph_t *)&ipha[1]; 3529 bcopy(stuff, icmph, len); 3530 icmph->icmph_checksum = 0; 3531 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3532 if (icmph->icmph_checksum == 0) 3533 icmph->icmph_checksum = 0xFFFF; 3534 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3535 put(q, ipsec_mp); 3536 } 3537 3538 /* 3539 * Determine if an ICMP error packet can be sent given the rate limit. 3540 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3541 * in milliseconds) and a burst size. Burst size number of packets can 3542 * be sent arbitrarely closely spaced. 3543 * The state is tracked using two variables to implement an approximate 3544 * token bucket filter: 3545 * icmp_pkt_err_last - lbolt value when the last burst started 3546 * icmp_pkt_err_sent - number of packets sent in current burst 3547 */ 3548 boolean_t 3549 icmp_err_rate_limit(void) 3550 { 3551 clock_t now = TICK_TO_MSEC(lbolt); 3552 uint_t refilled; /* Number of packets refilled in tbf since last */ 3553 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3554 3555 if (err_interval == 0) 3556 return (B_FALSE); 3557 3558 if (icmp_pkt_err_last > now) { 3559 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3560 icmp_pkt_err_last = 0; 3561 icmp_pkt_err_sent = 0; 3562 } 3563 /* 3564 * If we are in a burst update the token bucket filter. 3565 * Update the "last" time to be close to "now" but make sure 3566 * we don't loose precision. 3567 */ 3568 if (icmp_pkt_err_sent != 0) { 3569 refilled = (now - icmp_pkt_err_last)/err_interval; 3570 if (refilled > icmp_pkt_err_sent) { 3571 icmp_pkt_err_sent = 0; 3572 } else { 3573 icmp_pkt_err_sent -= refilled; 3574 icmp_pkt_err_last += refilled * err_interval; 3575 } 3576 } 3577 if (icmp_pkt_err_sent == 0) { 3578 /* Start of new burst */ 3579 icmp_pkt_err_last = now; 3580 } 3581 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3582 icmp_pkt_err_sent++; 3583 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3584 icmp_pkt_err_sent)); 3585 return (B_FALSE); 3586 } 3587 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3588 return (B_TRUE); 3589 } 3590 3591 /* 3592 * Check if it is ok to send an IPv4 ICMP error packet in 3593 * response to the IPv4 packet in mp. 3594 * Free the message and return null if no 3595 * ICMP error packet should be sent. 3596 */ 3597 static mblk_t * 3598 icmp_pkt_err_ok(mblk_t *mp) 3599 { 3600 icmph_t *icmph; 3601 ipha_t *ipha; 3602 uint_t len_needed; 3603 ire_t *src_ire; 3604 ire_t *dst_ire; 3605 3606 if (!mp) 3607 return (NULL); 3608 ipha = (ipha_t *)mp->b_rptr; 3609 if (ip_csum_hdr(ipha)) { 3610 BUMP_MIB(&ip_mib, ipInCksumErrs); 3611 freemsg(mp); 3612 return (NULL); 3613 } 3614 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3615 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3616 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3617 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3618 if (src_ire != NULL || dst_ire != NULL || 3619 CLASSD(ipha->ipha_dst) || 3620 CLASSD(ipha->ipha_src) || 3621 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3622 /* Note: only errors to the fragment with offset 0 */ 3623 BUMP_MIB(&icmp_mib, icmpOutDrops); 3624 freemsg(mp); 3625 if (src_ire != NULL) 3626 ire_refrele(src_ire); 3627 if (dst_ire != NULL) 3628 ire_refrele(dst_ire); 3629 return (NULL); 3630 } 3631 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3632 /* 3633 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3634 * errors in response to any ICMP errors. 3635 */ 3636 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3637 if (mp->b_wptr - mp->b_rptr < len_needed) { 3638 if (!pullupmsg(mp, len_needed)) { 3639 BUMP_MIB(&icmp_mib, icmpInErrors); 3640 freemsg(mp); 3641 return (NULL); 3642 } 3643 ipha = (ipha_t *)mp->b_rptr; 3644 } 3645 icmph = (icmph_t *) 3646 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3647 switch (icmph->icmph_type) { 3648 case ICMP_DEST_UNREACHABLE: 3649 case ICMP_SOURCE_QUENCH: 3650 case ICMP_TIME_EXCEEDED: 3651 case ICMP_PARAM_PROBLEM: 3652 case ICMP_REDIRECT: 3653 BUMP_MIB(&icmp_mib, icmpOutDrops); 3654 freemsg(mp); 3655 return (NULL); 3656 default: 3657 break; 3658 } 3659 } 3660 /* 3661 * If this is a labeled system, then check to see if we're allowed to 3662 * send a response to this particular sender. If not, then just drop. 3663 */ 3664 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3665 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3666 BUMP_MIB(&icmp_mib, icmpOutDrops); 3667 freemsg(mp); 3668 return (NULL); 3669 } 3670 if (icmp_err_rate_limit()) { 3671 /* 3672 * Only send ICMP error packets every so often. 3673 * This should be done on a per port/source basis, 3674 * but for now this will suffice. 3675 */ 3676 freemsg(mp); 3677 return (NULL); 3678 } 3679 return (mp); 3680 } 3681 3682 /* 3683 * Generate an ICMP redirect message. 3684 */ 3685 static void 3686 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3687 { 3688 icmph_t icmph; 3689 3690 /* 3691 * We are called from ip_rput where we could 3692 * not have attached an IPSEC_IN. 3693 */ 3694 ASSERT(mp->b_datap->db_type == M_DATA); 3695 3696 if (!(mp = icmp_pkt_err_ok(mp))) { 3697 return; 3698 } 3699 3700 bzero(&icmph, sizeof (icmph_t)); 3701 icmph.icmph_type = ICMP_REDIRECT; 3702 icmph.icmph_code = 1; 3703 icmph.icmph_rd_gateway = gateway; 3704 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3705 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE); 3706 } 3707 3708 /* 3709 * Generate an ICMP time exceeded message. 3710 */ 3711 void 3712 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code) 3713 { 3714 icmph_t icmph; 3715 boolean_t mctl_present; 3716 mblk_t *first_mp; 3717 3718 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3719 3720 if (!(mp = icmp_pkt_err_ok(mp))) { 3721 if (mctl_present) 3722 freeb(first_mp); 3723 return; 3724 } 3725 3726 bzero(&icmph, sizeof (icmph_t)); 3727 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3728 icmph.icmph_code = code; 3729 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3730 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3731 } 3732 3733 /* 3734 * Generate an ICMP unreachable message. 3735 */ 3736 void 3737 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code) 3738 { 3739 icmph_t icmph; 3740 mblk_t *first_mp; 3741 boolean_t mctl_present; 3742 3743 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3744 3745 if (!(mp = icmp_pkt_err_ok(mp))) { 3746 if (mctl_present) 3747 freeb(first_mp); 3748 return; 3749 } 3750 3751 bzero(&icmph, sizeof (icmph_t)); 3752 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3753 icmph.icmph_code = code; 3754 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3755 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3756 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present); 3757 } 3758 3759 /* 3760 * News from ARP. ARP sends notification of interesting events down 3761 * to its clients using M_CTL messages with the interesting ARP packet 3762 * attached via b_cont. 3763 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3764 * queue as opposed to ARP sending the message to all the clients, i.e. all 3765 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3766 * table if a cache IRE is found to delete all the entries for the address in 3767 * the packet. 3768 */ 3769 static void 3770 ip_arp_news(queue_t *q, mblk_t *mp) 3771 { 3772 arcn_t *arcn; 3773 arh_t *arh; 3774 char *cp1; 3775 uchar_t *cp2; 3776 ire_t *ire = NULL; 3777 int i1; 3778 char hbuf[128]; 3779 char sbuf[16]; 3780 ipaddr_t src; 3781 in6_addr_t v6src; 3782 boolean_t isv6 = B_FALSE; 3783 3784 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3785 if (q->q_next) { 3786 putnext(q, mp); 3787 } else 3788 freemsg(mp); 3789 return; 3790 } 3791 arh = (arh_t *)mp->b_cont->b_rptr; 3792 /* Is it one we are interested in? */ 3793 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3794 isv6 = B_TRUE; 3795 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3796 IPV6_ADDR_LEN); 3797 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3798 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3799 IP_ADDR_LEN); 3800 } else { 3801 freemsg(mp); 3802 return; 3803 } 3804 3805 arcn = (arcn_t *)mp->b_rptr; 3806 switch (arcn->arcn_code) { 3807 case AR_CN_BOGON: 3808 /* 3809 * Someone is sending ARP packets with a source protocol 3810 * address which we have published. Either they are 3811 * pretending to be us, or we have been asked to proxy 3812 * for a machine that can do fine for itself, or two 3813 * different machines are providing proxy service for the 3814 * same protocol address, or something. We try and do 3815 * something appropriate here. 3816 */ 3817 cp2 = (uchar_t *)&arh[1]; 3818 cp1 = hbuf; 3819 *cp1 = '\0'; 3820 for (i1 = arh->arh_hlen; i1--; cp1 += 3) 3821 (void) sprintf(cp1, "%02x:", *cp2++ & 0xff); 3822 if (cp1 != hbuf) 3823 cp1[-1] = '\0'; 3824 (void) ip_dot_addr(src, sbuf); 3825 if (isv6) 3826 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 3827 else 3828 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 3829 3830 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3831 cmn_err(CE_WARN, 3832 "IP: Hardware address '%s' trying" 3833 " to be our address %s!", 3834 hbuf, sbuf); 3835 } else { 3836 cmn_err(CE_WARN, 3837 "IP: Proxy ARP problem? " 3838 "Hardware address '%s' thinks it is %s", 3839 hbuf, sbuf); 3840 } 3841 if (ire != NULL) 3842 ire_refrele(ire); 3843 break; 3844 case AR_CN_ANNOUNCE: 3845 if (isv6) { 3846 /* 3847 * For XRESOLV interfaces. 3848 * Delete the IRE cache entry and NCE for this 3849 * v6 address 3850 */ 3851 ip_ire_clookup_and_delete_v6(&v6src); 3852 /* 3853 * If v6src is a non-zero, it's a router address 3854 * as below. Do the same sort of thing to clean 3855 * out off-net IRE_CACHE entries that go through 3856 * the router. 3857 */ 3858 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3859 ire_walk_v6(ire_delete_cache_gw_v6, 3860 (char *)&v6src, ALL_ZONES); 3861 } 3862 break; 3863 } 3864 /* 3865 * ARP gives us a copy of any broadcast packet with identical 3866 * sender and receiver protocol address, in 3867 * case we want to intuit something from it. Such a packet 3868 * usually means that a machine has just come up on the net. 3869 * If we have an IRE_CACHE, we blow it away. This way we will 3870 * immediately pick up the rare case of a host changing 3871 * hardware address. ip_ire_clookup_and_delete achieves this. 3872 * 3873 * The address in "src" may be an entry for a router. 3874 * (Default router, or non-default router.) If 3875 * that's true, then any off-net IRE_CACHE entries 3876 * that go through the router with address "src" 3877 * must be clobbered. Use ire_walk to achieve this 3878 * goal. 3879 * 3880 * It should be possible to determine if the address 3881 * in src is or is not for a router. This way, 3882 * the ire_walk() isn't called all of the time here. 3883 * Do not pass 'src' value of 0 to ire_delete_cache_gw, 3884 * as it would remove all IRE_CACHE entries for onlink 3885 * destinations. All onlink destinations have 3886 * ire_gateway_addr == 0. 3887 */ 3888 if ((ip_ire_clookup_and_delete(src, NULL) || 3889 (ire = ire_ftable_lookup(src, 0, 0, 0, NULL, NULL, NULL, 3890 0, NULL, MATCH_IRE_DSTONLY)) != NULL) && src != 0) { 3891 ire_walk_v4(ire_delete_cache_gw, (char *)&src, 3892 ALL_ZONES); 3893 } 3894 /* From ire_ftable_lookup */ 3895 if (ire != NULL) 3896 ire_refrele(ire); 3897 break; 3898 default: 3899 if (ire != NULL) 3900 ire_refrele(ire); 3901 break; 3902 } 3903 freemsg(mp); 3904 } 3905 3906 /* 3907 * Create a mblk suitable for carrying the interface index and/or source link 3908 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 3909 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 3910 * application. 3911 */ 3912 mblk_t * 3913 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 3914 { 3915 mblk_t *mp; 3916 in_pktinfo_t *pinfo; 3917 ipha_t *ipha; 3918 struct ether_header *pether; 3919 3920 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 3921 if (mp == NULL) { 3922 ip1dbg(("ip_add_info: allocation failure.\n")); 3923 return (data_mp); 3924 } 3925 3926 ipha = (ipha_t *)data_mp->b_rptr; 3927 pinfo = (in_pktinfo_t *)mp->b_rptr; 3928 bzero(pinfo, sizeof (in_pktinfo_t)); 3929 pinfo->in_pkt_flags = (uchar_t)flags; 3930 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 3931 3932 if (flags & IPF_RECVIF) 3933 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 3934 3935 pether = (struct ether_header *)((char *)ipha 3936 - sizeof (struct ether_header)); 3937 /* 3938 * Make sure the interface is an ethernet type, since this option 3939 * is currently supported only on this type of interface. Also make 3940 * sure we are pointing correctly above db_base. 3941 */ 3942 3943 if ((flags & IPF_RECVSLLA) && 3944 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 3945 (ill->ill_type == IFT_ETHER) && 3946 (ill->ill_net_type == IRE_IF_RESOLVER)) { 3947 3948 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 3949 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 3950 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 3951 } else { 3952 /* 3953 * Clear the bit. Indicate to upper layer that IP is not 3954 * sending this ancillary info. 3955 */ 3956 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 3957 } 3958 3959 mp->b_datap->db_type = M_CTL; 3960 mp->b_wptr += sizeof (in_pktinfo_t); 3961 mp->b_cont = data_mp; 3962 3963 return (mp); 3964 } 3965 3966 /* 3967 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 3968 * part of the bind request. 3969 */ 3970 3971 boolean_t 3972 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 3973 { 3974 ipsec_in_t *ii; 3975 3976 ASSERT(policy_mp != NULL); 3977 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 3978 3979 ii = (ipsec_in_t *)policy_mp->b_rptr; 3980 ASSERT(ii->ipsec_in_type == IPSEC_IN); 3981 3982 connp->conn_policy = ii->ipsec_in_policy; 3983 ii->ipsec_in_policy = NULL; 3984 3985 if (ii->ipsec_in_action != NULL) { 3986 if (connp->conn_latch == NULL) { 3987 connp->conn_latch = iplatch_create(); 3988 if (connp->conn_latch == NULL) 3989 return (B_FALSE); 3990 } 3991 ipsec_latch_inbound(connp->conn_latch, ii); 3992 } 3993 return (B_TRUE); 3994 } 3995 3996 /* 3997 * Upper level protocols (ULP) pass through bind requests to IP for inspection 3998 * and to arrange for power-fanout assist. The ULP is identified by 3999 * adding a single byte at the end of the original bind message. 4000 * A ULP other than UDP or TCP that wishes to be recognized passes 4001 * down a bind with a zero length address. 4002 * 4003 * The binding works as follows: 4004 * - A zero byte address means just bind to the protocol. 4005 * - A four byte address is treated as a request to validate 4006 * that the address is a valid local address, appropriate for 4007 * an application to bind to. This does not affect any fanout 4008 * information in IP. 4009 * - A sizeof sin_t byte address is used to bind to only the local address 4010 * and port. 4011 * - A sizeof ipa_conn_t byte address contains complete fanout information 4012 * consisting of local and remote addresses and ports. In 4013 * this case, the addresses are both validated as appropriate 4014 * for this operation, and, if so, the information is retained 4015 * for use in the inbound fanout. 4016 * 4017 * The ULP (except in the zero-length bind) can append an 4018 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4019 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4020 * a copy of the source or destination IRE (source for local bind; 4021 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4022 * policy information contained should be copied on to the conn. 4023 * 4024 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4025 */ 4026 mblk_t * 4027 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4028 { 4029 ssize_t len; 4030 struct T_bind_req *tbr; 4031 sin_t *sin; 4032 ipa_conn_t *ac; 4033 uchar_t *ucp; 4034 mblk_t *mp1; 4035 boolean_t ire_requested; 4036 boolean_t ipsec_policy_set = B_FALSE; 4037 int error = 0; 4038 int protocol; 4039 ipa_conn_x_t *acx; 4040 4041 ASSERT(!connp->conn_af_isv6); 4042 connp->conn_pkt_isv6 = B_FALSE; 4043 4044 len = MBLKL(mp); 4045 if (len < (sizeof (*tbr) + 1)) { 4046 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4047 "ip_bind: bogus msg, len %ld", len); 4048 /* XXX: Need to return something better */ 4049 goto bad_addr; 4050 } 4051 /* Back up and extract the protocol identifier. */ 4052 mp->b_wptr--; 4053 protocol = *mp->b_wptr & 0xFF; 4054 tbr = (struct T_bind_req *)mp->b_rptr; 4055 /* Reset the message type in preparation for shipping it back. */ 4056 DB_TYPE(mp) = M_PCPROTO; 4057 4058 connp->conn_ulp = (uint8_t)protocol; 4059 4060 /* 4061 * Check for a zero length address. This is from a protocol that 4062 * wants to register to receive all packets of its type. 4063 */ 4064 if (tbr->ADDR_length == 0) { 4065 /* 4066 * These protocols are now intercepted in ip_bind_v6(). 4067 * Reject protocol-level binds here for now. 4068 * 4069 * For SCTP raw socket, ICMP sends down a bind with sin_t 4070 * so that the protocol type cannot be SCTP. 4071 */ 4072 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4073 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4074 goto bad_addr; 4075 } 4076 4077 /* 4078 * 4079 * The udp module never sends down a zero-length address, 4080 * and allowing this on a labeled system will break MLP 4081 * functionality. 4082 */ 4083 if (is_system_labeled() && protocol == IPPROTO_UDP) 4084 goto bad_addr; 4085 4086 if (connp->conn_mac_exempt) 4087 goto bad_addr; 4088 4089 /* No hash here really. The table is big enough. */ 4090 connp->conn_srcv6 = ipv6_all_zeros; 4091 4092 ipcl_proto_insert(connp, protocol); 4093 4094 tbr->PRIM_type = T_BIND_ACK; 4095 return (mp); 4096 } 4097 4098 /* Extract the address pointer from the message. */ 4099 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4100 tbr->ADDR_length); 4101 if (ucp == NULL) { 4102 ip1dbg(("ip_bind: no address\n")); 4103 goto bad_addr; 4104 } 4105 if (!OK_32PTR(ucp)) { 4106 ip1dbg(("ip_bind: unaligned address\n")); 4107 goto bad_addr; 4108 } 4109 /* 4110 * Check for trailing mps. 4111 */ 4112 4113 mp1 = mp->b_cont; 4114 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4115 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4116 4117 switch (tbr->ADDR_length) { 4118 default: 4119 ip1dbg(("ip_bind: bad address length %d\n", 4120 (int)tbr->ADDR_length)); 4121 goto bad_addr; 4122 4123 case IP_ADDR_LEN: 4124 /* Verification of local address only */ 4125 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4126 ire_requested, ipsec_policy_set, B_FALSE); 4127 break; 4128 4129 case sizeof (sin_t): 4130 sin = (sin_t *)ucp; 4131 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4132 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4133 if (protocol == IPPROTO_TCP) 4134 connp->conn_recv = tcp_conn_request; 4135 break; 4136 4137 case sizeof (ipa_conn_t): 4138 ac = (ipa_conn_t *)ucp; 4139 /* For raw socket, the local port is not set. */ 4140 if (ac->ac_lport == 0) 4141 ac->ac_lport = connp->conn_lport; 4142 /* Always verify destination reachability. */ 4143 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4144 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4145 ipsec_policy_set, B_TRUE, B_TRUE); 4146 if (protocol == IPPROTO_TCP) 4147 connp->conn_recv = tcp_input; 4148 break; 4149 4150 case sizeof (ipa_conn_x_t): 4151 acx = (ipa_conn_x_t *)ucp; 4152 /* 4153 * Whether or not to verify destination reachability depends 4154 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4155 */ 4156 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4157 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4158 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4159 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4160 if (protocol == IPPROTO_TCP) 4161 connp->conn_recv = tcp_input; 4162 break; 4163 } 4164 if (error == EINPROGRESS) 4165 return (NULL); 4166 else if (error != 0) 4167 goto bad_addr; 4168 /* 4169 * Pass the IPSEC headers size in ire_ipsec_overhead. 4170 * We can't do this in ip_bind_insert_ire because the policy 4171 * may not have been inherited at that point in time and hence 4172 * conn_out_enforce_policy may not be set. 4173 */ 4174 mp1 = mp->b_cont; 4175 if (ire_requested && connp->conn_out_enforce_policy && 4176 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4177 ire_t *ire = (ire_t *)mp1->b_rptr; 4178 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4179 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4180 } 4181 4182 /* Send it home. */ 4183 mp->b_datap->db_type = M_PCPROTO; 4184 tbr->PRIM_type = T_BIND_ACK; 4185 return (mp); 4186 4187 bad_addr: 4188 /* 4189 * If error = -1 then we generate a TBADADDR - otherwise error is 4190 * a unix errno. 4191 */ 4192 if (error > 0) 4193 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4194 else 4195 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4196 return (mp); 4197 } 4198 4199 /* 4200 * Here address is verified to be a valid local address. 4201 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4202 * address is also considered a valid local address. 4203 * In the case of a broadcast/multicast address, however, the 4204 * upper protocol is expected to reset the src address 4205 * to 0 if it sees a IRE_BROADCAST type returned so that 4206 * no packets are emitted with broadcast/multicast address as 4207 * source address (that violates hosts requirements RFC1122) 4208 * The addresses valid for bind are: 4209 * (1) - INADDR_ANY (0) 4210 * (2) - IP address of an UP interface 4211 * (3) - IP address of a DOWN interface 4212 * (4) - valid local IP broadcast addresses. In this case 4213 * the conn will only receive packets destined to 4214 * the specified broadcast address. 4215 * (5) - a multicast address. In this case 4216 * the conn will only receive packets destined to 4217 * the specified multicast address. Note: the 4218 * application still has to issue an 4219 * IP_ADD_MEMBERSHIP socket option. 4220 * 4221 * On error, return -1 for TBADADDR otherwise pass the 4222 * errno with TSYSERR reply. 4223 * 4224 * In all the above cases, the bound address must be valid in the current zone. 4225 * When the address is loopback, multicast or broadcast, there might be many 4226 * matching IREs so bind has to look up based on the zone. 4227 * 4228 * Note: lport is in network byte order. 4229 */ 4230 int 4231 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4232 boolean_t ire_requested, boolean_t ipsec_policy_set, 4233 boolean_t fanout_insert) 4234 { 4235 int error = 0; 4236 ire_t *src_ire; 4237 mblk_t *policy_mp; 4238 ipif_t *ipif; 4239 zoneid_t zoneid; 4240 4241 if (ipsec_policy_set) { 4242 policy_mp = mp->b_cont; 4243 } 4244 4245 /* 4246 * If it was previously connected, conn_fully_bound would have 4247 * been set. 4248 */ 4249 connp->conn_fully_bound = B_FALSE; 4250 4251 src_ire = NULL; 4252 ipif = NULL; 4253 4254 zoneid = IPCL_ZONEID(connp); 4255 4256 if (src_addr) { 4257 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4258 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4259 /* 4260 * If an address other than 0.0.0.0 is requested, 4261 * we verify that it is a valid address for bind 4262 * Note: Following code is in if-else-if form for 4263 * readability compared to a condition check. 4264 */ 4265 /* LINTED - statement has no consequent */ 4266 if (IRE_IS_LOCAL(src_ire)) { 4267 /* 4268 * (2) Bind to address of local UP interface 4269 */ 4270 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4271 /* 4272 * (4) Bind to broadcast address 4273 * Note: permitted only from transports that 4274 * request IRE 4275 */ 4276 if (!ire_requested) 4277 error = EADDRNOTAVAIL; 4278 } else { 4279 /* 4280 * (3) Bind to address of local DOWN interface 4281 * (ipif_lookup_addr() looks up all interfaces 4282 * but we do not get here for UP interfaces 4283 * - case (2) above) 4284 * We put the protocol byte back into the mblk 4285 * since we may come back via ip_wput_nondata() 4286 * later with this mblk if ipif_lookup_addr chooses 4287 * to defer processing. 4288 */ 4289 *mp->b_wptr++ = (char)connp->conn_ulp; 4290 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4291 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4292 &error)) != NULL) { 4293 ipif_refrele(ipif); 4294 } else if (error == EINPROGRESS) { 4295 if (src_ire != NULL) 4296 ire_refrele(src_ire); 4297 return (EINPROGRESS); 4298 } else if (CLASSD(src_addr)) { 4299 error = 0; 4300 if (src_ire != NULL) 4301 ire_refrele(src_ire); 4302 /* 4303 * (5) bind to multicast address. 4304 * Fake out the IRE returned to upper 4305 * layer to be a broadcast IRE. 4306 */ 4307 src_ire = ire_ctable_lookup( 4308 INADDR_BROADCAST, INADDR_ANY, 4309 IRE_BROADCAST, NULL, zoneid, NULL, 4310 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4311 if (src_ire == NULL || !ire_requested) 4312 error = EADDRNOTAVAIL; 4313 } else { 4314 /* 4315 * Not a valid address for bind 4316 */ 4317 error = EADDRNOTAVAIL; 4318 } 4319 /* 4320 * Just to keep it consistent with the processing in 4321 * ip_bind_v4() 4322 */ 4323 mp->b_wptr--; 4324 } 4325 if (error) { 4326 /* Red Alert! Attempting to be a bogon! */ 4327 ip1dbg(("ip_bind: bad src address 0x%x\n", 4328 ntohl(src_addr))); 4329 goto bad_addr; 4330 } 4331 } 4332 4333 /* 4334 * Allow setting new policies. For example, disconnects come 4335 * down as ipa_t bind. As we would have set conn_policy_cached 4336 * to B_TRUE before, we should set it to B_FALSE, so that policy 4337 * can change after the disconnect. 4338 */ 4339 connp->conn_policy_cached = B_FALSE; 4340 4341 /* 4342 * If not fanout_insert this was just an address verification 4343 */ 4344 if (fanout_insert) { 4345 /* 4346 * The addresses have been verified. Time to insert in 4347 * the correct fanout list. 4348 */ 4349 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4350 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4351 connp->conn_lport = lport; 4352 connp->conn_fport = 0; 4353 /* 4354 * Do we need to add a check to reject Multicast packets 4355 */ 4356 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4357 } 4358 4359 if (error == 0) { 4360 if (ire_requested) { 4361 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4362 error = -1; 4363 /* Falls through to bad_addr */ 4364 } 4365 } else if (ipsec_policy_set) { 4366 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4367 error = -1; 4368 /* Falls through to bad_addr */ 4369 } 4370 } 4371 } 4372 bad_addr: 4373 if (error != 0) { 4374 if (connp->conn_anon_port) { 4375 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4376 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4377 B_FALSE); 4378 } 4379 connp->conn_mlp_type = mlptSingle; 4380 } 4381 if (src_ire != NULL) 4382 IRE_REFRELE(src_ire); 4383 if (ipsec_policy_set) { 4384 ASSERT(policy_mp == mp->b_cont); 4385 ASSERT(policy_mp != NULL); 4386 freeb(policy_mp); 4387 /* 4388 * As of now assume that nothing else accompanies 4389 * IPSEC_POLICY_SET. 4390 */ 4391 mp->b_cont = NULL; 4392 } 4393 return (error); 4394 } 4395 4396 /* 4397 * Verify that both the source and destination addresses 4398 * are valid. If verify_dst is false, then the destination address may be 4399 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4400 * destination reachability, while tunnels do not. 4401 * Note that we allow connect to broadcast and multicast 4402 * addresses when ire_requested is set. Thus the ULP 4403 * has to check for IRE_BROADCAST and multicast. 4404 * 4405 * Returns zero if ok. 4406 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4407 * (for use with TSYSERR reply). 4408 * 4409 * Note: lport and fport are in network byte order. 4410 */ 4411 int 4412 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4413 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4414 boolean_t ire_requested, boolean_t ipsec_policy_set, 4415 boolean_t fanout_insert, boolean_t verify_dst) 4416 { 4417 ire_t *src_ire; 4418 ire_t *dst_ire; 4419 int error = 0; 4420 int protocol; 4421 mblk_t *policy_mp; 4422 ire_t *sire = NULL; 4423 ire_t *md_dst_ire = NULL; 4424 ill_t *md_ill = NULL; 4425 zoneid_t zoneid; 4426 ipaddr_t src_addr = *src_addrp; 4427 4428 src_ire = dst_ire = NULL; 4429 protocol = *mp->b_wptr & 0xFF; 4430 4431 /* 4432 * If we never got a disconnect before, clear it now. 4433 */ 4434 connp->conn_fully_bound = B_FALSE; 4435 4436 if (ipsec_policy_set) { 4437 policy_mp = mp->b_cont; 4438 } 4439 4440 zoneid = IPCL_ZONEID(connp); 4441 4442 if (CLASSD(dst_addr)) { 4443 /* Pick up an IRE_BROADCAST */ 4444 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4445 NULL, zoneid, MBLK_GETLABEL(mp), 4446 (MATCH_IRE_RECURSIVE | 4447 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4448 MATCH_IRE_SECATTR)); 4449 } else { 4450 /* 4451 * If conn_dontroute is set or if conn_nexthop_set is set, 4452 * and onlink ipif is not found set ENETUNREACH error. 4453 */ 4454 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4455 ipif_t *ipif; 4456 4457 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4458 dst_addr : connp->conn_nexthop_v4, zoneid); 4459 if (ipif == NULL) { 4460 error = ENETUNREACH; 4461 goto bad_addr; 4462 } 4463 ipif_refrele(ipif); 4464 } 4465 4466 if (connp->conn_nexthop_set) { 4467 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4468 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4469 MATCH_IRE_SECATTR); 4470 } else { 4471 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4472 &sire, zoneid, MBLK_GETLABEL(mp), 4473 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4474 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4475 MATCH_IRE_SECATTR)); 4476 } 4477 } 4478 /* 4479 * dst_ire can't be a broadcast when not ire_requested. 4480 * We also prevent ire's with src address INADDR_ANY to 4481 * be used, which are created temporarily for 4482 * sending out packets from endpoints that have 4483 * conn_unspec_src set. If verify_dst is true, the destination must be 4484 * reachable. If verify_dst is false, the destination needn't be 4485 * reachable. 4486 * 4487 * If we match on a reject or black hole, then we've got a 4488 * local failure. May as well fail out the connect() attempt, 4489 * since it's never going to succeed. 4490 */ 4491 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4492 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4493 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4494 /* 4495 * If we're verifying destination reachability, we always want 4496 * to complain here. 4497 * 4498 * If we're not verifying destination reachability but the 4499 * destination has a route, we still want to fail on the 4500 * temporary address and broadcast address tests. 4501 */ 4502 if (verify_dst || (dst_ire != NULL)) { 4503 if (ip_debug > 2) { 4504 pr_addr_dbg("ip_bind_connected: bad connected " 4505 "dst %s\n", AF_INET, &dst_addr); 4506 } 4507 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4508 error = ENETUNREACH; 4509 else 4510 error = EHOSTUNREACH; 4511 goto bad_addr; 4512 } 4513 } 4514 4515 /* 4516 * We now know that routing will allow us to reach the destination. 4517 * Check whether Trusted Solaris policy allows communication with this 4518 * host, and pretend that the destination is unreachable if not. 4519 * 4520 * This is never a problem for TCP, since that transport is known to 4521 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4522 * handling. If the remote is unreachable, it will be detected at that 4523 * point, so there's no reason to check it here. 4524 * 4525 * Note that for sendto (and other datagram-oriented friends), this 4526 * check is done as part of the data path label computation instead. 4527 * The check here is just to make non-TCP connect() report the right 4528 * error. 4529 */ 4530 if (dst_ire != NULL && is_system_labeled() && 4531 !IPCL_IS_TCP(connp) && 4532 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4533 connp->conn_mac_exempt) != 0) { 4534 error = EHOSTUNREACH; 4535 if (ip_debug > 2) { 4536 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4537 AF_INET, &dst_addr); 4538 } 4539 goto bad_addr; 4540 } 4541 4542 /* 4543 * If the app does a connect(), it means that it will most likely 4544 * send more than 1 packet to the destination. It makes sense 4545 * to clear the temporary flag. 4546 */ 4547 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4548 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4549 irb_t *irb = dst_ire->ire_bucket; 4550 4551 rw_enter(&irb->irb_lock, RW_WRITER); 4552 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4553 irb->irb_tmp_ire_cnt--; 4554 rw_exit(&irb->irb_lock); 4555 } 4556 4557 /* 4558 * See if we should notify ULP about MDT; we do this whether or not 4559 * ire_requested is TRUE, in order to handle active connects; MDT 4560 * eligibility tests for passive connects are handled separately 4561 * through tcp_adapt_ire(). We do this before the source address 4562 * selection, because dst_ire may change after a call to 4563 * ipif_select_source(). This is a best-effort check, as the 4564 * packet for this connection may not actually go through 4565 * dst_ire->ire_stq, and the exact IRE can only be known after 4566 * calling ip_newroute(). This is why we further check on the 4567 * IRE during Multidata packet transmission in tcp_multisend(). 4568 */ 4569 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4570 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4571 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4572 ILL_MDT_CAPABLE(md_ill)) { 4573 md_dst_ire = dst_ire; 4574 IRE_REFHOLD(md_dst_ire); 4575 } 4576 4577 if (dst_ire != NULL && 4578 dst_ire->ire_type == IRE_LOCAL && 4579 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4580 /* 4581 * If the IRE belongs to a different zone, look for a matching 4582 * route in the forwarding table and use the source address from 4583 * that route. 4584 */ 4585 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4586 zoneid, 0, NULL, 4587 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4588 MATCH_IRE_RJ_BHOLE); 4589 if (src_ire == NULL) { 4590 error = EHOSTUNREACH; 4591 goto bad_addr; 4592 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4593 if (!(src_ire->ire_type & IRE_HOST)) 4594 error = ENETUNREACH; 4595 else 4596 error = EHOSTUNREACH; 4597 goto bad_addr; 4598 } 4599 if (src_addr == INADDR_ANY) 4600 src_addr = src_ire->ire_src_addr; 4601 ire_refrele(src_ire); 4602 src_ire = NULL; 4603 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4604 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4605 src_addr = sire->ire_src_addr; 4606 ire_refrele(dst_ire); 4607 dst_ire = sire; 4608 sire = NULL; 4609 } else { 4610 /* 4611 * Pick a source address so that a proper inbound 4612 * load spreading would happen. 4613 */ 4614 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4615 ipif_t *src_ipif = NULL; 4616 ire_t *ipif_ire; 4617 4618 /* 4619 * Supply a local source address such that inbound 4620 * load spreading happens. 4621 * 4622 * Determine the best source address on this ill for 4623 * the destination. 4624 * 4625 * 1) For broadcast, we should return a broadcast ire 4626 * found above so that upper layers know that the 4627 * destination address is a broadcast address. 4628 * 4629 * 2) If this is part of a group, select a better 4630 * source address so that better inbound load 4631 * balancing happens. Do the same if the ipif 4632 * is DEPRECATED. 4633 * 4634 * 3) If the outgoing interface is part of a usesrc 4635 * group, then try selecting a source address from 4636 * the usesrc ILL. 4637 */ 4638 if ((dst_ire->ire_zoneid != zoneid && 4639 dst_ire->ire_zoneid != ALL_ZONES) || 4640 (!(dst_ire->ire_type & IRE_BROADCAST) && 4641 ((dst_ill->ill_group != NULL) || 4642 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4643 (dst_ill->ill_usesrc_ifindex != 0)))) { 4644 /* 4645 * If the destination is reachable via a 4646 * given gateway, the selected source address 4647 * should be in the same subnet as the gateway. 4648 * Otherwise, the destination is not reachable. 4649 * 4650 * If there are no interfaces on the same subnet 4651 * as the destination, ipif_select_source gives 4652 * first non-deprecated interface which might be 4653 * on a different subnet than the gateway. 4654 * This is not desirable. Hence pass the dst_ire 4655 * source address to ipif_select_source. 4656 * It is sure that the destination is reachable 4657 * with the dst_ire source address subnet. 4658 * So passing dst_ire source address to 4659 * ipif_select_source will make sure that the 4660 * selected source will be on the same subnet 4661 * as dst_ire source address. 4662 */ 4663 ipaddr_t saddr = 4664 dst_ire->ire_ipif->ipif_src_addr; 4665 src_ipif = ipif_select_source(dst_ill, 4666 saddr, zoneid); 4667 if (src_ipif != NULL) { 4668 if (IS_VNI(src_ipif->ipif_ill)) { 4669 /* 4670 * For VNI there is no 4671 * interface route 4672 */ 4673 src_addr = 4674 src_ipif->ipif_src_addr; 4675 } else { 4676 ipif_ire = 4677 ipif_to_ire(src_ipif); 4678 if (ipif_ire != NULL) { 4679 IRE_REFRELE(dst_ire); 4680 dst_ire = ipif_ire; 4681 } 4682 src_addr = 4683 dst_ire->ire_src_addr; 4684 } 4685 ipif_refrele(src_ipif); 4686 } else { 4687 src_addr = dst_ire->ire_src_addr; 4688 } 4689 } else { 4690 src_addr = dst_ire->ire_src_addr; 4691 } 4692 } 4693 } 4694 4695 /* 4696 * We do ire_route_lookup() here (and not 4697 * interface lookup as we assert that 4698 * src_addr should only come from an 4699 * UP interface for hard binding. 4700 */ 4701 ASSERT(src_ire == NULL); 4702 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4703 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4704 /* src_ire must be a local|loopback */ 4705 if (!IRE_IS_LOCAL(src_ire)) { 4706 if (ip_debug > 2) { 4707 pr_addr_dbg("ip_bind_connected: bad connected " 4708 "src %s\n", AF_INET, &src_addr); 4709 } 4710 error = EADDRNOTAVAIL; 4711 goto bad_addr; 4712 } 4713 4714 /* 4715 * If the source address is a loopback address, the 4716 * destination had best be local or multicast. 4717 * The transports that can't handle multicast will reject 4718 * those addresses. 4719 */ 4720 if (src_ire->ire_type == IRE_LOOPBACK && 4721 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 4722 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 4723 error = -1; 4724 goto bad_addr; 4725 } 4726 4727 /* 4728 * Allow setting new policies. For example, disconnects come 4729 * down as ipa_t bind. As we would have set conn_policy_cached 4730 * to B_TRUE before, we should set it to B_FALSE, so that policy 4731 * can change after the disconnect. 4732 */ 4733 connp->conn_policy_cached = B_FALSE; 4734 4735 /* 4736 * Set the conn addresses/ports immediately, so the IPsec policy calls 4737 * can handle their passed-in conn's. 4738 */ 4739 4740 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4741 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 4742 connp->conn_lport = lport; 4743 connp->conn_fport = fport; 4744 *src_addrp = src_addr; 4745 4746 ASSERT(!(ipsec_policy_set && ire_requested)); 4747 if (ire_requested) { 4748 iulp_t *ulp_info = NULL; 4749 4750 /* 4751 * Note that sire will not be NULL if this is an off-link 4752 * connection and there is not cache for that dest yet. 4753 * 4754 * XXX Because of an existing bug, if there are multiple 4755 * default routes, the IRE returned now may not be the actual 4756 * default route used (default routes are chosen in a 4757 * round robin fashion). So if the metrics for different 4758 * default routes are different, we may return the wrong 4759 * metrics. This will not be a problem if the existing 4760 * bug is fixed. 4761 */ 4762 if (sire != NULL) { 4763 ulp_info = &(sire->ire_uinfo); 4764 } 4765 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 4766 error = -1; 4767 goto bad_addr; 4768 } 4769 } else if (ipsec_policy_set) { 4770 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4771 error = -1; 4772 goto bad_addr; 4773 } 4774 } 4775 4776 /* 4777 * Cache IPsec policy in this conn. If we have per-socket policy, 4778 * we'll cache that. If we don't, we'll inherit global policy. 4779 * 4780 * We can't insert until the conn reflects the policy. Note that 4781 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 4782 * connections where we don't have a policy. This is to prevent 4783 * global policy lookups in the inbound path. 4784 * 4785 * If we insert before we set conn_policy_cached, 4786 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 4787 * because global policy cound be non-empty. We normally call 4788 * ipsec_check_policy() for conn_policy_cached connections only if 4789 * ipc_in_enforce_policy is set. But in this case, 4790 * conn_policy_cached can get set anytime since we made the 4791 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 4792 * called, which will make the above assumption false. Thus, we 4793 * need to insert after we set conn_policy_cached. 4794 */ 4795 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 4796 goto bad_addr; 4797 4798 if (fanout_insert) { 4799 /* 4800 * The addresses have been verified. Time to insert in 4801 * the correct fanout list. 4802 */ 4803 error = ipcl_conn_insert(connp, protocol, src_addr, 4804 dst_addr, connp->conn_ports); 4805 } 4806 4807 if (error == 0) { 4808 connp->conn_fully_bound = B_TRUE; 4809 /* 4810 * Our initial checks for MDT have passed; the IRE is not 4811 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 4812 * be supporting MDT. Pass the IRE, IPC and ILL into 4813 * ip_mdinfo_return(), which performs further checks 4814 * against them and upon success, returns the MDT info 4815 * mblk which we will attach to the bind acknowledgment. 4816 */ 4817 if (md_dst_ire != NULL) { 4818 mblk_t *mdinfo_mp; 4819 4820 ASSERT(md_ill != NULL); 4821 ASSERT(md_ill->ill_mdt_capab != NULL); 4822 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 4823 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 4824 linkb(mp, mdinfo_mp); 4825 } 4826 } 4827 bad_addr: 4828 if (ipsec_policy_set) { 4829 ASSERT(policy_mp == mp->b_cont); 4830 ASSERT(policy_mp != NULL); 4831 freeb(policy_mp); 4832 /* 4833 * As of now assume that nothing else accompanies 4834 * IPSEC_POLICY_SET. 4835 */ 4836 mp->b_cont = NULL; 4837 } 4838 if (src_ire != NULL) 4839 IRE_REFRELE(src_ire); 4840 if (dst_ire != NULL) 4841 IRE_REFRELE(dst_ire); 4842 if (sire != NULL) 4843 IRE_REFRELE(sire); 4844 if (md_dst_ire != NULL) 4845 IRE_REFRELE(md_dst_ire); 4846 return (error); 4847 } 4848 4849 /* 4850 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 4851 * Prefers dst_ire over src_ire. 4852 */ 4853 static boolean_t 4854 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 4855 { 4856 mblk_t *mp1; 4857 ire_t *ret_ire = NULL; 4858 4859 mp1 = mp->b_cont; 4860 ASSERT(mp1 != NULL); 4861 4862 if (ire != NULL) { 4863 /* 4864 * mp1 initialized above to IRE_DB_REQ_TYPE 4865 * appended mblk. Its <upper protocol>'s 4866 * job to make sure there is room. 4867 */ 4868 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 4869 return (0); 4870 4871 mp1->b_datap->db_type = IRE_DB_TYPE; 4872 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 4873 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 4874 ret_ire = (ire_t *)mp1->b_rptr; 4875 /* 4876 * Pass the latest setting of the ip_path_mtu_discovery and 4877 * copy the ulp info if any. 4878 */ 4879 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 4880 IPH_DF : 0; 4881 if (ulp_info != NULL) { 4882 bcopy(ulp_info, &(ret_ire->ire_uinfo), 4883 sizeof (iulp_t)); 4884 } 4885 ret_ire->ire_mp = mp1; 4886 } else { 4887 /* 4888 * No IRE was found. Remove IRE mblk. 4889 */ 4890 mp->b_cont = mp1->b_cont; 4891 freeb(mp1); 4892 } 4893 4894 return (1); 4895 } 4896 4897 /* 4898 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4899 * the final piece where we don't. Return a pointer to the first mblk in the 4900 * result, and update the pointer to the next mblk to chew on. If anything 4901 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4902 * NULL pointer. 4903 */ 4904 mblk_t * 4905 ip_carve_mp(mblk_t **mpp, ssize_t len) 4906 { 4907 mblk_t *mp0; 4908 mblk_t *mp1; 4909 mblk_t *mp2; 4910 4911 if (!len || !mpp || !(mp0 = *mpp)) 4912 return (NULL); 4913 /* If we aren't going to consume the first mblk, we need a dup. */ 4914 if (mp0->b_wptr - mp0->b_rptr > len) { 4915 mp1 = dupb(mp0); 4916 if (mp1) { 4917 /* Partition the data between the two mblks. */ 4918 mp1->b_wptr = mp1->b_rptr + len; 4919 mp0->b_rptr = mp1->b_wptr; 4920 /* 4921 * after adjustments if mblk not consumed is now 4922 * unaligned, try to align it. If this fails free 4923 * all messages and let upper layer recover. 4924 */ 4925 if (!OK_32PTR(mp0->b_rptr)) { 4926 if (!pullupmsg(mp0, -1)) { 4927 freemsg(mp0); 4928 freemsg(mp1); 4929 *mpp = NULL; 4930 return (NULL); 4931 } 4932 } 4933 } 4934 return (mp1); 4935 } 4936 /* Eat through as many mblks as we need to get len bytes. */ 4937 len -= mp0->b_wptr - mp0->b_rptr; 4938 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4939 if (mp2->b_wptr - mp2->b_rptr > len) { 4940 /* 4941 * We won't consume the entire last mblk. Like 4942 * above, dup and partition it. 4943 */ 4944 mp1->b_cont = dupb(mp2); 4945 mp1 = mp1->b_cont; 4946 if (!mp1) { 4947 /* 4948 * Trouble. Rather than go to a lot of 4949 * trouble to clean up, we free the messages. 4950 * This won't be any worse than losing it on 4951 * the wire. 4952 */ 4953 freemsg(mp0); 4954 freemsg(mp2); 4955 *mpp = NULL; 4956 return (NULL); 4957 } 4958 mp1->b_wptr = mp1->b_rptr + len; 4959 mp2->b_rptr = mp1->b_wptr; 4960 /* 4961 * after adjustments if mblk not consumed is now 4962 * unaligned, try to align it. If this fails free 4963 * all messages and let upper layer recover. 4964 */ 4965 if (!OK_32PTR(mp2->b_rptr)) { 4966 if (!pullupmsg(mp2, -1)) { 4967 freemsg(mp0); 4968 freemsg(mp2); 4969 *mpp = NULL; 4970 return (NULL); 4971 } 4972 } 4973 *mpp = mp2; 4974 return (mp0); 4975 } 4976 /* Decrement len by the amount we just got. */ 4977 len -= mp2->b_wptr - mp2->b_rptr; 4978 } 4979 /* 4980 * len should be reduced to zero now. If not our caller has 4981 * screwed up. 4982 */ 4983 if (len) { 4984 /* Shouldn't happen! */ 4985 freemsg(mp0); 4986 *mpp = NULL; 4987 return (NULL); 4988 } 4989 /* 4990 * We consumed up to exactly the end of an mblk. Detach the part 4991 * we are returning from the rest of the chain. 4992 */ 4993 mp1->b_cont = NULL; 4994 *mpp = mp2; 4995 return (mp0); 4996 } 4997 4998 /* The ill stream is being unplumbed. Called from ip_close */ 4999 int 5000 ip_modclose(ill_t *ill) 5001 { 5002 5003 boolean_t success; 5004 ipsq_t *ipsq; 5005 ipif_t *ipif; 5006 queue_t *q = ill->ill_rq; 5007 5008 /* 5009 * Forcibly enter the ipsq after some delay. This is to take 5010 * care of the case when some ioctl does not complete because 5011 * we sent a control message to the driver and it did not 5012 * send us a reply. We want to be able to at least unplumb 5013 * and replumb rather than force the user to reboot the system. 5014 */ 5015 success = ipsq_enter(ill, B_FALSE); 5016 5017 /* 5018 * Open/close/push/pop is guaranteed to be single threaded 5019 * per stream by STREAMS. FS guarantees that all references 5020 * from top are gone before close is called. So there can't 5021 * be another close thread that has set CONDEMNED on this ill. 5022 * and cause ipsq_enter to return failure. 5023 */ 5024 ASSERT(success); 5025 ipsq = ill->ill_phyint->phyint_ipsq; 5026 5027 /* 5028 * Mark it condemned. No new reference will be made to this ill. 5029 * Lookup functions will return an error. Threads that try to 5030 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5031 * that the refcnt will drop down to zero. 5032 */ 5033 mutex_enter(&ill->ill_lock); 5034 ill->ill_state_flags |= ILL_CONDEMNED; 5035 for (ipif = ill->ill_ipif; ipif != NULL; 5036 ipif = ipif->ipif_next) { 5037 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5038 } 5039 /* 5040 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5041 * returns error if ILL_CONDEMNED is set 5042 */ 5043 cv_broadcast(&ill->ill_cv); 5044 mutex_exit(&ill->ill_lock); 5045 5046 /* 5047 * Shut down fragmentation reassembly. 5048 * ill_frag_timer won't start a timer again. 5049 * Now cancel any existing timer 5050 */ 5051 (void) untimeout(ill->ill_frag_timer_id); 5052 (void) ill_frag_timeout(ill, 0); 5053 5054 /* 5055 * If MOVE was in progress, clear the 5056 * move_in_progress fields also. 5057 */ 5058 if (ill->ill_move_in_progress) { 5059 ILL_CLEAR_MOVE(ill); 5060 } 5061 5062 /* 5063 * Call ill_delete to bring down the ipifs, ilms and ill on 5064 * this ill. Then wait for the refcnts to drop to zero. 5065 * ill_is_quiescent checks whether the ill is really quiescent. 5066 * Then make sure that threads that are waiting to enter the 5067 * ipsq have seen the error returned by ipsq_enter and have 5068 * gone away. Then we call ill_delete_tail which does the 5069 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5070 */ 5071 ill_delete(ill); 5072 mutex_enter(&ill->ill_lock); 5073 while (!ill_is_quiescent(ill)) 5074 cv_wait(&ill->ill_cv, &ill->ill_lock); 5075 while (ill->ill_waiters) 5076 cv_wait(&ill->ill_cv, &ill->ill_lock); 5077 5078 mutex_exit(&ill->ill_lock); 5079 5080 /* qprocsoff is called in ill_delete_tail */ 5081 ill_delete_tail(ill); 5082 5083 /* 5084 * Walk through all upper (conn) streams and qenable 5085 * those that have queued data. 5086 * close synchronization needs this to 5087 * be done to ensure that all upper layers blocked 5088 * due to flow control to the closing device 5089 * get unblocked. 5090 */ 5091 ip1dbg(("ip_wsrv: walking\n")); 5092 conn_walk_drain(); 5093 5094 mutex_enter(&ip_mi_lock); 5095 mi_close_unlink(&ip_g_head, (IDP)ill); 5096 mutex_exit(&ip_mi_lock); 5097 5098 /* 5099 * credp could be null if the open didn't succeed and ip_modopen 5100 * itself calls ip_close. 5101 */ 5102 if (ill->ill_credp != NULL) 5103 crfree(ill->ill_credp); 5104 5105 mi_close_free((IDP)ill); 5106 q->q_ptr = WR(q)->q_ptr = NULL; 5107 5108 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5109 5110 return (0); 5111 } 5112 5113 /* 5114 * This is called as part of close() for both IP and UDP 5115 * in order to quiesce the conn. 5116 */ 5117 void 5118 ip_quiesce_conn(conn_t *connp) 5119 { 5120 boolean_t drain_cleanup_reqd = B_FALSE; 5121 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5122 boolean_t ilg_cleanup_reqd = B_FALSE; 5123 5124 ASSERT(!IPCL_IS_TCP(connp)); 5125 5126 /* 5127 * Mark the conn as closing, and this conn must not be 5128 * inserted in future into any list. Eg. conn_drain_insert(), 5129 * won't insert this conn into the conn_drain_list. 5130 * Similarly ill_pending_mp_add() will not add any mp to 5131 * the pending mp list, after this conn has started closing. 5132 * 5133 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5134 * cannot get set henceforth. 5135 */ 5136 mutex_enter(&connp->conn_lock); 5137 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5138 connp->conn_state_flags |= CONN_CLOSING; 5139 if (connp->conn_idl != NULL) 5140 drain_cleanup_reqd = B_TRUE; 5141 if (connp->conn_oper_pending_ill != NULL) 5142 conn_ioctl_cleanup_reqd = B_TRUE; 5143 if (connp->conn_ilg_inuse != 0) 5144 ilg_cleanup_reqd = B_TRUE; 5145 mutex_exit(&connp->conn_lock); 5146 5147 if (IPCL_IS_UDP(connp)) 5148 udp_quiesce_conn(connp); 5149 5150 if (conn_ioctl_cleanup_reqd) 5151 conn_ioctl_cleanup(connp); 5152 5153 if (is_system_labeled() && connp->conn_anon_port) { 5154 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5155 connp->conn_mlp_type, connp->conn_ulp, 5156 ntohs(connp->conn_lport), B_FALSE); 5157 connp->conn_anon_port = 0; 5158 } 5159 connp->conn_mlp_type = mlptSingle; 5160 5161 /* 5162 * Remove this conn from any fanout list it is on. 5163 * and then wait for any threads currently operating 5164 * on this endpoint to finish 5165 */ 5166 ipcl_hash_remove(connp); 5167 5168 /* 5169 * Remove this conn from the drain list, and do 5170 * any other cleanup that may be required. 5171 * (Only non-tcp streams may have a non-null conn_idl. 5172 * TCP streams are never flow controlled, and 5173 * conn_idl will be null) 5174 */ 5175 if (drain_cleanup_reqd) 5176 conn_drain_tail(connp, B_TRUE); 5177 5178 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5179 (void) ip_mrouter_done(NULL); 5180 5181 if (ilg_cleanup_reqd) 5182 ilg_delete_all(connp); 5183 5184 conn_delete_ire(connp, NULL); 5185 5186 /* 5187 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5188 * callers from write side can't be there now because close 5189 * is in progress. The only other caller is ipcl_walk 5190 * which checks for the condemned flag. 5191 */ 5192 mutex_enter(&connp->conn_lock); 5193 connp->conn_state_flags |= CONN_CONDEMNED; 5194 while (connp->conn_ref != 1) 5195 cv_wait(&connp->conn_cv, &connp->conn_lock); 5196 connp->conn_state_flags |= CONN_QUIESCED; 5197 mutex_exit(&connp->conn_lock); 5198 } 5199 5200 /* ARGSUSED */ 5201 int 5202 ip_close(queue_t *q, int flags) 5203 { 5204 conn_t *connp; 5205 5206 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5207 5208 /* 5209 * Call the appropriate delete routine depending on whether this is 5210 * a module or device. 5211 */ 5212 if (WR(q)->q_next != NULL) { 5213 /* This is a module close */ 5214 return (ip_modclose((ill_t *)q->q_ptr)); 5215 } 5216 5217 connp = q->q_ptr; 5218 ip_quiesce_conn(connp); 5219 5220 qprocsoff(q); 5221 5222 /* 5223 * Now we are truly single threaded on this stream, and can 5224 * delete the things hanging off the connp, and finally the connp. 5225 * We removed this connp from the fanout list, it cannot be 5226 * accessed thru the fanouts, and we already waited for the 5227 * conn_ref to drop to 0. We are already in close, so 5228 * there cannot be any other thread from the top. qprocsoff 5229 * has completed, and service has completed or won't run in 5230 * future. 5231 */ 5232 ASSERT(connp->conn_ref == 1); 5233 5234 /* 5235 * A conn which was previously marked as IPCL_UDP cannot 5236 * retain the flag because it would have been cleared by 5237 * udp_close(). 5238 */ 5239 ASSERT(!IPCL_IS_UDP(connp)); 5240 5241 if (connp->conn_latch != NULL) { 5242 IPLATCH_REFRELE(connp->conn_latch); 5243 connp->conn_latch = NULL; 5244 } 5245 if (connp->conn_policy != NULL) { 5246 IPPH_REFRELE(connp->conn_policy); 5247 connp->conn_policy = NULL; 5248 } 5249 if (connp->conn_ipsec_opt_mp != NULL) { 5250 freemsg(connp->conn_ipsec_opt_mp); 5251 connp->conn_ipsec_opt_mp = NULL; 5252 } 5253 5254 inet_minor_free(ip_minor_arena, connp->conn_dev); 5255 5256 connp->conn_ref--; 5257 ipcl_conn_destroy(connp); 5258 5259 q->q_ptr = WR(q)->q_ptr = NULL; 5260 return (0); 5261 } 5262 5263 int 5264 ip_snmpmod_close(queue_t *q) 5265 { 5266 conn_t *connp = Q_TO_CONN(q); 5267 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5268 5269 qprocsoff(q); 5270 5271 if (connp->conn_flags & IPCL_UDPMOD) 5272 udp_close_free(connp); 5273 5274 if (connp->conn_cred != NULL) { 5275 crfree(connp->conn_cred); 5276 connp->conn_cred = NULL; 5277 } 5278 CONN_DEC_REF(connp); 5279 q->q_ptr = WR(q)->q_ptr = NULL; 5280 return (0); 5281 } 5282 5283 /* 5284 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5285 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5286 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5287 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5288 * queues as we never enqueue messages there and we don't handle any ioctls. 5289 * Everything else is freed. 5290 */ 5291 void 5292 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5293 { 5294 conn_t *connp = q->q_ptr; 5295 pfi_t setfn; 5296 pfi_t getfn; 5297 5298 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5299 5300 switch (DB_TYPE(mp)) { 5301 case M_PROTO: 5302 case M_PCPROTO: 5303 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5304 ((((union T_primitives *)mp->b_rptr)->type == 5305 T_SVR4_OPTMGMT_REQ) || 5306 (((union T_primitives *)mp->b_rptr)->type == 5307 T_OPTMGMT_REQ))) { 5308 /* 5309 * This is the only TPI primitive supported. Its 5310 * handling does not require tcp_t, but it does require 5311 * conn_t to check permissions. 5312 */ 5313 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5314 5315 if (connp->conn_flags & IPCL_TCPMOD) { 5316 setfn = tcp_snmp_set; 5317 getfn = tcp_snmp_get; 5318 } else { 5319 setfn = udp_snmp_set; 5320 getfn = udp_snmp_get; 5321 } 5322 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5323 freemsg(mp); 5324 return; 5325 } 5326 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5327 != NULL) 5328 qreply(q, mp); 5329 break; 5330 case M_FLUSH: 5331 case M_IOCTL: 5332 putnext(q, mp); 5333 break; 5334 default: 5335 freemsg(mp); 5336 break; 5337 } 5338 } 5339 5340 /* Return the IP checksum for the IP header at "iph". */ 5341 uint16_t 5342 ip_csum_hdr(ipha_t *ipha) 5343 { 5344 uint16_t *uph; 5345 uint32_t sum; 5346 int opt_len; 5347 5348 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5349 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5350 uph = (uint16_t *)ipha; 5351 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5352 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5353 if (opt_len > 0) { 5354 do { 5355 sum += uph[10]; 5356 sum += uph[11]; 5357 uph += 2; 5358 } while (--opt_len); 5359 } 5360 sum = (sum & 0xFFFF) + (sum >> 16); 5361 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5362 if (sum == 0xffff) 5363 sum = 0; 5364 return ((uint16_t)sum); 5365 } 5366 5367 void 5368 ip_ddi_destroy(void) 5369 { 5370 tnet_fini(); 5371 tcp_ddi_destroy(); 5372 sctp_ddi_destroy(); 5373 ipsec_loader_destroy(); 5374 ipsec_policy_destroy(); 5375 ipsec_kstat_destroy(); 5376 nd_free(&ip_g_nd); 5377 mutex_destroy(&igmp_timer_lock); 5378 mutex_destroy(&mld_timer_lock); 5379 mutex_destroy(&igmp_slowtimeout_lock); 5380 mutex_destroy(&mld_slowtimeout_lock); 5381 mutex_destroy(&ip_mi_lock); 5382 mutex_destroy(&rts_clients.connf_lock); 5383 ip_ire_fini(); 5384 ip6_asp_free(); 5385 conn_drain_fini(); 5386 ipcl_destroy(); 5387 inet_minor_destroy(ip_minor_arena); 5388 icmp_kstat_fini(); 5389 ip_kstat_fini(); 5390 rw_destroy(&ipsec_capab_ills_lock); 5391 rw_destroy(&ill_g_usesrc_lock); 5392 ip_drop_unregister(&ip_dropper); 5393 } 5394 5395 5396 void 5397 ip_ddi_init(void) 5398 { 5399 TCP6_MAJ = ddi_name_to_major(TCP6); 5400 TCP_MAJ = ddi_name_to_major(TCP); 5401 SCTP_MAJ = ddi_name_to_major(SCTP); 5402 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5403 5404 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5405 5406 /* IP's IPsec code calls the packet dropper */ 5407 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5408 5409 if (!ip_g_nd) { 5410 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5411 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5412 nd_free(&ip_g_nd); 5413 } 5414 } 5415 5416 ipsec_loader_init(); 5417 ipsec_policy_init(); 5418 ipsec_kstat_init(); 5419 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5420 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5421 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5422 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5423 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5424 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5425 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5426 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5427 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5428 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5429 5430 /* 5431 * For IP and TCP the minor numbers should start from 2 since we have 4 5432 * initial devices: ip, ip6, tcp, tcp6. 5433 */ 5434 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5435 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5436 cmn_err(CE_PANIC, 5437 "ip_ddi_init: ip_minor_arena creation failed\n"); 5438 } 5439 5440 ipcl_init(); 5441 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5442 ip_ire_init(); 5443 ip6_asp_init(); 5444 ipif_init(); 5445 conn_drain_init(); 5446 tcp_ddi_init(); 5447 sctp_ddi_init(); 5448 5449 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5450 5451 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5452 "net", KSTAT_TYPE_NAMED, 5453 sizeof (ip_statistics) / sizeof (kstat_named_t), 5454 KSTAT_FLAG_VIRTUAL)) != NULL) { 5455 ip_kstat->ks_data = &ip_statistics; 5456 kstat_install(ip_kstat); 5457 } 5458 ip_kstat_init(); 5459 ip6_kstat_init(); 5460 icmp_kstat_init(); 5461 ipsec_loader_start(); 5462 tnet_init(); 5463 } 5464 5465 /* 5466 * Allocate and initialize a DLPI template of the specified length. (May be 5467 * called as writer.) 5468 */ 5469 mblk_t * 5470 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5471 { 5472 mblk_t *mp; 5473 5474 mp = allocb(len, BPRI_MED); 5475 if (!mp) 5476 return (NULL); 5477 5478 /* 5479 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5480 * of which we don't seem to use) are sent with M_PCPROTO, and 5481 * that other DLPI are M_PROTO. 5482 */ 5483 if (prim == DL_INFO_REQ) { 5484 mp->b_datap->db_type = M_PCPROTO; 5485 } else { 5486 mp->b_datap->db_type = M_PROTO; 5487 } 5488 5489 mp->b_wptr = mp->b_rptr + len; 5490 bzero(mp->b_rptr, len); 5491 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5492 return (mp); 5493 } 5494 5495 const char * 5496 dlpi_prim_str(int prim) 5497 { 5498 switch (prim) { 5499 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5500 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5501 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5502 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5503 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5504 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5505 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5506 case DL_OK_ACK: return ("DL_OK_ACK"); 5507 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5508 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5509 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5510 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5511 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5512 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5513 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5514 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5515 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5516 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5517 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5518 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5519 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5520 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5521 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5522 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5523 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5524 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5525 default: return ("<unknown primitive>"); 5526 } 5527 } 5528 5529 const char * 5530 dlpi_err_str(int err) 5531 { 5532 switch (err) { 5533 case DL_ACCESS: return ("DL_ACCESS"); 5534 case DL_BADADDR: return ("DL_BADADDR"); 5535 case DL_BADCORR: return ("DL_BADCORR"); 5536 case DL_BADDATA: return ("DL_BADDATA"); 5537 case DL_BADPPA: return ("DL_BADPPA"); 5538 case DL_BADPRIM: return ("DL_BADPRIM"); 5539 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5540 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5541 case DL_BADSAP: return ("DL_BADSAP"); 5542 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5543 case DL_BOUND: return ("DL_BOUND"); 5544 case DL_INITFAILED: return ("DL_INITFAILED"); 5545 case DL_NOADDR: return ("DL_NOADDR"); 5546 case DL_NOTINIT: return ("DL_NOTINIT"); 5547 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5548 case DL_SYSERR: return ("DL_SYSERR"); 5549 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5550 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5551 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5552 case DL_TOOMANY: return ("DL_TOOMANY"); 5553 case DL_NOTENAB: return ("DL_NOTENAB"); 5554 case DL_BUSY: return ("DL_BUSY"); 5555 case DL_NOAUTO: return ("DL_NOAUTO"); 5556 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5557 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5558 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5559 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5560 case DL_PENDING: return ("DL_PENDING"); 5561 default: return ("<unknown error>"); 5562 } 5563 } 5564 5565 /* 5566 * Debug formatting routine. Returns a character string representation of the 5567 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5568 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5569 */ 5570 char * 5571 ip_dot_addr(ipaddr_t addr, char *buf) 5572 { 5573 return (ip_dot_saddr((uchar_t *)&addr, buf)); 5574 } 5575 5576 /* 5577 * Debug formatting routine. Returns a character string representation of the 5578 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5579 * as a pointer. The "xxx" parts including left zero padding so the final 5580 * string will fit easily in tables. It would be nice to take a padding 5581 * length argument instead. 5582 */ 5583 static char * 5584 ip_dot_saddr(uchar_t *addr, char *buf) 5585 { 5586 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5587 addr[0] & 0xFF, addr[1] & 0xFF, addr[2] & 0xFF, addr[3] & 0xFF); 5588 return (buf); 5589 } 5590 5591 /* 5592 * Send an ICMP error after patching up the packet appropriately. Returns 5593 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5594 */ 5595 static boolean_t 5596 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5597 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5598 { 5599 ipha_t *ipha; 5600 mblk_t *first_mp; 5601 boolean_t secure; 5602 unsigned char db_type; 5603 5604 first_mp = mp; 5605 if (mctl_present) { 5606 mp = mp->b_cont; 5607 secure = ipsec_in_is_secure(first_mp); 5608 ASSERT(mp != NULL); 5609 } else { 5610 /* 5611 * If this is an ICMP error being reported - which goes 5612 * up as M_CTLs, we need to convert them to M_DATA till 5613 * we finish checking with global policy because 5614 * ipsec_check_global_policy() assumes M_DATA as clear 5615 * and M_CTL as secure. 5616 */ 5617 db_type = DB_TYPE(mp); 5618 DB_TYPE(mp) = M_DATA; 5619 secure = B_FALSE; 5620 } 5621 /* 5622 * We are generating an icmp error for some inbound packet. 5623 * Called from all ip_fanout_(udp, tcp, proto) functions. 5624 * Before we generate an error, check with global policy 5625 * to see whether this is allowed to enter the system. As 5626 * there is no "conn", we are checking with global policy. 5627 */ 5628 ipha = (ipha_t *)mp->b_rptr; 5629 if (secure || ipsec_inbound_v4_policy_present) { 5630 first_mp = ipsec_check_global_policy(first_mp, NULL, 5631 ipha, NULL, mctl_present); 5632 if (first_mp == NULL) 5633 return (B_FALSE); 5634 } 5635 5636 if (!mctl_present) 5637 DB_TYPE(mp) = db_type; 5638 5639 if (flags & IP_FF_SEND_ICMP) { 5640 if (flags & IP_FF_HDR_COMPLETE) { 5641 if (ip_hdr_complete(ipha, zoneid)) { 5642 freemsg(first_mp); 5643 return (B_TRUE); 5644 } 5645 } 5646 if (flags & IP_FF_CKSUM) { 5647 /* 5648 * Have to correct checksum since 5649 * the packet might have been 5650 * fragmented and the reassembly code in ip_rput 5651 * does not restore the IP checksum. 5652 */ 5653 ipha->ipha_hdr_checksum = 0; 5654 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 5655 } 5656 switch (icmp_type) { 5657 case ICMP_DEST_UNREACHABLE: 5658 icmp_unreachable(WR(q), first_mp, icmp_code); 5659 break; 5660 default: 5661 freemsg(first_mp); 5662 break; 5663 } 5664 } else { 5665 freemsg(first_mp); 5666 return (B_FALSE); 5667 } 5668 5669 return (B_TRUE); 5670 } 5671 5672 /* 5673 * Used to send an ICMP error message when a packet is received for 5674 * a protocol that is not supported. The mblk passed as argument 5675 * is consumed by this function. 5676 */ 5677 void 5678 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 5679 { 5680 mblk_t *mp; 5681 ipha_t *ipha; 5682 ill_t *ill; 5683 ipsec_in_t *ii; 5684 5685 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5686 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5687 5688 mp = ipsec_mp->b_cont; 5689 ipsec_mp->b_cont = NULL; 5690 ipha = (ipha_t *)mp->b_rptr; 5691 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5692 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 5693 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 5694 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5695 } 5696 } else { 5697 /* Get ill from index in ipsec_in_t. */ 5698 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 5699 B_TRUE, NULL, NULL, NULL, NULL); 5700 if (ill != NULL) { 5701 if (ip_fanout_send_icmp_v6(q, mp, flags, 5702 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 5703 0, B_FALSE, zoneid)) { 5704 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 5705 } 5706 5707 ill_refrele(ill); 5708 } else { /* re-link for the freemsg() below. */ 5709 ipsec_mp->b_cont = mp; 5710 } 5711 } 5712 5713 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 5714 freemsg(ipsec_mp); 5715 } 5716 5717 /* 5718 * See if the inbound datagram has had IPsec processing applied to it. 5719 */ 5720 boolean_t 5721 ipsec_in_is_secure(mblk_t *ipsec_mp) 5722 { 5723 ipsec_in_t *ii; 5724 5725 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5726 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5727 5728 if (ii->ipsec_in_loopback) { 5729 return (ii->ipsec_in_secure); 5730 } else { 5731 return (ii->ipsec_in_ah_sa != NULL || 5732 ii->ipsec_in_esp_sa != NULL || 5733 ii->ipsec_in_decaps); 5734 } 5735 } 5736 5737 /* 5738 * Handle protocols with which IP is less intimate. There 5739 * can be more than one stream bound to a particular 5740 * protocol. When this is the case, normally each one gets a copy 5741 * of any incoming packets. 5742 * 5743 * IPSEC NOTE : 5744 * 5745 * Don't allow a secure packet going up a non-secure connection. 5746 * We don't allow this because 5747 * 5748 * 1) Reply might go out in clear which will be dropped at 5749 * the sending side. 5750 * 2) If the reply goes out in clear it will give the 5751 * adversary enough information for getting the key in 5752 * most of the cases. 5753 * 5754 * Moreover getting a secure packet when we expect clear 5755 * implies that SA's were added without checking for 5756 * policy on both ends. This should not happen once ISAKMP 5757 * is used to negotiate SAs as SAs will be added only after 5758 * verifying the policy. 5759 * 5760 * NOTE : If the packet was tunneled and not multicast we only send 5761 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 5762 * back to delivering packets to AF_INET6 raw sockets. 5763 * 5764 * IPQoS Notes: 5765 * Once we have determined the client, invoke IPPF processing. 5766 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5767 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5768 * ip_policy will be false. 5769 * 5770 * Zones notes: 5771 * Currently only applications in the global zone can create raw sockets for 5772 * protocols other than ICMP. So unlike the broadcast / multicast case of 5773 * ip_fanout_udp(), we only send a copy of the packet to streams in the 5774 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 5775 */ 5776 static void 5777 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 5778 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 5779 zoneid_t zoneid) 5780 { 5781 queue_t *rq; 5782 mblk_t *mp1, *first_mp1; 5783 uint_t protocol = ipha->ipha_protocol; 5784 ipaddr_t dst; 5785 boolean_t one_only; 5786 mblk_t *first_mp = mp; 5787 boolean_t secure; 5788 uint32_t ill_index; 5789 conn_t *connp, *first_connp, *next_connp; 5790 connf_t *connfp; 5791 boolean_t shared_addr; 5792 5793 if (mctl_present) { 5794 mp = first_mp->b_cont; 5795 secure = ipsec_in_is_secure(first_mp); 5796 ASSERT(mp != NULL); 5797 } else { 5798 secure = B_FALSE; 5799 } 5800 dst = ipha->ipha_dst; 5801 /* 5802 * If the packet was tunneled and not multicast we only send to it 5803 * the first match. 5804 */ 5805 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 5806 !CLASSD(dst)); 5807 5808 shared_addr = (zoneid == ALL_ZONES); 5809 if (shared_addr) { 5810 /* 5811 * We don't allow multilevel ports for raw IP, so no need to 5812 * check for that here. 5813 */ 5814 zoneid = tsol_packet_to_zoneid(mp); 5815 } 5816 5817 connfp = &ipcl_proto_fanout[protocol]; 5818 mutex_enter(&connfp->connf_lock); 5819 connp = connfp->connf_head; 5820 for (connp = connfp->connf_head; connp != NULL; 5821 connp = connp->conn_next) { 5822 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 5823 zoneid) && 5824 (!is_system_labeled() || 5825 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 5826 connp))) 5827 break; 5828 } 5829 5830 if (connp == NULL || connp->conn_upq == NULL) { 5831 /* 5832 * No one bound to these addresses. Is 5833 * there a client that wants all 5834 * unclaimed datagrams? 5835 */ 5836 mutex_exit(&connfp->connf_lock); 5837 /* 5838 * Check for IPPROTO_ENCAP... 5839 */ 5840 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 5841 /* 5842 * XXX If an IPsec mblk is here on a multicast 5843 * tunnel (using ip_mroute stuff), what should 5844 * I do? 5845 * 5846 * For now, just free the IPsec mblk before 5847 * passing it up to the multicast routing 5848 * stuff. 5849 * 5850 * BTW, If I match a configured IP-in-IP 5851 * tunnel, ip_mroute_decap will never be 5852 * called. 5853 */ 5854 if (mp != first_mp) 5855 freeb(first_mp); 5856 ip_mroute_decap(q, mp); 5857 } else { 5858 /* 5859 * Otherwise send an ICMP protocol unreachable. 5860 */ 5861 if (ip_fanout_send_icmp(q, first_mp, flags, 5862 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 5863 mctl_present, zoneid)) { 5864 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5865 } 5866 } 5867 return; 5868 } 5869 CONN_INC_REF(connp); 5870 first_connp = connp; 5871 5872 /* 5873 * Only send message to one tunnel driver by immediately 5874 * terminating the loop. 5875 */ 5876 connp = one_only ? NULL : connp->conn_next; 5877 5878 for (;;) { 5879 while (connp != NULL) { 5880 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 5881 flags, zoneid) && 5882 (!is_system_labeled() || 5883 tsol_receive_local(mp, &dst, IPV4_VERSION, 5884 shared_addr, connp))) 5885 break; 5886 connp = connp->conn_next; 5887 } 5888 5889 /* 5890 * Copy the packet. 5891 */ 5892 if (connp == NULL || connp->conn_upq == NULL || 5893 (((first_mp1 = dupmsg(first_mp)) == NULL) && 5894 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 5895 /* 5896 * No more interested clients or memory 5897 * allocation failed 5898 */ 5899 connp = first_connp; 5900 break; 5901 } 5902 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 5903 CONN_INC_REF(connp); 5904 mutex_exit(&connfp->connf_lock); 5905 rq = connp->conn_rq; 5906 if (!canputnext(rq)) { 5907 if (flags & IP_FF_RAWIP) { 5908 BUMP_MIB(&ip_mib, rawipInOverflows); 5909 } else { 5910 BUMP_MIB(&icmp_mib, icmpInOverflows); 5911 } 5912 5913 freemsg(first_mp1); 5914 } else { 5915 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5916 first_mp1 = ipsec_check_inbound_policy 5917 (first_mp1, connp, ipha, NULL, 5918 mctl_present); 5919 } 5920 if (first_mp1 != NULL) { 5921 /* 5922 * ip_fanout_proto also gets called from 5923 * icmp_inbound_error_fanout, in which case 5924 * the msg type is M_CTL. Don't add info 5925 * in this case for the time being. In future 5926 * when there is a need for knowing the 5927 * inbound iface index for ICMP error msgs, 5928 * then this can be changed. 5929 */ 5930 if ((connp->conn_recvif != 0) && 5931 (mp->b_datap->db_type != M_CTL)) { 5932 /* 5933 * the actual data will be 5934 * contained in b_cont upon 5935 * successful return of the 5936 * following call else 5937 * original mblk is returned 5938 */ 5939 ASSERT(recv_ill != NULL); 5940 mp1 = ip_add_info(mp1, recv_ill, 5941 IPF_RECVIF); 5942 } 5943 BUMP_MIB(&ip_mib, ipInDelivers); 5944 if (mctl_present) 5945 freeb(first_mp1); 5946 putnext(rq, mp1); 5947 } 5948 } 5949 mutex_enter(&connfp->connf_lock); 5950 /* Follow the next pointer before releasing the conn. */ 5951 next_connp = connp->conn_next; 5952 CONN_DEC_REF(connp); 5953 connp = next_connp; 5954 } 5955 5956 /* Last one. Send it upstream. */ 5957 mutex_exit(&connfp->connf_lock); 5958 5959 /* 5960 * If this packet is coming from icmp_inbound_error_fanout ip_policy 5961 * will be set to false. 5962 */ 5963 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5964 ill_index = ill->ill_phyint->phyint_ifindex; 5965 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5966 if (mp == NULL) { 5967 CONN_DEC_REF(connp); 5968 if (mctl_present) { 5969 freeb(first_mp); 5970 } 5971 return; 5972 } 5973 } 5974 5975 rq = connp->conn_rq; 5976 if (!canputnext(rq)) { 5977 if (flags & IP_FF_RAWIP) { 5978 BUMP_MIB(&ip_mib, rawipInOverflows); 5979 } else { 5980 BUMP_MIB(&icmp_mib, icmpInOverflows); 5981 } 5982 5983 freemsg(first_mp); 5984 } else { 5985 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5986 first_mp = ipsec_check_inbound_policy(first_mp, connp, 5987 ipha, NULL, mctl_present); 5988 } 5989 if (first_mp != NULL) { 5990 /* 5991 * ip_fanout_proto also gets called 5992 * from icmp_inbound_error_fanout, in 5993 * which case the msg type is M_CTL. 5994 * Don't add info in this case for time 5995 * being. In future when there is a 5996 * need for knowing the inbound iface 5997 * index for ICMP error msgs, then this 5998 * can be changed 5999 */ 6000 if ((connp->conn_recvif != 0) && 6001 (mp->b_datap->db_type != M_CTL)) { 6002 /* 6003 * the actual data will be contained in 6004 * b_cont upon successful return 6005 * of the following call else original 6006 * mblk is returned 6007 */ 6008 ASSERT(recv_ill != NULL); 6009 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6010 } 6011 BUMP_MIB(&ip_mib, ipInDelivers); 6012 putnext(rq, mp); 6013 if (mctl_present) 6014 freeb(first_mp); 6015 } 6016 } 6017 CONN_DEC_REF(connp); 6018 } 6019 6020 /* 6021 * Fanout for TCP packets 6022 * The caller puts <fport, lport> in the ports parameter. 6023 * 6024 * IPQoS Notes 6025 * Before sending it to the client, invoke IPPF processing. 6026 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6027 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6028 * ip_policy is false. 6029 */ 6030 static void 6031 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6032 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6033 { 6034 mblk_t *first_mp; 6035 boolean_t secure; 6036 uint32_t ill_index; 6037 int ip_hdr_len; 6038 tcph_t *tcph; 6039 boolean_t syn_present = B_FALSE; 6040 conn_t *connp; 6041 6042 first_mp = mp; 6043 if (mctl_present) { 6044 ASSERT(first_mp->b_datap->db_type == M_CTL); 6045 mp = first_mp->b_cont; 6046 secure = ipsec_in_is_secure(first_mp); 6047 ASSERT(mp != NULL); 6048 } else { 6049 secure = B_FALSE; 6050 } 6051 6052 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6053 6054 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6055 NULL) { 6056 /* 6057 * No connected connection or listener. Send a 6058 * TH_RST via tcp_xmit_listeners_reset. 6059 */ 6060 6061 /* Initiate IPPf processing, if needed. */ 6062 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6063 uint32_t ill_index; 6064 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6065 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6066 if (first_mp == NULL) 6067 return; 6068 } 6069 BUMP_MIB(&ip_mib, ipInDelivers); 6070 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6071 zoneid)); 6072 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 6073 return; 6074 } 6075 6076 /* 6077 * Allocate the SYN for the TCP connection here itself 6078 */ 6079 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6080 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6081 if (IPCL_IS_TCP(connp)) { 6082 squeue_t *sqp; 6083 6084 /* 6085 * For fused tcp loopback, assign the eager's 6086 * squeue to be that of the active connect's. 6087 * Note that we don't check for IP_FF_LOOPBACK 6088 * here since this routine gets called only 6089 * for loopback (unlike the IPv6 counterpart). 6090 */ 6091 ASSERT(Q_TO_CONN(q) != NULL); 6092 if (do_tcp_fusion && 6093 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6094 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6095 IPCL_IS_TCP(Q_TO_CONN(q))) { 6096 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6097 sqp = Q_TO_CONN(q)->conn_sqp; 6098 } else { 6099 sqp = IP_SQUEUE_GET(lbolt); 6100 } 6101 6102 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6103 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6104 syn_present = B_TRUE; 6105 } 6106 } 6107 6108 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6109 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6110 if ((flags & TH_RST) || (flags & TH_URG)) { 6111 CONN_DEC_REF(connp); 6112 freemsg(first_mp); 6113 return; 6114 } 6115 if (flags & TH_ACK) { 6116 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 6117 CONN_DEC_REF(connp); 6118 return; 6119 } 6120 6121 CONN_DEC_REF(connp); 6122 freemsg(first_mp); 6123 return; 6124 } 6125 6126 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6127 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6128 NULL, mctl_present); 6129 if (first_mp == NULL) { 6130 CONN_DEC_REF(connp); 6131 return; 6132 } 6133 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6134 ASSERT(syn_present); 6135 if (mctl_present) { 6136 ASSERT(first_mp != mp); 6137 first_mp->b_datap->db_struioflag |= 6138 STRUIO_POLICY; 6139 } else { 6140 ASSERT(first_mp == mp); 6141 mp->b_datap->db_struioflag &= 6142 ~STRUIO_EAGER; 6143 mp->b_datap->db_struioflag |= 6144 STRUIO_POLICY; 6145 } 6146 } else { 6147 /* 6148 * Discard first_mp early since we're dealing with a 6149 * fully-connected conn_t and tcp doesn't do policy in 6150 * this case. 6151 */ 6152 if (mctl_present) { 6153 freeb(first_mp); 6154 mctl_present = B_FALSE; 6155 } 6156 first_mp = mp; 6157 } 6158 } 6159 6160 /* 6161 * Initiate policy processing here if needed. If we get here from 6162 * icmp_inbound_error_fanout, ip_policy is false. 6163 */ 6164 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6165 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6166 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6167 if (mp == NULL) { 6168 CONN_DEC_REF(connp); 6169 if (mctl_present) 6170 freeb(first_mp); 6171 return; 6172 } else if (mctl_present) { 6173 ASSERT(first_mp != mp); 6174 first_mp->b_cont = mp; 6175 } else { 6176 first_mp = mp; 6177 } 6178 } 6179 6180 6181 6182 /* Handle IPv6 socket options. */ 6183 if (!syn_present && 6184 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 6185 /* Add header */ 6186 ASSERT(recv_ill != NULL); 6187 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6188 if (mp == NULL) { 6189 CONN_DEC_REF(connp); 6190 if (mctl_present) 6191 freeb(first_mp); 6192 return; 6193 } else if (mctl_present) { 6194 /* 6195 * ip_add_info might return a new mp. 6196 */ 6197 ASSERT(first_mp != mp); 6198 first_mp->b_cont = mp; 6199 } else { 6200 first_mp = mp; 6201 } 6202 } 6203 6204 BUMP_MIB(&ip_mib, ipInDelivers); 6205 if (IPCL_IS_TCP(connp)) { 6206 (*ip_input_proc)(connp->conn_sqp, first_mp, 6207 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6208 } else { 6209 putnext(connp->conn_rq, first_mp); 6210 CONN_DEC_REF(connp); 6211 } 6212 } 6213 6214 /* 6215 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6216 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6217 * Caller is responsible for dropping references to the conn, and freeing 6218 * first_mp. 6219 * 6220 * IPQoS Notes 6221 * Before sending it to the client, invoke IPPF processing. Policy processing 6222 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6223 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6224 * ip_wput_local, ip_policy is false. 6225 */ 6226 static void 6227 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6228 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6229 boolean_t ip_policy) 6230 { 6231 boolean_t mctl_present = (first_mp != NULL); 6232 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6233 uint32_t ill_index; 6234 6235 if (mctl_present) 6236 first_mp->b_cont = mp; 6237 else 6238 first_mp = mp; 6239 6240 if (CONN_UDP_FLOWCTLD(connp)) { 6241 BUMP_MIB(&ip_mib, udpInOverflows); 6242 freemsg(first_mp); 6243 return; 6244 } 6245 6246 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6247 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6248 NULL, mctl_present); 6249 if (first_mp == NULL) 6250 return; /* Freed by ipsec_check_inbound_policy(). */ 6251 } 6252 if (mctl_present) 6253 freeb(first_mp); 6254 6255 if (connp->conn_recvif) 6256 in_flags = IPF_RECVIF; 6257 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6258 in_flags |= IPF_RECVSLLA; 6259 6260 /* Handle IPv6 options. */ 6261 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 6262 in_flags |= IPF_RECVIF; 6263 6264 /* 6265 * Initiate IPPF processing here, if needed. Note first_mp won't be 6266 * freed if the packet is dropped. The caller will do so. 6267 */ 6268 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6269 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6270 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6271 if (mp == NULL) { 6272 return; 6273 } 6274 } 6275 if ((in_flags != 0) && 6276 (mp->b_datap->db_type != M_CTL)) { 6277 /* 6278 * The actual data will be contained in b_cont 6279 * upon successful return of the following call 6280 * else original mblk is returned 6281 */ 6282 ASSERT(recv_ill != NULL); 6283 mp = ip_add_info(mp, recv_ill, in_flags); 6284 } 6285 BUMP_MIB(&ip_mib, ipInDelivers); 6286 6287 /* Send it upstream */ 6288 CONN_UDP_RECV(connp, mp); 6289 } 6290 6291 /* 6292 * Fanout for UDP packets. 6293 * The caller puts <fport, lport> in the ports parameter. 6294 * 6295 * If SO_REUSEADDR is set all multicast and broadcast packets 6296 * will be delivered to all streams bound to the same port. 6297 * 6298 * Zones notes: 6299 * Multicast and broadcast packets will be distributed to streams in all zones. 6300 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6301 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6302 * packets. To maintain this behavior with multiple zones, the conns are grouped 6303 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6304 * each zone. If unset, all the following conns in the same zone are skipped. 6305 */ 6306 static void 6307 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6308 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6309 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6310 { 6311 uint32_t dstport, srcport; 6312 ipaddr_t dst; 6313 mblk_t *first_mp; 6314 boolean_t secure; 6315 in6_addr_t v6src; 6316 conn_t *connp; 6317 connf_t *connfp; 6318 conn_t *first_connp; 6319 conn_t *next_connp; 6320 mblk_t *mp1, *first_mp1; 6321 ipaddr_t src; 6322 zoneid_t last_zoneid; 6323 boolean_t reuseaddr; 6324 boolean_t shared_addr; 6325 6326 first_mp = mp; 6327 if (mctl_present) { 6328 mp = first_mp->b_cont; 6329 first_mp->b_cont = NULL; 6330 secure = ipsec_in_is_secure(first_mp); 6331 ASSERT(mp != NULL); 6332 } else { 6333 first_mp = NULL; 6334 secure = B_FALSE; 6335 } 6336 6337 /* Extract ports in net byte order */ 6338 dstport = htons(ntohl(ports) & 0xFFFF); 6339 srcport = htons(ntohl(ports) >> 16); 6340 dst = ipha->ipha_dst; 6341 src = ipha->ipha_src; 6342 6343 shared_addr = (zoneid == ALL_ZONES); 6344 if (shared_addr) { 6345 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6346 if (zoneid == ALL_ZONES) 6347 zoneid = tsol_packet_to_zoneid(mp); 6348 } 6349 6350 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6351 mutex_enter(&connfp->connf_lock); 6352 connp = connfp->connf_head; 6353 if (!broadcast && !CLASSD(dst)) { 6354 /* 6355 * Not broadcast or multicast. Send to the one (first) 6356 * client we find. No need to check conn_wantpacket() 6357 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6358 * IPv4 unicast packets. 6359 */ 6360 while ((connp != NULL) && 6361 (!IPCL_UDP_MATCH(connp, dstport, dst, 6362 srcport, src) || 6363 (connp->conn_zoneid != zoneid && !connp->conn_allzones))) { 6364 connp = connp->conn_next; 6365 } 6366 6367 if (connp == NULL || connp->conn_upq == NULL) 6368 goto notfound; 6369 6370 if (is_system_labeled() && 6371 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6372 connp)) 6373 goto notfound; 6374 6375 CONN_INC_REF(connp); 6376 mutex_exit(&connfp->connf_lock); 6377 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6378 recv_ill, ip_policy); 6379 IP_STAT(ip_udp_fannorm); 6380 CONN_DEC_REF(connp); 6381 return; 6382 } 6383 6384 /* 6385 * Broadcast and multicast case 6386 * 6387 * Need to check conn_wantpacket(). 6388 * If SO_REUSEADDR has been set on the first we send the 6389 * packet to all clients that have joined the group and 6390 * match the port. 6391 */ 6392 6393 while (connp != NULL) { 6394 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6395 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6396 (!is_system_labeled() || 6397 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6398 connp))) 6399 break; 6400 connp = connp->conn_next; 6401 } 6402 6403 if (connp == NULL || connp->conn_upq == NULL) 6404 goto notfound; 6405 6406 first_connp = connp; 6407 /* 6408 * When SO_REUSEADDR is not set, send the packet only to the first 6409 * matching connection in its zone by keeping track of the zoneid. 6410 */ 6411 reuseaddr = first_connp->conn_reuseaddr; 6412 last_zoneid = first_connp->conn_zoneid; 6413 6414 CONN_INC_REF(connp); 6415 connp = connp->conn_next; 6416 for (;;) { 6417 while (connp != NULL) { 6418 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6419 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6420 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6421 (!is_system_labeled() || 6422 tsol_receive_local(mp, &dst, IPV4_VERSION, 6423 shared_addr, connp))) 6424 break; 6425 connp = connp->conn_next; 6426 } 6427 /* 6428 * Just copy the data part alone. The mctl part is 6429 * needed just for verifying policy and it is never 6430 * sent up. 6431 */ 6432 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6433 ((mp1 = copymsg(mp)) == NULL))) { 6434 /* 6435 * No more interested clients or memory 6436 * allocation failed 6437 */ 6438 connp = first_connp; 6439 break; 6440 } 6441 if (connp->conn_zoneid != last_zoneid) { 6442 /* 6443 * Update the zoneid so that the packet isn't sent to 6444 * any more conns in the same zone unless SO_REUSEADDR 6445 * is set. 6446 */ 6447 reuseaddr = connp->conn_reuseaddr; 6448 last_zoneid = connp->conn_zoneid; 6449 } 6450 if (first_mp != NULL) { 6451 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6452 ipsec_info_type == IPSEC_IN); 6453 first_mp1 = ipsec_in_tag(first_mp, NULL); 6454 if (first_mp1 == NULL) { 6455 freemsg(mp1); 6456 connp = first_connp; 6457 break; 6458 } 6459 } else { 6460 first_mp1 = NULL; 6461 } 6462 CONN_INC_REF(connp); 6463 mutex_exit(&connfp->connf_lock); 6464 /* 6465 * IPQoS notes: We don't send the packet for policy 6466 * processing here, will do it for the last one (below). 6467 * i.e. we do it per-packet now, but if we do policy 6468 * processing per-conn, then we would need to do it 6469 * here too. 6470 */ 6471 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6472 ipha, flags, recv_ill, B_FALSE); 6473 mutex_enter(&connfp->connf_lock); 6474 /* Follow the next pointer before releasing the conn. */ 6475 next_connp = connp->conn_next; 6476 IP_STAT(ip_udp_fanmb); 6477 CONN_DEC_REF(connp); 6478 connp = next_connp; 6479 } 6480 6481 /* Last one. Send it upstream. */ 6482 mutex_exit(&connfp->connf_lock); 6483 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6484 ip_policy); 6485 IP_STAT(ip_udp_fanmb); 6486 CONN_DEC_REF(connp); 6487 return; 6488 6489 notfound: 6490 6491 mutex_exit(&connfp->connf_lock); 6492 IP_STAT(ip_udp_fanothers); 6493 /* 6494 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6495 * have already been matched above, since they live in the IPv4 6496 * fanout tables. This implies we only need to 6497 * check for IPv6 in6addr_any endpoints here. 6498 * Thus we compare using ipv6_all_zeros instead of the destination 6499 * address, except for the multicast group membership lookup which 6500 * uses the IPv4 destination. 6501 */ 6502 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6503 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6504 mutex_enter(&connfp->connf_lock); 6505 connp = connfp->connf_head; 6506 if (!broadcast && !CLASSD(dst)) { 6507 while (connp != NULL) { 6508 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6509 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 6510 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6511 !connp->conn_ipv6_v6only) 6512 break; 6513 connp = connp->conn_next; 6514 } 6515 6516 if (connp != NULL && is_system_labeled() && 6517 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6518 connp)) 6519 connp = NULL; 6520 6521 if (connp == NULL || connp->conn_upq == NULL) { 6522 /* 6523 * No one bound to this port. Is 6524 * there a client that wants all 6525 * unclaimed datagrams? 6526 */ 6527 mutex_exit(&connfp->connf_lock); 6528 6529 if (mctl_present) 6530 first_mp->b_cont = mp; 6531 else 6532 first_mp = mp; 6533 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6534 ip_fanout_proto(q, first_mp, ill, ipha, 6535 flags | IP_FF_RAWIP, mctl_present, 6536 ip_policy, recv_ill, zoneid); 6537 } else { 6538 if (ip_fanout_send_icmp(q, first_mp, flags, 6539 ICMP_DEST_UNREACHABLE, 6540 ICMP_PORT_UNREACHABLE, 6541 mctl_present, zoneid)) { 6542 BUMP_MIB(&ip_mib, udpNoPorts); 6543 } 6544 } 6545 return; 6546 } 6547 6548 CONN_INC_REF(connp); 6549 mutex_exit(&connfp->connf_lock); 6550 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6551 recv_ill, ip_policy); 6552 CONN_DEC_REF(connp); 6553 return; 6554 } 6555 /* 6556 * IPv4 multicast packet being delivered to an AF_INET6 6557 * in6addr_any endpoint. 6558 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6559 * and not conn_wantpacket_v6() since any multicast membership is 6560 * for an IPv4-mapped multicast address. 6561 * The packet is sent to all clients in all zones that have joined the 6562 * group and match the port. 6563 */ 6564 while (connp != NULL) { 6565 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6566 srcport, v6src) && 6567 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6568 (!is_system_labeled() || 6569 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6570 connp))) 6571 break; 6572 connp = connp->conn_next; 6573 } 6574 6575 if (connp == NULL || connp->conn_upq == NULL) { 6576 /* 6577 * No one bound to this port. Is 6578 * there a client that wants all 6579 * unclaimed datagrams? 6580 */ 6581 mutex_exit(&connfp->connf_lock); 6582 6583 if (mctl_present) 6584 first_mp->b_cont = mp; 6585 else 6586 first_mp = mp; 6587 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6588 ip_fanout_proto(q, first_mp, ill, ipha, 6589 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6590 recv_ill, zoneid); 6591 } else { 6592 /* 6593 * We used to attempt to send an icmp error here, but 6594 * since this is known to be a multicast packet 6595 * and we don't send icmp errors in response to 6596 * multicast, just drop the packet and give up sooner. 6597 */ 6598 BUMP_MIB(&ip_mib, udpNoPorts); 6599 freemsg(first_mp); 6600 } 6601 return; 6602 } 6603 6604 first_connp = connp; 6605 6606 CONN_INC_REF(connp); 6607 connp = connp->conn_next; 6608 for (;;) { 6609 while (connp != NULL) { 6610 if (IPCL_UDP_MATCH_V6(connp, dstport, 6611 ipv6_all_zeros, srcport, v6src) && 6612 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6613 (!is_system_labeled() || 6614 tsol_receive_local(mp, &dst, IPV4_VERSION, 6615 shared_addr, connp))) 6616 break; 6617 connp = connp->conn_next; 6618 } 6619 /* 6620 * Just copy the data part alone. The mctl part is 6621 * needed just for verifying policy and it is never 6622 * sent up. 6623 */ 6624 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6625 ((mp1 = copymsg(mp)) == NULL))) { 6626 /* 6627 * No more intested clients or memory 6628 * allocation failed 6629 */ 6630 connp = first_connp; 6631 break; 6632 } 6633 if (first_mp != NULL) { 6634 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6635 ipsec_info_type == IPSEC_IN); 6636 first_mp1 = ipsec_in_tag(first_mp, NULL); 6637 if (first_mp1 == NULL) { 6638 freemsg(mp1); 6639 connp = first_connp; 6640 break; 6641 } 6642 } else { 6643 first_mp1 = NULL; 6644 } 6645 CONN_INC_REF(connp); 6646 mutex_exit(&connfp->connf_lock); 6647 /* 6648 * IPQoS notes: We don't send the packet for policy 6649 * processing here, will do it for the last one (below). 6650 * i.e. we do it per-packet now, but if we do policy 6651 * processing per-conn, then we would need to do it 6652 * here too. 6653 */ 6654 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6655 ipha, flags, recv_ill, B_FALSE); 6656 mutex_enter(&connfp->connf_lock); 6657 /* Follow the next pointer before releasing the conn. */ 6658 next_connp = connp->conn_next; 6659 CONN_DEC_REF(connp); 6660 connp = next_connp; 6661 } 6662 6663 /* Last one. Send it upstream. */ 6664 mutex_exit(&connfp->connf_lock); 6665 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6666 ip_policy); 6667 CONN_DEC_REF(connp); 6668 } 6669 6670 /* 6671 * Complete the ip_wput header so that it 6672 * is possible to generate ICMP 6673 * errors. 6674 */ 6675 static int 6676 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 6677 { 6678 ire_t *ire; 6679 6680 if (ipha->ipha_src == INADDR_ANY) { 6681 ire = ire_lookup_local(zoneid); 6682 if (ire == NULL) { 6683 ip1dbg(("ip_hdr_complete: no source IRE\n")); 6684 return (1); 6685 } 6686 ipha->ipha_src = ire->ire_addr; 6687 ire_refrele(ire); 6688 } 6689 ipha->ipha_ttl = ip_def_ttl; 6690 ipha->ipha_hdr_checksum = 0; 6691 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6692 return (0); 6693 } 6694 6695 /* 6696 * Nobody should be sending 6697 * packets up this stream 6698 */ 6699 static void 6700 ip_lrput(queue_t *q, mblk_t *mp) 6701 { 6702 mblk_t *mp1; 6703 6704 switch (mp->b_datap->db_type) { 6705 case M_FLUSH: 6706 /* Turn around */ 6707 if (*mp->b_rptr & FLUSHW) { 6708 *mp->b_rptr &= ~FLUSHR; 6709 qreply(q, mp); 6710 return; 6711 } 6712 break; 6713 } 6714 /* Could receive messages that passed through ar_rput */ 6715 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 6716 mp1->b_prev = mp1->b_next = NULL; 6717 freemsg(mp); 6718 } 6719 6720 /* Nobody should be sending packets down this stream */ 6721 /* ARGSUSED */ 6722 void 6723 ip_lwput(queue_t *q, mblk_t *mp) 6724 { 6725 freemsg(mp); 6726 } 6727 6728 /* 6729 * Move the first hop in any source route to ipha_dst and remove that part of 6730 * the source route. Called by other protocols. Errors in option formatting 6731 * are ignored - will be handled by ip_wput_options Return the final 6732 * destination (either ipha_dst or the last entry in a source route.) 6733 */ 6734 ipaddr_t 6735 ip_massage_options(ipha_t *ipha) 6736 { 6737 ipoptp_t opts; 6738 uchar_t *opt; 6739 uint8_t optval; 6740 uint8_t optlen; 6741 ipaddr_t dst; 6742 int i; 6743 ire_t *ire; 6744 6745 ip2dbg(("ip_massage_options\n")); 6746 dst = ipha->ipha_dst; 6747 for (optval = ipoptp_first(&opts, ipha); 6748 optval != IPOPT_EOL; 6749 optval = ipoptp_next(&opts)) { 6750 opt = opts.ipoptp_cur; 6751 switch (optval) { 6752 uint8_t off; 6753 case IPOPT_SSRR: 6754 case IPOPT_LSRR: 6755 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 6756 ip1dbg(("ip_massage_options: bad src route\n")); 6757 break; 6758 } 6759 optlen = opts.ipoptp_len; 6760 off = opt[IPOPT_OFFSET]; 6761 off--; 6762 redo_srr: 6763 if (optlen < IP_ADDR_LEN || 6764 off > optlen - IP_ADDR_LEN) { 6765 /* End of source route */ 6766 ip1dbg(("ip_massage_options: end of SR\n")); 6767 break; 6768 } 6769 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 6770 ip1dbg(("ip_massage_options: next hop 0x%x\n", 6771 ntohl(dst))); 6772 /* 6773 * Check if our address is present more than 6774 * once as consecutive hops in source route. 6775 * XXX verify per-interface ip_forwarding 6776 * for source route? 6777 */ 6778 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 6779 ALL_ZONES, NULL, MATCH_IRE_TYPE); 6780 if (ire != NULL) { 6781 ire_refrele(ire); 6782 off += IP_ADDR_LEN; 6783 goto redo_srr; 6784 } 6785 if (dst == htonl(INADDR_LOOPBACK)) { 6786 ip1dbg(("ip_massage_options: loopback addr in " 6787 "source route!\n")); 6788 break; 6789 } 6790 /* 6791 * Update ipha_dst to be the first hop and remove the 6792 * first hop from the source route (by overwriting 6793 * part of the option with NOP options). 6794 */ 6795 ipha->ipha_dst = dst; 6796 /* Put the last entry in dst */ 6797 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 6798 3; 6799 bcopy(&opt[off], &dst, IP_ADDR_LEN); 6800 6801 ip1dbg(("ip_massage_options: last hop 0x%x\n", 6802 ntohl(dst))); 6803 /* Move down and overwrite */ 6804 opt[IP_ADDR_LEN] = opt[0]; 6805 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 6806 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 6807 for (i = 0; i < IP_ADDR_LEN; i++) 6808 opt[i] = IPOPT_NOP; 6809 break; 6810 } 6811 } 6812 return (dst); 6813 } 6814 6815 /* 6816 * This function's job is to forward data to the reverse tunnel (FA->HA) 6817 * after doing a few checks. It is assumed that the incoming interface 6818 * of the packet is always different than the outgoing interface and the 6819 * ire_type of the found ire has to be a non-resolver type. 6820 * 6821 * IPQoS notes 6822 * IP policy is invoked twice for a forwarded packet, once on the read side 6823 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 6824 * enabled. 6825 */ 6826 static void 6827 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 6828 { 6829 ipha_t *ipha; 6830 queue_t *q; 6831 uint32_t pkt_len; 6832 #define rptr ((uchar_t *)ipha) 6833 uint32_t sum; 6834 uint32_t max_frag; 6835 mblk_t *first_mp; 6836 uint32_t ill_index; 6837 6838 ASSERT(ire != NULL); 6839 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 6840 ASSERT(ire->ire_stq != NULL); 6841 6842 /* Initiate read side IPPF processing */ 6843 if (IPP_ENABLED(IPP_FWD_IN)) { 6844 ill_index = in_ill->ill_phyint->phyint_ifindex; 6845 ip_process(IPP_FWD_IN, &mp, ill_index); 6846 if (mp == NULL) { 6847 ip2dbg(("ip_mrtun_forward: inbound pkt " 6848 "dropped during IPPF processing\n")); 6849 return; 6850 } 6851 } 6852 6853 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 6854 ILLF_ROUTER) == 0) || 6855 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 6856 BUMP_MIB(&ip_mib, ipForwProhibits); 6857 ip0dbg(("ip_mrtun_forward: Can't forward :" 6858 "forwarding is not turned on\n")); 6859 goto drop_pkt; 6860 } 6861 6862 /* 6863 * Don't forward if the interface is down 6864 */ 6865 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 6866 BUMP_MIB(&ip_mib, ipInDiscards); 6867 goto drop_pkt; 6868 } 6869 6870 ipha = (ipha_t *)mp->b_rptr; 6871 pkt_len = ntohs(ipha->ipha_length); 6872 /* Adjust the checksum to reflect the ttl decrement. */ 6873 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 6874 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 6875 if (ipha->ipha_ttl-- <= 1) { 6876 if (ip_csum_hdr(ipha)) { 6877 BUMP_MIB(&ip_mib, ipInCksumErrs); 6878 goto drop_pkt; 6879 } 6880 q = ire->ire_stq; 6881 if ((first_mp = allocb(sizeof (ipsec_info_t), 6882 BPRI_HI)) == NULL) { 6883 goto drop_pkt; 6884 } 6885 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6886 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED); 6887 6888 return; 6889 } 6890 6891 /* Get the ill_index of the ILL */ 6892 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 6893 6894 /* 6895 * ip_mrtun_forward is only used by foreign agent to reverse 6896 * tunnel the incoming packet. So it does not do any option 6897 * processing for source routing. 6898 */ 6899 max_frag = ire->ire_max_frag; 6900 if (pkt_len > max_frag) { 6901 /* 6902 * It needs fragging on its way out. We haven't 6903 * verified the header checksum yet. Since we 6904 * are going to put a surely good checksum in the 6905 * outgoing header, we have to make sure that it 6906 * was good coming in. 6907 */ 6908 if (ip_csum_hdr(ipha)) { 6909 BUMP_MIB(&ip_mib, ipInCksumErrs); 6910 goto drop_pkt; 6911 } 6912 6913 /* Initiate write side IPPF processing */ 6914 if (IPP_ENABLED(IPP_FWD_OUT)) { 6915 ip_process(IPP_FWD_OUT, &mp, ill_index); 6916 if (mp == NULL) { 6917 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 6918 "dropped/deferred during ip policy "\ 6919 "processing\n")); 6920 return; 6921 } 6922 } 6923 if ((first_mp = allocb(sizeof (ipsec_info_t), 6924 BPRI_HI)) == NULL) { 6925 goto drop_pkt; 6926 } 6927 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6928 mp = first_mp; 6929 6930 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 6931 return; 6932 } 6933 6934 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 6935 6936 ASSERT(ire->ire_ipif != NULL); 6937 6938 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 6939 if (mp == NULL) { 6940 BUMP_MIB(&ip_mib, ipInDiscards); 6941 return; 6942 } 6943 6944 /* Now send the packet to the tunnel interface */ 6945 q = ire->ire_stq; 6946 UPDATE_IB_PKT_COUNT(ire); 6947 ire->ire_last_used_time = lbolt; 6948 BUMP_MIB(&ip_mib, ipForwDatagrams); 6949 putnext(q, mp); 6950 ip2dbg(("ip_mrtun_forward: sent packet to ill %p\n", q->q_ptr)); 6951 return; 6952 6953 drop_pkt:; 6954 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 6955 freemsg(mp); 6956 #undef rptr 6957 } 6958 6959 /* 6960 * Fills the ipsec_out_t data structure with appropriate fields and 6961 * prepends it to mp which contains the IP hdr + data that was meant 6962 * to be forwarded. Please note that ipsec_out_info data structure 6963 * is used here to communicate the outgoing ill path at ip_wput() 6964 * for the ICMP error packet. This has nothing to do with ipsec IP 6965 * security. ipsec_out_t is really used to pass the info to the module 6966 * IP where this information cannot be extracted from conn. 6967 * This functions is called by ip_mrtun_forward(). 6968 */ 6969 void 6970 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 6971 { 6972 ipsec_out_t *io; 6973 6974 ASSERT(xmit_ill != NULL); 6975 first_mp->b_datap->db_type = M_CTL; 6976 first_mp->b_wptr += sizeof (ipsec_info_t); 6977 /* 6978 * This is to pass info to ip_wput in absence of conn. 6979 * ipsec_out_secure will be B_FALSE because of this. 6980 * Thus ipsec_out_secure being B_FALSE indicates that 6981 * this is not IPSEC security related information. 6982 */ 6983 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 6984 io = (ipsec_out_t *)first_mp->b_rptr; 6985 io->ipsec_out_type = IPSEC_OUT; 6986 io->ipsec_out_len = sizeof (ipsec_out_t); 6987 first_mp->b_cont = mp; 6988 io->ipsec_out_ill_index = 6989 xmit_ill->ill_phyint->phyint_ifindex; 6990 io->ipsec_out_xmit_if = B_TRUE; 6991 } 6992 6993 /* 6994 * Return the network mask 6995 * associated with the specified address. 6996 */ 6997 ipaddr_t 6998 ip_net_mask(ipaddr_t addr) 6999 { 7000 uchar_t *up = (uchar_t *)&addr; 7001 ipaddr_t mask = 0; 7002 uchar_t *maskp = (uchar_t *)&mask; 7003 7004 #if defined(__i386) || defined(__amd64) 7005 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7006 #endif 7007 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7008 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7009 #endif 7010 if (CLASSD(addr)) { 7011 maskp[0] = 0xF0; 7012 return (mask); 7013 } 7014 if (addr == 0) 7015 return (0); 7016 maskp[0] = 0xFF; 7017 if ((up[0] & 0x80) == 0) 7018 return (mask); 7019 7020 maskp[1] = 0xFF; 7021 if ((up[0] & 0xC0) == 0x80) 7022 return (mask); 7023 7024 maskp[2] = 0xFF; 7025 if ((up[0] & 0xE0) == 0xC0) 7026 return (mask); 7027 7028 /* Must be experimental or multicast, indicate as much */ 7029 return ((ipaddr_t)0); 7030 } 7031 7032 /* 7033 * Select an ill for the packet by considering load spreading across 7034 * a different ill in the group if dst_ill is part of some group. 7035 */ 7036 static ill_t * 7037 ip_newroute_get_dst_ill(ill_t *dst_ill) 7038 { 7039 ill_t *ill; 7040 7041 /* 7042 * We schedule irrespective of whether the source address is 7043 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7044 */ 7045 ill = illgrp_scheduler(dst_ill); 7046 if (ill == NULL) 7047 return (NULL); 7048 7049 /* 7050 * For groups with names ip_sioctl_groupname ensures that all 7051 * ills are of same type. For groups without names, ifgrp_insert 7052 * ensures this. 7053 */ 7054 ASSERT(dst_ill->ill_type == ill->ill_type); 7055 7056 return (ill); 7057 } 7058 7059 /* 7060 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7061 */ 7062 ill_t * 7063 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7064 { 7065 ill_t *ret_ill; 7066 7067 ASSERT(ifindex != 0); 7068 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7069 if (ret_ill == NULL || 7070 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7071 if (isv6) { 7072 if (ill != NULL) { 7073 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 7074 } else { 7075 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 7076 } 7077 ip1dbg(("ip_grab_attach_ill (IPv6): " 7078 "bad ifindex %d.\n", ifindex)); 7079 } else { 7080 BUMP_MIB(&ip_mib, ipOutDiscards); 7081 ip1dbg(("ip_grab_attach_ill (IPv4): " 7082 "bad ifindex %d.\n", ifindex)); 7083 } 7084 if (ret_ill != NULL) 7085 ill_refrele(ret_ill); 7086 freemsg(first_mp); 7087 return (NULL); 7088 } 7089 7090 return (ret_ill); 7091 } 7092 7093 /* 7094 * IPv4 - 7095 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7096 * out a packet to a destination address for which we do not have specific 7097 * (or sufficient) routing information. 7098 * 7099 * NOTE : These are the scopes of some of the variables that point at IRE, 7100 * which needs to be followed while making any future modifications 7101 * to avoid memory leaks. 7102 * 7103 * - ire and sire are the entries looked up initially by 7104 * ire_ftable_lookup. 7105 * - ipif_ire is used to hold the interface ire associated with 7106 * the new cache ire. But it's scope is limited, so we always REFRELE 7107 * it before branching out to error paths. 7108 * - save_ire is initialized before ire_create, so that ire returned 7109 * by ire_create will not over-write the ire. We REFRELE save_ire 7110 * before breaking out of the switch. 7111 * 7112 * Thus on failures, we have to REFRELE only ire and sire, if they 7113 * are not NULL. 7114 */ 7115 void 7116 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp) 7117 { 7118 areq_t *areq; 7119 ipaddr_t gw = 0; 7120 ire_t *ire = NULL; 7121 mblk_t *res_mp; 7122 ipaddr_t *addrp; 7123 ipaddr_t nexthop_addr; 7124 ipif_t *src_ipif = NULL; 7125 ill_t *dst_ill = NULL; 7126 ipha_t *ipha; 7127 ire_t *sire = NULL; 7128 mblk_t *first_mp; 7129 ire_t *save_ire; 7130 mblk_t *dlureq_mp; 7131 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7132 ushort_t ire_marks = 0; 7133 boolean_t mctl_present; 7134 ipsec_out_t *io; 7135 mblk_t *saved_mp; 7136 ire_t *first_sire = NULL; 7137 mblk_t *copy_mp = NULL; 7138 mblk_t *xmit_mp = NULL; 7139 ipaddr_t save_dst; 7140 uint32_t multirt_flags = 7141 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7142 boolean_t multirt_is_resolvable; 7143 boolean_t multirt_resolve_next; 7144 boolean_t do_attach_ill = B_FALSE; 7145 boolean_t ip_nexthop = B_FALSE; 7146 zoneid_t zoneid; 7147 tsol_ire_gw_secattr_t *attrp = NULL; 7148 tsol_gcgrp_t *gcgrp = NULL; 7149 tsol_gcgrp_addr_t ga; 7150 7151 if (ip_debug > 2) { 7152 /* ip1dbg */ 7153 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7154 } 7155 7156 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7157 if (mctl_present) { 7158 io = (ipsec_out_t *)first_mp->b_rptr; 7159 zoneid = io->ipsec_out_zoneid; 7160 ASSERT(zoneid != ALL_ZONES); 7161 } else if (connp != NULL) { 7162 zoneid = connp->conn_zoneid; 7163 } else { 7164 zoneid = GLOBAL_ZONEID; 7165 } 7166 7167 ipha = (ipha_t *)mp->b_rptr; 7168 7169 /* All multicast lookups come through ip_newroute_ipif() */ 7170 if (CLASSD(dst)) { 7171 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7172 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7173 freemsg(first_mp); 7174 return; 7175 } 7176 7177 if (ip_loopback_src_or_dst(ipha, NULL)) { 7178 goto icmp_err_ret; 7179 } 7180 7181 if (mctl_present && io->ipsec_out_attach_if) { 7182 /* ip_grab_attach_ill returns a held ill */ 7183 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7184 io->ipsec_out_ill_index, B_FALSE); 7185 7186 /* Failure case frees things for us. */ 7187 if (attach_ill == NULL) 7188 return; 7189 7190 /* 7191 * Check if we need an ire that will not be 7192 * looked up by anybody else i.e. HIDDEN. 7193 */ 7194 if (ill_is_probeonly(attach_ill)) 7195 ire_marks = IRE_MARK_HIDDEN; 7196 } 7197 if (mctl_present && io->ipsec_out_ip_nexthop) { 7198 ip_nexthop = B_TRUE; 7199 nexthop_addr = io->ipsec_out_nexthop_addr; 7200 } 7201 /* 7202 * If this IRE is created for forwarding or it is not for 7203 * traffic for congestion controlled protocols, mark it as temporary. 7204 */ 7205 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7206 ire_marks |= IRE_MARK_TEMPORARY; 7207 7208 /* 7209 * Get what we can from ire_ftable_lookup which will follow an IRE 7210 * chain until it gets the most specific information available. 7211 * For example, we know that there is no IRE_CACHE for this dest, 7212 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7213 * ire_ftable_lookup will look up the gateway, etc. 7214 * Check if in_ill != NULL. If it is true, the packet must be 7215 * from an incoming interface where RTA_SRCIFP is set. 7216 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7217 * to the destination, of equal netmask length in the forward table, 7218 * will be recursively explored. If no information is available 7219 * for the final gateway of that route, we force the returned ire 7220 * to be equal to sire using MATCH_IRE_PARENT. 7221 * At least, in this case we have a starting point (in the buckets) 7222 * to look for other routes to the destination in the forward table. 7223 * This is actually used only for multirouting, where a list 7224 * of routes has to be processed in sequence. 7225 */ 7226 if (in_ill != NULL) { 7227 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7228 in_ill, MATCH_IRE_TYPE); 7229 } else if (ip_nexthop) { 7230 /* 7231 * The first time we come here, we look for an IRE_INTERFACE 7232 * entry for the specified nexthop, set the dst to be the 7233 * nexthop address and create an IRE_CACHE entry for the 7234 * nexthop. The next time around, we are able to find an 7235 * IRE_CACHE entry for the nexthop, set the gateway to be the 7236 * nexthop address and create an IRE_CACHE entry for the 7237 * destination address via the specified nexthop. 7238 */ 7239 ire = ire_cache_lookup(nexthop_addr, zoneid, 7240 MBLK_GETLABEL(mp)); 7241 if (ire != NULL) { 7242 gw = nexthop_addr; 7243 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7244 } else { 7245 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7246 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7247 MBLK_GETLABEL(mp), 7248 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7249 if (ire != NULL) { 7250 dst = nexthop_addr; 7251 } 7252 } 7253 } else if (attach_ill == NULL) { 7254 ire = ire_ftable_lookup(dst, 0, 0, 0, 7255 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7256 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7257 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7258 MATCH_IRE_SECATTR); 7259 } else { 7260 /* 7261 * attach_ill is set only for communicating with 7262 * on-link hosts. So, don't look for DEFAULT. 7263 */ 7264 ipif_t *attach_ipif; 7265 7266 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7267 if (attach_ipif == NULL) { 7268 ill_refrele(attach_ill); 7269 goto icmp_err_ret; 7270 } 7271 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7272 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7273 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7274 MATCH_IRE_SECATTR); 7275 ipif_refrele(attach_ipif); 7276 } 7277 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7278 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7279 7280 /* 7281 * This loop is run only once in most cases. 7282 * We loop to resolve further routes only when the destination 7283 * can be reached through multiple RTF_MULTIRT-flagged ires. 7284 */ 7285 do { 7286 /* Clear the previous iteration's values */ 7287 if (src_ipif != NULL) { 7288 ipif_refrele(src_ipif); 7289 src_ipif = NULL; 7290 } 7291 if (dst_ill != NULL) { 7292 ill_refrele(dst_ill); 7293 dst_ill = NULL; 7294 } 7295 7296 multirt_resolve_next = B_FALSE; 7297 /* 7298 * We check if packets have to be multirouted. 7299 * In this case, given the current <ire, sire> couple, 7300 * we look for the next suitable <ire, sire>. 7301 * This check is done in ire_multirt_lookup(), 7302 * which applies various criteria to find the next route 7303 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7304 * unchanged if it detects it has not been tried yet. 7305 */ 7306 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7307 ip3dbg(("ip_newroute: starting next_resolution " 7308 "with first_mp %p, tag %d\n", 7309 (void *)first_mp, 7310 MULTIRT_DEBUG_TAGGED(first_mp))); 7311 7312 ASSERT(sire != NULL); 7313 multirt_is_resolvable = 7314 ire_multirt_lookup(&ire, &sire, multirt_flags, 7315 MBLK_GETLABEL(mp)); 7316 7317 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7318 "ire %p, sire %p\n", 7319 multirt_is_resolvable, 7320 (void *)ire, (void *)sire)); 7321 7322 if (!multirt_is_resolvable) { 7323 /* 7324 * No more multirt route to resolve; give up 7325 * (all routes resolved or no more 7326 * resolvable routes). 7327 */ 7328 if (ire != NULL) { 7329 ire_refrele(ire); 7330 ire = NULL; 7331 } 7332 } else { 7333 ASSERT(sire != NULL); 7334 ASSERT(ire != NULL); 7335 /* 7336 * We simply use first_sire as a flag that 7337 * indicates if a resolvable multirt route 7338 * has already been found. 7339 * If it is not the case, we may have to send 7340 * an ICMP error to report that the 7341 * destination is unreachable. 7342 * We do not IRE_REFHOLD first_sire. 7343 */ 7344 if (first_sire == NULL) { 7345 first_sire = sire; 7346 } 7347 } 7348 } 7349 if (ire == NULL) { 7350 if (ip_debug > 3) { 7351 /* ip2dbg */ 7352 pr_addr_dbg("ip_newroute: " 7353 "can't resolve %s\n", AF_INET, &dst); 7354 } 7355 ip3dbg(("ip_newroute: " 7356 "ire %p, sire %p, first_sire %p\n", 7357 (void *)ire, (void *)sire, (void *)first_sire)); 7358 7359 if (sire != NULL) { 7360 ire_refrele(sire); 7361 sire = NULL; 7362 } 7363 7364 if (first_sire != NULL) { 7365 /* 7366 * At least one multirt route has been found 7367 * in the same call to ip_newroute(); 7368 * there is no need to report an ICMP error. 7369 * first_sire was not IRE_REFHOLDed. 7370 */ 7371 MULTIRT_DEBUG_UNTAG(first_mp); 7372 freemsg(first_mp); 7373 return; 7374 } 7375 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7376 RTA_DST); 7377 if (attach_ill != NULL) 7378 ill_refrele(attach_ill); 7379 goto icmp_err_ret; 7380 } 7381 7382 /* 7383 * When RTA_SRCIFP is used to add a route, then an interface 7384 * route is added in the source interface's routing table. 7385 * If the outgoing interface of this route is of type 7386 * IRE_IF_RESOLVER, then upon creation of the ire, 7387 * ire_dlureq_mp is set to NULL. Later, when this route is 7388 * first used for forwarding packet, ip_newroute() is called 7389 * to resolve the hardware address of the outgoing ipif. 7390 * We do not come here for IRE_IF_NORESOLVER entries in the 7391 * source interface based table. We only come here if the 7392 * outgoing interface is a resolver interface and we don't 7393 * have the ire_dlureq_mp information yet. 7394 * If in_ill is not null that means it is called from 7395 * ip_rput. 7396 */ 7397 7398 ASSERT(ire->ire_in_ill == NULL || 7399 (ire->ire_type == IRE_IF_RESOLVER && 7400 ire->ire_dlureq_mp == NULL)); 7401 7402 /* 7403 * Verify that the returned IRE does not have either 7404 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7405 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7406 */ 7407 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7408 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7409 if (attach_ill != NULL) 7410 ill_refrele(attach_ill); 7411 goto icmp_err_ret; 7412 } 7413 /* 7414 * Increment the ire_ob_pkt_count field for ire if it is an 7415 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7416 * increment the same for the parent IRE, sire, if it is some 7417 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7418 * and HOST_REDIRECT). 7419 */ 7420 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7421 UPDATE_OB_PKT_COUNT(ire); 7422 ire->ire_last_used_time = lbolt; 7423 } 7424 7425 if (sire != NULL) { 7426 gw = sire->ire_gateway_addr; 7427 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7428 IRE_INTERFACE)) == 0); 7429 UPDATE_OB_PKT_COUNT(sire); 7430 sire->ire_last_used_time = lbolt; 7431 } 7432 /* 7433 * We have a route to reach the destination. 7434 * 7435 * 1) If the interface is part of ill group, try to get a new 7436 * ill taking load spreading into account. 7437 * 7438 * 2) After selecting the ill, get a source address that 7439 * might create good inbound load spreading. 7440 * ipif_select_source does this for us. 7441 * 7442 * If the application specified the ill (ifindex), we still 7443 * load spread. Only if the packets needs to go out 7444 * specifically on a given ill e.g. binding to 7445 * IPIF_NOFAILOVER address, then we don't try to use a 7446 * different ill for load spreading. 7447 */ 7448 if (attach_ill == NULL) { 7449 /* 7450 * Don't perform outbound load spreading in the 7451 * case of an RTF_MULTIRT route, as we actually 7452 * typically want to replicate outgoing packets 7453 * through particular interfaces. 7454 */ 7455 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7456 dst_ill = ire->ire_ipif->ipif_ill; 7457 /* for uniformity */ 7458 ill_refhold(dst_ill); 7459 } else { 7460 /* 7461 * If we are here trying to create an IRE_CACHE 7462 * for an offlink destination and have the 7463 * IRE_CACHE for the next hop and the latter is 7464 * using virtual IP source address selection i.e 7465 * it's ire->ire_ipif is pointing to a virtual 7466 * network interface (vni) then 7467 * ip_newroute_get_dst_ll() will return the vni 7468 * interface as the dst_ill. Since the vni is 7469 * virtual i.e not associated with any physical 7470 * interface, it cannot be the dst_ill, hence 7471 * in such a case call ip_newroute_get_dst_ll() 7472 * with the stq_ill instead of the ire_ipif ILL. 7473 * The function returns a refheld ill. 7474 */ 7475 if ((ire->ire_type == IRE_CACHE) && 7476 IS_VNI(ire->ire_ipif->ipif_ill)) 7477 dst_ill = ip_newroute_get_dst_ill( 7478 ire->ire_stq->q_ptr); 7479 else 7480 dst_ill = ip_newroute_get_dst_ill( 7481 ire->ire_ipif->ipif_ill); 7482 } 7483 if (dst_ill == NULL) { 7484 if (ip_debug > 2) { 7485 pr_addr_dbg("ip_newroute: " 7486 "no dst ill for dst" 7487 " %s\n", AF_INET, &dst); 7488 } 7489 goto icmp_err_ret; 7490 } 7491 } else { 7492 dst_ill = ire->ire_ipif->ipif_ill; 7493 /* for uniformity */ 7494 ill_refhold(dst_ill); 7495 /* 7496 * We should have found a route matching ill as we 7497 * called ire_ftable_lookup with MATCH_IRE_ILL. 7498 * Rather than asserting, when there is a mismatch, 7499 * we just drop the packet. 7500 */ 7501 if (dst_ill != attach_ill) { 7502 ip0dbg(("ip_newroute: Packet dropped as " 7503 "IPIF_NOFAILOVER ill is %s, " 7504 "ire->ire_ipif->ipif_ill is %s\n", 7505 attach_ill->ill_name, 7506 dst_ill->ill_name)); 7507 ill_refrele(attach_ill); 7508 goto icmp_err_ret; 7509 } 7510 } 7511 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7512 if (attach_ill != NULL) { 7513 ill_refrele(attach_ill); 7514 attach_ill = NULL; 7515 do_attach_ill = B_TRUE; 7516 } 7517 ASSERT(dst_ill != NULL); 7518 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 7519 7520 /* 7521 * Pick the best source address from dst_ill. 7522 * 7523 * 1) If it is part of a multipathing group, we would 7524 * like to spread the inbound packets across different 7525 * interfaces. ipif_select_source picks a random source 7526 * across the different ills in the group. 7527 * 7528 * 2) If it is not part of a multipathing group, we try 7529 * to pick the source address from the destination 7530 * route. Clustering assumes that when we have multiple 7531 * prefixes hosted on an interface, the prefix of the 7532 * source address matches the prefix of the destination 7533 * route. We do this only if the address is not 7534 * DEPRECATED. 7535 * 7536 * 3) If the conn is in a different zone than the ire, we 7537 * need to pick a source address from the right zone. 7538 * 7539 * NOTE : If we hit case (1) above, the prefix of the source 7540 * address picked may not match the prefix of the 7541 * destination routes prefix as ipif_select_source 7542 * does not look at "dst" while picking a source 7543 * address. 7544 * If we want the same behavior as (2), we will need 7545 * to change the behavior of ipif_select_source. 7546 */ 7547 ASSERT(src_ipif == NULL); 7548 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 7549 /* 7550 * The RTF_SETSRC flag is set in the parent ire (sire). 7551 * Check that the ipif matching the requested source 7552 * address still exists. 7553 */ 7554 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 7555 zoneid, NULL, NULL, NULL, NULL); 7556 } 7557 if (src_ipif == NULL) { 7558 ire_marks |= IRE_MARK_USESRC_CHECK; 7559 if ((dst_ill->ill_group != NULL) || 7560 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 7561 (connp != NULL && ire->ire_zoneid != zoneid && 7562 ire->ire_zoneid != ALL_ZONES) || 7563 (dst_ill->ill_usesrc_ifindex != 0)) { 7564 /* 7565 * If the destination is reachable via a 7566 * given gateway, the selected source address 7567 * should be in the same subnet as the gateway. 7568 * Otherwise, the destination is not reachable. 7569 * 7570 * If there are no interfaces on the same subnet 7571 * as the destination, ipif_select_source gives 7572 * first non-deprecated interface which might be 7573 * on a different subnet than the gateway. 7574 * This is not desirable. Hence pass the dst_ire 7575 * source address to ipif_select_source. 7576 * It is sure that the destination is reachable 7577 * with the dst_ire source address subnet. 7578 * So passing dst_ire source address to 7579 * ipif_select_source will make sure that the 7580 * selected source will be on the same subnet 7581 * as dst_ire source address. 7582 */ 7583 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 7584 src_ipif = ipif_select_source(dst_ill, saddr, 7585 zoneid); 7586 if (src_ipif == NULL) { 7587 if (ip_debug > 2) { 7588 pr_addr_dbg("ip_newroute: " 7589 "no src for dst %s ", 7590 AF_INET, &dst); 7591 printf("through interface %s\n", 7592 dst_ill->ill_name); 7593 } 7594 goto icmp_err_ret; 7595 } 7596 } else { 7597 src_ipif = ire->ire_ipif; 7598 ASSERT(src_ipif != NULL); 7599 /* hold src_ipif for uniformity */ 7600 ipif_refhold(src_ipif); 7601 } 7602 } 7603 7604 /* 7605 * Assign a source address while we have the conn. 7606 * We can't have ip_wput_ire pick a source address when the 7607 * packet returns from arp since we need to look at 7608 * conn_unspec_src and conn_zoneid, and we lose the conn when 7609 * going through arp. 7610 * 7611 * NOTE : ip_newroute_v6 does not have this piece of code as 7612 * it uses ip6i to store this information. 7613 */ 7614 if (ipha->ipha_src == INADDR_ANY && 7615 (connp == NULL || !connp->conn_unspec_src)) { 7616 ipha->ipha_src = src_ipif->ipif_src_addr; 7617 } 7618 if (ip_debug > 3) { 7619 /* ip2dbg */ 7620 pr_addr_dbg("ip_newroute: first hop %s\n", 7621 AF_INET, &gw); 7622 } 7623 ip2dbg(("\tire type %s (%d)\n", 7624 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 7625 7626 /* 7627 * The TTL of multirouted packets is bounded by the 7628 * ip_multirt_ttl ndd variable. 7629 */ 7630 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7631 /* Force TTL of multirouted packets */ 7632 if ((ip_multirt_ttl > 0) && 7633 (ipha->ipha_ttl > ip_multirt_ttl)) { 7634 ip2dbg(("ip_newroute: forcing multirt TTL " 7635 "to %d (was %d), dst 0x%08x\n", 7636 ip_multirt_ttl, ipha->ipha_ttl, 7637 ntohl(sire->ire_addr))); 7638 ipha->ipha_ttl = ip_multirt_ttl; 7639 } 7640 } 7641 /* 7642 * At this point in ip_newroute(), ire is either the 7643 * IRE_CACHE of the next-hop gateway for an off-subnet 7644 * destination or an IRE_INTERFACE type that should be used 7645 * to resolve an on-subnet destination or an on-subnet 7646 * next-hop gateway. 7647 * 7648 * In the IRE_CACHE case, we have the following : 7649 * 7650 * 1) src_ipif - used for getting a source address. 7651 * 7652 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7653 * means packets using this IRE_CACHE will go out on 7654 * dst_ill. 7655 * 7656 * 3) The IRE sire will point to the prefix that is the 7657 * longest matching route for the destination. These 7658 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 7659 * and IRE_HOST_REDIRECT. 7660 * 7661 * The newly created IRE_CACHE entry for the off-subnet 7662 * destination is tied to both the prefix route and the 7663 * interface route used to resolve the next-hop gateway 7664 * via the ire_phandle and ire_ihandle fields, 7665 * respectively. 7666 * 7667 * In the IRE_INTERFACE case, we have the following : 7668 * 7669 * 1) src_ipif - used for getting a source address. 7670 * 7671 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7672 * means packets using the IRE_CACHE that we will build 7673 * here will go out on dst_ill. 7674 * 7675 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 7676 * to be created will only be tied to the IRE_INTERFACE 7677 * that was derived from the ire_ihandle field. 7678 * 7679 * If sire is non-NULL, it means the destination is 7680 * off-link and we will first create the IRE_CACHE for the 7681 * gateway. Next time through ip_newroute, we will create 7682 * the IRE_CACHE for the final destination as described 7683 * above. 7684 * 7685 * In both cases, after the current resolution has been 7686 * completed (or possibly initialised, in the IRE_INTERFACE 7687 * case), the loop may be re-entered to attempt the resolution 7688 * of another RTF_MULTIRT route. 7689 * 7690 * When an IRE_CACHE entry for the off-subnet destination is 7691 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 7692 * for further processing in emission loops. 7693 */ 7694 save_ire = ire; 7695 switch (ire->ire_type) { 7696 case IRE_CACHE: { 7697 ire_t *ipif_ire; 7698 mblk_t *ire_fp_mp; 7699 7700 if (gw == 0) 7701 gw = ire->ire_gateway_addr; 7702 /* 7703 * We need 3 ire's to create a new cache ire for an 7704 * off-link destination from the cache ire of the 7705 * gateway. 7706 * 7707 * 1. The prefix ire 'sire' (Note that this does 7708 * not apply to the conn_nexthop_set case) 7709 * 2. The cache ire of the gateway 'ire' 7710 * 3. The interface ire 'ipif_ire' 7711 * 7712 * We have (1) and (2). We lookup (3) below. 7713 * 7714 * If there is no interface route to the gateway, 7715 * it is a race condition, where we found the cache 7716 * but the interface route has been deleted. 7717 */ 7718 if (ip_nexthop) { 7719 ipif_ire = ire_ihandle_lookup_onlink(ire); 7720 } else { 7721 ipif_ire = 7722 ire_ihandle_lookup_offlink(ire, sire); 7723 } 7724 if (ipif_ire == NULL) { 7725 ip1dbg(("ip_newroute: " 7726 "ire_ihandle_lookup_offlink failed\n")); 7727 goto icmp_err_ret; 7728 } 7729 /* 7730 * XXX We are using the same dlureq_mp 7731 * (DL_UNITDATA_REQ) though the save_ire is not 7732 * pointing at the same ill. 7733 * This is incorrect. We need to send it up to the 7734 * resolver to get the right dlureq_mp. For ethernets 7735 * this may be okay (ill_type == DL_ETHER). 7736 */ 7737 dlureq_mp = save_ire->ire_dlureq_mp; 7738 ire_fp_mp = NULL; 7739 /* 7740 * save_ire's ire_fp_mp can't change since it is 7741 * not an IRE_MIPRTUN or IRE_BROADCAST 7742 * LOCK_IRE_FP_MP does not do any useful work in 7743 * the case of IRE_CACHE. So we don't use it below. 7744 */ 7745 if (save_ire->ire_stq == dst_ill->ill_wq) 7746 ire_fp_mp = save_ire->ire_fp_mp; 7747 7748 /* 7749 * Check cached gateway IRE for any security 7750 * attributes; if found, associate the gateway 7751 * credentials group to the destination IRE. 7752 */ 7753 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 7754 mutex_enter(&attrp->igsa_lock); 7755 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 7756 GCGRP_REFHOLD(gcgrp); 7757 mutex_exit(&attrp->igsa_lock); 7758 } 7759 7760 ire = ire_create( 7761 (uchar_t *)&dst, /* dest address */ 7762 (uchar_t *)&ip_g_all_ones, /* mask */ 7763 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7764 (uchar_t *)&gw, /* gateway address */ 7765 NULL, 7766 &save_ire->ire_max_frag, 7767 ire_fp_mp, /* Fast Path header */ 7768 dst_ill->ill_rq, /* recv-from queue */ 7769 dst_ill->ill_wq, /* send-to queue */ 7770 IRE_CACHE, /* IRE type */ 7771 save_ire->ire_dlureq_mp, 7772 src_ipif, 7773 in_ill, /* incoming ill */ 7774 (sire != NULL) ? 7775 sire->ire_mask : 0, /* Parent mask */ 7776 (sire != NULL) ? 7777 sire->ire_phandle : 0, /* Parent handle */ 7778 ipif_ire->ire_ihandle, /* Interface handle */ 7779 (sire != NULL) ? (sire->ire_flags & 7780 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 7781 (sire != NULL) ? 7782 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 7783 NULL, 7784 gcgrp); 7785 7786 if (ire == NULL) { 7787 if (gcgrp != NULL) { 7788 GCGRP_REFRELE(gcgrp); 7789 gcgrp = NULL; 7790 } 7791 ire_refrele(ipif_ire); 7792 ire_refrele(save_ire); 7793 break; 7794 } 7795 7796 /* reference now held by IRE */ 7797 gcgrp = NULL; 7798 7799 ire->ire_marks |= ire_marks; 7800 7801 /* 7802 * Prevent sire and ipif_ire from getting deleted. 7803 * The newly created ire is tied to both of them via 7804 * the phandle and ihandle respectively. 7805 */ 7806 if (sire != NULL) { 7807 IRB_REFHOLD(sire->ire_bucket); 7808 /* Has it been removed already ? */ 7809 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 7810 IRB_REFRELE(sire->ire_bucket); 7811 ire_refrele(ipif_ire); 7812 ire_refrele(save_ire); 7813 break; 7814 } 7815 } 7816 7817 IRB_REFHOLD(ipif_ire->ire_bucket); 7818 /* Has it been removed already ? */ 7819 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 7820 IRB_REFRELE(ipif_ire->ire_bucket); 7821 if (sire != NULL) 7822 IRB_REFRELE(sire->ire_bucket); 7823 ire_refrele(ipif_ire); 7824 ire_refrele(save_ire); 7825 break; 7826 } 7827 7828 xmit_mp = first_mp; 7829 /* 7830 * In the case of multirouting, a copy 7831 * of the packet is done before its sending. 7832 * The copy is used to attempt another 7833 * route resolution, in a next loop. 7834 */ 7835 if (ire->ire_flags & RTF_MULTIRT) { 7836 copy_mp = copymsg(first_mp); 7837 if (copy_mp != NULL) { 7838 xmit_mp = copy_mp; 7839 MULTIRT_DEBUG_TAG(first_mp); 7840 } 7841 } 7842 ire_add_then_send(q, ire, xmit_mp); 7843 ire_refrele(save_ire); 7844 7845 /* Assert that sire is not deleted yet. */ 7846 if (sire != NULL) { 7847 ASSERT(sire->ire_ptpn != NULL); 7848 IRB_REFRELE(sire->ire_bucket); 7849 } 7850 7851 /* Assert that ipif_ire is not deleted yet. */ 7852 ASSERT(ipif_ire->ire_ptpn != NULL); 7853 IRB_REFRELE(ipif_ire->ire_bucket); 7854 ire_refrele(ipif_ire); 7855 7856 /* 7857 * If copy_mp is not NULL, multirouting was 7858 * requested. We loop to initiate a next 7859 * route resolution attempt, starting from sire. 7860 */ 7861 if (copy_mp != NULL) { 7862 /* 7863 * Search for the next unresolved 7864 * multirt route. 7865 */ 7866 copy_mp = NULL; 7867 ipif_ire = NULL; 7868 ire = NULL; 7869 multirt_resolve_next = B_TRUE; 7870 continue; 7871 } 7872 if (sire != NULL) 7873 ire_refrele(sire); 7874 ipif_refrele(src_ipif); 7875 ill_refrele(dst_ill); 7876 return; 7877 } 7878 case IRE_IF_NORESOLVER: { 7879 /* 7880 * We have what we need to build an IRE_CACHE. 7881 * 7882 * Create a new dlureq_mp with the IP gateway address 7883 * in destination address in the DLPI hdr if the 7884 * physical length is exactly 4 bytes. 7885 */ 7886 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7887 uchar_t *addr; 7888 7889 if (gw) 7890 addr = (uchar_t *)&gw; 7891 else 7892 addr = (uchar_t *)&dst; 7893 7894 dlureq_mp = ill_dlur_gen(addr, 7895 dst_ill->ill_phys_addr_length, 7896 dst_ill->ill_sap, 7897 dst_ill->ill_sap_length); 7898 } else { 7899 dlureq_mp = ire->ire_dlureq_mp; 7900 } 7901 7902 if (dlureq_mp == NULL) { 7903 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 7904 break; 7905 } 7906 7907 /* 7908 * TSol note: We are creating the ire cache for the 7909 * destination 'dst'. If 'dst' is offlink, going 7910 * through the first hop 'gw', the security attributes 7911 * of 'dst' must be set to point to the gateway 7912 * credentials of gateway 'gw'. If 'dst' is onlink, it 7913 * is possible that 'dst' is a potential gateway that is 7914 * referenced by some route that has some security 7915 * attributes. Thus in the former case, we need to do a 7916 * gcgrp_lookup of 'gw' while in the latter case we 7917 * need to do gcgrp_lookup of 'dst' itself. 7918 */ 7919 ga.ga_af = AF_INET; 7920 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 7921 &ga.ga_addr); 7922 gcgrp = gcgrp_lookup(&ga, B_FALSE); 7923 7924 ire = ire_create( 7925 (uchar_t *)&dst, /* dest address */ 7926 (uchar_t *)&ip_g_all_ones, /* mask */ 7927 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7928 (uchar_t *)&gw, /* gateway address */ 7929 NULL, 7930 &save_ire->ire_max_frag, 7931 NULL, /* Fast Path header */ 7932 dst_ill->ill_rq, /* recv-from queue */ 7933 dst_ill->ill_wq, /* send-to queue */ 7934 IRE_CACHE, 7935 dlureq_mp, 7936 src_ipif, 7937 in_ill, /* Incoming ill */ 7938 save_ire->ire_mask, /* Parent mask */ 7939 (sire != NULL) ? /* Parent handle */ 7940 sire->ire_phandle : 0, 7941 save_ire->ire_ihandle, /* Interface handle */ 7942 (sire != NULL) ? sire->ire_flags & 7943 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 7944 &(save_ire->ire_uinfo), 7945 NULL, 7946 gcgrp); 7947 7948 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 7949 freeb(dlureq_mp); 7950 7951 if (ire == NULL) { 7952 if (gcgrp != NULL) { 7953 GCGRP_REFRELE(gcgrp); 7954 gcgrp = NULL; 7955 } 7956 ire_refrele(save_ire); 7957 break; 7958 } 7959 7960 /* reference now held by IRE */ 7961 gcgrp = NULL; 7962 7963 ire->ire_marks |= ire_marks; 7964 7965 /* Prevent save_ire from getting deleted */ 7966 IRB_REFHOLD(save_ire->ire_bucket); 7967 /* Has it been removed already ? */ 7968 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 7969 IRB_REFRELE(save_ire->ire_bucket); 7970 ire_refrele(save_ire); 7971 break; 7972 } 7973 7974 /* 7975 * In the case of multirouting, a copy 7976 * of the packet is made before it is sent. 7977 * The copy is used in the next 7978 * loop to attempt another resolution. 7979 */ 7980 xmit_mp = first_mp; 7981 if ((sire != NULL) && 7982 (sire->ire_flags & RTF_MULTIRT)) { 7983 copy_mp = copymsg(first_mp); 7984 if (copy_mp != NULL) { 7985 xmit_mp = copy_mp; 7986 MULTIRT_DEBUG_TAG(first_mp); 7987 } 7988 } 7989 ire_add_then_send(q, ire, xmit_mp); 7990 7991 /* Assert that it is not deleted yet. */ 7992 ASSERT(save_ire->ire_ptpn != NULL); 7993 IRB_REFRELE(save_ire->ire_bucket); 7994 ire_refrele(save_ire); 7995 7996 if (copy_mp != NULL) { 7997 /* 7998 * If we found a (no)resolver, we ignore any 7999 * trailing top priority IRE_CACHE in further 8000 * loops. This ensures that we do not omit any 8001 * (no)resolver. 8002 * This IRE_CACHE, if any, will be processed 8003 * by another thread entering ip_newroute(). 8004 * IRE_CACHE entries, if any, will be processed 8005 * by another thread entering ip_newroute(), 8006 * (upon resolver response, for instance). 8007 * This aims to force parallel multirt 8008 * resolutions as soon as a packet must be sent. 8009 * In the best case, after the tx of only one 8010 * packet, all reachable routes are resolved. 8011 * Otherwise, the resolution of all RTF_MULTIRT 8012 * routes would require several emissions. 8013 */ 8014 multirt_flags &= ~MULTIRT_CACHEGW; 8015 8016 /* 8017 * Search for the next unresolved multirt 8018 * route. 8019 */ 8020 copy_mp = NULL; 8021 save_ire = NULL; 8022 ire = NULL; 8023 multirt_resolve_next = B_TRUE; 8024 continue; 8025 } 8026 8027 /* 8028 * Don't need sire anymore 8029 */ 8030 if (sire != NULL) 8031 ire_refrele(sire); 8032 8033 ipif_refrele(src_ipif); 8034 ill_refrele(dst_ill); 8035 return; 8036 } 8037 case IRE_IF_RESOLVER: 8038 /* 8039 * We can't build an IRE_CACHE yet, but at least we 8040 * found a resolver that can help. 8041 */ 8042 res_mp = dst_ill->ill_resolver_mp; 8043 if (!OK_RESOLVER_MP(res_mp)) 8044 break; 8045 8046 /* 8047 * To be at this point in the code with a non-zero gw 8048 * means that dst is reachable through a gateway that 8049 * we have never resolved. By changing dst to the gw 8050 * addr we resolve the gateway first. 8051 * When ire_add_then_send() tries to put the IP dg 8052 * to dst, it will reenter ip_newroute() at which 8053 * time we will find the IRE_CACHE for the gw and 8054 * create another IRE_CACHE in case IRE_CACHE above. 8055 */ 8056 if (gw != INADDR_ANY) { 8057 /* 8058 * The source ipif that was determined above was 8059 * relative to the destination address, not the 8060 * gateway's. If src_ipif was not taken out of 8061 * the IRE_IF_RESOLVER entry, we'll need to call 8062 * ipif_select_source() again. 8063 */ 8064 if (src_ipif != ire->ire_ipif) { 8065 ipif_refrele(src_ipif); 8066 src_ipif = ipif_select_source(dst_ill, 8067 gw, zoneid); 8068 if (src_ipif == NULL) { 8069 if (ip_debug > 2) { 8070 pr_addr_dbg( 8071 "ip_newroute: no " 8072 "src for gw %s ", 8073 AF_INET, &gw); 8074 printf("through " 8075 "interface %s\n", 8076 dst_ill->ill_name); 8077 } 8078 goto icmp_err_ret; 8079 } 8080 } 8081 save_dst = dst; 8082 dst = gw; 8083 gw = INADDR_ANY; 8084 } 8085 8086 /* 8087 * We obtain a partial IRE_CACHE which we will pass 8088 * along with the resolver query. When the response 8089 * comes back it will be there ready for us to add. 8090 * The ire_max_frag is atomically set under the 8091 * irebucket lock in ire_add_v[46]. 8092 */ 8093 ire = ire_create_mp( 8094 (uchar_t *)&dst, /* dest address */ 8095 (uchar_t *)&ip_g_all_ones, /* mask */ 8096 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8097 (uchar_t *)&gw, /* gateway address */ 8098 NULL, /* no in_src_addr */ 8099 NULL, /* ire_max_frag */ 8100 NULL, /* Fast Path header */ 8101 dst_ill->ill_rq, /* recv-from queue */ 8102 dst_ill->ill_wq, /* send-to queue */ 8103 IRE_CACHE, 8104 res_mp, 8105 src_ipif, /* Interface ipif */ 8106 in_ill, /* Incoming ILL */ 8107 save_ire->ire_mask, /* Parent mask */ 8108 0, 8109 save_ire->ire_ihandle, /* Interface handle */ 8110 0, /* flags if any */ 8111 &(save_ire->ire_uinfo), 8112 NULL, 8113 NULL); 8114 8115 if (ire == NULL) { 8116 ire_refrele(save_ire); 8117 break; 8118 } 8119 8120 if ((sire != NULL) && 8121 (sire->ire_flags & RTF_MULTIRT)) { 8122 copy_mp = copymsg(first_mp); 8123 if (copy_mp != NULL) 8124 MULTIRT_DEBUG_TAG(copy_mp); 8125 } 8126 8127 ire->ire_marks |= ire_marks; 8128 8129 /* 8130 * Construct message chain for the resolver 8131 * of the form: 8132 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8133 * Packet could contain a IPSEC_OUT mp. 8134 * 8135 * NOTE : ire will be added later when the response 8136 * comes back from ARP. If the response does not 8137 * come back, ARP frees the packet. For this reason, 8138 * we can't REFHOLD the bucket of save_ire to prevent 8139 * deletions. We may not be able to REFRELE the bucket 8140 * if the response never comes back. Thus, before 8141 * adding the ire, ire_add_v4 will make sure that the 8142 * interface route does not get deleted. This is the 8143 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8144 * where we can always prevent deletions because of 8145 * the synchronous nature of adding IRES i.e 8146 * ire_add_then_send is called after creating the IRE. 8147 */ 8148 ASSERT(ire->ire_mp != NULL); 8149 ire->ire_mp->b_cont = first_mp; 8150 /* Have saved_mp handy, for cleanup if canput fails */ 8151 saved_mp = mp; 8152 mp = ire->ire_dlureq_mp; 8153 ASSERT(mp != NULL); 8154 ire->ire_dlureq_mp = NULL; 8155 linkb(mp, ire->ire_mp); 8156 8157 8158 /* 8159 * Fill in the source and dest addrs for the resolver. 8160 * NOTE: this depends on memory layouts imposed by 8161 * ill_init(). 8162 */ 8163 areq = (areq_t *)mp->b_rptr; 8164 addrp = (ipaddr_t *)((char *)areq + 8165 areq->areq_sender_addr_offset); 8166 if (do_attach_ill) { 8167 /* 8168 * This is bind to no failover case. 8169 * arp packet also must go out on attach_ill. 8170 */ 8171 ASSERT(ipha->ipha_src != NULL); 8172 *addrp = ipha->ipha_src; 8173 } else { 8174 *addrp = save_ire->ire_src_addr; 8175 } 8176 8177 ire_refrele(save_ire); 8178 addrp = (ipaddr_t *)((char *)areq + 8179 areq->areq_target_addr_offset); 8180 *addrp = dst; 8181 /* Up to the resolver. */ 8182 if (canputnext(dst_ill->ill_rq)) { 8183 putnext(dst_ill->ill_rq, mp); 8184 ire = NULL; 8185 if (copy_mp != NULL) { 8186 /* 8187 * If we found a resolver, we ignore 8188 * any trailing top priority IRE_CACHE 8189 * in the further loops. This ensures 8190 * that we do not omit any resolver. 8191 * IRE_CACHE entries, if any, will be 8192 * processed next time we enter 8193 * ip_newroute(). 8194 */ 8195 multirt_flags &= ~MULTIRT_CACHEGW; 8196 /* 8197 * Search for the next unresolved 8198 * multirt route. 8199 */ 8200 first_mp = copy_mp; 8201 copy_mp = NULL; 8202 /* Prepare the next resolution loop. */ 8203 mp = first_mp; 8204 EXTRACT_PKT_MP(mp, first_mp, 8205 mctl_present); 8206 if (mctl_present) 8207 io = (ipsec_out_t *) 8208 first_mp->b_rptr; 8209 ipha = (ipha_t *)mp->b_rptr; 8210 8211 ASSERT(sire != NULL); 8212 8213 dst = save_dst; 8214 multirt_resolve_next = B_TRUE; 8215 continue; 8216 } 8217 8218 if (sire != NULL) 8219 ire_refrele(sire); 8220 8221 /* 8222 * The response will come back in ip_wput 8223 * with db_type IRE_DB_TYPE. 8224 */ 8225 ipif_refrele(src_ipif); 8226 ill_refrele(dst_ill); 8227 return; 8228 } else { 8229 /* Prepare for cleanup */ 8230 ire->ire_dlureq_mp = mp; 8231 mp->b_cont = NULL; 8232 ire_delete(ire); 8233 mp = saved_mp; 8234 ire = NULL; 8235 if (copy_mp != NULL) { 8236 MULTIRT_DEBUG_UNTAG(copy_mp); 8237 freemsg(copy_mp); 8238 copy_mp = NULL; 8239 } 8240 break; 8241 } 8242 default: 8243 break; 8244 } 8245 } while (multirt_resolve_next); 8246 8247 ip1dbg(("ip_newroute: dropped\n")); 8248 /* Did this packet originate externally? */ 8249 if (mp->b_prev) { 8250 mp->b_next = NULL; 8251 mp->b_prev = NULL; 8252 BUMP_MIB(&ip_mib, ipInDiscards); 8253 } else { 8254 BUMP_MIB(&ip_mib, ipOutDiscards); 8255 } 8256 ASSERT(copy_mp == NULL); 8257 MULTIRT_DEBUG_UNTAG(first_mp); 8258 freemsg(first_mp); 8259 if (ire != NULL) 8260 ire_refrele(ire); 8261 if (sire != NULL) 8262 ire_refrele(sire); 8263 if (src_ipif != NULL) 8264 ipif_refrele(src_ipif); 8265 if (dst_ill != NULL) 8266 ill_refrele(dst_ill); 8267 return; 8268 8269 icmp_err_ret: 8270 ip1dbg(("ip_newroute: no route\n")); 8271 if (src_ipif != NULL) 8272 ipif_refrele(src_ipif); 8273 if (dst_ill != NULL) 8274 ill_refrele(dst_ill); 8275 if (sire != NULL) 8276 ire_refrele(sire); 8277 /* Did this packet originate externally? */ 8278 if (mp->b_prev) { 8279 mp->b_next = NULL; 8280 mp->b_prev = NULL; 8281 /* XXX ipInNoRoutes */ 8282 q = WR(q); 8283 } else { 8284 /* 8285 * Since ip_wput() isn't close to finished, we fill 8286 * in enough of the header for credible error reporting. 8287 */ 8288 if (ip_hdr_complete(ipha, zoneid)) { 8289 /* Failed */ 8290 MULTIRT_DEBUG_UNTAG(first_mp); 8291 freemsg(first_mp); 8292 if (ire != NULL) 8293 ire_refrele(ire); 8294 return; 8295 } 8296 } 8297 BUMP_MIB(&ip_mib, ipOutNoRoutes); 8298 8299 /* 8300 * At this point we will have ire only if RTF_BLACKHOLE 8301 * or RTF_REJECT flags are set on the IRE. It will not 8302 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8303 */ 8304 if (ire != NULL) { 8305 if (ire->ire_flags & RTF_BLACKHOLE) { 8306 ire_refrele(ire); 8307 MULTIRT_DEBUG_UNTAG(first_mp); 8308 freemsg(first_mp); 8309 return; 8310 } 8311 ire_refrele(ire); 8312 } 8313 if (ip_source_routed(ipha)) { 8314 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED); 8315 return; 8316 } 8317 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8318 } 8319 8320 /* 8321 * IPv4 - 8322 * ip_newroute_ipif is called by ip_wput_multicast and 8323 * ip_rput_forward_multicast whenever we need to send 8324 * out a packet to a destination address for which we do not have specific 8325 * routing information. It is used when the packet will be sent out 8326 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8327 * socket option is set or icmp error message wants to go out on a particular 8328 * interface for a unicast packet. 8329 * 8330 * In most cases, the destination address is resolved thanks to the ipif 8331 * intrinsic resolver. However, there are some cases where the call to 8332 * ip_newroute_ipif must take into account the potential presence of 8333 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8334 * that uses the interface. This is specified through flags, 8335 * which can be a combination of: 8336 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8337 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8338 * and flags. Additionally, the packet source address has to be set to 8339 * the specified address. The caller is thus expected to set this flag 8340 * if the packet has no specific source address yet. 8341 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8342 * flag, the resulting ire will inherit the flag. All unresolved routes 8343 * to the destination must be explored in the same call to 8344 * ip_newroute_ipif(). 8345 */ 8346 static void 8347 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8348 conn_t *connp, uint32_t flags) 8349 { 8350 areq_t *areq; 8351 ire_t *ire = NULL; 8352 mblk_t *res_mp; 8353 ipaddr_t *addrp; 8354 mblk_t *first_mp; 8355 ire_t *save_ire = NULL; 8356 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8357 ipif_t *src_ipif = NULL; 8358 ushort_t ire_marks = 0; 8359 ill_t *dst_ill = NULL; 8360 boolean_t mctl_present; 8361 ipsec_out_t *io; 8362 ipha_t *ipha; 8363 int ihandle = 0; 8364 mblk_t *saved_mp; 8365 ire_t *fire = NULL; 8366 mblk_t *copy_mp = NULL; 8367 boolean_t multirt_resolve_next; 8368 ipaddr_t ipha_dst; 8369 zoneid_t zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 8370 8371 /* 8372 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8373 * here for uniformity 8374 */ 8375 ipif_refhold(ipif); 8376 8377 /* 8378 * This loop is run only once in most cases. 8379 * We loop to resolve further routes only when the destination 8380 * can be reached through multiple RTF_MULTIRT-flagged ires. 8381 */ 8382 do { 8383 if (dst_ill != NULL) { 8384 ill_refrele(dst_ill); 8385 dst_ill = NULL; 8386 } 8387 if (src_ipif != NULL) { 8388 ipif_refrele(src_ipif); 8389 src_ipif = NULL; 8390 } 8391 multirt_resolve_next = B_FALSE; 8392 8393 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8394 ipif->ipif_ill->ill_name)); 8395 8396 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8397 if (mctl_present) 8398 io = (ipsec_out_t *)first_mp->b_rptr; 8399 8400 ipha = (ipha_t *)mp->b_rptr; 8401 8402 /* 8403 * Save the packet destination address, we may need it after 8404 * the packet has been consumed. 8405 */ 8406 ipha_dst = ipha->ipha_dst; 8407 8408 /* 8409 * If the interface is a pt-pt interface we look for an 8410 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8411 * local_address and the pt-pt destination address. Otherwise 8412 * we just match the local address. 8413 * NOTE: dst could be different than ipha->ipha_dst in case 8414 * of sending igmp multicast packets over a point-to-point 8415 * connection. 8416 * Thus we must be careful enough to check ipha_dst to be a 8417 * multicast address, otherwise it will take xmit_if path for 8418 * multicast packets resulting into kernel stack overflow by 8419 * repeated calls to ip_newroute_ipif from ire_send(). 8420 */ 8421 if (CLASSD(ipha_dst) && 8422 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8423 goto err_ret; 8424 } 8425 8426 /* 8427 * We check if an IRE_OFFSUBNET for the addr that goes through 8428 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8429 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8430 * propagate its flags to the new ire. 8431 */ 8432 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8433 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8434 ip2dbg(("ip_newroute_ipif: " 8435 "ipif_lookup_multi_ire(" 8436 "ipif %p, dst %08x) = fire %p\n", 8437 (void *)ipif, ntohl(dst), (void *)fire)); 8438 } 8439 8440 if (mctl_present && io->ipsec_out_attach_if) { 8441 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8442 io->ipsec_out_ill_index, B_FALSE); 8443 8444 /* Failure case frees things for us. */ 8445 if (attach_ill == NULL) { 8446 ipif_refrele(ipif); 8447 if (fire != NULL) 8448 ire_refrele(fire); 8449 return; 8450 } 8451 8452 /* 8453 * Check if we need an ire that will not be 8454 * looked up by anybody else i.e. HIDDEN. 8455 */ 8456 if (ill_is_probeonly(attach_ill)) { 8457 ire_marks = IRE_MARK_HIDDEN; 8458 } 8459 /* 8460 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8461 * case. 8462 */ 8463 dst_ill = ipif->ipif_ill; 8464 /* attach_ill has been refheld by ip_grab_attach_ill */ 8465 ASSERT(dst_ill == attach_ill); 8466 } else { 8467 /* 8468 * If this is set by IP_XMIT_IF, then make sure that 8469 * ipif is pointing to the same ill as the IP_XMIT_IF 8470 * specified ill. 8471 */ 8472 ASSERT((connp == NULL) || 8473 (connp->conn_xmit_if_ill == NULL) || 8474 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 8475 /* 8476 * If the interface belongs to an interface group, 8477 * make sure the next possible interface in the group 8478 * is used. This encourages load spreading among 8479 * peers in an interface group. 8480 * Note: load spreading is disabled for RTF_MULTIRT 8481 * routes. 8482 */ 8483 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8484 (fire->ire_flags & RTF_MULTIRT)) { 8485 /* 8486 * Don't perform outbound load spreading 8487 * in the case of an RTF_MULTIRT issued route, 8488 * we actually typically want to replicate 8489 * outgoing packets through particular 8490 * interfaces. 8491 */ 8492 dst_ill = ipif->ipif_ill; 8493 ill_refhold(dst_ill); 8494 } else { 8495 dst_ill = ip_newroute_get_dst_ill( 8496 ipif->ipif_ill); 8497 } 8498 if (dst_ill == NULL) { 8499 if (ip_debug > 2) { 8500 pr_addr_dbg("ip_newroute_ipif: " 8501 "no dst ill for dst %s\n", 8502 AF_INET, &dst); 8503 } 8504 goto err_ret; 8505 } 8506 } 8507 8508 /* 8509 * Pick a source address preferring non-deprecated ones. 8510 * Unlike ip_newroute, we don't do any source address 8511 * selection here since for multicast it really does not help 8512 * in inbound load spreading as in the unicast case. 8513 */ 8514 if ((flags & RTF_SETSRC) && (fire != NULL) && 8515 (fire->ire_flags & RTF_SETSRC)) { 8516 /* 8517 * As requested by flags, an IRE_OFFSUBNET was looked up 8518 * on that interface. This ire has RTF_SETSRC flag, so 8519 * the source address of the packet must be changed. 8520 * Check that the ipif matching the requested source 8521 * address still exists. 8522 */ 8523 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 8524 zoneid, NULL, NULL, NULL, NULL); 8525 } 8526 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 8527 (connp != NULL && ipif->ipif_zoneid != zoneid && 8528 ipif->ipif_zoneid != ALL_ZONES)) && 8529 (src_ipif == NULL)) { 8530 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 8531 if (src_ipif == NULL) { 8532 if (ip_debug > 2) { 8533 /* ip1dbg */ 8534 pr_addr_dbg("ip_newroute_ipif: " 8535 "no src for dst %s", 8536 AF_INET, &dst); 8537 } 8538 ip1dbg((" through interface %s\n", 8539 dst_ill->ill_name)); 8540 goto err_ret; 8541 } 8542 ipif_refrele(ipif); 8543 ipif = src_ipif; 8544 ipif_refhold(ipif); 8545 } 8546 if (src_ipif == NULL) { 8547 src_ipif = ipif; 8548 ipif_refhold(src_ipif); 8549 } 8550 8551 /* 8552 * Assign a source address while we have the conn. 8553 * We can't have ip_wput_ire pick a source address when the 8554 * packet returns from arp since conn_unspec_src might be set 8555 * and we loose the conn when going through arp. 8556 */ 8557 if (ipha->ipha_src == INADDR_ANY && 8558 (connp == NULL || !connp->conn_unspec_src)) { 8559 ipha->ipha_src = src_ipif->ipif_src_addr; 8560 } 8561 8562 /* 8563 * In case of IP_XMIT_IF, it is possible that the outgoing 8564 * interface does not have an interface ire. 8565 * Example: Thousands of mobileip PPP interfaces to mobile 8566 * nodes. We don't want to create interface ires because 8567 * packets from other mobile nodes must not take the route 8568 * via interface ires to the visiting mobile node without 8569 * going through the home agent, in absence of mobileip 8570 * route optimization. 8571 */ 8572 if (CLASSD(ipha_dst) && (connp == NULL || 8573 connp->conn_xmit_if_ill == NULL)) { 8574 /* ipif_to_ire returns an held ire */ 8575 ire = ipif_to_ire(ipif); 8576 if (ire == NULL) 8577 goto err_ret; 8578 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 8579 goto err_ret; 8580 /* 8581 * ihandle is needed when the ire is added to 8582 * cache table. 8583 */ 8584 save_ire = ire; 8585 ihandle = save_ire->ire_ihandle; 8586 8587 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 8588 "flags %04x\n", 8589 (void *)ire, (void *)ipif, flags)); 8590 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8591 (fire->ire_flags & RTF_MULTIRT)) { 8592 /* 8593 * As requested by flags, an IRE_OFFSUBNET was 8594 * looked up on that interface. This ire has 8595 * RTF_MULTIRT flag, so the resolution loop will 8596 * be re-entered to resolve additional routes on 8597 * other interfaces. For that purpose, a copy of 8598 * the packet is performed at this point. 8599 */ 8600 fire->ire_last_used_time = lbolt; 8601 copy_mp = copymsg(first_mp); 8602 if (copy_mp) { 8603 MULTIRT_DEBUG_TAG(copy_mp); 8604 } 8605 } 8606 if ((flags & RTF_SETSRC) && (fire != NULL) && 8607 (fire->ire_flags & RTF_SETSRC)) { 8608 /* 8609 * As requested by flags, an IRE_OFFSUBET was 8610 * looked up on that interface. This ire has 8611 * RTF_SETSRC flag, so the source address of the 8612 * packet must be changed. 8613 */ 8614 ipha->ipha_src = fire->ire_src_addr; 8615 } 8616 } else { 8617 ASSERT((connp == NULL) || 8618 (connp->conn_xmit_if_ill != NULL) || 8619 (connp->conn_dontroute)); 8620 /* 8621 * The only ways we can come here are: 8622 * 1) IP_XMIT_IF socket option is set 8623 * 2) ICMP error message generated from 8624 * ip_mrtun_forward() routine and it needs 8625 * to go through the specified ill. 8626 * 3) SO_DONTROUTE socket option is set 8627 * In all cases, the new ire will not be added 8628 * into cache table. 8629 */ 8630 ire_marks |= IRE_MARK_NOADD; 8631 } 8632 8633 switch (ipif->ipif_net_type) { 8634 case IRE_IF_NORESOLVER: { 8635 /* We have what we need to build an IRE_CACHE. */ 8636 mblk_t *dlureq_mp; 8637 8638 /* 8639 * Create a new dlureq_mp with the 8640 * IP gateway address as destination address in the 8641 * DLPI hdr if the physical length is exactly 4 bytes. 8642 */ 8643 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8644 dlureq_mp = ill_dlur_gen((uchar_t *)&dst, 8645 dst_ill->ill_phys_addr_length, 8646 dst_ill->ill_sap, 8647 dst_ill->ill_sap_length); 8648 } else { 8649 /* use the value set in ip_ll_subnet_defaults */ 8650 dlureq_mp = ill_dlur_gen(NULL, 8651 dst_ill->ill_phys_addr_length, 8652 dst_ill->ill_sap, 8653 dst_ill->ill_sap_length); 8654 } 8655 8656 if (dlureq_mp == NULL) 8657 break; 8658 /* 8659 * The new ire inherits the IRE_OFFSUBNET flags 8660 * and source address, if this was requested. 8661 */ 8662 ire = ire_create( 8663 (uchar_t *)&dst, /* dest address */ 8664 (uchar_t *)&ip_g_all_ones, /* mask */ 8665 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8666 NULL, /* gateway address */ 8667 NULL, 8668 &ipif->ipif_mtu, 8669 NULL, /* Fast Path header */ 8670 dst_ill->ill_rq, /* recv-from queue */ 8671 dst_ill->ill_wq, /* send-to queue */ 8672 IRE_CACHE, 8673 dlureq_mp, 8674 src_ipif, 8675 NULL, 8676 (save_ire != NULL ? save_ire->ire_mask : 0), 8677 (fire != NULL) ? /* Parent handle */ 8678 fire->ire_phandle : 0, 8679 ihandle, /* Interface handle */ 8680 (fire != NULL) ? 8681 (fire->ire_flags & 8682 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8683 (save_ire == NULL ? &ire_uinfo_null : 8684 &save_ire->ire_uinfo), 8685 NULL, 8686 NULL); 8687 8688 freeb(dlureq_mp); 8689 8690 if (ire == NULL) { 8691 if (save_ire != NULL) 8692 ire_refrele(save_ire); 8693 break; 8694 } 8695 8696 ire->ire_marks |= ire_marks; 8697 8698 /* 8699 * If IRE_MARK_NOADD is set then we need to convert 8700 * the max_fragp to a useable value now. This is 8701 * normally done in ire_add_v[46]. 8702 */ 8703 if (ire->ire_marks & IRE_MARK_NOADD) { 8704 uint_t max_frag; 8705 8706 max_frag = *ire->ire_max_fragp; 8707 ire->ire_max_fragp = NULL; 8708 ire->ire_max_frag = max_frag; 8709 } 8710 8711 /* Prevent save_ire from getting deleted */ 8712 if (save_ire != NULL) { 8713 IRB_REFHOLD(save_ire->ire_bucket); 8714 /* Has it been removed already ? */ 8715 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8716 IRB_REFRELE(save_ire->ire_bucket); 8717 ire_refrele(save_ire); 8718 break; 8719 } 8720 } 8721 8722 ire_add_then_send(q, ire, first_mp); 8723 8724 /* Assert that save_ire is not deleted yet. */ 8725 if (save_ire != NULL) { 8726 ASSERT(save_ire->ire_ptpn != NULL); 8727 IRB_REFRELE(save_ire->ire_bucket); 8728 ire_refrele(save_ire); 8729 save_ire = NULL; 8730 } 8731 if (fire != NULL) { 8732 ire_refrele(fire); 8733 fire = NULL; 8734 } 8735 8736 /* 8737 * the resolution loop is re-entered if this 8738 * was requested through flags and if we 8739 * actually are in a multirouting case. 8740 */ 8741 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8742 boolean_t need_resolve = 8743 ire_multirt_need_resolve(ipha_dst, 8744 MBLK_GETLABEL(copy_mp)); 8745 if (!need_resolve) { 8746 MULTIRT_DEBUG_UNTAG(copy_mp); 8747 freemsg(copy_mp); 8748 copy_mp = NULL; 8749 } else { 8750 /* 8751 * ipif_lookup_group() calls 8752 * ire_lookup_multi() that uses 8753 * ire_ftable_lookup() to find 8754 * an IRE_INTERFACE for the group. 8755 * In the multirt case, 8756 * ire_lookup_multi() then invokes 8757 * ire_multirt_lookup() to find 8758 * the next resolvable ire. 8759 * As a result, we obtain an new 8760 * interface, derived from the 8761 * next ire. 8762 */ 8763 ipif_refrele(ipif); 8764 ipif = ipif_lookup_group(ipha_dst, 8765 zoneid); 8766 ip2dbg(("ip_newroute_ipif: " 8767 "multirt dst %08x, ipif %p\n", 8768 htonl(dst), (void *)ipif)); 8769 if (ipif != NULL) { 8770 mp = copy_mp; 8771 copy_mp = NULL; 8772 multirt_resolve_next = B_TRUE; 8773 continue; 8774 } else { 8775 freemsg(copy_mp); 8776 } 8777 } 8778 } 8779 if (ipif != NULL) 8780 ipif_refrele(ipif); 8781 ill_refrele(dst_ill); 8782 ipif_refrele(src_ipif); 8783 return; 8784 } 8785 case IRE_IF_RESOLVER: 8786 /* 8787 * We can't build an IRE_CACHE yet, but at least 8788 * we found a resolver that can help. 8789 */ 8790 res_mp = dst_ill->ill_resolver_mp; 8791 if (!OK_RESOLVER_MP(res_mp)) 8792 break; 8793 8794 /* 8795 * We obtain a partial IRE_CACHE which we will pass 8796 * along with the resolver query. When the response 8797 * comes back it will be there ready for us to add. 8798 * The new ire inherits the IRE_OFFSUBNET flags 8799 * and source address, if this was requested. 8800 * The ire_max_frag is atomically set under the 8801 * irebucket lock in ire_add_v[46]. Only in the 8802 * case of IRE_MARK_NOADD, we set it here itself. 8803 */ 8804 ire = ire_create_mp( 8805 (uchar_t *)&dst, /* dest address */ 8806 (uchar_t *)&ip_g_all_ones, /* mask */ 8807 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8808 NULL, /* gateway address */ 8809 NULL, /* no in_src_addr */ 8810 (ire_marks & IRE_MARK_NOADD) ? 8811 ipif->ipif_mtu : 0, /* max_frag */ 8812 NULL, /* Fast path header */ 8813 dst_ill->ill_rq, /* recv-from queue */ 8814 dst_ill->ill_wq, /* send-to queue */ 8815 IRE_CACHE, 8816 res_mp, 8817 src_ipif, 8818 NULL, 8819 (save_ire != NULL ? save_ire->ire_mask : 0), 8820 (fire != NULL) ? /* Parent handle */ 8821 fire->ire_phandle : 0, 8822 ihandle, /* Interface handle */ 8823 (fire != NULL) ? /* flags if any */ 8824 (fire->ire_flags & 8825 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8826 (save_ire == NULL ? &ire_uinfo_null : 8827 &save_ire->ire_uinfo), 8828 NULL, 8829 NULL); 8830 8831 if (save_ire != NULL) { 8832 ire_refrele(save_ire); 8833 save_ire = NULL; 8834 } 8835 if (ire == NULL) 8836 break; 8837 8838 ire->ire_marks |= ire_marks; 8839 /* 8840 * Construct message chain for the resolver of the 8841 * form: 8842 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8843 * 8844 * NOTE : ire will be added later when the response 8845 * comes back from ARP. If the response does not 8846 * come back, ARP frees the packet. For this reason, 8847 * we can't REFHOLD the bucket of save_ire to prevent 8848 * deletions. We may not be able to REFRELE the 8849 * bucket if the response never comes back. 8850 * Thus, before adding the ire, ire_add_v4 will make 8851 * sure that the interface route does not get deleted. 8852 * This is the only case unlike ip_newroute_v6, 8853 * ip_newroute_ipif_v6 where we can always prevent 8854 * deletions because ire_add_then_send is called after 8855 * creating the IRE. 8856 * If IRE_MARK_NOADD is set, then ire_add_then_send 8857 * does not add this IRE into the IRE CACHE. 8858 */ 8859 ASSERT(ire->ire_mp != NULL); 8860 ire->ire_mp->b_cont = first_mp; 8861 /* Have saved_mp handy, for cleanup if canput fails */ 8862 saved_mp = mp; 8863 mp = ire->ire_dlureq_mp; 8864 ASSERT(mp != NULL); 8865 ire->ire_dlureq_mp = NULL; 8866 linkb(mp, ire->ire_mp); 8867 8868 /* 8869 * Fill in the source and dest addrs for the resolver. 8870 * NOTE: this depends on memory layouts imposed by 8871 * ill_init(). 8872 */ 8873 areq = (areq_t *)mp->b_rptr; 8874 addrp = (ipaddr_t *)((char *)areq + 8875 areq->areq_sender_addr_offset); 8876 *addrp = ire->ire_src_addr; 8877 addrp = (ipaddr_t *)((char *)areq + 8878 areq->areq_target_addr_offset); 8879 *addrp = dst; 8880 /* Up to the resolver. */ 8881 if (canputnext(dst_ill->ill_rq)) { 8882 putnext(dst_ill->ill_rq, mp); 8883 /* 8884 * The response will come back in ip_wput 8885 * with db_type IRE_DB_TYPE. 8886 */ 8887 } else { 8888 ire->ire_dlureq_mp = mp; 8889 mp->b_cont = NULL; 8890 ire_delete(ire); 8891 saved_mp->b_next = NULL; 8892 saved_mp->b_prev = NULL; 8893 freemsg(first_mp); 8894 ip2dbg(("ip_newroute_ipif: dropped\n")); 8895 } 8896 8897 if (fire != NULL) { 8898 ire_refrele(fire); 8899 fire = NULL; 8900 } 8901 8902 8903 /* 8904 * The resolution loop is re-entered if this was 8905 * requested through flags and we actually are 8906 * in a multirouting case. 8907 */ 8908 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8909 boolean_t need_resolve = 8910 ire_multirt_need_resolve(ipha_dst, 8911 MBLK_GETLABEL(copy_mp)); 8912 if (!need_resolve) { 8913 MULTIRT_DEBUG_UNTAG(copy_mp); 8914 freemsg(copy_mp); 8915 copy_mp = NULL; 8916 } else { 8917 /* 8918 * ipif_lookup_group() calls 8919 * ire_lookup_multi() that uses 8920 * ire_ftable_lookup() to find 8921 * an IRE_INTERFACE for the group. 8922 * In the multirt case, 8923 * ire_lookup_multi() then invokes 8924 * ire_multirt_lookup() to find 8925 * the next resolvable ire. 8926 * As a result, we obtain an new 8927 * interface, derived from the 8928 * next ire. 8929 */ 8930 ipif_refrele(ipif); 8931 ipif = ipif_lookup_group(ipha_dst, 8932 zoneid); 8933 if (ipif != NULL) { 8934 mp = copy_mp; 8935 copy_mp = NULL; 8936 multirt_resolve_next = B_TRUE; 8937 continue; 8938 } else { 8939 freemsg(copy_mp); 8940 } 8941 } 8942 } 8943 if (ipif != NULL) 8944 ipif_refrele(ipif); 8945 ill_refrele(dst_ill); 8946 ipif_refrele(src_ipif); 8947 return; 8948 default: 8949 break; 8950 } 8951 } while (multirt_resolve_next); 8952 8953 err_ret: 8954 ip2dbg(("ip_newroute_ipif: dropped\n")); 8955 if (fire != NULL) 8956 ire_refrele(fire); 8957 ipif_refrele(ipif); 8958 /* Did this packet originate externally? */ 8959 if (dst_ill != NULL) 8960 ill_refrele(dst_ill); 8961 if (src_ipif != NULL) 8962 ipif_refrele(src_ipif); 8963 if (mp->b_prev || mp->b_next) { 8964 mp->b_next = NULL; 8965 mp->b_prev = NULL; 8966 } else { 8967 /* 8968 * Since ip_wput() isn't close to finished, we fill 8969 * in enough of the header for credible error reporting. 8970 */ 8971 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 8972 /* Failed */ 8973 freemsg(first_mp); 8974 if (ire != NULL) 8975 ire_refrele(ire); 8976 return; 8977 } 8978 } 8979 /* 8980 * At this point we will have ire only if RTF_BLACKHOLE 8981 * or RTF_REJECT flags are set on the IRE. It will not 8982 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8983 */ 8984 if (ire != NULL) { 8985 if (ire->ire_flags & RTF_BLACKHOLE) { 8986 ire_refrele(ire); 8987 freemsg(first_mp); 8988 return; 8989 } 8990 ire_refrele(ire); 8991 } 8992 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8993 } 8994 8995 /* Name/Value Table Lookup Routine */ 8996 char * 8997 ip_nv_lookup(nv_t *nv, int value) 8998 { 8999 if (!nv) 9000 return (NULL); 9001 for (; nv->nv_name; nv++) { 9002 if (nv->nv_value == value) 9003 return (nv->nv_name); 9004 } 9005 return ("unknown"); 9006 } 9007 9008 /* 9009 * one day it can be patched to 1 from /etc/system for machines that have few 9010 * fast network interfaces feeding multiple cpus. 9011 */ 9012 int ill_stream_putlocks = 0; 9013 9014 /* 9015 * This is a module open, i.e. this is a control stream for access 9016 * to a DLPI device. We allocate an ill_t as the instance data in 9017 * this case. 9018 */ 9019 int 9020 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9021 { 9022 uint32_t mem_cnt; 9023 uint32_t cpu_cnt; 9024 uint32_t min_cnt; 9025 pgcnt_t mem_avail; 9026 extern uint32_t ip_cache_table_size, ip6_cache_table_size; 9027 ill_t *ill; 9028 int err; 9029 9030 /* 9031 * Prevent unprivileged processes from pushing IP so that 9032 * they can't send raw IP. 9033 */ 9034 if (secpolicy_net_rawaccess(credp) != 0) 9035 return (EPERM); 9036 9037 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9038 q->q_ptr = WR(q)->q_ptr = ill; 9039 9040 /* 9041 * ill_init initializes the ill fields and then sends down 9042 * down a DL_INFO_REQ after calling qprocson. 9043 */ 9044 err = ill_init(q, ill); 9045 if (err != 0) { 9046 mi_free(ill); 9047 q->q_ptr = NULL; 9048 WR(q)->q_ptr = NULL; 9049 return (err); 9050 } 9051 9052 /* ill_init initializes the ipsq marking this thread as writer */ 9053 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9054 /* Wait for the DL_INFO_ACK */ 9055 mutex_enter(&ill->ill_lock); 9056 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9057 /* 9058 * Return value of 0 indicates a pending signal. 9059 */ 9060 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9061 if (err == 0) { 9062 mutex_exit(&ill->ill_lock); 9063 (void) ip_close(q, 0); 9064 return (EINTR); 9065 } 9066 } 9067 mutex_exit(&ill->ill_lock); 9068 9069 /* 9070 * ip_rput_other could have set an error in ill_error on 9071 * receipt of M_ERROR. 9072 */ 9073 9074 err = ill->ill_error; 9075 if (err != 0) { 9076 (void) ip_close(q, 0); 9077 return (err); 9078 } 9079 9080 /* 9081 * ip_ire_max_bucket_cnt is sized below based on the memory 9082 * size and the cpu speed of the machine. This is upper 9083 * bounded by the compile time value of ip_ire_max_bucket_cnt 9084 * and is lower bounded by the compile time value of 9085 * ip_ire_min_bucket_cnt. Similar logic applies to 9086 * ip6_ire_max_bucket_cnt. 9087 */ 9088 mem_avail = kmem_avail(); 9089 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9090 ip_cache_table_size / sizeof (ire_t); 9091 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9092 9093 min_cnt = MIN(cpu_cnt, mem_cnt); 9094 if (min_cnt < ip_ire_min_bucket_cnt) 9095 min_cnt = ip_ire_min_bucket_cnt; 9096 if (ip_ire_max_bucket_cnt > min_cnt) { 9097 ip_ire_max_bucket_cnt = min_cnt; 9098 } 9099 9100 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9101 ip6_cache_table_size / sizeof (ire_t); 9102 min_cnt = MIN(cpu_cnt, mem_cnt); 9103 if (min_cnt < ip6_ire_min_bucket_cnt) 9104 min_cnt = ip6_ire_min_bucket_cnt; 9105 if (ip6_ire_max_bucket_cnt > min_cnt) { 9106 ip6_ire_max_bucket_cnt = min_cnt; 9107 } 9108 9109 ill->ill_credp = credp; 9110 crhold(credp); 9111 9112 mutex_enter(&ip_mi_lock); 9113 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9114 mutex_exit(&ip_mi_lock); 9115 if (err) { 9116 (void) ip_close(q, 0); 9117 return (err); 9118 } 9119 return (0); 9120 } 9121 9122 /* IP open routine. */ 9123 int 9124 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9125 { 9126 conn_t *connp; 9127 major_t maj; 9128 9129 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9130 9131 /* Allow reopen. */ 9132 if (q->q_ptr != NULL) 9133 return (0); 9134 9135 if (sflag & MODOPEN) { 9136 /* This is a module open */ 9137 return (ip_modopen(q, devp, flag, sflag, credp)); 9138 } 9139 9140 /* 9141 * We are opening as a device. This is an IP client stream, and we 9142 * allocate an conn_t as the instance data. 9143 */ 9144 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9145 connp->conn_upq = q; 9146 q->q_ptr = WR(q)->q_ptr = connp; 9147 9148 if (flag & SO_SOCKSTR) 9149 connp->conn_flags |= IPCL_SOCKET; 9150 9151 /* Minor tells us which /dev entry was opened */ 9152 if (geteminor(*devp) == IPV6_MINOR) { 9153 connp->conn_flags |= IPCL_ISV6; 9154 connp->conn_af_isv6 = B_TRUE; 9155 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9156 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9157 } else { 9158 connp->conn_af_isv6 = B_FALSE; 9159 connp->conn_pkt_isv6 = B_FALSE; 9160 } 9161 9162 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9163 q->q_ptr = WR(q)->q_ptr = NULL; 9164 CONN_DEC_REF(connp); 9165 return (EBUSY); 9166 } 9167 9168 maj = getemajor(*devp); 9169 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9170 9171 /* 9172 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9173 */ 9174 connp->conn_cred = credp; 9175 crhold(connp->conn_cred); 9176 9177 /* 9178 * If the caller has the process-wide flag set, then default to MAC 9179 * exempt mode. This allows read-down to unlabeled hosts. 9180 */ 9181 if (getpflags(NET_MAC_AWARE, credp) != 0) 9182 connp->conn_mac_exempt = B_TRUE; 9183 9184 connp->conn_zoneid = getzoneid(); 9185 9186 /* 9187 * This should only happen for ndd, netstat, raw socket or other SCTP 9188 * administrative ops. In these cases, we just need a normal conn_t 9189 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9190 * an error will be returned. 9191 */ 9192 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9193 connp->conn_rq = q; 9194 connp->conn_wq = WR(q); 9195 } else { 9196 connp->conn_ulp = IPPROTO_SCTP; 9197 connp->conn_rq = connp->conn_wq = NULL; 9198 } 9199 /* Non-zero default values */ 9200 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9201 9202 /* 9203 * Make the conn globally visible to walkers 9204 */ 9205 mutex_enter(&connp->conn_lock); 9206 connp->conn_state_flags &= ~CONN_INCIPIENT; 9207 mutex_exit(&connp->conn_lock); 9208 ASSERT(connp->conn_ref == 1); 9209 9210 qprocson(q); 9211 9212 return (0); 9213 } 9214 9215 /* 9216 * Change q_qinfo based on the value of isv6. 9217 * This can not called on an ill queue. 9218 * Note that there is no race since either q_qinfo works for conn queues - it 9219 * is just an optimization to enter the best wput routine directly. 9220 */ 9221 void 9222 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9223 { 9224 ASSERT(q->q_flag & QREADR); 9225 ASSERT(WR(q)->q_next == NULL); 9226 ASSERT(q->q_ptr != NULL); 9227 9228 if (minor == IPV6_MINOR) { 9229 if (bump_mib) 9230 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 9231 q->q_qinfo = &rinit_ipv6; 9232 WR(q)->q_qinfo = &winit_ipv6; 9233 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9234 } else { 9235 if (bump_mib) 9236 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 9237 q->q_qinfo = &rinit; 9238 WR(q)->q_qinfo = &winit; 9239 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9240 } 9241 9242 } 9243 9244 /* 9245 * See if IPsec needs loading because of the options in mp. 9246 */ 9247 static boolean_t 9248 ipsec_opt_present(mblk_t *mp) 9249 { 9250 uint8_t *optcp, *next_optcp, *opt_endcp; 9251 struct opthdr *opt; 9252 struct T_opthdr *topt; 9253 int opthdr_len; 9254 t_uscalar_t optname, optlevel; 9255 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9256 ipsec_req_t *ipsr; 9257 9258 /* 9259 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9260 * return TRUE. 9261 */ 9262 9263 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9264 opt_endcp = optcp + tor->OPT_length; 9265 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9266 opthdr_len = sizeof (struct T_opthdr); 9267 } else { /* O_OPTMGMT_REQ */ 9268 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9269 opthdr_len = sizeof (struct opthdr); 9270 } 9271 for (; optcp < opt_endcp; optcp = next_optcp) { 9272 if (optcp + opthdr_len > opt_endcp) 9273 return (B_FALSE); /* Not enough option header. */ 9274 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9275 topt = (struct T_opthdr *)optcp; 9276 optlevel = topt->level; 9277 optname = topt->name; 9278 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9279 } else { 9280 opt = (struct opthdr *)optcp; 9281 optlevel = opt->level; 9282 optname = opt->name; 9283 next_optcp = optcp + opthdr_len + 9284 _TPI_ALIGN_OPT(opt->len); 9285 } 9286 if ((next_optcp < optcp) || /* wraparound pointer space */ 9287 ((next_optcp >= opt_endcp) && /* last option bad len */ 9288 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9289 return (B_FALSE); /* bad option buffer */ 9290 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9291 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9292 /* 9293 * Check to see if it's an all-bypass or all-zeroes 9294 * IPsec request. Don't bother loading IPsec if 9295 * the socket doesn't want to use it. (A good example 9296 * is a bypass request.) 9297 * 9298 * Basically, if any of the non-NEVER bits are set, 9299 * load IPsec. 9300 */ 9301 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9302 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9303 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9304 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9305 != 0) 9306 return (B_TRUE); 9307 } 9308 } 9309 return (B_FALSE); 9310 } 9311 9312 /* 9313 * If conn is is waiting for ipsec to finish loading, kick it. 9314 */ 9315 /* ARGSUSED */ 9316 static void 9317 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9318 { 9319 t_scalar_t optreq_prim; 9320 mblk_t *mp; 9321 cred_t *cr; 9322 int err = 0; 9323 9324 /* 9325 * This function is called, after ipsec loading is complete. 9326 * Since IP checks exclusively and atomically (i.e it prevents 9327 * ipsec load from completing until ip_optcom_req completes) 9328 * whether ipsec load is complete, there cannot be a race with IP 9329 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9330 */ 9331 mutex_enter(&connp->conn_lock); 9332 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9333 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9334 mp = connp->conn_ipsec_opt_mp; 9335 connp->conn_ipsec_opt_mp = NULL; 9336 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9337 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9338 mutex_exit(&connp->conn_lock); 9339 9340 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9341 9342 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9343 if (optreq_prim == T_OPTMGMT_REQ) { 9344 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9345 &ip_opt_obj); 9346 } else { 9347 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9348 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9349 &ip_opt_obj); 9350 } 9351 if (err != EINPROGRESS) 9352 CONN_OPER_PENDING_DONE(connp); 9353 return; 9354 } 9355 mutex_exit(&connp->conn_lock); 9356 } 9357 9358 /* 9359 * Called from the ipsec_loader thread, outside any perimeter, to tell 9360 * ip qenable any of the queues waiting for the ipsec loader to 9361 * complete. 9362 * 9363 * Use ip_mi_lock to be safe here: all modifications of the mi lists 9364 * are done with this lock held, so it's guaranteed that none of the 9365 * links will change along the way. 9366 */ 9367 void 9368 ip_ipsec_load_complete() 9369 { 9370 ipcl_walk(conn_restart_ipsec_waiter, NULL); 9371 } 9372 9373 /* 9374 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9375 * determines the grp on which it has to become exclusive, queues the mp 9376 * and sq draining restarts the optmgmt 9377 */ 9378 static boolean_t 9379 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9380 { 9381 conn_t *connp; 9382 9383 /* 9384 * Take IPsec requests and treat them special. 9385 */ 9386 if (ipsec_opt_present(mp)) { 9387 /* First check if IPsec is loaded. */ 9388 mutex_enter(&ipsec_loader_lock); 9389 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 9390 mutex_exit(&ipsec_loader_lock); 9391 return (B_FALSE); 9392 } 9393 connp = Q_TO_CONN(q); 9394 mutex_enter(&connp->conn_lock); 9395 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9396 9397 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9398 connp->conn_ipsec_opt_mp = mp; 9399 mutex_exit(&connp->conn_lock); 9400 mutex_exit(&ipsec_loader_lock); 9401 9402 ipsec_loader_loadnow(); 9403 return (B_TRUE); 9404 } 9405 return (B_FALSE); 9406 } 9407 9408 /* 9409 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9410 * all of them are copied to the conn_t. If the req is "zero", the policy is 9411 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9412 * fields. 9413 * We keep only the latest setting of the policy and thus policy setting 9414 * is not incremental/cumulative. 9415 * 9416 * Requests to set policies with multiple alternative actions will 9417 * go through a different API. 9418 */ 9419 int 9420 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9421 { 9422 uint_t ah_req = 0; 9423 uint_t esp_req = 0; 9424 uint_t se_req = 0; 9425 ipsec_selkey_t sel; 9426 ipsec_act_t *actp = NULL; 9427 uint_t nact; 9428 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9429 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9430 ipsec_policy_root_t *pr; 9431 ipsec_policy_head_t *ph; 9432 int fam; 9433 boolean_t is_pol_reset; 9434 int error = 0; 9435 9436 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 9437 9438 /* 9439 * The IP_SEC_OPT option does not allow variable length parameters, 9440 * hence a request cannot be NULL. 9441 */ 9442 if (req == NULL) 9443 return (EINVAL); 9444 9445 ah_req = req->ipsr_ah_req; 9446 esp_req = req->ipsr_esp_req; 9447 se_req = req->ipsr_self_encap_req; 9448 9449 /* 9450 * Are we dealing with a request to reset the policy (i.e. 9451 * zero requests). 9452 */ 9453 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 9454 (esp_req & REQ_MASK) == 0 && 9455 (se_req & REQ_MASK) == 0); 9456 9457 if (!is_pol_reset) { 9458 /* 9459 * If we couldn't load IPsec, fail with "protocol 9460 * not supported". 9461 * IPsec may not have been loaded for a request with zero 9462 * policies, so we don't fail in this case. 9463 */ 9464 mutex_enter(&ipsec_loader_lock); 9465 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 9466 mutex_exit(&ipsec_loader_lock); 9467 return (EPROTONOSUPPORT); 9468 } 9469 mutex_exit(&ipsec_loader_lock); 9470 9471 /* 9472 * Test for valid requests. Invalid algorithms 9473 * need to be tested by IPSEC code because new 9474 * algorithms can be added dynamically. 9475 */ 9476 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9477 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 9478 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 9479 return (EINVAL); 9480 } 9481 9482 /* 9483 * Only privileged users can issue these 9484 * requests. 9485 */ 9486 if (((ah_req & IPSEC_PREF_NEVER) || 9487 (esp_req & IPSEC_PREF_NEVER) || 9488 (se_req & IPSEC_PREF_NEVER)) && 9489 secpolicy_net_config(cr, B_FALSE) != 0) { 9490 return (EPERM); 9491 } 9492 9493 /* 9494 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 9495 * are mutually exclusive. 9496 */ 9497 if (((ah_req & REQ_MASK) == REQ_MASK) || 9498 ((esp_req & REQ_MASK) == REQ_MASK) || 9499 ((se_req & REQ_MASK) == REQ_MASK)) { 9500 /* Both of them are set */ 9501 return (EINVAL); 9502 } 9503 } 9504 9505 mutex_enter(&connp->conn_lock); 9506 9507 /* 9508 * If we have already cached policies in ip_bind_connected*(), don't 9509 * let them change now. We cache policies for connections 9510 * whose src,dst [addr, port] is known. The exception to this is 9511 * tunnels. Tunnels are allowed to change policies after having 9512 * become fully bound. 9513 */ 9514 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 9515 mutex_exit(&connp->conn_lock); 9516 return (EINVAL); 9517 } 9518 9519 /* 9520 * We have a zero policies, reset the connection policy if already 9521 * set. This will cause the connection to inherit the 9522 * global policy, if any. 9523 */ 9524 if (is_pol_reset) { 9525 if (connp->conn_policy != NULL) { 9526 IPPH_REFRELE(connp->conn_policy); 9527 connp->conn_policy = NULL; 9528 } 9529 connp->conn_flags &= ~IPCL_CHECK_POLICY; 9530 connp->conn_in_enforce_policy = B_FALSE; 9531 connp->conn_out_enforce_policy = B_FALSE; 9532 mutex_exit(&connp->conn_lock); 9533 return (0); 9534 } 9535 9536 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 9537 if (ph == NULL) 9538 goto enomem; 9539 9540 ipsec_actvec_from_req(req, &actp, &nact); 9541 if (actp == NULL) 9542 goto enomem; 9543 9544 /* 9545 * Always allocate IPv4 policy entries, since they can also 9546 * apply to ipv6 sockets being used in ipv4-compat mode. 9547 */ 9548 bzero(&sel, sizeof (sel)); 9549 sel.ipsl_valid = IPSL_IPV4; 9550 9551 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9552 if (pin4 == NULL) 9553 goto enomem; 9554 9555 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9556 if (pout4 == NULL) 9557 goto enomem; 9558 9559 if (connp->conn_pkt_isv6) { 9560 /* 9561 * We're looking at a v6 socket, also allocate the 9562 * v6-specific entries... 9563 */ 9564 sel.ipsl_valid = IPSL_IPV6; 9565 pin6 = ipsec_policy_create(&sel, actp, nact, 9566 IPSEC_PRIO_SOCKET); 9567 if (pin6 == NULL) 9568 goto enomem; 9569 9570 pout6 = ipsec_policy_create(&sel, actp, nact, 9571 IPSEC_PRIO_SOCKET); 9572 if (pout6 == NULL) 9573 goto enomem; 9574 9575 /* 9576 * .. and file them away in the right place. 9577 */ 9578 fam = IPSEC_AF_V6; 9579 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9580 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 9581 ipsec_insert_always(&ph->iph_rulebyid, pin6); 9582 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9583 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 9584 ipsec_insert_always(&ph->iph_rulebyid, pout6); 9585 } 9586 9587 ipsec_actvec_free(actp, nact); 9588 9589 /* 9590 * File the v4 policies. 9591 */ 9592 fam = IPSEC_AF_V4; 9593 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9594 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 9595 ipsec_insert_always(&ph->iph_rulebyid, pin4); 9596 9597 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9598 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 9599 ipsec_insert_always(&ph->iph_rulebyid, pout4); 9600 9601 /* 9602 * If the requests need security, set enforce_policy. 9603 * If the requests are IPSEC_PREF_NEVER, one should 9604 * still set conn_out_enforce_policy so that an ipsec_out 9605 * gets attached in ip_wput. This is needed so that 9606 * for connections that we don't cache policy in ip_bind, 9607 * if global policy matches in ip_wput_attach_policy, we 9608 * don't wrongly inherit global policy. Similarly, we need 9609 * to set conn_in_enforce_policy also so that we don't verify 9610 * policy wrongly. 9611 */ 9612 if ((ah_req & REQ_MASK) != 0 || 9613 (esp_req & REQ_MASK) != 0 || 9614 (se_req & REQ_MASK) != 0) { 9615 connp->conn_in_enforce_policy = B_TRUE; 9616 connp->conn_out_enforce_policy = B_TRUE; 9617 connp->conn_flags |= IPCL_CHECK_POLICY; 9618 } 9619 9620 /* 9621 * Tunnels are allowed to set policy after having been fully bound. 9622 * If that's the case, cache policy here. 9623 */ 9624 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 9625 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 9626 9627 mutex_exit(&connp->conn_lock); 9628 return (error); 9629 #undef REQ_MASK 9630 9631 /* 9632 * Common memory-allocation-failure exit path. 9633 */ 9634 enomem: 9635 mutex_exit(&connp->conn_lock); 9636 if (actp != NULL) 9637 ipsec_actvec_free(actp, nact); 9638 if (pin4 != NULL) 9639 IPPOL_REFRELE(pin4); 9640 if (pout4 != NULL) 9641 IPPOL_REFRELE(pout4); 9642 if (pin6 != NULL) 9643 IPPOL_REFRELE(pin6); 9644 if (pout6 != NULL) 9645 IPPOL_REFRELE(pout6); 9646 return (ENOMEM); 9647 } 9648 9649 /* 9650 * Only for options that pass in an IP addr. Currently only V4 options 9651 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 9652 * So this function assumes level is IPPROTO_IP 9653 */ 9654 int 9655 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 9656 mblk_t *first_mp) 9657 { 9658 ipif_t *ipif = NULL; 9659 int error; 9660 ill_t *ill; 9661 int zoneid; 9662 9663 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 9664 9665 if (addr != INADDR_ANY || checkonly) { 9666 ASSERT(connp != NULL); 9667 zoneid = IPCL_ZONEID(connp); 9668 if (option == IP_NEXTHOP) { 9669 ipif = ipif_lookup_onlink_addr(addr, zoneid); 9670 } else { 9671 ipif = ipif_lookup_addr(addr, NULL, zoneid, 9672 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 9673 &error); 9674 } 9675 if (ipif == NULL) { 9676 if (error == EINPROGRESS) 9677 return (error); 9678 else if ((option == IP_MULTICAST_IF) || 9679 (option == IP_NEXTHOP)) 9680 return (EHOSTUNREACH); 9681 else 9682 return (EINVAL); 9683 } else if (checkonly) { 9684 if (option == IP_MULTICAST_IF) { 9685 ill = ipif->ipif_ill; 9686 /* not supported by the virtual network iface */ 9687 if (IS_VNI(ill)) { 9688 ipif_refrele(ipif); 9689 return (EINVAL); 9690 } 9691 } 9692 ipif_refrele(ipif); 9693 return (0); 9694 } 9695 ill = ipif->ipif_ill; 9696 mutex_enter(&connp->conn_lock); 9697 mutex_enter(&ill->ill_lock); 9698 if ((ill->ill_state_flags & ILL_CONDEMNED) || 9699 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 9700 mutex_exit(&ill->ill_lock); 9701 mutex_exit(&connp->conn_lock); 9702 ipif_refrele(ipif); 9703 return (option == IP_MULTICAST_IF ? 9704 EHOSTUNREACH : EINVAL); 9705 } 9706 } else { 9707 mutex_enter(&connp->conn_lock); 9708 } 9709 9710 /* None of the options below are supported on the VNI */ 9711 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 9712 mutex_exit(&ill->ill_lock); 9713 mutex_exit(&connp->conn_lock); 9714 ipif_refrele(ipif); 9715 return (EINVAL); 9716 } 9717 9718 switch (option) { 9719 case IP_DONTFAILOVER_IF: 9720 /* 9721 * This option is used by in.mpathd to ensure 9722 * that IPMP probe packets only go out on the 9723 * test interfaces. in.mpathd sets this option 9724 * on the non-failover interfaces. 9725 * For backward compatibility, this option 9726 * implicitly sets IP_MULTICAST_IF, as used 9727 * be done in bind(), so that ip_wput gets 9728 * this ipif to send mcast packets. 9729 */ 9730 if (ipif != NULL) { 9731 ASSERT(addr != INADDR_ANY); 9732 connp->conn_nofailover_ill = ipif->ipif_ill; 9733 connp->conn_multicast_ipif = ipif; 9734 } else { 9735 ASSERT(addr == INADDR_ANY); 9736 connp->conn_nofailover_ill = NULL; 9737 connp->conn_multicast_ipif = NULL; 9738 } 9739 break; 9740 9741 case IP_MULTICAST_IF: 9742 connp->conn_multicast_ipif = ipif; 9743 break; 9744 case IP_NEXTHOP: 9745 connp->conn_nexthop_v4 = addr; 9746 connp->conn_nexthop_set = B_TRUE; 9747 break; 9748 } 9749 9750 if (ipif != NULL) { 9751 mutex_exit(&ill->ill_lock); 9752 mutex_exit(&connp->conn_lock); 9753 ipif_refrele(ipif); 9754 return (0); 9755 } 9756 mutex_exit(&connp->conn_lock); 9757 /* We succeded in cleared the option */ 9758 return (0); 9759 } 9760 9761 /* 9762 * For options that pass in an ifindex specifying the ill. V6 options always 9763 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 9764 */ 9765 int 9766 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 9767 int level, int option, mblk_t *first_mp) 9768 { 9769 ill_t *ill = NULL; 9770 int error = 0; 9771 9772 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 9773 if (ifindex != 0) { 9774 ASSERT(connp != NULL); 9775 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 9776 first_mp, ip_restart_optmgmt, &error); 9777 if (ill != NULL) { 9778 if (checkonly) { 9779 /* not supported by the virtual network iface */ 9780 if (IS_VNI(ill)) { 9781 ill_refrele(ill); 9782 return (EINVAL); 9783 } 9784 ill_refrele(ill); 9785 return (0); 9786 } 9787 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 9788 0, NULL)) { 9789 ill_refrele(ill); 9790 ill = NULL; 9791 mutex_enter(&connp->conn_lock); 9792 goto setit; 9793 } 9794 mutex_enter(&connp->conn_lock); 9795 mutex_enter(&ill->ill_lock); 9796 if (ill->ill_state_flags & ILL_CONDEMNED) { 9797 mutex_exit(&ill->ill_lock); 9798 mutex_exit(&connp->conn_lock); 9799 ill_refrele(ill); 9800 ill = NULL; 9801 mutex_enter(&connp->conn_lock); 9802 } 9803 goto setit; 9804 } else if (error == EINPROGRESS) { 9805 return (error); 9806 } else { 9807 error = 0; 9808 } 9809 } 9810 mutex_enter(&connp->conn_lock); 9811 setit: 9812 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 9813 9814 /* 9815 * The options below assume that the ILL (if any) transmits and/or 9816 * receives traffic. Neither of which is true for the virtual network 9817 * interface, so fail setting these on a VNI. 9818 */ 9819 if (IS_VNI(ill)) { 9820 ASSERT(ill != NULL); 9821 mutex_exit(&ill->ill_lock); 9822 mutex_exit(&connp->conn_lock); 9823 ill_refrele(ill); 9824 return (EINVAL); 9825 } 9826 9827 if (level == IPPROTO_IP) { 9828 switch (option) { 9829 case IP_BOUND_IF: 9830 connp->conn_incoming_ill = ill; 9831 connp->conn_outgoing_ill = ill; 9832 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9833 0 : ifindex; 9834 break; 9835 9836 case IP_XMIT_IF: 9837 /* 9838 * Similar to IP_BOUND_IF, but this only 9839 * determines the outgoing interface for 9840 * unicast packets. Also no IRE_CACHE entry 9841 * is added for the destination of the 9842 * outgoing packets. This feature is needed 9843 * for mobile IP. 9844 */ 9845 connp->conn_xmit_if_ill = ill; 9846 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 9847 0 : ifindex; 9848 break; 9849 9850 case IP_MULTICAST_IF: 9851 /* 9852 * This option is an internal special. The socket 9853 * level IP_MULTICAST_IF specifies an 'ipaddr' and 9854 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 9855 * specifies an ifindex and we try first on V6 ill's. 9856 * If we don't find one, we they try using on v4 ill's 9857 * intenally and we come here. 9858 */ 9859 if (!checkonly && ill != NULL) { 9860 ipif_t *ipif; 9861 ipif = ill->ill_ipif; 9862 9863 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 9864 mutex_exit(&ill->ill_lock); 9865 mutex_exit(&connp->conn_lock); 9866 ill_refrele(ill); 9867 ill = NULL; 9868 mutex_enter(&connp->conn_lock); 9869 } else { 9870 connp->conn_multicast_ipif = ipif; 9871 } 9872 } 9873 break; 9874 } 9875 } else { 9876 switch (option) { 9877 case IPV6_BOUND_IF: 9878 connp->conn_incoming_ill = ill; 9879 connp->conn_outgoing_ill = ill; 9880 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9881 0 : ifindex; 9882 break; 9883 9884 case IPV6_BOUND_PIF: 9885 /* 9886 * Limit all transmit to this ill. 9887 * Unlike IPV6_BOUND_IF, using this option 9888 * prevents load spreading and failover from 9889 * happening when the interface is part of the 9890 * group. That's why we don't need to remember 9891 * the ifindex in orig_bound_ifindex as in 9892 * IPV6_BOUND_IF. 9893 */ 9894 connp->conn_outgoing_pill = ill; 9895 break; 9896 9897 case IPV6_DONTFAILOVER_IF: 9898 /* 9899 * This option is used by in.mpathd to ensure 9900 * that IPMP probe packets only go out on the 9901 * test interfaces. in.mpathd sets this option 9902 * on the non-failover interfaces. 9903 */ 9904 connp->conn_nofailover_ill = ill; 9905 /* 9906 * For backward compatibility, this option 9907 * implicitly sets ip_multicast_ill as used in 9908 * IP_MULTICAST_IF so that ip_wput gets 9909 * this ipif to send mcast packets. 9910 */ 9911 connp->conn_multicast_ill = ill; 9912 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 9913 0 : ifindex; 9914 break; 9915 9916 case IPV6_MULTICAST_IF: 9917 /* 9918 * Set conn_multicast_ill to be the IPv6 ill. 9919 * Set conn_multicast_ipif to be an IPv4 ipif 9920 * for ifindex to make IPv4 mapped addresses 9921 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 9922 * Even if no IPv6 ill exists for the ifindex 9923 * we need to check for an IPv4 ifindex in order 9924 * for this to work with mapped addresses. In that 9925 * case only set conn_multicast_ipif. 9926 */ 9927 if (!checkonly) { 9928 if (ifindex == 0) { 9929 connp->conn_multicast_ill = NULL; 9930 connp->conn_orig_multicast_ifindex = 0; 9931 connp->conn_multicast_ipif = NULL; 9932 } else if (ill != NULL) { 9933 connp->conn_multicast_ill = ill; 9934 connp->conn_orig_multicast_ifindex = 9935 ifindex; 9936 } 9937 } 9938 break; 9939 } 9940 } 9941 9942 if (ill != NULL) { 9943 mutex_exit(&ill->ill_lock); 9944 mutex_exit(&connp->conn_lock); 9945 ill_refrele(ill); 9946 return (0); 9947 } 9948 mutex_exit(&connp->conn_lock); 9949 /* 9950 * We succeeded in clearing the option (ifindex == 0) or failed to 9951 * locate the ill and could not set the option (ifindex != 0) 9952 */ 9953 return (ifindex == 0 ? 0 : EINVAL); 9954 } 9955 9956 /* This routine sets socket options. */ 9957 /* ARGSUSED */ 9958 int 9959 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9960 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9961 void *dummy, cred_t *cr, mblk_t *first_mp) 9962 { 9963 int *i1 = (int *)invalp; 9964 conn_t *connp = Q_TO_CONN(q); 9965 int error = 0; 9966 boolean_t checkonly; 9967 ire_t *ire; 9968 boolean_t found; 9969 9970 switch (optset_context) { 9971 9972 case SETFN_OPTCOM_CHECKONLY: 9973 checkonly = B_TRUE; 9974 /* 9975 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9976 * inlen != 0 implies value supplied and 9977 * we have to "pretend" to set it. 9978 * inlen == 0 implies that there is no 9979 * value part in T_CHECK request and just validation 9980 * done elsewhere should be enough, we just return here. 9981 */ 9982 if (inlen == 0) { 9983 *outlenp = 0; 9984 return (0); 9985 } 9986 break; 9987 case SETFN_OPTCOM_NEGOTIATE: 9988 case SETFN_UD_NEGOTIATE: 9989 case SETFN_CONN_NEGOTIATE: 9990 checkonly = B_FALSE; 9991 break; 9992 default: 9993 /* 9994 * We should never get here 9995 */ 9996 *outlenp = 0; 9997 return (EINVAL); 9998 } 9999 10000 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10001 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10002 10003 /* 10004 * For fixed length options, no sanity check 10005 * of passed in length is done. It is assumed *_optcom_req() 10006 * routines do the right thing. 10007 */ 10008 10009 switch (level) { 10010 case SOL_SOCKET: 10011 /* 10012 * conn_lock protects the bitfields, and is used to 10013 * set the fields atomically. 10014 */ 10015 switch (name) { 10016 case SO_BROADCAST: 10017 if (!checkonly) { 10018 /* TODO: use value someplace? */ 10019 mutex_enter(&connp->conn_lock); 10020 connp->conn_broadcast = *i1 ? 1 : 0; 10021 mutex_exit(&connp->conn_lock); 10022 } 10023 break; /* goto sizeof (int) option return */ 10024 case SO_USELOOPBACK: 10025 if (!checkonly) { 10026 /* TODO: use value someplace? */ 10027 mutex_enter(&connp->conn_lock); 10028 connp->conn_loopback = *i1 ? 1 : 0; 10029 mutex_exit(&connp->conn_lock); 10030 } 10031 break; /* goto sizeof (int) option return */ 10032 case SO_DONTROUTE: 10033 if (!checkonly) { 10034 mutex_enter(&connp->conn_lock); 10035 connp->conn_dontroute = *i1 ? 1 : 0; 10036 mutex_exit(&connp->conn_lock); 10037 } 10038 break; /* goto sizeof (int) option return */ 10039 case SO_REUSEADDR: 10040 if (!checkonly) { 10041 mutex_enter(&connp->conn_lock); 10042 connp->conn_reuseaddr = *i1 ? 1 : 0; 10043 mutex_exit(&connp->conn_lock); 10044 } 10045 break; /* goto sizeof (int) option return */ 10046 case SO_PROTOTYPE: 10047 if (!checkonly) { 10048 mutex_enter(&connp->conn_lock); 10049 connp->conn_proto = *i1; 10050 mutex_exit(&connp->conn_lock); 10051 } 10052 break; /* goto sizeof (int) option return */ 10053 case SO_ALLZONES: 10054 if (!checkonly) { 10055 mutex_enter(&connp->conn_lock); 10056 if (IPCL_IS_BOUND(connp)) { 10057 mutex_exit(&connp->conn_lock); 10058 return (EINVAL); 10059 } 10060 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10061 mutex_exit(&connp->conn_lock); 10062 } 10063 break; /* goto sizeof (int) option return */ 10064 case SO_ANON_MLP: 10065 if (!checkonly) { 10066 mutex_enter(&connp->conn_lock); 10067 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10068 mutex_exit(&connp->conn_lock); 10069 } 10070 break; /* goto sizeof (int) option return */ 10071 case SO_MAC_EXEMPT: 10072 if (secpolicy_net_mac_aware(cr) != 0 || 10073 IPCL_IS_BOUND(connp)) 10074 return (EACCES); 10075 if (!checkonly) { 10076 mutex_enter(&connp->conn_lock); 10077 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10078 mutex_exit(&connp->conn_lock); 10079 } 10080 break; /* goto sizeof (int) option return */ 10081 default: 10082 /* 10083 * "soft" error (negative) 10084 * option not handled at this level 10085 * Note: Do not modify *outlenp 10086 */ 10087 return (-EINVAL); 10088 } 10089 break; 10090 case IPPROTO_IP: 10091 switch (name) { 10092 case IP_NEXTHOP: 10093 case IP_MULTICAST_IF: 10094 case IP_DONTFAILOVER_IF: { 10095 ipaddr_t addr = *i1; 10096 10097 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10098 first_mp); 10099 if (error != 0) 10100 return (error); 10101 break; /* goto sizeof (int) option return */ 10102 } 10103 10104 case IP_MULTICAST_TTL: 10105 /* Recorded in transport above IP */ 10106 *outvalp = *invalp; 10107 *outlenp = sizeof (uchar_t); 10108 return (0); 10109 case IP_MULTICAST_LOOP: 10110 if (!checkonly) { 10111 mutex_enter(&connp->conn_lock); 10112 connp->conn_multicast_loop = *invalp ? 1 : 0; 10113 mutex_exit(&connp->conn_lock); 10114 } 10115 *outvalp = *invalp; 10116 *outlenp = sizeof (uchar_t); 10117 return (0); 10118 case IP_ADD_MEMBERSHIP: 10119 case MCAST_JOIN_GROUP: 10120 case IP_DROP_MEMBERSHIP: 10121 case MCAST_LEAVE_GROUP: { 10122 struct ip_mreq *mreqp; 10123 struct group_req *greqp; 10124 ire_t *ire; 10125 boolean_t done = B_FALSE; 10126 ipaddr_t group, ifaddr; 10127 struct sockaddr_in *sin; 10128 uint32_t *ifindexp; 10129 boolean_t mcast_opt = B_TRUE; 10130 mcast_record_t fmode; 10131 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10132 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10133 10134 switch (name) { 10135 case IP_ADD_MEMBERSHIP: 10136 mcast_opt = B_FALSE; 10137 /* FALLTHRU */ 10138 case MCAST_JOIN_GROUP: 10139 fmode = MODE_IS_EXCLUDE; 10140 optfn = ip_opt_add_group; 10141 break; 10142 10143 case IP_DROP_MEMBERSHIP: 10144 mcast_opt = B_FALSE; 10145 /* FALLTHRU */ 10146 case MCAST_LEAVE_GROUP: 10147 fmode = MODE_IS_INCLUDE; 10148 optfn = ip_opt_delete_group; 10149 break; 10150 } 10151 10152 if (mcast_opt) { 10153 greqp = (struct group_req *)i1; 10154 sin = (struct sockaddr_in *)&greqp->gr_group; 10155 if (sin->sin_family != AF_INET) { 10156 *outlenp = 0; 10157 return (ENOPROTOOPT); 10158 } 10159 group = (ipaddr_t)sin->sin_addr.s_addr; 10160 ifaddr = INADDR_ANY; 10161 ifindexp = &greqp->gr_interface; 10162 } else { 10163 mreqp = (struct ip_mreq *)i1; 10164 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10165 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10166 ifindexp = NULL; 10167 } 10168 10169 /* 10170 * In the multirouting case, we need to replicate 10171 * the request on all interfaces that will take part 10172 * in replication. We do so because multirouting is 10173 * reflective, thus we will probably receive multi- 10174 * casts on those interfaces. 10175 * The ip_multirt_apply_membership() succeeds if the 10176 * operation succeeds on at least one interface. 10177 */ 10178 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10179 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10180 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10181 if (ire != NULL) { 10182 if (ire->ire_flags & RTF_MULTIRT) { 10183 error = ip_multirt_apply_membership( 10184 optfn, ire, connp, checkonly, group, 10185 fmode, INADDR_ANY, first_mp); 10186 done = B_TRUE; 10187 } 10188 ire_refrele(ire); 10189 } 10190 if (!done) { 10191 error = optfn(connp, checkonly, group, ifaddr, 10192 ifindexp, fmode, INADDR_ANY, first_mp); 10193 } 10194 if (error) { 10195 /* 10196 * EINPROGRESS is a soft error, needs retry 10197 * so don't make *outlenp zero. 10198 */ 10199 if (error != EINPROGRESS) 10200 *outlenp = 0; 10201 return (error); 10202 } 10203 /* OK return - copy input buffer into output buffer */ 10204 if (invalp != outvalp) { 10205 /* don't trust bcopy for identical src/dst */ 10206 bcopy(invalp, outvalp, inlen); 10207 } 10208 *outlenp = inlen; 10209 return (0); 10210 } 10211 case IP_BLOCK_SOURCE: 10212 case IP_UNBLOCK_SOURCE: 10213 case IP_ADD_SOURCE_MEMBERSHIP: 10214 case IP_DROP_SOURCE_MEMBERSHIP: 10215 case MCAST_BLOCK_SOURCE: 10216 case MCAST_UNBLOCK_SOURCE: 10217 case MCAST_JOIN_SOURCE_GROUP: 10218 case MCAST_LEAVE_SOURCE_GROUP: { 10219 struct ip_mreq_source *imreqp; 10220 struct group_source_req *gsreqp; 10221 in_addr_t grp, src, ifaddr = INADDR_ANY; 10222 uint32_t ifindex = 0; 10223 mcast_record_t fmode; 10224 struct sockaddr_in *sin; 10225 ire_t *ire; 10226 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10227 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10228 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10229 10230 switch (name) { 10231 case IP_BLOCK_SOURCE: 10232 mcast_opt = B_FALSE; 10233 /* FALLTHRU */ 10234 case MCAST_BLOCK_SOURCE: 10235 fmode = MODE_IS_EXCLUDE; 10236 optfn = ip_opt_add_group; 10237 break; 10238 10239 case IP_UNBLOCK_SOURCE: 10240 mcast_opt = B_FALSE; 10241 /* FALLTHRU */ 10242 case MCAST_UNBLOCK_SOURCE: 10243 fmode = MODE_IS_EXCLUDE; 10244 optfn = ip_opt_delete_group; 10245 break; 10246 10247 case IP_ADD_SOURCE_MEMBERSHIP: 10248 mcast_opt = B_FALSE; 10249 /* FALLTHRU */ 10250 case MCAST_JOIN_SOURCE_GROUP: 10251 fmode = MODE_IS_INCLUDE; 10252 optfn = ip_opt_add_group; 10253 break; 10254 10255 case IP_DROP_SOURCE_MEMBERSHIP: 10256 mcast_opt = B_FALSE; 10257 /* FALLTHRU */ 10258 case MCAST_LEAVE_SOURCE_GROUP: 10259 fmode = MODE_IS_INCLUDE; 10260 optfn = ip_opt_delete_group; 10261 break; 10262 } 10263 10264 if (mcast_opt) { 10265 gsreqp = (struct group_source_req *)i1; 10266 if (gsreqp->gsr_group.ss_family != AF_INET) { 10267 *outlenp = 0; 10268 return (ENOPROTOOPT); 10269 } 10270 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10271 grp = (ipaddr_t)sin->sin_addr.s_addr; 10272 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10273 src = (ipaddr_t)sin->sin_addr.s_addr; 10274 ifindex = gsreqp->gsr_interface; 10275 } else { 10276 imreqp = (struct ip_mreq_source *)i1; 10277 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10278 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10279 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10280 } 10281 10282 /* 10283 * In the multirouting case, we need to replicate 10284 * the request as noted in the mcast cases above. 10285 */ 10286 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10287 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10288 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10289 if (ire != NULL) { 10290 if (ire->ire_flags & RTF_MULTIRT) { 10291 error = ip_multirt_apply_membership( 10292 optfn, ire, connp, checkonly, grp, 10293 fmode, src, first_mp); 10294 done = B_TRUE; 10295 } 10296 ire_refrele(ire); 10297 } 10298 if (!done) { 10299 error = optfn(connp, checkonly, grp, ifaddr, 10300 &ifindex, fmode, src, first_mp); 10301 } 10302 if (error != 0) { 10303 /* 10304 * EINPROGRESS is a soft error, needs retry 10305 * so don't make *outlenp zero. 10306 */ 10307 if (error != EINPROGRESS) 10308 *outlenp = 0; 10309 return (error); 10310 } 10311 /* OK return - copy input buffer into output buffer */ 10312 if (invalp != outvalp) { 10313 bcopy(invalp, outvalp, inlen); 10314 } 10315 *outlenp = inlen; 10316 return (0); 10317 } 10318 case IP_SEC_OPT: 10319 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10320 if (error != 0) { 10321 *outlenp = 0; 10322 return (error); 10323 } 10324 break; 10325 case IP_HDRINCL: 10326 case IP_OPTIONS: 10327 case T_IP_OPTIONS: 10328 case IP_TOS: 10329 case T_IP_TOS: 10330 case IP_TTL: 10331 case IP_RECVDSTADDR: 10332 case IP_RECVOPTS: 10333 /* OK return - copy input buffer into output buffer */ 10334 if (invalp != outvalp) { 10335 /* don't trust bcopy for identical src/dst */ 10336 bcopy(invalp, outvalp, inlen); 10337 } 10338 *outlenp = inlen; 10339 return (0); 10340 case IP_RECVIF: 10341 /* Retrieve the inbound interface index */ 10342 if (!checkonly) { 10343 mutex_enter(&connp->conn_lock); 10344 connp->conn_recvif = *i1 ? 1 : 0; 10345 mutex_exit(&connp->conn_lock); 10346 } 10347 break; /* goto sizeof (int) option return */ 10348 case IP_RECVSLLA: 10349 /* Retrieve the source link layer address */ 10350 if (!checkonly) { 10351 mutex_enter(&connp->conn_lock); 10352 connp->conn_recvslla = *i1 ? 1 : 0; 10353 mutex_exit(&connp->conn_lock); 10354 } 10355 break; /* goto sizeof (int) option return */ 10356 case MRT_INIT: 10357 case MRT_DONE: 10358 case MRT_ADD_VIF: 10359 case MRT_DEL_VIF: 10360 case MRT_ADD_MFC: 10361 case MRT_DEL_MFC: 10362 case MRT_ASSERT: 10363 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 10364 *outlenp = 0; 10365 return (error); 10366 } 10367 error = ip_mrouter_set((int)name, q, checkonly, 10368 (uchar_t *)invalp, inlen, first_mp); 10369 if (error) { 10370 *outlenp = 0; 10371 return (error); 10372 } 10373 /* OK return - copy input buffer into output buffer */ 10374 if (invalp != outvalp) { 10375 /* don't trust bcopy for identical src/dst */ 10376 bcopy(invalp, outvalp, inlen); 10377 } 10378 *outlenp = inlen; 10379 return (0); 10380 case IP_BOUND_IF: 10381 case IP_XMIT_IF: 10382 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10383 level, name, first_mp); 10384 if (error != 0) 10385 return (error); 10386 break; /* goto sizeof (int) option return */ 10387 10388 case IP_UNSPEC_SRC: 10389 /* Allow sending with a zero source address */ 10390 if (!checkonly) { 10391 mutex_enter(&connp->conn_lock); 10392 connp->conn_unspec_src = *i1 ? 1 : 0; 10393 mutex_exit(&connp->conn_lock); 10394 } 10395 break; /* goto sizeof (int) option return */ 10396 default: 10397 /* 10398 * "soft" error (negative) 10399 * option not handled at this level 10400 * Note: Do not modify *outlenp 10401 */ 10402 return (-EINVAL); 10403 } 10404 break; 10405 case IPPROTO_IPV6: 10406 switch (name) { 10407 case IPV6_BOUND_IF: 10408 case IPV6_BOUND_PIF: 10409 case IPV6_DONTFAILOVER_IF: 10410 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10411 level, name, first_mp); 10412 if (error != 0) 10413 return (error); 10414 break; /* goto sizeof (int) option return */ 10415 10416 case IPV6_MULTICAST_IF: 10417 /* 10418 * The only possible errors are EINPROGRESS and 10419 * EINVAL. EINPROGRESS will be restarted and is not 10420 * a hard error. We call this option on both V4 and V6 10421 * If both return EINVAL, then this call returns 10422 * EINVAL. If at least one of them succeeds we 10423 * return success. 10424 */ 10425 found = B_FALSE; 10426 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10427 level, name, first_mp); 10428 if (error == EINPROGRESS) 10429 return (error); 10430 if (error == 0) 10431 found = B_TRUE; 10432 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10433 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 10434 if (error == 0) 10435 found = B_TRUE; 10436 if (!found) 10437 return (error); 10438 break; /* goto sizeof (int) option return */ 10439 10440 case IPV6_MULTICAST_HOPS: 10441 /* Recorded in transport above IP */ 10442 break; /* goto sizeof (int) option return */ 10443 case IPV6_MULTICAST_LOOP: 10444 if (!checkonly) { 10445 mutex_enter(&connp->conn_lock); 10446 connp->conn_multicast_loop = *i1; 10447 mutex_exit(&connp->conn_lock); 10448 } 10449 break; /* goto sizeof (int) option return */ 10450 case IPV6_JOIN_GROUP: 10451 case MCAST_JOIN_GROUP: 10452 case IPV6_LEAVE_GROUP: 10453 case MCAST_LEAVE_GROUP: { 10454 struct ipv6_mreq *ip_mreqp; 10455 struct group_req *greqp; 10456 ire_t *ire; 10457 boolean_t done = B_FALSE; 10458 in6_addr_t groupv6; 10459 uint32_t ifindex; 10460 boolean_t mcast_opt = B_TRUE; 10461 mcast_record_t fmode; 10462 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10463 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10464 10465 switch (name) { 10466 case IPV6_JOIN_GROUP: 10467 mcast_opt = B_FALSE; 10468 /* FALLTHRU */ 10469 case MCAST_JOIN_GROUP: 10470 fmode = MODE_IS_EXCLUDE; 10471 optfn = ip_opt_add_group_v6; 10472 break; 10473 10474 case IPV6_LEAVE_GROUP: 10475 mcast_opt = B_FALSE; 10476 /* FALLTHRU */ 10477 case MCAST_LEAVE_GROUP: 10478 fmode = MODE_IS_INCLUDE; 10479 optfn = ip_opt_delete_group_v6; 10480 break; 10481 } 10482 10483 if (mcast_opt) { 10484 struct sockaddr_in *sin; 10485 struct sockaddr_in6 *sin6; 10486 greqp = (struct group_req *)i1; 10487 if (greqp->gr_group.ss_family == AF_INET) { 10488 sin = (struct sockaddr_in *) 10489 &(greqp->gr_group); 10490 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 10491 &groupv6); 10492 } else { 10493 sin6 = (struct sockaddr_in6 *) 10494 &(greqp->gr_group); 10495 groupv6 = sin6->sin6_addr; 10496 } 10497 ifindex = greqp->gr_interface; 10498 } else { 10499 ip_mreqp = (struct ipv6_mreq *)i1; 10500 groupv6 = ip_mreqp->ipv6mr_multiaddr; 10501 ifindex = ip_mreqp->ipv6mr_interface; 10502 } 10503 /* 10504 * In the multirouting case, we need to replicate 10505 * the request on all interfaces that will take part 10506 * in replication. We do so because multirouting is 10507 * reflective, thus we will probably receive multi- 10508 * casts on those interfaces. 10509 * The ip_multirt_apply_membership_v6() succeeds if 10510 * the operation succeeds on at least one interface. 10511 */ 10512 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 10513 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10514 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10515 if (ire != NULL) { 10516 if (ire->ire_flags & RTF_MULTIRT) { 10517 error = ip_multirt_apply_membership_v6( 10518 optfn, ire, connp, checkonly, 10519 &groupv6, fmode, &ipv6_all_zeros, 10520 first_mp); 10521 done = B_TRUE; 10522 } 10523 ire_refrele(ire); 10524 } 10525 if (!done) { 10526 error = optfn(connp, checkonly, &groupv6, 10527 ifindex, fmode, &ipv6_all_zeros, first_mp); 10528 } 10529 if (error) { 10530 /* 10531 * EINPROGRESS is a soft error, needs retry 10532 * so don't make *outlenp zero. 10533 */ 10534 if (error != EINPROGRESS) 10535 *outlenp = 0; 10536 return (error); 10537 } 10538 /* OK return - copy input buffer into output buffer */ 10539 if (invalp != outvalp) { 10540 /* don't trust bcopy for identical src/dst */ 10541 bcopy(invalp, outvalp, inlen); 10542 } 10543 *outlenp = inlen; 10544 return (0); 10545 } 10546 case MCAST_BLOCK_SOURCE: 10547 case MCAST_UNBLOCK_SOURCE: 10548 case MCAST_JOIN_SOURCE_GROUP: 10549 case MCAST_LEAVE_SOURCE_GROUP: { 10550 struct group_source_req *gsreqp; 10551 in6_addr_t v6grp, v6src; 10552 uint32_t ifindex; 10553 mcast_record_t fmode; 10554 ire_t *ire; 10555 boolean_t done = B_FALSE; 10556 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10557 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10558 10559 switch (name) { 10560 case MCAST_BLOCK_SOURCE: 10561 fmode = MODE_IS_EXCLUDE; 10562 optfn = ip_opt_add_group_v6; 10563 break; 10564 case MCAST_UNBLOCK_SOURCE: 10565 fmode = MODE_IS_EXCLUDE; 10566 optfn = ip_opt_delete_group_v6; 10567 break; 10568 case MCAST_JOIN_SOURCE_GROUP: 10569 fmode = MODE_IS_INCLUDE; 10570 optfn = ip_opt_add_group_v6; 10571 break; 10572 case MCAST_LEAVE_SOURCE_GROUP: 10573 fmode = MODE_IS_INCLUDE; 10574 optfn = ip_opt_delete_group_v6; 10575 break; 10576 } 10577 10578 gsreqp = (struct group_source_req *)i1; 10579 ifindex = gsreqp->gsr_interface; 10580 if (gsreqp->gsr_group.ss_family == AF_INET) { 10581 struct sockaddr_in *s; 10582 s = (struct sockaddr_in *)&gsreqp->gsr_group; 10583 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 10584 s = (struct sockaddr_in *)&gsreqp->gsr_source; 10585 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 10586 } else { 10587 struct sockaddr_in6 *s6; 10588 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 10589 v6grp = s6->sin6_addr; 10590 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 10591 v6src = s6->sin6_addr; 10592 } 10593 10594 /* 10595 * In the multirouting case, we need to replicate 10596 * the request as noted in the mcast cases above. 10597 */ 10598 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 10599 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10600 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10601 if (ire != NULL) { 10602 if (ire->ire_flags & RTF_MULTIRT) { 10603 error = ip_multirt_apply_membership_v6( 10604 optfn, ire, connp, checkonly, 10605 &v6grp, fmode, &v6src, first_mp); 10606 done = B_TRUE; 10607 } 10608 ire_refrele(ire); 10609 } 10610 if (!done) { 10611 error = optfn(connp, checkonly, &v6grp, 10612 ifindex, fmode, &v6src, first_mp); 10613 } 10614 if (error != 0) { 10615 /* 10616 * EINPROGRESS is a soft error, needs retry 10617 * so don't make *outlenp zero. 10618 */ 10619 if (error != EINPROGRESS) 10620 *outlenp = 0; 10621 return (error); 10622 } 10623 /* OK return - copy input buffer into output buffer */ 10624 if (invalp != outvalp) { 10625 bcopy(invalp, outvalp, inlen); 10626 } 10627 *outlenp = inlen; 10628 return (0); 10629 } 10630 case IPV6_UNICAST_HOPS: 10631 /* Recorded in transport above IP */ 10632 break; /* goto sizeof (int) option return */ 10633 case IPV6_UNSPEC_SRC: 10634 /* Allow sending with a zero source address */ 10635 if (!checkonly) { 10636 mutex_enter(&connp->conn_lock); 10637 connp->conn_unspec_src = *i1 ? 1 : 0; 10638 mutex_exit(&connp->conn_lock); 10639 } 10640 break; /* goto sizeof (int) option return */ 10641 case IPV6_RECVPKTINFO: 10642 if (!checkonly) { 10643 mutex_enter(&connp->conn_lock); 10644 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 10645 mutex_exit(&connp->conn_lock); 10646 } 10647 break; /* goto sizeof (int) option return */ 10648 case IPV6_RECVTCLASS: 10649 if (!checkonly) { 10650 if (*i1 < 0 || *i1 > 1) { 10651 return (EINVAL); 10652 } 10653 mutex_enter(&connp->conn_lock); 10654 connp->conn_ipv6_recvtclass = *i1; 10655 mutex_exit(&connp->conn_lock); 10656 } 10657 break; 10658 case IPV6_RECVPATHMTU: 10659 if (!checkonly) { 10660 if (*i1 < 0 || *i1 > 1) { 10661 return (EINVAL); 10662 } 10663 mutex_enter(&connp->conn_lock); 10664 connp->conn_ipv6_recvpathmtu = *i1; 10665 mutex_exit(&connp->conn_lock); 10666 } 10667 break; 10668 case IPV6_RECVHOPLIMIT: 10669 if (!checkonly) { 10670 mutex_enter(&connp->conn_lock); 10671 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 10672 mutex_exit(&connp->conn_lock); 10673 } 10674 break; /* goto sizeof (int) option return */ 10675 case IPV6_RECVHOPOPTS: 10676 if (!checkonly) { 10677 mutex_enter(&connp->conn_lock); 10678 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 10679 mutex_exit(&connp->conn_lock); 10680 } 10681 break; /* goto sizeof (int) option return */ 10682 case IPV6_RECVDSTOPTS: 10683 if (!checkonly) { 10684 mutex_enter(&connp->conn_lock); 10685 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 10686 mutex_exit(&connp->conn_lock); 10687 } 10688 break; /* goto sizeof (int) option return */ 10689 case IPV6_RECVRTHDR: 10690 if (!checkonly) { 10691 mutex_enter(&connp->conn_lock); 10692 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 10693 mutex_exit(&connp->conn_lock); 10694 } 10695 break; /* goto sizeof (int) option return */ 10696 case IPV6_RECVRTHDRDSTOPTS: 10697 if (!checkonly) { 10698 mutex_enter(&connp->conn_lock); 10699 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 10700 mutex_exit(&connp->conn_lock); 10701 } 10702 break; /* goto sizeof (int) option return */ 10703 case IPV6_PKTINFO: 10704 if (inlen == 0) 10705 return (-EINVAL); /* clearing option */ 10706 error = ip6_set_pktinfo(cr, connp, 10707 (struct in6_pktinfo *)invalp, first_mp); 10708 if (error != 0) 10709 *outlenp = 0; 10710 else 10711 *outlenp = inlen; 10712 return (error); 10713 case IPV6_NEXTHOP: { 10714 struct sockaddr_in6 *sin6; 10715 10716 /* Verify that the nexthop is reachable */ 10717 if (inlen == 0) 10718 return (-EINVAL); /* clearing option */ 10719 10720 sin6 = (struct sockaddr_in6 *)invalp; 10721 ire = ire_route_lookup_v6(&sin6->sin6_addr, 10722 0, 0, 0, NULL, NULL, connp->conn_zoneid, 10723 NULL, MATCH_IRE_DEFAULT); 10724 10725 if (ire == NULL) { 10726 *outlenp = 0; 10727 return (EHOSTUNREACH); 10728 } 10729 ire_refrele(ire); 10730 return (-EINVAL); 10731 } 10732 case IPV6_SEC_OPT: 10733 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10734 if (error != 0) { 10735 *outlenp = 0; 10736 return (error); 10737 } 10738 break; 10739 case IPV6_SRC_PREFERENCES: { 10740 /* 10741 * This is implemented strictly in the ip module 10742 * (here and in tcp_opt_*() to accomodate tcp 10743 * sockets). Modules above ip pass this option 10744 * down here since ip is the only one that needs to 10745 * be aware of source address preferences. 10746 * 10747 * This socket option only affects connected 10748 * sockets that haven't already bound to a specific 10749 * IPv6 address. In other words, sockets that 10750 * don't call bind() with an address other than the 10751 * unspecified address and that call connect(). 10752 * ip_bind_connected_v6() passes these preferences 10753 * to the ipif_select_source_v6() function. 10754 */ 10755 if (inlen != sizeof (uint32_t)) 10756 return (EINVAL); 10757 error = ip6_set_src_preferences(connp, 10758 *(uint32_t *)invalp); 10759 if (error != 0) { 10760 *outlenp = 0; 10761 return (error); 10762 } else { 10763 *outlenp = sizeof (uint32_t); 10764 } 10765 break; 10766 } 10767 case IPV6_V6ONLY: 10768 if (*i1 < 0 || *i1 > 1) { 10769 return (EINVAL); 10770 } 10771 mutex_enter(&connp->conn_lock); 10772 connp->conn_ipv6_v6only = *i1; 10773 mutex_exit(&connp->conn_lock); 10774 break; 10775 default: 10776 return (-EINVAL); 10777 } 10778 break; 10779 default: 10780 /* 10781 * "soft" error (negative) 10782 * option not handled at this level 10783 * Note: Do not modify *outlenp 10784 */ 10785 return (-EINVAL); 10786 } 10787 /* 10788 * Common case of return from an option that is sizeof (int) 10789 */ 10790 *(int *)outvalp = *i1; 10791 *outlenp = sizeof (int); 10792 return (0); 10793 } 10794 10795 /* 10796 * This routine gets default values of certain options whose default 10797 * values are maintained by protocol specific code 10798 */ 10799 /* ARGSUSED */ 10800 int 10801 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 10802 { 10803 int *i1 = (int *)ptr; 10804 10805 switch (level) { 10806 case IPPROTO_IP: 10807 switch (name) { 10808 case IP_MULTICAST_TTL: 10809 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 10810 return (sizeof (uchar_t)); 10811 case IP_MULTICAST_LOOP: 10812 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 10813 return (sizeof (uchar_t)); 10814 default: 10815 return (-1); 10816 } 10817 case IPPROTO_IPV6: 10818 switch (name) { 10819 case IPV6_UNICAST_HOPS: 10820 *i1 = ipv6_def_hops; 10821 return (sizeof (int)); 10822 case IPV6_MULTICAST_HOPS: 10823 *i1 = IP_DEFAULT_MULTICAST_TTL; 10824 return (sizeof (int)); 10825 case IPV6_MULTICAST_LOOP: 10826 *i1 = IP_DEFAULT_MULTICAST_LOOP; 10827 return (sizeof (int)); 10828 case IPV6_V6ONLY: 10829 *i1 = 1; 10830 return (sizeof (int)); 10831 default: 10832 return (-1); 10833 } 10834 default: 10835 return (-1); 10836 } 10837 /* NOTREACHED */ 10838 } 10839 10840 /* 10841 * Given a destination address and a pointer to where to put the information 10842 * this routine fills in the mtuinfo. 10843 */ 10844 int 10845 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 10846 struct ip6_mtuinfo *mtuinfo) 10847 { 10848 ire_t *ire; 10849 10850 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 10851 return (-1); 10852 10853 bzero(mtuinfo, sizeof (*mtuinfo)); 10854 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 10855 mtuinfo->ip6m_addr.sin6_port = port; 10856 mtuinfo->ip6m_addr.sin6_addr = *in6; 10857 10858 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 10859 if (ire != NULL) { 10860 mtuinfo->ip6m_mtu = ire->ire_max_frag; 10861 ire_refrele(ire); 10862 } else { 10863 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 10864 } 10865 return (sizeof (struct ip6_mtuinfo)); 10866 } 10867 10868 /* 10869 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 10870 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 10871 * isn't. This doesn't matter as the error checking is done properly for the 10872 * other MRT options coming in through ip_opt_set. 10873 */ 10874 int 10875 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 10876 { 10877 conn_t *connp = Q_TO_CONN(q); 10878 ipsec_req_t *req = (ipsec_req_t *)ptr; 10879 10880 switch (level) { 10881 case IPPROTO_IP: 10882 switch (name) { 10883 case MRT_VERSION: 10884 case MRT_ASSERT: 10885 (void) ip_mrouter_get(name, q, ptr); 10886 return (sizeof (int)); 10887 case IP_SEC_OPT: 10888 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 10889 case IP_NEXTHOP: 10890 if (connp->conn_nexthop_set) { 10891 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 10892 return (sizeof (ipaddr_t)); 10893 } else 10894 return (0); 10895 default: 10896 break; 10897 } 10898 break; 10899 case IPPROTO_IPV6: 10900 switch (name) { 10901 case IPV6_SEC_OPT: 10902 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 10903 case IPV6_SRC_PREFERENCES: { 10904 return (ip6_get_src_preferences(connp, 10905 (uint32_t *)ptr)); 10906 } 10907 case IPV6_V6ONLY: 10908 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 10909 return (sizeof (int)); 10910 case IPV6_PATHMTU: 10911 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 10912 (struct ip6_mtuinfo *)ptr)); 10913 default: 10914 break; 10915 } 10916 break; 10917 default: 10918 break; 10919 } 10920 return (-1); 10921 } 10922 10923 /* Named Dispatch routine to get a current value out of our parameter table. */ 10924 /* ARGSUSED */ 10925 static int 10926 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10927 { 10928 ipparam_t *ippa = (ipparam_t *)cp; 10929 10930 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 10931 return (0); 10932 } 10933 10934 /* ARGSUSED */ 10935 static int 10936 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10937 { 10938 10939 (void) mi_mpprintf(mp, "%d", *(int *)cp); 10940 return (0); 10941 } 10942 10943 /* 10944 * Set ip{,6}_forwarding values. This means walking through all of the 10945 * ill's and toggling their forwarding values. 10946 */ 10947 /* ARGSUSED */ 10948 static int 10949 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10950 { 10951 long new_value; 10952 int *forwarding_value = (int *)cp; 10953 ill_t *walker; 10954 boolean_t isv6 = (forwarding_value == &ipv6_forward); 10955 ill_walk_context_t ctx; 10956 10957 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10958 new_value < 0 || new_value > 1) { 10959 return (EINVAL); 10960 } 10961 10962 *forwarding_value = new_value; 10963 10964 /* 10965 * Regardless of the current value of ip_forwarding, set all per-ill 10966 * values of ip_forwarding to the value being set. 10967 * 10968 * Bring all the ill's up to date with the new global value. 10969 */ 10970 rw_enter(&ill_g_lock, RW_READER); 10971 10972 if (isv6) 10973 walker = ILL_START_WALK_V6(&ctx); 10974 else 10975 walker = ILL_START_WALK_V4(&ctx); 10976 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 10977 (void) ill_forward_set(q, mp, (new_value != 0), 10978 (caddr_t)walker); 10979 } 10980 rw_exit(&ill_g_lock); 10981 10982 return (0); 10983 } 10984 10985 /* 10986 * Walk through the param array specified registering each element with the 10987 * Named Dispatch handler. This is called only during init. So it is ok 10988 * not to acquire any locks 10989 */ 10990 static boolean_t 10991 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 10992 ipndp_t *ipnd, size_t ipnd_cnt) 10993 { 10994 for (; ippa_cnt-- > 0; ippa++) { 10995 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 10996 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 10997 ip_param_get, ip_param_set, (caddr_t)ippa)) { 10998 nd_free(&ip_g_nd); 10999 return (B_FALSE); 11000 } 11001 } 11002 } 11003 11004 for (; ipnd_cnt-- > 0; ipnd++) { 11005 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11006 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11007 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11008 ipnd->ip_ndp_data)) { 11009 nd_free(&ip_g_nd); 11010 return (B_FALSE); 11011 } 11012 } 11013 } 11014 11015 return (B_TRUE); 11016 } 11017 11018 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11019 /* ARGSUSED */ 11020 static int 11021 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11022 { 11023 long new_value; 11024 ipparam_t *ippa = (ipparam_t *)cp; 11025 11026 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11027 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11028 return (EINVAL); 11029 } 11030 ippa->ip_param_value = new_value; 11031 return (0); 11032 } 11033 11034 /* 11035 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11036 * When an ipf is passed here for the first time, if 11037 * we already have in-order fragments on the queue, we convert from the fast- 11038 * path reassembly scheme to the hard-case scheme. From then on, additional 11039 * fragments are reassembled here. We keep track of the start and end offsets 11040 * of each piece, and the number of holes in the chain. When the hole count 11041 * goes to zero, we are done! 11042 * 11043 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11044 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11045 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11046 * after the call to ip_reassemble(). 11047 */ 11048 int 11049 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11050 size_t msg_len) 11051 { 11052 uint_t end; 11053 mblk_t *next_mp; 11054 mblk_t *mp1; 11055 uint_t offset; 11056 boolean_t incr_dups = B_TRUE; 11057 boolean_t offset_zero_seen = B_FALSE; 11058 boolean_t pkt_boundary_checked = B_FALSE; 11059 11060 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11061 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11062 11063 /* Add in byte count */ 11064 ipf->ipf_count += msg_len; 11065 if (ipf->ipf_end) { 11066 /* 11067 * We were part way through in-order reassembly, but now there 11068 * is a hole. We walk through messages already queued, and 11069 * mark them for hard case reassembly. We know that up till 11070 * now they were in order starting from offset zero. 11071 */ 11072 offset = 0; 11073 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11074 IP_REASS_SET_START(mp1, offset); 11075 if (offset == 0) { 11076 ASSERT(ipf->ipf_nf_hdr_len != 0); 11077 offset = -ipf->ipf_nf_hdr_len; 11078 } 11079 offset += mp1->b_wptr - mp1->b_rptr; 11080 IP_REASS_SET_END(mp1, offset); 11081 } 11082 /* One hole at the end. */ 11083 ipf->ipf_hole_cnt = 1; 11084 /* Brand it as a hard case, forever. */ 11085 ipf->ipf_end = 0; 11086 } 11087 /* Walk through all the new pieces. */ 11088 do { 11089 end = start + (mp->b_wptr - mp->b_rptr); 11090 /* 11091 * If start is 0, decrease 'end' only for the first mblk of 11092 * the fragment. Otherwise 'end' can get wrong value in the 11093 * second pass of the loop if first mblk is exactly the 11094 * size of ipf_nf_hdr_len. 11095 */ 11096 if (start == 0 && !offset_zero_seen) { 11097 /* First segment */ 11098 ASSERT(ipf->ipf_nf_hdr_len != 0); 11099 end -= ipf->ipf_nf_hdr_len; 11100 offset_zero_seen = B_TRUE; 11101 } 11102 next_mp = mp->b_cont; 11103 /* 11104 * We are checking to see if there is any interesing data 11105 * to process. If there isn't and the mblk isn't the 11106 * one which carries the unfragmentable header then we 11107 * drop it. It's possible to have just the unfragmentable 11108 * header come through without any data. That needs to be 11109 * saved. 11110 * 11111 * If the assert at the top of this function holds then the 11112 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11113 * is infrequently traveled enough that the test is left in 11114 * to protect against future code changes which break that 11115 * invariant. 11116 */ 11117 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11118 /* Empty. Blast it. */ 11119 IP_REASS_SET_START(mp, 0); 11120 IP_REASS_SET_END(mp, 0); 11121 /* 11122 * If the ipf points to the mblk we are about to free, 11123 * update ipf to point to the next mblk (or NULL 11124 * if none). 11125 */ 11126 if (ipf->ipf_mp->b_cont == mp) 11127 ipf->ipf_mp->b_cont = next_mp; 11128 freeb(mp); 11129 continue; 11130 } 11131 mp->b_cont = NULL; 11132 IP_REASS_SET_START(mp, start); 11133 IP_REASS_SET_END(mp, end); 11134 if (!ipf->ipf_tail_mp) { 11135 ipf->ipf_tail_mp = mp; 11136 ipf->ipf_mp->b_cont = mp; 11137 if (start == 0 || !more) { 11138 ipf->ipf_hole_cnt = 1; 11139 /* 11140 * if the first fragment comes in more than one 11141 * mblk, this loop will be executed for each 11142 * mblk. Need to adjust hole count so exiting 11143 * this routine will leave hole count at 1. 11144 */ 11145 if (next_mp) 11146 ipf->ipf_hole_cnt++; 11147 } else 11148 ipf->ipf_hole_cnt = 2; 11149 continue; 11150 } else if (ipf->ipf_last_frag_seen && !more && 11151 !pkt_boundary_checked) { 11152 /* 11153 * We check datagram boundary only if this fragment 11154 * claims to be the last fragment and we have seen a 11155 * last fragment in the past too. We do this only 11156 * once for a given fragment. 11157 * 11158 * start cannot be 0 here as fragments with start=0 11159 * and MF=0 gets handled as a complete packet. These 11160 * fragments should not reach here. 11161 */ 11162 11163 if (start + msgdsize(mp) != 11164 IP_REASS_END(ipf->ipf_tail_mp)) { 11165 /* 11166 * We have two fragments both of which claim 11167 * to be the last fragment but gives conflicting 11168 * information about the whole datagram size. 11169 * Something fishy is going on. Drop the 11170 * fragment and free up the reassembly list. 11171 */ 11172 return (IP_REASS_FAILED); 11173 } 11174 11175 /* 11176 * We shouldn't come to this code block again for this 11177 * particular fragment. 11178 */ 11179 pkt_boundary_checked = B_TRUE; 11180 } 11181 11182 /* New stuff at or beyond tail? */ 11183 offset = IP_REASS_END(ipf->ipf_tail_mp); 11184 if (start >= offset) { 11185 if (ipf->ipf_last_frag_seen) { 11186 /* current fragment is beyond last fragment */ 11187 return (IP_REASS_FAILED); 11188 } 11189 /* Link it on end. */ 11190 ipf->ipf_tail_mp->b_cont = mp; 11191 ipf->ipf_tail_mp = mp; 11192 if (more) { 11193 if (start != offset) 11194 ipf->ipf_hole_cnt++; 11195 } else if (start == offset && next_mp == NULL) 11196 ipf->ipf_hole_cnt--; 11197 continue; 11198 } 11199 mp1 = ipf->ipf_mp->b_cont; 11200 offset = IP_REASS_START(mp1); 11201 /* New stuff at the front? */ 11202 if (start < offset) { 11203 if (start == 0) { 11204 if (end >= offset) { 11205 /* Nailed the hole at the begining. */ 11206 ipf->ipf_hole_cnt--; 11207 } 11208 } else if (end < offset) { 11209 /* 11210 * A hole, stuff, and a hole where there used 11211 * to be just a hole. 11212 */ 11213 ipf->ipf_hole_cnt++; 11214 } 11215 mp->b_cont = mp1; 11216 /* Check for overlap. */ 11217 while (end > offset) { 11218 if (end < IP_REASS_END(mp1)) { 11219 mp->b_wptr -= end - offset; 11220 IP_REASS_SET_END(mp, offset); 11221 if (ill->ill_isv6) { 11222 BUMP_MIB(ill->ill_ip6_mib, 11223 ipv6ReasmPartDups); 11224 } else { 11225 BUMP_MIB(&ip_mib, 11226 ipReasmPartDups); 11227 } 11228 break; 11229 } 11230 /* Did we cover another hole? */ 11231 if ((mp1->b_cont && 11232 IP_REASS_END(mp1) != 11233 IP_REASS_START(mp1->b_cont) && 11234 end >= IP_REASS_START(mp1->b_cont)) || 11235 (!ipf->ipf_last_frag_seen && !more)) { 11236 ipf->ipf_hole_cnt--; 11237 } 11238 /* Clip out mp1. */ 11239 if ((mp->b_cont = mp1->b_cont) == NULL) { 11240 /* 11241 * After clipping out mp1, this guy 11242 * is now hanging off the end. 11243 */ 11244 ipf->ipf_tail_mp = mp; 11245 } 11246 IP_REASS_SET_START(mp1, 0); 11247 IP_REASS_SET_END(mp1, 0); 11248 /* Subtract byte count */ 11249 ipf->ipf_count -= mp1->b_datap->db_lim - 11250 mp1->b_datap->db_base; 11251 freeb(mp1); 11252 if (ill->ill_isv6) { 11253 BUMP_MIB(ill->ill_ip6_mib, 11254 ipv6ReasmPartDups); 11255 } else { 11256 BUMP_MIB(&ip_mib, ipReasmPartDups); 11257 } 11258 mp1 = mp->b_cont; 11259 if (!mp1) 11260 break; 11261 offset = IP_REASS_START(mp1); 11262 } 11263 ipf->ipf_mp->b_cont = mp; 11264 continue; 11265 } 11266 /* 11267 * The new piece starts somewhere between the start of the head 11268 * and before the end of the tail. 11269 */ 11270 for (; mp1; mp1 = mp1->b_cont) { 11271 offset = IP_REASS_END(mp1); 11272 if (start < offset) { 11273 if (end <= offset) { 11274 /* Nothing new. */ 11275 IP_REASS_SET_START(mp, 0); 11276 IP_REASS_SET_END(mp, 0); 11277 /* Subtract byte count */ 11278 ipf->ipf_count -= mp->b_datap->db_lim - 11279 mp->b_datap->db_base; 11280 if (incr_dups) { 11281 ipf->ipf_num_dups++; 11282 incr_dups = B_FALSE; 11283 } 11284 freeb(mp); 11285 if (ill->ill_isv6) { 11286 BUMP_MIB(ill->ill_ip6_mib, 11287 ipv6ReasmDuplicates); 11288 } else { 11289 BUMP_MIB(&ip_mib, 11290 ipReasmDuplicates); 11291 } 11292 break; 11293 } 11294 /* 11295 * Trim redundant stuff off beginning of new 11296 * piece. 11297 */ 11298 IP_REASS_SET_START(mp, offset); 11299 mp->b_rptr += offset - start; 11300 if (ill->ill_isv6) { 11301 BUMP_MIB(ill->ill_ip6_mib, 11302 ipv6ReasmPartDups); 11303 } else { 11304 BUMP_MIB(&ip_mib, ipReasmPartDups); 11305 } 11306 start = offset; 11307 if (!mp1->b_cont) { 11308 /* 11309 * After trimming, this guy is now 11310 * hanging off the end. 11311 */ 11312 mp1->b_cont = mp; 11313 ipf->ipf_tail_mp = mp; 11314 if (!more) { 11315 ipf->ipf_hole_cnt--; 11316 } 11317 break; 11318 } 11319 } 11320 if (start >= IP_REASS_START(mp1->b_cont)) 11321 continue; 11322 /* Fill a hole */ 11323 if (start > offset) 11324 ipf->ipf_hole_cnt++; 11325 mp->b_cont = mp1->b_cont; 11326 mp1->b_cont = mp; 11327 mp1 = mp->b_cont; 11328 offset = IP_REASS_START(mp1); 11329 if (end >= offset) { 11330 ipf->ipf_hole_cnt--; 11331 /* Check for overlap. */ 11332 while (end > offset) { 11333 if (end < IP_REASS_END(mp1)) { 11334 mp->b_wptr -= end - offset; 11335 IP_REASS_SET_END(mp, offset); 11336 /* 11337 * TODO we might bump 11338 * this up twice if there is 11339 * overlap at both ends. 11340 */ 11341 if (ill->ill_isv6) { 11342 BUMP_MIB( 11343 ill->ill_ip6_mib, 11344 ipv6ReasmPartDups); 11345 } else { 11346 BUMP_MIB(&ip_mib, 11347 ipReasmPartDups); 11348 } 11349 break; 11350 } 11351 /* Did we cover another hole? */ 11352 if ((mp1->b_cont && 11353 IP_REASS_END(mp1) 11354 != IP_REASS_START(mp1->b_cont) && 11355 end >= 11356 IP_REASS_START(mp1->b_cont)) || 11357 (!ipf->ipf_last_frag_seen && 11358 !more)) { 11359 ipf->ipf_hole_cnt--; 11360 } 11361 /* Clip out mp1. */ 11362 if ((mp->b_cont = mp1->b_cont) == 11363 NULL) { 11364 /* 11365 * After clipping out mp1, 11366 * this guy is now hanging 11367 * off the end. 11368 */ 11369 ipf->ipf_tail_mp = mp; 11370 } 11371 IP_REASS_SET_START(mp1, 0); 11372 IP_REASS_SET_END(mp1, 0); 11373 /* Subtract byte count */ 11374 ipf->ipf_count -= 11375 mp1->b_datap->db_lim - 11376 mp1->b_datap->db_base; 11377 freeb(mp1); 11378 if (ill->ill_isv6) { 11379 BUMP_MIB(ill->ill_ip6_mib, 11380 ipv6ReasmPartDups); 11381 } else { 11382 BUMP_MIB(&ip_mib, 11383 ipReasmPartDups); 11384 } 11385 mp1 = mp->b_cont; 11386 if (!mp1) 11387 break; 11388 offset = IP_REASS_START(mp1); 11389 } 11390 } 11391 break; 11392 } 11393 } while (start = end, mp = next_mp); 11394 11395 /* Fragment just processed could be the last one. Remember this fact */ 11396 if (!more) 11397 ipf->ipf_last_frag_seen = B_TRUE; 11398 11399 /* Still got holes? */ 11400 if (ipf->ipf_hole_cnt) 11401 return (IP_REASS_PARTIAL); 11402 /* Clean up overloaded fields to avoid upstream disasters. */ 11403 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11404 IP_REASS_SET_START(mp1, 0); 11405 IP_REASS_SET_END(mp1, 0); 11406 } 11407 return (IP_REASS_COMPLETE); 11408 } 11409 11410 /* 11411 * ipsec processing for the fast path, used for input UDP Packets 11412 */ 11413 static boolean_t 11414 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11415 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11416 { 11417 uint32_t ill_index; 11418 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11419 11420 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11421 /* The ill_index of the incoming ILL */ 11422 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11423 11424 /* pass packet up to the transport */ 11425 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11426 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11427 NULL, mctl_present); 11428 if (*first_mpp == NULL) { 11429 return (B_FALSE); 11430 } 11431 } 11432 11433 /* Initiate IPPF processing for fastpath UDP */ 11434 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11435 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11436 if (*mpp == NULL) { 11437 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11438 "deferred/dropped during IPPF processing\n")); 11439 return (B_FALSE); 11440 } 11441 } 11442 /* 11443 * We make the checks as below since we are in the fast path 11444 * and want to minimize the number of checks if the IP_RECVIF and/or 11445 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11446 */ 11447 if (connp->conn_recvif || connp->conn_recvslla || 11448 connp->conn_ipv6_recvpktinfo) { 11449 if (connp->conn_recvif || 11450 connp->conn_ipv6_recvpktinfo) { 11451 in_flags = IPF_RECVIF; 11452 } 11453 if (connp->conn_recvslla) { 11454 in_flags |= IPF_RECVSLLA; 11455 } 11456 /* 11457 * since in_flags are being set ill will be 11458 * referenced in ip_add_info, so it better not 11459 * be NULL. 11460 */ 11461 /* 11462 * the actual data will be contained in b_cont 11463 * upon successful return of the following call. 11464 * If the call fails then the original mblk is 11465 * returned. 11466 */ 11467 *mpp = ip_add_info(*mpp, ill, in_flags); 11468 } 11469 11470 return (B_TRUE); 11471 } 11472 11473 /* 11474 * Fragmentation reassembly. Each ILL has a hash table for 11475 * queuing packets undergoing reassembly for all IPIFs 11476 * associated with the ILL. The hash is based on the packet 11477 * IP ident field. The ILL frag hash table was allocated 11478 * as a timer block at the time the ILL was created. Whenever 11479 * there is anything on the reassembly queue, the timer will 11480 * be running. Returns B_TRUE if successful else B_FALSE; 11481 * frees mp on failure. 11482 */ 11483 static boolean_t 11484 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 11485 uint32_t *cksum_val, uint16_t *cksum_flags) 11486 { 11487 uint32_t frag_offset_flags; 11488 ill_t *ill = (ill_t *)q->q_ptr; 11489 mblk_t *mp = *mpp; 11490 mblk_t *t_mp; 11491 ipaddr_t dst; 11492 uint8_t proto = ipha->ipha_protocol; 11493 uint32_t sum_val; 11494 uint16_t sum_flags; 11495 ipf_t *ipf; 11496 ipf_t **ipfp; 11497 ipfb_t *ipfb; 11498 uint16_t ident; 11499 uint32_t offset; 11500 ipaddr_t src; 11501 uint_t hdr_length; 11502 uint32_t end; 11503 mblk_t *mp1; 11504 mblk_t *tail_mp; 11505 size_t count; 11506 size_t msg_len; 11507 uint8_t ecn_info = 0; 11508 uint32_t packet_size; 11509 boolean_t pruned = B_FALSE; 11510 11511 if (cksum_val != NULL) 11512 *cksum_val = 0; 11513 if (cksum_flags != NULL) 11514 *cksum_flags = 0; 11515 11516 /* 11517 * Drop the fragmented as early as possible, if 11518 * we don't have resource(s) to re-assemble. 11519 */ 11520 if (ip_reass_queue_bytes == 0) { 11521 freemsg(mp); 11522 return (B_FALSE); 11523 } 11524 11525 /* Check for fragmentation offset; return if there's none */ 11526 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 11527 (IPH_MF | IPH_OFFSET)) == 0) 11528 return (B_TRUE); 11529 11530 /* 11531 * We utilize hardware computed checksum info only for UDP since 11532 * IP fragmentation is a normal occurence for the protocol. In 11533 * addition, checksum offload support for IP fragments carrying 11534 * UDP payload is commonly implemented across network adapters. 11535 */ 11536 ASSERT(ill != NULL); 11537 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 11538 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 11539 mblk_t *mp1 = mp->b_cont; 11540 int32_t len; 11541 11542 /* Record checksum information from the packet */ 11543 sum_val = (uint32_t)DB_CKSUM16(mp); 11544 sum_flags = DB_CKSUMFLAGS(mp); 11545 11546 /* IP payload offset from beginning of mblk */ 11547 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 11548 11549 if ((sum_flags & HCK_PARTIALCKSUM) && 11550 (mp1 == NULL || mp1->b_cont == NULL) && 11551 offset >= DB_CKSUMSTART(mp) && 11552 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 11553 uint32_t adj; 11554 /* 11555 * Partial checksum has been calculated by hardware 11556 * and attached to the packet; in addition, any 11557 * prepended extraneous data is even byte aligned. 11558 * If any such data exists, we adjust the checksum; 11559 * this would also handle any postpended data. 11560 */ 11561 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 11562 mp, mp1, len, adj); 11563 11564 /* One's complement subtract extraneous checksum */ 11565 if (adj >= sum_val) 11566 sum_val = ~(adj - sum_val) & 0xFFFF; 11567 else 11568 sum_val -= adj; 11569 } 11570 } else { 11571 sum_val = 0; 11572 sum_flags = 0; 11573 } 11574 11575 /* Clear hardware checksumming flag */ 11576 DB_CKSUMFLAGS(mp) = 0; 11577 11578 ident = ipha->ipha_ident; 11579 offset = (frag_offset_flags << 3) & 0xFFFF; 11580 src = ipha->ipha_src; 11581 dst = ipha->ipha_dst; 11582 hdr_length = IPH_HDR_LENGTH(ipha); 11583 end = ntohs(ipha->ipha_length) - hdr_length; 11584 11585 /* If end == 0 then we have a packet with no data, so just free it */ 11586 if (end == 0) { 11587 freemsg(mp); 11588 return (B_FALSE); 11589 } 11590 11591 /* Record the ECN field info. */ 11592 ecn_info = (ipha->ipha_type_of_service & 0x3); 11593 if (offset != 0) { 11594 /* 11595 * If this isn't the first piece, strip the header, and 11596 * add the offset to the end value. 11597 */ 11598 mp->b_rptr += hdr_length; 11599 end += offset; 11600 } 11601 11602 msg_len = MBLKSIZE(mp); 11603 tail_mp = mp; 11604 while (tail_mp->b_cont != NULL) { 11605 tail_mp = tail_mp->b_cont; 11606 msg_len += MBLKSIZE(tail_mp); 11607 } 11608 11609 /* If the reassembly list for this ILL will get too big, prune it */ 11610 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 11611 ip_reass_queue_bytes) { 11612 ill_frag_prune(ill, 11613 (ip_reass_queue_bytes < msg_len) ? 0 : 11614 (ip_reass_queue_bytes - msg_len)); 11615 pruned = B_TRUE; 11616 } 11617 11618 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 11619 mutex_enter(&ipfb->ipfb_lock); 11620 11621 ipfp = &ipfb->ipfb_ipf; 11622 /* Try to find an existing fragment queue for this packet. */ 11623 for (;;) { 11624 ipf = ipfp[0]; 11625 if (ipf != NULL) { 11626 /* 11627 * It has to match on ident and src/dst address. 11628 */ 11629 if (ipf->ipf_ident == ident && 11630 ipf->ipf_src == src && 11631 ipf->ipf_dst == dst && 11632 ipf->ipf_protocol == proto) { 11633 /* 11634 * If we have received too many 11635 * duplicate fragments for this packet 11636 * free it. 11637 */ 11638 if (ipf->ipf_num_dups > ip_max_frag_dups) { 11639 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11640 freemsg(mp); 11641 mutex_exit(&ipfb->ipfb_lock); 11642 return (B_FALSE); 11643 } 11644 /* Found it. */ 11645 break; 11646 } 11647 ipfp = &ipf->ipf_hash_next; 11648 continue; 11649 } 11650 11651 /* 11652 * If we pruned the list, do we want to store this new 11653 * fragment?. We apply an optimization here based on the 11654 * fact that most fragments will be received in order. 11655 * So if the offset of this incoming fragment is zero, 11656 * it is the first fragment of a new packet. We will 11657 * keep it. Otherwise drop the fragment, as we have 11658 * probably pruned the packet already (since the 11659 * packet cannot be found). 11660 */ 11661 if (pruned && offset != 0) { 11662 mutex_exit(&ipfb->ipfb_lock); 11663 freemsg(mp); 11664 return (B_FALSE); 11665 } 11666 11667 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 11668 /* 11669 * Too many fragmented packets in this hash 11670 * bucket. Free the oldest. 11671 */ 11672 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 11673 } 11674 11675 /* New guy. Allocate a frag message. */ 11676 mp1 = allocb(sizeof (*ipf), BPRI_MED); 11677 if (mp1 == NULL) { 11678 BUMP_MIB(&ip_mib, ipInDiscards); 11679 freemsg(mp); 11680 reass_done: 11681 mutex_exit(&ipfb->ipfb_lock); 11682 return (B_FALSE); 11683 } 11684 11685 11686 BUMP_MIB(&ip_mib, ipReasmReqds); 11687 mp1->b_cont = mp; 11688 11689 /* Initialize the fragment header. */ 11690 ipf = (ipf_t *)mp1->b_rptr; 11691 ipf->ipf_mp = mp1; 11692 ipf->ipf_ptphn = ipfp; 11693 ipfp[0] = ipf; 11694 ipf->ipf_hash_next = NULL; 11695 ipf->ipf_ident = ident; 11696 ipf->ipf_protocol = proto; 11697 ipf->ipf_src = src; 11698 ipf->ipf_dst = dst; 11699 ipf->ipf_nf_hdr_len = 0; 11700 /* Record reassembly start time. */ 11701 ipf->ipf_timestamp = gethrestime_sec(); 11702 /* Record ipf generation and account for frag header */ 11703 ipf->ipf_gen = ill->ill_ipf_gen++; 11704 ipf->ipf_count = MBLKSIZE(mp1); 11705 ipf->ipf_last_frag_seen = B_FALSE; 11706 ipf->ipf_ecn = ecn_info; 11707 ipf->ipf_num_dups = 0; 11708 ipfb->ipfb_frag_pkts++; 11709 ipf->ipf_checksum = 0; 11710 ipf->ipf_checksum_flags = 0; 11711 11712 /* Store checksum value in fragment header */ 11713 if (sum_flags != 0) { 11714 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11715 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11716 ipf->ipf_checksum = sum_val; 11717 ipf->ipf_checksum_flags = sum_flags; 11718 } 11719 11720 /* 11721 * We handle reassembly two ways. In the easy case, 11722 * where all the fragments show up in order, we do 11723 * minimal bookkeeping, and just clip new pieces on 11724 * the end. If we ever see a hole, then we go off 11725 * to ip_reassemble which has to mark the pieces and 11726 * keep track of the number of holes, etc. Obviously, 11727 * the point of having both mechanisms is so we can 11728 * handle the easy case as efficiently as possible. 11729 */ 11730 if (offset == 0) { 11731 /* Easy case, in-order reassembly so far. */ 11732 ipf->ipf_count += msg_len; 11733 ipf->ipf_tail_mp = tail_mp; 11734 /* 11735 * Keep track of next expected offset in 11736 * ipf_end. 11737 */ 11738 ipf->ipf_end = end; 11739 ipf->ipf_nf_hdr_len = hdr_length; 11740 } else { 11741 /* Hard case, hole at the beginning. */ 11742 ipf->ipf_tail_mp = NULL; 11743 /* 11744 * ipf_end == 0 means that we have given up 11745 * on easy reassembly. 11746 */ 11747 ipf->ipf_end = 0; 11748 11749 /* Forget checksum offload from now on */ 11750 ipf->ipf_checksum_flags = 0; 11751 11752 /* 11753 * ipf_hole_cnt is set by ip_reassemble. 11754 * ipf_count is updated by ip_reassemble. 11755 * No need to check for return value here 11756 * as we don't expect reassembly to complete 11757 * or fail for the first fragment itself. 11758 */ 11759 (void) ip_reassemble(mp, ipf, 11760 (frag_offset_flags & IPH_OFFSET) << 3, 11761 (frag_offset_flags & IPH_MF), ill, msg_len); 11762 } 11763 /* Update per ipfb and ill byte counts */ 11764 ipfb->ipfb_count += ipf->ipf_count; 11765 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11766 ill->ill_frag_count += ipf->ipf_count; 11767 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11768 /* If the frag timer wasn't already going, start it. */ 11769 mutex_enter(&ill->ill_lock); 11770 ill_frag_timer_start(ill); 11771 mutex_exit(&ill->ill_lock); 11772 goto reass_done; 11773 } 11774 11775 /* 11776 * If the packet's flag has changed (it could be coming up 11777 * from an interface different than the previous, therefore 11778 * possibly different checksum capability), then forget about 11779 * any stored checksum states. Otherwise add the value to 11780 * the existing one stored in the fragment header. 11781 */ 11782 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 11783 sum_val += ipf->ipf_checksum; 11784 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11785 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11786 ipf->ipf_checksum = sum_val; 11787 } else if (ipf->ipf_checksum_flags != 0) { 11788 /* Forget checksum offload from now on */ 11789 ipf->ipf_checksum_flags = 0; 11790 } 11791 11792 /* 11793 * We have a new piece of a datagram which is already being 11794 * reassembled. Update the ECN info if all IP fragments 11795 * are ECN capable. If there is one which is not, clear 11796 * all the info. If there is at least one which has CE 11797 * code point, IP needs to report that up to transport. 11798 */ 11799 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 11800 if (ecn_info == IPH_ECN_CE) 11801 ipf->ipf_ecn = IPH_ECN_CE; 11802 } else { 11803 ipf->ipf_ecn = IPH_ECN_NECT; 11804 } 11805 if (offset && ipf->ipf_end == offset) { 11806 /* The new fragment fits at the end */ 11807 ipf->ipf_tail_mp->b_cont = mp; 11808 /* Update the byte count */ 11809 ipf->ipf_count += msg_len; 11810 /* Update per ipfb and ill byte counts */ 11811 ipfb->ipfb_count += msg_len; 11812 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11813 ill->ill_frag_count += msg_len; 11814 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11815 if (frag_offset_flags & IPH_MF) { 11816 /* More to come. */ 11817 ipf->ipf_end = end; 11818 ipf->ipf_tail_mp = tail_mp; 11819 goto reass_done; 11820 } 11821 } else { 11822 /* Go do the hard cases. */ 11823 int ret; 11824 11825 if (offset == 0) 11826 ipf->ipf_nf_hdr_len = hdr_length; 11827 11828 /* Save current byte count */ 11829 count = ipf->ipf_count; 11830 ret = ip_reassemble(mp, ipf, 11831 (frag_offset_flags & IPH_OFFSET) << 3, 11832 (frag_offset_flags & IPH_MF), ill, msg_len); 11833 /* Count of bytes added and subtracted (freeb()ed) */ 11834 count = ipf->ipf_count - count; 11835 if (count) { 11836 /* Update per ipfb and ill byte counts */ 11837 ipfb->ipfb_count += count; 11838 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11839 ill->ill_frag_count += count; 11840 ASSERT(ill->ill_frag_count > 0); 11841 } 11842 if (ret == IP_REASS_PARTIAL) { 11843 goto reass_done; 11844 } else if (ret == IP_REASS_FAILED) { 11845 /* Reassembly failed. Free up all resources */ 11846 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11847 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 11848 IP_REASS_SET_START(t_mp, 0); 11849 IP_REASS_SET_END(t_mp, 0); 11850 } 11851 freemsg(mp); 11852 goto reass_done; 11853 } 11854 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 11855 } 11856 /* 11857 * We have completed reassembly. Unhook the frag header from 11858 * the reassembly list. 11859 * 11860 * Before we free the frag header, record the ECN info 11861 * to report back to the transport. 11862 */ 11863 ecn_info = ipf->ipf_ecn; 11864 BUMP_MIB(&ip_mib, ipReasmOKs); 11865 ipfp = ipf->ipf_ptphn; 11866 11867 /* We need to supply these to caller */ 11868 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 11869 sum_val = ipf->ipf_checksum; 11870 else 11871 sum_val = 0; 11872 11873 mp1 = ipf->ipf_mp; 11874 count = ipf->ipf_count; 11875 ipf = ipf->ipf_hash_next; 11876 if (ipf != NULL) 11877 ipf->ipf_ptphn = ipfp; 11878 ipfp[0] = ipf; 11879 ill->ill_frag_count -= count; 11880 ASSERT(ipfb->ipfb_count >= count); 11881 ipfb->ipfb_count -= count; 11882 ipfb->ipfb_frag_pkts--; 11883 mutex_exit(&ipfb->ipfb_lock); 11884 /* Ditch the frag header. */ 11885 mp = mp1->b_cont; 11886 11887 freeb(mp1); 11888 11889 /* Restore original IP length in header. */ 11890 packet_size = (uint32_t)msgdsize(mp); 11891 if (packet_size > IP_MAXPACKET) { 11892 freemsg(mp); 11893 BUMP_MIB(&ip_mib, ipInHdrErrors); 11894 return (B_FALSE); 11895 } 11896 11897 if (DB_REF(mp) > 1) { 11898 mblk_t *mp2 = copymsg(mp); 11899 11900 freemsg(mp); 11901 if (mp2 == NULL) { 11902 BUMP_MIB(&ip_mib, ipInDiscards); 11903 return (B_FALSE); 11904 } 11905 mp = mp2; 11906 } 11907 ipha = (ipha_t *)mp->b_rptr; 11908 11909 ipha->ipha_length = htons((uint16_t)packet_size); 11910 /* We're now complete, zip the frag state */ 11911 ipha->ipha_fragment_offset_and_flags = 0; 11912 /* Record the ECN info. */ 11913 ipha->ipha_type_of_service &= 0xFC; 11914 ipha->ipha_type_of_service |= ecn_info; 11915 *mpp = mp; 11916 11917 /* Reassembly is successful; return checksum information if needed */ 11918 if (cksum_val != NULL) 11919 *cksum_val = sum_val; 11920 if (cksum_flags != NULL) 11921 *cksum_flags = sum_flags; 11922 11923 return (B_TRUE); 11924 } 11925 11926 /* 11927 * Perform ip header check sum update local options. 11928 * return B_TRUE if all is well, else return B_FALSE and release 11929 * the mp. caller is responsible for decrementing ire ref cnt. 11930 */ 11931 static boolean_t 11932 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 11933 { 11934 mblk_t *first_mp; 11935 boolean_t mctl_present; 11936 uint16_t sum; 11937 11938 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11939 /* 11940 * Don't do the checksum if it has gone through AH/ESP 11941 * processing. 11942 */ 11943 if (!mctl_present) { 11944 sum = ip_csum_hdr(ipha); 11945 if (sum != 0) { 11946 BUMP_MIB(&ip_mib, ipInCksumErrs); 11947 freemsg(first_mp); 11948 return (B_FALSE); 11949 } 11950 } 11951 11952 if (!ip_rput_local_options(q, mp, ipha, ire)) { 11953 if (mctl_present) 11954 freeb(first_mp); 11955 return (B_FALSE); 11956 } 11957 11958 return (B_TRUE); 11959 } 11960 11961 /* 11962 * All udp packet are delivered to the local host via this routine. 11963 */ 11964 void 11965 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 11966 ill_t *recv_ill) 11967 { 11968 uint32_t sum; 11969 uint32_t u1; 11970 boolean_t mctl_present; 11971 conn_t *connp; 11972 mblk_t *first_mp; 11973 uint16_t *up; 11974 ill_t *ill = (ill_t *)q->q_ptr; 11975 uint16_t reass_hck_flags = 0; 11976 11977 #define rptr ((uchar_t *)ipha) 11978 11979 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11980 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 11981 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11982 11983 /* 11984 * FAST PATH for udp packets 11985 */ 11986 11987 /* u1 is # words of IP options */ 11988 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 11989 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11990 11991 /* IP options present */ 11992 if (u1 != 0) 11993 goto ipoptions; 11994 11995 /* Check the IP header checksum. */ 11996 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 11997 /* Clear the IP header h/w cksum flag */ 11998 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 11999 } else { 12000 #define uph ((uint16_t *)ipha) 12001 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12002 uph[6] + uph[7] + uph[8] + uph[9]; 12003 #undef uph 12004 /* finish doing IP checksum */ 12005 sum = (sum & 0xFFFF) + (sum >> 16); 12006 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12007 /* 12008 * Don't verify header checksum if this packet is coming 12009 * back from AH/ESP as we already did it. 12010 */ 12011 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12012 BUMP_MIB(&ip_mib, ipInCksumErrs); 12013 freemsg(first_mp); 12014 return; 12015 } 12016 } 12017 12018 /* 12019 * Count for SNMP of inbound packets for ire. 12020 * if mctl is present this might be a secure packet and 12021 * has already been counted for in ip_proto_input(). 12022 */ 12023 if (!mctl_present) { 12024 UPDATE_IB_PKT_COUNT(ire); 12025 ire->ire_last_used_time = lbolt; 12026 } 12027 12028 /* packet part of fragmented IP packet? */ 12029 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12030 if (u1 & (IPH_MF | IPH_OFFSET)) { 12031 goto fragmented; 12032 } 12033 12034 /* u1 = IP header length (20 bytes) */ 12035 u1 = IP_SIMPLE_HDR_LENGTH; 12036 12037 /* packet does not contain complete IP & UDP headers */ 12038 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12039 goto udppullup; 12040 12041 /* up points to UDP header */ 12042 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12043 #define iphs ((uint16_t *)ipha) 12044 12045 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12046 if (up[3] != 0) { 12047 mblk_t *mp1 = mp->b_cont; 12048 boolean_t cksum_err; 12049 uint16_t hck_flags = 0; 12050 12051 /* Pseudo-header checksum */ 12052 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12053 iphs[9] + up[2]; 12054 12055 /* 12056 * Revert to software checksum calculation if the interface 12057 * isn't capable of checksum offload or if IPsec is present. 12058 */ 12059 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12060 hck_flags = DB_CKSUMFLAGS(mp); 12061 12062 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12063 IP_STAT(ip_in_sw_cksum); 12064 12065 IP_CKSUM_RECV(hck_flags, u1, 12066 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12067 (int32_t)((uchar_t *)up - rptr), 12068 mp, mp1, cksum_err); 12069 12070 if (cksum_err) { 12071 BUMP_MIB(&ip_mib, udpInCksumErrs); 12072 12073 if (hck_flags & HCK_FULLCKSUM) 12074 IP_STAT(ip_udp_in_full_hw_cksum_err); 12075 else if (hck_flags & HCK_PARTIALCKSUM) 12076 IP_STAT(ip_udp_in_part_hw_cksum_err); 12077 else 12078 IP_STAT(ip_udp_in_sw_cksum_err); 12079 12080 freemsg(first_mp); 12081 return; 12082 } 12083 } 12084 12085 /* Non-fragmented broadcast or multicast packet? */ 12086 if (ire->ire_type == IRE_BROADCAST) 12087 goto udpslowpath; 12088 12089 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12090 ire->ire_zoneid)) != NULL) { 12091 ASSERT(connp->conn_upq != NULL); 12092 IP_STAT(ip_udp_fast_path); 12093 12094 if (CONN_UDP_FLOWCTLD(connp)) { 12095 freemsg(mp); 12096 BUMP_MIB(&ip_mib, udpInOverflows); 12097 } else { 12098 if (!mctl_present) { 12099 BUMP_MIB(&ip_mib, ipInDelivers); 12100 } 12101 /* 12102 * mp and first_mp can change. 12103 */ 12104 if (ip_udp_check(q, connp, recv_ill, 12105 ipha, &mp, &first_mp, mctl_present)) { 12106 /* Send it upstream */ 12107 CONN_UDP_RECV(connp, mp); 12108 } 12109 } 12110 /* 12111 * freeb() cannot deal with null mblk being passed 12112 * in and first_mp can be set to null in the call 12113 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12114 */ 12115 if (mctl_present && first_mp != NULL) { 12116 freeb(first_mp); 12117 } 12118 CONN_DEC_REF(connp); 12119 return; 12120 } 12121 12122 /* 12123 * if we got here we know the packet is not fragmented and 12124 * has no options. The classifier could not find a conn_t and 12125 * most likely its an icmp packet so send it through slow path. 12126 */ 12127 12128 goto udpslowpath; 12129 12130 ipoptions: 12131 if (!ip_options_cksum(q, mp, ipha, ire)) { 12132 goto slow_done; 12133 } 12134 12135 UPDATE_IB_PKT_COUNT(ire); 12136 ire->ire_last_used_time = lbolt; 12137 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12138 if (u1 & (IPH_MF | IPH_OFFSET)) { 12139 fragmented: 12140 /* 12141 * "sum" and "reass_hck_flags" are non-zero if the 12142 * reassembled packet has a valid hardware computed 12143 * checksum information associated with it. 12144 */ 12145 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12146 goto slow_done; 12147 /* 12148 * Make sure that first_mp points back to mp as 12149 * the mp we came in with could have changed in 12150 * ip_rput_fragment(). 12151 */ 12152 ASSERT(!mctl_present); 12153 ipha = (ipha_t *)mp->b_rptr; 12154 first_mp = mp; 12155 } 12156 12157 /* Now we have a complete datagram, destined for this machine. */ 12158 u1 = IPH_HDR_LENGTH(ipha); 12159 /* Pull up the UDP header, if necessary. */ 12160 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12161 udppullup: 12162 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12163 BUMP_MIB(&ip_mib, ipInDiscards); 12164 freemsg(first_mp); 12165 goto slow_done; 12166 } 12167 ipha = (ipha_t *)mp->b_rptr; 12168 } 12169 12170 /* 12171 * Validate the checksum for the reassembled packet; for the 12172 * pullup case we calculate the payload checksum in software. 12173 */ 12174 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12175 if (up[3] != 0) { 12176 boolean_t cksum_err; 12177 12178 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12179 IP_STAT(ip_in_sw_cksum); 12180 12181 IP_CKSUM_RECV_REASS(reass_hck_flags, 12182 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12183 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12184 iphs[9] + up[2], sum, cksum_err); 12185 12186 if (cksum_err) { 12187 BUMP_MIB(&ip_mib, udpInCksumErrs); 12188 12189 if (reass_hck_flags & HCK_FULLCKSUM) 12190 IP_STAT(ip_udp_in_full_hw_cksum_err); 12191 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12192 IP_STAT(ip_udp_in_part_hw_cksum_err); 12193 else 12194 IP_STAT(ip_udp_in_sw_cksum_err); 12195 12196 freemsg(first_mp); 12197 goto slow_done; 12198 } 12199 } 12200 udpslowpath: 12201 12202 /* Clear hardware checksum flag to be safe */ 12203 DB_CKSUMFLAGS(mp) = 0; 12204 12205 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12206 (ire->ire_type == IRE_BROADCAST), 12207 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 12208 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12209 12210 slow_done: 12211 IP_STAT(ip_udp_slow_path); 12212 return; 12213 12214 #undef iphs 12215 #undef rptr 12216 } 12217 12218 /* ARGSUSED */ 12219 static mblk_t * 12220 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12221 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12222 ill_rx_ring_t *ill_ring) 12223 { 12224 conn_t *connp; 12225 uint32_t sum; 12226 uint32_t u1; 12227 uint16_t *up; 12228 int offset; 12229 ssize_t len; 12230 mblk_t *mp1; 12231 boolean_t syn_present = B_FALSE; 12232 tcph_t *tcph; 12233 uint_t ip_hdr_len; 12234 ill_t *ill = (ill_t *)q->q_ptr; 12235 zoneid_t zoneid = ire->ire_zoneid; 12236 boolean_t cksum_err; 12237 uint16_t hck_flags = 0; 12238 12239 #define rptr ((uchar_t *)ipha) 12240 12241 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12242 12243 /* 12244 * FAST PATH for tcp packets 12245 */ 12246 12247 /* u1 is # words of IP options */ 12248 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12249 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12250 12251 /* IP options present */ 12252 if (u1) { 12253 goto ipoptions; 12254 } else { 12255 /* Check the IP header checksum. */ 12256 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12257 /* Clear the IP header h/w cksum flag */ 12258 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12259 } else { 12260 #define uph ((uint16_t *)ipha) 12261 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12262 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12263 #undef uph 12264 /* finish doing IP checksum */ 12265 sum = (sum & 0xFFFF) + (sum >> 16); 12266 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12267 /* 12268 * Don't verify header checksum if this packet 12269 * is coming back from AH/ESP as we already did it. 12270 */ 12271 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12272 BUMP_MIB(&ip_mib, ipInCksumErrs); 12273 goto error; 12274 } 12275 } 12276 } 12277 12278 if (!mctl_present) { 12279 UPDATE_IB_PKT_COUNT(ire); 12280 ire->ire_last_used_time = lbolt; 12281 } 12282 12283 /* packet part of fragmented IP packet? */ 12284 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12285 if (u1 & (IPH_MF | IPH_OFFSET)) { 12286 goto fragmented; 12287 } 12288 12289 /* u1 = IP header length (20 bytes) */ 12290 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12291 12292 /* does packet contain IP+TCP headers? */ 12293 len = mp->b_wptr - rptr; 12294 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12295 IP_STAT(ip_tcppullup); 12296 goto tcppullup; 12297 } 12298 12299 /* TCP options present? */ 12300 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12301 12302 /* 12303 * If options need to be pulled up, then goto tcpoptions. 12304 * otherwise we are still in the fast path 12305 */ 12306 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12307 IP_STAT(ip_tcpoptions); 12308 goto tcpoptions; 12309 } 12310 12311 /* multiple mblks of tcp data? */ 12312 if ((mp1 = mp->b_cont) != NULL) { 12313 /* more then two? */ 12314 if (mp1->b_cont != NULL) { 12315 IP_STAT(ip_multipkttcp); 12316 goto multipkttcp; 12317 } 12318 len += mp1->b_wptr - mp1->b_rptr; 12319 } 12320 12321 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12322 12323 /* part of pseudo checksum */ 12324 12325 /* TCP datagram length */ 12326 u1 = len - IP_SIMPLE_HDR_LENGTH; 12327 12328 #define iphs ((uint16_t *)ipha) 12329 12330 #ifdef _BIG_ENDIAN 12331 u1 += IPPROTO_TCP; 12332 #else 12333 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12334 #endif 12335 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12336 12337 /* 12338 * Revert to software checksum calculation if the interface 12339 * isn't capable of checksum offload or if IPsec is present. 12340 */ 12341 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12342 hck_flags = DB_CKSUMFLAGS(mp); 12343 12344 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12345 IP_STAT(ip_in_sw_cksum); 12346 12347 IP_CKSUM_RECV(hck_flags, u1, 12348 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12349 (int32_t)((uchar_t *)up - rptr), 12350 mp, mp1, cksum_err); 12351 12352 if (cksum_err) { 12353 BUMP_MIB(&ip_mib, tcpInErrs); 12354 12355 if (hck_flags & HCK_FULLCKSUM) 12356 IP_STAT(ip_tcp_in_full_hw_cksum_err); 12357 else if (hck_flags & HCK_PARTIALCKSUM) 12358 IP_STAT(ip_tcp_in_part_hw_cksum_err); 12359 else 12360 IP_STAT(ip_tcp_in_sw_cksum_err); 12361 12362 goto error; 12363 } 12364 12365 try_again: 12366 12367 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 12368 NULL) { 12369 /* Send the TH_RST */ 12370 goto no_conn; 12371 } 12372 12373 /* 12374 * TCP FAST PATH for AF_INET socket. 12375 * 12376 * TCP fast path to avoid extra work. An AF_INET socket type 12377 * does not have facility to receive extra information via 12378 * ip_process or ip_add_info. Also, when the connection was 12379 * established, we made a check if this connection is impacted 12380 * by any global IPSec policy or per connection policy (a 12381 * policy that comes in effect later will not apply to this 12382 * connection). Since all this can be determined at the 12383 * connection establishment time, a quick check of flags 12384 * can avoid extra work. 12385 */ 12386 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12387 !IPP_ENABLED(IPP_LOCAL_IN)) { 12388 ASSERT(first_mp == mp); 12389 SET_SQUEUE(mp, tcp_rput_data, connp); 12390 return (mp); 12391 } 12392 12393 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12394 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12395 if (IPCL_IS_TCP(connp)) { 12396 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12397 DB_CKSUMSTART(mp) = 12398 (intptr_t)ip_squeue_get(ill_ring); 12399 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12400 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12401 SET_SQUEUE(mp, connp->conn_recv, connp); 12402 return (mp); 12403 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12404 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12405 ip_squeue_enter_unbound++; 12406 SET_SQUEUE(mp, tcp_conn_request_unbound, 12407 connp); 12408 return (mp); 12409 } 12410 syn_present = B_TRUE; 12411 } 12412 12413 } 12414 12415 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12416 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12417 12418 /* No need to send this packet to TCP */ 12419 if ((flags & TH_RST) || (flags & TH_URG)) { 12420 CONN_DEC_REF(connp); 12421 freemsg(first_mp); 12422 return (NULL); 12423 } 12424 if (flags & TH_ACK) { 12425 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 12426 CONN_DEC_REF(connp); 12427 return (NULL); 12428 } 12429 12430 CONN_DEC_REF(connp); 12431 freemsg(first_mp); 12432 return (NULL); 12433 } 12434 12435 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 12436 first_mp = ipsec_check_inbound_policy(first_mp, connp, 12437 ipha, NULL, mctl_present); 12438 if (first_mp == NULL) { 12439 CONN_DEC_REF(connp); 12440 return (NULL); 12441 } 12442 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 12443 ASSERT(syn_present); 12444 if (mctl_present) { 12445 ASSERT(first_mp != mp); 12446 first_mp->b_datap->db_struioflag |= 12447 STRUIO_POLICY; 12448 } else { 12449 ASSERT(first_mp == mp); 12450 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 12451 mp->b_datap->db_struioflag |= STRUIO_POLICY; 12452 } 12453 } else { 12454 /* 12455 * Discard first_mp early since we're dealing with a 12456 * fully-connected conn_t and tcp doesn't do policy in 12457 * this case. 12458 */ 12459 if (mctl_present) { 12460 freeb(first_mp); 12461 mctl_present = B_FALSE; 12462 } 12463 first_mp = mp; 12464 } 12465 } 12466 12467 /* Initiate IPPF processing for fastpath */ 12468 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12469 uint32_t ill_index; 12470 12471 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12472 ip_process(IPP_LOCAL_IN, &mp, ill_index); 12473 if (mp == NULL) { 12474 ip2dbg(("ip_input_ipsec_process: TCP pkt " 12475 "deferred/dropped during IPPF processing\n")); 12476 CONN_DEC_REF(connp); 12477 if (mctl_present) 12478 freeb(first_mp); 12479 return (NULL); 12480 } else if (mctl_present) { 12481 /* 12482 * ip_process might return a new mp. 12483 */ 12484 ASSERT(first_mp != mp); 12485 first_mp->b_cont = mp; 12486 } else { 12487 first_mp = mp; 12488 } 12489 12490 } 12491 12492 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 12493 mp = ip_add_info(mp, recv_ill, flags); 12494 if (mp == NULL) { 12495 CONN_DEC_REF(connp); 12496 if (mctl_present) 12497 freeb(first_mp); 12498 return (NULL); 12499 } else if (mctl_present) { 12500 /* 12501 * ip_add_info might return a new mp. 12502 */ 12503 ASSERT(first_mp != mp); 12504 first_mp->b_cont = mp; 12505 } else { 12506 first_mp = mp; 12507 } 12508 } 12509 12510 if (IPCL_IS_TCP(connp)) { 12511 SET_SQUEUE(first_mp, connp->conn_recv, connp); 12512 return (first_mp); 12513 } else { 12514 putnext(connp->conn_rq, first_mp); 12515 CONN_DEC_REF(connp); 12516 return (NULL); 12517 } 12518 12519 no_conn: 12520 /* Initiate IPPf processing, if needed. */ 12521 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12522 uint32_t ill_index; 12523 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12524 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 12525 if (first_mp == NULL) { 12526 return (NULL); 12527 } 12528 } 12529 BUMP_MIB(&ip_mib, ipInDelivers); 12530 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr)); 12531 return (NULL); 12532 ipoptions: 12533 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 12534 goto slow_done; 12535 } 12536 12537 UPDATE_IB_PKT_COUNT(ire); 12538 ire->ire_last_used_time = lbolt; 12539 12540 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12541 if (u1 & (IPH_MF | IPH_OFFSET)) { 12542 fragmented: 12543 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 12544 if (mctl_present) 12545 freeb(first_mp); 12546 goto slow_done; 12547 } 12548 /* 12549 * Make sure that first_mp points back to mp as 12550 * the mp we came in with could have changed in 12551 * ip_rput_fragment(). 12552 */ 12553 ASSERT(!mctl_present); 12554 ipha = (ipha_t *)mp->b_rptr; 12555 first_mp = mp; 12556 } 12557 12558 /* Now we have a complete datagram, destined for this machine. */ 12559 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 12560 12561 len = mp->b_wptr - mp->b_rptr; 12562 /* Pull up a minimal TCP header, if necessary. */ 12563 if (len < (u1 + 20)) { 12564 tcppullup: 12565 if (!pullupmsg(mp, u1 + 20)) { 12566 BUMP_MIB(&ip_mib, ipInDiscards); 12567 goto error; 12568 } 12569 ipha = (ipha_t *)mp->b_rptr; 12570 len = mp->b_wptr - mp->b_rptr; 12571 } 12572 12573 /* 12574 * Extract the offset field from the TCP header. As usual, we 12575 * try to help the compiler more than the reader. 12576 */ 12577 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 12578 if (offset != 5) { 12579 tcpoptions: 12580 if (offset < 5) { 12581 BUMP_MIB(&ip_mib, ipInDiscards); 12582 goto error; 12583 } 12584 /* 12585 * There must be TCP options. 12586 * Make sure we can grab them. 12587 */ 12588 offset <<= 2; 12589 offset += u1; 12590 if (len < offset) { 12591 if (!pullupmsg(mp, offset)) { 12592 BUMP_MIB(&ip_mib, ipInDiscards); 12593 goto error; 12594 } 12595 ipha = (ipha_t *)mp->b_rptr; 12596 len = mp->b_wptr - rptr; 12597 } 12598 } 12599 12600 /* Get the total packet length in len, including headers. */ 12601 if (mp->b_cont) { 12602 multipkttcp: 12603 len = msgdsize(mp); 12604 } 12605 12606 /* 12607 * Check the TCP checksum by pulling together the pseudo- 12608 * header checksum, and passing it to ip_csum to be added in 12609 * with the TCP datagram. 12610 * 12611 * Since we are not using the hwcksum if available we must 12612 * clear the flag. We may come here via tcppullup or tcpoptions. 12613 * If either of these fails along the way the mblk is freed. 12614 * If this logic ever changes and mblk is reused to say send 12615 * ICMP's back, then this flag may need to be cleared in 12616 * other places as well. 12617 */ 12618 DB_CKSUMFLAGS(mp) = 0; 12619 12620 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 12621 12622 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 12623 #ifdef _BIG_ENDIAN 12624 u1 += IPPROTO_TCP; 12625 #else 12626 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12627 #endif 12628 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12629 /* 12630 * Not M_DATA mblk or its a dup, so do the checksum now. 12631 */ 12632 IP_STAT(ip_in_sw_cksum); 12633 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 12634 BUMP_MIB(&ip_mib, tcpInErrs); 12635 goto error; 12636 } 12637 12638 IP_STAT(ip_tcp_slow_path); 12639 goto try_again; 12640 #undef iphs 12641 #undef rptr 12642 12643 error: 12644 freemsg(first_mp); 12645 slow_done: 12646 return (NULL); 12647 } 12648 12649 /* ARGSUSED */ 12650 static void 12651 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12652 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 12653 { 12654 conn_t *connp; 12655 uint32_t sum; 12656 uint32_t u1; 12657 ssize_t len; 12658 sctp_hdr_t *sctph; 12659 zoneid_t zoneid = ire->ire_zoneid; 12660 uint32_t pktsum; 12661 uint32_t calcsum; 12662 uint32_t ports; 12663 uint_t ipif_seqid; 12664 in6_addr_t map_src, map_dst; 12665 ill_t *ill = (ill_t *)q->q_ptr; 12666 12667 #define rptr ((uchar_t *)ipha) 12668 12669 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 12670 12671 /* u1 is # words of IP options */ 12672 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12673 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12674 12675 /* IP options present */ 12676 if (u1 > 0) { 12677 goto ipoptions; 12678 } else { 12679 /* Check the IP header checksum. */ 12680 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12681 #define uph ((uint16_t *)ipha) 12682 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12683 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12684 #undef uph 12685 /* finish doing IP checksum */ 12686 sum = (sum & 0xFFFF) + (sum >> 16); 12687 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12688 /* 12689 * Don't verify header checksum if this packet 12690 * is coming back from AH/ESP as we already did it. 12691 */ 12692 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12693 BUMP_MIB(&ip_mib, ipInCksumErrs); 12694 goto error; 12695 } 12696 } 12697 /* 12698 * Since there is no SCTP h/w cksum support yet, just 12699 * clear the flag. 12700 */ 12701 DB_CKSUMFLAGS(mp) = 0; 12702 } 12703 12704 /* 12705 * Don't verify header checksum if this packet is coming 12706 * back from AH/ESP as we already did it. 12707 */ 12708 if (!mctl_present) { 12709 UPDATE_IB_PKT_COUNT(ire); 12710 ire->ire_last_used_time = lbolt; 12711 } 12712 12713 /* packet part of fragmented IP packet? */ 12714 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12715 if (u1 & (IPH_MF | IPH_OFFSET)) 12716 goto fragmented; 12717 12718 /* u1 = IP header length (20 bytes) */ 12719 u1 = IP_SIMPLE_HDR_LENGTH; 12720 12721 find_sctp_client: 12722 /* Pullup if we don't have the sctp common header. */ 12723 len = MBLKL(mp); 12724 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 12725 if (mp->b_cont == NULL || 12726 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 12727 BUMP_MIB(&ip_mib, ipInDiscards); 12728 goto error; 12729 } 12730 ipha = (ipha_t *)mp->b_rptr; 12731 len = MBLKL(mp); 12732 } 12733 12734 sctph = (sctp_hdr_t *)(rptr + u1); 12735 #ifdef DEBUG 12736 if (!skip_sctp_cksum) { 12737 #endif 12738 pktsum = sctph->sh_chksum; 12739 sctph->sh_chksum = 0; 12740 calcsum = sctp_cksum(mp, u1); 12741 if (calcsum != pktsum) { 12742 BUMP_MIB(&sctp_mib, sctpChecksumError); 12743 goto error; 12744 } 12745 sctph->sh_chksum = pktsum; 12746 #ifdef DEBUG /* skip_sctp_cksum */ 12747 } 12748 #endif 12749 /* get the ports */ 12750 ports = *(uint32_t *)&sctph->sh_sport; 12751 12752 ipif_seqid = ire->ire_ipif->ipif_seqid; 12753 IRE_REFRELE(ire); 12754 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 12755 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 12756 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 12757 mp)) == NULL) { 12758 /* Check for raw socket or OOTB handling */ 12759 goto no_conn; 12760 } 12761 12762 /* Found a client; up it goes */ 12763 BUMP_MIB(&ip_mib, ipInDelivers); 12764 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 12765 return; 12766 12767 no_conn: 12768 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 12769 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 12770 return; 12771 12772 ipoptions: 12773 DB_CKSUMFLAGS(mp) = 0; 12774 if (!ip_options_cksum(q, first_mp, ipha, ire)) 12775 goto slow_done; 12776 12777 UPDATE_IB_PKT_COUNT(ire); 12778 ire->ire_last_used_time = lbolt; 12779 12780 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12781 if (u1 & (IPH_MF | IPH_OFFSET)) { 12782 fragmented: 12783 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 12784 goto slow_done; 12785 /* 12786 * Make sure that first_mp points back to mp as 12787 * the mp we came in with could have changed in 12788 * ip_rput_fragment(). 12789 */ 12790 ASSERT(!mctl_present); 12791 ipha = (ipha_t *)mp->b_rptr; 12792 first_mp = mp; 12793 } 12794 12795 /* Now we have a complete datagram, destined for this machine. */ 12796 u1 = IPH_HDR_LENGTH(ipha); 12797 goto find_sctp_client; 12798 #undef iphs 12799 #undef rptr 12800 12801 error: 12802 freemsg(first_mp); 12803 slow_done: 12804 IRE_REFRELE(ire); 12805 } 12806 12807 #define VER_BITS 0xF0 12808 #define VERSION_6 0x60 12809 12810 static boolean_t 12811 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 12812 ipaddr_t *dstp) 12813 { 12814 uint_t opt_len; 12815 ipha_t *ipha; 12816 ssize_t len; 12817 uint_t pkt_len; 12818 12819 IP_STAT(ip_ipoptions); 12820 ipha = *iphapp; 12821 12822 #define rptr ((uchar_t *)ipha) 12823 /* Assume no IPv6 packets arrive over the IPv4 queue */ 12824 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 12825 BUMP_MIB(&ip_mib, ipInIPv6); 12826 freemsg(mp); 12827 return (B_FALSE); 12828 } 12829 12830 /* multiple mblk or too short */ 12831 pkt_len = ntohs(ipha->ipha_length); 12832 12833 /* Get the number of words of IP options in the IP header. */ 12834 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 12835 if (opt_len) { 12836 /* IP Options present! Validate and process. */ 12837 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 12838 BUMP_MIB(&ip_mib, ipInHdrErrors); 12839 goto done; 12840 } 12841 /* 12842 * Recompute complete header length and make sure we 12843 * have access to all of it. 12844 */ 12845 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 12846 if (len > (mp->b_wptr - rptr)) { 12847 if (len > pkt_len) { 12848 BUMP_MIB(&ip_mib, ipInHdrErrors); 12849 goto done; 12850 } 12851 if (!pullupmsg(mp, len)) { 12852 BUMP_MIB(&ip_mib, ipInDiscards); 12853 goto done; 12854 } 12855 ipha = (ipha_t *)mp->b_rptr; 12856 } 12857 /* 12858 * Go off to ip_rput_options which returns the next hop 12859 * destination address, which may have been affected 12860 * by source routing. 12861 */ 12862 IP_STAT(ip_opt); 12863 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 12864 return (B_FALSE); 12865 } 12866 } 12867 *iphapp = ipha; 12868 return (B_TRUE); 12869 done: 12870 /* clear b_prev - used by ip_mroute_decap */ 12871 mp->b_prev = NULL; 12872 freemsg(mp); 12873 return (B_FALSE); 12874 #undef rptr 12875 } 12876 12877 /* 12878 * Deal with the fact that there is no ire for the destination. 12879 * The incoming ill (in_ill) is passed in to ip_newroute only 12880 * in the case of packets coming from mobile ip forward tunnel. 12881 * It must be null otherwise. 12882 */ 12883 static void 12884 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 12885 ipaddr_t dst) 12886 { 12887 ipha_t *ipha; 12888 ill_t *ill; 12889 12890 ipha = (ipha_t *)mp->b_rptr; 12891 ill = (ill_t *)q->q_ptr; 12892 12893 ASSERT(ill != NULL); 12894 /* 12895 * No IRE for this destination, so it can't be for us. 12896 * Unless we are forwarding, drop the packet. 12897 * We have to let source routed packets through 12898 * since we don't yet know if they are 'ping -l' 12899 * packets i.e. if they will go out over the 12900 * same interface as they came in on. 12901 */ 12902 if (ll_multicast) { 12903 freemsg(mp); 12904 return; 12905 } 12906 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 12907 BUMP_MIB(&ip_mib, ipForwProhibits); 12908 freemsg(mp); 12909 return; 12910 } 12911 12912 /* Check for Martian addresses */ 12913 if ((in_ill == NULL) && (ip_no_forward(ipha, ill))) { 12914 freemsg(mp); 12915 return; 12916 } 12917 12918 /* Mark this packet as having originated externally */ 12919 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 12920 12921 /* 12922 * Clear the indication that this may have a hardware checksum 12923 * as we are not using it 12924 */ 12925 DB_CKSUMFLAGS(mp) = 0; 12926 12927 /* 12928 * Now hand the packet to ip_newroute. 12929 */ 12930 ip_newroute(q, mp, dst, in_ill, NULL); 12931 } 12932 12933 /* 12934 * check ip header length and align it. 12935 */ 12936 static boolean_t 12937 ip_check_and_align_header(queue_t *q, mblk_t *mp) 12938 { 12939 ssize_t len; 12940 ill_t *ill; 12941 ipha_t *ipha; 12942 12943 len = MBLKL(mp); 12944 12945 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 12946 if (!OK_32PTR(mp->b_rptr)) 12947 IP_STAT(ip_notaligned1); 12948 else 12949 IP_STAT(ip_notaligned2); 12950 /* Guard against bogus device drivers */ 12951 if (len < 0) { 12952 /* clear b_prev - used by ip_mroute_decap */ 12953 mp->b_prev = NULL; 12954 BUMP_MIB(&ip_mib, ipInHdrErrors); 12955 freemsg(mp); 12956 return (B_FALSE); 12957 } 12958 12959 if (ip_rput_pullups++ == 0) { 12960 ill = (ill_t *)q->q_ptr; 12961 ipha = (ipha_t *)mp->b_rptr; 12962 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12963 "ip_check_and_align_header: %s forced us to " 12964 " pullup pkt, hdr len %ld, hdr addr %p", 12965 ill->ill_name, len, ipha); 12966 } 12967 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 12968 /* clear b_prev - used by ip_mroute_decap */ 12969 mp->b_prev = NULL; 12970 BUMP_MIB(&ip_mib, ipInDiscards); 12971 freemsg(mp); 12972 return (B_FALSE); 12973 } 12974 } 12975 return (B_TRUE); 12976 } 12977 12978 static boolean_t 12979 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 12980 { 12981 ill_group_t *ill_group; 12982 ill_group_t *ire_group; 12983 queue_t *q; 12984 ill_t *ire_ill; 12985 uint_t ill_ifindex; 12986 12987 q = *qp; 12988 /* 12989 * We need to check to make sure the packet came in 12990 * on the queue associated with the destination IRE. 12991 * Note that for multicast packets and broadcast packets sent to 12992 * a broadcast address which is shared between multiple interfaces 12993 * we should not do this since we just got a random broadcast ire. 12994 */ 12995 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 12996 boolean_t check_multi = B_TRUE; 12997 12998 /* 12999 * This packet came in on an interface other than the 13000 * one associated with the destination address. 13001 * "Gateway" it to the appropriate interface here. 13002 * As long as the ills belong to the same group, 13003 * we don't consider them to arriving on the wrong 13004 * interface. Thus, when the switch is doing inbound 13005 * load spreading, we won't drop packets when we 13006 * are doing strict multihoming checks. Note, the 13007 * same holds true for 'usesrc groups' where the 13008 * destination address may belong to another interface 13009 * to allow multipathing to happen 13010 */ 13011 ill_group = ill->ill_group; 13012 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13013 ill_ifindex = ill->ill_usesrc_ifindex; 13014 ire_group = ire_ill->ill_group; 13015 13016 /* 13017 * If it's part of the same IPMP group, or if it's a legal 13018 * address on the 'usesrc' interface, then bypass strict 13019 * checks. 13020 */ 13021 if (ill_group != NULL && ill_group == ire_group) { 13022 check_multi = B_FALSE; 13023 } else if (ill_ifindex != 0 && 13024 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13025 check_multi = B_FALSE; 13026 } 13027 13028 if (check_multi && 13029 ip_strict_dst_multihoming && 13030 ((ill->ill_flags & 13031 ire->ire_ipif->ipif_ill->ill_flags & 13032 ILLF_ROUTER) == 0)) { 13033 /* Drop packet */ 13034 BUMP_MIB(&ip_mib, ipForwProhibits); 13035 freemsg(mp); 13036 ire_refrele(ire); 13037 return (B_TRUE); 13038 } 13039 13040 /* 13041 * Change the queue (for non-virtual destination network 13042 * interfaces) and ip_rput_local will be called with the right 13043 * queue 13044 */ 13045 q = ire->ire_rfq; 13046 } 13047 /* Must be broadcast. We'll take it. */ 13048 *qp = q; 13049 return (B_FALSE); 13050 } 13051 13052 static void 13053 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13054 ill_t *ill, int ll_multicast) 13055 { 13056 ill_group_t *ill_group; 13057 ill_group_t *ire_group; 13058 queue_t *dev_q; 13059 13060 ASSERT(ire->ire_stq != NULL); 13061 if (ll_multicast != 0) 13062 goto drop_pkt; 13063 13064 if (ip_no_forward(ipha, ill)) 13065 goto drop_pkt; 13066 13067 ill_group = ill->ill_group; 13068 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13069 /* 13070 * Check if we want to forward this one at this time. 13071 * We allow source routed packets on a host provided that 13072 * they go out the same interface or same interface group 13073 * as they came in on. 13074 * 13075 * XXX To be quicker, we may wish to not chase pointers to 13076 * get the ILLF_ROUTER flag and instead store the 13077 * forwarding policy in the ire. An unfortunate 13078 * side-effect of that would be requiring an ire flush 13079 * whenever the ILLF_ROUTER flag changes. 13080 */ 13081 if (((ill->ill_flags & 13082 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13083 ILLF_ROUTER) == 0) && 13084 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 13085 (ill_group != NULL && ill_group == ire_group)))) { 13086 BUMP_MIB(&ip_mib, ipForwProhibits); 13087 if (ip_source_routed(ipha)) { 13088 q = WR(q); 13089 /* 13090 * Clear the indication that this may have 13091 * hardware checksum as we are not using it. 13092 */ 13093 DB_CKSUMFLAGS(mp) = 0; 13094 icmp_unreachable(q, mp, 13095 ICMP_SOURCE_ROUTE_FAILED); 13096 ire_refrele(ire); 13097 return; 13098 } 13099 goto drop_pkt; 13100 } 13101 13102 /* Packet is being forwarded. Turning off hwcksum flag. */ 13103 DB_CKSUMFLAGS(mp) = 0; 13104 if (ip_g_send_redirects) { 13105 /* 13106 * Check whether the incoming interface and outgoing 13107 * interface is part of the same group. If so, 13108 * send redirects. 13109 * 13110 * Check the source address to see if it originated 13111 * on the same logical subnet it is going back out on. 13112 * If so, we should be able to send it a redirect. 13113 * Avoid sending a redirect if the destination 13114 * is directly connected (gw_addr == 0), 13115 * or if the packet was source routed out this 13116 * interface. 13117 */ 13118 ipaddr_t src; 13119 mblk_t *mp1; 13120 ire_t *src_ire = NULL; 13121 13122 /* 13123 * Check whether ire_rfq and q are from the same ill 13124 * or if they are not same, they at least belong 13125 * to the same group. If so, send redirects. 13126 */ 13127 if ((ire->ire_rfq == q || 13128 (ill_group != NULL && ill_group == ire_group)) && 13129 (ire->ire_gateway_addr != 0) && 13130 !ip_source_routed(ipha)) { 13131 13132 src = ipha->ipha_src; 13133 src_ire = ire_ftable_lookup(src, 0, 0, 13134 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 13135 0, NULL, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 13136 13137 if (src_ire != NULL) { 13138 /* 13139 * The source is directly connected. 13140 * Just copy the ip header (which is 13141 * in the first mblk) 13142 */ 13143 mp1 = copyb(mp); 13144 if (mp1 != NULL) { 13145 icmp_send_redirect(WR(q), mp1, 13146 ire->ire_gateway_addr); 13147 } 13148 ire_refrele(src_ire); 13149 } 13150 } 13151 } 13152 13153 dev_q = ire->ire_stq->q_next; 13154 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 13155 BUMP_MIB(&ip_mib, ipInDiscards); 13156 freemsg(mp); 13157 ire_refrele(ire); 13158 return; 13159 } 13160 13161 ip_rput_forward(ire, ipha, mp, ill); 13162 IRE_REFRELE(ire); 13163 return; 13164 13165 drop_pkt: 13166 ire_refrele(ire); 13167 ip2dbg(("ip_rput_forward: drop pkt\n")); 13168 freemsg(mp); 13169 } 13170 13171 static boolean_t 13172 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t **irep, ipha_t *ipha, 13173 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 13174 { 13175 queue_t *q; 13176 ire_t *ire; 13177 uint16_t hcksumflags; 13178 13179 q = *qp; 13180 ire = *irep; 13181 13182 /* 13183 * Clear the indication that this may have hardware 13184 * checksum as we are not using it for forwarding. 13185 */ 13186 hcksumflags = DB_CKSUMFLAGS(mp); 13187 DB_CKSUMFLAGS(mp) = 0; 13188 13189 /* 13190 * Directed broadcast forwarding: if the packet came in over a 13191 * different interface then it is routed out over we can forward it. 13192 */ 13193 if (ipha->ipha_protocol == IPPROTO_TCP) { 13194 ire_refrele(ire); 13195 freemsg(mp); 13196 BUMP_MIB(&ip_mib, ipInDiscards); 13197 return (B_TRUE); 13198 } 13199 /* 13200 * For multicast we have set dst to be INADDR_BROADCAST 13201 * for delivering to all STREAMS. IRE_MARK_NORECV is really 13202 * only for broadcast packets. 13203 */ 13204 if (!CLASSD(ipha->ipha_dst)) { 13205 ire_t *new_ire; 13206 ipif_t *ipif; 13207 /* 13208 * For ill groups, as the switch duplicates broadcasts 13209 * across all the ports, we need to filter out and 13210 * send up only one copy. There is one copy for every 13211 * broadcast address on each ill. Thus, we look for a 13212 * specific IRE on this ill and look at IRE_MARK_NORECV 13213 * later to see whether this ill is eligible to receive 13214 * them or not. ill_nominate_bcast_rcv() nominates only 13215 * one set of IREs for receiving. 13216 */ 13217 13218 ipif = ipif_get_next_ipif(NULL, ill); 13219 if (ipif == NULL) { 13220 ire_refrele(ire); 13221 freemsg(mp); 13222 BUMP_MIB(&ip_mib, ipInDiscards); 13223 return (B_TRUE); 13224 } 13225 new_ire = ire_ctable_lookup(dst, 0, 0, 13226 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 13227 ipif_refrele(ipif); 13228 13229 if (new_ire != NULL) { 13230 if (new_ire->ire_marks & IRE_MARK_NORECV) { 13231 ire_refrele(ire); 13232 ire_refrele(new_ire); 13233 freemsg(mp); 13234 BUMP_MIB(&ip_mib, ipInDiscards); 13235 return (B_TRUE); 13236 } 13237 /* 13238 * In the special case of multirouted broadcast 13239 * packets, we unconditionally need to "gateway" 13240 * them to the appropriate interface here. 13241 * In the normal case, this cannot happen, because 13242 * there is no broadcast IRE tagged with the 13243 * RTF_MULTIRT flag. 13244 */ 13245 if (new_ire->ire_flags & RTF_MULTIRT) { 13246 ire_refrele(new_ire); 13247 if (ire->ire_rfq != NULL) { 13248 q = ire->ire_rfq; 13249 *qp = q; 13250 } 13251 } else { 13252 ire_refrele(ire); 13253 ire = new_ire; 13254 } 13255 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 13256 if (!ip_g_forward_directed_bcast) { 13257 /* 13258 * Free the message if 13259 * ip_g_forward_directed_bcast is turned 13260 * off for non-local broadcast. 13261 */ 13262 ire_refrele(ire); 13263 freemsg(mp); 13264 BUMP_MIB(&ip_mib, ipInDiscards); 13265 return (B_TRUE); 13266 } 13267 } else { 13268 /* 13269 * This CGTP packet successfully passed the 13270 * CGTP filter, but the related CGTP 13271 * broadcast IRE has not been found, 13272 * meaning that the redundant ipif is 13273 * probably down. However, if we discarded 13274 * this packet, its duplicate would be 13275 * filtered out by the CGTP filter so none 13276 * of them would get through. So we keep 13277 * going with this one. 13278 */ 13279 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 13280 if (ire->ire_rfq != NULL) { 13281 q = ire->ire_rfq; 13282 *qp = q; 13283 } 13284 } 13285 } 13286 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 13287 /* 13288 * Verify that there are not more then one 13289 * IRE_BROADCAST with this broadcast address which 13290 * has ire_stq set. 13291 * TODO: simplify, loop over all IRE's 13292 */ 13293 ire_t *ire1; 13294 int num_stq = 0; 13295 mblk_t *mp1; 13296 13297 /* Find the first one with ire_stq set */ 13298 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 13299 for (ire1 = ire; ire1 && 13300 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 13301 ire1 = ire1->ire_next) 13302 ; 13303 if (ire1) { 13304 ire_refrele(ire); 13305 ire = ire1; 13306 IRE_REFHOLD(ire); 13307 } 13308 13309 /* Check if there are additional ones with stq set */ 13310 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 13311 if (ire->ire_addr != ire1->ire_addr) 13312 break; 13313 if (ire1->ire_stq) { 13314 num_stq++; 13315 break; 13316 } 13317 } 13318 rw_exit(&ire->ire_bucket->irb_lock); 13319 if (num_stq == 1 && ire->ire_stq != NULL) { 13320 ip1dbg(("ip_rput_process_broadcast: directed " 13321 "broadcast to 0x%x\n", 13322 ntohl(ire->ire_addr))); 13323 mp1 = copymsg(mp); 13324 if (mp1) { 13325 switch (ipha->ipha_protocol) { 13326 case IPPROTO_UDP: 13327 ip_udp_input(q, mp1, ipha, ire, ill); 13328 break; 13329 default: 13330 ip_proto_input(q, mp1, ipha, ire, ill); 13331 break; 13332 } 13333 } 13334 /* 13335 * Adjust ttl to 2 (1+1 - the forward engine 13336 * will decrement it by one. 13337 */ 13338 if (ip_csum_hdr(ipha)) { 13339 BUMP_MIB(&ip_mib, ipInCksumErrs); 13340 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 13341 freemsg(mp); 13342 ire_refrele(ire); 13343 return (B_TRUE); 13344 } 13345 ipha->ipha_ttl = ip_broadcast_ttl + 1; 13346 ipha->ipha_hdr_checksum = 0; 13347 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 13348 ip_rput_process_forward(q, mp, ire, ipha, 13349 ill, ll_multicast); 13350 return (B_TRUE); 13351 } 13352 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 13353 ntohl(ire->ire_addr))); 13354 } 13355 13356 *irep = ire; 13357 13358 /* Restore any hardware checksum flags */ 13359 DB_CKSUMFLAGS(mp) = hcksumflags; 13360 return (B_FALSE); 13361 } 13362 13363 /* ARGSUSED */ 13364 static boolean_t 13365 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 13366 int *ll_multicast, ipaddr_t *dstp) 13367 { 13368 /* 13369 * Forward packets only if we have joined the allmulti 13370 * group on this interface. 13371 */ 13372 if (ip_g_mrouter && ill->ill_join_allmulti) { 13373 int retval; 13374 13375 /* 13376 * Clear the indication that this may have hardware 13377 * checksum as we are not using it. 13378 */ 13379 DB_CKSUMFLAGS(mp) = 0; 13380 retval = ip_mforward(ill, ipha, mp); 13381 /* ip_mforward updates mib variables if needed */ 13382 /* clear b_prev - used by ip_mroute_decap */ 13383 mp->b_prev = NULL; 13384 13385 switch (retval) { 13386 case 0: 13387 /* 13388 * pkt is okay and arrived on phyint. 13389 * 13390 * If we are running as a multicast router 13391 * we need to see all IGMP and/or PIM packets. 13392 */ 13393 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 13394 (ipha->ipha_protocol == IPPROTO_PIM)) { 13395 goto done; 13396 } 13397 break; 13398 case -1: 13399 /* pkt is mal-formed, toss it */ 13400 goto drop_pkt; 13401 case 1: 13402 /* pkt is okay and arrived on a tunnel */ 13403 /* 13404 * If we are running a multicast router 13405 * we need to see all igmp packets. 13406 */ 13407 if (ipha->ipha_protocol == IPPROTO_IGMP) { 13408 *dstp = INADDR_BROADCAST; 13409 *ll_multicast = 1; 13410 return (B_FALSE); 13411 } 13412 13413 goto drop_pkt; 13414 } 13415 } 13416 13417 ILM_WALKER_HOLD(ill); 13418 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 13419 /* 13420 * This might just be caused by the fact that 13421 * multiple IP Multicast addresses map to the same 13422 * link layer multicast - no need to increment counter! 13423 */ 13424 ILM_WALKER_RELE(ill); 13425 freemsg(mp); 13426 return (B_TRUE); 13427 } 13428 ILM_WALKER_RELE(ill); 13429 done: 13430 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 13431 /* 13432 * This assumes the we deliver to all streams for multicast 13433 * and broadcast packets. 13434 */ 13435 *dstp = INADDR_BROADCAST; 13436 *ll_multicast = 1; 13437 return (B_FALSE); 13438 drop_pkt: 13439 ip2dbg(("ip_rput: drop pkt\n")); 13440 freemsg(mp); 13441 return (B_TRUE); 13442 } 13443 13444 static boolean_t 13445 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 13446 int *ll_multicast, mblk_t **mpp) 13447 { 13448 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 13449 boolean_t must_copy = B_FALSE; 13450 struct iocblk *iocp; 13451 ipha_t *ipha; 13452 13453 #define rptr ((uchar_t *)ipha) 13454 13455 first_mp = *first_mpp; 13456 mp = *mpp; 13457 13458 ASSERT(first_mp == mp); 13459 13460 /* 13461 * if db_ref > 1 then copymsg and free original. Packet may be 13462 * changed and do not want other entity who has a reference to this 13463 * message to trip over the changes. This is a blind change because 13464 * trying to catch all places that might change packet is too 13465 * difficult (since it may be a module above this one) 13466 * 13467 * This corresponds to the non-fast path case. We walk down the full 13468 * chain in this case, and check the db_ref count of all the dblks, 13469 * and do a copymsg if required. It is possible that the db_ref counts 13470 * of the data blocks in the mblk chain can be different. 13471 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 13472 * count of 1, followed by a M_DATA block with a ref count of 2, if 13473 * 'snoop' is running. 13474 */ 13475 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 13476 if (mp1->b_datap->db_ref > 1) { 13477 must_copy = B_TRUE; 13478 break; 13479 } 13480 } 13481 13482 if (must_copy) { 13483 mp1 = copymsg(mp); 13484 if (mp1 == NULL) { 13485 for (mp1 = mp; mp1 != NULL; 13486 mp1 = mp1->b_cont) { 13487 mp1->b_next = NULL; 13488 mp1->b_prev = NULL; 13489 } 13490 freemsg(mp); 13491 BUMP_MIB(&ip_mib, ipInDiscards); 13492 return (B_TRUE); 13493 } 13494 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 13495 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 13496 /* Copy b_next - used in M_BREAK messages */ 13497 to_mp->b_next = from_mp->b_next; 13498 from_mp->b_next = NULL; 13499 /* Copy b_prev - used by ip_mroute_decap */ 13500 to_mp->b_prev = from_mp->b_prev; 13501 from_mp->b_prev = NULL; 13502 } 13503 *first_mpp = first_mp = mp1; 13504 freemsg(mp); 13505 mp = mp1; 13506 *mpp = mp1; 13507 } 13508 13509 ipha = (ipha_t *)mp->b_rptr; 13510 13511 /* 13512 * previous code has a case for M_DATA. 13513 * We want to check how that happens. 13514 */ 13515 ASSERT(first_mp->b_datap->db_type != M_DATA); 13516 switch (first_mp->b_datap->db_type) { 13517 case M_PROTO: 13518 case M_PCPROTO: 13519 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 13520 DL_UNITDATA_IND) { 13521 /* Go handle anything other than data elsewhere. */ 13522 ip_rput_dlpi(q, mp); 13523 return (B_TRUE); 13524 } 13525 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 13526 /* Ditch the DLPI header. */ 13527 mp1 = mp->b_cont; 13528 ASSERT(first_mp == mp); 13529 *first_mpp = mp1; 13530 freeb(mp); 13531 *mpp = mp1; 13532 return (B_FALSE); 13533 case M_BREAK: 13534 /* 13535 * A packet arrives as M_BREAK following a cycle through 13536 * ip_rput, ip_newroute, ... and finally ire_add_then_send. 13537 * This is an IP datagram sans lower level header. 13538 * M_BREAK are also used to pass back in multicast packets 13539 * that are encapsulated with a source route. 13540 */ 13541 /* Ditch the M_BREAK mblk */ 13542 mp1 = mp->b_cont; 13543 ASSERT(first_mp == mp); 13544 *first_mpp = mp1; 13545 freeb(mp); 13546 mp = mp1; 13547 mp->b_next = NULL; 13548 *mpp = mp; 13549 *ll_multicast = 0; 13550 return (B_FALSE); 13551 case M_IOCACK: 13552 ip1dbg(("got iocack ")); 13553 iocp = (struct iocblk *)mp->b_rptr; 13554 switch (iocp->ioc_cmd) { 13555 case DL_IOC_HDR_INFO: 13556 ill = (ill_t *)q->q_ptr; 13557 ill_fastpath_ack(ill, mp); 13558 return (B_TRUE); 13559 case SIOCSTUNPARAM: 13560 case OSIOCSTUNPARAM: 13561 /* Go through qwriter_ip */ 13562 break; 13563 case SIOCGTUNPARAM: 13564 case OSIOCGTUNPARAM: 13565 ip_rput_other(NULL, q, mp, NULL); 13566 return (B_TRUE); 13567 default: 13568 putnext(q, mp); 13569 return (B_TRUE); 13570 } 13571 /* FALLTHRU */ 13572 case M_ERROR: 13573 case M_HANGUP: 13574 /* 13575 * Since this is on the ill stream we unconditionally 13576 * bump up the refcount 13577 */ 13578 ill_refhold(ill); 13579 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 13580 B_FALSE); 13581 return (B_TRUE); 13582 case M_CTL: 13583 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 13584 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 13585 IPHADA_M_CTL)) { 13586 /* 13587 * It's an IPsec accelerated packet. 13588 * Make sure that the ill from which we received the 13589 * packet has enabled IPsec hardware acceleration. 13590 */ 13591 if (!(ill->ill_capabilities & 13592 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 13593 /* IPsec kstats: bean counter */ 13594 freemsg(mp); 13595 return (B_TRUE); 13596 } 13597 13598 /* 13599 * Make mp point to the mblk following the M_CTL, 13600 * then process according to type of mp. 13601 * After this processing, first_mp will point to 13602 * the data-attributes and mp to the pkt following 13603 * the M_CTL. 13604 */ 13605 mp = first_mp->b_cont; 13606 if (mp == NULL) { 13607 freemsg(first_mp); 13608 return (B_TRUE); 13609 } 13610 /* 13611 * A Hardware Accelerated packet can only be M_DATA 13612 * ESP or AH packet. 13613 */ 13614 if (mp->b_datap->db_type != M_DATA) { 13615 /* non-M_DATA IPsec accelerated packet */ 13616 IPSECHW_DEBUG(IPSECHW_PKT, 13617 ("non-M_DATA IPsec accelerated pkt\n")); 13618 freemsg(first_mp); 13619 return (B_TRUE); 13620 } 13621 ipha = (ipha_t *)mp->b_rptr; 13622 if (ipha->ipha_protocol != IPPROTO_AH && 13623 ipha->ipha_protocol != IPPROTO_ESP) { 13624 IPSECHW_DEBUG(IPSECHW_PKT, 13625 ("non-M_DATA IPsec accelerated pkt\n")); 13626 freemsg(first_mp); 13627 return (B_TRUE); 13628 } 13629 *mpp = mp; 13630 return (B_FALSE); 13631 } 13632 putnext(q, mp); 13633 return (B_TRUE); 13634 case M_FLUSH: 13635 if (*mp->b_rptr & FLUSHW) { 13636 *mp->b_rptr &= ~FLUSHR; 13637 qreply(q, mp); 13638 return (B_TRUE); 13639 } 13640 freemsg(mp); 13641 return (B_TRUE); 13642 case M_IOCNAK: 13643 ip1dbg(("got iocnak ")); 13644 iocp = (struct iocblk *)mp->b_rptr; 13645 switch (iocp->ioc_cmd) { 13646 case DL_IOC_HDR_INFO: 13647 case SIOCSTUNPARAM: 13648 case OSIOCSTUNPARAM: 13649 /* 13650 * Since this is on the ill stream we unconditionally 13651 * bump up the refcount 13652 */ 13653 ill_refhold(ill); 13654 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 13655 CUR_OP, B_FALSE); 13656 return (B_TRUE); 13657 case SIOCGTUNPARAM: 13658 case OSIOCGTUNPARAM: 13659 ip_rput_other(NULL, q, mp, NULL); 13660 return (B_TRUE); 13661 default: 13662 break; 13663 } 13664 /* FALLTHRU */ 13665 default: 13666 putnext(q, mp); 13667 return (B_TRUE); 13668 } 13669 } 13670 13671 /* Read side put procedure. Packets coming from the wire arrive here. */ 13672 void 13673 ip_rput(queue_t *q, mblk_t *mp) 13674 { 13675 ill_t *ill; 13676 13677 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 13678 13679 ill = (ill_t *)q->q_ptr; 13680 13681 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 13682 union DL_primitives *dl; 13683 13684 /* 13685 * Things are opening or closing. Only accept DLPI control 13686 * messages. In the open case, the ill->ill_ipif has not yet 13687 * been created. In the close case, things hanging off the 13688 * ill could have been freed already. In either case it 13689 * may not be safe to proceed further. 13690 */ 13691 13692 dl = (union DL_primitives *)mp->b_rptr; 13693 if ((mp->b_datap->db_type != M_PCPROTO) || 13694 (dl->dl_primitive == DL_UNITDATA_IND)) { 13695 /* 13696 * Also SIOC[GS]TUN* ioctls can come here. 13697 */ 13698 inet_freemsg(mp); 13699 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13700 "ip_input_end: q %p (%S)", q, "uninit"); 13701 return; 13702 } 13703 } 13704 13705 /* 13706 * if db_ref > 1 then copymsg and free original. Packet may be 13707 * changed and we do not want the other entity who has a reference to 13708 * this message to trip over the changes. This is a blind change because 13709 * trying to catch all places that might change the packet is too 13710 * difficult. 13711 * 13712 * This corresponds to the fast path case, where we have a chain of 13713 * M_DATA mblks. We check the db_ref count of only the 1st data block 13714 * in the mblk chain. There doesn't seem to be a reason why a device 13715 * driver would send up data with varying db_ref counts in the mblk 13716 * chain. In any case the Fast path is a private interface, and our 13717 * drivers don't do such a thing. Given the above assumption, there is 13718 * no need to walk down the entire mblk chain (which could have a 13719 * potential performance problem) 13720 */ 13721 if (mp->b_datap->db_ref > 1) { 13722 mblk_t *mp1; 13723 boolean_t adjusted = B_FALSE; 13724 IP_STAT(ip_db_ref); 13725 13726 /* 13727 * The IP_RECVSLLA option depends on having the link layer 13728 * header. First check that: 13729 * a> the underlying device is of type ether, since this 13730 * option is currently supported only over ethernet. 13731 * b> there is enough room to copy over the link layer header. 13732 * 13733 * Once the checks are done, adjust rptr so that the link layer 13734 * header will be copied via copymsg. Note that, IFT_ETHER may 13735 * be returned by some non-ethernet drivers but in this case the 13736 * second check will fail. 13737 */ 13738 if (ill->ill_type == IFT_ETHER && 13739 (mp->b_rptr - mp->b_datap->db_base) >= 13740 sizeof (struct ether_header)) { 13741 mp->b_rptr -= sizeof (struct ether_header); 13742 adjusted = B_TRUE; 13743 } 13744 mp1 = copymsg(mp); 13745 if (mp1 == NULL) { 13746 /* Clear b_next - used in M_BREAK messages */ 13747 mp->b_next = NULL; 13748 /* clear b_prev - used by ip_mroute_decap */ 13749 mp->b_prev = NULL; 13750 freemsg(mp); 13751 BUMP_MIB(&ip_mib, ipInDiscards); 13752 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13753 "ip_rput_end: q %p (%S)", q, "copymsg"); 13754 return; 13755 } 13756 if (adjusted) { 13757 /* 13758 * Copy is done. Restore the pointer in the _new_ mblk 13759 */ 13760 mp1->b_rptr += sizeof (struct ether_header); 13761 } 13762 /* Copy b_next - used in M_BREAK messages */ 13763 mp1->b_next = mp->b_next; 13764 mp->b_next = NULL; 13765 /* Copy b_prev - used by ip_mroute_decap */ 13766 mp1->b_prev = mp->b_prev; 13767 mp->b_prev = NULL; 13768 freemsg(mp); 13769 mp = mp1; 13770 } 13771 13772 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13773 "ip_rput_end: q %p (%S)", q, "end"); 13774 13775 ip_input(ill, NULL, mp, 0); 13776 } 13777 13778 /* 13779 * Direct read side procedure capable of dealing with chains. GLDv3 based 13780 * drivers call this function directly with mblk chains while STREAMS 13781 * read side procedure ip_rput() calls this for single packet with ip_ring 13782 * set to NULL to process one packet at a time. 13783 * 13784 * The ill will always be valid if this function is called directly from 13785 * the driver. 13786 */ 13787 /*ARGSUSED*/ 13788 void 13789 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen) 13790 { 13791 ipaddr_t dst; 13792 ire_t *ire; 13793 ipha_t *ipha; 13794 uint_t pkt_len; 13795 ssize_t len; 13796 uint_t opt_len; 13797 int ll_multicast; 13798 int cgtp_flt_pkt; 13799 queue_t *q = ill->ill_rq; 13800 squeue_t *curr_sqp = NULL; 13801 mblk_t *head = NULL; 13802 mblk_t *tail = NULL; 13803 mblk_t *first_mp; 13804 mblk_t *mp; 13805 int cnt = 0; 13806 13807 ASSERT(mp_chain != NULL); 13808 ASSERT(ill != NULL); 13809 13810 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 13811 13812 #define rptr ((uchar_t *)ipha) 13813 13814 while (mp_chain != NULL) { 13815 first_mp = mp = mp_chain; 13816 mp_chain = mp_chain->b_next; 13817 mp->b_next = NULL; 13818 ll_multicast = 0; 13819 ire = NULL; 13820 13821 /* 13822 * ip_input fast path 13823 */ 13824 13825 /* mblk type is not M_DATA */ 13826 if (mp->b_datap->db_type != M_DATA) { 13827 if (ip_rput_process_notdata(q, &first_mp, ill, 13828 &ll_multicast, &mp)) 13829 continue; 13830 } 13831 13832 ASSERT(mp->b_datap->db_type == M_DATA); 13833 ASSERT(mp->b_datap->db_ref == 1); 13834 13835 13836 ipha = (ipha_t *)mp->b_rptr; 13837 len = mp->b_wptr - rptr; 13838 13839 BUMP_MIB(&ip_mib, ipInReceives); 13840 13841 /* 13842 * IP header ptr not aligned? 13843 * OR IP header not complete in first mblk 13844 */ 13845 if (!OK_32PTR(rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13846 if (!ip_check_and_align_header(q, mp)) 13847 continue; 13848 ipha = (ipha_t *)mp->b_rptr; 13849 len = mp->b_wptr - rptr; 13850 } 13851 13852 /* multiple mblk or too short */ 13853 pkt_len = ntohs(ipha->ipha_length); 13854 len -= pkt_len; 13855 if (len != 0) { 13856 /* 13857 * Make sure we have data length consistent 13858 * with the IP header. 13859 */ 13860 if (mp->b_cont == NULL) { 13861 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13862 BUMP_MIB(&ip_mib, ipInHdrErrors); 13863 ip2dbg(("ip_input: drop pkt\n")); 13864 freemsg(mp); 13865 continue; 13866 } 13867 mp->b_wptr = rptr + pkt_len; 13868 } else if (len += msgdsize(mp->b_cont)) { 13869 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13870 BUMP_MIB(&ip_mib, ipInHdrErrors); 13871 ip2dbg(("ip_input: drop pkt\n")); 13872 freemsg(mp); 13873 continue; 13874 } 13875 (void) adjmsg(mp, -len); 13876 IP_STAT(ip_multimblk3); 13877 } 13878 } 13879 13880 if (ip_loopback_src_or_dst(ipha, ill)) { 13881 ip2dbg(("ip_input: drop pkt\n")); 13882 freemsg(mp); 13883 continue; 13884 } 13885 13886 /* 13887 * Attach any necessary label information to this packet. 13888 */ 13889 if (is_system_labeled() && 13890 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 13891 BUMP_MIB(&ip_mib, ipInDiscards); 13892 freemsg(mp); 13893 continue; 13894 } 13895 13896 opt_len = ipha->ipha_version_and_hdr_length - 13897 IP_SIMPLE_HDR_VERSION; 13898 /* IP version bad or there are IP options */ 13899 if (opt_len) { 13900 if (len != 0) 13901 IP_STAT(ip_multimblk4); 13902 else 13903 IP_STAT(ip_ipoptions); 13904 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 13905 continue; 13906 } else { 13907 dst = ipha->ipha_dst; 13908 } 13909 13910 /* 13911 * Invoke the CGTP (multirouting) filtering module to process 13912 * the incoming packet. Packets identified as duplicates 13913 * must be discarded. Filtering is active only if the 13914 * the ip_cgtp_filter ndd variable is non-zero. 13915 */ 13916 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 13917 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 13918 cgtp_flt_pkt = 13919 ip_cgtp_filter_ops->cfo_filter(q, mp); 13920 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 13921 freemsg(first_mp); 13922 continue; 13923 } 13924 } 13925 13926 /* 13927 * If rsvpd is running, let RSVP daemon handle its processing 13928 * and forwarding of RSVP multicast/unicast packets. 13929 * If rsvpd is not running but mrouted is running, RSVP 13930 * multicast packets are forwarded as multicast traffic 13931 * and RSVP unicast packets are forwarded by unicast router. 13932 * If neither rsvpd nor mrouted is running, RSVP multicast 13933 * packets are not forwarded, but the unicast packets are 13934 * forwarded like unicast traffic. 13935 */ 13936 if (ipha->ipha_protocol == IPPROTO_RSVP && 13937 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 13938 /* RSVP packet and rsvpd running. Treat as ours */ 13939 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 13940 /* 13941 * This assumes that we deliver to all streams for 13942 * multicast and broadcast packets. 13943 * We have to force ll_multicast to 1 to handle the 13944 * M_DATA messages passed in from ip_mroute_decap. 13945 */ 13946 dst = INADDR_BROADCAST; 13947 ll_multicast = 1; 13948 } else if (CLASSD(dst)) { 13949 /* packet is multicast */ 13950 mp->b_next = NULL; 13951 if (ip_rput_process_multicast(q, mp, ill, ipha, 13952 &ll_multicast, &dst)) 13953 continue; 13954 } 13955 13956 13957 /* 13958 * Check if the packet is coming from the Mobile IP 13959 * forward tunnel interface 13960 */ 13961 if (ill->ill_srcif_refcnt > 0) { 13962 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 13963 NULL, ill, MATCH_IRE_TYPE); 13964 if (ire != NULL && ire->ire_dlureq_mp == NULL && 13965 ire->ire_ipif->ipif_net_type == 13966 IRE_IF_RESOLVER) { 13967 /* We need to resolve the link layer info */ 13968 ire_refrele(ire); 13969 ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 13970 ll_multicast, dst); 13971 continue; 13972 } 13973 } 13974 13975 if (ire == NULL) { 13976 ire = ire_cache_lookup(dst, ALL_ZONES, 13977 MBLK_GETLABEL(mp)); 13978 } 13979 13980 /* 13981 * If mipagent is running and reverse tunnel is created as per 13982 * mobile node request, then any packet coming through the 13983 * incoming interface from the mobile-node, should be reverse 13984 * tunneled to it's home agent except those that are destined 13985 * to foreign agent only. 13986 * This needs source address based ire lookup. The routing 13987 * entries for source address based lookup are only created by 13988 * mipagent program only when a reverse tunnel is created. 13989 * Reference : RFC2002, RFC2344 13990 */ 13991 if (ill->ill_mrtun_refcnt > 0) { 13992 ipaddr_t srcaddr; 13993 ire_t *tmp_ire; 13994 13995 tmp_ire = ire; /* Save, we might need it later */ 13996 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 13997 ire->ire_type != IRE_BROADCAST)) { 13998 srcaddr = ipha->ipha_src; 13999 ire = ire_mrtun_lookup(srcaddr, ill); 14000 if (ire != NULL) { 14001 /* 14002 * Should not be getting iphada packet 14003 * here. we should only get those for 14004 * IRE_LOCAL traffic, excluded above. 14005 * Fail-safe (drop packet) in the event 14006 * hardware is misbehaving. 14007 */ 14008 if (first_mp != mp) { 14009 /* IPsec KSTATS: beancount me */ 14010 freemsg(first_mp); 14011 } else { 14012 /* 14013 * This packet must be forwarded 14014 * to Reverse Tunnel 14015 */ 14016 ip_mrtun_forward(ire, ill, mp); 14017 } 14018 ire_refrele(ire); 14019 if (tmp_ire != NULL) 14020 ire_refrele(tmp_ire); 14021 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14022 "ip_input_end: q %p (%S)", 14023 q, "uninit"); 14024 continue; 14025 } 14026 } 14027 /* 14028 * If this packet is from a non-mobilenode or a 14029 * mobile-node which does not request reverse 14030 * tunnel service 14031 */ 14032 ire = tmp_ire; 14033 } 14034 14035 14036 /* 14037 * If we reach here that means the incoming packet satisfies 14038 * one of the following conditions: 14039 * - packet is from a mobile node which does not request 14040 * reverse tunnel 14041 * - packet is from a non-mobile node, which is the most 14042 * common case 14043 * - packet is from a reverse tunnel enabled mobile node 14044 * and destined to foreign agent only 14045 */ 14046 14047 if (ire == NULL) { 14048 /* 14049 * No IRE for this destination, so it can't be for us. 14050 * Unless we are forwarding, drop the packet. 14051 * We have to let source routed packets through 14052 * since we don't yet know if they are 'ping -l' 14053 * packets i.e. if they will go out over the 14054 * same interface as they came in on. 14055 */ 14056 ip_rput_noire(q, NULL, mp, ll_multicast, dst); 14057 continue; 14058 } 14059 14060 /* 14061 * Broadcast IRE may indicate either broadcast or 14062 * multicast packet 14063 */ 14064 if (ire->ire_type == IRE_BROADCAST) { 14065 /* 14066 * Skip broadcast checks if packet is UDP multicast; 14067 * we'd rather not enter ip_rput_process_broadcast() 14068 * unless the packet is broadcast for real, since 14069 * that routine is a no-op for multicast. 14070 */ 14071 if ((ipha->ipha_protocol != IPPROTO_UDP || 14072 !CLASSD(ipha->ipha_dst)) && 14073 ip_rput_process_broadcast(&q, mp, &ire, ipha, ill, 14074 dst, cgtp_flt_pkt, ll_multicast)) { 14075 continue; 14076 } 14077 } else if (ire->ire_stq != NULL) { 14078 /* fowarding? */ 14079 ip_rput_process_forward(q, mp, ire, ipha, ill, 14080 ll_multicast); 14081 continue; 14082 } 14083 14084 /* packet not for us */ 14085 if (ire->ire_rfq != q) { 14086 if (ip_rput_notforus(&q, mp, ire, ill)) { 14087 continue; 14088 } 14089 } 14090 14091 switch (ipha->ipha_protocol) { 14092 case IPPROTO_TCP: 14093 ASSERT(first_mp == mp); 14094 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 14095 mp, 0, q, ip_ring)) != NULL) { 14096 if (curr_sqp == NULL) { 14097 curr_sqp = GET_SQUEUE(mp); 14098 ASSERT(cnt == 0); 14099 cnt++; 14100 head = tail = mp; 14101 } else if (curr_sqp == GET_SQUEUE(mp)) { 14102 ASSERT(tail != NULL); 14103 cnt++; 14104 tail->b_next = mp; 14105 tail = mp; 14106 } else { 14107 /* 14108 * A different squeue. Send the 14109 * chain for the previous squeue on 14110 * its way. This shouldn't happen 14111 * often unless interrupt binding 14112 * changes. 14113 */ 14114 IP_STAT(ip_input_multi_squeue); 14115 squeue_enter_chain(curr_sqp, head, 14116 tail, cnt, SQTAG_IP_INPUT); 14117 curr_sqp = GET_SQUEUE(mp); 14118 head = mp; 14119 tail = mp; 14120 cnt = 1; 14121 } 14122 } 14123 IRE_REFRELE(ire); 14124 continue; 14125 case IPPROTO_UDP: 14126 ASSERT(first_mp == mp); 14127 ip_udp_input(q, mp, ipha, ire, ill); 14128 IRE_REFRELE(ire); 14129 continue; 14130 case IPPROTO_SCTP: 14131 ASSERT(first_mp == mp); 14132 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 14133 q, dst); 14134 continue; 14135 default: 14136 ip_proto_input(q, first_mp, ipha, ire, ill); 14137 IRE_REFRELE(ire); 14138 continue; 14139 } 14140 } 14141 14142 if (head != NULL) 14143 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 14144 14145 /* 14146 * This code is there just to make netperf/ttcp look good. 14147 * 14148 * Its possible that after being in polling mode (and having cleared 14149 * the backlog), squeues have turned the interrupt frequency higher 14150 * to improve latency at the expense of more CPU utilization (less 14151 * packets per interrupts or more number of interrupts). Workloads 14152 * like ttcp/netperf do manage to tickle polling once in a while 14153 * but for the remaining time, stay in higher interrupt mode since 14154 * their packet arrival rate is pretty uniform and this shows up 14155 * as higher CPU utilization. Since people care about CPU utilization 14156 * while running netperf/ttcp, turn the interrupt frequency back to 14157 * normal/default if polling has not been used in ip_poll_normal_ticks. 14158 */ 14159 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 14160 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 14161 ip_ring->rr_poll_state &= ~ILL_POLLING; 14162 ip_ring->rr_blank(ip_ring->rr_handle, 14163 ip_ring->rr_normal_blank_time, 14164 ip_ring->rr_normal_pkt_cnt); 14165 } 14166 } 14167 14168 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14169 "ip_input_end: q %p (%S)", q, "end"); 14170 #undef rptr 14171 } 14172 14173 static void 14174 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 14175 t_uscalar_t err) 14176 { 14177 if (dl_err == DL_SYSERR) { 14178 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14179 "%s: %s failed: DL_SYSERR (errno %u)\n", 14180 ill->ill_name, dlpi_prim_str(prim), err); 14181 return; 14182 } 14183 14184 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14185 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 14186 dlpi_err_str(dl_err)); 14187 } 14188 14189 /* 14190 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 14191 * than DL_UNITDATA_IND messages. If we need to process this message 14192 * exclusively, we call qwriter_ip, in which case we also need to call 14193 * ill_refhold before that, since qwriter_ip does an ill_refrele. 14194 */ 14195 void 14196 ip_rput_dlpi(queue_t *q, mblk_t *mp) 14197 { 14198 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14199 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14200 ill_t *ill; 14201 14202 ip1dbg(("ip_rput_dlpi")); 14203 ill = (ill_t *)q->q_ptr; 14204 switch (dloa->dl_primitive) { 14205 case DL_ERROR_ACK: 14206 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 14207 "%s (0x%x), unix %u\n", ill->ill_name, 14208 dlpi_prim_str(dlea->dl_error_primitive), 14209 dlea->dl_error_primitive, 14210 dlpi_err_str(dlea->dl_errno), 14211 dlea->dl_errno, 14212 dlea->dl_unix_errno)); 14213 switch (dlea->dl_error_primitive) { 14214 case DL_UNBIND_REQ: 14215 mutex_enter(&ill->ill_lock); 14216 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14217 cv_signal(&ill->ill_cv); 14218 mutex_exit(&ill->ill_lock); 14219 /* FALLTHRU */ 14220 case DL_NOTIFY_REQ: 14221 case DL_ATTACH_REQ: 14222 case DL_DETACH_REQ: 14223 case DL_INFO_REQ: 14224 case DL_BIND_REQ: 14225 case DL_ENABMULTI_REQ: 14226 case DL_PHYS_ADDR_REQ: 14227 case DL_CAPABILITY_REQ: 14228 case DL_CONTROL_REQ: 14229 /* 14230 * Refhold the ill to match qwriter_ip which does a 14231 * refrele. Since this is on the ill stream we 14232 * unconditionally bump up the refcount without 14233 * checking for ILL_CAN_LOOKUP 14234 */ 14235 ill_refhold(ill); 14236 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14237 CUR_OP, B_FALSE); 14238 return; 14239 case DL_DISABMULTI_REQ: 14240 freemsg(mp); /* Don't want to pass this up */ 14241 return; 14242 default: 14243 break; 14244 } 14245 ip_dlpi_error(ill, dlea->dl_error_primitive, 14246 dlea->dl_errno, dlea->dl_unix_errno); 14247 freemsg(mp); 14248 return; 14249 case DL_INFO_ACK: 14250 case DL_BIND_ACK: 14251 case DL_PHYS_ADDR_ACK: 14252 case DL_NOTIFY_ACK: 14253 case DL_CAPABILITY_ACK: 14254 case DL_CONTROL_ACK: 14255 /* 14256 * Refhold the ill to match qwriter_ip which does a refrele 14257 * Since this is on the ill stream we unconditionally 14258 * bump up the refcount without doing ILL_CAN_LOOKUP. 14259 */ 14260 ill_refhold(ill); 14261 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14262 CUR_OP, B_FALSE); 14263 return; 14264 case DL_NOTIFY_IND: 14265 ill_refhold(ill); 14266 /* 14267 * The DL_NOTIFY_IND is an asynchronous message that has no 14268 * relation to the current ioctl in progress (if any). Hence we 14269 * pass in NEW_OP in this case. 14270 */ 14271 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14272 NEW_OP, B_FALSE); 14273 return; 14274 case DL_OK_ACK: 14275 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 14276 dlpi_prim_str((int)dloa->dl_correct_primitive))); 14277 switch (dloa->dl_correct_primitive) { 14278 case DL_UNBIND_REQ: 14279 mutex_enter(&ill->ill_lock); 14280 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14281 cv_signal(&ill->ill_cv); 14282 mutex_exit(&ill->ill_lock); 14283 /* FALLTHRU */ 14284 case DL_ATTACH_REQ: 14285 case DL_DETACH_REQ: 14286 /* 14287 * Refhold the ill to match qwriter_ip which does a 14288 * refrele. Since this is on the ill stream we 14289 * unconditionally bump up the refcount 14290 */ 14291 ill_refhold(ill); 14292 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 14293 CUR_OP, B_FALSE); 14294 return; 14295 case DL_ENABMULTI_REQ: 14296 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 14297 ill->ill_dlpi_multicast_state = IDMS_OK; 14298 break; 14299 14300 } 14301 break; 14302 default: 14303 break; 14304 } 14305 freemsg(mp); 14306 } 14307 14308 /* 14309 * Handling of DLPI messages that require exclusive access to the ipsq. 14310 * 14311 * Need to do ill_pending_mp_release on ioctl completion, which could 14312 * happen here. (along with mi_copy_done) 14313 */ 14314 /* ARGSUSED */ 14315 static void 14316 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14317 { 14318 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 14319 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 14320 int err = 0; 14321 ill_t *ill; 14322 ipif_t *ipif = NULL; 14323 mblk_t *mp1 = NULL; 14324 conn_t *connp = NULL; 14325 t_uscalar_t physaddr_req; 14326 mblk_t *mp_hw; 14327 union DL_primitives *dlp; 14328 boolean_t success; 14329 boolean_t ioctl_aborted = B_FALSE; 14330 boolean_t log = B_TRUE; 14331 14332 ip1dbg(("ip_rput_dlpi_writer ..")); 14333 ill = (ill_t *)q->q_ptr; 14334 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14335 14336 ASSERT(IAM_WRITER_ILL(ill)); 14337 14338 /* 14339 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 14340 * both are null or non-null. However we can assert that only 14341 * after grabbing the ipsq_lock. So we don't make any assertion 14342 * here and in other places in the code. 14343 */ 14344 ipif = ipsq->ipsq_pending_ipif; 14345 /* 14346 * The current ioctl could have been aborted by the user and a new 14347 * ioctl to bring up another ill could have started. We could still 14348 * get a response from the driver later. 14349 */ 14350 if (ipif != NULL && ipif->ipif_ill != ill) 14351 ioctl_aborted = B_TRUE; 14352 14353 switch (dloa->dl_primitive) { 14354 case DL_ERROR_ACK: 14355 switch (dlea->dl_error_primitive) { 14356 case DL_UNBIND_REQ: 14357 case DL_ATTACH_REQ: 14358 case DL_DETACH_REQ: 14359 case DL_INFO_REQ: 14360 ill_dlpi_done(ill, dlea->dl_error_primitive); 14361 break; 14362 case DL_NOTIFY_REQ: 14363 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14364 log = B_FALSE; 14365 break; 14366 case DL_PHYS_ADDR_REQ: 14367 /* 14368 * For IPv6 only, there are two additional 14369 * phys_addr_req's sent to the driver to get the 14370 * IPv6 token and lla. This allows IP to acquire 14371 * the hardware address format for a given interface 14372 * without having built in knowledge of the hardware 14373 * address. ill_phys_addr_pend keeps track of the last 14374 * DL_PAR sent so we know which response we are 14375 * dealing with. ill_dlpi_done will update 14376 * ill_phys_addr_pend when it sends the next req. 14377 * We don't complete the IOCTL until all three DL_PARs 14378 * have been attempted, so set *_len to 0 and break. 14379 */ 14380 physaddr_req = ill->ill_phys_addr_pend; 14381 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14382 if (physaddr_req == DL_IPV6_TOKEN) { 14383 ill->ill_token_length = 0; 14384 log = B_FALSE; 14385 break; 14386 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 14387 ill->ill_nd_lla_len = 0; 14388 log = B_FALSE; 14389 break; 14390 } 14391 /* 14392 * Something went wrong with the DL_PHYS_ADDR_REQ. 14393 * We presumably have an IOCTL hanging out waiting 14394 * for completion. Find it and complete the IOCTL 14395 * with the error noted. 14396 * However, ill_dl_phys was called on an ill queue 14397 * (from SIOCSLIFNAME), thus conn_pending_ill is not 14398 * set. But the ioctl is known to be pending on ill_wq. 14399 */ 14400 if (!ill->ill_ifname_pending) 14401 break; 14402 ill->ill_ifname_pending = 0; 14403 if (!ioctl_aborted) 14404 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14405 if (mp1 != NULL) { 14406 /* 14407 * This operation (SIOCSLIFNAME) must have 14408 * happened on the ill. Assert there is no conn 14409 */ 14410 ASSERT(connp == NULL); 14411 q = ill->ill_wq; 14412 } 14413 break; 14414 case DL_BIND_REQ: 14415 ill_dlpi_done(ill, DL_BIND_REQ); 14416 if (ill->ill_ifname_pending) 14417 break; 14418 /* 14419 * Something went wrong with the bind. We presumably 14420 * have an IOCTL hanging out waiting for completion. 14421 * Find it, take down the interface that was coming 14422 * up, and complete the IOCTL with the error noted. 14423 */ 14424 if (!ioctl_aborted) 14425 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14426 if (mp1 != NULL) { 14427 /* 14428 * This operation (SIOCSLIFFLAGS) must have 14429 * happened from a conn. 14430 */ 14431 ASSERT(connp != NULL); 14432 q = CONNP_TO_WQ(connp); 14433 if (ill->ill_move_in_progress) { 14434 ILL_CLEAR_MOVE(ill); 14435 } 14436 (void) ipif_down(ipif, NULL, NULL); 14437 /* error is set below the switch */ 14438 } 14439 break; 14440 case DL_ENABMULTI_REQ: 14441 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 14442 14443 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 14444 ill->ill_dlpi_multicast_state = IDMS_FAILED; 14445 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 14446 ipif_t *ipif; 14447 14448 log = B_FALSE; 14449 printf("ip: joining multicasts failed (%d)" 14450 " on %s - will use link layer " 14451 "broadcasts for multicast\n", 14452 dlea->dl_errno, ill->ill_name); 14453 14454 /* 14455 * Set up the multicast mapping alone. 14456 * writer, so ok to access ill->ill_ipif 14457 * without any lock. 14458 */ 14459 ipif = ill->ill_ipif; 14460 mutex_enter(&ill->ill_phyint->phyint_lock); 14461 ill->ill_phyint->phyint_flags |= 14462 PHYI_MULTI_BCAST; 14463 mutex_exit(&ill->ill_phyint->phyint_lock); 14464 14465 if (!ill->ill_isv6) { 14466 (void) ipif_arp_setup_multicast(ipif, 14467 NULL); 14468 } else { 14469 (void) ipif_ndp_setup_multicast(ipif, 14470 NULL); 14471 } 14472 } 14473 freemsg(mp); /* Don't want to pass this up */ 14474 return; 14475 case DL_CAPABILITY_REQ: 14476 case DL_CONTROL_REQ: 14477 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 14478 "DL_CAPABILITY/CONTROL REQ\n")); 14479 ill_dlpi_done(ill, dlea->dl_error_primitive); 14480 ill->ill_capab_state = IDMS_FAILED; 14481 freemsg(mp); 14482 return; 14483 } 14484 /* 14485 * Note the error for IOCTL completion (mp1 is set when 14486 * ready to complete ioctl). If ill_ifname_pending_err is 14487 * set, an error occured during plumbing (ill_ifname_pending), 14488 * so we want to report that error. 14489 * 14490 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 14491 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 14492 * expected to get errack'd if the driver doesn't support 14493 * these flags (e.g. ethernet). log will be set to B_FALSE 14494 * if these error conditions are encountered. 14495 */ 14496 if (mp1 != NULL) { 14497 if (ill->ill_ifname_pending_err != 0) { 14498 err = ill->ill_ifname_pending_err; 14499 ill->ill_ifname_pending_err = 0; 14500 } else { 14501 err = dlea->dl_unix_errno ? 14502 dlea->dl_unix_errno : ENXIO; 14503 } 14504 /* 14505 * If we're plumbing an interface and an error hasn't already 14506 * been saved, set ill_ifname_pending_err to the error passed 14507 * up. Ignore the error if log is B_FALSE (see comment above). 14508 */ 14509 } else if (log && ill->ill_ifname_pending && 14510 ill->ill_ifname_pending_err == 0) { 14511 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 14512 dlea->dl_unix_errno : ENXIO; 14513 } 14514 14515 if (log) 14516 ip_dlpi_error(ill, dlea->dl_error_primitive, 14517 dlea->dl_errno, dlea->dl_unix_errno); 14518 break; 14519 case DL_CAPABILITY_ACK: { 14520 boolean_t reneg_flag = B_FALSE; 14521 /* Call a routine to handle this one. */ 14522 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 14523 /* 14524 * Check if the ACK is due to renegotiation case since we 14525 * will need to send a new CAPABILITY_REQ later. 14526 */ 14527 if (ill->ill_capab_state == IDMS_RENEG) { 14528 /* This is the ack for a renogiation case */ 14529 reneg_flag = B_TRUE; 14530 ill->ill_capab_state = IDMS_UNKNOWN; 14531 } 14532 ill_capability_ack(ill, mp); 14533 if (reneg_flag) 14534 ill_capability_probe(ill); 14535 break; 14536 } 14537 case DL_CONTROL_ACK: 14538 /* We treat all of these as "fire and forget" */ 14539 ill_dlpi_done(ill, DL_CONTROL_REQ); 14540 break; 14541 case DL_INFO_ACK: 14542 /* Call a routine to handle this one. */ 14543 ill_dlpi_done(ill, DL_INFO_REQ); 14544 ip_ll_subnet_defaults(ill, mp); 14545 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 14546 return; 14547 case DL_BIND_ACK: 14548 /* 14549 * We should have an IOCTL waiting on this unless 14550 * sent by ill_dl_phys, in which case just return 14551 */ 14552 ill_dlpi_done(ill, DL_BIND_REQ); 14553 if (ill->ill_ifname_pending) 14554 break; 14555 14556 if (!ioctl_aborted) 14557 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14558 if (mp1 == NULL) 14559 break; 14560 ASSERT(connp != NULL); 14561 q = CONNP_TO_WQ(connp); 14562 14563 /* 14564 * We are exclusive. So nothing can change even after 14565 * we get the pending mp. If need be we can put it back 14566 * and restart, as in calling ipif_arp_up() below. 14567 */ 14568 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 14569 14570 mutex_enter(&ill->ill_lock); 14571 ill->ill_dl_up = 1; 14572 mutex_exit(&ill->ill_lock); 14573 14574 /* 14575 * Now bring up the resolver, when that is 14576 * done we'll create IREs and we are done. 14577 */ 14578 if (ill->ill_isv6) { 14579 /* 14580 * v6 interfaces. 14581 * Unlike ARP which has to do another bind 14582 * and attach, once we get here we are 14583 * done withh NDP. Except in the case of 14584 * ILLF_XRESOLV, in which case we send an 14585 * AR_INTERFACE_UP to the external resolver. 14586 * If all goes well, the ioctl will complete 14587 * in ip_rput(). If there's an error, we 14588 * complete it here. 14589 */ 14590 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 14591 B_FALSE); 14592 if (err == 0) { 14593 if (ill->ill_flags & ILLF_XRESOLV) { 14594 mutex_enter(&connp->conn_lock); 14595 mutex_enter(&ill->ill_lock); 14596 success = ipsq_pending_mp_add( 14597 connp, ipif, q, mp1, 0); 14598 mutex_exit(&ill->ill_lock); 14599 mutex_exit(&connp->conn_lock); 14600 if (success) { 14601 err = ipif_resolver_up(ipif, 14602 B_FALSE); 14603 if (err == EINPROGRESS) { 14604 freemsg(mp); 14605 return; 14606 } 14607 ASSERT(err != 0); 14608 mp1 = ipsq_pending_mp_get(ipsq, 14609 &connp); 14610 ASSERT(mp1 != NULL); 14611 } else { 14612 /* conn has started closing */ 14613 err = EINTR; 14614 } 14615 } else { /* Non XRESOLV interface */ 14616 err = ipif_up_done_v6(ipif); 14617 } 14618 } 14619 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 14620 /* 14621 * ARP and other v4 external resolvers. 14622 * Leave the pending mblk intact so that 14623 * the ioctl completes in ip_rput(). 14624 */ 14625 mutex_enter(&connp->conn_lock); 14626 mutex_enter(&ill->ill_lock); 14627 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 14628 mutex_exit(&ill->ill_lock); 14629 mutex_exit(&connp->conn_lock); 14630 if (success) { 14631 err = ipif_resolver_up(ipif, B_FALSE); 14632 if (err == EINPROGRESS) { 14633 freemsg(mp); 14634 return; 14635 } 14636 ASSERT(err != 0); 14637 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14638 } else { 14639 /* The conn has started closing */ 14640 err = EINTR; 14641 } 14642 } else { 14643 /* 14644 * This one is complete. Reply to pending ioctl. 14645 */ 14646 err = ipif_up_done(ipif); 14647 } 14648 14649 if ((err == 0) && (ill->ill_up_ipifs)) { 14650 err = ill_up_ipifs(ill, q, mp1); 14651 if (err == EINPROGRESS) { 14652 freemsg(mp); 14653 return; 14654 } 14655 } 14656 14657 if (ill->ill_up_ipifs) { 14658 ill_group_cleanup(ill); 14659 } 14660 14661 break; 14662 case DL_NOTIFY_IND: { 14663 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 14664 ire_t *ire; 14665 boolean_t need_ire_walk_v4 = B_FALSE; 14666 boolean_t need_ire_walk_v6 = B_FALSE; 14667 14668 /* 14669 * Change the address everywhere we need to. 14670 * What we're getting here is a link-level addr or phys addr. 14671 * The new addr is at notify + notify->dl_addr_offset 14672 * The address length is notify->dl_addr_length; 14673 */ 14674 switch (notify->dl_notification) { 14675 case DL_NOTE_PHYS_ADDR: 14676 mp_hw = copyb(mp); 14677 if (mp_hw == NULL) { 14678 err = ENOMEM; 14679 break; 14680 } 14681 dlp = (union DL_primitives *)mp_hw->b_rptr; 14682 /* 14683 * We currently don't support changing 14684 * the token via DL_NOTIFY_IND. 14685 * When we do support it, we have to consider 14686 * what the implications are with respect to 14687 * the token and the link local address. 14688 */ 14689 mutex_enter(&ill->ill_lock); 14690 if (dlp->notify_ind.dl_data == 14691 DL_IPV6_LINK_LAYER_ADDR) { 14692 if (ill->ill_nd_lla_mp != NULL) 14693 freemsg(ill->ill_nd_lla_mp); 14694 ill->ill_nd_lla_mp = mp_hw; 14695 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14696 dlp->notify_ind.dl_addr_offset; 14697 ill->ill_nd_lla_len = 14698 dlp->notify_ind.dl_addr_length - 14699 ABS(ill->ill_sap_length); 14700 mutex_exit(&ill->ill_lock); 14701 break; 14702 } else if (dlp->notify_ind.dl_data == 14703 DL_CURR_PHYS_ADDR) { 14704 if (ill->ill_phys_addr_mp != NULL) 14705 freemsg(ill->ill_phys_addr_mp); 14706 ill->ill_phys_addr_mp = mp_hw; 14707 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14708 dlp->notify_ind.dl_addr_offset; 14709 ill->ill_phys_addr_length = 14710 dlp->notify_ind.dl_addr_length - 14711 ABS(ill->ill_sap_length); 14712 if (ill->ill_isv6 && 14713 !(ill->ill_flags & ILLF_XRESOLV)) { 14714 if (ill->ill_nd_lla_mp != NULL) 14715 freemsg(ill->ill_nd_lla_mp); 14716 ill->ill_nd_lla_mp = copyb(mp_hw); 14717 ill->ill_nd_lla = (uchar_t *) 14718 ill->ill_nd_lla_mp->b_rptr + 14719 dlp->notify_ind.dl_addr_offset; 14720 ill->ill_nd_lla_len = 14721 ill->ill_phys_addr_length; 14722 } 14723 } 14724 mutex_exit(&ill->ill_lock); 14725 /* 14726 * Send out gratuitous arp request for our new 14727 * hardware address. 14728 */ 14729 for (ipif = ill->ill_ipif; ipif != NULL; 14730 ipif = ipif->ipif_next) { 14731 if (!(ipif->ipif_flags & IPIF_UP)) 14732 continue; 14733 if (ill->ill_isv6) { 14734 ipif_ndp_down(ipif); 14735 /* 14736 * Set B_TRUE to enable 14737 * ipif_ndp_up() to send out 14738 * unsolicited advertisements. 14739 */ 14740 err = ipif_ndp_up(ipif, 14741 &ipif->ipif_v6lcl_addr, 14742 B_TRUE); 14743 if (err) { 14744 ip1dbg(( 14745 "ip_rput_dlpi_writer: " 14746 "Failed to update ndp " 14747 "err %d\n", err)); 14748 } 14749 } else { 14750 /* 14751 * IPv4 ARP case 14752 * 14753 * Set B_TRUE, as we only want 14754 * ipif_resolver_up to send an 14755 * AR_ENTRY_ADD request up to 14756 * ARP. 14757 */ 14758 err = ipif_resolver_up(ipif, 14759 B_TRUE); 14760 if (err) { 14761 ip1dbg(( 14762 "ip_rput_dlpi_writer: " 14763 "Failed to update arp " 14764 "err %d\n", err)); 14765 } 14766 } 14767 } 14768 /* 14769 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 14770 * case so that all old fastpath information can be 14771 * purged from IRE caches. 14772 */ 14773 /* FALLTHRU */ 14774 case DL_NOTE_FASTPATH_FLUSH: 14775 /* 14776 * Any fastpath probe sent henceforth will get the 14777 * new fp mp. So we first delete any ires that are 14778 * waiting for the fastpath. Then walk all ires and 14779 * delete the ire or delete the fp mp. In the case of 14780 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 14781 * recreate the ire's without going through a complex 14782 * ipif up/down dance. So we don't delete the ire 14783 * itself, but just the ire_fp_mp for these 2 ire's 14784 * In the case of the other ire's we delete the ire's 14785 * themselves. Access to ire_fp_mp is completely 14786 * protected by ire_lock for IRE_MIPRTUN and 14787 * IRE_BROADCAST. Deleting the ire is preferable in the 14788 * other cases for performance. 14789 */ 14790 if (ill->ill_isv6) { 14791 nce_fastpath_list_dispatch(ill, NULL, NULL); 14792 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 14793 NULL); 14794 } else { 14795 ire_fastpath_list_dispatch(ill, NULL, NULL); 14796 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 14797 IRE_CACHE | IRE_BROADCAST, 14798 ire_fastpath_flush, NULL, ill); 14799 mutex_enter(&ire_mrtun_lock); 14800 if (ire_mrtun_count != 0) { 14801 mutex_exit(&ire_mrtun_lock); 14802 ire_walk_ill_mrtun(MATCH_IRE_WQ, 14803 IRE_MIPRTUN, ire_fastpath_flush, 14804 NULL, ill); 14805 } else { 14806 mutex_exit(&ire_mrtun_lock); 14807 } 14808 } 14809 break; 14810 case DL_NOTE_SDU_SIZE: 14811 /* 14812 * Change the MTU size of the interface, of all 14813 * attached ipif's, and of all relevant ire's. The 14814 * new value's a uint32_t at notify->dl_data. 14815 * Mtu change Vs. new ire creation - protocol below. 14816 * 14817 * a Mark the ipif as IPIF_CHANGING. 14818 * b Set the new mtu in the ipif. 14819 * c Change the ire_max_frag on all affected ires 14820 * d Unmark the IPIF_CHANGING 14821 * 14822 * To see how the protocol works, assume an interface 14823 * route is also being added simultaneously by 14824 * ip_rt_add and let 'ipif' be the ipif referenced by 14825 * the ire. If the ire is created before step a, 14826 * it will be cleaned up by step c. If the ire is 14827 * created after step d, it will see the new value of 14828 * ipif_mtu. Any attempt to create the ire between 14829 * steps a to d will fail because of the IPIF_CHANGING 14830 * flag. Note that ire_create() is passed a pointer to 14831 * the ipif_mtu, and not the value. During ire_add 14832 * under the bucket lock, the ire_max_frag of the 14833 * new ire being created is set from the ipif/ire from 14834 * which it is being derived. 14835 */ 14836 mutex_enter(&ill->ill_lock); 14837 ill->ill_max_frag = (uint_t)notify->dl_data; 14838 14839 /* 14840 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 14841 * leave it alone 14842 */ 14843 if (ill->ill_mtu_userspecified) { 14844 mutex_exit(&ill->ill_lock); 14845 break; 14846 } 14847 ill->ill_max_mtu = ill->ill_max_frag; 14848 if (ill->ill_isv6) { 14849 if (ill->ill_max_mtu < IPV6_MIN_MTU) 14850 ill->ill_max_mtu = IPV6_MIN_MTU; 14851 } else { 14852 if (ill->ill_max_mtu < IP_MIN_MTU) 14853 ill->ill_max_mtu = IP_MIN_MTU; 14854 } 14855 for (ipif = ill->ill_ipif; ipif != NULL; 14856 ipif = ipif->ipif_next) { 14857 /* 14858 * Don't override the mtu if the user 14859 * has explicitly set it. 14860 */ 14861 if (ipif->ipif_flags & IPIF_FIXEDMTU) 14862 continue; 14863 ipif->ipif_mtu = (uint_t)notify->dl_data; 14864 if (ipif->ipif_isv6) 14865 ire = ipif_to_ire_v6(ipif); 14866 else 14867 ire = ipif_to_ire(ipif); 14868 if (ire != NULL) { 14869 ire->ire_max_frag = ipif->ipif_mtu; 14870 ire_refrele(ire); 14871 } 14872 if (ipif->ipif_flags & IPIF_UP) { 14873 if (ill->ill_isv6) 14874 need_ire_walk_v6 = B_TRUE; 14875 else 14876 need_ire_walk_v4 = B_TRUE; 14877 } 14878 } 14879 mutex_exit(&ill->ill_lock); 14880 if (need_ire_walk_v4) 14881 ire_walk_v4(ill_mtu_change, (char *)ill, 14882 ALL_ZONES); 14883 if (need_ire_walk_v6) 14884 ire_walk_v6(ill_mtu_change, (char *)ill, 14885 ALL_ZONES); 14886 break; 14887 case DL_NOTE_LINK_UP: 14888 case DL_NOTE_LINK_DOWN: { 14889 /* 14890 * We are writer. ill / phyint / ipsq assocs stable. 14891 * The RUNNING flag reflects the state of the link. 14892 */ 14893 phyint_t *phyint = ill->ill_phyint; 14894 uint64_t new_phyint_flags; 14895 boolean_t changed = B_FALSE; 14896 14897 mutex_enter(&phyint->phyint_lock); 14898 new_phyint_flags = 14899 (notify->dl_notification == DL_NOTE_LINK_UP) ? 14900 phyint->phyint_flags | PHYI_RUNNING : 14901 phyint->phyint_flags & ~PHYI_RUNNING; 14902 if (new_phyint_flags != phyint->phyint_flags) { 14903 phyint->phyint_flags = new_phyint_flags; 14904 changed = B_TRUE; 14905 } 14906 mutex_exit(&phyint->phyint_lock); 14907 /* 14908 * If the flags have changed, send a message to 14909 * the routing socket. 14910 */ 14911 if (changed) { 14912 if (phyint->phyint_illv4 != NULL) { 14913 ip_rts_ifmsg( 14914 phyint->phyint_illv4->ill_ipif); 14915 } 14916 if (phyint->phyint_illv6 != NULL) { 14917 ip_rts_ifmsg( 14918 phyint->phyint_illv6->ill_ipif); 14919 } 14920 } 14921 break; 14922 } 14923 case DL_NOTE_PROMISC_ON_PHYS: 14924 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14925 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 14926 mutex_enter(&ill->ill_lock); 14927 ill->ill_promisc_on_phys = B_TRUE; 14928 mutex_exit(&ill->ill_lock); 14929 break; 14930 case DL_NOTE_PROMISC_OFF_PHYS: 14931 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14932 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 14933 mutex_enter(&ill->ill_lock); 14934 ill->ill_promisc_on_phys = B_FALSE; 14935 mutex_exit(&ill->ill_lock); 14936 break; 14937 case DL_NOTE_CAPAB_RENEG: 14938 /* 14939 * Something changed on the driver side. 14940 * It wants us to renegotiate the capabilities 14941 * on this ill. The most likely cause is the 14942 * aggregation interface under us where a 14943 * port got added or went away. 14944 * 14945 * We reset the capabilities and set the 14946 * state to IDMS_RENG so that when the ack 14947 * comes back, we can start the 14948 * renegotiation process. 14949 */ 14950 ill_capability_reset(ill); 14951 ill->ill_capab_state = IDMS_RENEG; 14952 break; 14953 default: 14954 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 14955 "type 0x%x for DL_NOTIFY_IND\n", 14956 notify->dl_notification)); 14957 break; 14958 } 14959 14960 /* 14961 * As this is an asynchronous operation, we 14962 * should not call ill_dlpi_done 14963 */ 14964 break; 14965 } 14966 case DL_NOTIFY_ACK: 14967 /* 14968 * Don't really need to check for what notifications 14969 * are supported; we'll process what gets sent upstream, 14970 * and we know it'll be something we support changing 14971 * based on our DL_NOTIFY_REQ. 14972 */ 14973 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14974 break; 14975 case DL_PHYS_ADDR_ACK: { 14976 /* 14977 * We should have an IOCTL waiting on this when request 14978 * sent by ill_dl_phys. 14979 * However, ill_dl_phys was called on an ill queue (from 14980 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 14981 * ioctl is known to be pending on ill_wq. 14982 * There are two additional phys_addr_req's sent to the 14983 * driver to get the token and lla. ill_phys_addr_pend 14984 * keeps track of the last one sent so we know which 14985 * response we are dealing with. ill_dlpi_done will 14986 * update ill_phys_addr_pend when it sends the next req. 14987 * We don't complete the IOCTL until all three DL_PARs 14988 * have been attempted. 14989 * 14990 * We don't need any lock to update ill_nd_lla* fields, 14991 * since the ill is not yet up, We grab the lock just 14992 * for uniformity with other code that accesses ill_nd_lla. 14993 */ 14994 physaddr_req = ill->ill_phys_addr_pend; 14995 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14996 if (physaddr_req == DL_IPV6_TOKEN || 14997 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 14998 if (physaddr_req == DL_IPV6_TOKEN) { 14999 /* 15000 * bcopy to low-order bits of ill_token 15001 * 15002 * XXX Temporary hack - currently, 15003 * all known tokens are 64 bits, 15004 * so I'll cheat for the moment. 15005 */ 15006 dlp = (union DL_primitives *)mp->b_rptr; 15007 15008 mutex_enter(&ill->ill_lock); 15009 bcopy((uchar_t *)(mp->b_rptr + 15010 dlp->physaddr_ack.dl_addr_offset), 15011 (void *)&ill->ill_token.s6_addr32[2], 15012 dlp->physaddr_ack.dl_addr_length); 15013 ill->ill_token_length = 15014 dlp->physaddr_ack.dl_addr_length; 15015 mutex_exit(&ill->ill_lock); 15016 } else { 15017 ASSERT(ill->ill_nd_lla_mp == NULL); 15018 mp_hw = copyb(mp); 15019 if (mp_hw == NULL) { 15020 err = ENOMEM; 15021 break; 15022 } 15023 dlp = (union DL_primitives *)mp_hw->b_rptr; 15024 mutex_enter(&ill->ill_lock); 15025 ill->ill_nd_lla_mp = mp_hw; 15026 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15027 dlp->physaddr_ack.dl_addr_offset; 15028 ill->ill_nd_lla_len = 15029 dlp->physaddr_ack.dl_addr_length; 15030 mutex_exit(&ill->ill_lock); 15031 } 15032 break; 15033 } 15034 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 15035 ASSERT(ill->ill_phys_addr_mp == NULL); 15036 if (!ill->ill_ifname_pending) 15037 break; 15038 ill->ill_ifname_pending = 0; 15039 if (!ioctl_aborted) 15040 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15041 if (mp1 != NULL) { 15042 ASSERT(connp == NULL); 15043 q = ill->ill_wq; 15044 } 15045 /* 15046 * If any error acks received during the plumbing sequence, 15047 * ill_ifname_pending_err will be set. Break out and send up 15048 * the error to the pending ioctl. 15049 */ 15050 if (ill->ill_ifname_pending_err != 0) { 15051 err = ill->ill_ifname_pending_err; 15052 ill->ill_ifname_pending_err = 0; 15053 break; 15054 } 15055 /* 15056 * Get the interface token. If the zeroth interface 15057 * address is zero then set the address to the link local 15058 * address 15059 */ 15060 mp_hw = copyb(mp); 15061 if (mp_hw == NULL) { 15062 err = ENOMEM; 15063 break; 15064 } 15065 dlp = (union DL_primitives *)mp_hw->b_rptr; 15066 ill->ill_phys_addr_mp = mp_hw; 15067 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15068 dlp->physaddr_ack.dl_addr_offset; 15069 if (dlp->physaddr_ack.dl_addr_length == 0 || 15070 ill->ill_phys_addr_length == 0 || 15071 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15072 /* 15073 * Compatibility: atun driver returns a length of 0. 15074 * ipdptp has an ill_phys_addr_length of zero(from 15075 * DL_BIND_ACK) but a non-zero length here. 15076 * ipd has an ill_phys_addr_length of 4(from 15077 * DL_BIND_ACK) but a non-zero length here. 15078 */ 15079 ill->ill_phys_addr = NULL; 15080 } else if (dlp->physaddr_ack.dl_addr_length != 15081 ill->ill_phys_addr_length) { 15082 ip0dbg(("DL_PHYS_ADDR_ACK: " 15083 "Address length mismatch %d %d\n", 15084 dlp->physaddr_ack.dl_addr_length, 15085 ill->ill_phys_addr_length)); 15086 err = EINVAL; 15087 break; 15088 } 15089 mutex_enter(&ill->ill_lock); 15090 if (ill->ill_nd_lla_mp == NULL) { 15091 ill->ill_nd_lla_mp = copyb(mp_hw); 15092 if (ill->ill_nd_lla_mp == NULL) { 15093 err = ENOMEM; 15094 mutex_exit(&ill->ill_lock); 15095 break; 15096 } 15097 ill->ill_nd_lla = 15098 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 15099 dlp->physaddr_ack.dl_addr_offset; 15100 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 15101 } 15102 mutex_exit(&ill->ill_lock); 15103 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 15104 (void) ill_setdefaulttoken(ill); 15105 15106 /* 15107 * If the ill zero interface has a zero address assign 15108 * it the proper link local address. 15109 */ 15110 ASSERT(ill->ill_ipif->ipif_id == 0); 15111 if (ipif != NULL && 15112 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15113 (void) ipif_setlinklocal(ipif); 15114 break; 15115 } 15116 case DL_OK_ACK: 15117 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 15118 dlpi_prim_str((int)dloa->dl_correct_primitive), 15119 dloa->dl_correct_primitive)); 15120 switch (dloa->dl_correct_primitive) { 15121 case DL_UNBIND_REQ: 15122 case DL_ATTACH_REQ: 15123 case DL_DETACH_REQ: 15124 ill_dlpi_done(ill, dloa->dl_correct_primitive); 15125 break; 15126 } 15127 break; 15128 default: 15129 break; 15130 } 15131 15132 freemsg(mp); 15133 if (mp1) { 15134 struct iocblk *iocp; 15135 int mode; 15136 15137 /* 15138 * Complete the waiting IOCTL. For SIOCLIFADDIF or 15139 * SIOCSLIFNAME do a copyout. 15140 */ 15141 iocp = (struct iocblk *)mp1->b_rptr; 15142 15143 if (iocp->ioc_cmd == SIOCLIFADDIF || 15144 iocp->ioc_cmd == SIOCSLIFNAME) 15145 mode = COPYOUT; 15146 else 15147 mode = NO_COPYOUT; 15148 /* 15149 * The ioctl must complete now without EINPROGRESS 15150 * since ipsq_pending_mp_get has removed the ioctl mblk 15151 * from ipsq_pending_mp. Otherwise the ioctl will be 15152 * stuck for ever in the ipsq. 15153 */ 15154 ASSERT(err != EINPROGRESS); 15155 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 15156 15157 } 15158 } 15159 15160 /* 15161 * ip_rput_other is called by ip_rput to handle messages modifying the global 15162 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 15163 */ 15164 /* ARGSUSED */ 15165 void 15166 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15167 { 15168 ill_t *ill; 15169 struct iocblk *iocp; 15170 mblk_t *mp1; 15171 conn_t *connp = NULL; 15172 15173 ip1dbg(("ip_rput_other ")); 15174 ill = (ill_t *)q->q_ptr; 15175 /* 15176 * This routine is not a writer in the case of SIOCGTUNPARAM 15177 * in which case ipsq is NULL. 15178 */ 15179 if (ipsq != NULL) { 15180 ASSERT(IAM_WRITER_IPSQ(ipsq)); 15181 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15182 } 15183 15184 switch (mp->b_datap->db_type) { 15185 case M_ERROR: 15186 case M_HANGUP: 15187 /* 15188 * The device has a problem. We force the ILL down. It can 15189 * be brought up again manually using SIOCSIFFLAGS (via 15190 * ifconfig or equivalent). 15191 */ 15192 ASSERT(ipsq != NULL); 15193 if (mp->b_rptr < mp->b_wptr) 15194 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 15195 if (ill->ill_error == 0) 15196 ill->ill_error = ENXIO; 15197 if (!ill_down_start(q, mp)) 15198 return; 15199 ipif_all_down_tail(ipsq, q, mp, NULL); 15200 break; 15201 case M_IOCACK: 15202 iocp = (struct iocblk *)mp->b_rptr; 15203 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 15204 switch (iocp->ioc_cmd) { 15205 case SIOCSTUNPARAM: 15206 case OSIOCSTUNPARAM: 15207 ASSERT(ipsq != NULL); 15208 /* 15209 * Finish socket ioctl passed through to tun. 15210 * We should have an IOCTL waiting on this. 15211 */ 15212 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15213 if (ill->ill_isv6) { 15214 struct iftun_req *ta; 15215 15216 /* 15217 * if a source or destination is 15218 * being set, try and set the link 15219 * local address for the tunnel 15220 */ 15221 ta = (struct iftun_req *)mp->b_cont-> 15222 b_cont->b_rptr; 15223 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 15224 ipif_set_tun_llink(ill, ta); 15225 } 15226 15227 } 15228 if (mp1 != NULL) { 15229 /* 15230 * Now copy back the b_next/b_prev used by 15231 * mi code for the mi_copy* functions. 15232 * See ip_sioctl_tunparam() for the reason. 15233 * Also protect against missing b_cont. 15234 */ 15235 if (mp->b_cont != NULL) { 15236 mp->b_cont->b_next = 15237 mp1->b_cont->b_next; 15238 mp->b_cont->b_prev = 15239 mp1->b_cont->b_prev; 15240 } 15241 inet_freemsg(mp1); 15242 ASSERT(ipsq->ipsq_current_ipif != NULL); 15243 ASSERT(connp != NULL); 15244 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15245 iocp->ioc_error, NO_COPYOUT, 15246 ipsq->ipsq_current_ipif, ipsq); 15247 } else { 15248 ASSERT(connp == NULL); 15249 putnext(q, mp); 15250 } 15251 break; 15252 case SIOCGTUNPARAM: 15253 case OSIOCGTUNPARAM: 15254 /* 15255 * This is really M_IOCDATA from the tunnel driver. 15256 * convert back and complete the ioctl. 15257 * We should have an IOCTL waiting on this. 15258 */ 15259 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 15260 if (mp1) { 15261 /* 15262 * Now copy back the b_next/b_prev used by 15263 * mi code for the mi_copy* functions. 15264 * See ip_sioctl_tunparam() for the reason. 15265 * Also protect against missing b_cont. 15266 */ 15267 if (mp->b_cont != NULL) { 15268 mp->b_cont->b_next = 15269 mp1->b_cont->b_next; 15270 mp->b_cont->b_prev = 15271 mp1->b_cont->b_prev; 15272 } 15273 inet_freemsg(mp1); 15274 if (iocp->ioc_error == 0) 15275 mp->b_datap->db_type = M_IOCDATA; 15276 ASSERT(connp != NULL); 15277 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15278 iocp->ioc_error, COPYOUT, NULL, NULL); 15279 } else { 15280 ASSERT(connp == NULL); 15281 putnext(q, mp); 15282 } 15283 break; 15284 default: 15285 break; 15286 } 15287 break; 15288 case M_IOCNAK: 15289 iocp = (struct iocblk *)mp->b_rptr; 15290 15291 switch (iocp->ioc_cmd) { 15292 int mode; 15293 ipif_t *ipif; 15294 15295 case DL_IOC_HDR_INFO: 15296 /* 15297 * If this was the first attempt turn of the 15298 * fastpath probing. 15299 */ 15300 mutex_enter(&ill->ill_lock); 15301 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 15302 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 15303 mutex_exit(&ill->ill_lock); 15304 ill_fastpath_nack(ill); 15305 ip1dbg(("ip_rput: DLPI fastpath off on " 15306 "interface %s\n", 15307 ill->ill_name)); 15308 } else { 15309 mutex_exit(&ill->ill_lock); 15310 } 15311 freemsg(mp); 15312 break; 15313 case SIOCSTUNPARAM: 15314 case OSIOCSTUNPARAM: 15315 ASSERT(ipsq != NULL); 15316 /* 15317 * Finish socket ioctl passed through to tun 15318 * We should have an IOCTL waiting on this. 15319 */ 15320 /* FALLTHRU */ 15321 case SIOCGTUNPARAM: 15322 case OSIOCGTUNPARAM: 15323 /* 15324 * This is really M_IOCDATA from the tunnel driver. 15325 * convert back and complete the ioctl. 15326 * We should have an IOCTL waiting on this. 15327 */ 15328 if (iocp->ioc_cmd == SIOCGTUNPARAM || 15329 iocp->ioc_cmd == OSIOCGTUNPARAM) { 15330 mp1 = ill_pending_mp_get(ill, &connp, 15331 iocp->ioc_id); 15332 mode = COPYOUT; 15333 ipsq = NULL; 15334 ipif = NULL; 15335 } else { 15336 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15337 mode = NO_COPYOUT; 15338 ASSERT(ipsq->ipsq_current_ipif != NULL); 15339 ipif = ipsq->ipsq_current_ipif; 15340 } 15341 if (mp1 != NULL) { 15342 /* 15343 * Now copy back the b_next/b_prev used by 15344 * mi code for the mi_copy* functions. 15345 * See ip_sioctl_tunparam() for the reason. 15346 * Also protect against missing b_cont. 15347 */ 15348 if (mp->b_cont != NULL) { 15349 mp->b_cont->b_next = 15350 mp1->b_cont->b_next; 15351 mp->b_cont->b_prev = 15352 mp1->b_cont->b_prev; 15353 } 15354 inet_freemsg(mp1); 15355 if (iocp->ioc_error == 0) 15356 iocp->ioc_error = EINVAL; 15357 ASSERT(connp != NULL); 15358 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 15359 iocp->ioc_error, mode, ipif, ipsq); 15360 } else { 15361 ASSERT(connp == NULL); 15362 putnext(q, mp); 15363 } 15364 break; 15365 default: 15366 break; 15367 } 15368 default: 15369 break; 15370 } 15371 } 15372 15373 /* 15374 * NOTE : This function does not ire_refrele the ire argument passed in. 15375 * 15376 * IPQoS notes 15377 * IP policy is invoked twice for a forwarded packet, once on the read side 15378 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 15379 * enabled. An additional parameter, in_ill, has been added for this purpose. 15380 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 15381 * because ip_mroute drops this information. 15382 * 15383 */ 15384 void 15385 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 15386 { 15387 uint32_t pkt_len; 15388 queue_t *q; 15389 uint32_t sum; 15390 #define rptr ((uchar_t *)ipha) 15391 uint32_t max_frag; 15392 uint32_t ill_index; 15393 15394 /* Get the ill_index of the incoming ILL */ 15395 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 15396 15397 /* Initiate Read side IPPF processing */ 15398 if (IPP_ENABLED(IPP_FWD_IN)) { 15399 ip_process(IPP_FWD_IN, &mp, ill_index); 15400 if (mp == NULL) { 15401 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 15402 "during IPPF processing\n")); 15403 return; 15404 } 15405 } 15406 pkt_len = ntohs(ipha->ipha_length); 15407 15408 /* Adjust the checksum to reflect the ttl decrement. */ 15409 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 15410 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 15411 15412 if (ipha->ipha_ttl-- <= 1) { 15413 if (ip_csum_hdr(ipha)) { 15414 BUMP_MIB(&ip_mib, ipInCksumErrs); 15415 goto drop_pkt; 15416 } 15417 /* 15418 * Note: ire_stq this will be NULL for multicast 15419 * datagrams using the long path through arp (the IRE 15420 * is not an IRE_CACHE). This should not cause 15421 * problems since we don't generate ICMP errors for 15422 * multicast packets. 15423 */ 15424 q = ire->ire_stq; 15425 if (q) 15426 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED); 15427 else 15428 freemsg(mp); 15429 return; 15430 } 15431 15432 /* 15433 * Don't forward if the interface is down 15434 */ 15435 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 15436 BUMP_MIB(&ip_mib, ipInDiscards); 15437 goto drop_pkt; 15438 } 15439 15440 /* Get the ill_index of the outgoing ILL */ 15441 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 15442 15443 if (is_system_labeled()) { 15444 mblk_t *mp1; 15445 15446 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 15447 BUMP_MIB(&ip_mib, ipForwProhibits); 15448 goto drop_pkt; 15449 } 15450 /* Size may have changed */ 15451 mp = mp1; 15452 ipha = (ipha_t *)mp->b_rptr; 15453 pkt_len = ntohs(ipha->ipha_length); 15454 } 15455 15456 /* Check if there are options to update */ 15457 if (!IS_SIMPLE_IPH(ipha)) { 15458 if (ip_csum_hdr(ipha)) { 15459 BUMP_MIB(&ip_mib, ipInCksumErrs); 15460 goto drop_pkt; 15461 } 15462 if (ip_rput_forward_options(mp, ipha, ire)) { 15463 return; 15464 } 15465 15466 ipha->ipha_hdr_checksum = 0; 15467 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 15468 } 15469 max_frag = ire->ire_max_frag; 15470 if (pkt_len > max_frag) { 15471 /* 15472 * It needs fragging on its way out. We haven't 15473 * verified the header checksum yet. Since we 15474 * are going to put a surely good checksum in the 15475 * outgoing header, we have to make sure that it 15476 * was good coming in. 15477 */ 15478 if (ip_csum_hdr(ipha)) { 15479 BUMP_MIB(&ip_mib, ipInCksumErrs); 15480 goto drop_pkt; 15481 } 15482 /* Initiate Write side IPPF processing */ 15483 if (IPP_ENABLED(IPP_FWD_OUT)) { 15484 ip_process(IPP_FWD_OUT, &mp, ill_index); 15485 if (mp == NULL) { 15486 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 15487 " during IPPF processing\n")); 15488 return; 15489 } 15490 } 15491 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 15492 return; 15493 } 15494 15495 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 15496 if (mp == NULL) { 15497 BUMP_MIB(&ip_mib, ipInDiscards); 15498 return; 15499 } 15500 15501 q = ire->ire_stq; 15502 UPDATE_IB_PKT_COUNT(ire); 15503 ire->ire_last_used_time = lbolt; 15504 BUMP_MIB(&ip_mib, ipForwDatagrams); 15505 putnext(q, mp); 15506 return; 15507 15508 drop_pkt:; 15509 ip1dbg(("ip_rput_forward: drop pkt\n")); 15510 freemsg(mp); 15511 #undef rptr 15512 } 15513 15514 void 15515 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 15516 { 15517 ire_t *ire; 15518 15519 ASSERT(!ipif->ipif_isv6); 15520 /* 15521 * Find an IRE which matches the destination and the outgoing 15522 * queue in the cache table. All we need is an IRE_CACHE which 15523 * is pointing at ipif->ipif_ill. If it is part of some ill group, 15524 * then it is enough to have some IRE_CACHE in the group. 15525 */ 15526 if (ipif->ipif_flags & IPIF_POINTOPOINT) 15527 dst = ipif->ipif_pp_dst_addr; 15528 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 15529 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 15530 if (ire == NULL) { 15531 /* 15532 * Mark this packet to make it be delivered to 15533 * ip_rput_forward after the new ire has been 15534 * created. 15535 */ 15536 mp->b_prev = NULL; 15537 mp->b_next = mp; 15538 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 15539 NULL, 0); 15540 } else { 15541 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 15542 IRE_REFRELE(ire); 15543 } 15544 } 15545 15546 /* Update any source route, record route or timestamp options */ 15547 static int 15548 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 15549 { 15550 ipoptp_t opts; 15551 uchar_t *opt; 15552 uint8_t optval; 15553 uint8_t optlen; 15554 ipaddr_t dst; 15555 uint32_t ts; 15556 ire_t *dst_ire = NULL; 15557 ire_t *tmp_ire = NULL; 15558 timestruc_t now; 15559 15560 ip2dbg(("ip_rput_forward_options\n")); 15561 dst = ipha->ipha_dst; 15562 for (optval = ipoptp_first(&opts, ipha); 15563 optval != IPOPT_EOL; 15564 optval = ipoptp_next(&opts)) { 15565 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 15566 opt = opts.ipoptp_cur; 15567 optlen = opts.ipoptp_len; 15568 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 15569 optval, opts.ipoptp_len)); 15570 switch (optval) { 15571 uint32_t off; 15572 case IPOPT_SSRR: 15573 case IPOPT_LSRR: 15574 /* Check if adminstratively disabled */ 15575 if (!ip_forward_src_routed) { 15576 BUMP_MIB(&ip_mib, ipForwProhibits); 15577 if (ire->ire_stq) 15578 icmp_unreachable(ire->ire_stq, mp, 15579 ICMP_SOURCE_ROUTE_FAILED); 15580 else { 15581 ip0dbg(("ip_rput_forward_options: " 15582 "unable to send unreach\n")); 15583 freemsg(mp); 15584 } 15585 return (-1); 15586 } 15587 15588 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15589 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 15590 if (dst_ire == NULL) { 15591 /* 15592 * Must be partial since ip_rput_options 15593 * checked for strict. 15594 */ 15595 break; 15596 } 15597 off = opt[IPOPT_OFFSET]; 15598 off--; 15599 redo_srr: 15600 if (optlen < IP_ADDR_LEN || 15601 off > optlen - IP_ADDR_LEN) { 15602 /* End of source route */ 15603 ip1dbg(( 15604 "ip_rput_forward_options: end of SR\n")); 15605 ire_refrele(dst_ire); 15606 break; 15607 } 15608 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15609 bcopy(&ire->ire_src_addr, (char *)opt + off, 15610 IP_ADDR_LEN); 15611 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 15612 ntohl(dst))); 15613 15614 /* 15615 * Check if our address is present more than 15616 * once as consecutive hops in source route. 15617 */ 15618 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15619 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 15620 if (tmp_ire != NULL) { 15621 ire_refrele(tmp_ire); 15622 off += IP_ADDR_LEN; 15623 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15624 goto redo_srr; 15625 } 15626 ipha->ipha_dst = dst; 15627 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15628 ire_refrele(dst_ire); 15629 break; 15630 case IPOPT_RR: 15631 off = opt[IPOPT_OFFSET]; 15632 off--; 15633 if (optlen < IP_ADDR_LEN || 15634 off > optlen - IP_ADDR_LEN) { 15635 /* No more room - ignore */ 15636 ip1dbg(( 15637 "ip_rput_forward_options: end of RR\n")); 15638 break; 15639 } 15640 bcopy(&ire->ire_src_addr, (char *)opt + off, 15641 IP_ADDR_LEN); 15642 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15643 break; 15644 case IPOPT_TS: 15645 /* Insert timestamp if there is room */ 15646 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15647 case IPOPT_TS_TSONLY: 15648 off = IPOPT_TS_TIMELEN; 15649 break; 15650 case IPOPT_TS_PRESPEC: 15651 case IPOPT_TS_PRESPEC_RFC791: 15652 /* Verify that the address matched */ 15653 off = opt[IPOPT_OFFSET] - 1; 15654 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15655 dst_ire = ire_ctable_lookup(dst, 0, 15656 IRE_LOCAL, NULL, ALL_ZONES, NULL, 15657 MATCH_IRE_TYPE); 15658 15659 if (dst_ire == NULL) { 15660 /* Not for us */ 15661 break; 15662 } 15663 ire_refrele(dst_ire); 15664 /* FALLTHRU */ 15665 case IPOPT_TS_TSANDADDR: 15666 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15667 break; 15668 default: 15669 /* 15670 * ip_*put_options should have already 15671 * dropped this packet. 15672 */ 15673 cmn_err(CE_PANIC, "ip_rput_forward_options: " 15674 "unknown IT - bug in ip_rput_options?\n"); 15675 return (0); /* Keep "lint" happy */ 15676 } 15677 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 15678 /* Increase overflow counter */ 15679 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 15680 opt[IPOPT_POS_OV_FLG] = 15681 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 15682 (off << 4)); 15683 break; 15684 } 15685 off = opt[IPOPT_OFFSET] - 1; 15686 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15687 case IPOPT_TS_PRESPEC: 15688 case IPOPT_TS_PRESPEC_RFC791: 15689 case IPOPT_TS_TSANDADDR: 15690 bcopy(&ire->ire_src_addr, 15691 (char *)opt + off, IP_ADDR_LEN); 15692 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15693 /* FALLTHRU */ 15694 case IPOPT_TS_TSONLY: 15695 off = opt[IPOPT_OFFSET] - 1; 15696 /* Compute # of milliseconds since midnight */ 15697 gethrestime(&now); 15698 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 15699 now.tv_nsec / (NANOSEC / MILLISEC); 15700 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 15701 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 15702 break; 15703 } 15704 break; 15705 } 15706 } 15707 return (0); 15708 } 15709 15710 /* 15711 * This is called after processing at least one of AH/ESP headers. 15712 * 15713 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 15714 * the actual, physical interface on which the packet was received, 15715 * but, when ip_strict_dst_multihoming is set to 1, could be the 15716 * interface which had the ipha_dst configured when the packet went 15717 * through ip_rput. The ill_index corresponding to the recv_ill 15718 * is saved in ipsec_in_rill_index 15719 */ 15720 void 15721 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 15722 { 15723 mblk_t *mp; 15724 ipaddr_t dst; 15725 in6_addr_t *v6dstp; 15726 ipha_t *ipha; 15727 ip6_t *ip6h; 15728 ipsec_in_t *ii; 15729 boolean_t ill_need_rele = B_FALSE; 15730 boolean_t rill_need_rele = B_FALSE; 15731 boolean_t ire_need_rele = B_FALSE; 15732 15733 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 15734 ASSERT(ii->ipsec_in_ill_index != 0); 15735 15736 mp = ipsec_mp->b_cont; 15737 ASSERT(mp != NULL); 15738 15739 15740 if (ill == NULL) { 15741 ASSERT(recv_ill == NULL); 15742 /* 15743 * We need to get the original queue on which ip_rput_local 15744 * or ip_rput_data_v6 was called. 15745 */ 15746 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 15747 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 15748 ill_need_rele = B_TRUE; 15749 15750 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 15751 recv_ill = ill_lookup_on_ifindex( 15752 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 15753 NULL, NULL, NULL, NULL); 15754 rill_need_rele = B_TRUE; 15755 } else { 15756 recv_ill = ill; 15757 } 15758 15759 if ((ill == NULL) || (recv_ill == NULL)) { 15760 ip0dbg(("ip_fanout_proto_again: interface " 15761 "disappeared\n")); 15762 if (ill != NULL) 15763 ill_refrele(ill); 15764 if (recv_ill != NULL) 15765 ill_refrele(recv_ill); 15766 freemsg(ipsec_mp); 15767 return; 15768 } 15769 } 15770 15771 ASSERT(ill != NULL && recv_ill != NULL); 15772 15773 if (mp->b_datap->db_type == M_CTL) { 15774 /* 15775 * AH/ESP is returning the ICMP message after 15776 * removing their headers. Fanout again till 15777 * it gets to the right protocol. 15778 */ 15779 if (ii->ipsec_in_v4) { 15780 icmph_t *icmph; 15781 int iph_hdr_length; 15782 int hdr_length; 15783 15784 ipha = (ipha_t *)mp->b_rptr; 15785 iph_hdr_length = IPH_HDR_LENGTH(ipha); 15786 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 15787 ipha = (ipha_t *)&icmph[1]; 15788 hdr_length = IPH_HDR_LENGTH(ipha); 15789 /* 15790 * icmp_inbound_error_fanout may need to do pullupmsg. 15791 * Reset the type to M_DATA. 15792 */ 15793 mp->b_datap->db_type = M_DATA; 15794 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 15795 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 15796 B_FALSE, ill, ii->ipsec_in_zoneid); 15797 } else { 15798 icmp6_t *icmp6; 15799 int hdr_length; 15800 15801 ip6h = (ip6_t *)mp->b_rptr; 15802 /* Don't call hdr_length_v6() unless you have to. */ 15803 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 15804 hdr_length = ip_hdr_length_v6(mp, ip6h); 15805 else 15806 hdr_length = IPV6_HDR_LEN; 15807 15808 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 15809 /* 15810 * icmp_inbound_error_fanout_v6 may need to do 15811 * pullupmsg. Reset the type to M_DATA. 15812 */ 15813 mp->b_datap->db_type = M_DATA; 15814 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 15815 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 15816 } 15817 if (ill_need_rele) 15818 ill_refrele(ill); 15819 if (rill_need_rele) 15820 ill_refrele(recv_ill); 15821 return; 15822 } 15823 15824 if (ii->ipsec_in_v4) { 15825 ipha = (ipha_t *)mp->b_rptr; 15826 dst = ipha->ipha_dst; 15827 if (CLASSD(dst)) { 15828 /* 15829 * Multicast has to be delivered to all streams. 15830 */ 15831 dst = INADDR_BROADCAST; 15832 } 15833 15834 if (ire == NULL) { 15835 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 15836 MBLK_GETLABEL(mp)); 15837 if (ire == NULL) { 15838 if (ill_need_rele) 15839 ill_refrele(ill); 15840 if (rill_need_rele) 15841 ill_refrele(recv_ill); 15842 ip1dbg(("ip_fanout_proto_again: " 15843 "IRE not found")); 15844 freemsg(ipsec_mp); 15845 return; 15846 } 15847 ire_need_rele = B_TRUE; 15848 } 15849 15850 switch (ipha->ipha_protocol) { 15851 case IPPROTO_UDP: 15852 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 15853 recv_ill); 15854 if (ire_need_rele) 15855 ire_refrele(ire); 15856 break; 15857 case IPPROTO_TCP: 15858 if (!ire_need_rele) 15859 IRE_REFHOLD(ire); 15860 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 15861 ire, ipsec_mp, 0, ill->ill_rq, NULL); 15862 IRE_REFRELE(ire); 15863 if (mp != NULL) 15864 squeue_enter_chain(GET_SQUEUE(mp), mp, 15865 mp, 1, SQTAG_IP_PROTO_AGAIN); 15866 break; 15867 case IPPROTO_SCTP: 15868 if (!ire_need_rele) 15869 IRE_REFHOLD(ire); 15870 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 15871 ipsec_mp, 0, ill->ill_rq, dst); 15872 break; 15873 default: 15874 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 15875 recv_ill); 15876 if (ire_need_rele) 15877 ire_refrele(ire); 15878 break; 15879 } 15880 } else { 15881 uint32_t rput_flags = 0; 15882 15883 ip6h = (ip6_t *)mp->b_rptr; 15884 v6dstp = &ip6h->ip6_dst; 15885 /* 15886 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 15887 * address. 15888 * 15889 * Currently, we don't store that state in the IPSEC_IN 15890 * message, and we may need to. 15891 */ 15892 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 15893 IP6_IN_LLMCAST : 0); 15894 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 15895 NULL); 15896 } 15897 if (ill_need_rele) 15898 ill_refrele(ill); 15899 if (rill_need_rele) 15900 ill_refrele(recv_ill); 15901 } 15902 15903 /* 15904 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 15905 * returns 'true' if there are still fragments left on the queue, in 15906 * which case we restart the timer. 15907 */ 15908 void 15909 ill_frag_timer(void *arg) 15910 { 15911 ill_t *ill = (ill_t *)arg; 15912 boolean_t frag_pending; 15913 15914 mutex_enter(&ill->ill_lock); 15915 ASSERT(!ill->ill_fragtimer_executing); 15916 if (ill->ill_state_flags & ILL_CONDEMNED) { 15917 ill->ill_frag_timer_id = 0; 15918 mutex_exit(&ill->ill_lock); 15919 return; 15920 } 15921 ill->ill_fragtimer_executing = 1; 15922 mutex_exit(&ill->ill_lock); 15923 15924 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 15925 15926 /* 15927 * Restart the timer, if we have fragments pending or if someone 15928 * wanted us to be scheduled again. 15929 */ 15930 mutex_enter(&ill->ill_lock); 15931 ill->ill_fragtimer_executing = 0; 15932 ill->ill_frag_timer_id = 0; 15933 if (frag_pending || ill->ill_fragtimer_needrestart) 15934 ill_frag_timer_start(ill); 15935 mutex_exit(&ill->ill_lock); 15936 } 15937 15938 void 15939 ill_frag_timer_start(ill_t *ill) 15940 { 15941 ASSERT(MUTEX_HELD(&ill->ill_lock)); 15942 15943 /* If the ill is closing or opening don't proceed */ 15944 if (ill->ill_state_flags & ILL_CONDEMNED) 15945 return; 15946 15947 if (ill->ill_fragtimer_executing) { 15948 /* 15949 * ill_frag_timer is currently executing. Just record the 15950 * the fact that we want the timer to be restarted. 15951 * ill_frag_timer will post a timeout before it returns, 15952 * ensuring it will be called again. 15953 */ 15954 ill->ill_fragtimer_needrestart = 1; 15955 return; 15956 } 15957 15958 if (ill->ill_frag_timer_id == 0) { 15959 /* 15960 * The timer is neither running nor is the timeout handler 15961 * executing. Post a timeout so that ill_frag_timer will be 15962 * called 15963 */ 15964 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 15965 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 15966 ill->ill_fragtimer_needrestart = 0; 15967 } 15968 } 15969 15970 /* 15971 * This routine is needed for loopback when forwarding multicasts. 15972 * 15973 * IPQoS Notes: 15974 * IPPF processing is done in fanout routines. 15975 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 15976 * processing for IPSec packets is done when it comes back in clear. 15977 * NOTE : The callers of this function need to do the ire_refrele for the 15978 * ire that is being passed in. 15979 */ 15980 void 15981 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 15982 ill_t *recv_ill) 15983 { 15984 ill_t *ill = (ill_t *)q->q_ptr; 15985 uint32_t sum; 15986 uint32_t u1; 15987 uint32_t u2; 15988 int hdr_length; 15989 boolean_t mctl_present; 15990 mblk_t *first_mp = mp; 15991 mblk_t *hada_mp = NULL; 15992 ipha_t *inner_ipha; 15993 15994 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 15995 "ip_rput_locl_start: q %p", q); 15996 15997 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15998 15999 16000 #define rptr ((uchar_t *)ipha) 16001 #define iphs ((uint16_t *)ipha) 16002 16003 /* 16004 * no UDP or TCP packet should come here anymore. 16005 */ 16006 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16007 (ipha->ipha_protocol != IPPROTO_UDP)); 16008 16009 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16010 if (mctl_present && 16011 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16012 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16013 16014 /* 16015 * It's an IPsec accelerated packet. 16016 * Keep a pointer to the data attributes around until 16017 * we allocate the ipsec_info_t. 16018 */ 16019 IPSECHW_DEBUG(IPSECHW_PKT, 16020 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16021 hada_mp = first_mp; 16022 hada_mp->b_cont = NULL; 16023 /* 16024 * Since it is accelerated, it comes directly from 16025 * the ill and the data attributes is followed by 16026 * the packet data. 16027 */ 16028 ASSERT(mp->b_datap->db_type != M_CTL); 16029 first_mp = mp; 16030 mctl_present = B_FALSE; 16031 } 16032 16033 /* 16034 * IF M_CTL is not present, then ipsec_in_is_secure 16035 * should return B_TRUE. There is a case where loopback 16036 * packets has an M_CTL in the front with all the 16037 * IPSEC options set to IPSEC_PREF_NEVER - which means 16038 * ipsec_in_is_secure will return B_FALSE. As loopback 16039 * packets never comes here, it is safe to ASSERT the 16040 * following. 16041 */ 16042 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16043 16044 16045 /* u1 is # words of IP options */ 16046 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16047 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16048 16049 if (u1) { 16050 if (!ip_options_cksum(q, mp, ipha, ire)) { 16051 if (hada_mp != NULL) 16052 freemsg(hada_mp); 16053 return; 16054 } 16055 } else { 16056 /* Check the IP header checksum. */ 16057 #define uph ((uint16_t *)ipha) 16058 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 16059 uph[6] + uph[7] + uph[8] + uph[9]; 16060 #undef uph 16061 /* finish doing IP checksum */ 16062 sum = (sum & 0xFFFF) + (sum >> 16); 16063 sum = ~(sum + (sum >> 16)) & 0xFFFF; 16064 /* 16065 * Don't verify header checksum if this packet is coming 16066 * back from AH/ESP as we already did it. 16067 */ 16068 if (!mctl_present && (sum && sum != 0xFFFF)) { 16069 BUMP_MIB(&ip_mib, ipInCksumErrs); 16070 goto drop_pkt; 16071 } 16072 } 16073 16074 /* 16075 * Count for SNMP of inbound packets for ire. As ip_proto_input 16076 * might be called more than once for secure packets, count only 16077 * the first time. 16078 */ 16079 if (!mctl_present) { 16080 UPDATE_IB_PKT_COUNT(ire); 16081 ire->ire_last_used_time = lbolt; 16082 } 16083 16084 /* Check for fragmentation offset. */ 16085 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 16086 u1 = u2 & (IPH_MF | IPH_OFFSET); 16087 if (u1) { 16088 /* 16089 * We re-assemble fragments before we do the AH/ESP 16090 * processing. Thus, M_CTL should not be present 16091 * while we are re-assembling. 16092 */ 16093 ASSERT(!mctl_present); 16094 ASSERT(first_mp == mp); 16095 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 16096 return; 16097 } 16098 /* 16099 * Make sure that first_mp points back to mp as 16100 * the mp we came in with could have changed in 16101 * ip_rput_fragment(). 16102 */ 16103 ipha = (ipha_t *)mp->b_rptr; 16104 first_mp = mp; 16105 } 16106 16107 /* 16108 * Clear hardware checksumming flag as it is currently only 16109 * used by TCP and UDP. 16110 */ 16111 DB_CKSUMFLAGS(mp) = 0; 16112 16113 /* Now we have a complete datagram, destined for this machine. */ 16114 u1 = IPH_HDR_LENGTH(ipha); 16115 switch (ipha->ipha_protocol) { 16116 case IPPROTO_ICMP: { 16117 ire_t *ire_zone; 16118 ilm_t *ilm; 16119 mblk_t *mp1; 16120 zoneid_t last_zoneid; 16121 16122 if (CLASSD(ipha->ipha_dst) && 16123 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 16124 ASSERT(ire->ire_type == IRE_BROADCAST); 16125 /* 16126 * In the multicast case, applications may have joined 16127 * the group from different zones, so we need to deliver 16128 * the packet to each of them. Loop through the 16129 * multicast memberships structures (ilm) on the receive 16130 * ill and send a copy of the packet up each matching 16131 * one. However, we don't do this for multicasts sent on 16132 * the loopback interface (PHYI_LOOPBACK flag set) as 16133 * they must stay in the sender's zone. 16134 * 16135 * ilm_add_v6() ensures that ilms in the same zone are 16136 * contiguous in the ill_ilm list. We use this property 16137 * to avoid sending duplicates needed when two 16138 * applications in the same zone join the same group on 16139 * different logical interfaces: we ignore the ilm if 16140 * its zoneid is the same as the last matching one. 16141 * In addition, the sending of the packet for 16142 * ire_zoneid is delayed until all of the other ilms 16143 * have been exhausted. 16144 */ 16145 last_zoneid = -1; 16146 ILM_WALKER_HOLD(recv_ill); 16147 for (ilm = recv_ill->ill_ilm; ilm != NULL; 16148 ilm = ilm->ilm_next) { 16149 if ((ilm->ilm_flags & ILM_DELETED) || 16150 ipha->ipha_dst != ilm->ilm_addr || 16151 ilm->ilm_zoneid == last_zoneid || 16152 ilm->ilm_zoneid == ire->ire_zoneid || 16153 ilm->ilm_zoneid == ALL_ZONES || 16154 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 16155 continue; 16156 mp1 = ip_copymsg(first_mp); 16157 if (mp1 == NULL) 16158 continue; 16159 icmp_inbound(q, mp1, B_TRUE, ill, 16160 0, sum, mctl_present, B_TRUE, 16161 recv_ill, ilm->ilm_zoneid); 16162 last_zoneid = ilm->ilm_zoneid; 16163 } 16164 ILM_WALKER_RELE(recv_ill); 16165 } else if (ire->ire_type == IRE_BROADCAST) { 16166 /* 16167 * In the broadcast case, there may be many zones 16168 * which need a copy of the packet delivered to them. 16169 * There is one IRE_BROADCAST per broadcast address 16170 * and per zone; we walk those using a helper function. 16171 * In addition, the sending of the packet for ire is 16172 * delayed until all of the other ires have been 16173 * processed. 16174 */ 16175 IRB_REFHOLD(ire->ire_bucket); 16176 ire_zone = NULL; 16177 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 16178 ire)) != NULL) { 16179 mp1 = ip_copymsg(first_mp); 16180 if (mp1 == NULL) 16181 continue; 16182 16183 UPDATE_IB_PKT_COUNT(ire_zone); 16184 ire_zone->ire_last_used_time = lbolt; 16185 icmp_inbound(q, mp1, B_TRUE, ill, 16186 0, sum, mctl_present, B_TRUE, 16187 recv_ill, ire_zone->ire_zoneid); 16188 } 16189 IRB_REFRELE(ire->ire_bucket); 16190 } 16191 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 16192 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 16193 ire->ire_zoneid); 16194 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16195 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 16196 return; 16197 } 16198 case IPPROTO_IGMP: 16199 /* 16200 * If we are not willing to accept IGMP packets in clear, 16201 * then check with global policy. 16202 */ 16203 if (igmp_accept_clear_messages == 0) { 16204 first_mp = ipsec_check_global_policy(first_mp, NULL, 16205 ipha, NULL, mctl_present); 16206 if (first_mp == NULL) 16207 return; 16208 } 16209 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16210 freemsg(first_mp); 16211 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 16212 BUMP_MIB(&ip_mib, ipInDiscards); 16213 return; 16214 } 16215 if (igmp_input(q, mp, ill)) { 16216 /* Bad packet - discarded by igmp_input */ 16217 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16218 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 16219 if (mctl_present) 16220 freeb(first_mp); 16221 return; 16222 } 16223 /* 16224 * igmp_input() may have pulled up the message so ipha needs to 16225 * be reinitialized. 16226 */ 16227 ipha = (ipha_t *)mp->b_rptr; 16228 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16229 /* No user-level listener for IGMP packets */ 16230 goto drop_pkt; 16231 } 16232 /* deliver to local raw users */ 16233 break; 16234 case IPPROTO_PIM: 16235 /* 16236 * If we are not willing to accept PIM packets in clear, 16237 * then check with global policy. 16238 */ 16239 if (pim_accept_clear_messages == 0) { 16240 first_mp = ipsec_check_global_policy(first_mp, NULL, 16241 ipha, NULL, mctl_present); 16242 if (first_mp == NULL) 16243 return; 16244 } 16245 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 16246 freemsg(first_mp); 16247 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 16248 BUMP_MIB(&ip_mib, ipInDiscards); 16249 return; 16250 } 16251 if (pim_input(q, mp) != 0) { 16252 /* Bad packet - discarded by pim_input */ 16253 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16254 "ip_rput_locl_end: q %p (%S)", q, "pim"); 16255 if (mctl_present) 16256 freeb(first_mp); 16257 return; 16258 } 16259 16260 /* 16261 * pim_input() may have pulled up the message so ipha needs to 16262 * be reinitialized. 16263 */ 16264 ipha = (ipha_t *)mp->b_rptr; 16265 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 16266 /* No user-level listener for PIM packets */ 16267 goto drop_pkt; 16268 } 16269 /* deliver to local raw users */ 16270 break; 16271 case IPPROTO_ENCAP: 16272 /* 16273 * Handle self-encapsulated packets (IP-in-IP where 16274 * the inner addresses == the outer addresses). 16275 */ 16276 hdr_length = IPH_HDR_LENGTH(ipha); 16277 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 16278 mp->b_wptr) { 16279 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 16280 sizeof (ipha_t) - mp->b_rptr)) { 16281 BUMP_MIB(&ip_mib, ipInDiscards); 16282 freemsg(first_mp); 16283 return; 16284 } 16285 ipha = (ipha_t *)mp->b_rptr; 16286 } 16287 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 16288 /* 16289 * Check the sanity of the inner IP header. 16290 */ 16291 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 16292 BUMP_MIB(&ip_mib, ipInDiscards); 16293 freemsg(first_mp); 16294 return; 16295 } 16296 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 16297 BUMP_MIB(&ip_mib, ipInDiscards); 16298 freemsg(first_mp); 16299 return; 16300 } 16301 if (inner_ipha->ipha_src == ipha->ipha_src && 16302 inner_ipha->ipha_dst == ipha->ipha_dst) { 16303 ipsec_in_t *ii; 16304 16305 /* 16306 * Self-encapsulated tunnel packet. Remove 16307 * the outer IP header and fanout again. 16308 * We also need to make sure that the inner 16309 * header is pulled up until options. 16310 */ 16311 mp->b_rptr = (uchar_t *)inner_ipha; 16312 ipha = inner_ipha; 16313 hdr_length = IPH_HDR_LENGTH(ipha); 16314 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 16315 if (!pullupmsg(mp, (uchar_t *)ipha + 16316 + hdr_length - mp->b_rptr)) { 16317 freemsg(first_mp); 16318 return; 16319 } 16320 ipha = (ipha_t *)mp->b_rptr; 16321 } 16322 if (!mctl_present) { 16323 ASSERT(first_mp == mp); 16324 /* 16325 * This means that somebody is sending 16326 * Self-encapsualted packets without AH/ESP. 16327 * If AH/ESP was present, we would have already 16328 * allocated the first_mp. 16329 */ 16330 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 16331 NULL) { 16332 ip1dbg(("ip_proto_input: IPSEC_IN " 16333 "allocation failure.\n")); 16334 BUMP_MIB(&ip_mib, ipInDiscards); 16335 freemsg(mp); 16336 return; 16337 } 16338 first_mp->b_cont = mp; 16339 } 16340 /* 16341 * We generally store the ill_index if we need to 16342 * do IPSEC processing as we lose the ill queue when 16343 * we come back. But in this case, we never should 16344 * have to store the ill_index here as it should have 16345 * been stored previously when we processed the 16346 * AH/ESP header in this routine or for non-ipsec 16347 * cases, we still have the queue. But for some bad 16348 * packets from the wire, we can get to IPSEC after 16349 * this and we better store the index for that case. 16350 */ 16351 ill = (ill_t *)q->q_ptr; 16352 ii = (ipsec_in_t *)first_mp->b_rptr; 16353 ii->ipsec_in_ill_index = 16354 ill->ill_phyint->phyint_ifindex; 16355 ii->ipsec_in_rill_index = 16356 recv_ill->ill_phyint->phyint_ifindex; 16357 if (ii->ipsec_in_decaps) { 16358 /* 16359 * This packet is self-encapsulated multiple 16360 * times. We don't want to recurse infinitely. 16361 * To keep it simple, drop the packet. 16362 */ 16363 BUMP_MIB(&ip_mib, ipInDiscards); 16364 freemsg(first_mp); 16365 return; 16366 } 16367 ii->ipsec_in_decaps = B_TRUE; 16368 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 16369 return; 16370 } 16371 break; 16372 case IPPROTO_AH: 16373 case IPPROTO_ESP: { 16374 /* 16375 * Fast path for AH/ESP. If this is the first time 16376 * we are sending a datagram to AH/ESP, allocate 16377 * a IPSEC_IN message and prepend it. Otherwise, 16378 * just fanout. 16379 */ 16380 16381 int ipsec_rc; 16382 ipsec_in_t *ii; 16383 16384 IP_STAT(ipsec_proto_ahesp); 16385 if (!mctl_present) { 16386 ASSERT(first_mp == mp); 16387 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 16388 ip1dbg(("ip_proto_input: IPSEC_IN " 16389 "allocation failure.\n")); 16390 freemsg(hada_mp); /* okay ifnull */ 16391 BUMP_MIB(&ip_mib, ipInDiscards); 16392 freemsg(mp); 16393 return; 16394 } 16395 /* 16396 * Store the ill_index so that when we come back 16397 * from IPSEC we ride on the same queue. 16398 */ 16399 ill = (ill_t *)q->q_ptr; 16400 ii = (ipsec_in_t *)first_mp->b_rptr; 16401 ii->ipsec_in_ill_index = 16402 ill->ill_phyint->phyint_ifindex; 16403 ii->ipsec_in_rill_index = 16404 recv_ill->ill_phyint->phyint_ifindex; 16405 first_mp->b_cont = mp; 16406 /* 16407 * Cache hardware acceleration info. 16408 */ 16409 if (hada_mp != NULL) { 16410 IPSECHW_DEBUG(IPSECHW_PKT, 16411 ("ip_rput_local: caching data attr.\n")); 16412 ii->ipsec_in_accelerated = B_TRUE; 16413 ii->ipsec_in_da = hada_mp; 16414 hada_mp = NULL; 16415 } 16416 } else { 16417 ii = (ipsec_in_t *)first_mp->b_rptr; 16418 } 16419 16420 if (!ipsec_loaded()) { 16421 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 16422 ire->ire_zoneid); 16423 return; 16424 } 16425 16426 /* select inbound SA and have IPsec process the pkt */ 16427 if (ipha->ipha_protocol == IPPROTO_ESP) { 16428 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 16429 if (esph == NULL) 16430 return; 16431 ASSERT(ii->ipsec_in_esp_sa != NULL); 16432 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 16433 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 16434 first_mp, esph); 16435 } else { 16436 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 16437 if (ah == NULL) 16438 return; 16439 ASSERT(ii->ipsec_in_ah_sa != NULL); 16440 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 16441 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 16442 first_mp, ah); 16443 } 16444 16445 switch (ipsec_rc) { 16446 case IPSEC_STATUS_SUCCESS: 16447 break; 16448 case IPSEC_STATUS_FAILED: 16449 BUMP_MIB(&ip_mib, ipInDiscards); 16450 /* FALLTHRU */ 16451 case IPSEC_STATUS_PENDING: 16452 return; 16453 } 16454 /* we're done with IPsec processing, send it up */ 16455 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 16456 return; 16457 } 16458 default: 16459 break; 16460 } 16461 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 16462 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 16463 ire->ire_zoneid)); 16464 goto drop_pkt; 16465 } 16466 /* 16467 * Handle protocols with which IP is less intimate. There 16468 * can be more than one stream bound to a particular 16469 * protocol. When this is the case, each one gets a copy 16470 * of any incoming packets. 16471 */ 16472 ip_fanout_proto(q, first_mp, ill, ipha, 16473 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 16474 B_TRUE, recv_ill, ire->ire_zoneid); 16475 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16476 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 16477 return; 16478 16479 drop_pkt: 16480 freemsg(first_mp); 16481 if (hada_mp != NULL) 16482 freeb(hada_mp); 16483 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 16484 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 16485 #undef rptr 16486 #undef iphs 16487 16488 } 16489 16490 /* 16491 * Update any source route, record route or timestamp options. 16492 * Check that we are at end of strict source route. 16493 * The options have already been checked for sanity in ip_rput_options(). 16494 */ 16495 static boolean_t 16496 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 16497 { 16498 ipoptp_t opts; 16499 uchar_t *opt; 16500 uint8_t optval; 16501 uint8_t optlen; 16502 ipaddr_t dst; 16503 uint32_t ts; 16504 ire_t *dst_ire; 16505 timestruc_t now; 16506 16507 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16508 16509 ip2dbg(("ip_rput_local_options\n")); 16510 16511 for (optval = ipoptp_first(&opts, ipha); 16512 optval != IPOPT_EOL; 16513 optval = ipoptp_next(&opts)) { 16514 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16515 opt = opts.ipoptp_cur; 16516 optlen = opts.ipoptp_len; 16517 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 16518 optval, optlen)); 16519 switch (optval) { 16520 uint32_t off; 16521 case IPOPT_SSRR: 16522 case IPOPT_LSRR: 16523 off = opt[IPOPT_OFFSET]; 16524 off--; 16525 if (optlen < IP_ADDR_LEN || 16526 off > optlen - IP_ADDR_LEN) { 16527 /* End of source route */ 16528 ip1dbg(("ip_rput_local_options: end of SR\n")); 16529 break; 16530 } 16531 /* 16532 * This will only happen if two consecutive entries 16533 * in the source route contains our address or if 16534 * it is a packet with a loose source route which 16535 * reaches us before consuming the whole source route 16536 */ 16537 ip1dbg(("ip_rput_local_options: not end of SR\n")); 16538 if (optval == IPOPT_SSRR) { 16539 goto bad_src_route; 16540 } 16541 /* 16542 * Hack: instead of dropping the packet truncate the 16543 * source route to what has been used by filling the 16544 * rest with IPOPT_NOP. 16545 */ 16546 opt[IPOPT_OLEN] = (uint8_t)off; 16547 while (off < optlen) { 16548 opt[off++] = IPOPT_NOP; 16549 } 16550 break; 16551 case IPOPT_RR: 16552 off = opt[IPOPT_OFFSET]; 16553 off--; 16554 if (optlen < IP_ADDR_LEN || 16555 off > optlen - IP_ADDR_LEN) { 16556 /* No more room - ignore */ 16557 ip1dbg(( 16558 "ip_rput_local_options: end of RR\n")); 16559 break; 16560 } 16561 bcopy(&ire->ire_src_addr, (char *)opt + off, 16562 IP_ADDR_LEN); 16563 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16564 break; 16565 case IPOPT_TS: 16566 /* Insert timestamp if there is romm */ 16567 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16568 case IPOPT_TS_TSONLY: 16569 off = IPOPT_TS_TIMELEN; 16570 break; 16571 case IPOPT_TS_PRESPEC: 16572 case IPOPT_TS_PRESPEC_RFC791: 16573 /* Verify that the address matched */ 16574 off = opt[IPOPT_OFFSET] - 1; 16575 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16576 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16577 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16578 if (dst_ire == NULL) { 16579 /* Not for us */ 16580 break; 16581 } 16582 ire_refrele(dst_ire); 16583 /* FALLTHRU */ 16584 case IPOPT_TS_TSANDADDR: 16585 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16586 break; 16587 default: 16588 /* 16589 * ip_*put_options should have already 16590 * dropped this packet. 16591 */ 16592 cmn_err(CE_PANIC, "ip_rput_local_options: " 16593 "unknown IT - bug in ip_rput_options?\n"); 16594 return (B_TRUE); /* Keep "lint" happy */ 16595 } 16596 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16597 /* Increase overflow counter */ 16598 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16599 opt[IPOPT_POS_OV_FLG] = 16600 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16601 (off << 4)); 16602 break; 16603 } 16604 off = opt[IPOPT_OFFSET] - 1; 16605 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16606 case IPOPT_TS_PRESPEC: 16607 case IPOPT_TS_PRESPEC_RFC791: 16608 case IPOPT_TS_TSANDADDR: 16609 bcopy(&ire->ire_src_addr, (char *)opt + off, 16610 IP_ADDR_LEN); 16611 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16612 /* FALLTHRU */ 16613 case IPOPT_TS_TSONLY: 16614 off = opt[IPOPT_OFFSET] - 1; 16615 /* Compute # of milliseconds since midnight */ 16616 gethrestime(&now); 16617 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16618 now.tv_nsec / (NANOSEC / MILLISEC); 16619 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16620 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16621 break; 16622 } 16623 break; 16624 } 16625 } 16626 return (B_TRUE); 16627 16628 bad_src_route: 16629 q = WR(q); 16630 /* make sure we clear any indication of a hardware checksum */ 16631 DB_CKSUMFLAGS(mp) = 0; 16632 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16633 return (B_FALSE); 16634 16635 } 16636 16637 /* 16638 * Process IP options in an inbound packet. If an option affects the 16639 * effective destination address, return the next hop address via dstp. 16640 * Returns -1 if something fails in which case an ICMP error has been sent 16641 * and mp freed. 16642 */ 16643 static int 16644 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 16645 { 16646 ipoptp_t opts; 16647 uchar_t *opt; 16648 uint8_t optval; 16649 uint8_t optlen; 16650 ipaddr_t dst; 16651 intptr_t code = 0; 16652 ire_t *ire = NULL; 16653 16654 ip2dbg(("ip_rput_options\n")); 16655 dst = ipha->ipha_dst; 16656 for (optval = ipoptp_first(&opts, ipha); 16657 optval != IPOPT_EOL; 16658 optval = ipoptp_next(&opts)) { 16659 opt = opts.ipoptp_cur; 16660 optlen = opts.ipoptp_len; 16661 ip2dbg(("ip_rput_options: opt %d, len %d\n", 16662 optval, optlen)); 16663 /* 16664 * Note: we need to verify the checksum before we 16665 * modify anything thus this routine only extracts the next 16666 * hop dst from any source route. 16667 */ 16668 switch (optval) { 16669 uint32_t off; 16670 case IPOPT_SSRR: 16671 case IPOPT_LSRR: 16672 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16673 ALL_ZONES, NULL, MATCH_IRE_TYPE); 16674 if (ire == NULL) { 16675 if (optval == IPOPT_SSRR) { 16676 ip1dbg(("ip_rput_options: not next" 16677 " strict source route 0x%x\n", 16678 ntohl(dst))); 16679 code = (char *)&ipha->ipha_dst - 16680 (char *)ipha; 16681 goto param_prob; /* RouterReq's */ 16682 } 16683 ip2dbg(("ip_rput_options: " 16684 "not next source route 0x%x\n", 16685 ntohl(dst))); 16686 break; 16687 } 16688 ire_refrele(ire); 16689 16690 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16691 ip1dbg(( 16692 "ip_rput_options: bad option offset\n")); 16693 code = (char *)&opt[IPOPT_OLEN] - 16694 (char *)ipha; 16695 goto param_prob; 16696 } 16697 off = opt[IPOPT_OFFSET]; 16698 off--; 16699 redo_srr: 16700 if (optlen < IP_ADDR_LEN || 16701 off > optlen - IP_ADDR_LEN) { 16702 /* End of source route */ 16703 ip1dbg(("ip_rput_options: end of SR\n")); 16704 break; 16705 } 16706 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16707 ip1dbg(("ip_rput_options: next hop 0x%x\n", 16708 ntohl(dst))); 16709 16710 /* 16711 * Check if our address is present more than 16712 * once as consecutive hops in source route. 16713 * XXX verify per-interface ip_forwarding 16714 * for source route? 16715 */ 16716 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16717 ALL_ZONES, NULL, MATCH_IRE_TYPE); 16718 16719 if (ire != NULL) { 16720 ire_refrele(ire); 16721 off += IP_ADDR_LEN; 16722 goto redo_srr; 16723 } 16724 16725 if (dst == htonl(INADDR_LOOPBACK)) { 16726 ip1dbg(("ip_rput_options: loopback addr in " 16727 "source route!\n")); 16728 goto bad_src_route; 16729 } 16730 /* 16731 * For strict: verify that dst is directly 16732 * reachable. 16733 */ 16734 if (optval == IPOPT_SSRR) { 16735 ire = ire_ftable_lookup(dst, 0, 0, 16736 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 16737 MBLK_GETLABEL(mp), 16738 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 16739 if (ire == NULL) { 16740 ip1dbg(("ip_rput_options: SSRR not " 16741 "directly reachable: 0x%x\n", 16742 ntohl(dst))); 16743 goto bad_src_route; 16744 } 16745 ire_refrele(ire); 16746 } 16747 /* 16748 * Defer update of the offset and the record route 16749 * until the packet is forwarded. 16750 */ 16751 break; 16752 case IPOPT_RR: 16753 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16754 ip1dbg(( 16755 "ip_rput_options: bad option offset\n")); 16756 code = (char *)&opt[IPOPT_OLEN] - 16757 (char *)ipha; 16758 goto param_prob; 16759 } 16760 break; 16761 case IPOPT_TS: 16762 /* 16763 * Verify that length >= 5 and that there is either 16764 * room for another timestamp or that the overflow 16765 * counter is not maxed out. 16766 */ 16767 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 16768 if (optlen < IPOPT_MINLEN_IT) { 16769 goto param_prob; 16770 } 16771 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16772 ip1dbg(( 16773 "ip_rput_options: bad option offset\n")); 16774 code = (char *)&opt[IPOPT_OFFSET] - 16775 (char *)ipha; 16776 goto param_prob; 16777 } 16778 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16779 case IPOPT_TS_TSONLY: 16780 off = IPOPT_TS_TIMELEN; 16781 break; 16782 case IPOPT_TS_TSANDADDR: 16783 case IPOPT_TS_PRESPEC: 16784 case IPOPT_TS_PRESPEC_RFC791: 16785 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16786 break; 16787 default: 16788 code = (char *)&opt[IPOPT_POS_OV_FLG] - 16789 (char *)ipha; 16790 goto param_prob; 16791 } 16792 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 16793 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 16794 /* 16795 * No room and the overflow counter is 15 16796 * already. 16797 */ 16798 goto param_prob; 16799 } 16800 break; 16801 } 16802 } 16803 16804 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 16805 *dstp = dst; 16806 return (0); 16807 } 16808 16809 ip1dbg(("ip_rput_options: error processing IP options.")); 16810 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 16811 16812 param_prob: 16813 q = WR(q); 16814 /* make sure we clear any indication of a hardware checksum */ 16815 DB_CKSUMFLAGS(mp) = 0; 16816 icmp_param_problem(q, mp, (uint8_t)code); 16817 return (-1); 16818 16819 bad_src_route: 16820 q = WR(q); 16821 /* make sure we clear any indication of a hardware checksum */ 16822 DB_CKSUMFLAGS(mp) = 0; 16823 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16824 return (-1); 16825 } 16826 16827 /* 16828 * IP & ICMP info in >=14 msg's ... 16829 * - ip fixed part (mib2_ip_t) 16830 * - icmp fixed part (mib2_icmp_t) 16831 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 16832 * - ipRouteEntryTable (ip 21) all IPv4 IREs 16833 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 16834 * - ipRouteAttributeTable (ip 102) labeled routes 16835 * - ip multicast membership (ip_member_t) 16836 * - ip multicast source filtering (ip_grpsrc_t) 16837 * - igmp fixed part (struct igmpstat) 16838 * - multicast routing stats (struct mrtstat) 16839 * - multicast routing vifs (array of struct vifctl) 16840 * - multicast routing routes (array of struct mfcctl) 16841 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 16842 * One per ill plus one generic 16843 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 16844 * One per ill plus one generic 16845 * - ipv6RouteEntry all IPv6 IREs 16846 * - ipv6RouteAttributeTable (ip6 102) labeled routes 16847 * - ipv6NetToMediaEntry all Neighbor Cache entries 16848 * - ipv6AddrEntry all IPv6 ipifs 16849 * - ipv6 multicast membership (ipv6_member_t) 16850 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 16851 * 16852 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 16853 * already present. 16854 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 16855 * already filled in by the caller. 16856 * Return value of 0 indicates that no messages were sent and caller 16857 * should free mpctl. 16858 */ 16859 int 16860 ip_snmp_get(queue_t *q, mblk_t *mpctl) 16861 { 16862 16863 if (mpctl == NULL || mpctl->b_cont == NULL) { 16864 return (0); 16865 } 16866 16867 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 16868 return (1); 16869 } 16870 16871 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 16872 return (1); 16873 } 16874 16875 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 16876 return (1); 16877 } 16878 16879 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 16880 return (1); 16881 } 16882 16883 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 16884 return (1); 16885 } 16886 16887 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 16888 return (1); 16889 } 16890 16891 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 16892 return (1); 16893 } 16894 16895 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 16896 return (1); 16897 } 16898 16899 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 16900 return (1); 16901 } 16902 16903 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 16904 return (1); 16905 } 16906 16907 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 16908 return (1); 16909 } 16910 16911 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 16912 return (1); 16913 } 16914 16915 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 16916 return (1); 16917 } 16918 16919 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 16920 return (1); 16921 } 16922 16923 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 16924 return (1); 16925 } 16926 16927 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 16928 return (1); 16929 } 16930 16931 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 16932 return (1); 16933 } 16934 freemsg(mpctl); 16935 return (1); 16936 } 16937 16938 16939 /* Get global IPv4 statistics */ 16940 static mblk_t * 16941 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 16942 { 16943 struct opthdr *optp; 16944 mblk_t *mp2ctl; 16945 16946 /* 16947 * make a copy of the original message 16948 */ 16949 mp2ctl = copymsg(mpctl); 16950 16951 /* fixed length IP structure... */ 16952 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16953 optp->level = MIB2_IP; 16954 optp->name = 0; 16955 SET_MIB(ip_mib.ipForwarding, 16956 (WE_ARE_FORWARDING ? 1 : 2)); 16957 SET_MIB(ip_mib.ipDefaultTTL, 16958 (uint32_t)ip_def_ttl); 16959 SET_MIB(ip_mib.ipReasmTimeout, 16960 ip_g_frag_timeout); 16961 SET_MIB(ip_mib.ipAddrEntrySize, 16962 sizeof (mib2_ipAddrEntry_t)); 16963 SET_MIB(ip_mib.ipRouteEntrySize, 16964 sizeof (mib2_ipRouteEntry_t)); 16965 SET_MIB(ip_mib.ipNetToMediaEntrySize, 16966 sizeof (mib2_ipNetToMediaEntry_t)); 16967 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 16968 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 16969 SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t)); 16970 SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 16971 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 16972 (int)sizeof (ip_mib))) { 16973 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 16974 (uint_t)sizeof (ip_mib))); 16975 } 16976 16977 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16978 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 16979 (int)optp->level, (int)optp->name, (int)optp->len)); 16980 qreply(q, mpctl); 16981 return (mp2ctl); 16982 } 16983 16984 /* Global IPv4 ICMP statistics */ 16985 static mblk_t * 16986 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 16987 { 16988 struct opthdr *optp; 16989 mblk_t *mp2ctl; 16990 16991 /* 16992 * Make a copy of the original message 16993 */ 16994 mp2ctl = copymsg(mpctl); 16995 16996 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16997 optp->level = MIB2_ICMP; 16998 optp->name = 0; 16999 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 17000 (int)sizeof (icmp_mib))) { 17001 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 17002 (uint_t)sizeof (icmp_mib))); 17003 } 17004 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17005 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 17006 (int)optp->level, (int)optp->name, (int)optp->len)); 17007 qreply(q, mpctl); 17008 return (mp2ctl); 17009 } 17010 17011 /* Global IPv4 IGMP statistics */ 17012 static mblk_t * 17013 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 17014 { 17015 struct opthdr *optp; 17016 mblk_t *mp2ctl; 17017 17018 /* 17019 * make a copy of the original message 17020 */ 17021 mp2ctl = copymsg(mpctl); 17022 17023 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17024 optp->level = EXPER_IGMP; 17025 optp->name = 0; 17026 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 17027 (int)sizeof (igmpstat))) { 17028 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 17029 (uint_t)sizeof (igmpstat))); 17030 } 17031 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17032 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 17033 (int)optp->level, (int)optp->name, (int)optp->len)); 17034 qreply(q, mpctl); 17035 return (mp2ctl); 17036 } 17037 17038 /* Global IPv4 Multicast Routing statistics */ 17039 static mblk_t * 17040 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 17041 { 17042 struct opthdr *optp; 17043 mblk_t *mp2ctl; 17044 17045 /* 17046 * make a copy of the original message 17047 */ 17048 mp2ctl = copymsg(mpctl); 17049 17050 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17051 optp->level = EXPER_DVMRP; 17052 optp->name = 0; 17053 if (!ip_mroute_stats(mpctl->b_cont)) { 17054 ip0dbg(("ip_mroute_stats: failed\n")); 17055 } 17056 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17057 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 17058 (int)optp->level, (int)optp->name, (int)optp->len)); 17059 qreply(q, mpctl); 17060 return (mp2ctl); 17061 } 17062 17063 /* IPv4 address information */ 17064 static mblk_t * 17065 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 17066 { 17067 struct opthdr *optp; 17068 mblk_t *mp2ctl; 17069 mblk_t *mp_tail = NULL; 17070 ill_t *ill; 17071 ipif_t *ipif; 17072 uint_t bitval; 17073 mib2_ipAddrEntry_t mae; 17074 zoneid_t zoneid; 17075 ill_walk_context_t ctx; 17076 17077 /* 17078 * make a copy of the original message 17079 */ 17080 mp2ctl = copymsg(mpctl); 17081 17082 /* ipAddrEntryTable */ 17083 17084 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17085 optp->level = MIB2_IP; 17086 optp->name = MIB2_IP_ADDR; 17087 zoneid = Q_TO_CONN(q)->conn_zoneid; 17088 17089 rw_enter(&ill_g_lock, RW_READER); 17090 ill = ILL_START_WALK_V4(&ctx); 17091 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17092 for (ipif = ill->ill_ipif; ipif != NULL; 17093 ipif = ipif->ipif_next) { 17094 if (ipif->ipif_zoneid != zoneid && 17095 ipif->ipif_zoneid != ALL_ZONES) 17096 continue; 17097 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17098 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17099 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17100 17101 (void) ipif_get_name(ipif, 17102 mae.ipAdEntIfIndex.o_bytes, 17103 OCTET_LENGTH); 17104 mae.ipAdEntIfIndex.o_length = 17105 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 17106 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 17107 mae.ipAdEntNetMask = ipif->ipif_net_mask; 17108 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 17109 mae.ipAdEntInfo.ae_subnet_len = 17110 ip_mask_to_plen(ipif->ipif_net_mask); 17111 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 17112 for (bitval = 1; 17113 bitval && 17114 !(bitval & ipif->ipif_brd_addr); 17115 bitval <<= 1) 17116 noop; 17117 mae.ipAdEntBcastAddr = bitval; 17118 mae.ipAdEntReasmMaxSize = 65535; 17119 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 17120 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 17121 mae.ipAdEntInfo.ae_broadcast_addr = 17122 ipif->ipif_brd_addr; 17123 mae.ipAdEntInfo.ae_pp_dst_addr = 17124 ipif->ipif_pp_dst_addr; 17125 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 17126 ill->ill_flags | ill->ill_phyint->phyint_flags; 17127 17128 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17129 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 17130 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 17131 "allocate %u bytes\n", 17132 (uint_t)sizeof (mib2_ipAddrEntry_t))); 17133 } 17134 } 17135 } 17136 rw_exit(&ill_g_lock); 17137 17138 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17139 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 17140 (int)optp->level, (int)optp->name, (int)optp->len)); 17141 qreply(q, mpctl); 17142 return (mp2ctl); 17143 } 17144 17145 /* IPv6 address information */ 17146 static mblk_t * 17147 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 17148 { 17149 struct opthdr *optp; 17150 mblk_t *mp2ctl; 17151 mblk_t *mp_tail = NULL; 17152 ill_t *ill; 17153 ipif_t *ipif; 17154 mib2_ipv6AddrEntry_t mae6; 17155 zoneid_t zoneid; 17156 ill_walk_context_t ctx; 17157 17158 /* 17159 * make a copy of the original message 17160 */ 17161 mp2ctl = copymsg(mpctl); 17162 17163 /* ipv6AddrEntryTable */ 17164 17165 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17166 optp->level = MIB2_IP6; 17167 optp->name = MIB2_IP6_ADDR; 17168 zoneid = Q_TO_CONN(q)->conn_zoneid; 17169 17170 rw_enter(&ill_g_lock, RW_READER); 17171 ill = ILL_START_WALK_V6(&ctx); 17172 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17173 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 17174 if (ipif->ipif_zoneid != zoneid && 17175 ipif->ipif_zoneid != ALL_ZONES) 17176 continue; 17177 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 17178 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 17179 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 17180 17181 (void) ipif_get_name(ipif, 17182 mae6.ipv6AddrIfIndex.o_bytes, 17183 OCTET_LENGTH); 17184 mae6.ipv6AddrIfIndex.o_length = 17185 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 17186 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 17187 mae6.ipv6AddrPfxLength = 17188 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 17189 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 17190 mae6.ipv6AddrInfo.ae_subnet_len = 17191 mae6.ipv6AddrPfxLength; 17192 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 17193 17194 /* Type: stateless(1), stateful(2), unknown(3) */ 17195 if (ipif->ipif_flags & IPIF_ADDRCONF) 17196 mae6.ipv6AddrType = 1; 17197 else 17198 mae6.ipv6AddrType = 2; 17199 /* Anycast: true(1), false(2) */ 17200 if (ipif->ipif_flags & IPIF_ANYCAST) 17201 mae6.ipv6AddrAnycastFlag = 1; 17202 else 17203 mae6.ipv6AddrAnycastFlag = 2; 17204 17205 /* 17206 * Address status: preferred(1), deprecated(2), 17207 * invalid(3), inaccessible(4), unknown(5) 17208 */ 17209 if (ipif->ipif_flags & IPIF_NOLOCAL) 17210 mae6.ipv6AddrStatus = 3; 17211 else if (ipif->ipif_flags & IPIF_DEPRECATED) 17212 mae6.ipv6AddrStatus = 2; 17213 else 17214 mae6.ipv6AddrStatus = 1; 17215 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 17216 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 17217 mae6.ipv6AddrInfo.ae_pp_dst_addr = 17218 ipif->ipif_v6pp_dst_addr; 17219 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 17220 ill->ill_flags | ill->ill_phyint->phyint_flags; 17221 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17222 (char *)&mae6, 17223 (int)sizeof (mib2_ipv6AddrEntry_t))) { 17224 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 17225 "allocate %u bytes\n", 17226 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 17227 } 17228 } 17229 } 17230 rw_exit(&ill_g_lock); 17231 17232 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17233 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 17234 (int)optp->level, (int)optp->name, (int)optp->len)); 17235 qreply(q, mpctl); 17236 return (mp2ctl); 17237 } 17238 17239 /* IPv4 multicast group membership. */ 17240 static mblk_t * 17241 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 17242 { 17243 struct opthdr *optp; 17244 mblk_t *mp2ctl; 17245 ill_t *ill; 17246 ipif_t *ipif; 17247 ilm_t *ilm; 17248 ip_member_t ipm; 17249 mblk_t *mp_tail = NULL; 17250 ill_walk_context_t ctx; 17251 zoneid_t zoneid; 17252 17253 /* 17254 * make a copy of the original message 17255 */ 17256 mp2ctl = copymsg(mpctl); 17257 zoneid = Q_TO_CONN(q)->conn_zoneid; 17258 17259 /* ipGroupMember table */ 17260 optp = (struct opthdr *)&mpctl->b_rptr[ 17261 sizeof (struct T_optmgmt_ack)]; 17262 optp->level = MIB2_IP; 17263 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 17264 17265 rw_enter(&ill_g_lock, RW_READER); 17266 ill = ILL_START_WALK_V4(&ctx); 17267 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17268 ILM_WALKER_HOLD(ill); 17269 for (ipif = ill->ill_ipif; ipif != NULL; 17270 ipif = ipif->ipif_next) { 17271 if (ipif->ipif_zoneid != zoneid && 17272 ipif->ipif_zoneid != ALL_ZONES) 17273 continue; /* not this zone */ 17274 (void) ipif_get_name(ipif, 17275 ipm.ipGroupMemberIfIndex.o_bytes, 17276 OCTET_LENGTH); 17277 ipm.ipGroupMemberIfIndex.o_length = 17278 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 17279 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17280 ASSERT(ilm->ilm_ipif != NULL); 17281 ASSERT(ilm->ilm_ill == NULL); 17282 if (ilm->ilm_ipif != ipif) 17283 continue; 17284 ipm.ipGroupMemberAddress = ilm->ilm_addr; 17285 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 17286 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 17287 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17288 (char *)&ipm, (int)sizeof (ipm))) { 17289 ip1dbg(("ip_snmp_get_mib2_ip_group: " 17290 "failed to allocate %u bytes\n", 17291 (uint_t)sizeof (ipm))); 17292 } 17293 } 17294 } 17295 ILM_WALKER_RELE(ill); 17296 } 17297 rw_exit(&ill_g_lock); 17298 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17299 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17300 (int)optp->level, (int)optp->name, (int)optp->len)); 17301 qreply(q, mpctl); 17302 return (mp2ctl); 17303 } 17304 17305 /* IPv6 multicast group membership. */ 17306 static mblk_t * 17307 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 17308 { 17309 struct opthdr *optp; 17310 mblk_t *mp2ctl; 17311 ill_t *ill; 17312 ilm_t *ilm; 17313 ipv6_member_t ipm6; 17314 mblk_t *mp_tail = NULL; 17315 ill_walk_context_t ctx; 17316 zoneid_t zoneid; 17317 17318 /* 17319 * make a copy of the original message 17320 */ 17321 mp2ctl = copymsg(mpctl); 17322 zoneid = Q_TO_CONN(q)->conn_zoneid; 17323 17324 /* ip6GroupMember table */ 17325 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17326 optp->level = MIB2_IP6; 17327 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 17328 17329 rw_enter(&ill_g_lock, RW_READER); 17330 ill = ILL_START_WALK_V6(&ctx); 17331 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17332 ILM_WALKER_HOLD(ill); 17333 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 17334 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17335 ASSERT(ilm->ilm_ipif == NULL); 17336 ASSERT(ilm->ilm_ill != NULL); 17337 if (ilm->ilm_zoneid != zoneid) 17338 continue; /* not this zone */ 17339 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 17340 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 17341 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 17342 if (!snmp_append_data2(mpctl->b_cont, 17343 &mp_tail, 17344 (char *)&ipm6, (int)sizeof (ipm6))) { 17345 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 17346 "failed to allocate %u bytes\n", 17347 (uint_t)sizeof (ipm6))); 17348 } 17349 } 17350 ILM_WALKER_RELE(ill); 17351 } 17352 rw_exit(&ill_g_lock); 17353 17354 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17355 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17356 (int)optp->level, (int)optp->name, (int)optp->len)); 17357 qreply(q, mpctl); 17358 return (mp2ctl); 17359 } 17360 17361 /* IP multicast filtered sources */ 17362 static mblk_t * 17363 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 17364 { 17365 struct opthdr *optp; 17366 mblk_t *mp2ctl; 17367 ill_t *ill; 17368 ipif_t *ipif; 17369 ilm_t *ilm; 17370 ip_grpsrc_t ips; 17371 mblk_t *mp_tail = NULL; 17372 ill_walk_context_t ctx; 17373 zoneid_t zoneid; 17374 int i; 17375 slist_t *sl; 17376 17377 /* 17378 * make a copy of the original message 17379 */ 17380 mp2ctl = copymsg(mpctl); 17381 zoneid = Q_TO_CONN(q)->conn_zoneid; 17382 17383 /* ipGroupSource table */ 17384 optp = (struct opthdr *)&mpctl->b_rptr[ 17385 sizeof (struct T_optmgmt_ack)]; 17386 optp->level = MIB2_IP; 17387 optp->name = EXPER_IP_GROUP_SOURCES; 17388 17389 rw_enter(&ill_g_lock, RW_READER); 17390 ill = ILL_START_WALK_V4(&ctx); 17391 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17392 ILM_WALKER_HOLD(ill); 17393 for (ipif = ill->ill_ipif; ipif != NULL; 17394 ipif = ipif->ipif_next) { 17395 if (ipif->ipif_zoneid != zoneid) 17396 continue; /* not this zone */ 17397 (void) ipif_get_name(ipif, 17398 ips.ipGroupSourceIfIndex.o_bytes, 17399 OCTET_LENGTH); 17400 ips.ipGroupSourceIfIndex.o_length = 17401 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 17402 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17403 ASSERT(ilm->ilm_ipif != NULL); 17404 ASSERT(ilm->ilm_ill == NULL); 17405 sl = ilm->ilm_filter; 17406 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 17407 continue; 17408 ips.ipGroupSourceGroup = ilm->ilm_addr; 17409 for (i = 0; i < sl->sl_numsrc; i++) { 17410 if (!IN6_IS_ADDR_V4MAPPED( 17411 &sl->sl_addr[i])) 17412 continue; 17413 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 17414 ips.ipGroupSourceAddress); 17415 if (snmp_append_data2(mpctl->b_cont, 17416 &mp_tail, (char *)&ips, 17417 (int)sizeof (ips)) == 0) { 17418 ip1dbg(("ip_snmp_get_mib2_" 17419 "ip_group_src: failed to " 17420 "allocate %u bytes\n", 17421 (uint_t)sizeof (ips))); 17422 } 17423 } 17424 } 17425 } 17426 ILM_WALKER_RELE(ill); 17427 } 17428 rw_exit(&ill_g_lock); 17429 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17430 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17431 (int)optp->level, (int)optp->name, (int)optp->len)); 17432 qreply(q, mpctl); 17433 return (mp2ctl); 17434 } 17435 17436 /* IPv6 multicast filtered sources. */ 17437 static mblk_t * 17438 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 17439 { 17440 struct opthdr *optp; 17441 mblk_t *mp2ctl; 17442 ill_t *ill; 17443 ilm_t *ilm; 17444 ipv6_grpsrc_t ips6; 17445 mblk_t *mp_tail = NULL; 17446 ill_walk_context_t ctx; 17447 zoneid_t zoneid; 17448 int i; 17449 slist_t *sl; 17450 17451 /* 17452 * make a copy of the original message 17453 */ 17454 mp2ctl = copymsg(mpctl); 17455 zoneid = Q_TO_CONN(q)->conn_zoneid; 17456 17457 /* ip6GroupMember table */ 17458 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17459 optp->level = MIB2_IP6; 17460 optp->name = EXPER_IP6_GROUP_SOURCES; 17461 17462 rw_enter(&ill_g_lock, RW_READER); 17463 ill = ILL_START_WALK_V6(&ctx); 17464 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17465 ILM_WALKER_HOLD(ill); 17466 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 17467 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 17468 ASSERT(ilm->ilm_ipif == NULL); 17469 ASSERT(ilm->ilm_ill != NULL); 17470 sl = ilm->ilm_filter; 17471 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 17472 continue; 17473 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 17474 for (i = 0; i < sl->sl_numsrc; i++) { 17475 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 17476 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17477 (char *)&ips6, (int)sizeof (ips6))) { 17478 ip1dbg(("ip_snmp_get_mib2_ip6_" 17479 "group_src: failed to allocate " 17480 "%u bytes\n", 17481 (uint_t)sizeof (ips6))); 17482 } 17483 } 17484 } 17485 ILM_WALKER_RELE(ill); 17486 } 17487 rw_exit(&ill_g_lock); 17488 17489 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17490 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 17491 (int)optp->level, (int)optp->name, (int)optp->len)); 17492 qreply(q, mpctl); 17493 return (mp2ctl); 17494 } 17495 17496 /* Multicast routing virtual interface table. */ 17497 static mblk_t * 17498 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 17499 { 17500 struct opthdr *optp; 17501 mblk_t *mp2ctl; 17502 17503 /* 17504 * make a copy of the original message 17505 */ 17506 mp2ctl = copymsg(mpctl); 17507 17508 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17509 optp->level = EXPER_DVMRP; 17510 optp->name = EXPER_DVMRP_VIF; 17511 if (!ip_mroute_vif(mpctl->b_cont)) { 17512 ip0dbg(("ip_mroute_vif: failed\n")); 17513 } 17514 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17515 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 17516 (int)optp->level, (int)optp->name, (int)optp->len)); 17517 qreply(q, mpctl); 17518 return (mp2ctl); 17519 } 17520 17521 /* Multicast routing table. */ 17522 static mblk_t * 17523 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 17524 { 17525 struct opthdr *optp; 17526 mblk_t *mp2ctl; 17527 17528 /* 17529 * make a copy of the original message 17530 */ 17531 mp2ctl = copymsg(mpctl); 17532 17533 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17534 optp->level = EXPER_DVMRP; 17535 optp->name = EXPER_DVMRP_MRT; 17536 if (!ip_mroute_mrt(mpctl->b_cont)) { 17537 ip0dbg(("ip_mroute_mrt: failed\n")); 17538 } 17539 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17540 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 17541 (int)optp->level, (int)optp->name, (int)optp->len)); 17542 qreply(q, mpctl); 17543 return (mp2ctl); 17544 } 17545 17546 /* 17547 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 17548 * in one IRE walk. 17549 */ 17550 static mblk_t * 17551 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 17552 { 17553 struct opthdr *optp; 17554 mblk_t *mp2ctl; /* Returned */ 17555 mblk_t *mp3ctl; /* nettomedia */ 17556 mblk_t *mp4ctl; /* routeattrs */ 17557 iproutedata_t ird; 17558 zoneid_t zoneid; 17559 17560 /* 17561 * make copies of the original message 17562 * - mp2ctl is returned unchanged to the caller for his use 17563 * - mpctl is sent upstream as ipRouteEntryTable 17564 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 17565 * - mp4ctl is sent upstream as ipRouteAttributeTable 17566 */ 17567 mp2ctl = copymsg(mpctl); 17568 mp3ctl = copymsg(mpctl); 17569 mp4ctl = copymsg(mpctl); 17570 if (mp3ctl == NULL || mp4ctl == NULL) { 17571 freemsg(mp4ctl); 17572 freemsg(mp3ctl); 17573 freemsg(mp2ctl); 17574 freemsg(mpctl); 17575 return (NULL); 17576 } 17577 17578 bzero(&ird, sizeof (ird)); 17579 17580 ird.ird_route.lp_head = mpctl->b_cont; 17581 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 17582 ird.ird_attrs.lp_head = mp4ctl->b_cont; 17583 17584 zoneid = Q_TO_CONN(q)->conn_zoneid; 17585 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 17586 if (zoneid == GLOBAL_ZONEID) { 17587 /* 17588 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 17589 * the sys_net_config privilege, it can only run in the global 17590 * zone, so we don't display these IREs in the other zones. 17591 */ 17592 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 17593 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 17594 } 17595 17596 /* ipRouteEntryTable in mpctl */ 17597 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17598 optp->level = MIB2_IP; 17599 optp->name = MIB2_IP_ROUTE; 17600 optp->len = msgdsize(ird.ird_route.lp_head); 17601 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17602 (int)optp->level, (int)optp->name, (int)optp->len)); 17603 qreply(q, mpctl); 17604 17605 /* ipNetToMediaEntryTable in mp3ctl */ 17606 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17607 optp->level = MIB2_IP; 17608 optp->name = MIB2_IP_MEDIA; 17609 optp->len = msgdsize(ird.ird_netmedia.lp_head); 17610 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17611 (int)optp->level, (int)optp->name, (int)optp->len)); 17612 qreply(q, mp3ctl); 17613 17614 /* ipRouteAttributeTable in mp4ctl */ 17615 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17616 optp->level = MIB2_IP; 17617 optp->name = EXPER_IP_RTATTR; 17618 optp->len = msgdsize(ird.ird_attrs.lp_head); 17619 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17620 (int)optp->level, (int)optp->name, (int)optp->len)); 17621 if (optp->len == 0) 17622 freemsg(mp4ctl); 17623 else 17624 qreply(q, mp4ctl); 17625 17626 return (mp2ctl); 17627 } 17628 17629 /* 17630 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 17631 * ipv6NetToMediaEntryTable in an NDP walk. 17632 */ 17633 static mblk_t * 17634 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 17635 { 17636 struct opthdr *optp; 17637 mblk_t *mp2ctl; /* Returned */ 17638 mblk_t *mp3ctl; /* nettomedia */ 17639 mblk_t *mp4ctl; /* routeattrs */ 17640 iproutedata_t ird; 17641 zoneid_t zoneid; 17642 17643 /* 17644 * make copies of the original message 17645 * - mp2ctl is returned unchanged to the caller for his use 17646 * - mpctl is sent upstream as ipv6RouteEntryTable 17647 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 17648 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 17649 */ 17650 mp2ctl = copymsg(mpctl); 17651 mp3ctl = copymsg(mpctl); 17652 mp4ctl = copymsg(mpctl); 17653 if (mp3ctl == NULL || mp4ctl == NULL) { 17654 freemsg(mp4ctl); 17655 freemsg(mp3ctl); 17656 freemsg(mp2ctl); 17657 freemsg(mpctl); 17658 return (NULL); 17659 } 17660 17661 bzero(&ird, sizeof (ird)); 17662 17663 ird.ird_route.lp_head = mpctl->b_cont; 17664 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 17665 ird.ird_attrs.lp_head = mp4ctl->b_cont; 17666 17667 zoneid = Q_TO_CONN(q)->conn_zoneid; 17668 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 17669 17670 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17671 optp->level = MIB2_IP6; 17672 optp->name = MIB2_IP6_ROUTE; 17673 optp->len = msgdsize(ird.ird_route.lp_head); 17674 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17675 (int)optp->level, (int)optp->name, (int)optp->len)); 17676 qreply(q, mpctl); 17677 17678 /* ipv6NetToMediaEntryTable in mp3ctl */ 17679 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 17680 17681 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17682 optp->level = MIB2_IP6; 17683 optp->name = MIB2_IP6_MEDIA; 17684 optp->len = msgdsize(ird.ird_netmedia.lp_head); 17685 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17686 (int)optp->level, (int)optp->name, (int)optp->len)); 17687 qreply(q, mp3ctl); 17688 17689 /* ipv6RouteAttributeTable in mp4ctl */ 17690 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17691 optp->level = MIB2_IP6; 17692 optp->name = EXPER_IP_RTATTR; 17693 optp->len = msgdsize(ird.ird_attrs.lp_head); 17694 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17695 (int)optp->level, (int)optp->name, (int)optp->len)); 17696 if (optp->len == 0) 17697 freemsg(mp4ctl); 17698 else 17699 qreply(q, mp4ctl); 17700 17701 return (mp2ctl); 17702 } 17703 17704 /* 17705 * ICMPv6 mib: One per ill 17706 */ 17707 static mblk_t * 17708 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 17709 { 17710 struct opthdr *optp; 17711 mblk_t *mp2ctl; 17712 ill_t *ill; 17713 ill_walk_context_t ctx; 17714 mblk_t *mp_tail = NULL; 17715 17716 /* 17717 * Make a copy of the original message 17718 */ 17719 mp2ctl = copymsg(mpctl); 17720 17721 /* fixed length IPv6 structure ... */ 17722 17723 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17724 optp->level = MIB2_IP6; 17725 optp->name = 0; 17726 /* Include "unknown interface" ip6_mib */ 17727 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 17728 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 17729 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 17730 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 17731 sizeof (mib2_ipv6IfStatsEntry_t)); 17732 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 17733 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 17734 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 17735 sizeof (mib2_ipv6NetToMediaEntry_t)); 17736 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 17737 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 17738 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 17739 (int)sizeof (ip6_mib))) { 17740 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 17741 (uint_t)sizeof (ip6_mib))); 17742 } 17743 17744 rw_enter(&ill_g_lock, RW_READER); 17745 ill = ILL_START_WALK_V6(&ctx); 17746 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17747 ill->ill_ip6_mib->ipv6IfIndex = 17748 ill->ill_phyint->phyint_ifindex; 17749 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 17750 ipv6_forward ? 1 : 2); 17751 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 17752 ill->ill_max_hops); 17753 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 17754 sizeof (mib2_ipv6IfStatsEntry_t)); 17755 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 17756 sizeof (mib2_ipv6AddrEntry_t)); 17757 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 17758 sizeof (mib2_ipv6RouteEntry_t)); 17759 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 17760 sizeof (mib2_ipv6NetToMediaEntry_t)); 17761 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 17762 sizeof (ipv6_member_t)); 17763 17764 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17765 (char *)ill->ill_ip6_mib, 17766 (int)sizeof (*ill->ill_ip6_mib))) { 17767 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 17768 "%u bytes\n", 17769 (uint_t)sizeof (*ill->ill_ip6_mib))); 17770 } 17771 } 17772 rw_exit(&ill_g_lock); 17773 17774 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17775 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 17776 (int)optp->level, (int)optp->name, (int)optp->len)); 17777 qreply(q, mpctl); 17778 return (mp2ctl); 17779 } 17780 17781 /* 17782 * ICMPv6 mib: One per ill 17783 */ 17784 static mblk_t * 17785 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 17786 { 17787 struct opthdr *optp; 17788 mblk_t *mp2ctl; 17789 ill_t *ill; 17790 ill_walk_context_t ctx; 17791 mblk_t *mp_tail = NULL; 17792 /* 17793 * Make a copy of the original message 17794 */ 17795 mp2ctl = copymsg(mpctl); 17796 17797 /* fixed length ICMPv6 structure ... */ 17798 17799 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17800 optp->level = MIB2_ICMP6; 17801 optp->name = 0; 17802 /* Include "unknown interface" icmp6_mib */ 17803 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 17804 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 17805 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 17806 (int)sizeof (icmp6_mib))) { 17807 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 17808 (uint_t)sizeof (icmp6_mib))); 17809 } 17810 17811 rw_enter(&ill_g_lock, RW_READER); 17812 ill = ILL_START_WALK_V6(&ctx); 17813 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17814 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 17815 ill->ill_phyint->phyint_ifindex; 17816 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 17817 sizeof (mib2_ipv6IfIcmpEntry_t); 17818 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17819 (char *)ill->ill_icmp6_mib, 17820 (int)sizeof (*ill->ill_icmp6_mib))) { 17821 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 17822 "%u bytes\n", 17823 (uint_t)sizeof (*ill->ill_icmp6_mib))); 17824 } 17825 } 17826 rw_exit(&ill_g_lock); 17827 17828 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17829 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 17830 (int)optp->level, (int)optp->name, (int)optp->len)); 17831 qreply(q, mpctl); 17832 return (mp2ctl); 17833 } 17834 17835 /* 17836 * ire_walk routine to create both ipRouteEntryTable and 17837 * ipNetToMediaEntryTable in one IRE walk 17838 */ 17839 static void 17840 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 17841 { 17842 ill_t *ill; 17843 ipif_t *ipif; 17844 mblk_t *llmp; 17845 dl_unitdata_req_t *dlup; 17846 mib2_ipRouteEntry_t *re; 17847 mib2_ipNetToMediaEntry_t ntme; 17848 mib2_ipAttributeEntry_t *iae, *iaeptr; 17849 ipaddr_t gw_addr; 17850 tsol_ire_gw_secattr_t *attrp; 17851 tsol_gc_t *gc = NULL; 17852 tsol_gcgrp_t *gcgrp = NULL; 17853 uint_t sacnt = 0; 17854 int i; 17855 17856 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17857 17858 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 17859 return; 17860 17861 if ((attrp = ire->ire_gw_secattr) != NULL) { 17862 mutex_enter(&attrp->igsa_lock); 17863 if ((gc = attrp->igsa_gc) != NULL) { 17864 gcgrp = gc->gc_grp; 17865 ASSERT(gcgrp != NULL); 17866 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 17867 sacnt = 1; 17868 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 17869 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 17870 gc = gcgrp->gcgrp_head; 17871 sacnt = gcgrp->gcgrp_count; 17872 } 17873 mutex_exit(&attrp->igsa_lock); 17874 17875 /* do nothing if there's no gc to report */ 17876 if (gc == NULL) { 17877 ASSERT(sacnt == 0); 17878 if (gcgrp != NULL) { 17879 /* we might as well drop the lock now */ 17880 rw_exit(&gcgrp->gcgrp_rwlock); 17881 gcgrp = NULL; 17882 } 17883 attrp = NULL; 17884 } 17885 17886 ASSERT(gc == NULL || (gcgrp != NULL && 17887 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 17888 } 17889 ASSERT(sacnt == 0 || gc != NULL); 17890 17891 if (sacnt != 0 && 17892 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 17893 kmem_free(re, sizeof (*re)); 17894 rw_exit(&gcgrp->gcgrp_rwlock); 17895 return; 17896 } 17897 17898 /* 17899 * Return all IRE types for route table... let caller pick and choose 17900 */ 17901 re->ipRouteDest = ire->ire_addr; 17902 ipif = ire->ire_ipif; 17903 re->ipRouteIfIndex.o_length = 0; 17904 if (ire->ire_type == IRE_CACHE) { 17905 ill = (ill_t *)ire->ire_stq->q_ptr; 17906 re->ipRouteIfIndex.o_length = 17907 ill->ill_name_length == 0 ? 0 : 17908 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17909 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 17910 re->ipRouteIfIndex.o_length); 17911 } else if (ipif != NULL) { 17912 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 17913 OCTET_LENGTH); 17914 re->ipRouteIfIndex.o_length = 17915 mi_strlen(re->ipRouteIfIndex.o_bytes); 17916 } 17917 re->ipRouteMetric1 = -1; 17918 re->ipRouteMetric2 = -1; 17919 re->ipRouteMetric3 = -1; 17920 re->ipRouteMetric4 = -1; 17921 17922 gw_addr = ire->ire_gateway_addr; 17923 17924 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 17925 re->ipRouteNextHop = ire->ire_src_addr; 17926 else 17927 re->ipRouteNextHop = gw_addr; 17928 /* indirect(4), direct(3), or invalid(2) */ 17929 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17930 re->ipRouteType = 2; 17931 else 17932 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 17933 re->ipRouteProto = -1; 17934 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 17935 re->ipRouteMask = ire->ire_mask; 17936 re->ipRouteMetric5 = -1; 17937 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 17938 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 17939 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17940 llmp = ire->ire_dlureq_mp; 17941 re->ipRouteInfo.re_ref = ire->ire_refcnt; 17942 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 17943 re->ipRouteInfo.re_ire_type = ire->ire_type; 17944 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17945 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17946 re->ipRouteInfo.re_flags = ire->ire_flags; 17947 re->ipRouteInfo.re_in_ill.o_length = 0; 17948 if (ire->ire_in_ill != NULL) { 17949 re->ipRouteInfo.re_in_ill.o_length = 17950 ire->ire_in_ill->ill_name_length == 0 ? 0 : 17951 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 17952 bcopy(ire->ire_in_ill->ill_name, 17953 re->ipRouteInfo.re_in_ill.o_bytes, 17954 re->ipRouteInfo.re_in_ill.o_length); 17955 } 17956 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 17957 17958 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 17959 (char *)re, (int)sizeof (*re))) { 17960 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17961 (uint_t)sizeof (*re))); 17962 } 17963 17964 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 17965 iaeptr->iae_routeidx = ird->ird_idx; 17966 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 17967 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 17968 } 17969 17970 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 17971 (char *)iae, sacnt * sizeof (*iae))) { 17972 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17973 (unsigned)(sacnt * sizeof (*iae)))); 17974 } 17975 17976 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 17977 goto done; 17978 /* 17979 * only IRE_CACHE entries that are for a directly connected subnet 17980 * get appended to net -> phys addr table 17981 * (others in arp) 17982 */ 17983 ntme.ipNetToMediaIfIndex.o_length = 0; 17984 ill = ire_to_ill(ire); 17985 ASSERT(ill != NULL); 17986 ntme.ipNetToMediaIfIndex.o_length = 17987 ill->ill_name_length == 0 ? 0 : 17988 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17989 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 17990 ntme.ipNetToMediaIfIndex.o_length); 17991 17992 ntme.ipNetToMediaPhysAddress.o_length = 0; 17993 if (llmp) { 17994 uchar_t *addr; 17995 17996 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 17997 /* Remove sap from address */ 17998 if (ill->ill_sap_length < 0) 17999 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 18000 else 18001 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 18002 ill->ill_sap_length; 18003 18004 ntme.ipNetToMediaPhysAddress.o_length = 18005 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 18006 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 18007 ntme.ipNetToMediaPhysAddress.o_length); 18008 } 18009 ntme.ipNetToMediaNetAddress = ire->ire_addr; 18010 /* assume dynamic (may be changed in arp) */ 18011 ntme.ipNetToMediaType = 3; 18012 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 18013 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 18014 ntme.ipNetToMediaInfo.ntm_mask.o_length); 18015 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 18016 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18017 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18018 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 18019 (uint_t)sizeof (ntme))); 18020 } 18021 done: 18022 /* bump route index for next pass */ 18023 ird->ird_idx++; 18024 18025 kmem_free(re, sizeof (*re)); 18026 if (sacnt != 0) 18027 kmem_free(iae, sacnt * sizeof (*iae)); 18028 18029 if (gcgrp != NULL) 18030 rw_exit(&gcgrp->gcgrp_rwlock); 18031 } 18032 18033 /* 18034 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 18035 */ 18036 static void 18037 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 18038 { 18039 ill_t *ill; 18040 ipif_t *ipif; 18041 mib2_ipv6RouteEntry_t *re; 18042 mib2_ipAttributeEntry_t *iae, *iaeptr; 18043 in6_addr_t gw_addr_v6; 18044 tsol_ire_gw_secattr_t *attrp; 18045 tsol_gc_t *gc = NULL; 18046 tsol_gcgrp_t *gcgrp = NULL; 18047 uint_t sacnt = 0; 18048 int i; 18049 18050 ASSERT(ire->ire_ipversion == IPV6_VERSION); 18051 18052 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18053 return; 18054 18055 if ((attrp = ire->ire_gw_secattr) != NULL) { 18056 mutex_enter(&attrp->igsa_lock); 18057 if ((gc = attrp->igsa_gc) != NULL) { 18058 gcgrp = gc->gc_grp; 18059 ASSERT(gcgrp != NULL); 18060 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18061 sacnt = 1; 18062 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18063 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18064 gc = gcgrp->gcgrp_head; 18065 sacnt = gcgrp->gcgrp_count; 18066 } 18067 mutex_exit(&attrp->igsa_lock); 18068 18069 /* do nothing if there's no gc to report */ 18070 if (gc == NULL) { 18071 ASSERT(sacnt == 0); 18072 if (gcgrp != NULL) { 18073 /* we might as well drop the lock now */ 18074 rw_exit(&gcgrp->gcgrp_rwlock); 18075 gcgrp = NULL; 18076 } 18077 attrp = NULL; 18078 } 18079 18080 ASSERT(gc == NULL || (gcgrp != NULL && 18081 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18082 } 18083 ASSERT(sacnt == 0 || gc != NULL); 18084 18085 if (sacnt != 0 && 18086 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18087 kmem_free(re, sizeof (*re)); 18088 rw_exit(&gcgrp->gcgrp_rwlock); 18089 return; 18090 } 18091 18092 /* 18093 * Return all IRE types for route table... let caller pick and choose 18094 */ 18095 re->ipv6RouteDest = ire->ire_addr_v6; 18096 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 18097 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 18098 re->ipv6RouteIfIndex.o_length = 0; 18099 ipif = ire->ire_ipif; 18100 if (ire->ire_type == IRE_CACHE) { 18101 ill = (ill_t *)ire->ire_stq->q_ptr; 18102 re->ipv6RouteIfIndex.o_length = 18103 ill->ill_name_length == 0 ? 0 : 18104 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18105 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 18106 re->ipv6RouteIfIndex.o_length); 18107 } else if (ipif != NULL) { 18108 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 18109 OCTET_LENGTH); 18110 re->ipv6RouteIfIndex.o_length = 18111 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 18112 } 18113 18114 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 18115 18116 mutex_enter(&ire->ire_lock); 18117 gw_addr_v6 = ire->ire_gateway_addr_v6; 18118 mutex_exit(&ire->ire_lock); 18119 18120 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 18121 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 18122 else 18123 re->ipv6RouteNextHop = gw_addr_v6; 18124 18125 /* remote(4), local(3), or discard(2) */ 18126 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18127 re->ipv6RouteType = 2; 18128 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 18129 re->ipv6RouteType = 3; 18130 else 18131 re->ipv6RouteType = 4; 18132 18133 re->ipv6RouteProtocol = -1; 18134 re->ipv6RoutePolicy = 0; 18135 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 18136 re->ipv6RouteNextHopRDI = 0; 18137 re->ipv6RouteWeight = 0; 18138 re->ipv6RouteMetric = 0; 18139 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 18140 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 18141 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 18142 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 18143 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 18144 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 18145 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 18146 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 18147 re->ipv6RouteInfo.re_flags = ire->ire_flags; 18148 18149 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 18150 (char *)re, (int)sizeof (*re))) { 18151 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18152 (uint_t)sizeof (*re))); 18153 } 18154 18155 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 18156 iaeptr->iae_routeidx = ird->ird_idx; 18157 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 18158 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 18159 } 18160 18161 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 18162 (char *)iae, sacnt * sizeof (*iae))) { 18163 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 18164 (unsigned)(sacnt * sizeof (*iae)))); 18165 } 18166 18167 /* bump route index for next pass */ 18168 ird->ird_idx++; 18169 18170 kmem_free(re, sizeof (*re)); 18171 if (sacnt != 0) 18172 kmem_free(iae, sacnt * sizeof (*iae)); 18173 18174 if (gcgrp != NULL) 18175 rw_exit(&gcgrp->gcgrp_rwlock); 18176 } 18177 18178 /* 18179 * ndp_walk routine to create ipv6NetToMediaEntryTable 18180 */ 18181 static int 18182 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 18183 { 18184 ill_t *ill; 18185 mib2_ipv6NetToMediaEntry_t ntme; 18186 dl_unitdata_req_t *dl; 18187 18188 ill = nce->nce_ill; 18189 ASSERT(ill->ill_isv6); 18190 18191 /* 18192 * Neighbor cache entry attached to IRE with on-link 18193 * destination. 18194 */ 18195 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 18196 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 18197 if ((ill->ill_flags & ILLF_XRESOLV) && 18198 (nce->nce_res_mp != NULL)) { 18199 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 18200 ntme.ipv6NetToMediaPhysAddress.o_length = 18201 dl->dl_dest_addr_length; 18202 } else { 18203 ntme.ipv6NetToMediaPhysAddress.o_length = 18204 ill->ill_phys_addr_length; 18205 } 18206 if (nce->nce_res_mp != NULL) { 18207 bcopy((char *)nce->nce_res_mp->b_rptr + 18208 NCE_LL_ADDR_OFFSET(ill), 18209 ntme.ipv6NetToMediaPhysAddress.o_bytes, 18210 ntme.ipv6NetToMediaPhysAddress.o_length); 18211 } else { 18212 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 18213 ill->ill_phys_addr_length); 18214 } 18215 /* 18216 * Note: Returns ND_* states. Should be: 18217 * reachable(1), stale(2), delay(3), probe(4), 18218 * invalid(5), unknown(6) 18219 */ 18220 ntme.ipv6NetToMediaState = nce->nce_state; 18221 ntme.ipv6NetToMediaLastUpdated = 0; 18222 18223 /* other(1), dynamic(2), static(3), local(4) */ 18224 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 18225 ntme.ipv6NetToMediaType = 4; 18226 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 18227 ntme.ipv6NetToMediaType = 1; 18228 } else { 18229 ntme.ipv6NetToMediaType = 2; 18230 } 18231 18232 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 18233 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 18234 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 18235 (uint_t)sizeof (ntme))); 18236 } 18237 return (0); 18238 } 18239 18240 /* 18241 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 18242 */ 18243 /* ARGSUSED */ 18244 int 18245 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 18246 { 18247 switch (level) { 18248 case MIB2_IP: 18249 case MIB2_ICMP: 18250 switch (name) { 18251 default: 18252 break; 18253 } 18254 return (1); 18255 default: 18256 return (1); 18257 } 18258 } 18259 18260 /* 18261 * Called before the options are updated to check if this packet will 18262 * be source routed from here. 18263 * This routine assumes that the options are well formed i.e. that they 18264 * have already been checked. 18265 */ 18266 static boolean_t 18267 ip_source_routed(ipha_t *ipha) 18268 { 18269 ipoptp_t opts; 18270 uchar_t *opt; 18271 uint8_t optval; 18272 uint8_t optlen; 18273 ipaddr_t dst; 18274 ire_t *ire; 18275 18276 if (IS_SIMPLE_IPH(ipha)) { 18277 ip2dbg(("not source routed\n")); 18278 return (B_FALSE); 18279 } 18280 dst = ipha->ipha_dst; 18281 for (optval = ipoptp_first(&opts, ipha); 18282 optval != IPOPT_EOL; 18283 optval = ipoptp_next(&opts)) { 18284 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18285 opt = opts.ipoptp_cur; 18286 optlen = opts.ipoptp_len; 18287 ip2dbg(("ip_source_routed: opt %d, len %d\n", 18288 optval, optlen)); 18289 switch (optval) { 18290 uint32_t off; 18291 case IPOPT_SSRR: 18292 case IPOPT_LSRR: 18293 /* 18294 * If dst is one of our addresses and there are some 18295 * entries left in the source route return (true). 18296 */ 18297 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18298 ALL_ZONES, NULL, MATCH_IRE_TYPE); 18299 if (ire == NULL) { 18300 ip2dbg(("ip_source_routed: not next" 18301 " source route 0x%x\n", 18302 ntohl(dst))); 18303 return (B_FALSE); 18304 } 18305 ire_refrele(ire); 18306 off = opt[IPOPT_OFFSET]; 18307 off--; 18308 if (optlen < IP_ADDR_LEN || 18309 off > optlen - IP_ADDR_LEN) { 18310 /* End of source route */ 18311 ip1dbg(("ip_source_routed: end of SR\n")); 18312 return (B_FALSE); 18313 } 18314 return (B_TRUE); 18315 } 18316 } 18317 ip2dbg(("not source routed\n")); 18318 return (B_FALSE); 18319 } 18320 18321 /* 18322 * Check if the packet contains any source route. 18323 */ 18324 static boolean_t 18325 ip_source_route_included(ipha_t *ipha) 18326 { 18327 ipoptp_t opts; 18328 uint8_t optval; 18329 18330 if (IS_SIMPLE_IPH(ipha)) 18331 return (B_FALSE); 18332 for (optval = ipoptp_first(&opts, ipha); 18333 optval != IPOPT_EOL; 18334 optval = ipoptp_next(&opts)) { 18335 switch (optval) { 18336 case IPOPT_SSRR: 18337 case IPOPT_LSRR: 18338 return (B_TRUE); 18339 } 18340 } 18341 return (B_FALSE); 18342 } 18343 18344 /* 18345 * Called when the IRE expiration timer fires. 18346 */ 18347 /* ARGSUSED */ 18348 void 18349 ip_trash_timer_expire(void *args) 18350 { 18351 int flush_flag = 0; 18352 18353 /* 18354 * ip_ire_expire_id is protected by ip_trash_timer_lock. 18355 * This lock makes sure that a new invocation of this function 18356 * that occurs due to an almost immediate timer firing will not 18357 * progress beyond this point until the current invocation is done 18358 */ 18359 mutex_enter(&ip_trash_timer_lock); 18360 ip_ire_expire_id = 0; 18361 mutex_exit(&ip_trash_timer_lock); 18362 18363 /* Periodic timer */ 18364 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 18365 /* 18366 * Remove all IRE_CACHE entries since they might 18367 * contain arp information. 18368 */ 18369 flush_flag |= FLUSH_ARP_TIME; 18370 ip_ire_arp_time_elapsed = 0; 18371 IP_STAT(ip_ire_arp_timer_expired); 18372 } 18373 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 18374 /* Remove all redirects */ 18375 flush_flag |= FLUSH_REDIRECT_TIME; 18376 ip_ire_rd_time_elapsed = 0; 18377 IP_STAT(ip_ire_redirect_timer_expired); 18378 } 18379 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 18380 /* Increase path mtu */ 18381 flush_flag |= FLUSH_MTU_TIME; 18382 ip_ire_pmtu_time_elapsed = 0; 18383 IP_STAT(ip_ire_pmtu_timer_expired); 18384 } 18385 if (flush_flag != 0) { 18386 /* Walk all IPv4 IRE's and update them */ 18387 ire_walk_v4(ire_expire, (char *)(uintptr_t)flush_flag, 18388 ALL_ZONES); 18389 } 18390 if (flush_flag & FLUSH_MTU_TIME) { 18391 /* 18392 * Walk all IPv6 IRE's and update them 18393 * Note that ARP and redirect timers are not 18394 * needed since NUD handles stale entries. 18395 */ 18396 flush_flag = FLUSH_MTU_TIME; 18397 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 18398 ALL_ZONES); 18399 } 18400 18401 ip_ire_arp_time_elapsed += ip_timer_interval; 18402 ip_ire_rd_time_elapsed += ip_timer_interval; 18403 ip_ire_pmtu_time_elapsed += ip_timer_interval; 18404 18405 /* 18406 * Hold the lock to serialize timeout calls and prevent 18407 * stale values in ip_ire_expire_id. Otherwise it is possible 18408 * for the timer to fire and a new invocation of this function 18409 * to start before the return value of timeout has been stored 18410 * in ip_ire_expire_id by the current invocation. 18411 */ 18412 mutex_enter(&ip_trash_timer_lock); 18413 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 18414 MSEC_TO_TICK(ip_timer_interval)); 18415 mutex_exit(&ip_trash_timer_lock); 18416 } 18417 18418 /* 18419 * Called by the memory allocator subsystem directly, when the system 18420 * is running low on memory. 18421 */ 18422 /* ARGSUSED */ 18423 void 18424 ip_trash_ire_reclaim(void *args) 18425 { 18426 ire_cache_count_t icc; 18427 ire_cache_reclaim_t icr; 18428 ncc_cache_count_t ncc; 18429 nce_cache_reclaim_t ncr; 18430 uint_t delete_cnt; 18431 /* 18432 * Memory reclaim call back. 18433 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 18434 * Then, with a target of freeing 1/Nth of IRE_CACHE 18435 * entries, determine what fraction to free for 18436 * each category of IRE_CACHE entries giving absolute priority 18437 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 18438 * entry will be freed unless all offlink entries are freed). 18439 */ 18440 icc.icc_total = 0; 18441 icc.icc_unused = 0; 18442 icc.icc_offlink = 0; 18443 icc.icc_pmtu = 0; 18444 icc.icc_onlink = 0; 18445 ire_walk(ire_cache_count, (char *)&icc); 18446 18447 /* 18448 * Free NCEs for IPv6 like the onlink ires. 18449 */ 18450 ncc.ncc_total = 0; 18451 ncc.ncc_host = 0; 18452 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 18453 18454 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 18455 icc.icc_pmtu + icc.icc_onlink); 18456 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 18457 IP_STAT(ip_trash_ire_reclaim_calls); 18458 if (delete_cnt == 0) 18459 return; 18460 IP_STAT(ip_trash_ire_reclaim_success); 18461 /* Always delete all unused offlink entries */ 18462 icr.icr_unused = 1; 18463 if (delete_cnt <= icc.icc_unused) { 18464 /* 18465 * Only need to free unused entries. In other words, 18466 * there are enough unused entries to free to meet our 18467 * target number of freed ire cache entries. 18468 */ 18469 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 18470 ncr.ncr_host = 0; 18471 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 18472 /* 18473 * Only need to free unused entries, plus a fraction of offlink 18474 * entries. It follows from the first if statement that 18475 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 18476 */ 18477 delete_cnt -= icc.icc_unused; 18478 /* Round up # deleted by truncating fraction */ 18479 icr.icr_offlink = icc.icc_offlink / delete_cnt; 18480 icr.icr_pmtu = icr.icr_onlink = 0; 18481 ncr.ncr_host = 0; 18482 } else if (delete_cnt <= 18483 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 18484 /* 18485 * Free all unused and offlink entries, plus a fraction of 18486 * pmtu entries. It follows from the previous if statement 18487 * that icc_pmtu is non-zero, and that 18488 * delete_cnt != icc_unused + icc_offlink. 18489 */ 18490 icr.icr_offlink = 1; 18491 delete_cnt -= icc.icc_unused + icc.icc_offlink; 18492 /* Round up # deleted by truncating fraction */ 18493 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 18494 icr.icr_onlink = 0; 18495 ncr.ncr_host = 0; 18496 } else { 18497 /* 18498 * Free all unused, offlink, and pmtu entries, plus a fraction 18499 * of onlink entries. If we're here, then we know that 18500 * icc_onlink is non-zero, and that 18501 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 18502 */ 18503 icr.icr_offlink = icr.icr_pmtu = 1; 18504 delete_cnt -= icc.icc_unused + icc.icc_offlink + 18505 icc.icc_pmtu; 18506 /* Round up # deleted by truncating fraction */ 18507 icr.icr_onlink = icc.icc_onlink / delete_cnt; 18508 /* Using the same delete fraction as for onlink IREs */ 18509 ncr.ncr_host = ncc.ncc_host / delete_cnt; 18510 } 18511 #ifdef DEBUG 18512 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 18513 "fractions %d/%d/%d/%d\n", 18514 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 18515 icc.icc_unused, icc.icc_offlink, 18516 icc.icc_pmtu, icc.icc_onlink, 18517 icr.icr_unused, icr.icr_offlink, 18518 icr.icr_pmtu, icr.icr_onlink)); 18519 #endif 18520 ire_walk(ire_cache_reclaim, (char *)&icr); 18521 if (ncr.ncr_host != 0) 18522 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 18523 (uchar_t *)&ncr); 18524 #ifdef DEBUG 18525 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 18526 icc.icc_pmtu = 0; icc.icc_onlink = 0; 18527 ire_walk(ire_cache_count, (char *)&icc); 18528 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 18529 icc.icc_total, icc.icc_unused, icc.icc_offlink, 18530 icc.icc_pmtu, icc.icc_onlink)); 18531 #endif 18532 } 18533 18534 /* 18535 * ip_unbind is called when a copy of an unbind request is received from the 18536 * upper level protocol. We remove this conn from any fanout hash list it is 18537 * on, and zero out the bind information. No reply is expected up above. 18538 */ 18539 mblk_t * 18540 ip_unbind(queue_t *q, mblk_t *mp) 18541 { 18542 conn_t *connp = Q_TO_CONN(q); 18543 18544 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 18545 18546 if (is_system_labeled() && connp->conn_anon_port) { 18547 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 18548 connp->conn_mlp_type, connp->conn_ulp, 18549 ntohs(connp->conn_lport), B_FALSE); 18550 connp->conn_anon_port = 0; 18551 } 18552 connp->conn_mlp_type = mlptSingle; 18553 18554 ipcl_hash_remove(connp); 18555 18556 ASSERT(mp->b_cont == NULL); 18557 /* 18558 * Convert mp into a T_OK_ACK 18559 */ 18560 mp = mi_tpi_ok_ack_alloc(mp); 18561 18562 /* 18563 * should not happen in practice... T_OK_ACK is smaller than the 18564 * original message. 18565 */ 18566 if (mp == NULL) 18567 return (NULL); 18568 18569 /* 18570 * Don't bzero the ports if its TCP since TCP still needs the 18571 * lport to remove it from its own bind hash. TCP will do the 18572 * cleanup. 18573 */ 18574 if (!IPCL_IS_TCP(connp)) 18575 bzero(&connp->u_port, sizeof (connp->u_port)); 18576 18577 return (mp); 18578 } 18579 18580 /* 18581 * Write side put procedure. Outbound data, IOCTLs, responses from 18582 * resolvers, etc, come down through here. 18583 */ 18584 void 18585 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 18586 { 18587 conn_t *connp = NULL; 18588 queue_t *q = (queue_t *)arg2; 18589 ipha_t *ipha; 18590 #define rptr ((uchar_t *)ipha) 18591 ire_t *ire = NULL; 18592 ire_t *sctp_ire = NULL; 18593 uint32_t v_hlen_tos_len; 18594 ipaddr_t dst; 18595 mblk_t *first_mp = NULL; 18596 boolean_t mctl_present; 18597 ipsec_out_t *io; 18598 int match_flags; 18599 ill_t *attach_ill = NULL; 18600 /* Bind to IPIF_NOFAILOVER ill etc. */ 18601 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 18602 ipif_t *dst_ipif; 18603 boolean_t multirt_need_resolve = B_FALSE; 18604 mblk_t *copy_mp = NULL; 18605 int err; 18606 zoneid_t zoneid; 18607 int adjust; 18608 uint16_t iplen; 18609 boolean_t need_decref = B_FALSE; 18610 boolean_t ignore_dontroute = B_FALSE; 18611 boolean_t ignore_nexthop = B_FALSE; 18612 boolean_t ip_nexthop = B_FALSE; 18613 ipaddr_t nexthop_addr; 18614 18615 #ifdef _BIG_ENDIAN 18616 #define V_HLEN (v_hlen_tos_len >> 24) 18617 #else 18618 #define V_HLEN (v_hlen_tos_len & 0xFF) 18619 #endif 18620 18621 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 18622 "ip_wput_start: q %p", q); 18623 18624 /* 18625 * ip_wput fast path 18626 */ 18627 18628 /* is packet from ARP ? */ 18629 if (q->q_next != NULL) 18630 goto qnext; 18631 18632 connp = (conn_t *)arg; 18633 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 18634 18635 /* is queue flow controlled? */ 18636 if ((q->q_first != NULL || connp->conn_draining) && 18637 (caller == IP_WPUT)) { 18638 ASSERT(!need_decref); 18639 (void) putq(q, mp); 18640 return; 18641 } 18642 18643 /* Multidata transmit? */ 18644 if (DB_TYPE(mp) == M_MULTIDATA) { 18645 /* 18646 * We should never get here, since all Multidata messages 18647 * originating from tcp should have been directed over to 18648 * tcp_multisend() in the first place. 18649 */ 18650 BUMP_MIB(&ip_mib, ipOutDiscards); 18651 freemsg(mp); 18652 return; 18653 } else if (DB_TYPE(mp) != M_DATA) 18654 goto notdata; 18655 18656 if (mp->b_flag & MSGHASREF) { 18657 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 18658 mp->b_flag &= ~MSGHASREF; 18659 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 18660 need_decref = B_TRUE; 18661 } 18662 ipha = (ipha_t *)mp->b_rptr; 18663 18664 /* is IP header non-aligned or mblk smaller than basic IP header */ 18665 #ifndef SAFETY_BEFORE_SPEED 18666 if (!OK_32PTR(rptr) || 18667 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 18668 goto hdrtoosmall; 18669 #endif 18670 18671 ASSERT(OK_32PTR(ipha)); 18672 18673 /* 18674 * This function assumes that mp points to an IPv4 packet. If it's the 18675 * wrong version, we'll catch it again in ip_output_v6. 18676 * 18677 * Note that this is *only* locally-generated output here, and never 18678 * forwarded data, and that we need to deal only with transports that 18679 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 18680 * label.) 18681 */ 18682 if (is_system_labeled() && 18683 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 18684 !connp->conn_ulp_labeled) { 18685 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 18686 connp->conn_mac_exempt); 18687 ipha = (ipha_t *)mp->b_rptr; 18688 if (err != 0) { 18689 first_mp = mp; 18690 if (err == EINVAL) 18691 goto icmp_parameter_problem; 18692 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 18693 goto drop_pkt; 18694 } 18695 iplen = ntohs(ipha->ipha_length) + adjust; 18696 ipha->ipha_length = htons(iplen); 18697 } 18698 18699 /* 18700 * If there is a policy, try to attach an ipsec_out in 18701 * the front. At the end, first_mp either points to a 18702 * M_DATA message or IPSEC_OUT message linked to a 18703 * M_DATA message. We have to do it now as we might 18704 * lose the "conn" if we go through ip_newroute. 18705 */ 18706 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 18707 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 18708 ipha->ipha_protocol)) == NULL)) { 18709 if (need_decref) 18710 CONN_DEC_REF(connp); 18711 return; 18712 } else { 18713 ASSERT(mp->b_datap->db_type == M_CTL); 18714 first_mp = mp; 18715 mp = mp->b_cont; 18716 mctl_present = B_TRUE; 18717 } 18718 } else { 18719 first_mp = mp; 18720 mctl_present = B_FALSE; 18721 } 18722 18723 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 18724 18725 /* is wrong version or IP options present */ 18726 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 18727 goto version_hdrlen_check; 18728 dst = ipha->ipha_dst; 18729 18730 if (connp->conn_nofailover_ill != NULL) { 18731 attach_ill = conn_get_held_ill(connp, 18732 &connp->conn_nofailover_ill, &err); 18733 if (err == ILL_LOOKUP_FAILED) { 18734 if (need_decref) 18735 CONN_DEC_REF(connp); 18736 freemsg(first_mp); 18737 return; 18738 } 18739 } 18740 18741 /* is packet multicast? */ 18742 if (CLASSD(dst)) 18743 goto multicast; 18744 18745 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 18746 (connp->conn_nexthop_set)) { 18747 /* 18748 * If the destination is a broadcast or a loopback 18749 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 18750 * through the standard path. But in the case of local 18751 * destination only SO_DONTROUTE and IP_NEXTHOP go through 18752 * the standard path not IP_XMIT_IF. 18753 */ 18754 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 18755 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 18756 (ire->ire_type != IRE_LOOPBACK))) { 18757 if ((connp->conn_dontroute || 18758 connp->conn_nexthop_set) && (ire != NULL) && 18759 (ire->ire_type == IRE_LOCAL)) 18760 goto standard_path; 18761 18762 if (ire != NULL) { 18763 ire_refrele(ire); 18764 /* No more access to ire */ 18765 ire = NULL; 18766 } 18767 /* 18768 * bypass routing checks and go directly to 18769 * interface. 18770 */ 18771 if (connp->conn_dontroute) { 18772 goto dontroute; 18773 } else if (connp->conn_nexthop_set) { 18774 ip_nexthop = B_TRUE; 18775 nexthop_addr = connp->conn_nexthop_v4; 18776 goto send_from_ill; 18777 } 18778 18779 /* 18780 * If IP_XMIT_IF socket option is set, 18781 * then we allow unicast and multicast 18782 * packets to go through the ill. It is 18783 * quite possible that the destination 18784 * is not in the ire cache table and we 18785 * do not want to go to ip_newroute() 18786 * instead we call ip_newroute_ipif. 18787 */ 18788 xmit_ill = conn_get_held_ill(connp, 18789 &connp->conn_xmit_if_ill, &err); 18790 if (err == ILL_LOOKUP_FAILED) { 18791 if (attach_ill != NULL) 18792 ill_refrele(attach_ill); 18793 if (need_decref) 18794 CONN_DEC_REF(connp); 18795 freemsg(first_mp); 18796 return; 18797 } 18798 goto send_from_ill; 18799 } 18800 standard_path: 18801 /* Must be a broadcast, a loopback or a local ire */ 18802 if (ire != NULL) { 18803 ire_refrele(ire); 18804 /* No more access to ire */ 18805 ire = NULL; 18806 } 18807 } 18808 18809 if (attach_ill != NULL) 18810 goto send_from_ill; 18811 18812 /* 18813 * We cache IRE_CACHEs to avoid lookups. We don't do 18814 * this for the tcp global queue and listen end point 18815 * as it does not really have a real destination to 18816 * talk to. This is also true for SCTP. 18817 */ 18818 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 18819 !connp->conn_fully_bound) { 18820 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 18821 if (ire == NULL) 18822 goto noirefound; 18823 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18824 "ip_wput_end: q %p (%S)", q, "end"); 18825 18826 /* 18827 * Check if the ire has the RTF_MULTIRT flag, inherited 18828 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 18829 */ 18830 if (ire->ire_flags & RTF_MULTIRT) { 18831 18832 /* 18833 * Force the TTL of multirouted packets if required. 18834 * The TTL of such packets is bounded by the 18835 * ip_multirt_ttl ndd variable. 18836 */ 18837 if ((ip_multirt_ttl > 0) && 18838 (ipha->ipha_ttl > ip_multirt_ttl)) { 18839 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18840 "(was %d), dst 0x%08x\n", 18841 ip_multirt_ttl, ipha->ipha_ttl, 18842 ntohl(ire->ire_addr))); 18843 ipha->ipha_ttl = ip_multirt_ttl; 18844 } 18845 /* 18846 * We look at this point if there are pending 18847 * unresolved routes. ire_multirt_resolvable() 18848 * checks in O(n) that all IRE_OFFSUBNET ire 18849 * entries for the packet's destination and 18850 * flagged RTF_MULTIRT are currently resolved. 18851 * If some remain unresolved, we make a copy 18852 * of the current message. It will be used 18853 * to initiate additional route resolutions. 18854 */ 18855 multirt_need_resolve = 18856 ire_multirt_need_resolve(ire->ire_addr, 18857 MBLK_GETLABEL(first_mp)); 18858 ip2dbg(("ip_wput[TCP]: ire %p, " 18859 "multirt_need_resolve %d, first_mp %p\n", 18860 (void *)ire, multirt_need_resolve, 18861 (void *)first_mp)); 18862 if (multirt_need_resolve) { 18863 copy_mp = copymsg(first_mp); 18864 if (copy_mp != NULL) { 18865 MULTIRT_DEBUG_TAG(copy_mp); 18866 } 18867 } 18868 } 18869 18870 ip_wput_ire(q, first_mp, ire, connp, caller); 18871 18872 /* 18873 * Try to resolve another multiroute if 18874 * ire_multirt_need_resolve() deemed it necessary. 18875 */ 18876 if (copy_mp != NULL) { 18877 ip_newroute(q, copy_mp, dst, NULL, connp); 18878 } 18879 if (need_decref) 18880 CONN_DEC_REF(connp); 18881 return; 18882 } 18883 18884 /* 18885 * Access to conn_ire_cache. (protected by conn_lock) 18886 * 18887 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 18888 * the ire bucket lock here to check for CONDEMNED as it is okay to 18889 * send a packet or two with the IRE_CACHE that is going away. 18890 * Access to the ire requires an ire refhold on the ire prior to 18891 * its use since an interface unplumb thread may delete the cached 18892 * ire and release the refhold at any time. 18893 * 18894 * Caching an ire in the conn_ire_cache 18895 * 18896 * o Caching an ire pointer in the conn requires a strict check for 18897 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 18898 * ires before cleaning up the conns. So the caching of an ire pointer 18899 * in the conn is done after making sure under the bucket lock that the 18900 * ire has not yet been marked CONDEMNED. Otherwise we will end up 18901 * caching an ire after the unplumb thread has cleaned up the conn. 18902 * If the conn does not send a packet subsequently the unplumb thread 18903 * will be hanging waiting for the ire count to drop to zero. 18904 * 18905 * o We also need to atomically test for a null conn_ire_cache and 18906 * set the conn_ire_cache under the the protection of the conn_lock 18907 * to avoid races among concurrent threads trying to simultaneously 18908 * cache an ire in the conn_ire_cache. 18909 */ 18910 mutex_enter(&connp->conn_lock); 18911 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 18912 18913 if (ire != NULL && ire->ire_addr == dst && 18914 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18915 18916 IRE_REFHOLD(ire); 18917 mutex_exit(&connp->conn_lock); 18918 18919 } else { 18920 boolean_t cached = B_FALSE; 18921 connp->conn_ire_cache = NULL; 18922 mutex_exit(&connp->conn_lock); 18923 /* Release the old ire */ 18924 if (ire != NULL && sctp_ire == NULL) 18925 IRE_REFRELE_NOTR(ire); 18926 18927 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 18928 if (ire == NULL) 18929 goto noirefound; 18930 IRE_REFHOLD_NOTR(ire); 18931 18932 mutex_enter(&connp->conn_lock); 18933 if (!(connp->conn_state_flags & CONN_CLOSING) && 18934 connp->conn_ire_cache == NULL) { 18935 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18936 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18937 connp->conn_ire_cache = ire; 18938 cached = B_TRUE; 18939 } 18940 rw_exit(&ire->ire_bucket->irb_lock); 18941 } 18942 mutex_exit(&connp->conn_lock); 18943 18944 /* 18945 * We can continue to use the ire but since it was 18946 * not cached, we should drop the extra reference. 18947 */ 18948 if (!cached) 18949 IRE_REFRELE_NOTR(ire); 18950 } 18951 18952 18953 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18954 "ip_wput_end: q %p (%S)", q, "end"); 18955 18956 /* 18957 * Check if the ire has the RTF_MULTIRT flag, inherited 18958 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 18959 */ 18960 if (ire->ire_flags & RTF_MULTIRT) { 18961 18962 /* 18963 * Force the TTL of multirouted packets if required. 18964 * The TTL of such packets is bounded by the 18965 * ip_multirt_ttl ndd variable. 18966 */ 18967 if ((ip_multirt_ttl > 0) && 18968 (ipha->ipha_ttl > ip_multirt_ttl)) { 18969 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18970 "(was %d), dst 0x%08x\n", 18971 ip_multirt_ttl, ipha->ipha_ttl, 18972 ntohl(ire->ire_addr))); 18973 ipha->ipha_ttl = ip_multirt_ttl; 18974 } 18975 18976 /* 18977 * At this point, we check to see if there are any pending 18978 * unresolved routes. ire_multirt_resolvable() 18979 * checks in O(n) that all IRE_OFFSUBNET ire 18980 * entries for the packet's destination and 18981 * flagged RTF_MULTIRT are currently resolved. 18982 * If some remain unresolved, we make a copy 18983 * of the current message. It will be used 18984 * to initiate additional route resolutions. 18985 */ 18986 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 18987 MBLK_GETLABEL(first_mp)); 18988 ip2dbg(("ip_wput[not TCP]: ire %p, " 18989 "multirt_need_resolve %d, first_mp %p\n", 18990 (void *)ire, multirt_need_resolve, (void *)first_mp)); 18991 if (multirt_need_resolve) { 18992 copy_mp = copymsg(first_mp); 18993 if (copy_mp != NULL) { 18994 MULTIRT_DEBUG_TAG(copy_mp); 18995 } 18996 } 18997 } 18998 18999 ip_wput_ire(q, first_mp, ire, connp, caller); 19000 19001 /* 19002 * Try to resolve another multiroute if 19003 * ire_multirt_resolvable() deemed it necessary 19004 */ 19005 if (copy_mp != NULL) { 19006 ip_newroute(q, copy_mp, dst, NULL, connp); 19007 } 19008 if (need_decref) 19009 CONN_DEC_REF(connp); 19010 return; 19011 19012 qnext: 19013 /* 19014 * Upper Level Protocols pass down complete IP datagrams 19015 * as M_DATA messages. Everything else is a sideshow. 19016 * 19017 * 1) We could be re-entering ip_wput because of ip_neworute 19018 * in which case we could have a IPSEC_OUT message. We 19019 * need to pass through ip_wput like other datagrams and 19020 * hence cannot branch to ip_wput_nondata. 19021 * 19022 * 2) ARP, AH, ESP, and other clients who are on the module 19023 * instance of IP stream, give us something to deal with. 19024 * We will handle AH and ESP here and rest in ip_wput_nondata. 19025 * 19026 * 3) ICMP replies also could come here. 19027 */ 19028 if (DB_TYPE(mp) != M_DATA) { 19029 notdata: 19030 if (DB_TYPE(mp) == M_CTL) { 19031 /* 19032 * M_CTL messages are used by ARP, AH and ESP to 19033 * communicate with IP. We deal with IPSEC_IN and 19034 * IPSEC_OUT here. ip_wput_nondata handles other 19035 * cases. 19036 */ 19037 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 19038 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 19039 first_mp = mp->b_cont; 19040 first_mp->b_flag &= ~MSGHASREF; 19041 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19042 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 19043 CONN_DEC_REF(connp); 19044 connp = NULL; 19045 } 19046 if (ii->ipsec_info_type == IPSEC_IN) { 19047 /* 19048 * Either this message goes back to 19049 * IPSEC for further processing or to 19050 * ULP after policy checks. 19051 */ 19052 ip_fanout_proto_again(mp, NULL, NULL, NULL); 19053 return; 19054 } else if (ii->ipsec_info_type == IPSEC_OUT) { 19055 io = (ipsec_out_t *)ii; 19056 if (io->ipsec_out_proc_begin) { 19057 /* 19058 * IPSEC processing has already started. 19059 * Complete it. 19060 * IPQoS notes: We don't care what is 19061 * in ipsec_out_ill_index since this 19062 * won't be processed for IPQoS policies 19063 * in ipsec_out_process. 19064 */ 19065 ipsec_out_process(q, mp, NULL, 19066 io->ipsec_out_ill_index); 19067 return; 19068 } else { 19069 connp = (q->q_next != NULL) ? 19070 NULL : Q_TO_CONN(q); 19071 first_mp = mp; 19072 mp = mp->b_cont; 19073 mctl_present = B_TRUE; 19074 } 19075 zoneid = io->ipsec_out_zoneid; 19076 ASSERT(zoneid != ALL_ZONES); 19077 } else if (ii->ipsec_info_type == IPSEC_CTL) { 19078 /* 19079 * It's an IPsec control message requesting 19080 * an SADB update to be sent to the IPsec 19081 * hardware acceleration capable ills. 19082 */ 19083 ipsec_ctl_t *ipsec_ctl = 19084 (ipsec_ctl_t *)mp->b_rptr; 19085 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 19086 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 19087 mblk_t *cmp = mp->b_cont; 19088 19089 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 19090 ASSERT(cmp != NULL); 19091 19092 freeb(mp); 19093 ill_ipsec_capab_send_all(satype, cmp, sa); 19094 return; 19095 } else { 19096 /* 19097 * This must be ARP or special TSOL signaling. 19098 */ 19099 ip_wput_nondata(NULL, q, mp, NULL); 19100 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19101 "ip_wput_end: q %p (%S)", q, "nondata"); 19102 return; 19103 } 19104 } else { 19105 /* 19106 * This must be non-(ARP/AH/ESP) messages. 19107 */ 19108 ASSERT(!need_decref); 19109 ip_wput_nondata(NULL, q, mp, NULL); 19110 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19111 "ip_wput_end: q %p (%S)", q, "nondata"); 19112 return; 19113 } 19114 } else { 19115 first_mp = mp; 19116 mctl_present = B_FALSE; 19117 } 19118 19119 ASSERT(first_mp != NULL); 19120 /* 19121 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 19122 * to make sure that this packet goes out on the same interface it 19123 * came in. We handle that here. 19124 */ 19125 if (mctl_present) { 19126 uint_t ifindex; 19127 19128 io = (ipsec_out_t *)first_mp->b_rptr; 19129 if (io->ipsec_out_attach_if || 19130 io->ipsec_out_xmit_if || 19131 io->ipsec_out_ip_nexthop) { 19132 ill_t *ill; 19133 19134 /* 19135 * We may have lost the conn context if we are 19136 * coming here from ip_newroute(). Copy the 19137 * nexthop information. 19138 */ 19139 if (io->ipsec_out_ip_nexthop) { 19140 ip_nexthop = B_TRUE; 19141 nexthop_addr = io->ipsec_out_nexthop_addr; 19142 19143 ipha = (ipha_t *)mp->b_rptr; 19144 dst = ipha->ipha_dst; 19145 goto send_from_ill; 19146 } else { 19147 ASSERT(io->ipsec_out_ill_index != 0); 19148 ifindex = io->ipsec_out_ill_index; 19149 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 19150 NULL, NULL, NULL, NULL); 19151 /* 19152 * ipsec_out_xmit_if bit is used to tell 19153 * ip_wput to use the ill to send outgoing data 19154 * as we have no conn when data comes from ICMP 19155 * error msg routines. Currently this feature is 19156 * only used by ip_mrtun_forward routine. 19157 */ 19158 if (io->ipsec_out_xmit_if) { 19159 xmit_ill = ill; 19160 if (xmit_ill == NULL) { 19161 ip1dbg(("ip_output:bad ifindex " 19162 "for xmit_ill %d\n", 19163 ifindex)); 19164 freemsg(first_mp); 19165 BUMP_MIB(&ip_mib, 19166 ipOutDiscards); 19167 ASSERT(!need_decref); 19168 return; 19169 } 19170 /* Free up the ipsec_out_t mblk */ 19171 ASSERT(first_mp->b_cont == mp); 19172 first_mp->b_cont = NULL; 19173 freeb(first_mp); 19174 /* Just send the IP header+ICMP+data */ 19175 first_mp = mp; 19176 ipha = (ipha_t *)mp->b_rptr; 19177 dst = ipha->ipha_dst; 19178 goto send_from_ill; 19179 } else { 19180 attach_ill = ill; 19181 } 19182 19183 if (attach_ill == NULL) { 19184 ASSERT(xmit_ill == NULL); 19185 ip1dbg(("ip_output: bad ifindex for " 19186 "(BIND TO IPIF_NOFAILOVER) %d\n", 19187 ifindex)); 19188 freemsg(first_mp); 19189 BUMP_MIB(&ip_mib, ipOutDiscards); 19190 ASSERT(!need_decref); 19191 return; 19192 } 19193 } 19194 } 19195 } 19196 19197 ASSERT(xmit_ill == NULL); 19198 19199 /* We have a complete IP datagram heading outbound. */ 19200 ipha = (ipha_t *)mp->b_rptr; 19201 19202 #ifndef SPEED_BEFORE_SAFETY 19203 /* 19204 * Make sure we have a full-word aligned message and that at least 19205 * a simple IP header is accessible in the first message. If not, 19206 * try a pullup. 19207 */ 19208 if (!OK_32PTR(rptr) || 19209 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 19210 hdrtoosmall: 19211 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 19212 BUMP_MIB(&ip_mib, ipOutDiscards); 19213 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19214 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 19215 if (first_mp == NULL) 19216 first_mp = mp; 19217 goto drop_pkt; 19218 } 19219 19220 /* This function assumes that mp points to an IPv4 packet. */ 19221 if (is_system_labeled() && q->q_next == NULL && 19222 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 19223 !connp->conn_ulp_labeled) { 19224 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 19225 &adjust, connp->conn_mac_exempt); 19226 ipha = (ipha_t *)mp->b_rptr; 19227 if (first_mp != NULL) 19228 first_mp->b_cont = mp; 19229 if (err != 0) { 19230 if (first_mp == NULL) 19231 first_mp = mp; 19232 if (err == EINVAL) 19233 goto icmp_parameter_problem; 19234 ip2dbg(("ip_wput: label check failed (%d)\n", 19235 err)); 19236 goto drop_pkt; 19237 } 19238 iplen = ntohs(ipha->ipha_length) + adjust; 19239 ipha->ipha_length = htons(iplen); 19240 } 19241 19242 ipha = (ipha_t *)mp->b_rptr; 19243 if (first_mp == NULL) { 19244 ASSERT(attach_ill == NULL && xmit_ill == NULL); 19245 /* 19246 * If we got here because of "goto hdrtoosmall" 19247 * We need to attach a IPSEC_OUT. 19248 */ 19249 if (connp->conn_out_enforce_policy) { 19250 if (((mp = ipsec_attach_ipsec_out(mp, connp, 19251 NULL, ipha->ipha_protocol)) == NULL)) { 19252 if (need_decref) 19253 CONN_DEC_REF(connp); 19254 return; 19255 } else { 19256 ASSERT(mp->b_datap->db_type == M_CTL); 19257 first_mp = mp; 19258 mp = mp->b_cont; 19259 mctl_present = B_TRUE; 19260 } 19261 } else { 19262 first_mp = mp; 19263 mctl_present = B_FALSE; 19264 } 19265 } 19266 } 19267 #endif 19268 19269 /* Most of the code below is written for speed, not readability */ 19270 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19271 19272 /* 19273 * If ip_newroute() fails, we're going to need a full 19274 * header for the icmp wraparound. 19275 */ 19276 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 19277 uint_t v_hlen; 19278 version_hdrlen_check: 19279 ASSERT(first_mp != NULL); 19280 v_hlen = V_HLEN; 19281 /* 19282 * siphon off IPv6 packets coming down from transport 19283 * layer modules here. 19284 * Note: high-order bit carries NUD reachability confirmation 19285 */ 19286 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 19287 /* 19288 * XXX implement a IPv4 and IPv6 packet counter per 19289 * conn and switch when ratio exceeds e.g. 10:1 19290 */ 19291 #ifdef notyet 19292 if (q->q_next == NULL) /* Avoid ill queue */ 19293 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 19294 #endif 19295 BUMP_MIB(&ip_mib, ipOutIPv6); 19296 ASSERT(xmit_ill == NULL); 19297 if (attach_ill != NULL) 19298 ill_refrele(attach_ill); 19299 if (need_decref) 19300 mp->b_flag |= MSGHASREF; 19301 (void) ip_output_v6(connp, first_mp, q, caller); 19302 return; 19303 } 19304 19305 if ((v_hlen >> 4) != IP_VERSION) { 19306 BUMP_MIB(&ip_mib, ipOutDiscards); 19307 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19308 "ip_wput_end: q %p (%S)", q, "badvers"); 19309 goto drop_pkt; 19310 } 19311 /* 19312 * Is the header length at least 20 bytes? 19313 * 19314 * Are there enough bytes accessible in the header? If 19315 * not, try a pullup. 19316 */ 19317 v_hlen &= 0xF; 19318 v_hlen <<= 2; 19319 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 19320 BUMP_MIB(&ip_mib, ipOutDiscards); 19321 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19322 "ip_wput_end: q %p (%S)", q, "badlen"); 19323 goto drop_pkt; 19324 } 19325 if (v_hlen > (mp->b_wptr - rptr)) { 19326 if (!pullupmsg(mp, v_hlen)) { 19327 BUMP_MIB(&ip_mib, ipOutDiscards); 19328 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19329 "ip_wput_end: q %p (%S)", q, "badpullup2"); 19330 goto drop_pkt; 19331 } 19332 ipha = (ipha_t *)mp->b_rptr; 19333 } 19334 /* 19335 * Move first entry from any source route into ipha_dst and 19336 * verify the options 19337 */ 19338 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 19339 ASSERT(xmit_ill == NULL); 19340 if (attach_ill != NULL) 19341 ill_refrele(attach_ill); 19342 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19343 "ip_wput_end: q %p (%S)", q, "badopts"); 19344 if (need_decref) 19345 CONN_DEC_REF(connp); 19346 return; 19347 } 19348 } 19349 dst = ipha->ipha_dst; 19350 19351 /* 19352 * Try to get an IRE_CACHE for the destination address. If we can't, 19353 * we have to run the packet through ip_newroute which will take 19354 * the appropriate action to arrange for an IRE_CACHE, such as querying 19355 * a resolver, or assigning a default gateway, etc. 19356 */ 19357 if (CLASSD(dst)) { 19358 ipif_t *ipif; 19359 uint32_t setsrc = 0; 19360 19361 multicast: 19362 ASSERT(first_mp != NULL); 19363 ASSERT(xmit_ill == NULL); 19364 ip2dbg(("ip_wput: CLASSD\n")); 19365 if (connp == NULL) { 19366 /* 19367 * Use the first good ipif on the ill. 19368 * XXX Should this ever happen? (Appears 19369 * to show up with just ppp and no ethernet due 19370 * to in.rdisc.) 19371 * However, ire_send should be able to 19372 * call ip_wput_ire directly. 19373 * 19374 * XXX Also, this can happen for ICMP and other packets 19375 * with multicast source addresses. Perhaps we should 19376 * fix things so that we drop the packet in question, 19377 * but for now, just run with it. 19378 */ 19379 ill_t *ill = (ill_t *)q->q_ptr; 19380 19381 /* 19382 * Don't honor attach_if for this case. If ill 19383 * is part of the group, ipif could belong to 19384 * any ill and we cannot maintain attach_ill 19385 * and ipif_ill same anymore and the assert 19386 * below would fail. 19387 */ 19388 if (mctl_present) { 19389 io->ipsec_out_ill_index = 0; 19390 io->ipsec_out_attach_if = B_FALSE; 19391 ASSERT(attach_ill != NULL); 19392 ill_refrele(attach_ill); 19393 attach_ill = NULL; 19394 } 19395 19396 ASSERT(attach_ill == NULL); 19397 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 19398 if (ipif == NULL) { 19399 if (need_decref) 19400 CONN_DEC_REF(connp); 19401 freemsg(first_mp); 19402 return; 19403 } 19404 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 19405 ntohl(dst), ill->ill_name)); 19406 } else { 19407 /* 19408 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 19409 * IP_XMIT_IF is honoured. 19410 * Block comment above this function explains the 19411 * locking mechanism used here 19412 */ 19413 xmit_ill = conn_get_held_ill(connp, 19414 &connp->conn_xmit_if_ill, &err); 19415 if (err == ILL_LOOKUP_FAILED) { 19416 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 19417 goto drop_pkt; 19418 } 19419 if (xmit_ill == NULL) { 19420 ipif = conn_get_held_ipif(connp, 19421 &connp->conn_multicast_ipif, &err); 19422 if (err == IPIF_LOOKUP_FAILED) { 19423 ip1dbg(("ip_wput: No ipif for " 19424 "multicast\n")); 19425 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19426 goto drop_pkt; 19427 } 19428 } 19429 if (xmit_ill != NULL) { 19430 ipif = ipif_get_next_ipif(NULL, xmit_ill); 19431 if (ipif == NULL) { 19432 ip1dbg(("ip_wput: No ipif for " 19433 "IP_XMIT_IF\n")); 19434 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19435 goto drop_pkt; 19436 } 19437 } else if (ipif == NULL || ipif->ipif_isv6) { 19438 /* 19439 * We must do this ipif determination here 19440 * else we could pass through ip_newroute 19441 * and come back here without the conn context. 19442 * 19443 * Note: we do late binding i.e. we bind to 19444 * the interface when the first packet is sent. 19445 * For performance reasons we do not rebind on 19446 * each packet but keep the binding until the 19447 * next IP_MULTICAST_IF option. 19448 * 19449 * conn_multicast_{ipif,ill} are shared between 19450 * IPv4 and IPv6 and AF_INET6 sockets can 19451 * send both IPv4 and IPv6 packets. Hence 19452 * we have to check that "isv6" matches above. 19453 */ 19454 if (ipif != NULL) 19455 ipif_refrele(ipif); 19456 ipif = ipif_lookup_group(dst, zoneid); 19457 if (ipif == NULL) { 19458 ip1dbg(("ip_wput: No ipif for " 19459 "multicast\n")); 19460 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19461 goto drop_pkt; 19462 } 19463 err = conn_set_held_ipif(connp, 19464 &connp->conn_multicast_ipif, ipif); 19465 if (err == IPIF_LOOKUP_FAILED) { 19466 ipif_refrele(ipif); 19467 ip1dbg(("ip_wput: No ipif for " 19468 "multicast\n")); 19469 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19470 goto drop_pkt; 19471 } 19472 } 19473 } 19474 ASSERT(!ipif->ipif_isv6); 19475 /* 19476 * As we may lose the conn by the time we reach ip_wput_ire, 19477 * we copy conn_multicast_loop and conn_dontroute on to an 19478 * ipsec_out. In case if this datagram goes out secure, 19479 * we need the ill_index also. Copy that also into the 19480 * ipsec_out. 19481 */ 19482 if (mctl_present) { 19483 io = (ipsec_out_t *)first_mp->b_rptr; 19484 ASSERT(first_mp->b_datap->db_type == M_CTL); 19485 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19486 } else { 19487 ASSERT(mp == first_mp); 19488 if ((first_mp = allocb(sizeof (ipsec_info_t), 19489 BPRI_HI)) == NULL) { 19490 ipif_refrele(ipif); 19491 first_mp = mp; 19492 goto drop_pkt; 19493 } 19494 first_mp->b_datap->db_type = M_CTL; 19495 first_mp->b_wptr += sizeof (ipsec_info_t); 19496 /* ipsec_out_secure is B_FALSE now */ 19497 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 19498 io = (ipsec_out_t *)first_mp->b_rptr; 19499 io->ipsec_out_type = IPSEC_OUT; 19500 io->ipsec_out_len = sizeof (ipsec_out_t); 19501 io->ipsec_out_use_global_policy = B_TRUE; 19502 first_mp->b_cont = mp; 19503 mctl_present = B_TRUE; 19504 } 19505 if (attach_ill != NULL) { 19506 ASSERT(attach_ill == ipif->ipif_ill); 19507 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 19508 19509 /* 19510 * Check if we need an ire that will not be 19511 * looked up by anybody else i.e. HIDDEN. 19512 */ 19513 if (ill_is_probeonly(attach_ill)) { 19514 match_flags |= MATCH_IRE_MARK_HIDDEN; 19515 } 19516 io->ipsec_out_ill_index = 19517 attach_ill->ill_phyint->phyint_ifindex; 19518 io->ipsec_out_attach_if = B_TRUE; 19519 } else { 19520 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 19521 io->ipsec_out_ill_index = 19522 ipif->ipif_ill->ill_phyint->phyint_ifindex; 19523 } 19524 if (connp != NULL) { 19525 io->ipsec_out_multicast_loop = 19526 connp->conn_multicast_loop; 19527 io->ipsec_out_dontroute = connp->conn_dontroute; 19528 io->ipsec_out_zoneid = connp->conn_zoneid; 19529 } 19530 /* 19531 * If the application uses IP_MULTICAST_IF with 19532 * different logical addresses of the same ILL, we 19533 * need to make sure that the soruce address of 19534 * the packet matches the logical IP address used 19535 * in the option. We do it by initializing ipha_src 19536 * here. This should keep IPSEC also happy as 19537 * when we return from IPSEC processing, we don't 19538 * have to worry about getting the right address on 19539 * the packet. Thus it is sufficient to look for 19540 * IRE_CACHE using MATCH_IRE_ILL rathen than 19541 * MATCH_IRE_IPIF. 19542 * 19543 * NOTE : We need to do it for non-secure case also as 19544 * this might go out secure if there is a global policy 19545 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 19546 * address, the source should be initialized already and 19547 * hence we won't be initializing here. 19548 * 19549 * As we do not have the ire yet, it is possible that 19550 * we set the source address here and then later discover 19551 * that the ire implies the source address to be assigned 19552 * through the RTF_SETSRC flag. 19553 * In that case, the setsrc variable will remind us 19554 * that overwritting the source address by the one 19555 * of the RTF_SETSRC-flagged ire is allowed. 19556 */ 19557 if (ipha->ipha_src == INADDR_ANY && 19558 (connp == NULL || !connp->conn_unspec_src)) { 19559 ipha->ipha_src = ipif->ipif_src_addr; 19560 setsrc = RTF_SETSRC; 19561 } 19562 /* 19563 * Find an IRE which matches the destination and the outgoing 19564 * queue (i.e. the outgoing interface.) 19565 * For loopback use a unicast IP address for 19566 * the ire lookup. 19567 */ 19568 if (ipif->ipif_ill->ill_phyint->phyint_flags & 19569 PHYI_LOOPBACK) { 19570 dst = ipif->ipif_lcl_addr; 19571 } 19572 /* 19573 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 19574 * We don't need to lookup ire in ctable as the packet 19575 * needs to be sent to the destination through the specified 19576 * ill irrespective of ires in the cache table. 19577 */ 19578 ire = NULL; 19579 if (xmit_ill == NULL) { 19580 ire = ire_ctable_lookup(dst, 0, 0, ipif, 19581 zoneid, MBLK_GETLABEL(mp), match_flags); 19582 } 19583 19584 /* 19585 * refrele attach_ill as its not needed anymore. 19586 */ 19587 if (attach_ill != NULL) { 19588 ill_refrele(attach_ill); 19589 attach_ill = NULL; 19590 } 19591 19592 if (ire == NULL) { 19593 /* 19594 * Multicast loopback and multicast forwarding is 19595 * done in ip_wput_ire. 19596 * 19597 * Mark this packet to make it be delivered to 19598 * ip_wput_ire after the new ire has been 19599 * created. 19600 * 19601 * The call to ip_newroute_ipif takes into account 19602 * the setsrc reminder. In any case, we take care 19603 * of the RTF_MULTIRT flag. 19604 */ 19605 mp->b_prev = mp->b_next = NULL; 19606 if (xmit_ill == NULL || 19607 xmit_ill->ill_ipif_up_count > 0) { 19608 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 19609 setsrc | RTF_MULTIRT); 19610 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19611 "ip_wput_end: q %p (%S)", q, "noire"); 19612 } else { 19613 freemsg(first_mp); 19614 } 19615 ipif_refrele(ipif); 19616 if (xmit_ill != NULL) 19617 ill_refrele(xmit_ill); 19618 if (need_decref) 19619 CONN_DEC_REF(connp); 19620 return; 19621 } 19622 19623 ipif_refrele(ipif); 19624 ipif = NULL; 19625 ASSERT(xmit_ill == NULL); 19626 19627 /* 19628 * Honor the RTF_SETSRC flag for multicast packets, 19629 * if allowed by the setsrc reminder. 19630 */ 19631 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 19632 ipha->ipha_src = ire->ire_src_addr; 19633 } 19634 19635 /* 19636 * Unconditionally force the TTL to 1 for 19637 * multirouted multicast packets: 19638 * multirouted multicast should not cross 19639 * multicast routers. 19640 */ 19641 if (ire->ire_flags & RTF_MULTIRT) { 19642 if (ipha->ipha_ttl > 1) { 19643 ip2dbg(("ip_wput: forcing multicast " 19644 "multirt TTL to 1 (was %d), dst 0x%08x\n", 19645 ipha->ipha_ttl, ntohl(ire->ire_addr))); 19646 ipha->ipha_ttl = 1; 19647 } 19648 } 19649 } else { 19650 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19651 if ((ire != NULL) && (ire->ire_type & 19652 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 19653 ignore_dontroute = B_TRUE; 19654 ignore_nexthop = B_TRUE; 19655 } 19656 if (ire != NULL) { 19657 ire_refrele(ire); 19658 ire = NULL; 19659 } 19660 /* 19661 * Guard against coming in from arp in which case conn is NULL. 19662 * Also guard against non M_DATA with dontroute set but 19663 * destined to local, loopback or broadcast addresses. 19664 */ 19665 if (connp != NULL && connp->conn_dontroute && 19666 !ignore_dontroute) { 19667 dontroute: 19668 /* 19669 * Set TTL to 1 if SO_DONTROUTE is set to prevent 19670 * routing protocols from seeing false direct 19671 * connectivity. 19672 */ 19673 ipha->ipha_ttl = 1; 19674 /* 19675 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 19676 * along with SO_DONTROUTE, higher precedence is 19677 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 19678 */ 19679 if (connp->conn_xmit_if_ill == NULL) { 19680 /* If suitable ipif not found, drop packet */ 19681 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 19682 if (dst_ipif == NULL) { 19683 ip1dbg(("ip_wput: no route for " 19684 "dst using SO_DONTROUTE\n")); 19685 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19686 mp->b_prev = mp->b_next = NULL; 19687 if (first_mp == NULL) 19688 first_mp = mp; 19689 goto drop_pkt; 19690 } else { 19691 /* 19692 * If suitable ipif has been found, set 19693 * xmit_ill to the corresponding 19694 * ipif_ill because we'll be following 19695 * the IP_XMIT_IF logic. 19696 */ 19697 ASSERT(xmit_ill == NULL); 19698 xmit_ill = dst_ipif->ipif_ill; 19699 mutex_enter(&xmit_ill->ill_lock); 19700 if (!ILL_CAN_LOOKUP(xmit_ill)) { 19701 mutex_exit(&xmit_ill->ill_lock); 19702 xmit_ill = NULL; 19703 ipif_refrele(dst_ipif); 19704 ip1dbg(("ip_wput: no route for" 19705 " dst using" 19706 " SO_DONTROUTE\n")); 19707 BUMP_MIB(&ip_mib, 19708 ipOutNoRoutes); 19709 mp->b_prev = mp->b_next = NULL; 19710 if (first_mp == NULL) 19711 first_mp = mp; 19712 goto drop_pkt; 19713 } 19714 ill_refhold_locked(xmit_ill); 19715 mutex_exit(&xmit_ill->ill_lock); 19716 ipif_refrele(dst_ipif); 19717 } 19718 } 19719 19720 } 19721 /* 19722 * If we are bound to IPIF_NOFAILOVER address, look for 19723 * an IRE_CACHE matching the ill. 19724 */ 19725 send_from_ill: 19726 if (attach_ill != NULL) { 19727 ipif_t *attach_ipif; 19728 19729 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 19730 19731 /* 19732 * Check if we need an ire that will not be 19733 * looked up by anybody else i.e. HIDDEN. 19734 */ 19735 if (ill_is_probeonly(attach_ill)) { 19736 match_flags |= MATCH_IRE_MARK_HIDDEN; 19737 } 19738 19739 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 19740 if (attach_ipif == NULL) { 19741 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 19742 goto drop_pkt; 19743 } 19744 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 19745 zoneid, MBLK_GETLABEL(mp), match_flags); 19746 ipif_refrele(attach_ipif); 19747 } else if (xmit_ill != NULL || (connp != NULL && 19748 connp->conn_xmit_if_ill != NULL)) { 19749 /* 19750 * Mark this packet as originated locally 19751 */ 19752 mp->b_prev = mp->b_next = NULL; 19753 /* 19754 * xmit_ill could be NULL if SO_DONTROUTE 19755 * is also set. 19756 */ 19757 if (xmit_ill == NULL) { 19758 xmit_ill = conn_get_held_ill(connp, 19759 &connp->conn_xmit_if_ill, &err); 19760 if (err == ILL_LOOKUP_FAILED) { 19761 if (need_decref) 19762 CONN_DEC_REF(connp); 19763 freemsg(first_mp); 19764 return; 19765 } 19766 if (xmit_ill == NULL) { 19767 if (connp->conn_dontroute) 19768 goto dontroute; 19769 goto send_from_ill; 19770 } 19771 } 19772 /* 19773 * could be SO_DONTROUTE case also. 19774 * check at least one interface is UP as 19775 * spcified by this ILL, and then call 19776 * ip_newroute_ipif() 19777 */ 19778 if (xmit_ill->ill_ipif_up_count > 0) { 19779 ipif_t *ipif; 19780 19781 ipif = ipif_get_next_ipif(NULL, xmit_ill); 19782 if (ipif != NULL) { 19783 ip_newroute_ipif(q, first_mp, ipif, 19784 dst, connp, 0); 19785 ipif_refrele(ipif); 19786 ip1dbg(("ip_wput: ip_unicast_if\n")); 19787 } 19788 } else { 19789 freemsg(first_mp); 19790 } 19791 ill_refrele(xmit_ill); 19792 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19793 "ip_wput_end: q %p (%S)", q, "unicast_if"); 19794 if (need_decref) 19795 CONN_DEC_REF(connp); 19796 return; 19797 } else if (ip_nexthop || (connp != NULL && 19798 (connp->conn_nexthop_set)) && !ignore_nexthop) { 19799 if (!ip_nexthop) { 19800 ip_nexthop = B_TRUE; 19801 nexthop_addr = connp->conn_nexthop_v4; 19802 } 19803 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 19804 MATCH_IRE_GW; 19805 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 19806 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 19807 } else { 19808 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 19809 } 19810 if (!ire) { 19811 /* 19812 * Make sure we don't load spread if this 19813 * is IPIF_NOFAILOVER case. 19814 */ 19815 if ((attach_ill != NULL) || 19816 (ip_nexthop && !ignore_nexthop)) { 19817 if (mctl_present) { 19818 io = (ipsec_out_t *)first_mp->b_rptr; 19819 ASSERT(first_mp->b_datap->db_type == 19820 M_CTL); 19821 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19822 } else { 19823 ASSERT(mp == first_mp); 19824 first_mp = allocb( 19825 sizeof (ipsec_info_t), BPRI_HI); 19826 if (first_mp == NULL) { 19827 first_mp = mp; 19828 goto drop_pkt; 19829 } 19830 first_mp->b_datap->db_type = M_CTL; 19831 first_mp->b_wptr += 19832 sizeof (ipsec_info_t); 19833 /* ipsec_out_secure is B_FALSE now */ 19834 bzero(first_mp->b_rptr, 19835 sizeof (ipsec_info_t)); 19836 io = (ipsec_out_t *)first_mp->b_rptr; 19837 io->ipsec_out_type = IPSEC_OUT; 19838 io->ipsec_out_len = 19839 sizeof (ipsec_out_t); 19840 io->ipsec_out_use_global_policy = 19841 B_TRUE; 19842 first_mp->b_cont = mp; 19843 mctl_present = B_TRUE; 19844 } 19845 if (attach_ill != NULL) { 19846 io->ipsec_out_ill_index = attach_ill-> 19847 ill_phyint->phyint_ifindex; 19848 io->ipsec_out_attach_if = B_TRUE; 19849 } else { 19850 io->ipsec_out_ip_nexthop = ip_nexthop; 19851 io->ipsec_out_nexthop_addr = 19852 nexthop_addr; 19853 } 19854 } 19855 noirefound: 19856 /* 19857 * Mark this packet as having originated on 19858 * this machine. This will be noted in 19859 * ire_add_then_send, which needs to know 19860 * whether to run it back through ip_wput or 19861 * ip_rput following successful resolution. 19862 */ 19863 mp->b_prev = NULL; 19864 mp->b_next = NULL; 19865 ip_newroute(q, first_mp, dst, NULL, connp); 19866 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19867 "ip_wput_end: q %p (%S)", q, "newroute"); 19868 if (attach_ill != NULL) 19869 ill_refrele(attach_ill); 19870 if (xmit_ill != NULL) 19871 ill_refrele(xmit_ill); 19872 if (need_decref) 19873 CONN_DEC_REF(connp); 19874 return; 19875 } 19876 } 19877 19878 /* We now know where we are going with it. */ 19879 19880 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19881 "ip_wput_end: q %p (%S)", q, "end"); 19882 19883 /* 19884 * Check if the ire has the RTF_MULTIRT flag, inherited 19885 * from an IRE_OFFSUBNET ire entry in ip_newroute. 19886 */ 19887 if (ire->ire_flags & RTF_MULTIRT) { 19888 /* 19889 * Force the TTL of multirouted packets if required. 19890 * The TTL of such packets is bounded by the 19891 * ip_multirt_ttl ndd variable. 19892 */ 19893 if ((ip_multirt_ttl > 0) && 19894 (ipha->ipha_ttl > ip_multirt_ttl)) { 19895 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19896 "(was %d), dst 0x%08x\n", 19897 ip_multirt_ttl, ipha->ipha_ttl, 19898 ntohl(ire->ire_addr))); 19899 ipha->ipha_ttl = ip_multirt_ttl; 19900 } 19901 /* 19902 * At this point, we check to see if there are any pending 19903 * unresolved routes. ire_multirt_resolvable() 19904 * checks in O(n) that all IRE_OFFSUBNET ire 19905 * entries for the packet's destination and 19906 * flagged RTF_MULTIRT are currently resolved. 19907 * If some remain unresolved, we make a copy 19908 * of the current message. It will be used 19909 * to initiate additional route resolutions. 19910 */ 19911 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 19912 MBLK_GETLABEL(first_mp)); 19913 ip2dbg(("ip_wput[noirefound]: ire %p, " 19914 "multirt_need_resolve %d, first_mp %p\n", 19915 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19916 if (multirt_need_resolve) { 19917 copy_mp = copymsg(first_mp); 19918 if (copy_mp != NULL) { 19919 MULTIRT_DEBUG_TAG(copy_mp); 19920 } 19921 } 19922 } 19923 19924 ip_wput_ire(q, first_mp, ire, connp, caller); 19925 /* 19926 * Try to resolve another multiroute if 19927 * ire_multirt_resolvable() deemed it necessary. 19928 * At this point, we need to distinguish 19929 * multicasts from other packets. For multicasts, 19930 * we call ip_newroute_ipif() and request that both 19931 * multirouting and setsrc flags are checked. 19932 */ 19933 if (copy_mp != NULL) { 19934 if (CLASSD(dst)) { 19935 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 19936 if (ipif) { 19937 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 19938 RTF_SETSRC | RTF_MULTIRT); 19939 ipif_refrele(ipif); 19940 } else { 19941 MULTIRT_DEBUG_UNTAG(copy_mp); 19942 freemsg(copy_mp); 19943 copy_mp = NULL; 19944 } 19945 } else { 19946 ip_newroute(q, copy_mp, dst, NULL, connp); 19947 } 19948 } 19949 if (attach_ill != NULL) 19950 ill_refrele(attach_ill); 19951 if (xmit_ill != NULL) 19952 ill_refrele(xmit_ill); 19953 if (need_decref) 19954 CONN_DEC_REF(connp); 19955 return; 19956 19957 icmp_parameter_problem: 19958 /* could not have originated externally */ 19959 ASSERT(mp->b_prev == NULL); 19960 if (ip_hdr_complete(ipha, zoneid) == 0) { 19961 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19962 /* it's the IP header length that's in trouble */ 19963 icmp_param_problem(q, first_mp, 0); 19964 first_mp = NULL; 19965 } 19966 19967 drop_pkt: 19968 ip1dbg(("ip_wput: dropped packet\n")); 19969 if (ire != NULL) 19970 ire_refrele(ire); 19971 if (need_decref) 19972 CONN_DEC_REF(connp); 19973 freemsg(first_mp); 19974 if (attach_ill != NULL) 19975 ill_refrele(attach_ill); 19976 if (xmit_ill != NULL) 19977 ill_refrele(xmit_ill); 19978 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19979 "ip_wput_end: q %p (%S)", q, "droppkt"); 19980 } 19981 19982 void 19983 ip_wput(queue_t *q, mblk_t *mp) 19984 { 19985 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 19986 } 19987 19988 /* 19989 * 19990 * The following rules must be observed when accessing any ipif or ill 19991 * that has been cached in the conn. Typically conn_nofailover_ill, 19992 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 19993 * 19994 * Access: The ipif or ill pointed to from the conn can be accessed under 19995 * the protection of the conn_lock or after it has been refheld under the 19996 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 19997 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 19998 * The reason for this is that a concurrent unplumb could actually be 19999 * cleaning up these cached pointers by walking the conns and might have 20000 * finished cleaning up the conn in question. The macros check that an 20001 * unplumb has not yet started on the ipif or ill. 20002 * 20003 * Caching: An ipif or ill pointer may be cached in the conn only after 20004 * making sure that an unplumb has not started. So the caching is done 20005 * while holding both the conn_lock and the ill_lock and after using the 20006 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 20007 * flag before starting the cleanup of conns. 20008 * 20009 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 20010 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 20011 * or a reference to the ipif or a reference to an ire that references the 20012 * ipif. An ipif does not change its ill except for failover/failback. Since 20013 * failover/failback happens only after bringing down the ipif and making sure 20014 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 20015 * the above holds. 20016 */ 20017 ipif_t * 20018 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 20019 { 20020 ipif_t *ipif; 20021 ill_t *ill; 20022 20023 *err = 0; 20024 rw_enter(&ill_g_lock, RW_READER); 20025 mutex_enter(&connp->conn_lock); 20026 ipif = *ipifp; 20027 if (ipif != NULL) { 20028 ill = ipif->ipif_ill; 20029 mutex_enter(&ill->ill_lock); 20030 if (IPIF_CAN_LOOKUP(ipif)) { 20031 ipif_refhold_locked(ipif); 20032 mutex_exit(&ill->ill_lock); 20033 mutex_exit(&connp->conn_lock); 20034 rw_exit(&ill_g_lock); 20035 return (ipif); 20036 } else { 20037 *err = IPIF_LOOKUP_FAILED; 20038 } 20039 mutex_exit(&ill->ill_lock); 20040 } 20041 mutex_exit(&connp->conn_lock); 20042 rw_exit(&ill_g_lock); 20043 return (NULL); 20044 } 20045 20046 ill_t * 20047 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 20048 { 20049 ill_t *ill; 20050 20051 *err = 0; 20052 mutex_enter(&connp->conn_lock); 20053 ill = *illp; 20054 if (ill != NULL) { 20055 mutex_enter(&ill->ill_lock); 20056 if (ILL_CAN_LOOKUP(ill)) { 20057 ill_refhold_locked(ill); 20058 mutex_exit(&ill->ill_lock); 20059 mutex_exit(&connp->conn_lock); 20060 return (ill); 20061 } else { 20062 *err = ILL_LOOKUP_FAILED; 20063 } 20064 mutex_exit(&ill->ill_lock); 20065 } 20066 mutex_exit(&connp->conn_lock); 20067 return (NULL); 20068 } 20069 20070 static int 20071 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 20072 { 20073 ill_t *ill; 20074 20075 ill = ipif->ipif_ill; 20076 mutex_enter(&connp->conn_lock); 20077 mutex_enter(&ill->ill_lock); 20078 if (IPIF_CAN_LOOKUP(ipif)) { 20079 *ipifp = ipif; 20080 mutex_exit(&ill->ill_lock); 20081 mutex_exit(&connp->conn_lock); 20082 return (0); 20083 } 20084 mutex_exit(&ill->ill_lock); 20085 mutex_exit(&connp->conn_lock); 20086 return (IPIF_LOOKUP_FAILED); 20087 } 20088 20089 /* 20090 * This is called if the outbound datagram needs fragmentation. 20091 * 20092 * NOTE : This function does not ire_refrele the ire argument passed in. 20093 */ 20094 static void 20095 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire) 20096 { 20097 ipha_t *ipha; 20098 mblk_t *mp; 20099 uint32_t v_hlen_tos_len; 20100 uint32_t max_frag; 20101 uint32_t frag_flag; 20102 boolean_t dont_use; 20103 20104 if (ipsec_mp->b_datap->db_type == M_CTL) { 20105 mp = ipsec_mp->b_cont; 20106 } else { 20107 mp = ipsec_mp; 20108 } 20109 20110 ipha = (ipha_t *)mp->b_rptr; 20111 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20112 20113 #ifdef _BIG_ENDIAN 20114 #define V_HLEN (v_hlen_tos_len >> 24) 20115 #define LENGTH (v_hlen_tos_len & 0xFFFF) 20116 #else 20117 #define V_HLEN (v_hlen_tos_len & 0xFF) 20118 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 20119 #endif 20120 20121 #ifndef SPEED_BEFORE_SAFETY 20122 /* 20123 * Check that ipha_length is consistent with 20124 * the mblk length 20125 */ 20126 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 20127 ip0dbg(("Packet length mismatch: %d, %ld\n", 20128 LENGTH, msgdsize(mp))); 20129 freemsg(ipsec_mp); 20130 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20131 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 20132 "packet length mismatch"); 20133 return; 20134 } 20135 #endif 20136 /* 20137 * Don't use frag_flag if pre-built packet or source 20138 * routed or if multicast (since multicast packets do not solicit 20139 * ICMP "packet too big" messages). Get the values of 20140 * max_frag and frag_flag atomically by acquiring the 20141 * ire_lock. 20142 */ 20143 mutex_enter(&ire->ire_lock); 20144 max_frag = ire->ire_max_frag; 20145 frag_flag = ire->ire_frag_flag; 20146 mutex_exit(&ire->ire_lock); 20147 20148 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 20149 (V_HLEN != IP_SIMPLE_HDR_VERSION && 20150 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 20151 20152 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 20153 (dont_use ? 0 : frag_flag)); 20154 } 20155 20156 /* 20157 * Used for deciding the MSS size for the upper layer. Thus 20158 * we need to check the outbound policy values in the conn. 20159 */ 20160 int 20161 conn_ipsec_length(conn_t *connp) 20162 { 20163 ipsec_latch_t *ipl; 20164 20165 ipl = connp->conn_latch; 20166 if (ipl == NULL) 20167 return (0); 20168 20169 if (ipl->ipl_out_policy == NULL) 20170 return (0); 20171 20172 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 20173 } 20174 20175 /* 20176 * Returns an estimate of the IPSEC headers size. This is used if 20177 * we don't want to call into IPSEC to get the exact size. 20178 */ 20179 int 20180 ipsec_out_extra_length(mblk_t *ipsec_mp) 20181 { 20182 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 20183 ipsec_action_t *a; 20184 20185 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20186 if (!io->ipsec_out_secure) 20187 return (0); 20188 20189 a = io->ipsec_out_act; 20190 20191 if (a == NULL) { 20192 ASSERT(io->ipsec_out_policy != NULL); 20193 a = io->ipsec_out_policy->ipsp_act; 20194 } 20195 ASSERT(a != NULL); 20196 20197 return (a->ipa_ovhd); 20198 } 20199 20200 /* 20201 * Returns an estimate of the IPSEC headers size. This is used if 20202 * we don't want to call into IPSEC to get the exact size. 20203 */ 20204 int 20205 ipsec_in_extra_length(mblk_t *ipsec_mp) 20206 { 20207 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 20208 ipsec_action_t *a; 20209 20210 ASSERT(ii->ipsec_in_type == IPSEC_IN); 20211 20212 a = ii->ipsec_in_action; 20213 return (a == NULL ? 0 : a->ipa_ovhd); 20214 } 20215 20216 /* 20217 * If there are any source route options, return the true final 20218 * destination. Otherwise, return the destination. 20219 */ 20220 ipaddr_t 20221 ip_get_dst(ipha_t *ipha) 20222 { 20223 ipoptp_t opts; 20224 uchar_t *opt; 20225 uint8_t optval; 20226 uint8_t optlen; 20227 ipaddr_t dst; 20228 uint32_t off; 20229 20230 dst = ipha->ipha_dst; 20231 20232 if (IS_SIMPLE_IPH(ipha)) 20233 return (dst); 20234 20235 for (optval = ipoptp_first(&opts, ipha); 20236 optval != IPOPT_EOL; 20237 optval = ipoptp_next(&opts)) { 20238 opt = opts.ipoptp_cur; 20239 optlen = opts.ipoptp_len; 20240 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20241 switch (optval) { 20242 case IPOPT_SSRR: 20243 case IPOPT_LSRR: 20244 off = opt[IPOPT_OFFSET]; 20245 /* 20246 * If one of the conditions is true, it means 20247 * end of options and dst already has the right 20248 * value. 20249 */ 20250 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 20251 off = optlen - IP_ADDR_LEN; 20252 bcopy(&opt[off], &dst, IP_ADDR_LEN); 20253 } 20254 return (dst); 20255 default: 20256 break; 20257 } 20258 } 20259 20260 return (dst); 20261 } 20262 20263 mblk_t * 20264 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 20265 conn_t *connp, boolean_t unspec_src) 20266 { 20267 ipsec_out_t *io; 20268 mblk_t *first_mp; 20269 boolean_t policy_present; 20270 20271 first_mp = mp; 20272 if (mp->b_datap->db_type == M_CTL) { 20273 io = (ipsec_out_t *)first_mp->b_rptr; 20274 /* 20275 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 20276 * 20277 * 1) There is per-socket policy (including cached global 20278 * policy). 20279 * 2) There is no per-socket policy, but it is 20280 * a multicast packet that needs to go out 20281 * on a specific interface. This is the case 20282 * where (ip_wput and ip_wput_multicast) attaches 20283 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 20284 * 20285 * In case (2) we check with global policy to 20286 * see if there is a match and set the ill_index 20287 * appropriately so that we can lookup the ire 20288 * properly in ip_wput_ipsec_out. 20289 */ 20290 20291 /* 20292 * ipsec_out_use_global_policy is set to B_FALSE 20293 * in ipsec_in_to_out(). Refer to that function for 20294 * details. 20295 */ 20296 if ((io->ipsec_out_latch == NULL) && 20297 (io->ipsec_out_use_global_policy)) { 20298 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 20299 ire, connp, unspec_src)); 20300 } 20301 if (!io->ipsec_out_secure) { 20302 /* 20303 * If this is not a secure packet, drop 20304 * the IPSEC_OUT mp and treat it as a clear 20305 * packet. This happens when we are sending 20306 * a ICMP reply back to a clear packet. See 20307 * ipsec_in_to_out() for details. 20308 */ 20309 mp = first_mp->b_cont; 20310 freeb(first_mp); 20311 } 20312 return (mp); 20313 } 20314 /* 20315 * See whether we need to attach a global policy here. We 20316 * don't depend on the conn (as it could be null) for deciding 20317 * what policy this datagram should go through because it 20318 * should have happened in ip_wput if there was some 20319 * policy. This normally happens for connections which are not 20320 * fully bound preventing us from caching policies in 20321 * ip_bind. Packets coming from the TCP listener/global queue 20322 * - which are non-hard_bound - could also be affected by 20323 * applying policy here. 20324 * 20325 * If this packet is coming from tcp global queue or listener, 20326 * we will be applying policy here. This may not be *right* 20327 * if these packets are coming from the detached connection as 20328 * it could have gone in clear before. This happens only if a 20329 * TCP connection started when there is no policy and somebody 20330 * added policy before it became detached. Thus packets of the 20331 * detached connection could go out secure and the other end 20332 * would drop it because it will be expecting in clear. The 20333 * converse is not true i.e if somebody starts a TCP 20334 * connection and deletes the policy, all the packets will 20335 * still go out with the policy that existed before deleting 20336 * because ip_unbind sends up policy information which is used 20337 * by TCP on subsequent ip_wputs. The right solution is to fix 20338 * TCP to attach a dummy IPSEC_OUT and set 20339 * ipsec_out_use_global_policy to B_FALSE. As this might 20340 * affect performance for normal cases, we are not doing it. 20341 * Thus, set policy before starting any TCP connections. 20342 * 20343 * NOTE - We might apply policy even for a hard bound connection 20344 * - for which we cached policy in ip_bind - if somebody added 20345 * global policy after we inherited the policy in ip_bind. 20346 * This means that the packets that were going out in clear 20347 * previously would start going secure and hence get dropped 20348 * on the other side. To fix this, TCP attaches a dummy 20349 * ipsec_out and make sure that we don't apply global policy. 20350 */ 20351 if (ipha != NULL) 20352 policy_present = ipsec_outbound_v4_policy_present; 20353 else 20354 policy_present = ipsec_outbound_v6_policy_present; 20355 if (!policy_present) 20356 return (mp); 20357 20358 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src)); 20359 } 20360 20361 ire_t * 20362 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 20363 { 20364 ipaddr_t addr; 20365 ire_t *save_ire; 20366 irb_t *irb; 20367 ill_group_t *illgrp; 20368 int err; 20369 20370 save_ire = ire; 20371 addr = ire->ire_addr; 20372 20373 ASSERT(ire->ire_type == IRE_BROADCAST); 20374 20375 illgrp = connp->conn_outgoing_ill->ill_group; 20376 if (illgrp == NULL) { 20377 *conn_outgoing_ill = conn_get_held_ill(connp, 20378 &connp->conn_outgoing_ill, &err); 20379 if (err == ILL_LOOKUP_FAILED) { 20380 ire_refrele(save_ire); 20381 return (NULL); 20382 } 20383 return (save_ire); 20384 } 20385 /* 20386 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 20387 * If it is part of the group, we need to send on the ire 20388 * that has been cleared of IRE_MARK_NORECV and that belongs 20389 * to this group. This is okay as IP_BOUND_IF really means 20390 * any ill in the group. We depend on the fact that the 20391 * first ire in the group is always cleared of IRE_MARK_NORECV 20392 * if such an ire exists. This is possible only if you have 20393 * at least one ill in the group that has not failed. 20394 * 20395 * First get to the ire that matches the address and group. 20396 * 20397 * We don't look for an ire with a matching zoneid because a given zone 20398 * won't always have broadcast ires on all ills in the group. 20399 */ 20400 irb = ire->ire_bucket; 20401 rw_enter(&irb->irb_lock, RW_READER); 20402 if (ire->ire_marks & IRE_MARK_NORECV) { 20403 /* 20404 * If the current zone only has an ire broadcast for this 20405 * address marked NORECV, the ire we want is ahead in the 20406 * bucket, so we look it up deliberately ignoring the zoneid. 20407 */ 20408 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 20409 if (ire->ire_addr != addr) 20410 continue; 20411 /* skip over deleted ires */ 20412 if (ire->ire_marks & IRE_MARK_CONDEMNED) 20413 continue; 20414 } 20415 } 20416 while (ire != NULL) { 20417 /* 20418 * If a new interface is coming up, we could end up 20419 * seeing the loopback ire and the non-loopback ire 20420 * may not have been added yet. So check for ire_stq 20421 */ 20422 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 20423 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 20424 break; 20425 } 20426 ire = ire->ire_next; 20427 } 20428 if (ire != NULL && ire->ire_addr == addr && 20429 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 20430 IRE_REFHOLD(ire); 20431 rw_exit(&irb->irb_lock); 20432 ire_refrele(save_ire); 20433 *conn_outgoing_ill = ire_to_ill(ire); 20434 /* 20435 * Refhold the ill to make the conn_outgoing_ill 20436 * independent of the ire. ip_wput_ire goes in a loop 20437 * and may refrele the ire. Since we have an ire at this 20438 * point we don't need to use ILL_CAN_LOOKUP on the ill. 20439 */ 20440 ill_refhold(*conn_outgoing_ill); 20441 return (ire); 20442 } 20443 rw_exit(&irb->irb_lock); 20444 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 20445 /* 20446 * If we can't find a suitable ire, return the original ire. 20447 */ 20448 return (save_ire); 20449 } 20450 20451 /* 20452 * This function does the ire_refrele of the ire passed in as the 20453 * argument. As this function looks up more ires i.e broadcast ires, 20454 * it needs to REFRELE them. Currently, for simplicity we don't 20455 * differentiate the one passed in and looked up here. We always 20456 * REFRELE. 20457 * IPQoS Notes: 20458 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 20459 * IPSec packets are done in ipsec_out_process. 20460 * 20461 */ 20462 void 20463 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller) 20464 { 20465 ipha_t *ipha; 20466 #define rptr ((uchar_t *)ipha) 20467 mblk_t *mp1; 20468 queue_t *stq; 20469 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 20470 uint32_t v_hlen_tos_len; 20471 uint32_t ttl_protocol; 20472 ipaddr_t src; 20473 ipaddr_t dst; 20474 uint32_t cksum; 20475 ipaddr_t orig_src; 20476 ire_t *ire1; 20477 mblk_t *next_mp; 20478 uint_t hlen; 20479 uint16_t *up; 20480 uint32_t max_frag = ire->ire_max_frag; 20481 ill_t *ill = ire_to_ill(ire); 20482 int clusterwide; 20483 uint16_t ip_hdr_included; /* IP header included by ULP? */ 20484 int ipsec_len; 20485 mblk_t *first_mp; 20486 ipsec_out_t *io; 20487 boolean_t conn_dontroute; /* conn value for multicast */ 20488 boolean_t conn_multicast_loop; /* conn value for multicast */ 20489 boolean_t multicast_forward; /* Should we forward ? */ 20490 boolean_t unspec_src; 20491 ill_t *conn_outgoing_ill = NULL; 20492 ill_t *ire_ill; 20493 ill_t *ire1_ill; 20494 uint32_t ill_index = 0; 20495 boolean_t multirt_send = B_FALSE; 20496 int err; 20497 zoneid_t zoneid; 20498 20499 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 20500 "ip_wput_ire_start: q %p", q); 20501 20502 multicast_forward = B_FALSE; 20503 unspec_src = (connp != NULL && connp->conn_unspec_src); 20504 20505 if (ire->ire_flags & RTF_MULTIRT) { 20506 /* 20507 * Multirouting case. The bucket where ire is stored 20508 * probably holds other RTF_MULTIRT flagged ire 20509 * to the destination. In this call to ip_wput_ire, 20510 * we attempt to send the packet through all 20511 * those ires. Thus, we first ensure that ire is the 20512 * first RTF_MULTIRT ire in the bucket, 20513 * before walking the ire list. 20514 */ 20515 ire_t *first_ire; 20516 irb_t *irb = ire->ire_bucket; 20517 ASSERT(irb != NULL); 20518 20519 /* Make sure we do not omit any multiroute ire. */ 20520 IRB_REFHOLD(irb); 20521 for (first_ire = irb->irb_ire; 20522 first_ire != NULL; 20523 first_ire = first_ire->ire_next) { 20524 if ((first_ire->ire_flags & RTF_MULTIRT) && 20525 (first_ire->ire_addr == ire->ire_addr) && 20526 !(first_ire->ire_marks & 20527 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 20528 break; 20529 } 20530 20531 if ((first_ire != NULL) && (first_ire != ire)) { 20532 IRE_REFHOLD(first_ire); 20533 ire_refrele(ire); 20534 ire = first_ire; 20535 ill = ire_to_ill(ire); 20536 } 20537 IRB_REFRELE(irb); 20538 } 20539 20540 /* 20541 * conn_outgoing_ill is used only in the broadcast loop. 20542 * for performance we don't grab the mutexs in the fastpath 20543 */ 20544 if ((connp != NULL) && 20545 (connp->conn_xmit_if_ill == NULL) && 20546 (ire->ire_type == IRE_BROADCAST) && 20547 ((connp->conn_nofailover_ill != NULL) || 20548 (connp->conn_outgoing_ill != NULL))) { 20549 /* 20550 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 20551 * option. So, see if this endpoint is bound to a 20552 * IPIF_NOFAILOVER address. If so, honor it. This implies 20553 * that if the interface is failed, we will still send 20554 * the packet on the same ill which is what we want. 20555 */ 20556 conn_outgoing_ill = conn_get_held_ill(connp, 20557 &connp->conn_nofailover_ill, &err); 20558 if (err == ILL_LOOKUP_FAILED) { 20559 ire_refrele(ire); 20560 freemsg(mp); 20561 return; 20562 } 20563 if (conn_outgoing_ill == NULL) { 20564 /* 20565 * Choose a good ill in the group to send the 20566 * packets on. 20567 */ 20568 ire = conn_set_outgoing_ill(connp, ire, 20569 &conn_outgoing_ill); 20570 if (ire == NULL) { 20571 freemsg(mp); 20572 return; 20573 } 20574 } 20575 } 20576 20577 if (mp->b_datap->db_type != M_CTL) { 20578 ipha = (ipha_t *)mp->b_rptr; 20579 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 20580 } else { 20581 io = (ipsec_out_t *)mp->b_rptr; 20582 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20583 zoneid = io->ipsec_out_zoneid; 20584 ASSERT(zoneid != ALL_ZONES); 20585 ipha = (ipha_t *)mp->b_cont->b_rptr; 20586 dst = ipha->ipha_dst; 20587 /* 20588 * For the multicast case, ipsec_out carries conn_dontroute and 20589 * conn_multicast_loop as conn may not be available here. We 20590 * need this for multicast loopback and forwarding which is done 20591 * later in the code. 20592 */ 20593 if (CLASSD(dst)) { 20594 conn_dontroute = io->ipsec_out_dontroute; 20595 conn_multicast_loop = io->ipsec_out_multicast_loop; 20596 /* 20597 * If conn_dontroute is not set or conn_multicast_loop 20598 * is set, we need to do forwarding/loopback. For 20599 * datagrams from ip_wput_multicast, conn_dontroute is 20600 * set to B_TRUE and conn_multicast_loop is set to 20601 * B_FALSE so that we neither do forwarding nor 20602 * loopback. 20603 */ 20604 if (!conn_dontroute || conn_multicast_loop) 20605 multicast_forward = B_TRUE; 20606 } 20607 } 20608 20609 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 20610 ire->ire_zoneid != ALL_ZONES) { 20611 /* 20612 * When a zone sends a packet to another zone, we try to deliver 20613 * the packet under the same conditions as if the destination 20614 * was a real node on the network. To do so, we look for a 20615 * matching route in the forwarding table. 20616 * RTF_REJECT and RTF_BLACKHOLE are handled just like 20617 * ip_newroute() does. 20618 */ 20619 ire_t *src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 20620 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 20621 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 20622 if (src_ire != NULL && 20623 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) { 20624 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 20625 ipha->ipha_src = src_ire->ire_src_addr; 20626 ire_refrele(src_ire); 20627 } else { 20628 ire_refrele(ire); 20629 if (conn_outgoing_ill != NULL) 20630 ill_refrele(conn_outgoing_ill); 20631 BUMP_MIB(&ip_mib, ipOutNoRoutes); 20632 if (src_ire != NULL) { 20633 if (src_ire->ire_flags & RTF_BLACKHOLE) { 20634 ire_refrele(src_ire); 20635 freemsg(mp); 20636 return; 20637 } 20638 ire_refrele(src_ire); 20639 } 20640 if (ip_hdr_complete(ipha, zoneid)) { 20641 /* Failed */ 20642 freemsg(mp); 20643 return; 20644 } 20645 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 20646 return; 20647 } 20648 } 20649 20650 if (mp->b_datap->db_type == M_CTL || 20651 ipsec_outbound_v4_policy_present) { 20652 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 20653 unspec_src); 20654 if (mp == NULL) { 20655 ire_refrele(ire); 20656 if (conn_outgoing_ill != NULL) 20657 ill_refrele(conn_outgoing_ill); 20658 return; 20659 } 20660 } 20661 20662 first_mp = mp; 20663 ipsec_len = 0; 20664 20665 if (first_mp->b_datap->db_type == M_CTL) { 20666 io = (ipsec_out_t *)first_mp->b_rptr; 20667 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20668 mp = first_mp->b_cont; 20669 ipsec_len = ipsec_out_extra_length(first_mp); 20670 ASSERT(ipsec_len >= 0); 20671 zoneid = io->ipsec_out_zoneid; 20672 ASSERT(zoneid != ALL_ZONES); 20673 20674 /* 20675 * Drop M_CTL here if IPsec processing is not needed. 20676 * (Non-IPsec use of M_CTL extracted any information it 20677 * needed above). 20678 */ 20679 if (ipsec_len == 0) { 20680 freeb(first_mp); 20681 first_mp = mp; 20682 } 20683 } 20684 20685 /* 20686 * Fast path for ip_wput_ire 20687 */ 20688 20689 ipha = (ipha_t *)mp->b_rptr; 20690 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20691 dst = ipha->ipha_dst; 20692 20693 /* 20694 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 20695 * if the socket is a SOCK_RAW type. The transport checksum should 20696 * be provided in the pre-built packet, so we don't need to compute it. 20697 * Also, other application set flags, like DF, should not be altered. 20698 * Other transport MUST pass down zero. 20699 */ 20700 ip_hdr_included = ipha->ipha_ident; 20701 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20702 20703 if (CLASSD(dst)) { 20704 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 20705 ntohl(dst), 20706 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 20707 ntohl(ire->ire_addr))); 20708 } 20709 20710 /* Macros to extract header fields from data already in registers */ 20711 #ifdef _BIG_ENDIAN 20712 #define V_HLEN (v_hlen_tos_len >> 24) 20713 #define LENGTH (v_hlen_tos_len & 0xFFFF) 20714 #define PROTO (ttl_protocol & 0xFF) 20715 #else 20716 #define V_HLEN (v_hlen_tos_len & 0xFF) 20717 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 20718 #define PROTO (ttl_protocol >> 8) 20719 #endif 20720 20721 20722 orig_src = src = ipha->ipha_src; 20723 /* (The loop back to "another" is explained down below.) */ 20724 another:; 20725 /* 20726 * Assign an ident value for this packet. We assign idents on 20727 * a per destination basis out of the IRE. There could be 20728 * other threads targeting the same destination, so we have to 20729 * arrange for a atomic increment. Note that we use a 32-bit 20730 * atomic add because it has better performance than its 20731 * 16-bit sibling. 20732 * 20733 * If running in cluster mode and if the source address 20734 * belongs to a replicated service then vector through 20735 * cl_inet_ipident vector to allocate ip identifier 20736 * NOTE: This is a contract private interface with the 20737 * clustering group. 20738 */ 20739 clusterwide = 0; 20740 if (cl_inet_ipident) { 20741 ASSERT(cl_inet_isclusterwide); 20742 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20743 AF_INET, (uint8_t *)(uintptr_t)src)) { 20744 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 20745 AF_INET, (uint8_t *)(uintptr_t)src, 20746 (uint8_t *)(uintptr_t)dst); 20747 clusterwide = 1; 20748 } 20749 } 20750 if (!clusterwide) { 20751 ipha->ipha_ident = 20752 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 20753 } 20754 20755 #ifndef _BIG_ENDIAN 20756 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20757 #endif 20758 20759 /* 20760 * Set source address unless sent on an ill or conn_unspec_src is set. 20761 * This is needed to obey conn_unspec_src when packets go through 20762 * ip_newroute + arp. 20763 * Assumes ip_newroute{,_multi} sets the source address as well. 20764 */ 20765 if (src == INADDR_ANY && !unspec_src) { 20766 /* 20767 * Assign the appropriate source address from the IRE if none 20768 * was specified. 20769 */ 20770 ASSERT(ire->ire_ipversion == IPV4_VERSION); 20771 20772 /* 20773 * With IP multipathing, broadcast packets are sent on the ire 20774 * that has been cleared of IRE_MARK_NORECV and that belongs to 20775 * the group. However, this ire might not be in the same zone so 20776 * we can't always use its source address. We look for a 20777 * broadcast ire in the same group and in the right zone. 20778 */ 20779 if (ire->ire_type == IRE_BROADCAST && 20780 ire->ire_zoneid != zoneid) { 20781 ire_t *src_ire = ire_ctable_lookup(dst, 0, 20782 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 20783 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 20784 if (src_ire != NULL) { 20785 src = src_ire->ire_src_addr; 20786 ire_refrele(src_ire); 20787 } else { 20788 ire_refrele(ire); 20789 if (conn_outgoing_ill != NULL) 20790 ill_refrele(conn_outgoing_ill); 20791 freemsg(first_mp); 20792 BUMP_MIB(&ip_mib, ipOutDiscards); 20793 return; 20794 } 20795 } else { 20796 src = ire->ire_src_addr; 20797 } 20798 20799 if (connp == NULL) { 20800 ip1dbg(("ip_wput_ire: no connp and no src " 20801 "address for dst 0x%x, using src 0x%x\n", 20802 ntohl(dst), 20803 ntohl(src))); 20804 } 20805 ipha->ipha_src = src; 20806 } 20807 stq = ire->ire_stq; 20808 20809 /* 20810 * We only allow ire chains for broadcasts since there will 20811 * be multiple IRE_CACHE entries for the same multicast 20812 * address (one per ipif). 20813 */ 20814 next_mp = NULL; 20815 20816 /* broadcast packet */ 20817 if (ire->ire_type == IRE_BROADCAST) 20818 goto broadcast; 20819 20820 /* loopback ? */ 20821 if (stq == NULL) 20822 goto nullstq; 20823 20824 /* The ill_index for outbound ILL */ 20825 ill_index = Q_TO_INDEX(stq); 20826 20827 BUMP_MIB(&ip_mib, ipOutRequests); 20828 ttl_protocol = ((uint16_t *)ipha)[4]; 20829 20830 /* pseudo checksum (do it in parts for IP header checksum) */ 20831 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20832 20833 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 20834 queue_t *dev_q = stq->q_next; 20835 20836 /* flow controlled */ 20837 if ((dev_q->q_next || dev_q->q_first) && 20838 !canput(dev_q)) 20839 goto blocked; 20840 if ((PROTO == IPPROTO_UDP) && 20841 (ip_hdr_included != IP_HDR_INCLUDED)) { 20842 hlen = (V_HLEN & 0xF) << 2; 20843 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 20844 if (*up != 0) { 20845 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 20846 hlen, LENGTH, max_frag, ipsec_len, cksum); 20847 /* Software checksum? */ 20848 if (DB_CKSUMFLAGS(mp) == 0) { 20849 IP_STAT(ip_out_sw_cksum); 20850 IP_STAT_UPDATE( 20851 ip_udp_out_sw_cksum_bytes, 20852 LENGTH - hlen); 20853 } 20854 } 20855 } 20856 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 20857 hlen = (V_HLEN & 0xF) << 2; 20858 if (PROTO == IPPROTO_TCP) { 20859 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 20860 /* 20861 * The packet header is processed once and for all, even 20862 * in the multirouting case. We disable hardware 20863 * checksum if the packet is multirouted, as it will be 20864 * replicated via several interfaces, and not all of 20865 * them may have this capability. 20866 */ 20867 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 20868 LENGTH, max_frag, ipsec_len, cksum); 20869 /* Software checksum? */ 20870 if (DB_CKSUMFLAGS(mp) == 0) { 20871 IP_STAT(ip_out_sw_cksum); 20872 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 20873 LENGTH - hlen); 20874 } 20875 } else { 20876 sctp_hdr_t *sctph; 20877 20878 ASSERT(PROTO == IPPROTO_SCTP); 20879 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 20880 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 20881 /* 20882 * Zero out the checksum field to ensure proper 20883 * checksum calculation. 20884 */ 20885 sctph->sh_chksum = 0; 20886 #ifdef DEBUG 20887 if (!skip_sctp_cksum) 20888 #endif 20889 sctph->sh_chksum = sctp_cksum(mp, hlen); 20890 } 20891 } 20892 20893 /* 20894 * If this is a multicast packet and originated from ip_wput 20895 * we need to do loopback and forwarding checks. If it comes 20896 * from ip_wput_multicast, we SHOULD not do this. 20897 */ 20898 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 20899 20900 /* checksum */ 20901 cksum += ttl_protocol; 20902 20903 /* fragment the packet */ 20904 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 20905 goto fragmentit; 20906 /* 20907 * Don't use frag_flag if packet is pre-built or source 20908 * routed or if multicast (since multicast packets do 20909 * not solicit ICMP "packet too big" messages). 20910 */ 20911 if ((ip_hdr_included != IP_HDR_INCLUDED) && 20912 (V_HLEN == IP_SIMPLE_HDR_VERSION || 20913 !ip_source_route_included(ipha)) && 20914 !CLASSD(ipha->ipha_dst)) 20915 ipha->ipha_fragment_offset_and_flags |= 20916 htons(ire->ire_frag_flag); 20917 20918 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 20919 /* calculate IP header checksum */ 20920 cksum += ipha->ipha_ident; 20921 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 20922 cksum += ipha->ipha_fragment_offset_and_flags; 20923 20924 /* IP options present */ 20925 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 20926 if (hlen) 20927 goto checksumoptions; 20928 20929 /* calculate hdr checksum */ 20930 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 20931 cksum = ~(cksum + (cksum >> 16)); 20932 ipha->ipha_hdr_checksum = (uint16_t)cksum; 20933 } 20934 if (ipsec_len != 0) { 20935 /* 20936 * We will do the rest of the processing after 20937 * we come back from IPSEC in ip_wput_ipsec_out(). 20938 */ 20939 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 20940 20941 io = (ipsec_out_t *)first_mp->b_rptr; 20942 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 20943 ill_phyint->phyint_ifindex; 20944 20945 ipsec_out_process(q, first_mp, ire, ill_index); 20946 ire_refrele(ire); 20947 if (conn_outgoing_ill != NULL) 20948 ill_refrele(conn_outgoing_ill); 20949 return; 20950 } 20951 20952 /* 20953 * In most cases, the emission loop below is entered only 20954 * once. Only in the case where the ire holds the 20955 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 20956 * flagged ires in the bucket, and send the packet 20957 * through all crossed RTF_MULTIRT routes. 20958 */ 20959 if (ire->ire_flags & RTF_MULTIRT) { 20960 multirt_send = B_TRUE; 20961 } 20962 do { 20963 if (multirt_send) { 20964 irb_t *irb; 20965 /* 20966 * We are in a multiple send case, need to get 20967 * the next ire and make a duplicate of the packet. 20968 * ire1 holds here the next ire to process in the 20969 * bucket. If multirouting is expected, 20970 * any non-RTF_MULTIRT ire that has the 20971 * right destination address is ignored. 20972 */ 20973 irb = ire->ire_bucket; 20974 ASSERT(irb != NULL); 20975 20976 IRB_REFHOLD(irb); 20977 for (ire1 = ire->ire_next; 20978 ire1 != NULL; 20979 ire1 = ire1->ire_next) { 20980 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 20981 continue; 20982 if (ire1->ire_addr != ire->ire_addr) 20983 continue; 20984 if (ire1->ire_marks & 20985 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 20986 continue; 20987 20988 /* Got one */ 20989 IRE_REFHOLD(ire1); 20990 break; 20991 } 20992 IRB_REFRELE(irb); 20993 20994 if (ire1 != NULL) { 20995 next_mp = copyb(mp); 20996 if ((next_mp == NULL) || 20997 ((mp->b_cont != NULL) && 20998 ((next_mp->b_cont = 20999 dupmsg(mp->b_cont)) == NULL))) { 21000 freemsg(next_mp); 21001 next_mp = NULL; 21002 ire_refrele(ire1); 21003 ire1 = NULL; 21004 } 21005 } 21006 21007 /* Last multiroute ire; don't loop anymore. */ 21008 if (ire1 == NULL) { 21009 multirt_send = B_FALSE; 21010 } 21011 } 21012 mp = ip_wput_attach_llhdr(mp, ire, IPP_LOCAL_OUT, ill_index); 21013 if (mp == NULL) { 21014 BUMP_MIB(&ip_mib, ipOutDiscards); 21015 ip2dbg(("ip_wput_ire: fastpath wput pkt dropped "\ 21016 "during IPPF processing\n")); 21017 ire_refrele(ire); 21018 if (next_mp != NULL) { 21019 freemsg(next_mp); 21020 ire_refrele(ire1); 21021 } 21022 if (conn_outgoing_ill != NULL) 21023 ill_refrele(conn_outgoing_ill); 21024 return; 21025 } 21026 UPDATE_OB_PKT_COUNT(ire); 21027 ire->ire_last_used_time = lbolt; 21028 21029 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21030 "ip_wput_ire_end: q %p (%S)", 21031 q, "last copy out"); 21032 putnext(stq, mp); 21033 IRE_REFRELE(ire); 21034 21035 if (multirt_send) { 21036 ASSERT(ire1); 21037 /* 21038 * Proceed with the next RTF_MULTIRT ire, 21039 * Also set up the send-to queue accordingly. 21040 */ 21041 ire = ire1; 21042 ire1 = NULL; 21043 stq = ire->ire_stq; 21044 mp = next_mp; 21045 next_mp = NULL; 21046 ipha = (ipha_t *)mp->b_rptr; 21047 ill_index = Q_TO_INDEX(stq); 21048 } 21049 } while (multirt_send); 21050 if (conn_outgoing_ill != NULL) 21051 ill_refrele(conn_outgoing_ill); 21052 return; 21053 21054 /* 21055 * ire->ire_type == IRE_BROADCAST (minimize diffs) 21056 */ 21057 broadcast: 21058 { 21059 /* 21060 * Avoid broadcast storms by setting the ttl to 1 21061 * for broadcasts. This parameter can be set 21062 * via ndd, so make sure that for the SO_DONTROUTE 21063 * case that ipha_ttl is always set to 1. 21064 * In the event that we are replying to incoming 21065 * ICMP packets, conn could be NULL. 21066 */ 21067 if ((connp != NULL) && connp->conn_dontroute) 21068 ipha->ipha_ttl = 1; 21069 else 21070 ipha->ipha_ttl = ip_broadcast_ttl; 21071 21072 /* 21073 * Note that we are not doing a IRB_REFHOLD here. 21074 * Actually we don't care if the list changes i.e 21075 * if somebody deletes an IRE from the list while 21076 * we drop the lock, the next time we come around 21077 * ire_next will be NULL and hence we won't send 21078 * out multiple copies which is fine. 21079 */ 21080 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 21081 ire1 = ire->ire_next; 21082 if (conn_outgoing_ill != NULL) { 21083 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 21084 ASSERT(ire1 == ire->ire_next); 21085 if (ire1 != NULL && ire1->ire_addr == dst) { 21086 ire_refrele(ire); 21087 ire = ire1; 21088 IRE_REFHOLD(ire); 21089 ire1 = ire->ire_next; 21090 continue; 21091 } 21092 rw_exit(&ire->ire_bucket->irb_lock); 21093 /* Did not find a matching ill */ 21094 ip1dbg(("ip_wput_ire: broadcast with no " 21095 "matching IP_BOUND_IF ill %s\n", 21096 conn_outgoing_ill->ill_name)); 21097 freemsg(first_mp); 21098 if (ire != NULL) 21099 ire_refrele(ire); 21100 ill_refrele(conn_outgoing_ill); 21101 return; 21102 } 21103 } else if (ire1 != NULL && ire1->ire_addr == dst) { 21104 /* 21105 * If the next IRE has the same address and is not one 21106 * of the two copies that we need to send, try to see 21107 * whether this copy should be sent at all. This 21108 * assumes that we insert loopbacks first and then 21109 * non-loopbacks. This is acheived by inserting the 21110 * loopback always before non-loopback. 21111 * This is used to send a single copy of a broadcast 21112 * packet out all physical interfaces that have an 21113 * matching IRE_BROADCAST while also looping 21114 * back one copy (to ip_wput_local) for each 21115 * matching physical interface. However, we avoid 21116 * sending packets out different logical that match by 21117 * having ipif_up/ipif_down supress duplicate 21118 * IRE_BROADCASTS. 21119 * 21120 * This feature is currently used to get broadcasts 21121 * sent to multiple interfaces, when the broadcast 21122 * address being used applies to multiple interfaces. 21123 * For example, a whole net broadcast will be 21124 * replicated on every connected subnet of 21125 * the target net. 21126 * 21127 * Each zone has its own set of IRE_BROADCASTs, so that 21128 * we're able to distribute inbound packets to multiple 21129 * zones who share a broadcast address. We avoid looping 21130 * back outbound packets in different zones but on the 21131 * same ill, as the application would see duplicates. 21132 * 21133 * If the interfaces are part of the same group, 21134 * we would want to send only one copy out for 21135 * whole group. 21136 * 21137 * This logic assumes that ire_add_v4() groups the 21138 * IRE_BROADCAST entries so that those with the same 21139 * ire_addr and ill_group are kept together. 21140 */ 21141 ire_ill = ire->ire_ipif->ipif_ill; 21142 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 21143 if (ire_ill->ill_group != NULL && 21144 (ire->ire_marks & IRE_MARK_NORECV)) { 21145 /* 21146 * If the current zone only has an ire 21147 * broadcast for this address marked 21148 * NORECV, the ire we want is ahead in 21149 * the bucket, so we look it up 21150 * deliberately ignoring the zoneid. 21151 */ 21152 for (ire1 = ire->ire_bucket->irb_ire; 21153 ire1 != NULL; 21154 ire1 = ire1->ire_next) { 21155 ire1_ill = 21156 ire1->ire_ipif->ipif_ill; 21157 if (ire1->ire_addr != dst) 21158 continue; 21159 /* skip over the current ire */ 21160 if (ire1 == ire) 21161 continue; 21162 /* skip over deleted ires */ 21163 if (ire1->ire_marks & 21164 IRE_MARK_CONDEMNED) 21165 continue; 21166 /* 21167 * non-loopback ire in our 21168 * group: use it for the next 21169 * pass in the loop 21170 */ 21171 if (ire1->ire_stq != NULL && 21172 ire1_ill->ill_group == 21173 ire_ill->ill_group) 21174 break; 21175 } 21176 } 21177 } else { 21178 while (ire1 != NULL && ire1->ire_addr == dst) { 21179 ire1_ill = ire1->ire_ipif->ipif_ill; 21180 /* 21181 * We can have two broadcast ires on the 21182 * same ill in different zones; here 21183 * we'll send a copy of the packet on 21184 * each ill and the fanout code will 21185 * call conn_wantpacket() to check that 21186 * the zone has the broadcast address 21187 * configured on the ill. If the two 21188 * ires are in the same group we only 21189 * send one copy up. 21190 */ 21191 if (ire1_ill != ire_ill && 21192 (ire1_ill->ill_group == NULL || 21193 ire_ill->ill_group == NULL || 21194 ire1_ill->ill_group != 21195 ire_ill->ill_group)) { 21196 break; 21197 } 21198 ire1 = ire1->ire_next; 21199 } 21200 } 21201 } 21202 ASSERT(multirt_send == B_FALSE); 21203 if (ire1 != NULL && ire1->ire_addr == dst) { 21204 if ((ire->ire_flags & RTF_MULTIRT) && 21205 (ire1->ire_flags & RTF_MULTIRT)) { 21206 /* 21207 * We are in the multirouting case. 21208 * The message must be sent at least 21209 * on both ires. These ires have been 21210 * inserted AFTER the standard ones 21211 * in ip_rt_add(). There are thus no 21212 * other ire entries for the destination 21213 * address in the rest of the bucket 21214 * that do not have the RTF_MULTIRT 21215 * flag. We don't process a copy 21216 * of the message here. This will be 21217 * done in the final sending loop. 21218 */ 21219 multirt_send = B_TRUE; 21220 } else { 21221 next_mp = ip_copymsg(first_mp); 21222 if (next_mp != NULL) 21223 IRE_REFHOLD(ire1); 21224 } 21225 } 21226 rw_exit(&ire->ire_bucket->irb_lock); 21227 } 21228 21229 if (stq) { 21230 /* 21231 * A non-NULL send-to queue means this packet is going 21232 * out of this machine. 21233 */ 21234 21235 BUMP_MIB(&ip_mib, ipOutRequests); 21236 ttl_protocol = ((uint16_t *)ipha)[4]; 21237 /* 21238 * We accumulate the pseudo header checksum in cksum. 21239 * This is pretty hairy code, so watch close. One 21240 * thing to keep in mind is that UDP and TCP have 21241 * stored their respective datagram lengths in their 21242 * checksum fields. This lines things up real nice. 21243 */ 21244 cksum = (dst >> 16) + (dst & 0xFFFF) + 21245 (src >> 16) + (src & 0xFFFF); 21246 /* 21247 * We assume the udp checksum field contains the 21248 * length, so to compute the pseudo header checksum, 21249 * all we need is the protocol number and src/dst. 21250 */ 21251 /* Provide the checksums for UDP and TCP. */ 21252 if ((PROTO == IPPROTO_TCP) && 21253 (ip_hdr_included != IP_HDR_INCLUDED)) { 21254 /* hlen gets the number of uchar_ts in the IP header */ 21255 hlen = (V_HLEN & 0xF) << 2; 21256 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 21257 IP_STAT(ip_out_sw_cksum); 21258 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 21259 LENGTH - hlen); 21260 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 21261 if (*up == 0) 21262 *up = 0xFFFF; 21263 } else if (PROTO == IPPROTO_SCTP && 21264 (ip_hdr_included != IP_HDR_INCLUDED)) { 21265 sctp_hdr_t *sctph; 21266 21267 hlen = (V_HLEN & 0xF) << 2; 21268 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 21269 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 21270 sctph->sh_chksum = 0; 21271 #ifdef DEBUG 21272 if (!skip_sctp_cksum) 21273 #endif 21274 sctph->sh_chksum = sctp_cksum(mp, hlen); 21275 } else { 21276 queue_t *dev_q = stq->q_next; 21277 21278 if ((dev_q->q_next || dev_q->q_first) && 21279 !canput(dev_q)) { 21280 blocked: 21281 ipha->ipha_ident = ip_hdr_included; 21282 /* 21283 * If we don't have a conn to apply 21284 * backpressure, free the message. 21285 * In the ire_send path, we don't know 21286 * the position to requeue the packet. Rather 21287 * than reorder packets, we just drop this 21288 * packet. 21289 */ 21290 if (ip_output_queue && connp != NULL && 21291 caller != IRE_SEND) { 21292 if (caller == IP_WSRV) { 21293 connp->conn_did_putbq = 1; 21294 (void) putbq(connp->conn_wq, 21295 first_mp); 21296 conn_drain_insert(connp); 21297 /* 21298 * This is the service thread, 21299 * and the queue is already 21300 * noenabled. The check for 21301 * canput and the putbq is not 21302 * atomic. So we need to check 21303 * again. 21304 */ 21305 if (canput(stq->q_next)) 21306 connp->conn_did_putbq 21307 = 0; 21308 IP_STAT(ip_conn_flputbq); 21309 } else { 21310 /* 21311 * We are not the service proc. 21312 * ip_wsrv will be scheduled or 21313 * is already running. 21314 */ 21315 (void) putq(connp->conn_wq, 21316 first_mp); 21317 } 21318 } else { 21319 BUMP_MIB(&ip_mib, ipOutDiscards); 21320 freemsg(first_mp); 21321 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21322 "ip_wput_ire_end: q %p (%S)", 21323 q, "discard"); 21324 } 21325 ire_refrele(ire); 21326 if (next_mp) { 21327 ire_refrele(ire1); 21328 freemsg(next_mp); 21329 } 21330 if (conn_outgoing_ill != NULL) 21331 ill_refrele(conn_outgoing_ill); 21332 return; 21333 } 21334 if ((PROTO == IPPROTO_UDP) && 21335 (ip_hdr_included != IP_HDR_INCLUDED)) { 21336 /* 21337 * hlen gets the number of uchar_ts in the 21338 * IP header 21339 */ 21340 hlen = (V_HLEN & 0xF) << 2; 21341 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 21342 max_frag = ire->ire_max_frag; 21343 if (*up != 0) { 21344 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 21345 up, PROTO, hlen, LENGTH, max_frag, 21346 ipsec_len, cksum); 21347 /* Software checksum? */ 21348 if (DB_CKSUMFLAGS(mp) == 0) { 21349 IP_STAT(ip_out_sw_cksum); 21350 IP_STAT_UPDATE( 21351 ip_udp_out_sw_cksum_bytes, 21352 LENGTH - hlen); 21353 } 21354 } 21355 } 21356 } 21357 /* 21358 * Need to do this even when fragmenting. The local 21359 * loopback can be done without computing checksums 21360 * but forwarding out other interface must be done 21361 * after the IP checksum (and ULP checksums) have been 21362 * computed. 21363 * 21364 * NOTE : multicast_forward is set only if this packet 21365 * originated from ip_wput. For packets originating from 21366 * ip_wput_multicast, it is not set. 21367 */ 21368 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 21369 multi_loopback: 21370 ip2dbg(("ip_wput: multicast, loop %d\n", 21371 conn_multicast_loop)); 21372 21373 /* Forget header checksum offload */ 21374 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 21375 21376 /* 21377 * Local loopback of multicasts? Check the 21378 * ill. 21379 * 21380 * Note that the loopback function will not come 21381 * in through ip_rput - it will only do the 21382 * client fanout thus we need to do an mforward 21383 * as well. The is different from the BSD 21384 * logic. 21385 */ 21386 if (ill != NULL) { 21387 ilm_t *ilm; 21388 21389 ILM_WALKER_HOLD(ill); 21390 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 21391 ALL_ZONES); 21392 ILM_WALKER_RELE(ill); 21393 if (ilm != NULL) { 21394 /* 21395 * Pass along the virtual output q. 21396 * ip_wput_local() will distribute the 21397 * packet to all the matching zones, 21398 * except the sending zone when 21399 * IP_MULTICAST_LOOP is false. 21400 */ 21401 ip_multicast_loopback(q, ill, first_mp, 21402 conn_multicast_loop ? 0 : 21403 IP_FF_NO_MCAST_LOOP, zoneid); 21404 } 21405 } 21406 if (ipha->ipha_ttl == 0) { 21407 /* 21408 * 0 => only to this host i.e. we are 21409 * done. We are also done if this was the 21410 * loopback interface since it is sufficient 21411 * to loopback one copy of a multicast packet. 21412 */ 21413 freemsg(first_mp); 21414 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21415 "ip_wput_ire_end: q %p (%S)", 21416 q, "loopback"); 21417 ire_refrele(ire); 21418 if (conn_outgoing_ill != NULL) 21419 ill_refrele(conn_outgoing_ill); 21420 return; 21421 } 21422 /* 21423 * ILLF_MULTICAST is checked in ip_newroute 21424 * i.e. we don't need to check it here since 21425 * all IRE_CACHEs come from ip_newroute. 21426 * For multicast traffic, SO_DONTROUTE is interpreted 21427 * to mean only send the packet out the interface 21428 * (optionally specified with IP_MULTICAST_IF) 21429 * and do not forward it out additional interfaces. 21430 * RSVP and the rsvp daemon is an example of a 21431 * protocol and user level process that 21432 * handles it's own routing. Hence, it uses the 21433 * SO_DONTROUTE option to accomplish this. 21434 */ 21435 21436 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 21437 /* Unconditionally redo the checksum */ 21438 ipha->ipha_hdr_checksum = 0; 21439 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21440 21441 /* 21442 * If this needs to go out secure, we need 21443 * to wait till we finish the IPSEC 21444 * processing. 21445 */ 21446 if (ipsec_len == 0 && 21447 ip_mforward(ill, ipha, mp)) { 21448 freemsg(first_mp); 21449 ip1dbg(("ip_wput: mforward failed\n")); 21450 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21451 "ip_wput_ire_end: q %p (%S)", 21452 q, "mforward failed"); 21453 ire_refrele(ire); 21454 if (conn_outgoing_ill != NULL) 21455 ill_refrele(conn_outgoing_ill); 21456 return; 21457 } 21458 } 21459 } 21460 max_frag = ire->ire_max_frag; 21461 cksum += ttl_protocol; 21462 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 21463 /* No fragmentation required for this one. */ 21464 /* 21465 * Don't use frag_flag if packet is pre-built or source 21466 * routed or if multicast (since multicast packets do 21467 * not solicit ICMP "packet too big" messages). 21468 */ 21469 if ((ip_hdr_included != IP_HDR_INCLUDED) && 21470 (V_HLEN == IP_SIMPLE_HDR_VERSION || 21471 !ip_source_route_included(ipha)) && 21472 !CLASSD(ipha->ipha_dst)) 21473 ipha->ipha_fragment_offset_and_flags |= 21474 htons(ire->ire_frag_flag); 21475 21476 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 21477 /* Complete the IP header checksum. */ 21478 cksum += ipha->ipha_ident; 21479 cksum += (v_hlen_tos_len >> 16)+ 21480 (v_hlen_tos_len & 0xFFFF); 21481 cksum += ipha->ipha_fragment_offset_and_flags; 21482 hlen = (V_HLEN & 0xF) - 21483 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 21484 if (hlen) { 21485 checksumoptions: 21486 /* 21487 * Account for the IP Options in the IP 21488 * header checksum. 21489 */ 21490 up = (uint16_t *)(rptr+ 21491 IP_SIMPLE_HDR_LENGTH); 21492 do { 21493 cksum += up[0]; 21494 cksum += up[1]; 21495 up += 2; 21496 } while (--hlen); 21497 } 21498 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 21499 cksum = ~(cksum + (cksum >> 16)); 21500 ipha->ipha_hdr_checksum = (uint16_t)cksum; 21501 } 21502 if (ipsec_len != 0) { 21503 ipsec_out_process(q, first_mp, ire, ill_index); 21504 if (!next_mp) { 21505 ire_refrele(ire); 21506 if (conn_outgoing_ill != NULL) 21507 ill_refrele(conn_outgoing_ill); 21508 return; 21509 } 21510 goto next; 21511 } 21512 21513 /* 21514 * multirt_send has already been handled 21515 * for broadcast, but not yet for multicast 21516 * or IP options. 21517 */ 21518 if (next_mp == NULL) { 21519 if (ire->ire_flags & RTF_MULTIRT) { 21520 multirt_send = B_TRUE; 21521 } 21522 } 21523 21524 /* 21525 * In most cases, the emission loop below is 21526 * entered only once. Only in the case where 21527 * the ire holds the RTF_MULTIRT flag, do we loop 21528 * to process all RTF_MULTIRT ires in the bucket, 21529 * and send the packet through all crossed 21530 * RTF_MULTIRT routes. 21531 */ 21532 do { 21533 if (multirt_send) { 21534 irb_t *irb; 21535 21536 irb = ire->ire_bucket; 21537 ASSERT(irb != NULL); 21538 /* 21539 * We are in a multiple send case, 21540 * need to get the next IRE and make 21541 * a duplicate of the packet. 21542 */ 21543 IRB_REFHOLD(irb); 21544 for (ire1 = ire->ire_next; 21545 ire1 != NULL; 21546 ire1 = ire1->ire_next) { 21547 if (!(ire1->ire_flags & 21548 RTF_MULTIRT)) 21549 continue; 21550 if (ire1->ire_addr != 21551 ire->ire_addr) 21552 continue; 21553 if (ire1->ire_marks & 21554 (IRE_MARK_CONDEMNED| 21555 IRE_MARK_HIDDEN)) 21556 continue; 21557 21558 /* Got one */ 21559 IRE_REFHOLD(ire1); 21560 break; 21561 } 21562 IRB_REFRELE(irb); 21563 21564 if (ire1 != NULL) { 21565 next_mp = copyb(mp); 21566 if ((next_mp == NULL) || 21567 ((mp->b_cont != NULL) && 21568 ((next_mp->b_cont = 21569 dupmsg(mp->b_cont)) 21570 == NULL))) { 21571 freemsg(next_mp); 21572 next_mp = NULL; 21573 ire_refrele(ire1); 21574 ire1 = NULL; 21575 } 21576 } 21577 21578 /* 21579 * Last multiroute ire; don't loop 21580 * anymore. The emission is over 21581 * and next_mp is NULL. 21582 */ 21583 if (ire1 == NULL) { 21584 multirt_send = B_FALSE; 21585 } 21586 } 21587 21588 ASSERT(ipsec_len == 0); 21589 mp1 = ip_wput_attach_llhdr(mp, ire, 21590 IPP_LOCAL_OUT, ill_index); 21591 if (mp1 == NULL) { 21592 BUMP_MIB(&ip_mib, ipOutDiscards); 21593 if (next_mp) { 21594 freemsg(next_mp); 21595 ire_refrele(ire1); 21596 } 21597 ire_refrele(ire); 21598 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21599 "ip_wput_ire_end: q %p (%S)", 21600 q, "discard MDATA"); 21601 if (conn_outgoing_ill != NULL) 21602 ill_refrele(conn_outgoing_ill); 21603 return; 21604 } 21605 UPDATE_OB_PKT_COUNT(ire); 21606 ire->ire_last_used_time = lbolt; 21607 21608 if (multirt_send) { 21609 /* 21610 * We are in a multiple send case, 21611 * need to re-enter the sending loop 21612 * using the next ire. 21613 */ 21614 putnext(stq, mp1); 21615 ire_refrele(ire); 21616 ire = ire1; 21617 stq = ire->ire_stq; 21618 mp = next_mp; 21619 next_mp = NULL; 21620 ipha = (ipha_t *)mp->b_rptr; 21621 ill_index = Q_TO_INDEX(stq); 21622 } 21623 } while (multirt_send); 21624 21625 if (!next_mp) { 21626 /* 21627 * Last copy going out (the ultra-common 21628 * case). Note that we intentionally replicate 21629 * the putnext rather than calling it before 21630 * the next_mp check in hopes of a little 21631 * tail-call action out of the compiler. 21632 */ 21633 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21634 "ip_wput_ire_end: q %p (%S)", 21635 q, "last copy out(1)"); 21636 putnext(stq, mp1); 21637 ire_refrele(ire); 21638 if (conn_outgoing_ill != NULL) 21639 ill_refrele(conn_outgoing_ill); 21640 return; 21641 } 21642 /* More copies going out below. */ 21643 putnext(stq, mp1); 21644 } else { 21645 int offset; 21646 fragmentit: 21647 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 21648 /* 21649 * If this would generate a icmp_frag_needed message, 21650 * we need to handle it before we do the IPSEC 21651 * processing. Otherwise, we need to strip the IPSEC 21652 * headers before we send up the message to the ULPs 21653 * which becomes messy and difficult. 21654 */ 21655 if (ipsec_len != 0) { 21656 if ((max_frag < (unsigned int)(LENGTH + 21657 ipsec_len)) && (offset & IPH_DF)) { 21658 21659 BUMP_MIB(&ip_mib, ipFragFails); 21660 ipha->ipha_hdr_checksum = 0; 21661 ipha->ipha_hdr_checksum = 21662 (uint16_t)ip_csum_hdr(ipha); 21663 icmp_frag_needed(ire->ire_stq, first_mp, 21664 max_frag); 21665 if (!next_mp) { 21666 ire_refrele(ire); 21667 if (conn_outgoing_ill != NULL) { 21668 ill_refrele( 21669 conn_outgoing_ill); 21670 } 21671 return; 21672 } 21673 } else { 21674 /* 21675 * This won't cause a icmp_frag_needed 21676 * message. to be gnerated. Send it on 21677 * the wire. Note that this could still 21678 * cause fragmentation and all we 21679 * do is the generation of the message 21680 * to the ULP if needed before IPSEC. 21681 */ 21682 if (!next_mp) { 21683 ipsec_out_process(q, first_mp, 21684 ire, ill_index); 21685 TRACE_2(TR_FAC_IP, 21686 TR_IP_WPUT_IRE_END, 21687 "ip_wput_ire_end: q %p " 21688 "(%S)", q, 21689 "last ipsec_out_process"); 21690 ire_refrele(ire); 21691 if (conn_outgoing_ill != NULL) { 21692 ill_refrele( 21693 conn_outgoing_ill); 21694 } 21695 return; 21696 } 21697 ipsec_out_process(q, first_mp, 21698 ire, ill_index); 21699 } 21700 } else { 21701 /* Initiate IPPF processing */ 21702 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 21703 ip_process(IPP_LOCAL_OUT, &mp, 21704 ill_index); 21705 if (mp == NULL) { 21706 BUMP_MIB(&ip_mib, 21707 ipOutDiscards); 21708 if (next_mp != NULL) { 21709 freemsg(next_mp); 21710 ire_refrele(ire1); 21711 } 21712 ire_refrele(ire); 21713 TRACE_2(TR_FAC_IP, 21714 TR_IP_WPUT_IRE_END, 21715 "ip_wput_ire: q %p (%S)", 21716 q, "discard MDATA"); 21717 if (conn_outgoing_ill != NULL) { 21718 ill_refrele( 21719 conn_outgoing_ill); 21720 } 21721 return; 21722 } 21723 } 21724 if (!next_mp) { 21725 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21726 "ip_wput_ire_end: q %p (%S)", 21727 q, "last fragmentation"); 21728 ip_wput_ire_fragmentit(mp, ire); 21729 ire_refrele(ire); 21730 if (conn_outgoing_ill != NULL) 21731 ill_refrele(conn_outgoing_ill); 21732 return; 21733 } 21734 ip_wput_ire_fragmentit(mp, ire); 21735 } 21736 } 21737 } else { 21738 nullstq: 21739 /* A NULL stq means the destination address is local. */ 21740 UPDATE_OB_PKT_COUNT(ire); 21741 ire->ire_last_used_time = lbolt; 21742 ASSERT(ire->ire_ipif != NULL); 21743 if (!next_mp) { 21744 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21745 "ip_wput_ire_end: q %p (%S)", 21746 q, "local address"); 21747 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 21748 first_mp, ire, 0, ire->ire_zoneid); 21749 ire_refrele(ire); 21750 if (conn_outgoing_ill != NULL) 21751 ill_refrele(conn_outgoing_ill); 21752 return; 21753 } 21754 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 21755 ire, 0, ire->ire_zoneid); 21756 } 21757 next: 21758 /* 21759 * More copies going out to additional interfaces. 21760 * ire1 has already been held. We don't need the 21761 * "ire" anymore. 21762 */ 21763 ire_refrele(ire); 21764 ire = ire1; 21765 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 21766 mp = next_mp; 21767 ASSERT(ire->ire_ipversion == IPV4_VERSION); 21768 ill = ire_to_ill(ire); 21769 first_mp = mp; 21770 if (ipsec_len != 0) { 21771 ASSERT(first_mp->b_datap->db_type == M_CTL); 21772 mp = mp->b_cont; 21773 } 21774 dst = ire->ire_addr; 21775 ipha = (ipha_t *)mp->b_rptr; 21776 /* 21777 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 21778 * Restore ipha_ident "no checksum" flag. 21779 */ 21780 src = orig_src; 21781 ipha->ipha_ident = ip_hdr_included; 21782 goto another; 21783 21784 #undef rptr 21785 #undef Q_TO_INDEX 21786 } 21787 21788 /* 21789 * Routine to allocate a message that is used to notify the ULP about MDT. 21790 * The caller may provide a pointer to the link-layer MDT capabilities, 21791 * or NULL if MDT is to be disabled on the stream. 21792 */ 21793 mblk_t * 21794 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 21795 { 21796 mblk_t *mp; 21797 ip_mdt_info_t *mdti; 21798 ill_mdt_capab_t *idst; 21799 21800 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 21801 DB_TYPE(mp) = M_CTL; 21802 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 21803 mdti = (ip_mdt_info_t *)mp->b_rptr; 21804 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 21805 idst = &(mdti->mdt_capab); 21806 21807 /* 21808 * If the caller provides us with the capability, copy 21809 * it over into our notification message; otherwise 21810 * we zero out the capability portion. 21811 */ 21812 if (isrc != NULL) 21813 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 21814 else 21815 bzero((caddr_t)idst, sizeof (*idst)); 21816 } 21817 return (mp); 21818 } 21819 21820 /* 21821 * Routine which determines whether MDT can be enabled on the destination 21822 * IRE and IPC combination, and if so, allocates and returns the MDT 21823 * notification mblk that may be used by ULP. We also check if we need to 21824 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 21825 * MDT usage in the past have been lifted. This gets called during IP 21826 * and ULP binding. 21827 */ 21828 mblk_t * 21829 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 21830 ill_mdt_capab_t *mdt_cap) 21831 { 21832 mblk_t *mp; 21833 boolean_t rc = B_FALSE; 21834 21835 ASSERT(dst_ire != NULL); 21836 ASSERT(connp != NULL); 21837 ASSERT(mdt_cap != NULL); 21838 21839 /* 21840 * Currently, we only support simple TCP/{IPv4,IPv6} with 21841 * Multidata, which is handled in tcp_multisend(). This 21842 * is the reason why we do all these checks here, to ensure 21843 * that we don't enable Multidata for the cases which we 21844 * can't handle at the moment. 21845 */ 21846 do { 21847 /* Only do TCP at the moment */ 21848 if (connp->conn_ulp != IPPROTO_TCP) 21849 break; 21850 21851 /* 21852 * IPSEC outbound policy present? Note that we get here 21853 * after calling ipsec_conn_cache_policy() where the global 21854 * policy checking is performed. conn_latch will be 21855 * non-NULL as long as there's a policy defined, 21856 * i.e. conn_out_enforce_policy may be NULL in such case 21857 * when the connection is non-secure, and hence we check 21858 * further if the latch refers to an outbound policy. 21859 */ 21860 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 21861 break; 21862 21863 /* CGTP (multiroute) is enabled? */ 21864 if (dst_ire->ire_flags & RTF_MULTIRT) 21865 break; 21866 21867 /* Outbound IPQoS enabled? */ 21868 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 21869 /* 21870 * In this case, we disable MDT for this and all 21871 * future connections going over the interface. 21872 */ 21873 mdt_cap->ill_mdt_on = 0; 21874 break; 21875 } 21876 21877 /* socket option(s) present? */ 21878 if (!CONN_IS_MD_FASTPATH(connp)) 21879 break; 21880 21881 rc = B_TRUE; 21882 /* CONSTCOND */ 21883 } while (0); 21884 21885 /* Remember the result */ 21886 connp->conn_mdt_ok = rc; 21887 21888 if (!rc) 21889 return (NULL); 21890 else if (!mdt_cap->ill_mdt_on) { 21891 /* 21892 * If MDT has been previously turned off in the past, and we 21893 * currently can do MDT (due to IPQoS policy removal, etc.) 21894 * then enable it for this interface. 21895 */ 21896 mdt_cap->ill_mdt_on = 1; 21897 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 21898 "interface %s\n", ill_name)); 21899 } 21900 21901 /* Allocate the MDT info mblk */ 21902 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 21903 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 21904 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 21905 return (NULL); 21906 } 21907 return (mp); 21908 } 21909 21910 /* 21911 * Create destination address attribute, and fill it with the physical 21912 * destination address and SAP taken from the template DL_UNITDATA_REQ 21913 * message block. 21914 */ 21915 boolean_t 21916 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 21917 { 21918 dl_unitdata_req_t *dlurp; 21919 pattr_t *pa; 21920 pattrinfo_t pa_info; 21921 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 21922 uint_t das_len, das_off; 21923 21924 ASSERT(dlmp != NULL); 21925 21926 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 21927 das_len = dlurp->dl_dest_addr_length; 21928 das_off = dlurp->dl_dest_addr_offset; 21929 21930 pa_info.type = PATTR_DSTADDRSAP; 21931 pa_info.len = sizeof (**das) + das_len - 1; 21932 21933 /* create and associate the attribute */ 21934 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21935 if (pa != NULL) { 21936 ASSERT(*das != NULL); 21937 (*das)->addr_is_group = 0; 21938 (*das)->addr_len = (uint8_t)das_len; 21939 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 21940 } 21941 21942 return (pa != NULL); 21943 } 21944 21945 /* 21946 * Create hardware checksum attribute and fill it with the values passed. 21947 */ 21948 boolean_t 21949 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 21950 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 21951 { 21952 pattr_t *pa; 21953 pattrinfo_t pa_info; 21954 21955 ASSERT(mmd != NULL); 21956 21957 pa_info.type = PATTR_HCKSUM; 21958 pa_info.len = sizeof (pattr_hcksum_t); 21959 21960 /* create and associate the attribute */ 21961 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21962 if (pa != NULL) { 21963 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 21964 21965 hck->hcksum_start_offset = start_offset; 21966 hck->hcksum_stuff_offset = stuff_offset; 21967 hck->hcksum_end_offset = end_offset; 21968 hck->hcksum_flags = flags; 21969 } 21970 return (pa != NULL); 21971 } 21972 21973 /* 21974 * Create zerocopy attribute and fill it with the specified flags 21975 */ 21976 boolean_t 21977 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 21978 { 21979 pattr_t *pa; 21980 pattrinfo_t pa_info; 21981 21982 ASSERT(mmd != NULL); 21983 pa_info.type = PATTR_ZCOPY; 21984 pa_info.len = sizeof (pattr_zcopy_t); 21985 21986 /* create and associate the attribute */ 21987 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21988 if (pa != NULL) { 21989 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 21990 21991 zcopy->zcopy_flags = flags; 21992 } 21993 return (pa != NULL); 21994 } 21995 21996 /* 21997 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 21998 * block chain. We could rewrite to handle arbitrary message block chains but 21999 * that would make the code complicated and slow. Right now there three 22000 * restrictions: 22001 * 22002 * 1. The first message block must contain the complete IP header and 22003 * at least 1 byte of payload data. 22004 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 22005 * so that we can use a single Multidata message. 22006 * 3. No frag must be distributed over two or more message blocks so 22007 * that we don't need more than two packet descriptors per frag. 22008 * 22009 * The above restrictions allow us to support userland applications (which 22010 * will send down a single message block) and NFS over UDP (which will 22011 * send down a chain of at most three message blocks). 22012 * 22013 * We also don't use MDT for payloads with less than or equal to 22014 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 22015 */ 22016 boolean_t 22017 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 22018 { 22019 int blocks; 22020 ssize_t total, missing, size; 22021 22022 ASSERT(mp != NULL); 22023 ASSERT(hdr_len > 0); 22024 22025 size = MBLKL(mp) - hdr_len; 22026 if (size <= 0) 22027 return (B_FALSE); 22028 22029 /* The first mblk contains the header and some payload. */ 22030 blocks = 1; 22031 total = size; 22032 size %= len; 22033 missing = (size == 0) ? 0 : (len - size); 22034 mp = mp->b_cont; 22035 22036 while (mp != NULL) { 22037 /* 22038 * Give up if we encounter a zero length message block. 22039 * In practice, this should rarely happen and therefore 22040 * not worth the trouble of freeing and re-linking the 22041 * mblk from the chain to handle such case. 22042 */ 22043 if ((size = MBLKL(mp)) == 0) 22044 return (B_FALSE); 22045 22046 /* Too many payload buffers for a single Multidata message? */ 22047 if (++blocks > MULTIDATA_MAX_PBUFS) 22048 return (B_FALSE); 22049 22050 total += size; 22051 /* Is a frag distributed over two or more message blocks? */ 22052 if (missing > size) 22053 return (B_FALSE); 22054 size -= missing; 22055 22056 size %= len; 22057 missing = (size == 0) ? 0 : (len - size); 22058 22059 mp = mp->b_cont; 22060 } 22061 22062 return (total > ip_wput_frag_mdt_min); 22063 } 22064 22065 /* 22066 * Outbound IPv4 fragmentation routine using MDT. 22067 */ 22068 static void 22069 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 22070 uint32_t frag_flag, int offset) 22071 { 22072 ipha_t *ipha_orig; 22073 int i1, ip_data_end; 22074 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 22075 mblk_t *hdr_mp, *md_mp = NULL; 22076 unsigned char *hdr_ptr, *pld_ptr; 22077 multidata_t *mmd; 22078 ip_pdescinfo_t pdi; 22079 22080 ASSERT(DB_TYPE(mp) == M_DATA); 22081 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 22082 22083 ipha_orig = (ipha_t *)mp->b_rptr; 22084 mp->b_rptr += sizeof (ipha_t); 22085 22086 /* Calculate how many packets we will send out */ 22087 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 22088 pkts = (i1 + len - 1) / len; 22089 ASSERT(pkts > 1); 22090 22091 /* Allocate a message block which will hold all the IP Headers. */ 22092 wroff = ip_wroff_extra; 22093 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 22094 22095 i1 = pkts * hdr_chunk_len; 22096 /* 22097 * Create the header buffer, Multidata and destination address 22098 * and SAP attribute that should be associated with it. 22099 */ 22100 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 22101 ((hdr_mp->b_wptr += i1), 22102 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 22103 !ip_md_addr_attr(mmd, NULL, ire->ire_dlureq_mp)) { 22104 freemsg(mp); 22105 if (md_mp == NULL) { 22106 freemsg(hdr_mp); 22107 } else { 22108 free_mmd: IP_STAT(ip_frag_mdt_discarded); 22109 freemsg(md_mp); 22110 } 22111 IP_STAT(ip_frag_mdt_allocfail); 22112 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 22113 return; 22114 } 22115 IP_STAT(ip_frag_mdt_allocd); 22116 22117 /* 22118 * Add a payload buffer to the Multidata; this operation must not 22119 * fail, or otherwise our logic in this routine is broken. There 22120 * is no memory allocation done by the routine, so any returned 22121 * failure simply tells us that we've done something wrong. 22122 * 22123 * A failure tells us that either we're adding the same payload 22124 * buffer more than once, or we're trying to add more buffers than 22125 * allowed. None of the above cases should happen, and we panic 22126 * because either there's horrible heap corruption, and/or 22127 * programming mistake. 22128 */ 22129 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22130 goto pbuf_panic; 22131 22132 hdr_ptr = hdr_mp->b_rptr; 22133 pld_ptr = mp->b_rptr; 22134 22135 /* Establish the ending byte offset, based on the starting offset. */ 22136 offset <<= 3; 22137 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 22138 IP_SIMPLE_HDR_LENGTH; 22139 22140 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 22141 22142 while (pld_ptr < mp->b_wptr) { 22143 ipha_t *ipha; 22144 uint16_t offset_and_flags; 22145 uint16_t ip_len; 22146 int error; 22147 22148 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 22149 ipha = (ipha_t *)(hdr_ptr + wroff); 22150 ASSERT(OK_32PTR(ipha)); 22151 *ipha = *ipha_orig; 22152 22153 if (ip_data_end - offset > len) { 22154 offset_and_flags = IPH_MF; 22155 } else { 22156 /* 22157 * Last frag. Set len to the length of this last piece. 22158 */ 22159 len = ip_data_end - offset; 22160 /* A frag of a frag might have IPH_MF non-zero */ 22161 offset_and_flags = 22162 ntohs(ipha->ipha_fragment_offset_and_flags) & 22163 IPH_MF; 22164 } 22165 offset_and_flags |= (uint16_t)(offset >> 3); 22166 offset_and_flags |= (uint16_t)frag_flag; 22167 /* Store the offset and flags in the IP header. */ 22168 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 22169 22170 /* Store the length in the IP header. */ 22171 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 22172 ipha->ipha_length = htons(ip_len); 22173 22174 /* 22175 * Set the IP header checksum. Note that mp is just 22176 * the header, so this is easy to pass to ip_csum. 22177 */ 22178 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22179 22180 /* 22181 * Record offset and size of header and data of the next packet 22182 * in the multidata message. 22183 */ 22184 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 22185 PDESC_PLD_INIT(&pdi); 22186 i1 = MIN(mp->b_wptr - pld_ptr, len); 22187 ASSERT(i1 > 0); 22188 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 22189 if (i1 == len) { 22190 pld_ptr += len; 22191 } else { 22192 i1 = len - i1; 22193 mp = mp->b_cont; 22194 ASSERT(mp != NULL); 22195 ASSERT(MBLKL(mp) >= i1); 22196 /* 22197 * Attach the next payload message block to the 22198 * multidata message. 22199 */ 22200 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22201 goto pbuf_panic; 22202 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 22203 pld_ptr = mp->b_rptr + i1; 22204 } 22205 22206 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 22207 KM_NOSLEEP)) == NULL) { 22208 /* 22209 * Any failure other than ENOMEM indicates that we 22210 * have passed in invalid pdesc info or parameters 22211 * to mmd_addpdesc, which must not happen. 22212 * 22213 * EINVAL is a result of failure on boundary checks 22214 * against the pdesc info contents. It should not 22215 * happen, and we panic because either there's 22216 * horrible heap corruption, and/or programming 22217 * mistake. 22218 */ 22219 if (error != ENOMEM) { 22220 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 22221 "pdesc logic error detected for " 22222 "mmd %p pinfo %p (%d)\n", 22223 (void *)mmd, (void *)&pdi, error); 22224 /* NOTREACHED */ 22225 } 22226 IP_STAT(ip_frag_mdt_addpdescfail); 22227 /* Free unattached payload message blocks as well */ 22228 md_mp->b_cont = mp->b_cont; 22229 goto free_mmd; 22230 } 22231 22232 /* Advance fragment offset. */ 22233 offset += len; 22234 22235 /* Advance to location for next header in the buffer. */ 22236 hdr_ptr += hdr_chunk_len; 22237 22238 /* Did we reach the next payload message block? */ 22239 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 22240 mp = mp->b_cont; 22241 /* 22242 * Attach the next message block with payload 22243 * data to the multidata message. 22244 */ 22245 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 22246 goto pbuf_panic; 22247 pld_ptr = mp->b_rptr; 22248 } 22249 } 22250 22251 ASSERT(hdr_mp->b_wptr == hdr_ptr); 22252 ASSERT(mp->b_wptr == pld_ptr); 22253 22254 /* Update IP statistics */ 22255 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 22256 BUMP_MIB(&ip_mib, ipFragOKs); 22257 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 22258 22259 if (pkt_type == OB_PKT) { 22260 ire->ire_ob_pkt_count += pkts; 22261 if (ire->ire_ipif != NULL) 22262 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 22263 } else { 22264 /* 22265 * The type is IB_PKT in the forwarding path and in 22266 * the mobile IP case when the packet is being reverse- 22267 * tunneled to the home agent. 22268 */ 22269 ire->ire_ib_pkt_count += pkts; 22270 ASSERT(!IRE_IS_LOCAL(ire)); 22271 if (ire->ire_type & IRE_BROADCAST) 22272 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 22273 else 22274 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 22275 } 22276 ire->ire_last_used_time = lbolt; 22277 /* Send it down */ 22278 putnext(ire->ire_stq, md_mp); 22279 return; 22280 22281 pbuf_panic: 22282 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 22283 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 22284 pbuf_idx); 22285 /* NOTREACHED */ 22286 } 22287 22288 /* 22289 * Outbound IP fragmentation routine. 22290 * 22291 * NOTE : This routine does not ire_refrele the ire that is passed in 22292 * as the argument. 22293 */ 22294 static void 22295 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 22296 uint32_t frag_flag) 22297 { 22298 int i1; 22299 mblk_t *ll_hdr_mp; 22300 int ll_hdr_len; 22301 int hdr_len; 22302 mblk_t *hdr_mp; 22303 ipha_t *ipha; 22304 int ip_data_end; 22305 int len; 22306 mblk_t *mp = mp_orig; 22307 int offset; 22308 queue_t *q; 22309 uint32_t v_hlen_tos_len; 22310 mblk_t *first_mp; 22311 boolean_t mctl_present; 22312 ill_t *ill; 22313 mblk_t *xmit_mp; 22314 mblk_t *carve_mp; 22315 ire_t *ire1 = NULL; 22316 ire_t *save_ire = NULL; 22317 mblk_t *next_mp = NULL; 22318 boolean_t last_frag = B_FALSE; 22319 boolean_t multirt_send = B_FALSE; 22320 ire_t *first_ire = NULL; 22321 irb_t *irb = NULL; 22322 22323 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 22324 "ip_wput_frag_start:"); 22325 22326 if (mp->b_datap->db_type == M_CTL) { 22327 first_mp = mp; 22328 mp_orig = mp = mp->b_cont; 22329 mctl_present = B_TRUE; 22330 } else { 22331 first_mp = mp; 22332 mctl_present = B_FALSE; 22333 } 22334 22335 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 22336 ipha = (ipha_t *)mp->b_rptr; 22337 22338 /* 22339 * If the Don't Fragment flag is on, generate an ICMP destination 22340 * unreachable, fragmentation needed. 22341 */ 22342 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 22343 if (offset & IPH_DF) { 22344 BUMP_MIB(&ip_mib, ipFragFails); 22345 /* 22346 * Need to compute hdr checksum if called from ip_wput_ire. 22347 * Note that ip_rput_forward verifies the checksum before 22348 * calling this routine so in that case this is a noop. 22349 */ 22350 ipha->ipha_hdr_checksum = 0; 22351 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22352 icmp_frag_needed(ire->ire_stq, first_mp, max_frag); 22353 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22354 "ip_wput_frag_end:(%S)", 22355 "don't fragment"); 22356 return; 22357 } 22358 if (mctl_present) 22359 freeb(first_mp); 22360 /* 22361 * Establish the starting offset. May not be zero if we are fragging 22362 * a fragment that is being forwarded. 22363 */ 22364 offset = offset & IPH_OFFSET; 22365 22366 /* TODO why is this test needed? */ 22367 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22368 if (((max_frag - LENGTH) & ~7) < 8) { 22369 /* TODO: notify ulp somehow */ 22370 BUMP_MIB(&ip_mib, ipFragFails); 22371 freemsg(mp); 22372 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22373 "ip_wput_frag_end:(%S)", 22374 "len < 8"); 22375 return; 22376 } 22377 22378 hdr_len = (V_HLEN & 0xF) << 2; 22379 22380 ipha->ipha_hdr_checksum = 0; 22381 22382 /* 22383 * Establish the number of bytes maximum per frag, after putting 22384 * in the header. 22385 */ 22386 len = (max_frag - hdr_len) & ~7; 22387 22388 /* Check if we can use MDT to send out the frags. */ 22389 ASSERT(!IRE_IS_LOCAL(ire)); 22390 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 22391 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 22392 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 22393 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 22394 ASSERT(ill->ill_mdt_capab != NULL); 22395 if (!ill->ill_mdt_capab->ill_mdt_on) { 22396 /* 22397 * If MDT has been previously turned off in the past, 22398 * and we currently can do MDT (due to IPQoS policy 22399 * removal, etc.) then enable it for this interface. 22400 */ 22401 ill->ill_mdt_capab->ill_mdt_on = 1; 22402 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 22403 ill->ill_name)); 22404 } 22405 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 22406 offset); 22407 return; 22408 } 22409 22410 /* Get a copy of the header for the trailing frags */ 22411 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 22412 if (!hdr_mp) { 22413 BUMP_MIB(&ip_mib, ipOutDiscards); 22414 freemsg(mp); 22415 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22416 "ip_wput_frag_end:(%S)", 22417 "couldn't copy hdr"); 22418 return; 22419 } 22420 if (DB_CRED(mp) != NULL) 22421 mblk_setcred(hdr_mp, DB_CRED(mp)); 22422 22423 /* Store the starting offset, with the MoreFrags flag. */ 22424 i1 = offset | IPH_MF | frag_flag; 22425 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 22426 22427 /* Establish the ending byte offset, based on the starting offset. */ 22428 offset <<= 3; 22429 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 22430 22431 /* Store the length of the first fragment in the IP header. */ 22432 i1 = len + hdr_len; 22433 ASSERT(i1 <= IP_MAXPACKET); 22434 ipha->ipha_length = htons((uint16_t)i1); 22435 22436 /* 22437 * Compute the IP header checksum for the first frag. We have to 22438 * watch out that we stop at the end of the header. 22439 */ 22440 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22441 22442 /* 22443 * Now carve off the first frag. Note that this will include the 22444 * original IP header. 22445 */ 22446 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 22447 BUMP_MIB(&ip_mib, ipOutDiscards); 22448 freeb(hdr_mp); 22449 freemsg(mp_orig); 22450 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22451 "ip_wput_frag_end:(%S)", 22452 "couldn't carve first"); 22453 return; 22454 } 22455 22456 /* 22457 * Multirouting case. Each fragment is replicated 22458 * via all non-condemned RTF_MULTIRT routes 22459 * currently resolved. 22460 * We ensure that first_ire is the first RTF_MULTIRT 22461 * ire in the bucket. 22462 */ 22463 if (ire->ire_flags & RTF_MULTIRT) { 22464 irb = ire->ire_bucket; 22465 ASSERT(irb != NULL); 22466 22467 multirt_send = B_TRUE; 22468 22469 /* Make sure we do not omit any multiroute ire. */ 22470 IRB_REFHOLD(irb); 22471 for (first_ire = irb->irb_ire; 22472 first_ire != NULL; 22473 first_ire = first_ire->ire_next) { 22474 if ((first_ire->ire_flags & RTF_MULTIRT) && 22475 (first_ire->ire_addr == ire->ire_addr) && 22476 !(first_ire->ire_marks & 22477 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 22478 break; 22479 } 22480 22481 if (first_ire != NULL) { 22482 if (first_ire != ire) { 22483 IRE_REFHOLD(first_ire); 22484 /* 22485 * Do not release the ire passed in 22486 * as the argument. 22487 */ 22488 ire = first_ire; 22489 } else { 22490 first_ire = NULL; 22491 } 22492 } 22493 IRB_REFRELE(irb); 22494 22495 /* 22496 * Save the first ire; we will need to restore it 22497 * for the trailing frags. 22498 * We REFHOLD save_ire, as each iterated ire will be 22499 * REFRELEd. 22500 */ 22501 save_ire = ire; 22502 IRE_REFHOLD(save_ire); 22503 } 22504 22505 /* 22506 * First fragment emission loop. 22507 * In most cases, the emission loop below is entered only 22508 * once. Only in the case where the ire holds the RTF_MULTIRT 22509 * flag, do we loop to process all RTF_MULTIRT ires in the 22510 * bucket, and send the fragment through all crossed 22511 * RTF_MULTIRT routes. 22512 */ 22513 do { 22514 if (ire->ire_flags & RTF_MULTIRT) { 22515 /* 22516 * We are in a multiple send case, need to get 22517 * the next ire and make a copy of the packet. 22518 * ire1 holds here the next ire to process in the 22519 * bucket. If multirouting is expected, 22520 * any non-RTF_MULTIRT ire that has the 22521 * right destination address is ignored. 22522 * 22523 * We have to take into account the MTU of 22524 * each walked ire. max_frag is set by the 22525 * the caller and generally refers to 22526 * the primary ire entry. Here we ensure that 22527 * no route with a lower MTU will be used, as 22528 * fragments are carved once for all ires, 22529 * then replicated. 22530 */ 22531 ASSERT(irb != NULL); 22532 IRB_REFHOLD(irb); 22533 for (ire1 = ire->ire_next; 22534 ire1 != NULL; 22535 ire1 = ire1->ire_next) { 22536 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22537 continue; 22538 if (ire1->ire_addr != ire->ire_addr) 22539 continue; 22540 if (ire1->ire_marks & 22541 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22542 continue; 22543 /* 22544 * Ensure we do not exceed the MTU 22545 * of the next route. 22546 */ 22547 if (ire1->ire_max_frag < max_frag) { 22548 ip_multirt_bad_mtu(ire1, max_frag); 22549 continue; 22550 } 22551 22552 /* Got one. */ 22553 IRE_REFHOLD(ire1); 22554 break; 22555 } 22556 IRB_REFRELE(irb); 22557 22558 if (ire1 != NULL) { 22559 next_mp = copyb(mp); 22560 if ((next_mp == NULL) || 22561 ((mp->b_cont != NULL) && 22562 ((next_mp->b_cont = 22563 dupmsg(mp->b_cont)) == NULL))) { 22564 freemsg(next_mp); 22565 next_mp = NULL; 22566 ire_refrele(ire1); 22567 ire1 = NULL; 22568 } 22569 } 22570 22571 /* Last multiroute ire; don't loop anymore. */ 22572 if (ire1 == NULL) { 22573 multirt_send = B_FALSE; 22574 } 22575 } 22576 22577 ll_hdr_len = 0; 22578 LOCK_IRE_FP_MP(ire); 22579 ll_hdr_mp = ire->ire_fp_mp; 22580 if (ll_hdr_mp != NULL) { 22581 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 22582 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 22583 } else { 22584 ll_hdr_mp = ire->ire_dlureq_mp; 22585 } 22586 22587 /* If there is a transmit header, get a copy for this frag. */ 22588 /* 22589 * TODO: should check db_ref before calling ip_carve_mp since 22590 * it might give us a dup. 22591 */ 22592 if (!ll_hdr_mp) { 22593 /* No xmit header. */ 22594 xmit_mp = mp; 22595 } else if (mp->b_datap->db_ref == 1 && 22596 ll_hdr_len != 0 && 22597 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 22598 /* M_DATA fastpath */ 22599 mp->b_rptr -= ll_hdr_len; 22600 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 22601 xmit_mp = mp; 22602 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 22603 UNLOCK_IRE_FP_MP(ire); 22604 BUMP_MIB(&ip_mib, ipOutDiscards); 22605 freeb(hdr_mp); 22606 freemsg(mp); 22607 freemsg(mp_orig); 22608 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22609 "ip_wput_frag_end:(%S)", 22610 "discard"); 22611 22612 if (multirt_send) { 22613 ASSERT(ire1); 22614 ASSERT(next_mp); 22615 22616 freemsg(next_mp); 22617 ire_refrele(ire1); 22618 } 22619 if (save_ire != NULL) 22620 IRE_REFRELE(save_ire); 22621 22622 if (first_ire != NULL) 22623 ire_refrele(first_ire); 22624 return; 22625 } else { 22626 xmit_mp->b_cont = mp; 22627 if (DB_CRED(mp) != NULL) 22628 mblk_setcred(xmit_mp, DB_CRED(mp)); 22629 /* Get priority marking, if any. */ 22630 if (DB_TYPE(xmit_mp) == M_DATA) 22631 xmit_mp->b_band = mp->b_band; 22632 } 22633 UNLOCK_IRE_FP_MP(ire); 22634 q = ire->ire_stq; 22635 BUMP_MIB(&ip_mib, ipFragCreates); 22636 putnext(q, xmit_mp); 22637 if (pkt_type != OB_PKT) { 22638 /* 22639 * Update the packet count of trailing 22640 * RTF_MULTIRT ires. 22641 */ 22642 UPDATE_OB_PKT_COUNT(ire); 22643 } 22644 22645 if (multirt_send) { 22646 /* 22647 * We are in a multiple send case; look for 22648 * the next ire and re-enter the loop. 22649 */ 22650 ASSERT(ire1); 22651 ASSERT(next_mp); 22652 /* REFRELE the current ire before looping */ 22653 ire_refrele(ire); 22654 ire = ire1; 22655 ire1 = NULL; 22656 mp = next_mp; 22657 next_mp = NULL; 22658 } 22659 } while (multirt_send); 22660 22661 ASSERT(ire1 == NULL); 22662 22663 /* Restore the original ire; we need it for the trailing frags */ 22664 if (save_ire != NULL) { 22665 /* REFRELE the last iterated ire */ 22666 ire_refrele(ire); 22667 /* save_ire has been REFHOLDed */ 22668 ire = save_ire; 22669 save_ire = NULL; 22670 q = ire->ire_stq; 22671 } 22672 22673 if (pkt_type == OB_PKT) { 22674 UPDATE_OB_PKT_COUNT(ire); 22675 } else { 22676 UPDATE_IB_PKT_COUNT(ire); 22677 } 22678 22679 /* Advance the offset to the second frag starting point. */ 22680 offset += len; 22681 /* 22682 * Update hdr_len from the copied header - there might be less options 22683 * in the later fragments. 22684 */ 22685 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 22686 /* Loop until done. */ 22687 for (;;) { 22688 uint16_t offset_and_flags; 22689 uint16_t ip_len; 22690 22691 if (ip_data_end - offset > len) { 22692 /* 22693 * Carve off the appropriate amount from the original 22694 * datagram. 22695 */ 22696 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 22697 mp = NULL; 22698 break; 22699 } 22700 /* 22701 * More frags after this one. Get another copy 22702 * of the header. 22703 */ 22704 if (carve_mp->b_datap->db_ref == 1 && 22705 hdr_mp->b_wptr - hdr_mp->b_rptr < 22706 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 22707 /* Inline IP header */ 22708 carve_mp->b_rptr -= hdr_mp->b_wptr - 22709 hdr_mp->b_rptr; 22710 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 22711 hdr_mp->b_wptr - hdr_mp->b_rptr); 22712 mp = carve_mp; 22713 } else { 22714 if (!(mp = copyb(hdr_mp))) { 22715 freemsg(carve_mp); 22716 break; 22717 } 22718 /* Get priority marking, if any. */ 22719 mp->b_band = carve_mp->b_band; 22720 mp->b_cont = carve_mp; 22721 } 22722 ipha = (ipha_t *)mp->b_rptr; 22723 offset_and_flags = IPH_MF; 22724 } else { 22725 /* 22726 * Last frag. Consume the header. Set len to 22727 * the length of this last piece. 22728 */ 22729 len = ip_data_end - offset; 22730 22731 /* 22732 * Carve off the appropriate amount from the original 22733 * datagram. 22734 */ 22735 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 22736 mp = NULL; 22737 break; 22738 } 22739 if (carve_mp->b_datap->db_ref == 1 && 22740 hdr_mp->b_wptr - hdr_mp->b_rptr < 22741 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 22742 /* Inline IP header */ 22743 carve_mp->b_rptr -= hdr_mp->b_wptr - 22744 hdr_mp->b_rptr; 22745 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 22746 hdr_mp->b_wptr - hdr_mp->b_rptr); 22747 mp = carve_mp; 22748 freeb(hdr_mp); 22749 hdr_mp = mp; 22750 } else { 22751 mp = hdr_mp; 22752 /* Get priority marking, if any. */ 22753 mp->b_band = carve_mp->b_band; 22754 mp->b_cont = carve_mp; 22755 } 22756 ipha = (ipha_t *)mp->b_rptr; 22757 /* A frag of a frag might have IPH_MF non-zero */ 22758 offset_and_flags = 22759 ntohs(ipha->ipha_fragment_offset_and_flags) & 22760 IPH_MF; 22761 } 22762 offset_and_flags |= (uint16_t)(offset >> 3); 22763 offset_and_flags |= (uint16_t)frag_flag; 22764 /* Store the offset and flags in the IP header. */ 22765 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 22766 22767 /* Store the length in the IP header. */ 22768 ip_len = (uint16_t)(len + hdr_len); 22769 ipha->ipha_length = htons(ip_len); 22770 22771 /* 22772 * Set the IP header checksum. Note that mp is just 22773 * the header, so this is easy to pass to ip_csum. 22774 */ 22775 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22776 22777 /* Attach a transmit header, if any, and ship it. */ 22778 if (pkt_type == OB_PKT) { 22779 UPDATE_OB_PKT_COUNT(ire); 22780 } else { 22781 UPDATE_IB_PKT_COUNT(ire); 22782 } 22783 22784 if (ire->ire_flags & RTF_MULTIRT) { 22785 irb = ire->ire_bucket; 22786 ASSERT(irb != NULL); 22787 22788 multirt_send = B_TRUE; 22789 22790 /* 22791 * Save the original ire; we will need to restore it 22792 * for the tailing frags. 22793 */ 22794 save_ire = ire; 22795 IRE_REFHOLD(save_ire); 22796 } 22797 /* 22798 * Emission loop for this fragment, similar 22799 * to what is done for the first fragment. 22800 */ 22801 do { 22802 if (multirt_send) { 22803 /* 22804 * We are in a multiple send case, need to get 22805 * the next ire and make a copy of the packet. 22806 */ 22807 ASSERT(irb != NULL); 22808 IRB_REFHOLD(irb); 22809 for (ire1 = ire->ire_next; 22810 ire1 != NULL; 22811 ire1 = ire1->ire_next) { 22812 if (!(ire1->ire_flags & RTF_MULTIRT)) 22813 continue; 22814 if (ire1->ire_addr != ire->ire_addr) 22815 continue; 22816 if (ire1->ire_marks & 22817 (IRE_MARK_CONDEMNED| 22818 IRE_MARK_HIDDEN)) 22819 continue; 22820 /* 22821 * Ensure we do not exceed the MTU 22822 * of the next route. 22823 */ 22824 if (ire1->ire_max_frag < max_frag) { 22825 ip_multirt_bad_mtu(ire1, 22826 max_frag); 22827 continue; 22828 } 22829 22830 /* Got one. */ 22831 IRE_REFHOLD(ire1); 22832 break; 22833 } 22834 IRB_REFRELE(irb); 22835 22836 if (ire1 != NULL) { 22837 next_mp = copyb(mp); 22838 if ((next_mp == NULL) || 22839 ((mp->b_cont != NULL) && 22840 ((next_mp->b_cont = 22841 dupmsg(mp->b_cont)) == NULL))) { 22842 freemsg(next_mp); 22843 next_mp = NULL; 22844 ire_refrele(ire1); 22845 ire1 = NULL; 22846 } 22847 } 22848 22849 /* Last multiroute ire; don't loop anymore. */ 22850 if (ire1 == NULL) { 22851 multirt_send = B_FALSE; 22852 } 22853 } 22854 22855 /* Update transmit header */ 22856 ll_hdr_len = 0; 22857 LOCK_IRE_FP_MP(ire); 22858 ll_hdr_mp = ire->ire_fp_mp; 22859 if (ll_hdr_mp != NULL) { 22860 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 22861 ll_hdr_len = MBLKL(ll_hdr_mp); 22862 } else { 22863 ll_hdr_mp = ire->ire_dlureq_mp; 22864 } 22865 22866 if (!ll_hdr_mp) { 22867 xmit_mp = mp; 22868 } else if (mp->b_datap->db_ref == 1 && 22869 ll_hdr_len != 0 && 22870 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 22871 /* M_DATA fastpath */ 22872 mp->b_rptr -= ll_hdr_len; 22873 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 22874 ll_hdr_len); 22875 xmit_mp = mp; 22876 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 22877 xmit_mp->b_cont = mp; 22878 if (DB_CRED(mp) != NULL) 22879 mblk_setcred(xmit_mp, DB_CRED(mp)); 22880 /* Get priority marking, if any. */ 22881 if (DB_TYPE(xmit_mp) == M_DATA) 22882 xmit_mp->b_band = mp->b_band; 22883 } else { 22884 /* 22885 * Exit both the replication and 22886 * fragmentation loops. 22887 */ 22888 UNLOCK_IRE_FP_MP(ire); 22889 goto drop_pkt; 22890 } 22891 UNLOCK_IRE_FP_MP(ire); 22892 BUMP_MIB(&ip_mib, ipFragCreates); 22893 putnext(q, xmit_mp); 22894 22895 if (pkt_type != OB_PKT) { 22896 /* 22897 * Update the packet count of trailing 22898 * RTF_MULTIRT ires. 22899 */ 22900 UPDATE_OB_PKT_COUNT(ire); 22901 } 22902 22903 /* All done if we just consumed the hdr_mp. */ 22904 if (mp == hdr_mp) { 22905 last_frag = B_TRUE; 22906 } 22907 22908 if (multirt_send) { 22909 /* 22910 * We are in a multiple send case; look for 22911 * the next ire and re-enter the loop. 22912 */ 22913 ASSERT(ire1); 22914 ASSERT(next_mp); 22915 /* REFRELE the current ire before looping */ 22916 ire_refrele(ire); 22917 ire = ire1; 22918 ire1 = NULL; 22919 q = ire->ire_stq; 22920 mp = next_mp; 22921 next_mp = NULL; 22922 } 22923 } while (multirt_send); 22924 /* 22925 * Restore the original ire; we need it for the 22926 * trailing frags 22927 */ 22928 if (save_ire != NULL) { 22929 ASSERT(ire1 == NULL); 22930 /* REFRELE the last iterated ire */ 22931 ire_refrele(ire); 22932 /* save_ire has been REFHOLDed */ 22933 ire = save_ire; 22934 q = ire->ire_stq; 22935 save_ire = NULL; 22936 } 22937 22938 if (last_frag) { 22939 BUMP_MIB(&ip_mib, ipFragOKs); 22940 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22941 "ip_wput_frag_end:(%S)", 22942 "consumed hdr_mp"); 22943 22944 if (first_ire != NULL) 22945 ire_refrele(first_ire); 22946 return; 22947 } 22948 /* Otherwise, advance and loop. */ 22949 offset += len; 22950 } 22951 22952 drop_pkt: 22953 /* Clean up following allocation failure. */ 22954 BUMP_MIB(&ip_mib, ipOutDiscards); 22955 freemsg(mp); 22956 if (mp != hdr_mp) 22957 freeb(hdr_mp); 22958 if (mp != mp_orig) 22959 freemsg(mp_orig); 22960 22961 if (save_ire != NULL) 22962 IRE_REFRELE(save_ire); 22963 if (first_ire != NULL) 22964 ire_refrele(first_ire); 22965 22966 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22967 "ip_wput_frag_end:(%S)", 22968 "end--alloc failure"); 22969 } 22970 22971 /* 22972 * Copy the header plus those options which have the copy bit set 22973 */ 22974 static mblk_t * 22975 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 22976 { 22977 mblk_t *mp; 22978 uchar_t *up; 22979 22980 /* 22981 * Quick check if we need to look for options without the copy bit 22982 * set 22983 */ 22984 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 22985 if (!mp) 22986 return (mp); 22987 mp->b_rptr += ip_wroff_extra; 22988 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 22989 bcopy(rptr, mp->b_rptr, hdr_len); 22990 mp->b_wptr += hdr_len + ip_wroff_extra; 22991 return (mp); 22992 } 22993 up = mp->b_rptr; 22994 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 22995 up += IP_SIMPLE_HDR_LENGTH; 22996 rptr += IP_SIMPLE_HDR_LENGTH; 22997 hdr_len -= IP_SIMPLE_HDR_LENGTH; 22998 while (hdr_len > 0) { 22999 uint32_t optval; 23000 uint32_t optlen; 23001 23002 optval = *rptr; 23003 if (optval == IPOPT_EOL) 23004 break; 23005 if (optval == IPOPT_NOP) 23006 optlen = 1; 23007 else 23008 optlen = rptr[1]; 23009 if (optval & IPOPT_COPY) { 23010 bcopy(rptr, up, optlen); 23011 up += optlen; 23012 } 23013 rptr += optlen; 23014 hdr_len -= optlen; 23015 } 23016 /* 23017 * Make sure that we drop an even number of words by filling 23018 * with EOL to the next word boundary. 23019 */ 23020 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 23021 hdr_len & 0x3; hdr_len++) 23022 *up++ = IPOPT_EOL; 23023 mp->b_wptr = up; 23024 /* Update header length */ 23025 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 23026 return (mp); 23027 } 23028 23029 /* 23030 * Delivery to local recipients including fanout to multiple recipients. 23031 * Does not do checksumming of UDP/TCP. 23032 * Note: q should be the read side queue for either the ill or conn. 23033 * Note: rq should be the read side q for the lower (ill) stream. 23034 * We don't send packets to IPPF processing, thus the last argument 23035 * to all the fanout calls are B_FALSE. 23036 */ 23037 void 23038 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 23039 int fanout_flags, zoneid_t zoneid) 23040 { 23041 uint32_t protocol; 23042 mblk_t *first_mp; 23043 boolean_t mctl_present; 23044 int ire_type; 23045 #define rptr ((uchar_t *)ipha) 23046 23047 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 23048 "ip_wput_local_start: q %p", q); 23049 23050 if (ire != NULL) { 23051 ire_type = ire->ire_type; 23052 } else { 23053 /* 23054 * Only ip_multicast_loopback() calls us with a NULL ire. If the 23055 * packet is not multicast, we can't tell the ire type. 23056 */ 23057 ASSERT(CLASSD(ipha->ipha_dst)); 23058 ire_type = IRE_BROADCAST; 23059 } 23060 23061 first_mp = mp; 23062 if (first_mp->b_datap->db_type == M_CTL) { 23063 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 23064 if (!io->ipsec_out_secure) { 23065 /* 23066 * This ipsec_out_t was allocated in ip_wput 23067 * for multicast packets to store the ill_index. 23068 * As this is being delivered locally, we don't 23069 * need this anymore. 23070 */ 23071 mp = first_mp->b_cont; 23072 freeb(first_mp); 23073 first_mp = mp; 23074 mctl_present = B_FALSE; 23075 } else { 23076 mctl_present = B_TRUE; 23077 mp = first_mp->b_cont; 23078 ASSERT(mp != NULL); 23079 ipsec_out_to_in(first_mp); 23080 } 23081 } else { 23082 mctl_present = B_FALSE; 23083 } 23084 23085 loopback_packets++; 23086 23087 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 23088 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 23089 if (!IS_SIMPLE_IPH(ipha)) { 23090 ip_wput_local_options(ipha); 23091 } 23092 23093 protocol = ipha->ipha_protocol; 23094 switch (protocol) { 23095 case IPPROTO_ICMP: { 23096 ire_t *ire_zone; 23097 ilm_t *ilm; 23098 mblk_t *mp1; 23099 zoneid_t last_zoneid; 23100 23101 if (CLASSD(ipha->ipha_dst) && 23102 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 23103 ASSERT(ire_type == IRE_BROADCAST); 23104 /* 23105 * In the multicast case, applications may have joined 23106 * the group from different zones, so we need to deliver 23107 * the packet to each of them. Loop through the 23108 * multicast memberships structures (ilm) on the receive 23109 * ill and send a copy of the packet up each matching 23110 * one. However, we don't do this for multicasts sent on 23111 * the loopback interface (PHYI_LOOPBACK flag set) as 23112 * they must stay in the sender's zone. 23113 * 23114 * ilm_add_v6() ensures that ilms in the same zone are 23115 * contiguous in the ill_ilm list. We use this property 23116 * to avoid sending duplicates needed when two 23117 * applications in the same zone join the same group on 23118 * different logical interfaces: we ignore the ilm if 23119 * its zoneid is the same as the last matching one. 23120 * In addition, the sending of the packet for 23121 * ire_zoneid is delayed until all of the other ilms 23122 * have been exhausted. 23123 */ 23124 last_zoneid = -1; 23125 ILM_WALKER_HOLD(ill); 23126 for (ilm = ill->ill_ilm; ilm != NULL; 23127 ilm = ilm->ilm_next) { 23128 if ((ilm->ilm_flags & ILM_DELETED) || 23129 ipha->ipha_dst != ilm->ilm_addr || 23130 ilm->ilm_zoneid == last_zoneid || 23131 ilm->ilm_zoneid == zoneid || 23132 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 23133 continue; 23134 mp1 = ip_copymsg(first_mp); 23135 if (mp1 == NULL) 23136 continue; 23137 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23138 mctl_present, B_FALSE, ill, 23139 ilm->ilm_zoneid); 23140 last_zoneid = ilm->ilm_zoneid; 23141 } 23142 ILM_WALKER_RELE(ill); 23143 /* 23144 * Loopback case: the sending endpoint has 23145 * IP_MULTICAST_LOOP disabled, therefore we don't 23146 * dispatch the multicast packet to the sending zone. 23147 */ 23148 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 23149 freemsg(first_mp); 23150 return; 23151 } 23152 } else if (ire_type == IRE_BROADCAST) { 23153 /* 23154 * In the broadcast case, there may be many zones 23155 * which need a copy of the packet delivered to them. 23156 * There is one IRE_BROADCAST per broadcast address 23157 * and per zone; we walk those using a helper function. 23158 * In addition, the sending of the packet for zoneid is 23159 * delayed until all of the other ires have been 23160 * processed. 23161 */ 23162 IRB_REFHOLD(ire->ire_bucket); 23163 ire_zone = NULL; 23164 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 23165 ire)) != NULL) { 23166 mp1 = ip_copymsg(first_mp); 23167 if (mp1 == NULL) 23168 continue; 23169 23170 UPDATE_IB_PKT_COUNT(ire_zone); 23171 ire_zone->ire_last_used_time = lbolt; 23172 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 23173 mctl_present, B_FALSE, ill, 23174 ire_zone->ire_zoneid); 23175 } 23176 IRB_REFRELE(ire->ire_bucket); 23177 } 23178 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 23179 0, mctl_present, B_FALSE, ill, zoneid); 23180 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23181 "ip_wput_local_end: q %p (%S)", 23182 q, "icmp"); 23183 return; 23184 } 23185 case IPPROTO_IGMP: 23186 if (igmp_input(q, mp, ill)) { 23187 /* Bad packet - discarded by igmp_input */ 23188 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23189 "ip_wput_local_end: q %p (%S)", 23190 q, "igmp_input--bad packet"); 23191 if (mctl_present) 23192 freeb(first_mp); 23193 return; 23194 } 23195 /* 23196 * igmp_input() may have pulled up the message so ipha needs to 23197 * be reinitialized. 23198 */ 23199 ipha = (ipha_t *)mp->b_rptr; 23200 /* deliver to local raw users */ 23201 break; 23202 case IPPROTO_ENCAP: 23203 /* 23204 * This case is covered by either ip_fanout_proto, or by 23205 * the above security processing for self-tunneled packets. 23206 */ 23207 break; 23208 case IPPROTO_UDP: { 23209 uint16_t *up; 23210 uint32_t ports; 23211 23212 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 23213 UDP_PORTS_OFFSET); 23214 /* Force a 'valid' checksum. */ 23215 up[3] = 0; 23216 23217 ports = *(uint32_t *)up; 23218 ip_fanout_udp(q, first_mp, ill, ipha, ports, 23219 (ire_type == IRE_BROADCAST), 23220 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23221 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 23222 ill, zoneid); 23223 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23224 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 23225 return; 23226 } 23227 case IPPROTO_TCP: { 23228 23229 /* 23230 * For TCP, discard broadcast packets. 23231 */ 23232 if ((ushort_t)ire_type == IRE_BROADCAST) { 23233 freemsg(first_mp); 23234 BUMP_MIB(&ip_mib, ipInDiscards); 23235 ip2dbg(("ip_wput_local: discard broadcast\n")); 23236 return; 23237 } 23238 23239 if (mp->b_datap->db_type == M_DATA) { 23240 /* 23241 * M_DATA mblk, so init mblk (chain) for no struio(). 23242 */ 23243 mblk_t *mp1 = mp; 23244 23245 do 23246 mp1->b_datap->db_struioflag = 0; 23247 while ((mp1 = mp1->b_cont) != NULL); 23248 } 23249 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 23250 <= mp->b_wptr); 23251 ip_fanout_tcp(q, first_mp, ill, ipha, 23252 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23253 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 23254 mctl_present, B_FALSE, zoneid); 23255 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23256 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 23257 return; 23258 } 23259 case IPPROTO_SCTP: 23260 { 23261 uint32_t ports; 23262 23263 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 23264 ip_fanout_sctp(first_mp, ill, ipha, ports, 23265 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 23266 IP_FF_IP6INFO, 23267 mctl_present, B_FALSE, 0, zoneid); 23268 return; 23269 } 23270 23271 default: 23272 break; 23273 } 23274 /* 23275 * Find a client for some other protocol. We give 23276 * copies to multiple clients, if more than one is 23277 * bound. 23278 */ 23279 ip_fanout_proto(q, first_mp, ill, ipha, 23280 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 23281 mctl_present, B_FALSE, ill, zoneid); 23282 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 23283 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 23284 #undef rptr 23285 } 23286 23287 /* 23288 * Update any source route, record route, or timestamp options. 23289 * Check that we are at end of strict source route. 23290 * The options have been sanity checked by ip_wput_options(). 23291 */ 23292 static void 23293 ip_wput_local_options(ipha_t *ipha) 23294 { 23295 ipoptp_t opts; 23296 uchar_t *opt; 23297 uint8_t optval; 23298 uint8_t optlen; 23299 ipaddr_t dst; 23300 uint32_t ts; 23301 ire_t *ire; 23302 timestruc_t now; 23303 23304 ip2dbg(("ip_wput_local_options\n")); 23305 for (optval = ipoptp_first(&opts, ipha); 23306 optval != IPOPT_EOL; 23307 optval = ipoptp_next(&opts)) { 23308 opt = opts.ipoptp_cur; 23309 optlen = opts.ipoptp_len; 23310 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 23311 switch (optval) { 23312 uint32_t off; 23313 case IPOPT_SSRR: 23314 case IPOPT_LSRR: 23315 off = opt[IPOPT_OFFSET]; 23316 off--; 23317 if (optlen < IP_ADDR_LEN || 23318 off > optlen - IP_ADDR_LEN) { 23319 /* End of source route */ 23320 break; 23321 } 23322 /* 23323 * This will only happen if two consecutive entries 23324 * in the source route contains our address or if 23325 * it is a packet with a loose source route which 23326 * reaches us before consuming the whole source route 23327 */ 23328 ip1dbg(("ip_wput_local_options: not end of SR\n")); 23329 if (optval == IPOPT_SSRR) { 23330 return; 23331 } 23332 /* 23333 * Hack: instead of dropping the packet truncate the 23334 * source route to what has been used by filling the 23335 * rest with IPOPT_NOP. 23336 */ 23337 opt[IPOPT_OLEN] = (uint8_t)off; 23338 while (off < optlen) { 23339 opt[off++] = IPOPT_NOP; 23340 } 23341 break; 23342 case IPOPT_RR: 23343 off = opt[IPOPT_OFFSET]; 23344 off--; 23345 if (optlen < IP_ADDR_LEN || 23346 off > optlen - IP_ADDR_LEN) { 23347 /* No more room - ignore */ 23348 ip1dbg(( 23349 "ip_wput_forward_options: end of RR\n")); 23350 break; 23351 } 23352 dst = htonl(INADDR_LOOPBACK); 23353 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 23354 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 23355 break; 23356 case IPOPT_TS: 23357 /* Insert timestamp if there is romm */ 23358 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 23359 case IPOPT_TS_TSONLY: 23360 off = IPOPT_TS_TIMELEN; 23361 break; 23362 case IPOPT_TS_PRESPEC: 23363 case IPOPT_TS_PRESPEC_RFC791: 23364 /* Verify that the address matched */ 23365 off = opt[IPOPT_OFFSET] - 1; 23366 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 23367 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 23368 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23369 if (ire == NULL) { 23370 /* Not for us */ 23371 break; 23372 } 23373 ire_refrele(ire); 23374 /* FALLTHRU */ 23375 case IPOPT_TS_TSANDADDR: 23376 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 23377 break; 23378 default: 23379 /* 23380 * ip_*put_options should have already 23381 * dropped this packet. 23382 */ 23383 cmn_err(CE_PANIC, "ip_wput_local_options: " 23384 "unknown IT - bug in ip_wput_options?\n"); 23385 return; /* Keep "lint" happy */ 23386 } 23387 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 23388 /* Increase overflow counter */ 23389 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 23390 opt[IPOPT_POS_OV_FLG] = (uint8_t) 23391 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 23392 (off << 4); 23393 break; 23394 } 23395 off = opt[IPOPT_OFFSET] - 1; 23396 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 23397 case IPOPT_TS_PRESPEC: 23398 case IPOPT_TS_PRESPEC_RFC791: 23399 case IPOPT_TS_TSANDADDR: 23400 dst = htonl(INADDR_LOOPBACK); 23401 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 23402 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 23403 /* FALLTHRU */ 23404 case IPOPT_TS_TSONLY: 23405 off = opt[IPOPT_OFFSET] - 1; 23406 /* Compute # of milliseconds since midnight */ 23407 gethrestime(&now); 23408 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 23409 now.tv_nsec / (NANOSEC / MILLISEC); 23410 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 23411 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 23412 break; 23413 } 23414 break; 23415 } 23416 } 23417 } 23418 23419 /* 23420 * Send out a multicast packet on interface ipif. 23421 * The sender does not have an conn. 23422 * Caller verifies that this isn't a PHYI_LOOPBACK. 23423 */ 23424 void 23425 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif) 23426 { 23427 ipha_t *ipha; 23428 ire_t *ire; 23429 ipaddr_t dst; 23430 mblk_t *first_mp; 23431 23432 /* igmp_sendpkt always allocates a ipsec_out_t */ 23433 ASSERT(mp->b_datap->db_type == M_CTL); 23434 ASSERT(!ipif->ipif_isv6); 23435 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 23436 23437 first_mp = mp; 23438 mp = first_mp->b_cont; 23439 ASSERT(mp->b_datap->db_type == M_DATA); 23440 ipha = (ipha_t *)mp->b_rptr; 23441 23442 /* 23443 * Find an IRE which matches the destination and the outgoing 23444 * queue (i.e. the outgoing interface.) 23445 */ 23446 if (ipif->ipif_flags & IPIF_POINTOPOINT) 23447 dst = ipif->ipif_pp_dst_addr; 23448 else 23449 dst = ipha->ipha_dst; 23450 /* 23451 * The source address has already been initialized by the 23452 * caller and hence matching on ILL (MATCH_IRE_ILL) would 23453 * be sufficient rather than MATCH_IRE_IPIF. 23454 * 23455 * This function is used for sending IGMP packets. We need 23456 * to make sure that we send the packet out of the interface 23457 * (ipif->ipif_ill) where we joined the group. This is to 23458 * prevent from switches doing IGMP snooping to send us multicast 23459 * packets for a given group on the interface we have joined. 23460 * If we can't find an ire, igmp_sendpkt has already initialized 23461 * ipsec_out_attach_if so that this will not be load spread in 23462 * ip_newroute_ipif. 23463 */ 23464 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, NULL, 23465 MATCH_IRE_ILL); 23466 if (!ire) { 23467 /* 23468 * Mark this packet to make it be delivered to 23469 * ip_wput_ire after the new ire has been 23470 * created. 23471 */ 23472 mp->b_prev = NULL; 23473 mp->b_next = NULL; 23474 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC); 23475 return; 23476 } 23477 23478 /* 23479 * Honor the RTF_SETSRC flag; this is the only case 23480 * where we force this addr whatever the current src addr is, 23481 * because this address is set by igmp_sendpkt(), and 23482 * cannot be specified by any user. 23483 */ 23484 if (ire->ire_flags & RTF_SETSRC) { 23485 ipha->ipha_src = ire->ire_src_addr; 23486 } 23487 23488 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE); 23489 } 23490 23491 /* 23492 * NOTE : This function does not ire_refrele the ire argument passed in. 23493 * 23494 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 23495 * failure. The ire_fp_mp can vanish any time in the case of IRE_MIPRTUN 23496 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 23497 * the ire_lock to access the ire_fp_mp in this case. 23498 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 23499 * prepending a fastpath message IPQoS processing must precede it, we also set 23500 * the b_band of the fastpath message to that of the mblk returned by IPQoS 23501 * (IPQoS might have set the b_band for CoS marking). 23502 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 23503 * must follow it so that IPQoS can mark the dl_priority field for CoS 23504 * marking, if needed. 23505 */ 23506 static mblk_t * 23507 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 23508 { 23509 uint_t hlen; 23510 ipha_t *ipha; 23511 mblk_t *mp1; 23512 boolean_t qos_done = B_FALSE; 23513 uchar_t *ll_hdr; 23514 23515 #define rptr ((uchar_t *)ipha) 23516 23517 ipha = (ipha_t *)mp->b_rptr; 23518 hlen = 0; 23519 LOCK_IRE_FP_MP(ire); 23520 if ((mp1 = ire->ire_fp_mp) != NULL) { 23521 ASSERT(DB_TYPE(mp1) == M_DATA); 23522 /* Initiate IPPF processing */ 23523 if ((proc != 0) && IPP_ENABLED(proc)) { 23524 UNLOCK_IRE_FP_MP(ire); 23525 ip_process(proc, &mp, ill_index); 23526 if (mp == NULL) 23527 return (NULL); 23528 23529 ipha = (ipha_t *)mp->b_rptr; 23530 LOCK_IRE_FP_MP(ire); 23531 if ((mp1 = ire->ire_fp_mp) == NULL) { 23532 qos_done = B_TRUE; 23533 goto no_fp_mp; 23534 } 23535 ASSERT(DB_TYPE(mp1) == M_DATA); 23536 } 23537 hlen = MBLKL(mp1); 23538 /* 23539 * Check if we have enough room to prepend fastpath 23540 * header 23541 */ 23542 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 23543 ll_hdr = rptr - hlen; 23544 bcopy(mp1->b_rptr, ll_hdr, hlen); 23545 /* XXX ipha is not aligned here */ 23546 ipha = (ipha_t *)(rptr - hlen); 23547 /* 23548 * Set the b_rptr to the start of the link layer 23549 * header 23550 */ 23551 mp->b_rptr = rptr; 23552 mp1 = mp; 23553 } else { 23554 mp1 = copyb(mp1); 23555 if (mp1 == NULL) 23556 goto unlock_err; 23557 mp1->b_band = mp->b_band; 23558 mp1->b_cont = mp; 23559 /* 23560 * certain system generated traffic may not 23561 * have cred/label in ip header block. This 23562 * is true even for a labeled system. But for 23563 * labeled traffic, inherit the label in the 23564 * new header. 23565 */ 23566 if (DB_CRED(mp) != NULL) 23567 mblk_setcred(mp1, DB_CRED(mp)); 23568 /* 23569 * XXX disable ICK_VALID and compute checksum 23570 * here; can happen if ire_fp_mp changes and 23571 * it can't be copied now due to insufficient 23572 * space. (unlikely, fp mp can change, but it 23573 * does not increase in length) 23574 */ 23575 } 23576 UNLOCK_IRE_FP_MP(ire); 23577 } else { 23578 no_fp_mp: 23579 mp1 = copyb(ire->ire_dlureq_mp); 23580 if (mp1 == NULL) { 23581 unlock_err: 23582 UNLOCK_IRE_FP_MP(ire); 23583 freemsg(mp); 23584 return (NULL); 23585 } 23586 UNLOCK_IRE_FP_MP(ire); 23587 mp1->b_cont = mp; 23588 /* 23589 * certain system generated traffic may not 23590 * have cred/label in ip header block. This 23591 * is true even for a labeled system. But for 23592 * labeled traffic, inherit the label in the 23593 * new header. 23594 */ 23595 if (DB_CRED(mp) != NULL) 23596 mblk_setcred(mp1, DB_CRED(mp)); 23597 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 23598 ip_process(proc, &mp1, ill_index); 23599 if (mp1 == NULL) 23600 return (NULL); 23601 } 23602 } 23603 return (mp1); 23604 #undef rptr 23605 } 23606 23607 /* 23608 * Finish the outbound IPsec processing for an IPv6 packet. This function 23609 * is called from ipsec_out_process() if the IPsec packet was processed 23610 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 23611 * asynchronously. 23612 */ 23613 void 23614 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 23615 ire_t *ire_arg) 23616 { 23617 in6_addr_t *v6dstp; 23618 ire_t *ire; 23619 mblk_t *mp; 23620 uint_t ill_index; 23621 ipsec_out_t *io; 23622 boolean_t attach_if, hwaccel; 23623 uint32_t flags = IP6_NO_IPPOLICY; 23624 int match_flags; 23625 zoneid_t zoneid; 23626 boolean_t ill_need_rele = B_FALSE; 23627 boolean_t ire_need_rele = B_FALSE; 23628 23629 mp = ipsec_mp->b_cont; 23630 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23631 ill_index = io->ipsec_out_ill_index; 23632 if (io->ipsec_out_reachable) { 23633 flags |= IPV6_REACHABILITY_CONFIRMATION; 23634 } 23635 attach_if = io->ipsec_out_attach_if; 23636 hwaccel = io->ipsec_out_accelerated; 23637 zoneid = io->ipsec_out_zoneid; 23638 ASSERT(zoneid != ALL_ZONES); 23639 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 23640 /* Multicast addresses should have non-zero ill_index. */ 23641 v6dstp = &ip6h->ip6_dst; 23642 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 23643 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 23644 ASSERT(!attach_if || ill_index != 0); 23645 if (ill_index != 0) { 23646 if (ill == NULL) { 23647 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 23648 B_TRUE); 23649 23650 /* Failure case frees things for us. */ 23651 if (ill == NULL) 23652 return; 23653 23654 ill_need_rele = B_TRUE; 23655 } 23656 /* 23657 * If this packet needs to go out on a particular interface 23658 * honor it. 23659 */ 23660 if (attach_if) { 23661 match_flags = MATCH_IRE_ILL; 23662 23663 /* 23664 * Check if we need an ire that will not be 23665 * looked up by anybody else i.e. HIDDEN. 23666 */ 23667 if (ill_is_probeonly(ill)) { 23668 match_flags |= MATCH_IRE_MARK_HIDDEN; 23669 } 23670 } 23671 } 23672 ASSERT(mp != NULL); 23673 23674 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 23675 boolean_t unspec_src; 23676 ipif_t *ipif; 23677 23678 /* 23679 * Use the ill_index to get the right ill. 23680 */ 23681 unspec_src = io->ipsec_out_unspec_src; 23682 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 23683 if (ipif == NULL) { 23684 if (ill_need_rele) 23685 ill_refrele(ill); 23686 freemsg(ipsec_mp); 23687 return; 23688 } 23689 23690 if (ire_arg != NULL) { 23691 ire = ire_arg; 23692 } else { 23693 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 23694 zoneid, MBLK_GETLABEL(mp), match_flags); 23695 ire_need_rele = B_TRUE; 23696 } 23697 if (ire != NULL) { 23698 ipif_refrele(ipif); 23699 /* 23700 * XXX Do the multicast forwarding now, as the IPSEC 23701 * processing has been done. 23702 */ 23703 goto send; 23704 } 23705 23706 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 23707 mp->b_prev = NULL; 23708 mp->b_next = NULL; 23709 23710 /* 23711 * If the IPsec packet was processed asynchronously, 23712 * drop it now. 23713 */ 23714 if (q == NULL) { 23715 if (ill_need_rele) 23716 ill_refrele(ill); 23717 freemsg(ipsec_mp); 23718 return; 23719 } 23720 23721 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 23722 unspec_src, zoneid); 23723 ipif_refrele(ipif); 23724 } else { 23725 if (attach_if) { 23726 ipif_t *ipif; 23727 23728 ipif = ipif_get_next_ipif(NULL, ill); 23729 if (ipif == NULL) { 23730 if (ill_need_rele) 23731 ill_refrele(ill); 23732 freemsg(ipsec_mp); 23733 return; 23734 } 23735 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 23736 zoneid, MBLK_GETLABEL(mp), match_flags); 23737 ire_need_rele = B_TRUE; 23738 ipif_refrele(ipif); 23739 } else { 23740 if (ire_arg != NULL) { 23741 ire = ire_arg; 23742 } else { 23743 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 23744 ire_need_rele = B_TRUE; 23745 } 23746 } 23747 if (ire != NULL) 23748 goto send; 23749 /* 23750 * ire disappeared underneath. 23751 * 23752 * What we need to do here is the ip_newroute 23753 * logic to get the ire without doing the IPSEC 23754 * processing. Follow the same old path. But this 23755 * time, ip_wput or ire_add_then_send will call us 23756 * directly as all the IPSEC operations are done. 23757 */ 23758 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 23759 mp->b_prev = NULL; 23760 mp->b_next = NULL; 23761 23762 /* 23763 * If the IPsec packet was processed asynchronously, 23764 * drop it now. 23765 */ 23766 if (q == NULL) { 23767 if (ill_need_rele) 23768 ill_refrele(ill); 23769 freemsg(ipsec_mp); 23770 return; 23771 } 23772 23773 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 23774 zoneid); 23775 } 23776 if (ill != NULL && ill_need_rele) 23777 ill_refrele(ill); 23778 return; 23779 send: 23780 if (ill != NULL && ill_need_rele) 23781 ill_refrele(ill); 23782 23783 /* Local delivery */ 23784 if (ire->ire_stq == NULL) { 23785 ASSERT(q != NULL); 23786 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 23787 ire, 0); 23788 if (ire_need_rele) 23789 ire_refrele(ire); 23790 return; 23791 } 23792 /* 23793 * Everything is done. Send it out on the wire. 23794 * We force the insertion of a fragment header using the 23795 * IPH_FRAG_HDR flag in two cases: 23796 * - after reception of an ICMPv6 "packet too big" message 23797 * with a MTU < 1280 (cf. RFC 2460 section 5) 23798 * - for multirouted IPv6 packets, so that the receiver can 23799 * discard duplicates according to their fragment identifier 23800 */ 23801 /* XXX fix flow control problems. */ 23802 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 23803 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 23804 if (hwaccel) { 23805 /* 23806 * hardware acceleration does not handle these 23807 * "slow path" cases. 23808 */ 23809 /* IPsec KSTATS: should bump bean counter here. */ 23810 if (ire_need_rele) 23811 ire_refrele(ire); 23812 freemsg(ipsec_mp); 23813 return; 23814 } 23815 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 23816 (mp->b_cont ? msgdsize(mp) : 23817 mp->b_wptr - (uchar_t *)ip6h)) { 23818 /* IPsec KSTATS: should bump bean counter here. */ 23819 ip0dbg(("Packet length mismatch: %d, %ld\n", 23820 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 23821 msgdsize(mp))); 23822 if (ire_need_rele) 23823 ire_refrele(ire); 23824 freemsg(ipsec_mp); 23825 return; 23826 } 23827 ASSERT(mp->b_prev == NULL); 23828 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 23829 ntohs(ip6h->ip6_plen) + 23830 IPV6_HDR_LEN, ire->ire_max_frag)); 23831 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 23832 ire->ire_max_frag); 23833 } else { 23834 UPDATE_OB_PKT_COUNT(ire); 23835 ire->ire_last_used_time = lbolt; 23836 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 23837 } 23838 if (ire_need_rele) 23839 ire_refrele(ire); 23840 freeb(ipsec_mp); 23841 } 23842 23843 void 23844 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 23845 { 23846 mblk_t *hada_mp; /* attributes M_CTL mblk */ 23847 da_ipsec_t *hada; /* data attributes */ 23848 ill_t *ill = (ill_t *)q->q_ptr; 23849 23850 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 23851 23852 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 23853 /* IPsec KSTATS: Bump lose counter here! */ 23854 freemsg(mp); 23855 return; 23856 } 23857 23858 /* 23859 * It's an IPsec packet that must be 23860 * accelerated by the Provider, and the 23861 * outbound ill is IPsec acceleration capable. 23862 * Prepends the mblk with an IPHADA_M_CTL, and ship it 23863 * to the ill. 23864 * IPsec KSTATS: should bump packet counter here. 23865 */ 23866 23867 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 23868 if (hada_mp == NULL) { 23869 /* IPsec KSTATS: should bump packet counter here. */ 23870 freemsg(mp); 23871 return; 23872 } 23873 23874 hada_mp->b_datap->db_type = M_CTL; 23875 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 23876 hada_mp->b_cont = mp; 23877 23878 hada = (da_ipsec_t *)hada_mp->b_rptr; 23879 bzero(hada, sizeof (da_ipsec_t)); 23880 hada->da_type = IPHADA_M_CTL; 23881 23882 putnext(q, hada_mp); 23883 } 23884 23885 /* 23886 * Finish the outbound IPsec processing. This function is called from 23887 * ipsec_out_process() if the IPsec packet was processed 23888 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 23889 * asynchronously. 23890 */ 23891 void 23892 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 23893 ire_t *ire_arg) 23894 { 23895 uint32_t v_hlen_tos_len; 23896 ipaddr_t dst; 23897 ipif_t *ipif = NULL; 23898 ire_t *ire; 23899 ire_t *ire1 = NULL; 23900 mblk_t *next_mp = NULL; 23901 uint32_t max_frag; 23902 boolean_t multirt_send = B_FALSE; 23903 mblk_t *mp; 23904 mblk_t *mp1; 23905 uint_t ill_index; 23906 ipsec_out_t *io; 23907 boolean_t attach_if; 23908 int match_flags, offset; 23909 irb_t *irb = NULL; 23910 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 23911 zoneid_t zoneid; 23912 uint32_t cksum; 23913 uint16_t *up; 23914 #ifdef _BIG_ENDIAN 23915 #define LENGTH (v_hlen_tos_len & 0xFFFF) 23916 #else 23917 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 23918 #endif 23919 23920 mp = ipsec_mp->b_cont; 23921 ASSERT(mp != NULL); 23922 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23923 dst = ipha->ipha_dst; 23924 23925 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23926 ill_index = io->ipsec_out_ill_index; 23927 attach_if = io->ipsec_out_attach_if; 23928 zoneid = io->ipsec_out_zoneid; 23929 ASSERT(zoneid != ALL_ZONES); 23930 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 23931 if (ill_index != 0) { 23932 if (ill == NULL) { 23933 ill = ip_grab_attach_ill(NULL, ipsec_mp, 23934 ill_index, B_FALSE); 23935 23936 /* Failure case frees things for us. */ 23937 if (ill == NULL) 23938 return; 23939 23940 ill_need_rele = B_TRUE; 23941 } 23942 /* 23943 * If this packet needs to go out on a particular interface 23944 * honor it. 23945 */ 23946 if (attach_if) { 23947 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 23948 23949 /* 23950 * Check if we need an ire that will not be 23951 * looked up by anybody else i.e. HIDDEN. 23952 */ 23953 if (ill_is_probeonly(ill)) { 23954 match_flags |= MATCH_IRE_MARK_HIDDEN; 23955 } 23956 } 23957 } 23958 23959 if (CLASSD(dst)) { 23960 boolean_t conn_dontroute; 23961 /* 23962 * Use the ill_index to get the right ipif. 23963 */ 23964 conn_dontroute = io->ipsec_out_dontroute; 23965 if (ill_index == 0) 23966 ipif = ipif_lookup_group(dst, zoneid); 23967 else 23968 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 23969 if (ipif == NULL) { 23970 ip1dbg(("ip_wput_ipsec_out: No ipif for" 23971 " multicast\n")); 23972 BUMP_MIB(&ip_mib, ipOutNoRoutes); 23973 freemsg(ipsec_mp); 23974 goto done; 23975 } 23976 /* 23977 * ipha_src has already been intialized with the 23978 * value of the ipif in ip_wput. All we need now is 23979 * an ire to send this downstream. 23980 */ 23981 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 23982 MBLK_GETLABEL(mp), match_flags); 23983 if (ire != NULL) { 23984 ill_t *ill1; 23985 /* 23986 * Do the multicast forwarding now, as the IPSEC 23987 * processing has been done. 23988 */ 23989 if (ip_g_mrouter && !conn_dontroute && 23990 (ill1 = ire_to_ill(ire))) { 23991 if (ip_mforward(ill1, ipha, mp)) { 23992 freemsg(ipsec_mp); 23993 ip1dbg(("ip_wput_ipsec_out: mforward " 23994 "failed\n")); 23995 ire_refrele(ire); 23996 goto done; 23997 } 23998 } 23999 goto send; 24000 } 24001 24002 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 24003 mp->b_prev = NULL; 24004 mp->b_next = NULL; 24005 24006 /* 24007 * If the IPsec packet was processed asynchronously, 24008 * drop it now. 24009 */ 24010 if (q == NULL) { 24011 freemsg(ipsec_mp); 24012 goto done; 24013 } 24014 24015 /* 24016 * We may be using a wrong ipif to create the ire. 24017 * But it is okay as the source address is assigned 24018 * for the packet already. Next outbound packet would 24019 * create the IRE with the right IPIF in ip_wput. 24020 * 24021 * Also handle RTF_MULTIRT routes. 24022 */ 24023 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT); 24024 } else { 24025 if (attach_if) { 24026 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 24027 zoneid, MBLK_GETLABEL(mp), match_flags); 24028 } else { 24029 if (ire_arg != NULL) { 24030 ire = ire_arg; 24031 ire_need_rele = B_FALSE; 24032 } else { 24033 ire = ire_cache_lookup(dst, zoneid, 24034 MBLK_GETLABEL(mp)); 24035 } 24036 } 24037 if (ire != NULL) { 24038 goto send; 24039 } 24040 24041 /* 24042 * ire disappeared underneath. 24043 * 24044 * What we need to do here is the ip_newroute 24045 * logic to get the ire without doing the IPSEC 24046 * processing. Follow the same old path. But this 24047 * time, ip_wput or ire_add_then_put will call us 24048 * directly as all the IPSEC operations are done. 24049 */ 24050 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 24051 mp->b_prev = NULL; 24052 mp->b_next = NULL; 24053 24054 /* 24055 * If the IPsec packet was processed asynchronously, 24056 * drop it now. 24057 */ 24058 if (q == NULL) { 24059 freemsg(ipsec_mp); 24060 goto done; 24061 } 24062 24063 /* 24064 * Since we're going through ip_newroute() again, we 24065 * need to make sure we don't: 24066 * 24067 * 1.) Trigger the ASSERT() with the ipha_ident 24068 * overloading. 24069 * 2.) Redo transport-layer checksumming, since we've 24070 * already done all that to get this far. 24071 * 24072 * The easiest way not do either of the above is to set 24073 * the ipha_ident field to IP_HDR_INCLUDED. 24074 */ 24075 ipha->ipha_ident = IP_HDR_INCLUDED; 24076 ip_newroute(q, ipsec_mp, dst, NULL, 24077 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 24078 } 24079 goto done; 24080 send: 24081 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 24082 /* 24083 * ESP NAT-Traversal packet. 24084 * 24085 * Just do software checksum for now. 24086 */ 24087 24088 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 24089 IP_STAT(ip_out_sw_cksum); 24090 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 24091 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 24092 #define iphs ((uint16_t *)ipha) 24093 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 24094 iphs[9] + ntohs(htons(ipha->ipha_length) - 24095 IP_SIMPLE_HDR_LENGTH); 24096 #undef iphs 24097 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 24098 cksum = 0xFFFF; 24099 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 24100 if (mp1->b_wptr - mp1->b_rptr >= 24101 offset + sizeof (uint16_t)) { 24102 up = (uint16_t *)(mp1->b_rptr + offset); 24103 *up = cksum; 24104 break; /* out of for loop */ 24105 } else { 24106 offset -= (mp->b_wptr - mp->b_rptr); 24107 } 24108 } /* Otherwise, just keep the all-zero checksum. */ 24109 24110 if (ire->ire_stq == NULL) { 24111 /* 24112 * Loopbacks go through ip_wput_local except for one case. 24113 * We come here if we generate a icmp_frag_needed message 24114 * after IPSEC processing is over. When this function calls 24115 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 24116 * icmp_frag_needed. The message generated comes back here 24117 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 24118 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 24119 * source address as it is usually set in ip_wput_ire. As 24120 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 24121 * and we end up here. We can't enter ip_wput_ire once the 24122 * IPSEC processing is over and hence we need to do it here. 24123 */ 24124 ASSERT(q != NULL); 24125 UPDATE_OB_PKT_COUNT(ire); 24126 ire->ire_last_used_time = lbolt; 24127 if (ipha->ipha_src == 0) 24128 ipha->ipha_src = ire->ire_src_addr; 24129 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 24130 ire, 0, zoneid); 24131 if (ire_need_rele) 24132 ire_refrele(ire); 24133 goto done; 24134 } 24135 24136 if (ire->ire_max_frag < (unsigned int)LENGTH) { 24137 /* 24138 * We are through with IPSEC processing. 24139 * Fragment this and send it on the wire. 24140 */ 24141 if (io->ipsec_out_accelerated) { 24142 /* 24143 * The packet has been accelerated but must 24144 * be fragmented. This should not happen 24145 * since AH and ESP must not accelerate 24146 * packets that need fragmentation, however 24147 * the configuration could have changed 24148 * since the AH or ESP processing. 24149 * Drop packet. 24150 * IPsec KSTATS: bump bean counter here. 24151 */ 24152 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 24153 "fragmented accelerated packet!\n")); 24154 freemsg(ipsec_mp); 24155 } else { 24156 ip_wput_ire_fragmentit(ipsec_mp, ire); 24157 } 24158 if (ire_need_rele) 24159 ire_refrele(ire); 24160 goto done; 24161 } 24162 24163 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 24164 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 24165 (void *)ire->ire_ipif, (void *)ipif)); 24166 24167 /* 24168 * Multiroute the secured packet, unless IPsec really 24169 * requires the packet to go out only through a particular 24170 * interface. 24171 */ 24172 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 24173 ire_t *first_ire; 24174 irb = ire->ire_bucket; 24175 ASSERT(irb != NULL); 24176 /* 24177 * This ire has been looked up as the one that 24178 * goes through the given ipif; 24179 * make sure we do not omit any other multiroute ire 24180 * that may be present in the bucket before this one. 24181 */ 24182 IRB_REFHOLD(irb); 24183 for (first_ire = irb->irb_ire; 24184 first_ire != NULL; 24185 first_ire = first_ire->ire_next) { 24186 if ((first_ire->ire_flags & RTF_MULTIRT) && 24187 (first_ire->ire_addr == ire->ire_addr) && 24188 !(first_ire->ire_marks & 24189 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 24190 break; 24191 } 24192 24193 if ((first_ire != NULL) && (first_ire != ire)) { 24194 /* 24195 * Don't change the ire if the packet must 24196 * be fragmented if sent via this new one. 24197 */ 24198 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 24199 IRE_REFHOLD(first_ire); 24200 if (ire_need_rele) 24201 ire_refrele(ire); 24202 else 24203 ire_need_rele = B_TRUE; 24204 ire = first_ire; 24205 } 24206 } 24207 IRB_REFRELE(irb); 24208 24209 multirt_send = B_TRUE; 24210 max_frag = ire->ire_max_frag; 24211 } else { 24212 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 24213 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 24214 "flag, attach_if %d\n", attach_if)); 24215 } 24216 } 24217 24218 /* 24219 * In most cases, the emission loop below is entered only once. 24220 * Only in the case where the ire holds the RTF_MULTIRT 24221 * flag, we loop to process all RTF_MULTIRT ires in the 24222 * bucket, and send the packet through all crossed 24223 * RTF_MULTIRT routes. 24224 */ 24225 do { 24226 if (multirt_send) { 24227 /* 24228 * ire1 holds here the next ire to process in the 24229 * bucket. If multirouting is expected, 24230 * any non-RTF_MULTIRT ire that has the 24231 * right destination address is ignored. 24232 */ 24233 ASSERT(irb != NULL); 24234 IRB_REFHOLD(irb); 24235 for (ire1 = ire->ire_next; 24236 ire1 != NULL; 24237 ire1 = ire1->ire_next) { 24238 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24239 continue; 24240 if (ire1->ire_addr != ire->ire_addr) 24241 continue; 24242 if (ire1->ire_marks & 24243 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24244 continue; 24245 /* No loopback here */ 24246 if (ire1->ire_stq == NULL) 24247 continue; 24248 /* 24249 * Ensure we do not exceed the MTU 24250 * of the next route. 24251 */ 24252 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 24253 ip_multirt_bad_mtu(ire1, max_frag); 24254 continue; 24255 } 24256 24257 IRE_REFHOLD(ire1); 24258 break; 24259 } 24260 IRB_REFRELE(irb); 24261 if (ire1 != NULL) { 24262 /* 24263 * We are in a multiple send case, need to 24264 * make a copy of the packet. 24265 */ 24266 next_mp = copymsg(ipsec_mp); 24267 if (next_mp == NULL) { 24268 ire_refrele(ire1); 24269 ire1 = NULL; 24270 } 24271 } 24272 } 24273 24274 /* Everything is done. Send it out on the wire */ 24275 mp1 = ip_wput_attach_llhdr(mp, ire, 0, 0); 24276 if (mp1 == NULL) { 24277 BUMP_MIB(&ip_mib, ipOutDiscards); 24278 freemsg(ipsec_mp); 24279 if (ire_need_rele) 24280 ire_refrele(ire); 24281 if (ire1 != NULL) { 24282 ire_refrele(ire1); 24283 freemsg(next_mp); 24284 } 24285 goto done; 24286 } 24287 UPDATE_OB_PKT_COUNT(ire); 24288 ire->ire_last_used_time = lbolt; 24289 if (!io->ipsec_out_accelerated) { 24290 putnext(ire->ire_stq, mp1); 24291 } else { 24292 /* 24293 * Safety Pup says: make sure this is going to 24294 * the right interface! 24295 */ 24296 ill_t *ill1 = (ill_t *)ire->ire_stq->q_ptr; 24297 int ifindex = ill1->ill_phyint->phyint_ifindex; 24298 24299 if (ifindex != io->ipsec_out_capab_ill_index) { 24300 /* IPsec kstats: bump lose counter */ 24301 freemsg(mp1); 24302 } else { 24303 ipsec_hw_putnext(ire->ire_stq, mp1); 24304 } 24305 } 24306 24307 freeb(ipsec_mp); 24308 if (ire_need_rele) 24309 ire_refrele(ire); 24310 24311 if (ire1 != NULL) { 24312 ire = ire1; 24313 ire_need_rele = B_TRUE; 24314 ASSERT(next_mp); 24315 ipsec_mp = next_mp; 24316 mp = ipsec_mp->b_cont; 24317 ire1 = NULL; 24318 next_mp = NULL; 24319 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24320 } else { 24321 multirt_send = B_FALSE; 24322 } 24323 } while (multirt_send); 24324 done: 24325 if (ill != NULL && ill_need_rele) 24326 ill_refrele(ill); 24327 if (ipif != NULL) 24328 ipif_refrele(ipif); 24329 } 24330 24331 /* 24332 * Get the ill corresponding to the specified ire, and compare its 24333 * capabilities with the protocol and algorithms specified by the 24334 * the SA obtained from ipsec_out. If they match, annotate the 24335 * ipsec_out structure to indicate that the packet needs acceleration. 24336 * 24337 * 24338 * A packet is eligible for outbound hardware acceleration if the 24339 * following conditions are satisfied: 24340 * 24341 * 1. the packet will not be fragmented 24342 * 2. the provider supports the algorithm 24343 * 3. there is no pending control message being exchanged 24344 * 4. snoop is not attached 24345 * 5. the destination address is not a broadcast or multicast address. 24346 * 24347 * Rationale: 24348 * - Hardware drivers do not support fragmentation with 24349 * the current interface. 24350 * - snoop, multicast, and broadcast may result in exposure of 24351 * a cleartext datagram. 24352 * We check all five of these conditions here. 24353 * 24354 * XXX would like to nuke "ire_t *" parameter here; problem is that 24355 * IRE is only way to figure out if a v4 address is a broadcast and 24356 * thus ineligible for acceleration... 24357 */ 24358 static void 24359 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 24360 { 24361 ipsec_out_t *io; 24362 mblk_t *data_mp; 24363 uint_t plen, overhead; 24364 24365 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 24366 return; 24367 24368 if (ill == NULL) 24369 return; 24370 24371 /* 24372 * Destination address is a broadcast or multicast. Punt. 24373 */ 24374 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 24375 IRE_LOCAL))) 24376 return; 24377 24378 data_mp = ipsec_mp->b_cont; 24379 24380 if (ill->ill_isv6) { 24381 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 24382 24383 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 24384 return; 24385 24386 plen = ip6h->ip6_plen; 24387 } else { 24388 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 24389 24390 if (CLASSD(ipha->ipha_dst)) 24391 return; 24392 24393 plen = ipha->ipha_length; 24394 } 24395 /* 24396 * Is there a pending DLPI control message being exchanged 24397 * between IP/IPsec and the DLS Provider? If there is, it 24398 * could be a SADB update, and the state of the DLS Provider 24399 * SADB might not be in sync with the SADB maintained by 24400 * IPsec. To avoid dropping packets or using the wrong keying 24401 * material, we do not accelerate this packet. 24402 */ 24403 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 24404 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 24405 "ill_dlpi_pending! don't accelerate packet\n")); 24406 return; 24407 } 24408 24409 /* 24410 * Is the Provider in promiscous mode? If it does, we don't 24411 * accelerate the packet since it will bounce back up to the 24412 * listeners in the clear. 24413 */ 24414 if (ill->ill_promisc_on_phys) { 24415 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 24416 "ill in promiscous mode, don't accelerate packet\n")); 24417 return; 24418 } 24419 24420 /* 24421 * Will the packet require fragmentation? 24422 */ 24423 24424 /* 24425 * IPsec ESP note: this is a pessimistic estimate, but the same 24426 * as is used elsewhere. 24427 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 24428 * + 2-byte trailer 24429 */ 24430 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 24431 IPSEC_BASE_ESP_HDR_SIZE(sa); 24432 24433 if ((plen + overhead) > ill->ill_max_mtu) 24434 return; 24435 24436 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24437 24438 /* 24439 * Can the ill accelerate this IPsec protocol and algorithm 24440 * specified by the SA? 24441 */ 24442 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 24443 ill->ill_isv6, sa)) { 24444 return; 24445 } 24446 24447 /* 24448 * Tell AH or ESP that the outbound ill is capable of 24449 * accelerating this packet. 24450 */ 24451 io->ipsec_out_is_capab_ill = B_TRUE; 24452 } 24453 24454 /* 24455 * Select which AH & ESP SA's to use (if any) for the outbound packet. 24456 * 24457 * If this function returns B_TRUE, the requested SA's have been filled 24458 * into the ipsec_out_*_sa pointers. 24459 * 24460 * If the function returns B_FALSE, the packet has been "consumed", most 24461 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 24462 * 24463 * The SA references created by the protocol-specific "select" 24464 * function will be released when the ipsec_mp is freed, thanks to the 24465 * ipsec_out_free destructor -- see spd.c. 24466 */ 24467 static boolean_t 24468 ipsec_out_select_sa(mblk_t *ipsec_mp) 24469 { 24470 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 24471 ipsec_out_t *io; 24472 ipsec_policy_t *pp; 24473 ipsec_action_t *ap; 24474 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24475 ASSERT(io->ipsec_out_type == IPSEC_OUT); 24476 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 24477 24478 if (!io->ipsec_out_secure) { 24479 /* 24480 * We came here by mistake. 24481 * Don't bother with ipsec processing 24482 * We should "discourage" this path in the future. 24483 */ 24484 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 24485 return (B_FALSE); 24486 } 24487 ASSERT(io->ipsec_out_need_policy == B_FALSE); 24488 ASSERT((io->ipsec_out_policy != NULL) || 24489 (io->ipsec_out_act != NULL)); 24490 24491 ASSERT(io->ipsec_out_failed == B_FALSE); 24492 24493 /* 24494 * IPSEC processing has started. 24495 */ 24496 io->ipsec_out_proc_begin = B_TRUE; 24497 ap = io->ipsec_out_act; 24498 if (ap == NULL) { 24499 pp = io->ipsec_out_policy; 24500 ASSERT(pp != NULL); 24501 ap = pp->ipsp_act; 24502 ASSERT(ap != NULL); 24503 } 24504 24505 /* 24506 * We have an action. now, let's select SA's. 24507 * (In the future, we can cache this in the conn_t..) 24508 */ 24509 if (ap->ipa_want_esp) { 24510 if (io->ipsec_out_esp_sa == NULL) { 24511 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 24512 IPPROTO_ESP); 24513 } 24514 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 24515 } 24516 24517 if (ap->ipa_want_ah) { 24518 if (io->ipsec_out_ah_sa == NULL) { 24519 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 24520 IPPROTO_AH); 24521 } 24522 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 24523 /* 24524 * The ESP and AH processing order needs to be preserved 24525 * when both protocols are required (ESP should be applied 24526 * before AH for an outbound packet). Force an ESP ACQUIRE 24527 * when both ESP and AH are required, and an AH ACQUIRE 24528 * is needed. 24529 */ 24530 if (ap->ipa_want_esp && need_ah_acquire) 24531 need_esp_acquire = B_TRUE; 24532 } 24533 24534 /* 24535 * Send an ACQUIRE (extended, regular, or both) if we need one. 24536 * Release SAs that got referenced, but will not be used until we 24537 * acquire _all_ of the SAs we need. 24538 */ 24539 if (need_ah_acquire || need_esp_acquire) { 24540 if (io->ipsec_out_ah_sa != NULL) { 24541 IPSA_REFRELE(io->ipsec_out_ah_sa); 24542 io->ipsec_out_ah_sa = NULL; 24543 } 24544 if (io->ipsec_out_esp_sa != NULL) { 24545 IPSA_REFRELE(io->ipsec_out_esp_sa); 24546 io->ipsec_out_esp_sa = NULL; 24547 } 24548 24549 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 24550 return (B_FALSE); 24551 } 24552 24553 return (B_TRUE); 24554 } 24555 24556 /* 24557 * Process an IPSEC_OUT message and see what you can 24558 * do with it. 24559 * IPQoS Notes: 24560 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 24561 * IPSec. 24562 * XXX would like to nuke ire_t. 24563 * XXX ill_index better be "real" 24564 */ 24565 void 24566 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 24567 { 24568 ipsec_out_t *io; 24569 ipsec_policy_t *pp; 24570 ipsec_action_t *ap; 24571 ipha_t *ipha; 24572 ip6_t *ip6h; 24573 mblk_t *mp; 24574 ill_t *ill; 24575 zoneid_t zoneid; 24576 ipsec_status_t ipsec_rc; 24577 boolean_t ill_need_rele = B_FALSE; 24578 24579 io = (ipsec_out_t *)ipsec_mp->b_rptr; 24580 ASSERT(io->ipsec_out_type == IPSEC_OUT); 24581 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 24582 mp = ipsec_mp->b_cont; 24583 24584 /* 24585 * Initiate IPPF processing. We do it here to account for packets 24586 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 24587 * We can check for ipsec_out_proc_begin even for such packets, as 24588 * they will always be false (asserted below). 24589 */ 24590 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 24591 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 24592 io->ipsec_out_ill_index : ill_index); 24593 if (mp == NULL) { 24594 ip2dbg(("ipsec_out_process: packet dropped "\ 24595 "during IPPF processing\n")); 24596 freeb(ipsec_mp); 24597 BUMP_MIB(&ip_mib, ipOutDiscards); 24598 return; 24599 } 24600 } 24601 24602 if (!io->ipsec_out_secure) { 24603 /* 24604 * We came here by mistake. 24605 * Don't bother with ipsec processing 24606 * Should "discourage" this path in the future. 24607 */ 24608 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 24609 goto done; 24610 } 24611 ASSERT(io->ipsec_out_need_policy == B_FALSE); 24612 ASSERT((io->ipsec_out_policy != NULL) || 24613 (io->ipsec_out_act != NULL)); 24614 ASSERT(io->ipsec_out_failed == B_FALSE); 24615 24616 if (!ipsec_loaded()) { 24617 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 24618 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 24619 BUMP_MIB(&ip_mib, ipOutDiscards); 24620 } else { 24621 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 24622 } 24623 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 24624 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 24625 return; 24626 } 24627 24628 /* 24629 * IPSEC processing has started. 24630 */ 24631 io->ipsec_out_proc_begin = B_TRUE; 24632 ap = io->ipsec_out_act; 24633 if (ap == NULL) { 24634 pp = io->ipsec_out_policy; 24635 ASSERT(pp != NULL); 24636 ap = pp->ipsp_act; 24637 ASSERT(ap != NULL); 24638 } 24639 24640 /* 24641 * Save the outbound ill index. When the packet comes back 24642 * from IPsec, we make sure the ill hasn't changed or disappeared 24643 * before sending it the accelerated packet. 24644 */ 24645 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 24646 int ifindex; 24647 ill = ire_to_ill(ire); 24648 ifindex = ill->ill_phyint->phyint_ifindex; 24649 io->ipsec_out_capab_ill_index = ifindex; 24650 } 24651 24652 /* 24653 * The order of processing is first insert a IP header if needed. 24654 * Then insert the ESP header and then the AH header. 24655 */ 24656 if ((io->ipsec_out_se_done == B_FALSE) && 24657 (ap->ipa_want_se)) { 24658 /* 24659 * First get the outer IP header before sending 24660 * it to ESP. 24661 */ 24662 ipha_t *oipha, *iipha; 24663 mblk_t *outer_mp, *inner_mp; 24664 24665 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 24666 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 24667 "ipsec_out_process: " 24668 "Self-Encapsulation failed: Out of memory\n"); 24669 freemsg(ipsec_mp); 24670 BUMP_MIB(&ip_mib, ipOutDiscards); 24671 return; 24672 } 24673 inner_mp = ipsec_mp->b_cont; 24674 ASSERT(inner_mp->b_datap->db_type == M_DATA); 24675 oipha = (ipha_t *)outer_mp->b_rptr; 24676 iipha = (ipha_t *)inner_mp->b_rptr; 24677 *oipha = *iipha; 24678 outer_mp->b_wptr += sizeof (ipha_t); 24679 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 24680 sizeof (ipha_t)); 24681 oipha->ipha_protocol = IPPROTO_ENCAP; 24682 oipha->ipha_version_and_hdr_length = 24683 IP_SIMPLE_HDR_VERSION; 24684 oipha->ipha_hdr_checksum = 0; 24685 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 24686 outer_mp->b_cont = inner_mp; 24687 ipsec_mp->b_cont = outer_mp; 24688 24689 io->ipsec_out_se_done = B_TRUE; 24690 io->ipsec_out_encaps = B_TRUE; 24691 } 24692 24693 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 24694 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 24695 !ipsec_out_select_sa(ipsec_mp)) 24696 return; 24697 24698 /* 24699 * By now, we know what SA's to use. Toss over to ESP & AH 24700 * to do the heavy lifting. 24701 */ 24702 zoneid = io->ipsec_out_zoneid; 24703 ASSERT(zoneid != ALL_ZONES); 24704 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 24705 ASSERT(io->ipsec_out_esp_sa != NULL); 24706 io->ipsec_out_esp_done = B_TRUE; 24707 /* 24708 * Note that since hw accel can only apply one transform, 24709 * not two, we skip hw accel for ESP if we also have AH 24710 * This is an design limitation of the interface 24711 * which should be revisited. 24712 */ 24713 ASSERT(ire != NULL); 24714 if (io->ipsec_out_ah_sa == NULL) { 24715 ill = (ill_t *)ire->ire_stq->q_ptr; 24716 ipsec_out_is_accelerated(ipsec_mp, 24717 io->ipsec_out_esp_sa, ill, ire); 24718 } 24719 24720 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 24721 switch (ipsec_rc) { 24722 case IPSEC_STATUS_SUCCESS: 24723 break; 24724 case IPSEC_STATUS_FAILED: 24725 BUMP_MIB(&ip_mib, ipOutDiscards); 24726 /* FALLTHRU */ 24727 case IPSEC_STATUS_PENDING: 24728 return; 24729 } 24730 } 24731 24732 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 24733 ASSERT(io->ipsec_out_ah_sa != NULL); 24734 io->ipsec_out_ah_done = B_TRUE; 24735 if (ire == NULL) { 24736 int idx = io->ipsec_out_capab_ill_index; 24737 ill = ill_lookup_on_ifindex(idx, B_FALSE, 24738 NULL, NULL, NULL, NULL); 24739 ill_need_rele = B_TRUE; 24740 } else { 24741 ill = (ill_t *)ire->ire_stq->q_ptr; 24742 } 24743 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 24744 ire); 24745 24746 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 24747 switch (ipsec_rc) { 24748 case IPSEC_STATUS_SUCCESS: 24749 break; 24750 case IPSEC_STATUS_FAILED: 24751 BUMP_MIB(&ip_mib, ipOutDiscards); 24752 /* FALLTHRU */ 24753 case IPSEC_STATUS_PENDING: 24754 if (ill != NULL && ill_need_rele) 24755 ill_refrele(ill); 24756 return; 24757 } 24758 } 24759 /* 24760 * We are done with IPSEC processing. Send it over 24761 * the wire. 24762 */ 24763 done: 24764 mp = ipsec_mp->b_cont; 24765 ipha = (ipha_t *)mp->b_rptr; 24766 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 24767 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 24768 } else { 24769 ip6h = (ip6_t *)ipha; 24770 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 24771 } 24772 if (ill != NULL && ill_need_rele) 24773 ill_refrele(ill); 24774 } 24775 24776 /* ARGSUSED */ 24777 void 24778 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 24779 { 24780 opt_restart_t *or; 24781 int err; 24782 conn_t *connp; 24783 24784 ASSERT(CONN_Q(q)); 24785 connp = Q_TO_CONN(q); 24786 24787 ASSERT(first_mp->b_datap->db_type == M_CTL); 24788 or = (opt_restart_t *)first_mp->b_rptr; 24789 /* 24790 * We don't need to pass any credentials here since this is just 24791 * a restart. The credentials are passed in when svr4_optcom_req 24792 * is called the first time (from ip_wput_nondata). 24793 */ 24794 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 24795 err = svr4_optcom_req(q, first_mp, NULL, 24796 &ip_opt_obj); 24797 } else { 24798 ASSERT(or->or_type == T_OPTMGMT_REQ); 24799 err = tpi_optcom_req(q, first_mp, NULL, 24800 &ip_opt_obj); 24801 } 24802 if (err != EINPROGRESS) { 24803 /* operation is done */ 24804 CONN_OPER_PENDING_DONE(connp); 24805 } 24806 } 24807 24808 /* 24809 * ioctls that go through a down/up sequence may need to wait for the down 24810 * to complete. This involves waiting for the ire and ipif refcnts to go down 24811 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 24812 */ 24813 /* ARGSUSED */ 24814 void 24815 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 24816 { 24817 struct iocblk *iocp; 24818 mblk_t *mp1; 24819 ipif_t *ipif; 24820 ip_ioctl_cmd_t *ipip; 24821 int err; 24822 sin_t *sin; 24823 struct lifreq *lifr; 24824 struct ifreq *ifr; 24825 24826 iocp = (struct iocblk *)mp->b_rptr; 24827 ASSERT(ipsq != NULL); 24828 /* Existence of mp1 verified in ip_wput_nondata */ 24829 mp1 = mp->b_cont->b_cont; 24830 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 24831 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 24832 ill_t *ill; 24833 /* 24834 * Special case where ipsq_current_ipif may not be set. 24835 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 24836 * ill could also have become part of a ipmp group in the 24837 * process, we are here as were not able to complete the 24838 * operation in ipif_set_values because we could not become 24839 * exclusive on the new ipsq, In such a case ipsq_current_ipif 24840 * will not be set so we need to set it. 24841 */ 24842 ill = (ill_t *)q->q_ptr; 24843 ipsq->ipsq_current_ipif = ill->ill_ipif; 24844 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 24845 } 24846 24847 ipif = ipsq->ipsq_current_ipif; 24848 ASSERT(ipif != NULL); 24849 if (ipip->ipi_cmd_type == IF_CMD) { 24850 /* This a old style SIOC[GS]IF* command */ 24851 ifr = (struct ifreq *)mp1->b_rptr; 24852 sin = (sin_t *)&ifr->ifr_addr; 24853 } else if (ipip->ipi_cmd_type == LIF_CMD) { 24854 /* This a new style SIOC[GS]LIF* command */ 24855 lifr = (struct lifreq *)mp1->b_rptr; 24856 sin = (sin_t *)&lifr->lifr_addr; 24857 } else { 24858 sin = NULL; 24859 } 24860 24861 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 24862 (void *)mp1->b_rptr); 24863 24864 /* SIOCLIFREMOVEIF could have removed the ipif */ 24865 ip_ioctl_finish(q, mp, err, 24866 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24867 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 24868 } 24869 24870 /* 24871 * ioctl processing 24872 * 24873 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 24874 * the ioctl command in the ioctl tables and determines the copyin data size 24875 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 24876 * size. 24877 * 24878 * ioctl processing then continues when the M_IOCDATA makes its way down. 24879 * Now the ioctl is looked up again in the ioctl table, and its properties are 24880 * extracted. The associated 'conn' is then refheld till the end of the ioctl 24881 * and the general ioctl processing function ip_process_ioctl is called. 24882 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 24883 * so goes thru the serialization primitive ipsq_try_enter. Then the 24884 * appropriate function to handle the ioctl is called based on the entry in 24885 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 24886 * which also refreleases the 'conn' that was refheld at the start of the 24887 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 24888 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 24889 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 24890 * 24891 * Many exclusive ioctls go thru an internal down up sequence as part of 24892 * the operation. For example an attempt to change the IP address of an 24893 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 24894 * does all the cleanup such as deleting all ires that use this address. 24895 * Then we need to wait till all references to the interface go away. 24896 */ 24897 void 24898 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 24899 { 24900 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 24901 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 24902 cmd_info_t ci; 24903 int err; 24904 boolean_t entered_ipsq = B_FALSE; 24905 24906 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 24907 24908 if (ipip == NULL) 24909 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 24910 24911 /* 24912 * SIOCLIFADDIF needs to go thru a special path since the 24913 * ill may not exist yet. This happens in the case of lo0 24914 * which is created using this ioctl. 24915 */ 24916 if (ipip->ipi_cmd == SIOCLIFADDIF) { 24917 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 24918 ip_ioctl_finish(q, mp, err, 24919 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24920 NULL, NULL); 24921 return; 24922 } 24923 24924 ci.ci_ipif = NULL; 24925 switch (ipip->ipi_cmd_type) { 24926 case IF_CMD: 24927 case LIF_CMD: 24928 /* 24929 * ioctls that pass in a [l]ifreq appear here. 24930 * ip_extract_lifreq_cmn returns a refheld ipif in 24931 * ci.ci_ipif 24932 */ 24933 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 24934 ipip->ipi_flags, &ci, ip_process_ioctl); 24935 if (err != 0) { 24936 ip_ioctl_finish(q, mp, err, 24937 ipip->ipi_flags & IPI_GET_CMD ? 24938 COPYOUT : NO_COPYOUT, NULL, NULL); 24939 return; 24940 } 24941 ASSERT(ci.ci_ipif != NULL); 24942 break; 24943 24944 case TUN_CMD: 24945 /* 24946 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 24947 * a refheld ipif in ci.ci_ipif 24948 */ 24949 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 24950 if (err != 0) { 24951 ip_ioctl_finish(q, mp, err, 24952 ipip->ipi_flags & IPI_GET_CMD ? 24953 COPYOUT : NO_COPYOUT, NULL, NULL); 24954 return; 24955 } 24956 ASSERT(ci.ci_ipif != NULL); 24957 break; 24958 24959 case MISC_CMD: 24960 /* 24961 * ioctls that neither pass in [l]ifreq or iftun_req come here 24962 * For eg. SIOCGLIFCONF will appear here. 24963 */ 24964 switch (ipip->ipi_cmd) { 24965 case IF_UNITSEL: 24966 /* ioctl comes down the ill */ 24967 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 24968 ipif_refhold(ci.ci_ipif); 24969 break; 24970 case SIOCGMSFILTER: 24971 case SIOCSMSFILTER: 24972 case SIOCGIPMSFILTER: 24973 case SIOCSIPMSFILTER: 24974 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 24975 ip_process_ioctl); 24976 if (err != 0) { 24977 ip_ioctl_finish(q, mp, err, 24978 ipip->ipi_flags & IPI_GET_CMD ? 24979 COPYOUT : NO_COPYOUT, NULL, NULL); 24980 return; 24981 } 24982 break; 24983 } 24984 err = 0; 24985 ci.ci_sin = NULL; 24986 ci.ci_sin6 = NULL; 24987 ci.ci_lifr = NULL; 24988 break; 24989 } 24990 24991 /* 24992 * If ipsq is non-null, we are already being called exclusively 24993 */ 24994 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 24995 if (!(ipip->ipi_flags & IPI_WR)) { 24996 /* 24997 * A return value of EINPROGRESS means the ioctl is 24998 * either queued and waiting for some reason or has 24999 * already completed. 25000 */ 25001 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25002 ci.ci_lifr); 25003 if (ci.ci_ipif != NULL) 25004 ipif_refrele(ci.ci_ipif); 25005 ip_ioctl_finish(q, mp, err, 25006 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25007 NULL, NULL); 25008 return; 25009 } 25010 25011 ASSERT(ci.ci_ipif != NULL); 25012 25013 if (ipsq == NULL) { 25014 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 25015 ip_process_ioctl, NEW_OP, B_TRUE); 25016 entered_ipsq = B_TRUE; 25017 } 25018 /* 25019 * Release the ipif so that ipif_down and friends that wait for 25020 * references to go away are not misled about the current ipif_refcnt 25021 * values. We are writer so we can access the ipif even after releasing 25022 * the ipif. 25023 */ 25024 ipif_refrele(ci.ci_ipif); 25025 if (ipsq == NULL) 25026 return; 25027 25028 mutex_enter(&ipsq->ipsq_lock); 25029 ASSERT(ipsq->ipsq_current_ipif == NULL); 25030 ipsq->ipsq_current_ipif = ci.ci_ipif; 25031 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 25032 mutex_exit(&ipsq->ipsq_lock); 25033 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 25034 /* 25035 * For most set ioctls that come here, this serves as a single point 25036 * where we set the IPIF_CHANGING flag. This ensures that there won't 25037 * be any new references to the ipif. This helps functions that go 25038 * through this path and end up trying to wait for the refcnts 25039 * associated with the ipif to go down to zero. Some exceptions are 25040 * Failover, Failback, and Groupname commands that operate on more than 25041 * just the ci.ci_ipif. These commands internally determine the 25042 * set of ipif's they operate on and set and clear the IPIF_CHANGING 25043 * flags on that set. Another exception is the Removeif command that 25044 * sets the IPIF_CONDEMNED flag internally after identifying the right 25045 * ipif to operate on. 25046 */ 25047 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 25048 ipip->ipi_cmd != SIOCLIFFAILOVER && 25049 ipip->ipi_cmd != SIOCLIFFAILBACK && 25050 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 25051 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 25052 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 25053 25054 /* 25055 * A return value of EINPROGRESS means the ioctl is 25056 * either queued and waiting for some reason or has 25057 * already completed. 25058 */ 25059 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 25060 ci.ci_lifr); 25061 25062 /* SIOCLIFREMOVEIF could have removed the ipif */ 25063 ip_ioctl_finish(q, mp, err, 25064 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 25065 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 25066 25067 if (entered_ipsq) 25068 ipsq_exit(ipsq, B_TRUE, B_TRUE); 25069 } 25070 25071 /* 25072 * Complete the ioctl. Typically ioctls use the mi package and need to 25073 * do mi_copyout/mi_copy_done. 25074 */ 25075 void 25076 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 25077 ipif_t *ipif, ipsq_t *ipsq) 25078 { 25079 conn_t *connp = NULL; 25080 25081 if (err == EINPROGRESS) 25082 return; 25083 25084 if (CONN_Q(q)) { 25085 connp = Q_TO_CONN(q); 25086 ASSERT(connp->conn_ref >= 2); 25087 } 25088 25089 switch (mode) { 25090 case COPYOUT: 25091 if (err == 0) 25092 mi_copyout(q, mp); 25093 else 25094 mi_copy_done(q, mp, err); 25095 break; 25096 25097 case NO_COPYOUT: 25098 mi_copy_done(q, mp, err); 25099 break; 25100 25101 default: 25102 /* An ioctl aborted through a conn close would take this path */ 25103 break; 25104 } 25105 25106 /* 25107 * The refhold placed at the start of the ioctl is released here. 25108 */ 25109 if (connp != NULL) 25110 CONN_OPER_PENDING_DONE(connp); 25111 25112 /* 25113 * If the ioctl were an exclusive ioctl it would have set 25114 * IPIF_CHANGING at the start of the ioctl which is undone here. 25115 */ 25116 if (ipif != NULL) { 25117 mutex_enter(&(ipif)->ipif_ill->ill_lock); 25118 ipif->ipif_state_flags &= ~IPIF_CHANGING; 25119 mutex_exit(&(ipif)->ipif_ill->ill_lock); 25120 } 25121 25122 /* 25123 * Clear the current ipif in the ipsq at the completion of the ioctl. 25124 * Note that a non-null ipsq_current_ipif prevents new ioctls from 25125 * entering the ipsq 25126 */ 25127 if (ipsq != NULL) { 25128 mutex_enter(&ipsq->ipsq_lock); 25129 ipsq->ipsq_current_ipif = NULL; 25130 mutex_exit(&ipsq->ipsq_lock); 25131 } 25132 } 25133 25134 /* 25135 * This is called from ip_wput_nondata to resume a deferred TCP bind. 25136 */ 25137 /* ARGSUSED */ 25138 void 25139 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 25140 { 25141 conn_t *connp = arg; 25142 tcp_t *tcp; 25143 25144 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 25145 tcp = connp->conn_tcp; 25146 25147 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 25148 freemsg(mp); 25149 else 25150 tcp_rput_other(tcp, mp); 25151 CONN_OPER_PENDING_DONE(connp); 25152 } 25153 25154 /* Called from ip_wput for all non data messages */ 25155 /* ARGSUSED */ 25156 void 25157 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 25158 { 25159 mblk_t *mp1; 25160 ire_t *ire; 25161 ill_t *ill; 25162 struct iocblk *iocp; 25163 ip_ioctl_cmd_t *ipip; 25164 cred_t *cr; 25165 conn_t *connp = NULL; 25166 int cmd, err; 25167 25168 if (CONN_Q(q)) 25169 connp = Q_TO_CONN(q); 25170 25171 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 25172 25173 /* Check if it is a queue to /dev/sctp. */ 25174 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 25175 connp->conn_rq == NULL) { 25176 sctp_wput(q, mp); 25177 return; 25178 } 25179 25180 switch (DB_TYPE(mp)) { 25181 case M_IOCTL: 25182 /* 25183 * IOCTL processing begins in ip_sioctl_copyin_setup which 25184 * will arrange to copy in associated control structures. 25185 */ 25186 ip_sioctl_copyin_setup(q, mp); 25187 return; 25188 case M_IOCDATA: 25189 /* 25190 * Ensure that this is associated with one of our trans- 25191 * parent ioctls. If it's not ours, discard it if we're 25192 * running as a driver, or pass it on if we're a module. 25193 */ 25194 iocp = (struct iocblk *)mp->b_rptr; 25195 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 25196 if (ipip == NULL) { 25197 if (q->q_next == NULL) { 25198 goto nak; 25199 } else { 25200 putnext(q, mp); 25201 } 25202 return; 25203 } else if ((q->q_next != NULL) && 25204 !(ipip->ipi_flags & IPI_MODOK)) { 25205 /* 25206 * the ioctl is one we recognise, but is not 25207 * consumed by IP as a module, pass M_IOCDATA 25208 * for processing downstream, but only for 25209 * common Streams ioctls. 25210 */ 25211 if (ipip->ipi_flags & IPI_PASS_DOWN) { 25212 putnext(q, mp); 25213 return; 25214 } else { 25215 goto nak; 25216 } 25217 } 25218 25219 /* IOCTL continuation following copyin or copyout. */ 25220 if (mi_copy_state(q, mp, NULL) == -1) { 25221 /* 25222 * The copy operation failed. mi_copy_state already 25223 * cleaned up, so we're out of here. 25224 */ 25225 return; 25226 } 25227 /* 25228 * If we just completed a copy in, we become writer and 25229 * continue processing in ip_sioctl_copyin_done. If it 25230 * was a copy out, we call mi_copyout again. If there is 25231 * nothing more to copy out, it will complete the IOCTL. 25232 */ 25233 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 25234 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 25235 mi_copy_done(q, mp, EPROTO); 25236 return; 25237 } 25238 /* 25239 * Check for cases that need more copying. A return 25240 * value of 0 means a second copyin has been started, 25241 * so we return; a return value of 1 means no more 25242 * copying is needed, so we continue. 25243 */ 25244 cmd = iocp->ioc_cmd; 25245 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 25246 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 25247 MI_COPY_COUNT(mp) == 1) { 25248 if (ip_copyin_msfilter(q, mp) == 0) 25249 return; 25250 } 25251 /* 25252 * Refhold the conn, till the ioctl completes. This is 25253 * needed in case the ioctl ends up in the pending mp 25254 * list. Every mp in the ill_pending_mp list and 25255 * the ipsq_pending_mp must have a refhold on the conn 25256 * to resume processing. The refhold is released when 25257 * the ioctl completes. (normally or abnormally) 25258 * In all cases ip_ioctl_finish is called to finish 25259 * the ioctl. 25260 */ 25261 if (connp != NULL) { 25262 /* This is not a reentry */ 25263 ASSERT(ipsq == NULL); 25264 CONN_INC_REF(connp); 25265 } else { 25266 if (!(ipip->ipi_flags & IPI_MODOK)) { 25267 mi_copy_done(q, mp, EINVAL); 25268 return; 25269 } 25270 } 25271 25272 ip_process_ioctl(ipsq, q, mp, ipip); 25273 25274 } else { 25275 mi_copyout(q, mp); 25276 } 25277 return; 25278 nak: 25279 iocp->ioc_error = EINVAL; 25280 mp->b_datap->db_type = M_IOCNAK; 25281 iocp->ioc_count = 0; 25282 qreply(q, mp); 25283 return; 25284 25285 case M_IOCNAK: 25286 /* 25287 * The only way we could get here is if a resolver didn't like 25288 * an IOCTL we sent it. This shouldn't happen. 25289 */ 25290 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 25291 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 25292 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 25293 freemsg(mp); 25294 return; 25295 case M_IOCACK: 25296 /* Finish socket ioctls passed through to ARP. */ 25297 ip_sioctl_iocack(q, mp); 25298 return; 25299 case M_FLUSH: 25300 if (*mp->b_rptr & FLUSHW) 25301 flushq(q, FLUSHALL); 25302 if (q->q_next) { 25303 /* 25304 * M_FLUSH is sent up to IP by some drivers during 25305 * unbind. ip_rput has already replied to it. We are 25306 * here for the M_FLUSH that we originated in IP 25307 * before sending the unbind request to the driver. 25308 * Just free it as we don't queue packets in IP 25309 * on the write side of the device instance. 25310 */ 25311 freemsg(mp); 25312 return; 25313 } 25314 if (*mp->b_rptr & FLUSHR) { 25315 *mp->b_rptr &= ~FLUSHW; 25316 qreply(q, mp); 25317 return; 25318 } 25319 freemsg(mp); 25320 return; 25321 case IRE_DB_REQ_TYPE: 25322 /* An Upper Level Protocol wants a copy of an IRE. */ 25323 ip_ire_req(q, mp); 25324 return; 25325 case M_CTL: 25326 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 25327 break; 25328 25329 if (connp != NULL && *(uint32_t *)mp->b_rptr == 25330 IP_ULP_OUT_LABELED) { 25331 out_labeled_t *olp; 25332 25333 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 25334 break; 25335 olp = (out_labeled_t *)mp->b_rptr; 25336 connp->conn_ulp_labeled = olp->out_qnext == q; 25337 freemsg(mp); 25338 return; 25339 } 25340 25341 /* M_CTL messages are used by ARP to tell us things. */ 25342 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 25343 break; 25344 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 25345 case AR_ENTRY_SQUERY: 25346 ip_wput_ctl(q, mp); 25347 return; 25348 case AR_CLIENT_NOTIFY: 25349 ip_arp_news(q, mp); 25350 return; 25351 case AR_DLPIOP_DONE: 25352 ASSERT(q->q_next != NULL); 25353 ill = (ill_t *)q->q_ptr; 25354 /* qwriter_ip releases the refhold */ 25355 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 25356 ill_refhold(ill); 25357 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 25358 CUR_OP, B_FALSE); 25359 return; 25360 case AR_ARP_CLOSING: 25361 /* 25362 * ARP (above us) is closing. If no ARP bringup is 25363 * currently pending, ack the message so that ARP 25364 * can complete its close. Also mark ill_arp_closing 25365 * so that new ARP bringups will fail. If any 25366 * ARP bringup is currently in progress, we will 25367 * ack this when the current ARP bringup completes. 25368 */ 25369 ASSERT(q->q_next != NULL); 25370 ill = (ill_t *)q->q_ptr; 25371 mutex_enter(&ill->ill_lock); 25372 ill->ill_arp_closing = 1; 25373 if (!ill->ill_arp_bringup_pending) { 25374 mutex_exit(&ill->ill_lock); 25375 qreply(q, mp); 25376 } else { 25377 mutex_exit(&ill->ill_lock); 25378 freemsg(mp); 25379 } 25380 return; 25381 default: 25382 break; 25383 } 25384 break; 25385 case M_PROTO: 25386 case M_PCPROTO: 25387 /* 25388 * The only PROTO messages we expect are ULP binds and 25389 * copies of option negotiation acknowledgements. 25390 */ 25391 switch (((union T_primitives *)mp->b_rptr)->type) { 25392 case O_T_BIND_REQ: 25393 case T_BIND_REQ: { 25394 /* Request can get queued in bind */ 25395 ASSERT(connp != NULL); 25396 /* 25397 * Both TCP and UDP call ip_bind_{v4,v6}() directly 25398 * instead of going through this path. We only get 25399 * here in the following cases: 25400 * 25401 * a. Bind retries, where ipsq is non-NULL. 25402 * b. T_BIND_REQ is issued from non TCP/UDP 25403 * transport, e.g. icmp for raw socket, 25404 * in which case ipsq will be NULL. 25405 */ 25406 ASSERT(ipsq != NULL || 25407 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 25408 25409 /* Don't increment refcnt if this is a re-entry */ 25410 if (ipsq == NULL) 25411 CONN_INC_REF(connp); 25412 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 25413 connp, NULL) : ip_bind_v4(q, mp, connp); 25414 if (mp == NULL) 25415 return; 25416 if (IPCL_IS_TCP(connp)) { 25417 /* 25418 * In the case of TCP endpoint we 25419 * come here only for bind retries 25420 */ 25421 ASSERT(ipsq != NULL); 25422 CONN_INC_REF(connp); 25423 squeue_fill(connp->conn_sqp, mp, 25424 ip_resume_tcp_bind, connp, 25425 SQTAG_BIND_RETRY); 25426 return; 25427 } else if (IPCL_IS_UDP(connp)) { 25428 /* 25429 * In the case of UDP endpoint we 25430 * come here only for bind retries 25431 */ 25432 ASSERT(ipsq != NULL); 25433 udp_resume_bind(connp, mp); 25434 return; 25435 } 25436 qreply(q, mp); 25437 CONN_OPER_PENDING_DONE(connp); 25438 return; 25439 } 25440 case T_SVR4_OPTMGMT_REQ: 25441 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 25442 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 25443 25444 ASSERT(connp != NULL); 25445 if (!snmpcom_req(q, mp, ip_snmp_set, 25446 ip_snmp_get, cr)) { 25447 /* 25448 * Call svr4_optcom_req so that it can 25449 * generate the ack. We don't come here 25450 * if this operation is being restarted. 25451 * ip_restart_optmgmt will drop the conn ref. 25452 * In the case of ipsec option after the ipsec 25453 * load is complete conn_restart_ipsec_waiter 25454 * drops the conn ref. 25455 */ 25456 ASSERT(ipsq == NULL); 25457 CONN_INC_REF(connp); 25458 if (ip_check_for_ipsec_opt(q, mp)) 25459 return; 25460 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 25461 if (err != EINPROGRESS) { 25462 /* Operation is done */ 25463 CONN_OPER_PENDING_DONE(connp); 25464 } 25465 } 25466 return; 25467 case T_OPTMGMT_REQ: 25468 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 25469 /* 25470 * Note: No snmpcom_req support through new 25471 * T_OPTMGMT_REQ. 25472 * Call tpi_optcom_req so that it can 25473 * generate the ack. 25474 */ 25475 ASSERT(connp != NULL); 25476 ASSERT(ipsq == NULL); 25477 /* 25478 * We don't come here for restart. ip_restart_optmgmt 25479 * will drop the conn ref. In the case of ipsec option 25480 * after the ipsec load is complete 25481 * conn_restart_ipsec_waiter drops the conn ref. 25482 */ 25483 CONN_INC_REF(connp); 25484 if (ip_check_for_ipsec_opt(q, mp)) 25485 return; 25486 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 25487 if (err != EINPROGRESS) { 25488 /* Operation is done */ 25489 CONN_OPER_PENDING_DONE(connp); 25490 } 25491 return; 25492 case T_UNBIND_REQ: 25493 mp = ip_unbind(q, mp); 25494 qreply(q, mp); 25495 return; 25496 default: 25497 /* 25498 * Have to drop any DLPI messages coming down from 25499 * arp (such as an info_req which would cause ip 25500 * to receive an extra info_ack if it was passed 25501 * through. 25502 */ 25503 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 25504 (int)*(uint_t *)mp->b_rptr)); 25505 freemsg(mp); 25506 return; 25507 } 25508 /* NOTREACHED */ 25509 case IRE_DB_TYPE: { 25510 nce_t *nce; 25511 ill_t *ill; 25512 in6_addr_t gw_addr_v6; 25513 25514 25515 /* 25516 * This is a response back from a resolver. It 25517 * consists of a message chain containing: 25518 * IRE_MBLK-->LL_HDR_MBLK->pkt 25519 * The IRE_MBLK is the one we allocated in ip_newroute. 25520 * The LL_HDR_MBLK is the DLPI header to use to get 25521 * the attached packet, and subsequent ones for the 25522 * same destination, transmitted. 25523 */ 25524 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 25525 break; 25526 /* 25527 * First, check to make sure the resolution succeeded. 25528 * If it failed, the second mblk will be empty. 25529 * If it is, free the chain, dropping the packet. 25530 * (We must ire_delete the ire; that frees the ire mblk) 25531 * We're doing this now to support PVCs for ATM; it's 25532 * a partial xresolv implementation. When we fully implement 25533 * xresolv interfaces, instead of freeing everything here 25534 * we'll initiate neighbor discovery. 25535 * 25536 * For v4 (ARP and other external resolvers) the resolver 25537 * frees the message, so no check is needed. This check 25538 * is required, though, for a full xresolve implementation. 25539 * Including this code here now both shows how external 25540 * resolvers can NACK a resolution request using an 25541 * existing design that has no specific provisions for NACKs, 25542 * and also takes into account that the current non-ARP 25543 * external resolver has been coded to use this method of 25544 * NACKing for all IPv6 (xresolv) cases, 25545 * whether our xresolv implementation is complete or not. 25546 * 25547 */ 25548 ire = (ire_t *)mp->b_rptr; 25549 ill = ire_to_ill(ire); 25550 mp1 = mp->b_cont; /* dl_unitdata_req */ 25551 if (mp1->b_rptr == mp1->b_wptr) { 25552 if (ire->ire_ipversion == IPV6_VERSION) { 25553 /* 25554 * XRESOLV interface. 25555 */ 25556 ASSERT(ill->ill_flags & ILLF_XRESOLV); 25557 mutex_enter(&ire->ire_lock); 25558 gw_addr_v6 = ire->ire_gateway_addr_v6; 25559 mutex_exit(&ire->ire_lock); 25560 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 25561 nce = ndp_lookup(ill, 25562 &ire->ire_addr_v6, B_FALSE); 25563 } else { 25564 nce = ndp_lookup(ill, &gw_addr_v6, 25565 B_FALSE); 25566 } 25567 if (nce != NULL) { 25568 nce_resolv_failed(nce); 25569 ndp_delete(nce); 25570 NCE_REFRELE(nce); 25571 } 25572 } 25573 mp->b_cont = NULL; 25574 freemsg(mp1); /* frees the pkt as well */ 25575 ire_delete((ire_t *)mp->b_rptr); 25576 return; 25577 } 25578 /* 25579 * Split them into IRE_MBLK and pkt and feed it into 25580 * ire_add_then_send. Then in ire_add_then_send 25581 * the IRE will be added, and then the packet will be 25582 * run back through ip_wput. This time it will make 25583 * it to the wire. 25584 */ 25585 mp->b_cont = NULL; 25586 mp = mp1->b_cont; /* now, mp points to pkt */ 25587 mp1->b_cont = NULL; 25588 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 25589 if (ire->ire_ipversion == IPV6_VERSION) { 25590 /* 25591 * XRESOLV interface. Find the nce and put a copy 25592 * of the dl_unitdata_req in nce_res_mp 25593 */ 25594 ASSERT(ill->ill_flags & ILLF_XRESOLV); 25595 mutex_enter(&ire->ire_lock); 25596 gw_addr_v6 = ire->ire_gateway_addr_v6; 25597 mutex_exit(&ire->ire_lock); 25598 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 25599 nce = ndp_lookup(ill, &ire->ire_addr_v6, 25600 B_FALSE); 25601 } else { 25602 nce = ndp_lookup(ill, &gw_addr_v6, B_FALSE); 25603 } 25604 if (nce != NULL) { 25605 /* 25606 * We have to protect nce_res_mp here 25607 * from being accessed by other threads 25608 * while we change the mblk pointer. 25609 * Other functions will also lock the nce when 25610 * accessing nce_res_mp. 25611 * 25612 * The reason we change the mblk pointer 25613 * here rather than copying the resolved address 25614 * into the template is that, unlike with 25615 * ethernet, we have no guarantee that the 25616 * resolved address length will be 25617 * smaller than or equal to the lla length 25618 * with which the template was allocated, 25619 * (for ethernet, they're equal) 25620 * so we have to use the actual resolved 25621 * address mblk - which holds the real 25622 * dl_unitdata_req with the resolved address. 25623 * 25624 * Doing this is the same behavior as was 25625 * previously used in the v4 ARP case. 25626 */ 25627 mutex_enter(&nce->nce_lock); 25628 if (nce->nce_res_mp != NULL) 25629 freemsg(nce->nce_res_mp); 25630 nce->nce_res_mp = mp1; 25631 mutex_exit(&nce->nce_lock); 25632 /* 25633 * We do a fastpath probe here because 25634 * we have resolved the address without 25635 * using Neighbor Discovery. 25636 * In the non-XRESOLV v6 case, the fastpath 25637 * probe is done right after neighbor 25638 * discovery completes. 25639 */ 25640 if (nce->nce_res_mp != NULL) { 25641 int res; 25642 nce_fastpath_list_add(nce); 25643 res = ill_fastpath_probe(ill, 25644 nce->nce_res_mp); 25645 if (res != 0 && res != EAGAIN) 25646 nce_fastpath_list_delete(nce); 25647 } 25648 25649 ire_add_then_send(q, ire, mp); 25650 /* 25651 * Now we have to clean out any packets 25652 * that may have been queued on the nce 25653 * while it was waiting for address resolution 25654 * to complete. 25655 */ 25656 mutex_enter(&nce->nce_lock); 25657 mp1 = nce->nce_qd_mp; 25658 nce->nce_qd_mp = NULL; 25659 mutex_exit(&nce->nce_lock); 25660 while (mp1 != NULL) { 25661 mblk_t *nxt_mp; 25662 queue_t *fwdq = NULL; 25663 ill_t *inbound_ill; 25664 uint_t ifindex; 25665 25666 nxt_mp = mp1->b_next; 25667 mp1->b_next = NULL; 25668 /* 25669 * Retrieve ifindex stored in 25670 * ip_rput_data_v6() 25671 */ 25672 ifindex = 25673 (uint_t)(uintptr_t)mp1->b_prev; 25674 inbound_ill = 25675 ill_lookup_on_ifindex(ifindex, 25676 B_TRUE, NULL, NULL, NULL, 25677 NULL); 25678 mp1->b_prev = NULL; 25679 if (inbound_ill != NULL) 25680 fwdq = inbound_ill->ill_rq; 25681 25682 if (fwdq != NULL) { 25683 put(fwdq, mp1); 25684 ill_refrele(inbound_ill); 25685 } else 25686 put(WR(ill->ill_rq), mp1); 25687 mp1 = nxt_mp; 25688 } 25689 NCE_REFRELE(nce); 25690 } else { /* nce is NULL; clean up */ 25691 ire_delete(ire); 25692 freemsg(mp); 25693 freemsg(mp1); 25694 return; 25695 } 25696 } else { 25697 ire->ire_dlureq_mp = mp1; 25698 ire_add_then_send(q, ire, mp); 25699 } 25700 return; /* All is well, the packet has been sent. */ 25701 } 25702 default: 25703 break; 25704 } 25705 if (q->q_next) { 25706 putnext(q, mp); 25707 } else 25708 freemsg(mp); 25709 } 25710 25711 /* 25712 * Process IP options in an outbound packet. Modify the destination if there 25713 * is a source route option. 25714 * Returns non-zero if something fails in which case an ICMP error has been 25715 * sent and mp freed. 25716 */ 25717 static int 25718 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 25719 boolean_t mctl_present, zoneid_t zoneid) 25720 { 25721 ipoptp_t opts; 25722 uchar_t *opt; 25723 uint8_t optval; 25724 uint8_t optlen; 25725 ipaddr_t dst; 25726 intptr_t code = 0; 25727 mblk_t *mp; 25728 ire_t *ire = NULL; 25729 25730 ip2dbg(("ip_wput_options\n")); 25731 mp = ipsec_mp; 25732 if (mctl_present) { 25733 mp = ipsec_mp->b_cont; 25734 } 25735 25736 dst = ipha->ipha_dst; 25737 for (optval = ipoptp_first(&opts, ipha); 25738 optval != IPOPT_EOL; 25739 optval = ipoptp_next(&opts)) { 25740 opt = opts.ipoptp_cur; 25741 optlen = opts.ipoptp_len; 25742 ip2dbg(("ip_wput_options: opt %d, len %d\n", 25743 optval, optlen)); 25744 switch (optval) { 25745 uint32_t off; 25746 case IPOPT_SSRR: 25747 case IPOPT_LSRR: 25748 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 25749 ip1dbg(( 25750 "ip_wput_options: bad option offset\n")); 25751 code = (char *)&opt[IPOPT_OLEN] - 25752 (char *)ipha; 25753 goto param_prob; 25754 } 25755 off = opt[IPOPT_OFFSET]; 25756 ip1dbg(("ip_wput_options: next hop 0x%x\n", 25757 ntohl(dst))); 25758 /* 25759 * For strict: verify that dst is directly 25760 * reachable. 25761 */ 25762 if (optval == IPOPT_SSRR) { 25763 ire = ire_ftable_lookup(dst, 0, 0, 25764 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 25765 MBLK_GETLABEL(mp), 25766 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 25767 if (ire == NULL) { 25768 ip1dbg(("ip_wput_options: SSRR not" 25769 " directly reachable: 0x%x\n", 25770 ntohl(dst))); 25771 goto bad_src_route; 25772 } 25773 ire_refrele(ire); 25774 } 25775 break; 25776 case IPOPT_RR: 25777 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 25778 ip1dbg(( 25779 "ip_wput_options: bad option offset\n")); 25780 code = (char *)&opt[IPOPT_OLEN] - 25781 (char *)ipha; 25782 goto param_prob; 25783 } 25784 break; 25785 case IPOPT_TS: 25786 /* 25787 * Verify that length >=5 and that there is either 25788 * room for another timestamp or that the overflow 25789 * counter is not maxed out. 25790 */ 25791 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 25792 if (optlen < IPOPT_MINLEN_IT) { 25793 goto param_prob; 25794 } 25795 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 25796 ip1dbg(( 25797 "ip_wput_options: bad option offset\n")); 25798 code = (char *)&opt[IPOPT_OFFSET] - 25799 (char *)ipha; 25800 goto param_prob; 25801 } 25802 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25803 case IPOPT_TS_TSONLY: 25804 off = IPOPT_TS_TIMELEN; 25805 break; 25806 case IPOPT_TS_TSANDADDR: 25807 case IPOPT_TS_PRESPEC: 25808 case IPOPT_TS_PRESPEC_RFC791: 25809 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25810 break; 25811 default: 25812 code = (char *)&opt[IPOPT_POS_OV_FLG] - 25813 (char *)ipha; 25814 goto param_prob; 25815 } 25816 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 25817 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 25818 /* 25819 * No room and the overflow counter is 15 25820 * already. 25821 */ 25822 goto param_prob; 25823 } 25824 break; 25825 } 25826 } 25827 25828 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 25829 return (0); 25830 25831 ip1dbg(("ip_wput_options: error processing IP options.")); 25832 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 25833 25834 param_prob: 25835 /* 25836 * Since ip_wput() isn't close to finished, we fill 25837 * in enough of the header for credible error reporting. 25838 */ 25839 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 25840 /* Failed */ 25841 freemsg(ipsec_mp); 25842 return (-1); 25843 } 25844 icmp_param_problem(q, ipsec_mp, (uint8_t)code); 25845 return (-1); 25846 25847 bad_src_route: 25848 /* 25849 * Since ip_wput() isn't close to finished, we fill 25850 * in enough of the header for credible error reporting. 25851 */ 25852 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 25853 /* Failed */ 25854 freemsg(ipsec_mp); 25855 return (-1); 25856 } 25857 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED); 25858 return (-1); 25859 } 25860 25861 /* 25862 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 25863 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 25864 * thru /etc/system. 25865 */ 25866 #define CONN_MAXDRAINCNT 64 25867 25868 static void 25869 conn_drain_init(void) 25870 { 25871 int i; 25872 25873 conn_drain_list_cnt = conn_drain_nthreads; 25874 25875 if ((conn_drain_list_cnt == 0) || 25876 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 25877 /* 25878 * Default value of the number of drainers is the 25879 * number of cpus, subject to maximum of 8 drainers. 25880 */ 25881 if (boot_max_ncpus != -1) 25882 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 25883 else 25884 conn_drain_list_cnt = MIN(max_ncpus, 8); 25885 } 25886 25887 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 25888 KM_SLEEP); 25889 25890 for (i = 0; i < conn_drain_list_cnt; i++) { 25891 mutex_init(&conn_drain_list[i].idl_lock, NULL, 25892 MUTEX_DEFAULT, NULL); 25893 } 25894 } 25895 25896 static void 25897 conn_drain_fini(void) 25898 { 25899 int i; 25900 25901 for (i = 0; i < conn_drain_list_cnt; i++) 25902 mutex_destroy(&conn_drain_list[i].idl_lock); 25903 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 25904 conn_drain_list = NULL; 25905 } 25906 25907 /* 25908 * Note: For an overview of how flowcontrol is handled in IP please see the 25909 * IP Flowcontrol notes at the top of this file. 25910 * 25911 * Flow control has blocked us from proceeding. Insert the given conn in one 25912 * of the conn drain lists. These conn wq's will be qenabled later on when 25913 * STREAMS flow control does a backenable. conn_walk_drain will enable 25914 * the first conn in each of these drain lists. Each of these qenabled conns 25915 * in turn enables the next in the list, after it runs, or when it closes, 25916 * thus sustaining the drain process. 25917 * 25918 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 25919 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 25920 * running at any time, on a given conn, since there can be only 1 service proc 25921 * running on a queue at any time. 25922 */ 25923 void 25924 conn_drain_insert(conn_t *connp) 25925 { 25926 idl_t *idl; 25927 uint_t index; 25928 25929 mutex_enter(&connp->conn_lock); 25930 if (connp->conn_state_flags & CONN_CLOSING) { 25931 /* 25932 * The conn is closing as a result of which CONN_CLOSING 25933 * is set. Return. 25934 */ 25935 mutex_exit(&connp->conn_lock); 25936 return; 25937 } else if (connp->conn_idl == NULL) { 25938 /* 25939 * Assign the next drain list round robin. We dont' use 25940 * a lock, and thus it may not be strictly round robin. 25941 * Atomicity of load/stores is enough to make sure that 25942 * conn_drain_list_index is always within bounds. 25943 */ 25944 index = conn_drain_list_index; 25945 ASSERT(index < conn_drain_list_cnt); 25946 connp->conn_idl = &conn_drain_list[index]; 25947 index++; 25948 if (index == conn_drain_list_cnt) 25949 index = 0; 25950 conn_drain_list_index = index; 25951 } 25952 mutex_exit(&connp->conn_lock); 25953 25954 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 25955 if ((connp->conn_drain_prev != NULL) || 25956 (connp->conn_state_flags & CONN_CLOSING)) { 25957 /* 25958 * The conn is already in the drain list, OR 25959 * the conn is closing. We need to check again for 25960 * the closing case again since close can happen 25961 * after we drop the conn_lock, and before we 25962 * acquire the CONN_DRAIN_LIST_LOCK. 25963 */ 25964 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25965 return; 25966 } else { 25967 idl = connp->conn_idl; 25968 } 25969 25970 /* 25971 * The conn is not in the drain list. Insert it at the 25972 * tail of the drain list. The drain list is circular 25973 * and doubly linked. idl_conn points to the 1st element 25974 * in the list. 25975 */ 25976 if (idl->idl_conn == NULL) { 25977 idl->idl_conn = connp; 25978 connp->conn_drain_next = connp; 25979 connp->conn_drain_prev = connp; 25980 } else { 25981 conn_t *head = idl->idl_conn; 25982 25983 connp->conn_drain_next = head; 25984 connp->conn_drain_prev = head->conn_drain_prev; 25985 head->conn_drain_prev->conn_drain_next = connp; 25986 head->conn_drain_prev = connp; 25987 } 25988 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25989 } 25990 25991 /* 25992 * This conn is closing, and we are called from ip_close. OR 25993 * This conn has been serviced by ip_wsrv, and we need to do the tail 25994 * processing. 25995 * If this conn is part of the drain list, we may need to sustain the drain 25996 * process by qenabling the next conn in the drain list. We may also need to 25997 * remove this conn from the list, if it is done. 25998 */ 25999 static void 26000 conn_drain_tail(conn_t *connp, boolean_t closing) 26001 { 26002 idl_t *idl; 26003 26004 /* 26005 * connp->conn_idl is stable at this point, and no lock is needed 26006 * to check it. If we are called from ip_close, close has already 26007 * set CONN_CLOSING, thus freezing the value of conn_idl, and 26008 * called us only because conn_idl is non-null. If we are called thru 26009 * service, conn_idl could be null, but it cannot change because 26010 * service is single-threaded per queue, and there cannot be another 26011 * instance of service trying to call conn_drain_insert on this conn 26012 * now. 26013 */ 26014 ASSERT(!closing || (connp->conn_idl != NULL)); 26015 26016 /* 26017 * If connp->conn_idl is null, the conn has not been inserted into any 26018 * drain list even once since creation of the conn. Just return. 26019 */ 26020 if (connp->conn_idl == NULL) 26021 return; 26022 26023 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 26024 26025 if (connp->conn_drain_prev == NULL) { 26026 /* This conn is currently not in the drain list. */ 26027 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26028 return; 26029 } 26030 idl = connp->conn_idl; 26031 if (idl->idl_conn_draining == connp) { 26032 /* 26033 * This conn is the current drainer. If this is the last conn 26034 * in the drain list, we need to do more checks, in the 'if' 26035 * below. Otherwwise we need to just qenable the next conn, 26036 * to sustain the draining, and is handled in the 'else' 26037 * below. 26038 */ 26039 if (connp->conn_drain_next == idl->idl_conn) { 26040 /* 26041 * This conn is the last in this list. This round 26042 * of draining is complete. If idl_repeat is set, 26043 * it means another flow enabling has happened from 26044 * the driver/streams and we need to another round 26045 * of draining. 26046 * If there are more than 2 conns in the drain list, 26047 * do a left rotate by 1, so that all conns except the 26048 * conn at the head move towards the head by 1, and the 26049 * the conn at the head goes to the tail. This attempts 26050 * a more even share for all queues that are being 26051 * drained. 26052 */ 26053 if ((connp->conn_drain_next != connp) && 26054 (idl->idl_conn->conn_drain_next != connp)) { 26055 idl->idl_conn = idl->idl_conn->conn_drain_next; 26056 } 26057 if (idl->idl_repeat) { 26058 qenable(idl->idl_conn->conn_wq); 26059 idl->idl_conn_draining = idl->idl_conn; 26060 idl->idl_repeat = 0; 26061 } else { 26062 idl->idl_conn_draining = NULL; 26063 } 26064 } else { 26065 /* 26066 * If the next queue that we are now qenable'ing, 26067 * is closing, it will remove itself from this list 26068 * and qenable the subsequent queue in ip_close(). 26069 * Serialization is acheived thru idl_lock. 26070 */ 26071 qenable(connp->conn_drain_next->conn_wq); 26072 idl->idl_conn_draining = connp->conn_drain_next; 26073 } 26074 } 26075 if (!connp->conn_did_putbq || closing) { 26076 /* 26077 * Remove ourself from the drain list, if we did not do 26078 * a putbq, or if the conn is closing. 26079 * Note: It is possible that q->q_first is non-null. It means 26080 * that these messages landed after we did a enableok() in 26081 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 26082 * service them. 26083 */ 26084 if (connp->conn_drain_next == connp) { 26085 /* Singleton in the list */ 26086 ASSERT(connp->conn_drain_prev == connp); 26087 idl->idl_conn = NULL; 26088 idl->idl_conn_draining = NULL; 26089 } else { 26090 connp->conn_drain_prev->conn_drain_next = 26091 connp->conn_drain_next; 26092 connp->conn_drain_next->conn_drain_prev = 26093 connp->conn_drain_prev; 26094 if (idl->idl_conn == connp) 26095 idl->idl_conn = connp->conn_drain_next; 26096 ASSERT(idl->idl_conn_draining != connp); 26097 26098 } 26099 connp->conn_drain_next = NULL; 26100 connp->conn_drain_prev = NULL; 26101 } 26102 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 26103 } 26104 26105 /* 26106 * Write service routine. Shared perimeter entry point. 26107 * ip_wsrv can be called in any of the following ways. 26108 * 1. The device queue's messages has fallen below the low water mark 26109 * and STREAMS has backenabled the ill_wq. We walk thru all the 26110 * the drain lists and backenable the first conn in each list. 26111 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 26112 * qenabled non-tcp upper layers. We start dequeing messages and call 26113 * ip_wput for each message. 26114 */ 26115 26116 void 26117 ip_wsrv(queue_t *q) 26118 { 26119 conn_t *connp; 26120 ill_t *ill; 26121 mblk_t *mp; 26122 26123 if (q->q_next) { 26124 ill = (ill_t *)q->q_ptr; 26125 if (ill->ill_state_flags == 0) { 26126 /* 26127 * The device flow control has opened up. 26128 * Walk through conn drain lists and qenable the 26129 * first conn in each list. This makes sense only 26130 * if the stream is fully plumbed and setup. 26131 * Hence the if check above. 26132 */ 26133 ip1dbg(("ip_wsrv: walking\n")); 26134 conn_walk_drain(); 26135 } 26136 return; 26137 } 26138 26139 connp = Q_TO_CONN(q); 26140 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 26141 26142 /* 26143 * 1. Set conn_draining flag to signal that service is active. 26144 * 26145 * 2. ip_output determines whether it has been called from service, 26146 * based on the last parameter. If it is IP_WSRV it concludes it 26147 * has been called from service. 26148 * 26149 * 3. Message ordering is preserved by the following logic. 26150 * i. A directly called ip_output (i.e. not thru service) will queue 26151 * the message at the tail, if conn_draining is set (i.e. service 26152 * is running) or if q->q_first is non-null. 26153 * 26154 * ii. If ip_output is called from service, and if ip_output cannot 26155 * putnext due to flow control, it does a putbq. 26156 * 26157 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 26158 * (causing an infinite loop). 26159 */ 26160 ASSERT(!connp->conn_did_putbq); 26161 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 26162 connp->conn_draining = 1; 26163 noenable(q); 26164 while ((mp = getq(q)) != NULL) { 26165 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 26166 if (connp->conn_did_putbq) { 26167 /* ip_wput did a putbq */ 26168 break; 26169 } 26170 } 26171 /* 26172 * At this point, a thread coming down from top, calling 26173 * ip_wput, may end up queueing the message. We have not yet 26174 * enabled the queue, so ip_wsrv won't be called again. 26175 * To avoid this race, check q->q_first again (in the loop) 26176 * If the other thread queued the message before we call 26177 * enableok(), we will catch it in the q->q_first check. 26178 * If the other thread queues the message after we call 26179 * enableok(), ip_wsrv will be called again by STREAMS. 26180 */ 26181 connp->conn_draining = 0; 26182 enableok(q); 26183 } 26184 26185 /* Enable the next conn for draining */ 26186 conn_drain_tail(connp, B_FALSE); 26187 26188 connp->conn_did_putbq = 0; 26189 } 26190 26191 /* 26192 * Walk the list of all conn's calling the function provided with the 26193 * specified argument for each. Note that this only walks conn's that 26194 * have been bound. 26195 * Applies to both IPv4 and IPv6. 26196 */ 26197 static void 26198 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 26199 { 26200 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 26201 func, arg, zoneid); 26202 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 26203 func, arg, zoneid); 26204 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 26205 func, arg, zoneid); 26206 conn_walk_fanout_table(ipcl_proto_fanout, 26207 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 26208 conn_walk_fanout_table(ipcl_proto_fanout_v6, 26209 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 26210 } 26211 26212 /* 26213 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 26214 * of conns that need to be drained, check if drain is already in progress. 26215 * If so set the idl_repeat bit, indicating that the last conn in the list 26216 * needs to reinitiate the drain once again, for the list. If drain is not 26217 * in progress for the list, initiate the draining, by qenabling the 1st 26218 * conn in the list. The drain is self-sustaining, each qenabled conn will 26219 * in turn qenable the next conn, when it is done/blocked/closing. 26220 */ 26221 static void 26222 conn_walk_drain(void) 26223 { 26224 int i; 26225 idl_t *idl; 26226 26227 IP_STAT(ip_conn_walk_drain); 26228 26229 for (i = 0; i < conn_drain_list_cnt; i++) { 26230 idl = &conn_drain_list[i]; 26231 mutex_enter(&idl->idl_lock); 26232 if (idl->idl_conn == NULL) { 26233 mutex_exit(&idl->idl_lock); 26234 continue; 26235 } 26236 /* 26237 * If this list is not being drained currently by 26238 * an ip_wsrv thread, start the process. 26239 */ 26240 if (idl->idl_conn_draining == NULL) { 26241 ASSERT(idl->idl_repeat == 0); 26242 qenable(idl->idl_conn->conn_wq); 26243 idl->idl_conn_draining = idl->idl_conn; 26244 } else { 26245 idl->idl_repeat = 1; 26246 } 26247 mutex_exit(&idl->idl_lock); 26248 } 26249 } 26250 26251 /* 26252 * Walk an conn hash table of `count' buckets, calling func for each entry. 26253 */ 26254 static void 26255 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 26256 zoneid_t zoneid) 26257 { 26258 conn_t *connp; 26259 26260 while (count-- > 0) { 26261 mutex_enter(&connfp->connf_lock); 26262 for (connp = connfp->connf_head; connp != NULL; 26263 connp = connp->conn_next) { 26264 if (zoneid == GLOBAL_ZONEID || 26265 zoneid == connp->conn_zoneid) { 26266 CONN_INC_REF(connp); 26267 mutex_exit(&connfp->connf_lock); 26268 (*func)(connp, arg); 26269 mutex_enter(&connfp->connf_lock); 26270 CONN_DEC_REF(connp); 26271 } 26272 } 26273 mutex_exit(&connfp->connf_lock); 26274 connfp++; 26275 } 26276 } 26277 26278 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 26279 static void 26280 conn_report1(conn_t *connp, void *mp) 26281 { 26282 char buf1[INET6_ADDRSTRLEN]; 26283 char buf2[INET6_ADDRSTRLEN]; 26284 uint_t print_len, buf_len; 26285 26286 ASSERT(connp != NULL); 26287 26288 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 26289 if (buf_len <= 0) 26290 return; 26291 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 26292 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 26293 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 26294 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 26295 "%5d %s/%05d %s/%05d\n", 26296 (void *)connp, (void *)CONNP_TO_RQ(connp), 26297 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 26298 buf1, connp->conn_lport, 26299 buf2, connp->conn_fport); 26300 if (print_len < buf_len) { 26301 ((mblk_t *)mp)->b_wptr += print_len; 26302 } else { 26303 ((mblk_t *)mp)->b_wptr += buf_len; 26304 } 26305 } 26306 26307 /* 26308 * Named Dispatch routine to produce a formatted report on all conns 26309 * that are listed in one of the fanout tables. 26310 * This report is accessed by using the ndd utility to "get" ND variable 26311 * "ip_conn_status". 26312 */ 26313 /* ARGSUSED */ 26314 static int 26315 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 26316 { 26317 (void) mi_mpprintf(mp, 26318 "CONN " MI_COL_HDRPAD_STR 26319 "rfq " MI_COL_HDRPAD_STR 26320 "stq " MI_COL_HDRPAD_STR 26321 " zone local remote"); 26322 26323 /* 26324 * Because of the ndd constraint, at most we can have 64K buffer 26325 * to put in all conn info. So to be more efficient, just 26326 * allocate a 64K buffer here, assuming we need that large buffer. 26327 * This should be OK as only privileged processes can do ndd /dev/ip. 26328 */ 26329 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 26330 /* The following may work even if we cannot get a large buf. */ 26331 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 26332 return (0); 26333 } 26334 26335 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 26336 return (0); 26337 } 26338 26339 /* 26340 * Determine if the ill and multicast aspects of that packets 26341 * "matches" the conn. 26342 */ 26343 boolean_t 26344 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 26345 zoneid_t zoneid) 26346 { 26347 ill_t *in_ill; 26348 boolean_t found; 26349 ipif_t *ipif; 26350 ire_t *ire; 26351 ipaddr_t dst, src; 26352 26353 dst = ipha->ipha_dst; 26354 src = ipha->ipha_src; 26355 26356 /* 26357 * conn_incoming_ill is set by IP_BOUND_IF which limits 26358 * unicast, broadcast and multicast reception to 26359 * conn_incoming_ill. conn_wantpacket itself is called 26360 * only for BROADCAST and multicast. 26361 * 26362 * 1) ip_rput supresses duplicate broadcasts if the ill 26363 * is part of a group. Hence, we should be receiving 26364 * just one copy of broadcast for the whole group. 26365 * Thus, if it is part of the group the packet could 26366 * come on any ill of the group and hence we need a 26367 * match on the group. Otherwise, match on ill should 26368 * be sufficient. 26369 * 26370 * 2) ip_rput does not suppress duplicate multicast packets. 26371 * If there are two interfaces in a ill group and we have 26372 * 2 applications (conns) joined a multicast group G on 26373 * both the interfaces, ilm_lookup_ill filter in ip_rput 26374 * will give us two packets because we join G on both the 26375 * interfaces rather than nominating just one interface 26376 * for receiving multicast like broadcast above. So, 26377 * we have to call ilg_lookup_ill to filter out duplicate 26378 * copies, if ill is part of a group. 26379 */ 26380 in_ill = connp->conn_incoming_ill; 26381 if (in_ill != NULL) { 26382 if (in_ill->ill_group == NULL) { 26383 if (in_ill != ill) 26384 return (B_FALSE); 26385 } else if (in_ill->ill_group != ill->ill_group) { 26386 return (B_FALSE); 26387 } 26388 } 26389 26390 if (!CLASSD(dst)) { 26391 if (IPCL_ZONE_MATCH(connp, zoneid)) 26392 return (B_TRUE); 26393 /* 26394 * The conn is in a different zone; we need to check that this 26395 * broadcast address is configured in the application's zone and 26396 * on one ill in the group. 26397 */ 26398 ipif = ipif_get_next_ipif(NULL, ill); 26399 if (ipif == NULL) 26400 return (B_FALSE); 26401 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 26402 connp->conn_zoneid, NULL, 26403 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 26404 ipif_refrele(ipif); 26405 if (ire != NULL) { 26406 ire_refrele(ire); 26407 return (B_TRUE); 26408 } else { 26409 return (B_FALSE); 26410 } 26411 } 26412 26413 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 26414 connp->conn_zoneid == zoneid) { 26415 /* 26416 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 26417 * disabled, therefore we don't dispatch the multicast packet to 26418 * the sending zone. 26419 */ 26420 return (B_FALSE); 26421 } 26422 26423 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 26424 connp->conn_zoneid != zoneid) { 26425 /* 26426 * Multicast packet on the loopback interface: we only match 26427 * conns who joined the group in the specified zone. 26428 */ 26429 return (B_FALSE); 26430 } 26431 26432 if (connp->conn_multi_router) { 26433 /* multicast packet and multicast router socket: send up */ 26434 return (B_TRUE); 26435 } 26436 26437 mutex_enter(&connp->conn_lock); 26438 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 26439 mutex_exit(&connp->conn_lock); 26440 return (found); 26441 } 26442 26443 /* 26444 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 26445 */ 26446 /* ARGSUSED */ 26447 static void 26448 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 26449 { 26450 ill_t *ill = (ill_t *)q->q_ptr; 26451 mblk_t *mp1, *mp2; 26452 ipif_t *ipif; 26453 int err = 0; 26454 conn_t *connp = NULL; 26455 ipsq_t *ipsq; 26456 arc_t *arc; 26457 26458 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 26459 26460 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 26461 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 26462 26463 ASSERT(IAM_WRITER_ILL(ill)); 26464 mp2 = mp->b_cont; 26465 mp->b_cont = NULL; 26466 26467 /* 26468 * We have now received the arp bringup completion message 26469 * from ARP. Mark the arp bringup as done. Also if the arp 26470 * stream has already started closing, send up the AR_ARP_CLOSING 26471 * ack now since ARP is waiting in close for this ack. 26472 */ 26473 mutex_enter(&ill->ill_lock); 26474 ill->ill_arp_bringup_pending = 0; 26475 if (ill->ill_arp_closing) { 26476 mutex_exit(&ill->ill_lock); 26477 /* Let's reuse the mp for sending the ack */ 26478 arc = (arc_t *)mp->b_rptr; 26479 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 26480 arc->arc_cmd = AR_ARP_CLOSING; 26481 qreply(q, mp); 26482 } else { 26483 mutex_exit(&ill->ill_lock); 26484 freeb(mp); 26485 } 26486 26487 /* We should have an IOCTL waiting on this. */ 26488 ipsq = ill->ill_phyint->phyint_ipsq; 26489 ipif = ipsq->ipsq_pending_ipif; 26490 mp1 = ipsq_pending_mp_get(ipsq, &connp); 26491 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 26492 if (mp1 == NULL) { 26493 /* bringup was aborted by the user */ 26494 freemsg(mp2); 26495 return; 26496 } 26497 ASSERT(connp != NULL); 26498 q = CONNP_TO_WQ(connp); 26499 /* 26500 * If the DL_BIND_REQ fails, it is noted 26501 * in arc_name_offset. 26502 */ 26503 err = *((int *)mp2->b_rptr); 26504 if (err == 0) { 26505 if (ipif->ipif_isv6) { 26506 if ((err = ipif_up_done_v6(ipif)) != 0) 26507 ip0dbg(("ip_arp_done: init failed\n")); 26508 } else { 26509 if ((err = ipif_up_done(ipif)) != 0) 26510 ip0dbg(("ip_arp_done: init failed\n")); 26511 } 26512 } else { 26513 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 26514 } 26515 26516 freemsg(mp2); 26517 26518 if ((err == 0) && (ill->ill_up_ipifs)) { 26519 err = ill_up_ipifs(ill, q, mp1); 26520 if (err == EINPROGRESS) 26521 return; 26522 } 26523 26524 if (ill->ill_up_ipifs) { 26525 ill_group_cleanup(ill); 26526 } 26527 26528 /* 26529 * The ioctl must complete now without EINPROGRESS 26530 * since ipsq_pending_mp_get has removed the ioctl mblk 26531 * from ipsq_pending_mp. Otherwise the ioctl will be 26532 * stuck for ever in the ipsq. 26533 */ 26534 ASSERT(err != EINPROGRESS); 26535 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 26536 } 26537 26538 /* Allocate the private structure */ 26539 static int 26540 ip_priv_alloc(void **bufp) 26541 { 26542 void *buf; 26543 26544 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 26545 return (ENOMEM); 26546 26547 *bufp = buf; 26548 return (0); 26549 } 26550 26551 /* Function to delete the private structure */ 26552 void 26553 ip_priv_free(void *buf) 26554 { 26555 ASSERT(buf != NULL); 26556 kmem_free(buf, sizeof (ip_priv_t)); 26557 } 26558 26559 /* 26560 * The entry point for IPPF processing. 26561 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 26562 * routine just returns. 26563 * 26564 * When called, ip_process generates an ipp_packet_t structure 26565 * which holds the state information for this packet and invokes the 26566 * the classifier (via ipp_packet_process). The classification, depending on 26567 * configured filters, results in a list of actions for this packet. Invoking 26568 * an action may cause the packet to be dropped, in which case the resulting 26569 * mblk (*mpp) is NULL. proc indicates the callout position for 26570 * this packet and ill_index is the interface this packet on or will leave 26571 * on (inbound and outbound resp.). 26572 */ 26573 void 26574 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 26575 { 26576 mblk_t *mp; 26577 ip_priv_t *priv; 26578 ipp_action_id_t aid; 26579 int rc = 0; 26580 ipp_packet_t *pp; 26581 #define IP_CLASS "ip" 26582 26583 /* If the classifier is not loaded, return */ 26584 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 26585 return; 26586 } 26587 26588 mp = *mpp; 26589 ASSERT(mp != NULL); 26590 26591 /* Allocate the packet structure */ 26592 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 26593 if (rc != 0) { 26594 *mpp = NULL; 26595 freemsg(mp); 26596 return; 26597 } 26598 26599 /* Allocate the private structure */ 26600 rc = ip_priv_alloc((void **)&priv); 26601 if (rc != 0) { 26602 *mpp = NULL; 26603 freemsg(mp); 26604 ipp_packet_free(pp); 26605 return; 26606 } 26607 priv->proc = proc; 26608 priv->ill_index = ill_index; 26609 ipp_packet_set_private(pp, priv, ip_priv_free); 26610 ipp_packet_set_data(pp, mp); 26611 26612 /* Invoke the classifier */ 26613 rc = ipp_packet_process(&pp); 26614 if (pp != NULL) { 26615 mp = ipp_packet_get_data(pp); 26616 ipp_packet_free(pp); 26617 if (rc != 0) { 26618 freemsg(mp); 26619 *mpp = NULL; 26620 } 26621 } else { 26622 *mpp = NULL; 26623 } 26624 #undef IP_CLASS 26625 } 26626 26627 /* 26628 * Propagate a multicast group membership operation (add/drop) on 26629 * all the interfaces crossed by the related multirt routes. 26630 * The call is considered successful if the operation succeeds 26631 * on at least one interface. 26632 */ 26633 static int 26634 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 26635 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 26636 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 26637 mblk_t *first_mp) 26638 { 26639 ire_t *ire_gw; 26640 irb_t *irb; 26641 int error = 0; 26642 opt_restart_t *or; 26643 26644 irb = ire->ire_bucket; 26645 ASSERT(irb != NULL); 26646 26647 ASSERT(DB_TYPE(first_mp) == M_CTL); 26648 26649 or = (opt_restart_t *)first_mp->b_rptr; 26650 IRB_REFHOLD(irb); 26651 for (; ire != NULL; ire = ire->ire_next) { 26652 if ((ire->ire_flags & RTF_MULTIRT) == 0) 26653 continue; 26654 if (ire->ire_addr != group) 26655 continue; 26656 26657 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 26658 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 26659 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 26660 /* No resolver exists for the gateway; skip this ire. */ 26661 if (ire_gw == NULL) 26662 continue; 26663 26664 /* 26665 * This function can return EINPROGRESS. If so the operation 26666 * will be restarted from ip_restart_optmgmt which will 26667 * call ip_opt_set and option processing will restart for 26668 * this option. So we may end up calling 'fn' more than once. 26669 * This requires that 'fn' is idempotent except for the 26670 * return value. The operation is considered a success if 26671 * it succeeds at least once on any one interface. 26672 */ 26673 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 26674 NULL, fmode, src, first_mp); 26675 if (error == 0) 26676 or->or_private = CGTP_MCAST_SUCCESS; 26677 26678 if (ip_debug > 0) { 26679 ulong_t off; 26680 char *ksym; 26681 ksym = kobj_getsymname((uintptr_t)fn, &off); 26682 ip2dbg(("ip_multirt_apply_membership: " 26683 "called %s, multirt group 0x%08x via itf 0x%08x, " 26684 "error %d [success %u]\n", 26685 ksym ? ksym : "?", 26686 ntohl(group), ntohl(ire_gw->ire_src_addr), 26687 error, or->or_private)); 26688 } 26689 26690 ire_refrele(ire_gw); 26691 if (error == EINPROGRESS) { 26692 IRB_REFRELE(irb); 26693 return (error); 26694 } 26695 } 26696 IRB_REFRELE(irb); 26697 /* 26698 * Consider the call as successful if we succeeded on at least 26699 * one interface. Otherwise, return the last encountered error. 26700 */ 26701 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 26702 } 26703 26704 26705 /* 26706 * Issue a warning regarding a route crossing an interface with an 26707 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 26708 * amount of time is logged. 26709 */ 26710 static void 26711 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 26712 { 26713 hrtime_t current = gethrtime(); 26714 char buf[16]; 26715 26716 /* Convert interval in ms to hrtime in ns */ 26717 if (multirt_bad_mtu_last_time + 26718 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 26719 current) { 26720 cmn_err(CE_WARN, "ip: ignoring multiroute " 26721 "to %s, incorrect MTU %u (expected %u)\n", 26722 ip_dot_addr(ire->ire_addr, buf), 26723 ire->ire_max_frag, max_frag); 26724 26725 multirt_bad_mtu_last_time = current; 26726 } 26727 } 26728 26729 26730 /* 26731 * Get the CGTP (multirouting) filtering status. 26732 * If 0, the CGTP hooks are transparent. 26733 */ 26734 /* ARGSUSED */ 26735 static int 26736 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 26737 { 26738 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 26739 26740 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 26741 return (0); 26742 } 26743 26744 26745 /* 26746 * Set the CGTP (multirouting) filtering status. 26747 * If the status is changed from active to transparent 26748 * or from transparent to active, forward the new status 26749 * to the filtering module (if loaded). 26750 */ 26751 /* ARGSUSED */ 26752 static int 26753 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 26754 cred_t *ioc_cr) 26755 { 26756 long new_value; 26757 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 26758 26759 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 26760 new_value < 0 || new_value > 1) { 26761 return (EINVAL); 26762 } 26763 26764 /* 26765 * Do not enable CGTP filtering - thus preventing the hooks 26766 * from being invoked - if the version number of the 26767 * filtering module hooks does not match. 26768 */ 26769 if ((ip_cgtp_filter_ops != NULL) && 26770 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 26771 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 26772 "(module hooks version %d, expecting %d)\n", 26773 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 26774 return (ENOTSUP); 26775 } 26776 26777 if ((!*ip_cgtp_filter_value) && new_value) { 26778 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 26779 ip_cgtp_filter_ops == NULL ? 26780 " (module not loaded)" : ""); 26781 } 26782 if (*ip_cgtp_filter_value && (!new_value)) { 26783 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 26784 ip_cgtp_filter_ops == NULL ? 26785 " (module not loaded)" : ""); 26786 } 26787 26788 if (ip_cgtp_filter_ops != NULL) { 26789 int res; 26790 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 26791 return (res); 26792 } 26793 } 26794 26795 *ip_cgtp_filter_value = (boolean_t)new_value; 26796 26797 return (0); 26798 } 26799 26800 26801 /* 26802 * Return the expected CGTP hooks version number. 26803 */ 26804 int 26805 ip_cgtp_filter_supported(void) 26806 { 26807 return (ip_cgtp_filter_rev); 26808 } 26809 26810 26811 /* 26812 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 26813 * or by invoking this function. In the first case, the version number 26814 * of the registered structure is checked at hooks activation time 26815 * in ip_cgtp_filter_set(). 26816 */ 26817 int 26818 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 26819 { 26820 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 26821 return (ENOTSUP); 26822 26823 ip_cgtp_filter_ops = ops; 26824 return (0); 26825 } 26826 26827 static squeue_func_t 26828 ip_squeue_switch(int val) 26829 { 26830 squeue_func_t rval = squeue_fill; 26831 26832 switch (val) { 26833 case IP_SQUEUE_ENTER_NODRAIN: 26834 rval = squeue_enter_nodrain; 26835 break; 26836 case IP_SQUEUE_ENTER: 26837 rval = squeue_enter; 26838 break; 26839 default: 26840 break; 26841 } 26842 return (rval); 26843 } 26844 26845 /* ARGSUSED */ 26846 static int 26847 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 26848 caddr_t addr, cred_t *cr) 26849 { 26850 int *v = (int *)addr; 26851 long new_value; 26852 26853 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 26854 return (EINVAL); 26855 26856 ip_input_proc = ip_squeue_switch(new_value); 26857 *v = new_value; 26858 return (0); 26859 } 26860 26861 /* ARGSUSED */ 26862 static int 26863 ip_int_set(queue_t *q, mblk_t *mp, char *value, 26864 caddr_t addr, cred_t *cr) 26865 { 26866 int *v = (int *)addr; 26867 long new_value; 26868 26869 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 26870 return (EINVAL); 26871 26872 *v = new_value; 26873 return (0); 26874 } 26875 26876 static void 26877 ip_kstat_init(void) 26878 { 26879 ip_named_kstat_t template = { 26880 { "forwarding", KSTAT_DATA_UINT32, 0 }, 26881 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 26882 { "inReceives", KSTAT_DATA_UINT32, 0 }, 26883 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 26884 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 26885 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 26886 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 26887 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 26888 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 26889 { "outRequests", KSTAT_DATA_UINT32, 0 }, 26890 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 26891 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 26892 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 26893 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 26894 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 26895 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 26896 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 26897 { "fragFails", KSTAT_DATA_UINT32, 0 }, 26898 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 26899 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 26900 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 26901 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 26902 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 26903 { "inErrs", KSTAT_DATA_UINT32, 0 }, 26904 { "noPorts", KSTAT_DATA_UINT32, 0 }, 26905 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 26906 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 26907 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 26908 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 26909 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 26910 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 26911 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 26912 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 26913 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 26914 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 26915 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 26916 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 26917 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 26918 }; 26919 26920 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 26921 NUM_OF_FIELDS(ip_named_kstat_t), 26922 0); 26923 if (!ip_mibkp) 26924 return; 26925 26926 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 26927 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 26928 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 26929 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 26930 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 26931 26932 template.netToMediaEntrySize.value.i32 = 26933 sizeof (mib2_ipNetToMediaEntry_t); 26934 26935 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 26936 26937 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 26938 26939 ip_mibkp->ks_update = ip_kstat_update; 26940 26941 kstat_install(ip_mibkp); 26942 } 26943 26944 static void 26945 ip_kstat_fini(void) 26946 { 26947 26948 if (ip_mibkp != NULL) { 26949 kstat_delete(ip_mibkp); 26950 ip_mibkp = NULL; 26951 } 26952 } 26953 26954 static int 26955 ip_kstat_update(kstat_t *kp, int rw) 26956 { 26957 ip_named_kstat_t *ipkp; 26958 26959 if (!kp || !kp->ks_data) 26960 return (EIO); 26961 26962 if (rw == KSTAT_WRITE) 26963 return (EACCES); 26964 26965 ipkp = (ip_named_kstat_t *)kp->ks_data; 26966 26967 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 26968 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 26969 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 26970 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 26971 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 26972 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 26973 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 26974 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 26975 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 26976 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 26977 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 26978 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 26979 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 26980 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 26981 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 26982 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 26983 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 26984 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 26985 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 26986 26987 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 26988 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 26989 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 26990 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 26991 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 26992 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 26993 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 26994 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 26995 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 26996 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 26997 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 26998 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 26999 27000 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 27001 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 27002 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 27003 27004 return (0); 27005 } 27006 27007 static void 27008 icmp_kstat_init(void) 27009 { 27010 icmp_named_kstat_t template = { 27011 { "inMsgs", KSTAT_DATA_UINT32 }, 27012 { "inErrors", KSTAT_DATA_UINT32 }, 27013 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 27014 { "inTimeExcds", KSTAT_DATA_UINT32 }, 27015 { "inParmProbs", KSTAT_DATA_UINT32 }, 27016 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 27017 { "inRedirects", KSTAT_DATA_UINT32 }, 27018 { "inEchos", KSTAT_DATA_UINT32 }, 27019 { "inEchoReps", KSTAT_DATA_UINT32 }, 27020 { "inTimestamps", KSTAT_DATA_UINT32 }, 27021 { "inTimestampReps", KSTAT_DATA_UINT32 }, 27022 { "inAddrMasks", KSTAT_DATA_UINT32 }, 27023 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 27024 { "outMsgs", KSTAT_DATA_UINT32 }, 27025 { "outErrors", KSTAT_DATA_UINT32 }, 27026 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 27027 { "outTimeExcds", KSTAT_DATA_UINT32 }, 27028 { "outParmProbs", KSTAT_DATA_UINT32 }, 27029 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 27030 { "outRedirects", KSTAT_DATA_UINT32 }, 27031 { "outEchos", KSTAT_DATA_UINT32 }, 27032 { "outEchoReps", KSTAT_DATA_UINT32 }, 27033 { "outTimestamps", KSTAT_DATA_UINT32 }, 27034 { "outTimestampReps", KSTAT_DATA_UINT32 }, 27035 { "outAddrMasks", KSTAT_DATA_UINT32 }, 27036 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 27037 { "inChksumErrs", KSTAT_DATA_UINT32 }, 27038 { "inUnknowns", KSTAT_DATA_UINT32 }, 27039 { "inFragNeeded", KSTAT_DATA_UINT32 }, 27040 { "outFragNeeded", KSTAT_DATA_UINT32 }, 27041 { "outDrops", KSTAT_DATA_UINT32 }, 27042 { "inOverFlows", KSTAT_DATA_UINT32 }, 27043 { "inBadRedirects", KSTAT_DATA_UINT32 }, 27044 }; 27045 27046 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 27047 NUM_OF_FIELDS(icmp_named_kstat_t), 27048 0); 27049 if (icmp_mibkp == NULL) 27050 return; 27051 27052 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 27053 27054 icmp_mibkp->ks_update = icmp_kstat_update; 27055 27056 kstat_install(icmp_mibkp); 27057 } 27058 27059 static void 27060 icmp_kstat_fini(void) 27061 { 27062 27063 if (icmp_mibkp != NULL) { 27064 kstat_delete(icmp_mibkp); 27065 icmp_mibkp = NULL; 27066 } 27067 } 27068 27069 static int 27070 icmp_kstat_update(kstat_t *kp, int rw) 27071 { 27072 icmp_named_kstat_t *icmpkp; 27073 27074 if ((kp == NULL) || (kp->ks_data == NULL)) 27075 return (EIO); 27076 27077 if (rw == KSTAT_WRITE) 27078 return (EACCES); 27079 27080 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 27081 27082 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 27083 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 27084 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 27085 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 27086 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 27087 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 27088 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 27089 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 27090 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 27091 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 27092 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 27093 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 27094 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 27095 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 27096 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 27097 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 27098 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 27099 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 27100 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 27101 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 27102 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 27103 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 27104 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 27105 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 27106 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 27107 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 27108 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 27109 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 27110 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 27111 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 27112 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 27113 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 27114 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 27115 27116 return (0); 27117 } 27118 27119 /* 27120 * This is the fanout function for raw socket opened for SCTP. Note 27121 * that it is called after SCTP checks that there is no socket which 27122 * wants a packet. Then before SCTP handles this out of the blue packet, 27123 * this function is called to see if there is any raw socket for SCTP. 27124 * If there is and it is bound to the correct address, the packet will 27125 * be sent to that socket. Note that only one raw socket can be bound to 27126 * a port. This is assured in ipcl_sctp_hash_insert(); 27127 */ 27128 void 27129 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 27130 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 27131 uint_t ipif_seqid, zoneid_t zoneid) 27132 { 27133 conn_t *connp; 27134 queue_t *rq; 27135 mblk_t *first_mp; 27136 boolean_t secure; 27137 ip6_t *ip6h; 27138 27139 first_mp = mp; 27140 if (mctl_present) { 27141 mp = first_mp->b_cont; 27142 secure = ipsec_in_is_secure(first_mp); 27143 ASSERT(mp != NULL); 27144 } else { 27145 secure = B_FALSE; 27146 } 27147 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 27148 27149 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 27150 if (connp == NULL) { 27151 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 27152 mctl_present); 27153 return; 27154 } 27155 rq = connp->conn_rq; 27156 if (!canputnext(rq)) { 27157 CONN_DEC_REF(connp); 27158 BUMP_MIB(&ip_mib, rawipInOverflows); 27159 freemsg(first_mp); 27160 return; 27161 } 27162 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 27163 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 27164 first_mp = ipsec_check_inbound_policy(first_mp, connp, 27165 (isv4 ? ipha : NULL), ip6h, mctl_present); 27166 if (first_mp == NULL) { 27167 CONN_DEC_REF(connp); 27168 return; 27169 } 27170 } 27171 /* 27172 * We probably should not send M_CTL message up to 27173 * raw socket. 27174 */ 27175 if (mctl_present) 27176 freeb(first_mp); 27177 27178 /* Initiate IPPF processing here if needed. */ 27179 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 27180 (!isv4 && IP6_IN_IPP(flags))) { 27181 ip_process(IPP_LOCAL_IN, &mp, 27182 recv_ill->ill_phyint->phyint_ifindex); 27183 if (mp == NULL) { 27184 CONN_DEC_REF(connp); 27185 return; 27186 } 27187 } 27188 27189 if (connp->conn_recvif || connp->conn_recvslla || 27190 ((connp->conn_ipv6_recvpktinfo || 27191 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 27192 (flags & IP_FF_IP6INFO))) { 27193 int in_flags = 0; 27194 27195 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 27196 in_flags = IPF_RECVIF; 27197 } 27198 if (connp->conn_recvslla) { 27199 in_flags |= IPF_RECVSLLA; 27200 } 27201 if (isv4) { 27202 mp = ip_add_info(mp, recv_ill, in_flags); 27203 } else { 27204 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 27205 if (mp == NULL) { 27206 CONN_DEC_REF(connp); 27207 return; 27208 } 27209 } 27210 } 27211 27212 BUMP_MIB(&ip_mib, ipInDelivers); 27213 /* 27214 * We are sending the IPSEC_IN message also up. Refer 27215 * to comments above this function. 27216 */ 27217 putnext(rq, mp); 27218 CONN_DEC_REF(connp); 27219 } 27220 27221 /* 27222 * Martian Address Filtering [RFC 1812, Section 5.3.7] 27223 */ 27224 static boolean_t 27225 ip_no_forward(ipha_t *ipha, ill_t *ill) 27226 { 27227 ipaddr_t ip_src, ip_dst; 27228 ire_t *src_ire = NULL; 27229 27230 ip_src = ntohl(ipha->ipha_src); 27231 ip_dst = ntohl(ipha->ipha_dst); 27232 27233 if (ip_dst == INADDR_ANY) 27234 goto dont_forward; 27235 27236 if (IN_CLASSD(ip_src)) 27237 goto dont_forward; 27238 27239 if ((ip_src >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 27240 goto dont_forward; 27241 27242 if (IN_BADCLASS(ip_dst)) 27243 goto dont_forward; 27244 27245 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 27246 ALL_ZONES, NULL, MATCH_IRE_TYPE); 27247 if (src_ire != NULL) { 27248 ire_refrele(src_ire); 27249 goto dont_forward; 27250 } 27251 27252 return (B_FALSE); 27253 27254 dont_forward: 27255 if (ip_debug > 2) { 27256 printf("ip_no_forward: dropping packet received on %s\n", 27257 ill->ill_name); 27258 pr_addr_dbg("ip_no_forward: from src %s\n", 27259 AF_INET, &ipha->ipha_src); 27260 pr_addr_dbg("ip_no_forward: to dst %s\n", 27261 AF_INET, &ipha->ipha_dst); 27262 } 27263 BUMP_MIB(&ip_mib, ipForwProhibits); 27264 return (B_TRUE); 27265 } 27266 27267 static boolean_t 27268 ip_loopback_src_or_dst(ipha_t *ipha, ill_t *ill) 27269 { 27270 if (((ntohl(ipha->ipha_src) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) || 27271 ((ntohl(ipha->ipha_dst) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { 27272 if (ip_debug > 2) { 27273 if (ill != NULL) { 27274 printf("ip_loopback_src_or_dst: " 27275 "dropping packet received on %s\n", 27276 ill->ill_name); 27277 } else { 27278 printf("ip_loopback_src_or_dst: " 27279 "dropping packet\n"); 27280 } 27281 27282 pr_addr_dbg( 27283 "ip_loopback_src_or_dst: from src %s\n", 27284 AF_INET, &ipha->ipha_src); 27285 pr_addr_dbg( 27286 "ip_loopback_src_or_dst: to dst %s\n", 27287 AF_INET, &ipha->ipha_dst); 27288 } 27289 27290 BUMP_MIB(&ip_mib, ipInAddrErrors); 27291 return (B_TRUE); 27292 } 27293 return (B_FALSE); 27294 } 27295 27296 /* 27297 * Return B_TRUE if the buffers differ in length or content. 27298 * This is used for comparing extension header buffers. 27299 * Note that an extension header would be declared different 27300 * even if all that changed was the next header value in that header i.e. 27301 * what really changed is the next extension header. 27302 */ 27303 boolean_t 27304 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 27305 uint_t blen) 27306 { 27307 if (!b_valid) 27308 blen = 0; 27309 27310 if (alen != blen) 27311 return (B_TRUE); 27312 if (alen == 0) 27313 return (B_FALSE); /* Both zero length */ 27314 return (bcmp(abuf, bbuf, alen)); 27315 } 27316 27317 /* 27318 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 27319 * Return B_FALSE if memory allocation fails - don't change any state! 27320 */ 27321 boolean_t 27322 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 27323 const void *src, uint_t srclen) 27324 { 27325 void *dst; 27326 27327 if (!src_valid) 27328 srclen = 0; 27329 27330 ASSERT(*dstlenp == 0); 27331 if (src != NULL && srclen != 0) { 27332 dst = mi_alloc(srclen, BPRI_MED); 27333 if (dst == NULL) 27334 return (B_FALSE); 27335 } else { 27336 dst = NULL; 27337 } 27338 if (*dstp != NULL) 27339 mi_free(*dstp); 27340 *dstp = dst; 27341 *dstlenp = dst == NULL ? 0 : srclen; 27342 return (B_TRUE); 27343 } 27344 27345 /* 27346 * Replace what is in *dst, *dstlen with the source. 27347 * Assumes ip_allocbuf has already been called. 27348 */ 27349 void 27350 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 27351 const void *src, uint_t srclen) 27352 { 27353 if (!src_valid) 27354 srclen = 0; 27355 27356 ASSERT(*dstlenp == srclen); 27357 if (src != NULL && srclen != 0) 27358 bcopy(src, *dstp, srclen); 27359 } 27360 27361 /* 27362 * Free the storage pointed to by the members of an ip6_pkt_t. 27363 */ 27364 void 27365 ip6_pkt_free(ip6_pkt_t *ipp) 27366 { 27367 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 27368 27369 if (ipp->ipp_fields & IPPF_HOPOPTS) { 27370 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 27371 ipp->ipp_hopopts = NULL; 27372 ipp->ipp_hopoptslen = 0; 27373 } 27374 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 27375 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 27376 ipp->ipp_rtdstopts = NULL; 27377 ipp->ipp_rtdstoptslen = 0; 27378 } 27379 if (ipp->ipp_fields & IPPF_DSTOPTS) { 27380 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 27381 ipp->ipp_dstopts = NULL; 27382 ipp->ipp_dstoptslen = 0; 27383 } 27384 if (ipp->ipp_fields & IPPF_RTHDR) { 27385 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 27386 ipp->ipp_rthdr = NULL; 27387 ipp->ipp_rthdrlen = 0; 27388 } 27389 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 27390 IPPF_RTHDR); 27391 } 27392