1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #ifndef _INET_IP_H 29 #define _INET_IP_H 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #ifdef __cplusplus 34 extern "C" { 35 #endif 36 37 #include <sys/isa_defs.h> 38 #include <sys/types.h> 39 #include <inet/mib2.h> 40 #include <inet/nd.h> 41 #include <sys/atomic.h> 42 #include <net/if_dl.h> 43 #include <net/if.h> 44 #include <netinet/ip.h> 45 #include <netinet/igmp.h> 46 #include <sys/neti.h> 47 #include <sys/hook.h> 48 #include <sys/hook_event.h> 49 #include <sys/hook_impl.h> 50 51 #ifdef _KERNEL 52 #include <netinet/ip6.h> 53 #include <sys/avl.h> 54 #include <sys/vmem.h> 55 #include <sys/squeue.h> 56 #include <net/route.h> 57 #include <sys/systm.h> 58 #include <sys/multidata.h> 59 #include <net/radix.h> 60 61 #ifdef DEBUG 62 #define ILL_DEBUG 63 #define IRE_DEBUG 64 #define NCE_DEBUG 65 #define CONN_DEBUG 66 #endif 67 68 #define IP_DEBUG 69 /* 70 * The mt-streams(9F) flags for the IP module; put here so that other 71 * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set 72 * of flags. 73 */ 74 #define IP_DEVMTFLAGS D_MP 75 #endif /* _KERNEL */ 76 77 #define IP_MOD_NAME "ip" 78 #define IP_DEV_NAME "/dev/ip" 79 #define IP6_DEV_NAME "/dev/ip6" 80 81 #define UDP_MOD_NAME "udp" 82 #define UDP_DEV_NAME "/dev/udp" 83 #define UDP6_DEV_NAME "/dev/udp6" 84 85 #define TCP_MOD_NAME "tcp" 86 #define TCP_DEV_NAME "/dev/tcp" 87 #define TCP6_DEV_NAME "/dev/tcp6" 88 89 #define SCTP_MOD_NAME "sctp" 90 91 /* Minor numbers */ 92 #define IPV4_MINOR 0 93 #define IPV6_MINOR 1 94 #define TCP_MINOR 2 95 #define TCP_MINOR6 3 96 97 #ifndef _IPADDR_T 98 #define _IPADDR_T 99 typedef uint32_t ipaddr_t; 100 #endif 101 102 /* Number of bits in an address */ 103 #define IP_ABITS 32 104 #define IPV6_ABITS 128 105 106 #define IP_HOST_MASK (ipaddr_t)0xffffffffU 107 108 #define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF) 109 #define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum) 110 #define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum) 111 #define IP_MD_CSUM(pd, off, sum) (~ip_md_cksum(pd, off, sum) & 0xffff) 112 #define IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum) 113 114 /* 115 * Flag to IP write side to indicate that the appln has sent in a pre-built 116 * IP header. Stored in ipha_ident (which is otherwise zero). 117 */ 118 #define IP_HDR_INCLUDED 0xFFFF 119 120 #define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64) 121 #define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t)) 122 123 #define IPV4_ADDR_LEN 4 124 #define IP_ADDR_LEN IPV4_ADDR_LEN 125 #define IP_ARP_PROTO_TYPE 0x0800 126 127 #define IPV4_VERSION 4 128 #define IP_VERSION IPV4_VERSION 129 #define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5 130 #define IP_SIMPLE_HDR_LENGTH 20 131 #define IP_MAX_HDR_LENGTH 60 132 133 #define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH) 134 135 #define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */ 136 137 /* 138 * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the 139 * 2 files should be cleaned up to remove all redundant definitions. 140 */ 141 #define IP_MAXPACKET 65535 142 #define IP_SIMPLE_HDR_VERSION \ 143 ((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS) 144 145 #define UDPH_SIZE 8 146 147 /* Leave room for ip_newroute to tack on the src and target addresses */ 148 #define OK_RESOLVER_MP(mp) \ 149 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 150 151 /* 152 * Constants and type definitions to support IP IOCTL commands 153 */ 154 #define IP_IOCTL (('i'<<8)|'p') 155 #define IP_IOC_IRE_DELETE 4 156 #define IP_IOC_IRE_DELETE_NO_REPLY 5 157 #define IP_IOC_IRE_ADVISE_NO_REPLY 6 158 #define IP_IOC_RTS_REQUEST 7 159 160 /* Common definitions used by IP IOCTL data structures */ 161 typedef struct ipllcmd_s { 162 uint_t ipllc_cmd; 163 uint_t ipllc_name_offset; 164 uint_t ipllc_name_length; 165 } ipllc_t; 166 167 /* IP IRE Change Command Structure. */ 168 typedef struct ipic_s { 169 ipllc_t ipic_ipllc; 170 uint_t ipic_ire_type; 171 uint_t ipic_max_frag; 172 uint_t ipic_addr_offset; 173 uint_t ipic_addr_length; 174 uint_t ipic_mask_offset; 175 uint_t ipic_mask_length; 176 uint_t ipic_src_addr_offset; 177 uint_t ipic_src_addr_length; 178 uint_t ipic_ll_hdr_offset; 179 uint_t ipic_ll_hdr_length; 180 uint_t ipic_gateway_addr_offset; 181 uint_t ipic_gateway_addr_length; 182 clock_t ipic_rtt; 183 uint32_t ipic_ssthresh; 184 clock_t ipic_rtt_sd; 185 uchar_t ipic_ire_marks; 186 } ipic_t; 187 188 #define ipic_cmd ipic_ipllc.ipllc_cmd 189 #define ipic_ll_name_length ipic_ipllc.ipllc_name_length 190 #define ipic_ll_name_offset ipic_ipllc.ipllc_name_offset 191 192 /* IP IRE Delete Command Structure. */ 193 typedef struct ipid_s { 194 ipllc_t ipid_ipllc; 195 uint_t ipid_ire_type; 196 uint_t ipid_addr_offset; 197 uint_t ipid_addr_length; 198 uint_t ipid_mask_offset; 199 uint_t ipid_mask_length; 200 } ipid_t; 201 202 #define ipid_cmd ipid_ipllc.ipllc_cmd 203 204 #ifdef _KERNEL 205 /* 206 * Temporary state for ip options parser. 207 */ 208 typedef struct ipoptp_s 209 { 210 uint8_t *ipoptp_next; /* next option to look at */ 211 uint8_t *ipoptp_end; /* end of options */ 212 uint8_t *ipoptp_cur; /* start of current option */ 213 uint8_t ipoptp_len; /* length of current option */ 214 uint32_t ipoptp_flags; 215 } ipoptp_t; 216 217 /* 218 * Flag(s) for ipoptp_flags 219 */ 220 #define IPOPTP_ERROR 0x00000001 221 #endif /* _KERNEL */ 222 223 224 /* Controls forwarding of IP packets, set via ndd */ 225 #define IP_FORWARD_NEVER 0 226 #define IP_FORWARD_ALWAYS 1 227 228 #define WE_ARE_FORWARDING (ip_g_forward == IP_FORWARD_ALWAYS) 229 230 #define IPH_HDR_LENGTH(ipha) \ 231 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2) 232 233 #define IPH_HDR_VERSION(ipha) \ 234 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4) 235 236 #ifdef _KERNEL 237 /* 238 * IP reassembly macros. We hide starting and ending offsets in b_next and 239 * b_prev of messages on the reassembly queue. The messages are chained using 240 * b_cont. These macros are used in ip_reassemble() so we don't have to see 241 * the ugly casts and assignments. 242 * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent 243 * them. 244 */ 245 #define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next)) 246 #define IP_REASS_SET_START(mp, u) \ 247 ((mp)->b_next = (mblk_t *)(uintptr_t)(u)) 248 #define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev)) 249 #define IP_REASS_SET_END(mp, u) \ 250 ((mp)->b_prev = (mblk_t *)(uintptr_t)(u)) 251 252 #define IP_REASS_COMPLETE 0x1 253 #define IP_REASS_PARTIAL 0x2 254 #define IP_REASS_FAILED 0x4 255 256 /* 257 * Test to determine whether this is a module instance of IP or a 258 * driver instance of IP. 259 */ 260 #define CONN_Q(q) (WR(q)->q_next == NULL) 261 262 #define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr) 263 #define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp) 264 #define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp) 265 266 /* 267 * The following two macros are used by IP to get the appropriate 268 * wq and rq for a conn. If it is a TCP conn, then we need 269 * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq 270 * from a conn directly if it knows that the conn is not TCP. 271 */ 272 #define CONNP_TO_WQ(connp) \ 273 (IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq) 274 275 #define CONNP_TO_RQ(connp) RD(CONNP_TO_WQ(connp)) 276 277 #define GRAB_CONN_LOCK(q) { \ 278 if (q != NULL && CONN_Q(q)) \ 279 mutex_enter(&(Q_TO_CONN(q))->conn_lock); \ 280 } 281 282 #define RELEASE_CONN_LOCK(q) { \ 283 if (q != NULL && CONN_Q(q)) \ 284 mutex_exit(&(Q_TO_CONN(q))->conn_lock); \ 285 } 286 287 /* "Congestion controlled" protocol */ 288 #define IP_FLOW_CONTROLLED_ULP(p) ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP) 289 290 /* 291 * Complete the pending operation. Usually an ioctl. Can also 292 * be a bind or option management request that got enqueued 293 * in an ipsq_t. Called on completion of the operation. 294 */ 295 #define CONN_OPER_PENDING_DONE(connp) { \ 296 mutex_enter(&(connp)->conn_lock); \ 297 (connp)->conn_oper_pending_ill = NULL; \ 298 cv_broadcast(&(connp)->conn_refcv); \ 299 mutex_exit(&(connp)->conn_lock); \ 300 CONN_DEC_REF(connp); \ 301 } 302 303 /* Get the credential of an IP queue of unknown type */ 304 #define GET_QUEUE_CRED(wq) \ 305 ((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \ 306 : ((Q_TO_CONN((wq)))->conn_cred)) 307 308 /* 309 * Flags for the various ip_fanout_* routines. 310 */ 311 #define IP_FF_SEND_ICMP 0x01 /* Send an ICMP error */ 312 #define IP_FF_HDR_COMPLETE 0x02 /* Call ip_hdr_complete if error */ 313 #define IP_FF_CKSUM 0x04 /* Recompute ipha_cksum if error */ 314 #define IP_FF_RAWIP 0x08 /* Use rawip mib variable */ 315 #define IP_FF_SRC_QUENCH 0x10 /* OK to send ICMP_SOURCE_QUENCH */ 316 #define IP_FF_SYN_ADDIRE 0x20 /* Add IRE if TCP syn packet */ 317 #define IP_FF_IP6INFO 0x80 /* Add ip6i_t if needed */ 318 #define IP_FF_SEND_SLLA 0x100 /* Send source link layer info ? */ 319 #define IPV6_REACHABILITY_CONFIRMATION 0x200 /* Flags for ip_xmit_v6 */ 320 #define IP_FF_NO_MCAST_LOOP 0x400 /* No multicasts for sending zone */ 321 322 /* 323 * Following flags are used by IPQoS to determine if policy processing is 324 * required. 325 */ 326 #define IP6_NO_IPPOLICY 0x800 /* Don't do IPQoS processing */ 327 #define IP6_IN_LLMCAST 0x1000 /* Multicast */ 328 329 #define IP_FF_LOOPBACK 0x2000 /* Loopback fanout */ 330 331 #ifndef IRE_DB_TYPE 332 #define IRE_DB_TYPE M_SIG 333 #endif 334 335 #ifndef IRE_DB_REQ_TYPE 336 #define IRE_DB_REQ_TYPE M_PCSIG 337 #endif 338 339 #ifndef IRE_ARPRESOLVE_TYPE 340 #define IRE_ARPRESOLVE_TYPE M_EVENT 341 #endif 342 343 /* 344 * Values for squeue switch: 345 */ 346 347 #define IP_SQUEUE_ENTER_NODRAIN 1 348 #define IP_SQUEUE_ENTER 2 349 /* 350 * This is part of the interface between Transport provider and 351 * IP which can be used to set policy information. This is usually 352 * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that 353 * only IPSEC_POLICY_SET is there when it is found in the chain. 354 * The information contained is an struct ipsec_req_t. On success 355 * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned. 356 * IPSEC_POLICY_SET is never returned. 357 */ 358 #define IPSEC_POLICY_SET M_SETOPTS 359 360 #define IRE_IS_LOCAL(ire) ((ire != NULL) && \ 361 ((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK))) 362 363 #define IRE_IS_TARGET(ire) ((ire != NULL) && \ 364 ((ire)->ire_type != IRE_BROADCAST)) 365 366 /* IP Fragmentation Reassembly Header */ 367 typedef struct ipf_s { 368 struct ipf_s *ipf_hash_next; 369 struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */ 370 uint32_t ipf_ident; /* Ident to match. */ 371 uint8_t ipf_protocol; /* Protocol to match. */ 372 uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */ 373 time_t ipf_timestamp; /* Reassembly start time. */ 374 mblk_t *ipf_mp; /* mblk we live in. */ 375 mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */ 376 int ipf_hole_cnt; /* Number of holes (hard-case). */ 377 int ipf_end; /* Tail end offset (0 -> hard-case). */ 378 uint_t ipf_gen; /* Frag queue generation */ 379 size_t ipf_count; /* Count of bytes used by frag */ 380 uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */ 381 in6_addr_t ipf_v6src; /* IPv6 source address */ 382 in6_addr_t ipf_v6dst; /* IPv6 dest address */ 383 uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */ 384 uint8_t ipf_ecn; /* ECN info for the fragments */ 385 uint8_t ipf_num_dups; /* Number of times dup frags recvd */ 386 uint16_t ipf_checksum_flags; /* Hardware checksum flags */ 387 uint32_t ipf_checksum; /* Partial checksum of fragment data */ 388 } ipf_t; 389 390 #define ipf_src V4_PART_OF_V6(ipf_v6src) 391 #define ipf_dst V4_PART_OF_V6(ipf_v6dst) 392 393 typedef enum { 394 IB_PKT = 0x01, 395 OB_PKT = 0x02 396 } ip_pkt_t; 397 398 #define UPDATE_IB_PKT_COUNT(ire)\ 399 { \ 400 (ire)->ire_ib_pkt_count++; \ 401 if ((ire)->ire_ipif != NULL) { \ 402 /* \ 403 * forwarding packet \ 404 */ \ 405 if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \ 406 atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\ 407 else \ 408 atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\ 409 } \ 410 } 411 #define UPDATE_OB_PKT_COUNT(ire)\ 412 { \ 413 (ire)->ire_ob_pkt_count++;\ 414 if ((ire)->ire_ipif != NULL) { \ 415 atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \ 416 } \ 417 } 418 419 420 #define IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \ 421 { \ 422 switch (ipha->ipha_protocol) { \ 423 case IPPROTO_UDP: \ 424 ip_udp_input(q, mp, ipha, ire, recv_ill); \ 425 break; \ 426 default: \ 427 ip_proto_input(q, mp, ipha, ire, recv_ill); \ 428 break; \ 429 } \ 430 } 431 432 /* 433 * NCE_EXPIRED is TRUE when we have a non-permanent nce that was 434 * found to be REACHABLE more than ip_ire_arp_interval ms ago. 435 * This macro is used to trigger re-arp of existing nce_t entries 436 * so that they can be updated with the latest information. 437 * nce's will get cleaned up (or updated with new info) in the following 438 * circumstances: 439 * - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim 440 * when memory is low, 441 * - ip_arp_news, when updates are received. 442 * - if the nce is NCE_EXPIRED(), it will be re-initialized to ND_INITIAL, 443 * so that a new arp request will be triggered. 444 * nce_last is the timestamp that indicates when the nce_res_mp in the 445 * nce_t was last updated to a valid link-layer address. nce_last gets 446 * modified/updated : 447 * - when the nce is created or reinit-ed 448 * - every time we get a sane arp response for the nce. 449 */ 450 #define NCE_EXPIRED(nce) (nce->nce_last > 0 && \ 451 ((nce->nce_flags & NCE_F_PERMANENT) == 0) && \ 452 ((TICK_TO_MSEC(lbolt64) - nce->nce_last) > ip_ire_arp_interval)) 453 454 #endif /* _KERNEL */ 455 456 /* ICMP types */ 457 #define ICMP_ECHO_REPLY 0 458 #define ICMP_DEST_UNREACHABLE 3 459 #define ICMP_SOURCE_QUENCH 4 460 #define ICMP_REDIRECT 5 461 #define ICMP_ECHO_REQUEST 8 462 #define ICMP_ROUTER_ADVERTISEMENT 9 463 #define ICMP_ROUTER_SOLICITATION 10 464 #define ICMP_TIME_EXCEEDED 11 465 #define ICMP_PARAM_PROBLEM 12 466 #define ICMP_TIME_STAMP_REQUEST 13 467 #define ICMP_TIME_STAMP_REPLY 14 468 #define ICMP_INFO_REQUEST 15 469 #define ICMP_INFO_REPLY 16 470 #define ICMP_ADDRESS_MASK_REQUEST 17 471 #define ICMP_ADDRESS_MASK_REPLY 18 472 473 /* ICMP_TIME_EXCEEDED codes */ 474 #define ICMP_TTL_EXCEEDED 0 475 #define ICMP_REASSEMBLY_TIME_EXCEEDED 1 476 477 /* ICMP_DEST_UNREACHABLE codes */ 478 #define ICMP_NET_UNREACHABLE 0 479 #define ICMP_HOST_UNREACHABLE 1 480 #define ICMP_PROTOCOL_UNREACHABLE 2 481 #define ICMP_PORT_UNREACHABLE 3 482 #define ICMP_FRAGMENTATION_NEEDED 4 483 #define ICMP_SOURCE_ROUTE_FAILED 5 484 #define ICMP_DEST_NET_UNKNOWN 6 485 #define ICMP_DEST_HOST_UNKNOWN 7 486 #define ICMP_SRC_HOST_ISOLATED 8 487 #define ICMP_DEST_NET_UNREACH_ADMIN 9 488 #define ICMP_DEST_HOST_UNREACH_ADMIN 10 489 #define ICMP_DEST_NET_UNREACH_TOS 11 490 #define ICMP_DEST_HOST_UNREACH_TOS 12 491 492 /* ICMP Header Structure */ 493 typedef struct icmph_s { 494 uint8_t icmph_type; 495 uint8_t icmph_code; 496 uint16_t icmph_checksum; 497 union { 498 struct { /* ECHO request/response structure */ 499 uint16_t u_echo_ident; 500 uint16_t u_echo_seqnum; 501 } u_echo; 502 struct { /* Destination unreachable structure */ 503 uint16_t u_du_zero; 504 uint16_t u_du_mtu; 505 } u_du; 506 struct { /* Parameter problem structure */ 507 uint8_t u_pp_ptr; 508 uint8_t u_pp_rsvd[3]; 509 } u_pp; 510 struct { /* Redirect structure */ 511 ipaddr_t u_rd_gateway; 512 } u_rd; 513 } icmph_u; 514 } icmph_t; 515 516 #define icmph_echo_ident icmph_u.u_echo.u_echo_ident 517 #define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum 518 #define icmph_du_zero icmph_u.u_du.u_du_zero 519 #define icmph_du_mtu icmph_u.u_du.u_du_mtu 520 #define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr 521 #define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway 522 523 #define ICMPH_SIZE 8 524 525 /* 526 * Minimum length of transport layer header included in an ICMP error 527 * message for it to be considered valid. 528 */ 529 #define ICMP_MIN_TP_HDR_LEN 8 530 531 /* Aligned IP header */ 532 typedef struct ipha_s { 533 uint8_t ipha_version_and_hdr_length; 534 uint8_t ipha_type_of_service; 535 uint16_t ipha_length; 536 uint16_t ipha_ident; 537 uint16_t ipha_fragment_offset_and_flags; 538 uint8_t ipha_ttl; 539 uint8_t ipha_protocol; 540 uint16_t ipha_hdr_checksum; 541 ipaddr_t ipha_src; 542 ipaddr_t ipha_dst; 543 } ipha_t; 544 545 #define IPH_DF 0x4000 /* Don't fragment */ 546 #define IPH_MF 0x2000 /* More fragments to come */ 547 #define IPH_OFFSET 0x1FFF /* Where the offset lives */ 548 #define IPH_FRAG_HDR 0x8000 /* IPv6 don't fragment bit */ 549 550 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */ 551 #define IPH_ECN_NECT 0x0 /* Not ECN-Capabable Transport */ 552 #define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */ 553 #define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */ 554 #define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */ 555 556 /* IP Mac info structure */ 557 typedef struct ip_m_s { 558 t_uscalar_t ip_m_mac_type; /* From <sys/dlpi.h> */ 559 int ip_m_type; /* From <net/if_types.h> */ 560 boolean_t (*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *, 561 uint32_t *, ipaddr_t *); 562 boolean_t (*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *, 563 uint32_t *, in6_addr_t *); 564 boolean_t (*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *); 565 } ip_m_t; 566 567 /* 568 * The following functions attempt to reduce the link layer dependency 569 * of the IP stack. The current set of link specific operations are: 570 * a. map from IPv4 class D (224.0/4) multicast address range to the link 571 * layer multicast address range. 572 * b. map from IPv6 multicast address range (ff00::/8) to the link 573 * layer multicast address range. 574 * c. derive the default IPv6 interface identifier from the link layer 575 * address. 576 */ 577 #define MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \ 578 (((ip_m)->ip_m_v4mapinfo != NULL) && \ 579 (*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr)) 580 #define MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \ 581 (((ip_m)->ip_m_v6intfid != NULL) && \ 582 (*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr)) 583 #define MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \ 584 (((ip_m)->ip_m_v6mapinfo != NULL) && \ 585 (*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr)) 586 587 /* Router entry types */ 588 #define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */ 589 #define IRE_DEFAULT 0x0002 /* Route entry for default gateway */ 590 #define IRE_LOCAL 0x0004 /* Route entry for local address */ 591 #define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */ 592 #define IRE_PREFIX 0x0010 /* Route entry for prefix routes */ 593 #define IRE_CACHE 0x0020 /* Cached Route entry */ 594 #define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */ 595 /* net without any address mapping. */ 596 #define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */ 597 /* net with resolver. */ 598 #define IRE_HOST 0x0100 /* Host route entry */ 599 #define IRE_HOST_REDIRECT 0x0200 /* Host route entry from redirects */ 600 601 /* 602 * IRE_MIPRTUN is only set on the ires in the ip_mrtun_table. 603 * This ire_type must not be set for ftable and ctable routing entries. 604 */ 605 #define IRE_MIPRTUN 0x0400 /* Reverse tunnel route entry */ 606 607 #define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER) 608 #define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST | \ 609 IRE_HOST_REDIRECT) 610 #define IRE_CACHETABLE (IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \ 611 IRE_LOOPBACK) 612 #define IRE_FORWARDTABLE (IRE_INTERFACE | IRE_OFFSUBNET) 613 614 /* 615 * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of 616 * the bucket should delete this IRE from this bucket. 617 */ 618 #define IRE_MARK_CONDEMNED 0x0001 619 /* 620 * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the 621 * broadcast packets received on that interface. This is marked only 622 * on broadcast ires. Employed by IPMP, where we have multiple NICs on the 623 * same subnet receiving the same broadcast packet. 624 */ 625 #define IRE_MARK_NORECV 0x0002 626 /* 627 * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need 628 * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP. 629 */ 630 #define IRE_MARK_HIDDEN 0x0004 /* Typically Used by in.mpathd */ 631 632 /* 633 * ire with IRE_MARK_NOADD is created in ip_newroute_ipif, when outgoing 634 * interface is specified by IP_XMIT_IF socket option. This ire is not 635 * added in IRE_CACHE. For example, this is used by mipagent to prevent 636 * any entry to be added in the cache table. We do not want to add any 637 * entry for a mobile-node in the routing table for foreign agent originated 638 * packets. Adding routes in cache table in this case, may run the risks of 639 * incorrect routing path in case of private overlapping addresses. 640 */ 641 #define IRE_MARK_NOADD 0x0008 /* Mark not to add ire in cache */ 642 643 /* 644 * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used 645 * either for forwarding a packet or has not been used for sending 646 * traffic on TCP connections terminated on this system. In both 647 * cases, this IRE is the first to go when IRE is being cleaned up. 648 */ 649 #define IRE_MARK_TEMPORARY 0x0010 650 651 /* 652 * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with 653 * this mark, additional atomic checks need to be performed. For eg: by the 654 * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the 655 * usesrc grouping could have changed in which case we want to fail adding 656 * the IRE_CACHE entry 657 */ 658 #define IRE_MARK_USESRC_CHECK 0x0020 659 660 /* 661 * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the 662 * routing table lookup for the destination is bypassed and the packet is 663 * sent directly to the specified nexthop. The associated IRE_CACHE entries 664 * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up 665 * in regular ire cache lookups. 666 */ 667 #define IRE_MARK_PRIVATE_ADDR 0x0040 668 669 /* 670 * When we send an ARP resolution query for the nexthop gateway's ire, 671 * we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk 672 * chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag 673 * indicates that information from ARP has not been transferred to a 674 * permanent IRE_CACHE entry. The flag is reset only when the 675 * information is successfully transferred to an ire_cache entry (in 676 * ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior 677 * to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will 678 * require that the resources (incomplete ire_cache and/or nce) must 679 * be cleaned up. The free callback routine (ire_freemblk()) checks 680 * for IRE_MARK_UNCACHED to see if any resources that are pinned down 681 * will need to be cleaned up or not. 682 */ 683 684 #define IRE_MARK_UNCACHED 0x0080 685 686 /* Flags with ire_expire routine */ 687 #define FLUSH_ARP_TIME 0x0001 /* ARP info potentially stale timer */ 688 #define FLUSH_REDIRECT_TIME 0x0002 /* Redirects potentially stale */ 689 #define FLUSH_MTU_TIME 0x0004 /* Include path MTU per RFC 1191 */ 690 691 /* Arguments to ire_flush_cache() */ 692 #define IRE_FLUSH_DELETE 0 693 #define IRE_FLUSH_ADD 1 694 695 /* 696 * Open/close synchronization flags. 697 * These are kept in a separate field in the conn and the synchronization 698 * depends on the atomic 32 bit access to that field. 699 */ 700 #define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */ 701 #define CONN_IPSEC_LOAD_WAIT 0x02 /* waiting for load */ 702 #define CONN_CONDEMNED 0x04 /* conn is closing, no more refs */ 703 #define CONN_INCIPIENT 0x08 /* conn not yet visible, no refs */ 704 #define CONN_QUIESCED 0x10 /* conn is now quiescent */ 705 706 /* 707 * Parameter to ip_output giving the identity of the caller. 708 * IP_WSRV means the packet was enqueued in the STREAMS queue 709 * due to flow control and is now being reprocessed in the context of 710 * the STREAMS service procedure, consequent to flow control relief. 711 * IRE_SEND means the packet is being reprocessed consequent to an 712 * ire cache creation and addition and this may or may not be happening 713 * in the service procedure context. Anything other than the above 2 714 * cases is identified as IP_WPUT. Most commonly this is the case of 715 * packets coming down from the application. 716 */ 717 #ifdef _KERNEL 718 #define IP_WSRV 1 /* Called from ip_wsrv */ 719 #define IP_WPUT 2 /* Called from ip_wput */ 720 #define IRE_SEND 3 /* Called from ire_send */ 721 722 /* 723 * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2) 724 */ 725 #define MAX_FILTER_SIZE 64 726 727 typedef struct slist_s { 728 int sl_numsrc; 729 in6_addr_t sl_addr[MAX_FILTER_SIZE]; 730 } slist_t; 731 732 /* 733 * Following struct is used to maintain retransmission state for 734 * a multicast group. One rtx_state_t struct is an in-line field 735 * of the ilm_t struct; the slist_ts in the rtx_state_t struct are 736 * alloc'd as needed. 737 */ 738 typedef struct rtx_state_s { 739 uint_t rtx_timer; /* retrans timer */ 740 int rtx_cnt; /* retrans count */ 741 int rtx_fmode_cnt; /* retrans count for fmode change */ 742 slist_t *rtx_allow; 743 slist_t *rtx_block; 744 } rtx_state_t; 745 746 /* 747 * Used to construct list of multicast address records that will be 748 * sent in a single listener report. 749 */ 750 typedef struct mrec_s { 751 struct mrec_s *mrec_next; 752 uint8_t mrec_type; 753 uint8_t mrec_auxlen; /* currently unused */ 754 in6_addr_t mrec_group; 755 slist_t mrec_srcs; 756 } mrec_t; 757 758 /* Group membership list per upper conn */ 759 /* 760 * XXX add ilg info for ifaddr/ifindex. 761 * XXX can we make ilg survive an ifconfig unplumb + plumb 762 * by setting the ipif/ill to NULL and recover that later? 763 * 764 * ilg_ipif is used by IPv4 as multicast groups are joined using an interface 765 * address (ipif). 766 * ilg_ill is used by IPv6 as multicast groups are joined using an interface 767 * index (phyint->phyint_ifindex). 768 * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6. 769 * 770 * ilg records the state of multicast memberships of a socket end point. 771 * ilm records the state of multicast memberships with the driver and is 772 * maintained per interface. 773 * 774 * Notes : 775 * 776 * 1) There is no direct link between a given ilg and ilm. If the 777 * application has joined a group G with ifindex I, we will have 778 * an ilg with ilg_v6group and ilg_ill. There will be a corresponding 779 * ilm with ilm_ill/ilm_v6addr recording the multicast membership. 780 * To delete the membership, 781 * 782 * a) Search for ilg matching on G and I with ilg_v6group 783 * and ilg_ill. Delete ilg_ill. 784 * b) Search the corresponding ilm matching on G and I with 785 * ilm_v6addr and ilm_ill. Delete ilm. 786 * 787 * In IPv4, the only difference is, we look using ipifs instead of 788 * ills. 789 * 790 * 2) With IP multipathing, we want to keep receiving even after the 791 * interface has failed. We do this by moving multicast memberships 792 * to a new_ill within the group. This is acheived by sending 793 * DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS 794 * on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we 795 * need to be able to delete memberships which will still come down 796 * with the ifindex of the old ill which is what the application 797 * knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track 798 * of where we joined initially so that we can lookup even after we 799 * moved the membership. It is also used for moving back the membership 800 * when the old ill has been repaired. This is done by looking up for 801 * ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only 802 * ilms actually move from old ill to new ill. ilgs don't move (just 803 * the ilg_ill is changed when it moves) as it just records the state 804 * of the application that has joined a group G where as ilm records 805 * the state joined with the driver. Thus when we send DL_XXXMULTI_REQs 806 * we also need to keep the ilm in the right ill. 807 * 808 * In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move 809 * implicitly as we use only ipifs in IPv4. Thus, one can always lookup 810 * a given ilm/ilg even after it fails without the support of 811 * orig_ifindex. We move ilms still to record the driver state as 812 * mentioned above. 813 */ 814 815 /* 816 * The ilg_t and ilm_t members are protected by ipsq. They can be changed only 817 * by a thread executing in the ipsq. In other words add/delete of a 818 * multicast group has to execute in the ipsq. 819 */ 820 #define ILG_DELETED 0x1 /* ilg_flags */ 821 typedef struct ilg_s { 822 in6_addr_t ilg_v6group; 823 struct ipif_s *ilg_ipif; /* Logical interface we are member on */ 824 struct ill_s *ilg_ill; /* Used by IPv6 */ 825 int ilg_orig_ifindex; /* Interface originally joined on */ 826 uint_t ilg_flags; 827 mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 828 slist_t *ilg_filter; 829 } ilg_t; 830 831 832 /* 833 * Multicast address list entry for lower ill. 834 * ilm_ipif is used by IPv4 as multicast groups are joined using ipif. 835 * ilm_ill is used by IPv6 as multicast groups are joined using ill. 836 * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6. 837 */ 838 #define ILM_DELETED 0x1 /* ilm_flags */ 839 typedef struct ilm_s { 840 in6_addr_t ilm_v6addr; 841 int ilm_refcnt; 842 uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */ 843 struct ipif_s *ilm_ipif; /* Back pointer to ipif for IPv4 */ 844 struct ilm_s *ilm_next; /* Linked list for each ill */ 845 uint_t ilm_state; /* state of the membership */ 846 struct ill_s *ilm_ill; /* Back pointer to ill for IPv6 */ 847 int ilm_orig_ifindex; /* V6_MULTICAST_IF/ilm_ipif index */ 848 uint_t ilm_flags; 849 boolean_t ilm_is_new; /* new ilm */ 850 boolean_t ilm_notify_driver; /* Need to notify the driver */ 851 zoneid_t ilm_zoneid; 852 int ilm_no_ilg_cnt; /* number of joins w/ no ilg */ 853 mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 854 slist_t *ilm_filter; /* source filter list */ 855 slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */ 856 rtx_state_t ilm_rtx; /* SCR retransmission state */ 857 } ilm_t; 858 859 #define ilm_addr V4_PART_OF_V6(ilm_v6addr) 860 861 /* 862 * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to 863 * zero. In addition it needs to block new walkers while it is unlinking ilm's 864 * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice. 865 */ 866 #define ILM_WALKER_HOLD(ill) { \ 867 mutex_enter(&(ill)->ill_lock); \ 868 ill->ill_ilm_walker_cnt++; \ 869 mutex_exit(&(ill)->ill_lock); \ 870 } 871 872 #define ILM_WALKER_RELE(ill) { \ 873 mutex_enter(&(ill)->ill_lock); \ 874 (ill)->ill_ilm_walker_cnt--; \ 875 if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \ 876 ilm_walker_cleanup(ill); \ 877 mutex_exit(&(ill)->ill_lock); \ 878 } 879 880 /* 881 * Soft reference to an IPsec SA. 882 * 883 * On relative terms, conn's can be persistant (living as long as the 884 * processes which create them), while SA's are ephemeral (dying when 885 * they hit their time-based or byte-based lifetimes). 886 * 887 * We could hold a hard reference to an SA from an ipsec_latch_t, 888 * but this would cause expired SA's to linger for a potentially 889 * unbounded time. 890 * 891 * Instead, we remember the hash bucket number and bucket generation 892 * in addition to the pointer. The bucket generation is incremented on 893 * each deletion. 894 */ 895 typedef struct ipsa_ref_s 896 { 897 struct ipsa_s *ipsr_sa; 898 struct isaf_s *ipsr_bucket; 899 uint64_t ipsr_gen; 900 } ipsa_ref_t; 901 902 /* 903 * IPsec "latching" state. 904 * 905 * In the presence of IPsec policy, fully-bound conn's bind a connection 906 * to more than just the 5-tuple, but also a specific IPsec action and 907 * identity-pair. 908 * 909 * As an optimization, we also cache soft references to IPsec SA's 910 * here so that we can fast-path around most of the work needed for 911 * outbound IPsec SA selection. 912 * 913 * Were it not for TCP's detached connections, this state would be 914 * in-line in conn_t; instead, this is in a separate structure so it 915 * can be handed off to TCP when a connection is detached. 916 */ 917 typedef struct ipsec_latch_s 918 { 919 kmutex_t ipl_lock; 920 uint32_t ipl_refcnt; 921 922 uint64_t ipl_unique; 923 struct ipsec_policy_s *ipl_in_policy; /* latched policy (in) */ 924 struct ipsec_policy_s *ipl_out_policy; /* latched policy (out) */ 925 struct ipsec_action_s *ipl_in_action; /* latched action (in) */ 926 struct ipsec_action_s *ipl_out_action; /* latched action (out) */ 927 cred_t *ipl_local_id; 928 struct ipsid_s *ipl_local_cid; 929 struct ipsid_s *ipl_remote_cid; 930 unsigned int 931 ipl_out_action_latched : 1, 932 ipl_in_action_latched : 1, 933 ipl_out_policy_latched : 1, 934 ipl_in_policy_latched : 1, 935 936 ipl_ids_latched : 1, 937 938 ipl_pad_to_bit_31 : 27; 939 940 ipsa_ref_t ipl_ref[2]; /* 0: ESP, 1: AH */ 941 942 } ipsec_latch_t; 943 944 #define IPLATCH_REFHOLD(ipl) { \ 945 atomic_add_32(&(ipl)->ipl_refcnt, 1); \ 946 ASSERT((ipl)->ipl_refcnt != 0); \ 947 } 948 949 #define IPLATCH_REFRELE(ipl) { \ 950 ASSERT((ipl)->ipl_refcnt != 0); \ 951 membar_exit(); \ 952 if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \ 953 iplatch_free(ipl); \ 954 } 955 956 /* 957 * peer identity structure. 958 */ 959 960 typedef struct conn_s conn_t; 961 962 /* 963 * The old IP client structure "ipc_t" is gone. All the data is stored in the 964 * connection structure "conn_t" now. The mapping of old and new fields looks 965 * like this: 966 * 967 * ipc_ulp conn_ulp 968 * ipc_rq conn_rq 969 * ipc_wq conn_wq 970 * 971 * ipc_laddr conn_src 972 * ipc_faddr conn_rem 973 * ipc_v6laddr conn_srcv6 974 * ipc_v6faddr conn_remv6 975 * 976 * ipc_lport conn_lport 977 * ipc_fport conn_fport 978 * ipc_ports conn_ports 979 * 980 * ipc_policy conn_policy 981 * ipc_latch conn_latch 982 * 983 * ipc_irc_lock conn_lock 984 * ipc_ire_cache conn_ire_cache 985 * 986 * ipc_state_flags conn_state_flags 987 * ipc_outgoing_ill conn_outgoing_ill 988 * 989 * ipc_dontroute conn_dontroute 990 * ipc_loopback conn_loopback 991 * ipc_broadcast conn_broadcast 992 * ipc_reuseaddr conn_reuseaddr 993 * 994 * ipc_multicast_loop conn_multicast_loop 995 * ipc_multi_router conn_multi_router 996 * ipc_priv_stream conn_priv_stream 997 * ipc_draining conn_draining 998 * 999 * ipc_did_putbq conn_did_putbq 1000 * ipc_unspec_src conn_unspec_src 1001 * ipc_policy_cached conn_policy_cached 1002 * 1003 * ipc_in_enforce_policy conn_in_enforce_policy 1004 * ipc_out_enforce_policy conn_out_enforce_policy 1005 * ipc_af_isv6 conn_af_isv6 1006 * ipc_pkt_isv6 conn_pkt_isv6 1007 * 1008 * ipc_ipv6_recvpktinfo conn_ipv6_recvpktinfo 1009 * 1010 * ipc_ipv6_recvhoplimit conn_ipv6_recvhoplimit 1011 * ipc_ipv6_recvhopopts conn_ipv6_recvhopopts 1012 * ipc_ipv6_recvdstopts conn_ipv6_recvdstopts 1013 * 1014 * ipc_ipv6_recvrthdr conn_ipv6_recvrthdr 1015 * ipc_ipv6_recvrtdstopts conn_ipv6_recvrtdstopts 1016 * ipc_fully_bound conn_fully_bound 1017 * 1018 * ipc_recvif conn_recvif 1019 * 1020 * ipc_recvslla conn_recvslla 1021 * ipc_acking_unbind conn_acking_unbind 1022 * ipc_pad_to_bit_31 conn_pad_to_bit_31 1023 * 1024 * ipc_xmit_if_ill conn_xmit_if_ill 1025 * ipc_nofailover_ill conn_nofailover_ill 1026 * 1027 * ipc_proto conn_proto 1028 * ipc_incoming_ill conn_incoming_ill 1029 * ipc_outgoing_pill conn_outgoing_pill 1030 * ipc_pending_ill conn_pending_ill 1031 * ipc_unbind_mp conn_unbind_mp 1032 * ipc_ilg conn_ilg 1033 * ipc_ilg_allocated conn_ilg_allocated 1034 * ipc_ilg_inuse conn_ilg_inuse 1035 * ipc_ilg_walker_cnt conn_ilg_walker_cnt 1036 * ipc_refcv conn_refcv 1037 * ipc_multicast_ipif conn_multicast_ipif 1038 * ipc_multicast_ill conn_multicast_ill 1039 * ipc_orig_bound_ifindex conn_orig_bound_ifindex 1040 * ipc_orig_multicast_ifindex conn_orig_multicast_ifindex 1041 * ipc_orig_xmit_ifindex conn_orig_xmit_ifindex 1042 * ipc_drain_next conn_drain_next 1043 * ipc_drain_prev conn_drain_prev 1044 * ipc_idl conn_idl 1045 */ 1046 1047 /* 1048 * This is used to match an inbound/outbound datagram with 1049 * policy. 1050 */ 1051 1052 typedef struct ipsec_selector { 1053 in6_addr_t ips_local_addr_v6; 1054 in6_addr_t ips_remote_addr_v6; 1055 uint16_t ips_local_port; 1056 uint16_t ips_remote_port; 1057 uint8_t ips_icmp_type; 1058 uint8_t ips_icmp_code; 1059 uint8_t ips_protocol; 1060 uint8_t ips_isv4 : 1, 1061 ips_is_icmp_inv_acq: 1; 1062 } ipsec_selector_t; 1063 1064 /* 1065 * Note that we put v4 addresses in the *first* 32-bit word of the 1066 * selector rather than the last to simplify the prefix match/mask code 1067 * in spd.c 1068 */ 1069 #define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0] 1070 #define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0] 1071 1072 /* Values used in IP by IPSEC Code */ 1073 #define IPSEC_OUTBOUND B_TRUE 1074 #define IPSEC_INBOUND B_FALSE 1075 1076 /* 1077 * There are two variants in policy failures. The packet may come in 1078 * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not 1079 * have the desired level of protection (IPSEC_POLICY_MISMATCH). 1080 */ 1081 #define IPSEC_POLICY_NOT_NEEDED 0 1082 #define IPSEC_POLICY_MISMATCH 1 1083 #define IPSEC_POLICY_AUTH_NOT_NEEDED 2 1084 #define IPSEC_POLICY_ENCR_NOT_NEEDED 3 1085 #define IPSEC_POLICY_SE_NOT_NEEDED 4 1086 #define IPSEC_POLICY_MAX 5 /* Always max + 1. */ 1087 1088 /* 1089 * Folowing macro is used whenever the code does not know whether there 1090 * is a M_CTL present in the front and it needs to examine the actual mp 1091 * i.e the IP header. As a M_CTL message could be in the front, this 1092 * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL 1093 * mp is not present, both first_mp and mp point to the same message. 1094 */ 1095 #define EXTRACT_PKT_MP(mp, first_mp, mctl_present) \ 1096 (first_mp) = (mp); \ 1097 if ((mp)->b_datap->db_type == M_CTL) { \ 1098 (mp) = (mp)->b_cont; \ 1099 (mctl_present) = B_TRUE; \ 1100 } else { \ 1101 (mctl_present) = B_FALSE; \ 1102 } 1103 1104 /* 1105 * Check with IPSEC inbound policy if 1106 * 1107 * 1) per-socket policy is present - indicated by conn_in_enforce_policy. 1108 * 2) Or if we have not cached policy on the conn and the global policy is 1109 * non-empty. 1110 */ 1111 #define CONN_INBOUND_POLICY_PRESENT(connp) \ 1112 ((connp)->conn_in_enforce_policy || \ 1113 (!((connp)->conn_policy_cached) && \ 1114 ipsec_inbound_v4_policy_present)) 1115 1116 #define CONN_INBOUND_POLICY_PRESENT_V6(connp) \ 1117 ((connp)->conn_in_enforce_policy || \ 1118 (!(connp)->conn_policy_cached && \ 1119 ipsec_inbound_v6_policy_present)) 1120 1121 #define CONN_OUTBOUND_POLICY_PRESENT(connp) \ 1122 ((connp)->conn_out_enforce_policy || \ 1123 (!((connp)->conn_policy_cached) && \ 1124 ipsec_outbound_v4_policy_present)) 1125 1126 #define CONN_OUTBOUND_POLICY_PRESENT_V6(connp) \ 1127 ((connp)->conn_out_enforce_policy || \ 1128 (!(connp)->conn_policy_cached && \ 1129 ipsec_outbound_v6_policy_present)) 1130 1131 /* 1132 * Information cached in IRE for upper layer protocol (ULP). 1133 * 1134 * Notice that ire_max_frag is not included in the iulp_t structure, which 1135 * it may seem that it should. But ire_max_frag cannot really be cached. It 1136 * is fixed for each interface. For MTU found by PMTUd, we may want to cache 1137 * it. But currently, we do not do that. 1138 */ 1139 typedef struct iulp_s { 1140 boolean_t iulp_set; /* Is any metric set? */ 1141 uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */ 1142 clock_t iulp_rtt; /* Guestimate in millisecs. */ 1143 clock_t iulp_rtt_sd; /* Cached value of RTT variance. */ 1144 uint32_t iulp_spipe; /* Send pipe size. */ 1145 uint32_t iulp_rpipe; /* Receive pipe size. */ 1146 uint32_t iulp_rtomax; /* Max round trip timeout. */ 1147 uint32_t iulp_sack; /* Use SACK option (TCP)? */ 1148 uint32_t 1149 iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */ 1150 iulp_wscale_ok : 1, /* Use window scale option (TCP)? */ 1151 iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */ 1152 iulp_pmtud_ok : 1, /* Enable PMTUd? */ 1153 1154 iulp_not_used : 28; 1155 } iulp_t; 1156 1157 /* Zero iulp_t. */ 1158 extern const iulp_t ire_uinfo_null; 1159 1160 /* 1161 * The conn drain list structure. 1162 * The list is protected by idl_lock. Each conn_t inserted in the list 1163 * points back at this idl_t using conn_idl. IP primes the draining of the 1164 * conns queued in these lists, by qenabling the 1st conn of each list. This 1165 * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance 1166 * of ip_wsrv successively qenables the next conn in the list. 1167 * idl_lock protects all other members of idl_t and conn_drain_next 1168 * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED 1169 * flag of the conn_t and conn_idl. 1170 */ 1171 typedef struct idl_s { 1172 conn_t *idl_conn; /* Head of drain list */ 1173 kmutex_t idl_lock; /* Lock for this list */ 1174 conn_t *idl_conn_draining; /* conn that is draining */ 1175 uint32_t 1176 idl_repeat : 1, /* Last conn must re-enable */ 1177 /* drain list again */ 1178 idl_unused : 31; 1179 } idl_t; 1180 1181 #define CONN_DRAIN_LIST_LOCK(connp) (&((connp)->conn_idl->idl_lock)) 1182 /* 1183 * Interface route structure which holds the necessary information to recreate 1184 * routes that are tied to an interface (namely where ire_ipif != NULL). 1185 * These routes which were initially created via a routing socket or via the 1186 * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be 1187 * traditional interface routes. When an interface comes back up after being 1188 * marked down, this information will be used to recreate the routes. These 1189 * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp). 1190 */ 1191 typedef struct ifrt_s { 1192 ushort_t ifrt_type; /* Type of IRE */ 1193 in6_addr_t ifrt_v6addr; /* Address IRE represents. */ 1194 in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFSUBNET */ 1195 in6_addr_t ifrt_v6src_addr; /* Src addr if RTF_SETSRC */ 1196 in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */ 1197 uint32_t ifrt_flags; /* flags related to route */ 1198 uint_t ifrt_max_frag; /* MTU (next hop or path). */ 1199 iulp_t ifrt_iulp_info; /* Cached IRE ULP info. */ 1200 } ifrt_t; 1201 1202 #define ifrt_addr V4_PART_OF_V6(ifrt_v6addr) 1203 #define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr) 1204 #define ifrt_src_addr V4_PART_OF_V6(ifrt_v6src_addr) 1205 #define ifrt_mask V4_PART_OF_V6(ifrt_v6mask) 1206 1207 /* Number of IP addresses that can be hosted on a physical interface */ 1208 #define MAX_ADDRS_PER_IF 8192 1209 /* 1210 * Number of Source addresses to be considered for source address 1211 * selection. Used by ipif_select_source[_v6]. 1212 */ 1213 #define MAX_IPIF_SELECT_SOURCE 50 1214 1215 #ifdef IP_DEBUG 1216 /* 1217 * Tracing refholds and refreleases for debugging. Existing tracing mechanisms 1218 * do not allow the granularity need to trace refrences to ipif/ill/ire's. This 1219 * mechanism should be revisited once dtrace is available. 1220 */ 1221 #define IP_STACK_DEPTH 15 1222 typedef struct tr_buf_s { 1223 int tr_depth; 1224 pc_t tr_stack[IP_STACK_DEPTH]; 1225 } tr_buf_t; 1226 1227 typedef struct th_trace_s { 1228 struct th_trace_s *th_next; 1229 struct th_trace_s **th_prev; 1230 kthread_t *th_id; 1231 int th_refcnt; 1232 uint_t th_trace_lastref; 1233 #define TR_BUF_MAX 38 1234 tr_buf_t th_trbuf[TR_BUF_MAX]; 1235 } th_trace_t; 1236 #endif 1237 1238 /* The following are ipif_state_flags */ 1239 #define IPIF_CONDEMNED 0x1 /* The ipif is being removed */ 1240 #define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */ 1241 #define IPIF_MOVING 0x8 /* The ipif is being moved */ 1242 #define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */ 1243 #define IPIF_ZERO_SOURCE 0x20 /* transient flag during bringup */ 1244 1245 /* IP interface structure, one per local address */ 1246 typedef struct ipif_s { 1247 struct ipif_s *ipif_next; 1248 struct ill_s *ipif_ill; /* Back pointer to our ill */ 1249 int ipif_id; /* Logical unit number */ 1250 uint_t ipif_mtu; /* Starts at ipif_ill->ill_max_frag */ 1251 uint_t ipif_saved_mtu; /* Save of mtu during ipif_move() */ 1252 in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */ 1253 in6_addr_t ipif_v6src_addr; /* Source IP address for this if. */ 1254 in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */ 1255 in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */ 1256 in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */ 1257 in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */ 1258 uint64_t ipif_flags; /* Interface flags. */ 1259 uint_t ipif_metric; /* BSD if metric, for compatibility. */ 1260 uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */ 1261 mblk_t *ipif_arp_del_mp; /* Allocated at time arp comes up, to */ 1262 /* prevent awkward out of mem */ 1263 /* condition later */ 1264 mblk_t *ipif_saved_ire_mp; /* Allocated for each extra */ 1265 /* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */ 1266 /* on this interface so that they */ 1267 /* can survive ifconfig down. */ 1268 kmutex_t ipif_saved_ire_lock; /* Protects ipif_saved_ire_mp */ 1269 1270 mrec_t *ipif_igmp_rpt; /* List of group memberships which */ 1271 /* will be reported on. Used when */ 1272 /* handling an igmp timeout. */ 1273 1274 /* 1275 * The packet counts in the ipif contain the sum of the 1276 * packet counts in dead IREs that were affiliated with 1277 * this ipif. 1278 */ 1279 uint_t ipif_fo_pkt_count; /* Forwarded thru our dead IREs */ 1280 uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */ 1281 uint_t ipif_ob_pkt_count; /* Outbound packets to our dead IREs */ 1282 /* Exclusive bit fields, protected by ipsq_t */ 1283 unsigned int 1284 ipif_multicast_up : 1, /* We have joined the allhosts group */ 1285 ipif_solmcast_up : 1, /* We joined solicited node mcast */ 1286 ipif_replace_zero : 1, /* Replacement for zero */ 1287 ipif_was_up : 1, /* ipif was up before */ 1288 1289 ipif_addr_ready : 1, /* DAD is done */ 1290 ipif_was_dup : 1, /* DAD had failed */ 1291 ipif_pad_to_31 : 26; 1292 1293 int ipif_orig_ifindex; /* ifindex before SLIFFAILOVER */ 1294 uint_t ipif_seqid; /* unique index across all ills */ 1295 uint_t ipif_orig_ipifid; /* ipif_id before SLIFFAILOVER */ 1296 uint_t ipif_state_flags; /* See IPIF_* flag defs above */ 1297 uint_t ipif_refcnt; /* active consistent reader cnt */ 1298 uint_t ipif_ire_cnt; /* Number of ire's referencing ipif */ 1299 uint_t ipif_saved_ire_cnt; 1300 zoneid_t 1301 ipif_zoneid; /* zone ID number */ 1302 timeout_id_t ipif_recovery_id; /* Timer for DAD recovery */ 1303 #ifdef ILL_DEBUG 1304 #define IP_TR_HASH_MAX 64 1305 th_trace_t *ipif_trace[IP_TR_HASH_MAX]; 1306 boolean_t ipif_trace_disable; /* True when alloc fails */ 1307 #endif 1308 } ipif_t; 1309 1310 /* 1311 * The following table lists the protection levels of the various members 1312 * of the ipif_t. The following notation is used. 1313 * 1314 * Write once - Written to only once at the time of bringing up 1315 * the interface and can be safely read after the bringup without any lock. 1316 * 1317 * ipsq - Need to execute in the ipsq to perform the indicated access. 1318 * 1319 * ill_lock - Need to hold this mutex to perform the indicated access. 1320 * 1321 * ill_g_lock - Need to hold this rw lock as reader/writer for read access or 1322 * write access respectively. 1323 * 1324 * down ill - Written to only when the ill is down (i.e all ipifs are down) 1325 * up ill - Read only when the ill is up (i.e. at least 1 ipif is up) 1326 * 1327 * Table of ipif_t members and their protection 1328 * 1329 * ipif_next ill_g_lock ill_g_lock 1330 * ipif_ill ipsq + down ipif write once 1331 * ipif_id ipsq + down ipif write once 1332 * ipif_mtu ipsq 1333 * ipif_v6lcl_addr ipsq + down ipif up ipif 1334 * ipif_v6src_addr ipsq + down ipif up ipif 1335 * ipif_v6subnet ipsq + down ipif up ipif 1336 * ipif_v6net_mask ipsq + down ipif up ipif 1337 * 1338 * ipif_v6brd_addr 1339 * ipif_v6pp_dst_addr 1340 * ipif_flags ill_lock ill_lock 1341 * ipif_metric 1342 * ipif_ire_type ipsq + down ill up ill 1343 * 1344 * ipif_arp_del_mp ipsq ipsq 1345 * ipif_saved_ire_mp ipif_saved_ire_lock ipif_saved_ire_lock 1346 * ipif_igmp_rpt ipsq ipsq 1347 * 1348 * ipif_fo_pkt_count Approx 1349 * ipif_ib_pkt_count Approx 1350 * ipif_ob_pkt_count Approx 1351 * 1352 * bit fields ill_lock ill_lock 1353 * 1354 * ipif_orig_ifindex ipsq None 1355 * ipif_orig_ipifid ipsq None 1356 * ipif_seqid ipsq Write once 1357 * 1358 * ipif_state_flags ill_lock ill_lock 1359 * ipif_refcnt ill_lock ill_lock 1360 * ipif_ire_cnt ill_lock ill_lock 1361 * ipif_saved_ire_cnt 1362 */ 1363 1364 #define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1)) 1365 1366 #ifdef ILL_DEBUG 1367 #define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif) 1368 #define ILL_TRACE_REF(ill) ill_trace_ref(ill) 1369 #define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif) 1370 #define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill) 1371 #define ILL_TRACE_CLEANUP(ill) ill_trace_cleanup(ill) 1372 #define IPIF_TRACE_CLEANUP(ipif) ipif_trace_cleanup(ipif) 1373 #else 1374 #define IPIF_TRACE_REF(ipif) 1375 #define ILL_TRACE_REF(ill) 1376 #define IPIF_UNTRACE_REF(ipif) 1377 #define ILL_UNTRACE_REF(ill) 1378 #define ILL_TRACE_CLEANUP(ill) 1379 #define IPIF_TRACE_CLEANUP(ipif) 1380 #endif 1381 1382 /* IPv4 compatability macros */ 1383 #define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr) 1384 #define ipif_src_addr V4_PART_OF_V6(ipif_v6src_addr) 1385 #define ipif_subnet V4_PART_OF_V6(ipif_v6subnet) 1386 #define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask) 1387 #define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr) 1388 #define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr) 1389 1390 /* Macros for easy backreferences to the ill. */ 1391 #define ipif_wq ipif_ill->ill_wq 1392 #define ipif_rq ipif_ill->ill_rq 1393 #define ipif_net_type ipif_ill->ill_net_type 1394 #define ipif_resolver_mp ipif_ill->ill_resolver_mp 1395 #define ipif_ipif_up_count ipif_ill->ill_ipif_up_count 1396 #define ipif_bcast_mp ipif_ill->ill_bcast_mp 1397 #define ipif_type ipif_ill->ill_type 1398 #define ipif_isv6 ipif_ill->ill_isv6 1399 1400 #define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */ 1401 1402 /* 1403 * mode value for ip_ioctl_finish for finishing an ioctl 1404 */ 1405 #define CONN_CLOSE 1 /* No mi_copy */ 1406 #define COPYOUT 2 /* do an mi_copyout if needed */ 1407 #define NO_COPYOUT 3 /* do an mi_copy_done */ 1408 1409 /* 1410 * The IP-MT design revolves around the serialization object ipsq_t. 1411 * It is associated with an IPMP group. If IPMP is not enabled, there is 1412 * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream 1413 * 1414 * ipsq_lock protects 1415 * ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail, 1416 * ipsq_mphead, ipsq_mptail, ipsq_split 1417 * 1418 * ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags, 1419 * ipsq_waitfor 1420 * 1421 * The fields in the last line above below are set mostly by a writer thread 1422 * But there is an exception in the last call to ipif_ill_refrele_tail which 1423 * could also race with a conn close which could be cleaning up the 1424 * fields. So we choose to protect using ipsq_lock instead of depending on 1425 * the property of the writer. 1426 * ill_g_lock protects 1427 * ipsq_refs, ipsq_phyint_list 1428 */ 1429 typedef struct ipsq_s { 1430 kmutex_t ipsq_lock; 1431 int ipsq_reentry_cnt; 1432 kthread_t *ipsq_writer; /* current owner (thread id) */ 1433 int ipsq_flags; 1434 mblk_t *ipsq_xopq_mphead; /* list of excl ops mostly ioctls */ 1435 mblk_t *ipsq_xopq_mptail; 1436 mblk_t *ipsq_mphead; /* msgs on ipsq linked thru b_next */ 1437 mblk_t *ipsq_mptail; /* msgs on ipsq linked thru b_next */ 1438 ipif_t *ipsq_pending_ipif; /* ipif associated w. ipsq_pending_mp */ 1439 ipif_t *ipsq_current_ipif; /* ipif associated with current ioctl */ 1440 mblk_t *ipsq_pending_mp; /* current ioctl mp while waiting for */ 1441 /* response from another module */ 1442 struct ipsq_s *ipsq_next; /* list of all syncq's (ipsq_g_list) */ 1443 uint_t ipsq_refs; /* Number of phyints on this ipsq */ 1444 struct phyint *ipsq_phyint_list; /* List of phyints on this ipsq */ 1445 boolean_t ipsq_split; /* ipsq may need to be split */ 1446 int ipsq_waitfor; /* Values encoded below */ 1447 char ipsq_name[LIFNAMSIZ+1]; /* same as phyint_groupname */ 1448 int ipsq_last_cmd; /* debugging aid */ 1449 #ifdef ILL_DEBUG 1450 int ipsq_depth; /* debugging aid */ 1451 pc_t ipsq_stack[IP_STACK_DEPTH]; /* debugging aid */ 1452 #endif 1453 } ipsq_t; 1454 1455 /* ipsq_flags */ 1456 #define IPSQ_GROUP 0x1 /* This ipsq belongs to an IPMP group */ 1457 1458 /* 1459 * ipsq_waitfor: 1460 * 1461 * IPIF_DOWN 1 ipif_down waiting for refcnts to drop 1462 * ILL_DOWN 2 ill_down waiting for refcnts to drop 1463 * IPIF_FREE 3 ipif_free waiting for refcnts to drop 1464 * ILL_FREE 4 ill unplumb waiting for refcnts to drop 1465 * ILL_MOVE_OK 5 failover waiting for refcnts to drop 1466 */ 1467 1468 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK }; 1469 1470 /* Flags passed to ipsq_try_enter */ 1471 #define CUR_OP 0 /* Current ioctl continuing again */ 1472 #define NEW_OP 1 /* New ioctl starting afresh */ 1473 1474 /* 1475 * phyint represents state that is common to both IPv4 and IPv6 interfaces. 1476 * There is a separate ill_t representing IPv4 and IPv6 which has a 1477 * backpointer to the phyint structure for acessing common state. 1478 * 1479 * NOTE : It just stores the group name as there is only one name for 1480 * IPv4 and IPv6 i.e it is a underlying link property. Actually 1481 * IPv4 and IPv6 ill are grouped together when their phyints have 1482 * the same name. 1483 */ 1484 typedef struct phyint { 1485 struct ill_s *phyint_illv4; 1486 struct ill_s *phyint_illv6; 1487 uint_t phyint_ifindex; /* SIOCLSLIFINDEX */ 1488 uint_t phyint_notify_delay; /* SIOCSLIFNOTIFYDELAY */ 1489 char *phyint_groupname; /* SIOCSLIFGROUPNAME */ 1490 uint_t phyint_groupname_len; 1491 uint64_t phyint_flags; 1492 avl_node_t phyint_avl_by_index; /* avl tree by index */ 1493 avl_node_t phyint_avl_by_name; /* avl tree by name */ 1494 kmutex_t phyint_lock; 1495 struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */ 1496 struct phyint *phyint_ipsq_next; /* phyint list on this ipsq */ 1497 } phyint_t; 1498 1499 #define CACHE_ALIGN_SIZE 64 1500 1501 #define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\ 1502 CACHE_ALIGN_SIZE) 1503 struct _phyint_list_s_ { 1504 avl_tree_t phyint_list_avl_by_index; /* avl tree by index */ 1505 avl_tree_t phyint_list_avl_by_name; /* avl tree by name */ 1506 }; 1507 1508 typedef union phyint_list_u { 1509 struct _phyint_list_s_ phyint_list_s; 1510 char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)]; 1511 } phyint_list_t; 1512 1513 #define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index 1514 #define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name 1515 /* 1516 * ILL groups. We group ills, 1517 * 1518 * - if the ills have the same group name. (New way) 1519 * 1520 * ill_group locking notes: 1521 * 1522 * illgrp_lock protects ill_grp_ill_schednext. 1523 * 1524 * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count. 1525 * Holding ill_g_lock freezes the memberships of ills in IPMP groups. 1526 * It also freezes the global list of ills and all ipifs in all ills. 1527 * 1528 * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail 1529 * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the 1530 * global list of ills, ill_delete_glist holds ill_g_lock as writer. 1531 * This simplifies things for ipif_select_source, illgrp_scheduler etc. 1532 * that need to walk the members of an illgrp. They just hold ill_g_lock 1533 * as reader to do the walk. 1534 * 1535 */ 1536 typedef struct ill_group { 1537 kmutex_t illgrp_lock; 1538 struct ill_group *illgrp_next; /* Next ill_group */ 1539 struct ill_s *illgrp_ill_schednext; /* Next ill to be scheduled */ 1540 struct ill_s *illgrp_ill; /* First ill in the group */ 1541 int illgrp_ill_count; 1542 } ill_group_t; 1543 1544 extern ill_group_t *illgrp_head_v6; 1545 1546 /* 1547 * Fragmentation hash bucket 1548 */ 1549 typedef struct ipfb_s { 1550 struct ipf_s *ipfb_ipf; /* List of ... */ 1551 size_t ipfb_count; /* Count of bytes used by frag(s) */ 1552 kmutex_t ipfb_lock; /* Protect all ipf in list */ 1553 uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */ 1554 } ipfb_t; 1555 1556 /* 1557 * IRE bucket structure. Usually there is an array of such structures, 1558 * each pointing to a linked list of ires. irb_refcnt counts the number 1559 * of walkers of a given hash bucket. Usually the reference count is 1560 * bumped up if the walker wants no IRES to be DELETED while walking the 1561 * list. Bumping up does not PREVENT ADDITION. This allows walking a given 1562 * hash bucket without stumbling up on a free pointer. 1563 * 1564 * irb_t structures in ip_ftable are dynamically allocated and freed. 1565 * In order to identify the irb_t structures that cna be safely kmem_free'd 1566 * we need to ensure that 1567 * - the irb_refcnt is quiescent, indicating no other walkers, 1568 * - no other threads or ire's are holding references to the irb, 1569 * i.e., irb_nire == 0, 1570 * - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0 1571 */ 1572 typedef struct irb { 1573 struct ire_s *irb_ire; /* First ire in this bucket */ 1574 /* Should be first in this struct */ 1575 krwlock_t irb_lock; /* Protect this bucket */ 1576 uint_t irb_refcnt; /* Protected by irb_lock */ 1577 uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */ 1578 #define IRB_MARK_CONDEMNED 0x0001 1579 #define IRB_MARK_FTABLE 0x0002 1580 uint_t irb_ire_cnt; /* Num of active IRE in this bucket */ 1581 uint_t irb_tmp_ire_cnt; /* Num of temporary IRE */ 1582 struct ire_s *irb_rr_origin; /* origin for round-robin */ 1583 int irb_nire; /* Num of ftable ire's that ref irb */ 1584 } irb_t; 1585 1586 #define IRB2RT(irb) (rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb)) 1587 1588 /* The following are return values of ip_xmit_v4() */ 1589 typedef enum { 1590 SEND_PASSED = 0, /* sent packet out on wire */ 1591 SEND_FAILED, /* sending of packet failed */ 1592 LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */ 1593 LLHDR_RESLV_FAILED /* macaddr resl of onlink dst or nexthop failed */ 1594 } ipxmit_state_t; 1595 1596 #define IP_V4_G_HEAD 0 1597 #define IP_V6_G_HEAD 1 1598 1599 #define MAX_G_HEADS 2 1600 1601 /* 1602 * unpadded ill_if structure 1603 */ 1604 struct _ill_if_s_ { 1605 union ill_if_u *illif_next; 1606 union ill_if_u *illif_prev; 1607 avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */ 1608 vmem_t *illif_ppa_arena; /* ppa index space */ 1609 uint16_t illif_mcast_v1; /* hints for */ 1610 uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */ 1611 int illif_name_len; /* name length */ 1612 char illif_name[LIFNAMSIZ]; /* name of interface type */ 1613 }; 1614 1615 /* cache aligned ill_if structure */ 1616 typedef union ill_if_u { 1617 struct _ill_if_s_ ill_if_s; 1618 char illif_filler[CACHE_ALIGN(_ill_if_s_)]; 1619 } ill_if_t; 1620 1621 1622 #define illif_next ill_if_s.illif_next 1623 #define illif_prev ill_if_s.illif_prev 1624 #define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa 1625 #define illif_ppa_arena ill_if_s.illif_ppa_arena 1626 #define illif_mcast_v1 ill_if_s.illif_mcast_v1 1627 #define illif_mcast_v2 ill_if_s.illif_mcast_v2 1628 #define illif_name ill_if_s.illif_name 1629 #define illif_name_len ill_if_s.illif_name_len 1630 1631 typedef struct ill_walk_context_s { 1632 int ctx_current_list; /* current list being searched */ 1633 int ctx_last_list; /* last list to search */ 1634 } ill_walk_context_t; 1635 1636 /* 1637 * ill_gheads structure, one for IPV4 and one for IPV6 1638 */ 1639 struct _ill_g_head_s_ { 1640 ill_if_t *ill_g_list_head; 1641 ill_if_t *ill_g_list_tail; 1642 }; 1643 1644 typedef union ill_g_head_u { 1645 struct _ill_g_head_s_ ill_g_head_s; 1646 char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)]; 1647 } ill_g_head_t; 1648 1649 #define ill_g_list_head ill_g_head_s.ill_g_list_head 1650 #define ill_g_list_tail ill_g_head_s.ill_g_list_tail 1651 1652 #pragma align CACHE_ALIGN_SIZE(ill_g_heads) 1653 extern ill_g_head_t ill_g_heads[]; /* ILL List Head */ 1654 1655 1656 #define IP_V4_ILL_G_LIST ill_g_heads[IP_V4_G_HEAD].ill_g_list_head 1657 #define IP_V6_ILL_G_LIST ill_g_heads[IP_V6_G_HEAD].ill_g_list_head 1658 #define IP_VX_ILL_G_LIST(i) ill_g_heads[i].ill_g_list_head 1659 1660 #define ILL_START_WALK_V4(ctx_ptr) ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, \ 1661 ctx_ptr) 1662 #define ILL_START_WALK_V6(ctx_ptr) ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, \ 1663 ctx_ptr) 1664 #define ILL_START_WALK_ALL(ctx_ptr) ill_first(MAX_G_HEADS, MAX_G_HEADS, \ 1665 ctx_ptr) 1666 1667 /* 1668 * Capabilities, possible flags for ill_capabilities. 1669 */ 1670 1671 #define ILL_CAPAB_AH 0x01 /* IPsec AH acceleration */ 1672 #define ILL_CAPAB_ESP 0x02 /* IPsec ESP acceleration */ 1673 #define ILL_CAPAB_MDT 0x04 /* Multidata Transmit */ 1674 #define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */ 1675 #define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */ 1676 #define ILL_CAPAB_POLL 0x20 /* Polling Toggle */ 1677 #define ILL_CAPAB_SOFT_RING 0x40 /* Soft_Ring capability */ 1678 1679 /* 1680 * Per-ill Multidata Transmit capabilities. 1681 */ 1682 typedef struct ill_mdt_capab_s ill_mdt_capab_t; 1683 1684 /* 1685 * Per-ill IPsec capabilities. 1686 */ 1687 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t; 1688 1689 /* 1690 * Per-ill Hardware Checksumming capbilities. 1691 */ 1692 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t; 1693 1694 /* 1695 * Per-ill Zero-copy capabilities. 1696 */ 1697 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t; 1698 1699 /* 1700 * Per-ill Polling/soft ring capbilities. 1701 */ 1702 typedef struct ill_dls_capab_s ill_dls_capab_t; 1703 1704 /* 1705 * Per-ill polling resource map. 1706 */ 1707 typedef struct ill_rx_ring ill_rx_ring_t; 1708 1709 /* The following are ill_state_flags */ 1710 #define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */ 1711 #define ILL_CONDEMNED 0x02 /* No more new ref's to the ILL */ 1712 #define ILL_CHANGING 0x04 /* ILL not globally visible */ 1713 #define ILL_DL_UNBIND_IN_PROGRESS 0x08 /* UNBIND_REQ is sent */ 1714 #define ILL_SOFT_RING_ASSIGN 0x10 /* Makeing soft ring assigment */ 1715 1716 /* Is this an ILL whose source address is used by other ILL's ? */ 1717 #define IS_USESRC_ILL(ill) \ 1718 (((ill)->ill_usesrc_ifindex == 0) && \ 1719 ((ill)->ill_usesrc_grp_next != NULL)) 1720 1721 /* Is this a client/consumer of the usesrc ILL ? */ 1722 #define IS_USESRC_CLI_ILL(ill) \ 1723 (((ill)->ill_usesrc_ifindex != 0) && \ 1724 ((ill)->ill_usesrc_grp_next != NULL)) 1725 1726 /* Is this an virtual network interface (vni) ILL ? */ 1727 #define IS_VNI(ill) \ 1728 (((ill) != NULL) && \ 1729 (((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \ 1730 PHYI_VIRTUAL)) 1731 1732 /* 1733 * IP Lower level Structure. 1734 * Instance data structure in ip_open when there is a device below us. 1735 */ 1736 typedef struct ill_s { 1737 ill_if_t *ill_ifptr; /* pointer to interface type */ 1738 queue_t *ill_rq; /* Read queue. */ 1739 queue_t *ill_wq; /* Write queue. */ 1740 1741 int ill_error; /* Error value sent up by device. */ 1742 1743 ipif_t *ill_ipif; /* Interface chain for this ILL. */ 1744 1745 uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */ 1746 uint_t ill_max_frag; /* Max IDU from DLPI. */ 1747 char *ill_name; /* Our name. */ 1748 uint_t ill_ipif_dup_count; /* Number of duplicate addresses. */ 1749 uint_t ill_name_length; /* Name length, incl. terminator. */ 1750 char *ill_ndd_name; /* Name + ":ip?_forwarding" for NDD. */ 1751 uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */ 1752 /* 1753 * Physical Point of Attachment num. If DLPI style 1 provider 1754 * then this is derived from the devname. 1755 */ 1756 uint_t ill_ppa; 1757 t_uscalar_t ill_sap; 1758 t_scalar_t ill_sap_length; /* Including sign (for position) */ 1759 uint_t ill_phys_addr_length; /* Excluding the sap. */ 1760 uint_t ill_bcast_addr_length; /* Only set when the DL provider */ 1761 /* supports broadcast. */ 1762 t_uscalar_t ill_mactype; 1763 uint8_t *ill_frag_ptr; /* Reassembly state. */ 1764 timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */ 1765 ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */ 1766 ipif_t *ill_pending_ipif; /* IPIF waiting for DL operation. */ 1767 1768 ilm_t *ill_ilm; /* Multicast mebership for lower ill */ 1769 uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */ 1770 int ill_mcast_type; /* type of router which is querier */ 1771 /* on this interface */ 1772 uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */ 1773 uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */ 1774 uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */ 1775 uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */ 1776 1777 uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */ 1778 int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */ 1779 1780 mblk_t *ill_pending_mp; /* IOCTL/DLPI awaiting completion. */ 1781 /* 1782 * All non-NULL cells between 'ill_first_mp_to_free' and 1783 * 'ill_last_mp_to_free' are freed in ill_delete. 1784 */ 1785 #define ill_first_mp_to_free ill_bcast_mp 1786 mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */ 1787 mblk_t *ill_resolver_mp; /* Resolver template. */ 1788 mblk_t *ill_detach_mp; /* detach mp, or NULL if style1 */ 1789 mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */ 1790 mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */ 1791 mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */ 1792 #define ill_last_mp_to_free ill_phys_addr_mp 1793 1794 cred_t *ill_credp; /* opener's credentials */ 1795 uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */ 1796 1797 uint_t ill_state_flags; /* see ILL_* flags above */ 1798 1799 /* Following bit fields protected by ipsq_t */ 1800 uint_t 1801 ill_needs_attach : 1, 1802 ill_reserved : 1, 1803 ill_isv6 : 1, 1804 ill_dlpi_style_set : 1, 1805 1806 ill_ifname_pending : 1, 1807 ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */ 1808 ill_join_allmulti : 1, 1809 ill_logical_down : 1, 1810 1811 ill_is_6to4tun : 1, /* Interface is a 6to4 tunnel */ 1812 ill_promisc_on_phys : 1, /* phys interface in promisc mode */ 1813 ill_dl_up : 1, 1814 ill_up_ipifs : 1, 1815 1816 ill_note_link : 1, /* supports link-up notification */ 1817 1818 ill_pad_to_bit_31 : 19; 1819 1820 /* Following bit fields protected by ill_lock */ 1821 uint_t 1822 ill_fragtimer_executing : 1, 1823 ill_fragtimer_needrestart : 1, 1824 ill_ilm_cleanup_reqd : 1, 1825 ill_arp_closing : 1, 1826 1827 ill_arp_bringup_pending : 1, 1828 ill_mtu_userspecified : 1, /* SIOCSLNKINFO has set the mtu */ 1829 ill_arp_extend : 1, /* ARP has DAD extensions */ 1830 ill_pad_bit_31 : 25; 1831 1832 /* 1833 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'. 1834 */ 1835 int ill_arp_muxid; /* muxid returned from plink for arp */ 1836 int ill_ip_muxid; /* muxid returned from plink for ip */ 1837 1838 /* 1839 * NIC event information attached, to be used by nic event hooks. 1840 */ 1841 hook_nic_event_t *ill_nic_event_info; 1842 1843 /* 1844 * Used for IP frag reassembly throttling on a per ILL basis. 1845 * 1846 * Note: frag_count is approximate, its added to and subtracted from 1847 * without any locking, so simultaneous load/modify/stores can 1848 * collide, also ill_frag_purge() recalculates its value by 1849 * summing all the ipfb_count's without locking out updates 1850 * to the ipfb's. 1851 */ 1852 uint_t ill_ipf_gen; /* Generation of next fragment queue */ 1853 uint_t ill_frag_count; /* Approx count of all mblk bytes */ 1854 uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */ 1855 clock_t ill_last_frag_clean_time; /* time when frag's were pruned */ 1856 int ill_type; /* From <net/if_types.h> */ 1857 uint_t ill_dlpi_multicast_state; /* See below IDS_* */ 1858 uint_t ill_dlpi_fastpath_state; /* See below IDS_* */ 1859 1860 /* 1861 * Capabilities related fields. 1862 */ 1863 uint_t ill_dlpi_capab_state; /* State of capability query, IDS_* */ 1864 uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */ 1865 ill_mdt_capab_t *ill_mdt_capab; /* Multidata Transmit capabilities */ 1866 ill_ipsec_capab_t *ill_ipsec_capab_ah; /* IPsec AH capabilities */ 1867 ill_ipsec_capab_t *ill_ipsec_capab_esp; /* IPsec ESP capabilities */ 1868 ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */ 1869 ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */ 1870 ill_dls_capab_t *ill_dls_capab; /* Polling, soft ring capabilities */ 1871 1872 /* 1873 * New fields for IPv6 1874 */ 1875 uint8_t ill_max_hops; /* Maximum hops for any logical interface */ 1876 uint_t ill_max_mtu; /* Maximum MTU for any logical interface */ 1877 uint32_t ill_reachable_time; /* Value for ND algorithm in msec */ 1878 uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */ 1879 uint_t ill_max_buf; /* Max # of req to buffer for ND */ 1880 in6_addr_t ill_token; 1881 uint_t ill_token_length; 1882 uint32_t ill_xmit_count; /* ndp max multicast xmits */ 1883 mib2_ipv6IfStatsEntry_t *ill_ip6_mib; /* Per interface mib */ 1884 mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */ 1885 /* 1886 * Following two mblks are allocated common to all 1887 * the ipifs when the first interface is coming up. 1888 * It is sent up to arp when the last ipif is coming 1889 * down. 1890 */ 1891 mblk_t *ill_arp_down_mp; 1892 mblk_t *ill_arp_del_mapping_mp; 1893 /* 1894 * Used for implementing IFF_NOARP. As IFF_NOARP is used 1895 * to turn off for all the logicals, it is here instead 1896 * of the ipif. 1897 */ 1898 mblk_t *ill_arp_on_mp; 1899 /* Peer ill of an IPMP move operation */ 1900 struct ill_s *ill_move_peer; 1901 1902 phyint_t *ill_phyint; 1903 uint64_t ill_flags; 1904 ill_group_t *ill_group; 1905 struct ill_s *ill_group_next; 1906 /* 1907 * Reverse tunnel related count. This count 1908 * determines how many mobile nodes are using this 1909 * ill to send packet to reverse tunnel via foreign 1910 * agent. A non-zero count specifies presence of 1911 * mobile node(s) using reverse tunnel through this 1912 * interface. 1913 */ 1914 uint32_t ill_mrtun_refcnt; 1915 1916 /* 1917 * This count is bumped up when a route is added with 1918 * RTA_SRCIFP bit flag using routing socket. 1919 */ 1920 uint32_t ill_srcif_refcnt; 1921 /* 1922 * Pointer to the special interface based routing table. 1923 * This routing table is created dynamically when RTA_SRCIFP 1924 * is set by the routing socket. 1925 */ 1926 irb_t *ill_srcif_table; 1927 kmutex_t ill_lock; /* Please see table below */ 1928 /* 1929 * The ill_nd_lla* fields handle the link layer address option 1930 * from neighbor discovery. This is used for external IPv6 1931 * address resolution. 1932 */ 1933 mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */ 1934 uint8_t *ill_nd_lla; /* Link Layer Address */ 1935 uint_t ill_nd_lla_len; /* Link Layer Address length */ 1936 /* 1937 * We now have 3 phys_addr_req's sent down. This field keeps track 1938 * of which one is pending. 1939 */ 1940 t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */ 1941 /* 1942 * Used to save errors that occur during plumbing 1943 */ 1944 uint_t ill_ifname_pending_err; 1945 avl_node_t ill_avl_byppa; /* avl node based on ppa */ 1946 void *ill_fastpath_list; /* both ire and nce hang off this */ 1947 uint_t ill_refcnt; /* active refcnt by threads */ 1948 uint_t ill_ire_cnt; /* ires associated with this ill */ 1949 kcondvar_t ill_cv; 1950 uint_t ill_ilm_walker_cnt; /* snmp ilm walkers */ 1951 uint_t ill_nce_cnt; /* nces associated with this ill */ 1952 uint_t ill_waiters; /* threads waiting in ipsq_enter */ 1953 /* 1954 * Contains the upper read queue pointer of the module immediately 1955 * beneath IP. This field allows IP to validate sub-capability 1956 * acknowledgments coming up from downstream. 1957 */ 1958 queue_t *ill_lmod_rq; /* read queue pointer of module below */ 1959 uint_t ill_lmod_cnt; /* number of modules beneath IP */ 1960 ip_m_t *ill_media; /* media specific params/functions */ 1961 t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */ 1962 uint_t ill_usesrc_ifindex; /* use src addr from this ILL */ 1963 struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */ 1964 #ifdef ILL_DEBUG 1965 th_trace_t *ill_trace[IP_TR_HASH_MAX]; 1966 boolean_t ill_trace_disable; /* True when alloc fails */ 1967 #endif 1968 } ill_t; 1969 1970 extern void ill_delete_glist(ill_t *); 1971 1972 /* 1973 * The following table lists the protection levels of the various members 1974 * of the ill_t. Same notation as that used for ipif_t above is used. 1975 * 1976 * Write Read 1977 * 1978 * ill_ifptr ill_g_lock + s Write once 1979 * ill_rq ipsq Write once 1980 * ill_wq ipsq Write once 1981 * 1982 * ill_error ipsq None 1983 * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq 1984 * ill_ipif_up_count ill_lock + ipsq ill_lock 1985 * ill_max_frag ipsq Write once 1986 * 1987 * ill_name ill_g_lock + ipsq Write once 1988 * ill_name_length ill_g_lock + ipsq Write once 1989 * ill_ndd_name ipsq Write once 1990 * ill_net_type ipsq Write once 1991 * ill_ppa ill_g_lock + ipsq Write once 1992 * ill_sap ipsq + down ill Write once 1993 * ill_sap_length ipsq + down ill Write once 1994 * ill_phys_addr_length ipsq + down ill Write once 1995 * 1996 * ill_bcast_addr_length ipsq ipsq 1997 * ill_mactype ipsq ipsq 1998 * ill_frag_ptr ipsq ipsq 1999 * 2000 * ill_frag_timer_id ill_lock ill_lock 2001 * ill_frag_hash_tbl ipsq up ill 2002 * ill_ilm ipsq + ill_lock ill_lock 2003 * ill_mcast_type ill_lock ill_lock 2004 * ill_mcast_v1_time ill_lock ill_lock 2005 * ill_mcast_v2_time ill_lock ill_lock 2006 * ill_mcast_v1_tset ill_lock ill_lock 2007 * ill_mcast_v2_tset ill_lock ill_lock 2008 * ill_mcast_rv ill_lock ill_lock 2009 * ill_mcast_qi ill_lock ill_lock 2010 * ill_pending_mp ill_lock ill_lock 2011 * 2012 * ill_bcast_mp ipsq ipsq 2013 * ill_resolver_mp ipsq only when ill is up 2014 * ill_down_mp ipsq ipsq 2015 * ill_dlpi_deferred ipsq ipsq 2016 * ill_phys_addr_mp ipsq ipsq 2017 * ill_phys_addr ipsq up ill 2018 * ill_ick ipsq + down ill only when ill is up 2019 * 2020 * ill_state_flags ill_lock ill_lock 2021 * exclusive bit flags ipsq_t ipsq_t 2022 * shared bit flags ill_lock ill_lock 2023 * 2024 * ill_arp_muxid ipsq Not atomic 2025 * ill_ip_muxid ipsq Not atomic 2026 * 2027 * ill_ipf_gen Not atomic 2028 * ill_frag_count Approx. not protected 2029 * ill_type ipsq + down ill only when ill is up 2030 * ill_dlpi_multicast_state ill_lock ill_lock 2031 * ill_dlpi_fastpath_state ill_lock ill_lock 2032 * ill_max_hops ipsq Not atomic 2033 * 2034 * ill_max_mtu 2035 * 2036 * ill_reachable_time ipsq + ill_lock ill_lock 2037 * ill_reachable_retrans_time ipsq + ill_lock ill_lock 2038 * ill_max_buf ipsq + ill_lock ill_lock 2039 * 2040 * Next 2 fields need ill_lock because of the get ioctls. They should not 2041 * report partially updated results without executing in the ipsq. 2042 * ill_token ipsq + ill_lock ill_lock 2043 * ill_token_length ipsq + ill_lock ill_lock 2044 * ill_xmit_count ipsq + down ill write once 2045 * ill_ip6_mib ipsq + down ill only when ill is up 2046 * ill_icmp6_mib ipsq + down ill only when ill is up 2047 * ill_arp_down_mp ipsq ipsq 2048 * ill_arp_del_mapping_mp ipsq ipsq 2049 * ill_arp_on_mp ipsq ipsq 2050 * ill_move_peer ipsq ipsq 2051 * 2052 * ill_phyint ipsq, ill_g_lock, ill_lock Any of them 2053 * ill_flags ill_lock ill_lock 2054 * ill_group ipsq, ill_g_lock, ill_lock Any of them 2055 * ill_group_next ipsq, ill_g_lock, ill_lock Any of them 2056 * ill_mrtun_refcnt ill_lock ill_lock 2057 * ill_srcif_refcnt ill_lock ill_lock 2058 * ill_srcif_table ill_lock ill_lock 2059 * ill_nd_lla_mp ill_lock ill_lock 2060 * ill_nd_lla ill_lock ill_lock 2061 * ill_nd_lla_len ill_lock ill_lock 2062 * ill_phys_addr_pend ipsq + down ill only when ill is up 2063 * ill_ifname_pending_err ipsq ipsq 2064 * ill_avl_byppa ipsq, ill_g_lock Write once 2065 * 2066 * ill_fastpath_list ill_lock ill_lock 2067 * ill_refcnt ill_lock ill_lock 2068 * ill_ire_cnt ill_lock ill_lock 2069 * ill_cv ill_lock ill_lock 2070 * ill_ilm_walker_cnt ill_lock ill_lock 2071 * ill_nce_cnt ill_lock ill_lock 2072 * ill_trace ill_lock ill_lock 2073 * ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock 2074 */ 2075 2076 /* 2077 * For ioctl restart mechanism see ip_reprocess_ioctl() 2078 */ 2079 struct ip_ioctl_cmd_s; 2080 2081 typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *, 2082 struct ip_ioctl_cmd_s *, void *); 2083 2084 typedef struct ip_ioctl_cmd_s { 2085 int ipi_cmd; 2086 size_t ipi_copyin_size; 2087 uint_t ipi_flags; 2088 uint_t ipi_cmd_type; 2089 ifunc_t ipi_func; 2090 ifunc_t ipi_func_restart; 2091 } ip_ioctl_cmd_t; 2092 2093 /* 2094 * ipi_cmd_type: 2095 * 2096 * IF_CMD 1 old style ifreq cmd 2097 * LIF_CMD 2 new style lifreq cmd 2098 * MISC_CMD 3 Misc. (non [l]ifreq, tun) cmds 2099 * TUN_CMD 4 tunnel related 2100 */ 2101 2102 enum { IF_CMD = 1, LIF_CMD, MISC_CMD, TUN_CMD }; 2103 2104 #define IPI_DONTCARE 0 /* For ioctl encoded values that don't matter */ 2105 2106 /* Flag values in ipi_flags */ 2107 #define IPI_PRIV 0x1 /* Root only command */ 2108 #define IPI_MODOK 0x2 /* Permitted on mod instance of IP */ 2109 #define IPI_WR 0x4 /* Need to grab writer access */ 2110 #define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */ 2111 #define IPI_REPL 0x10 /* valid for replacement ipif created in MOVE */ 2112 #define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */ 2113 #define IPI_PASS_DOWN 0x40 /* pass this ioctl down when a module only */ 2114 2115 extern ip_ioctl_cmd_t ip_ndx_ioctl_table[]; 2116 extern ip_ioctl_cmd_t ip_misc_ioctl_table[]; 2117 extern int ip_ndx_ioctl_count; 2118 extern int ip_misc_ioctl_count; 2119 2120 #define ILL_CLEAR_MOVE(ill) { \ 2121 ill_t *peer_ill; \ 2122 \ 2123 peer_ill = (ill)->ill_move_peer; \ 2124 ASSERT(peer_ill != NULL); \ 2125 (ill)->ill_move_in_progress = B_FALSE; \ 2126 peer_ill->ill_move_in_progress = B_FALSE; \ 2127 (ill)->ill_move_peer = NULL; \ 2128 peer_ill->ill_move_peer = NULL; \ 2129 } 2130 /* The 2 ill's are same or belong to the same IPMP group */ 2131 #define SAME_IPMP_GROUP(ill_1, ill_2) \ 2132 (((ill_1)->ill_group != NULL) && \ 2133 ((ill_1)->ill_group == (ill_2)->ill_group)) 2134 2135 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */ 2136 typedef struct ipmx_s { 2137 char ipmx_name[LIFNAMSIZ]; /* if name */ 2138 uint_t 2139 ipmx_arpdev_stream : 1, /* This is the arp stream */ 2140 ipmx_notused : 31; 2141 } ipmx_t; 2142 2143 /* 2144 * State for detecting if a driver supports certain features. 2145 * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state. 2146 * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state. 2147 * Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state. 2148 */ 2149 #define IDS_UNKNOWN 0 /* No DLPI request sent */ 2150 #define IDS_INPROGRESS 1 /* DLPI request sent */ 2151 #define IDS_OK 2 /* DLPI request completed successfully */ 2152 #define IDS_FAILED 3 /* DLPI request failed */ 2153 #define IDS_RENEG 4 /* Driver asked for a renegotiation */ 2154 2155 /* Named Dispatch Parameter Management Structure */ 2156 typedef struct ipparam_s { 2157 uint_t ip_param_min; 2158 uint_t ip_param_max; 2159 uint_t ip_param_value; 2160 char *ip_param_name; 2161 } ipparam_t; 2162 2163 /* Extended NDP Management Structure */ 2164 typedef struct ipndp_s { 2165 ndgetf_t ip_ndp_getf; 2166 ndsetf_t ip_ndp_setf; 2167 caddr_t ip_ndp_data; 2168 char *ip_ndp_name; 2169 } ipndp_t; 2170 2171 /* 2172 * The kernel stores security attributes of all gateways in a database made 2173 * up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the 2174 * security-related credentials of the gateway. More than one gateways may 2175 * share entries in the database. 2176 * 2177 * The tsol_gc_t structure represents the gateway to credential association, 2178 * and refers to an entry in the database. One or more tsol_gc_t entities are 2179 * grouped together to form one or more tsol_gcgrp_t, each representing the 2180 * list of security attributes specific to the gateway. A gateway may be 2181 * associated with at most one credentials group. 2182 */ 2183 struct tsol_gcgrp_s; 2184 2185 extern uchar_t ip6opt_ls; /* TX IPv6 enabler */ 2186 2187 /* 2188 * Gateway security credential record. 2189 */ 2190 typedef struct tsol_gcdb_s { 2191 uint_t gcdb_refcnt; /* reference count */ 2192 struct rtsa_s gcdb_attr; /* security attributes */ 2193 #define gcdb_mask gcdb_attr.rtsa_mask 2194 #define gcdb_doi gcdb_attr.rtsa_doi 2195 #define gcdb_slrange gcdb_attr.rtsa_slrange 2196 } tsol_gcdb_t; 2197 2198 /* 2199 * Gateway to credential association. 2200 */ 2201 typedef struct tsol_gc_s { 2202 uint_t gc_refcnt; /* reference count */ 2203 struct tsol_gcgrp_s *gc_grp; /* pointer to group */ 2204 struct tsol_gc_s *gc_prev; /* previous in list */ 2205 struct tsol_gc_s *gc_next; /* next in list */ 2206 tsol_gcdb_t *gc_db; /* pointer to actual credentials */ 2207 } tsol_gc_t; 2208 2209 /* 2210 * Gateway credentials group address. 2211 */ 2212 typedef struct tsol_gcgrp_addr_s { 2213 int ga_af; /* address family */ 2214 in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */ 2215 } tsol_gcgrp_addr_t; 2216 2217 /* 2218 * Gateway credentials group. 2219 */ 2220 typedef struct tsol_gcgrp_s { 2221 uint_t gcgrp_refcnt; /* reference count */ 2222 krwlock_t gcgrp_rwlock; /* lock to protect following */ 2223 uint_t gcgrp_count; /* number of credentials */ 2224 tsol_gc_t *gcgrp_head; /* first credential in list */ 2225 tsol_gc_t *gcgrp_tail; /* last credential in list */ 2226 tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */ 2227 } tsol_gcgrp_t; 2228 2229 extern kmutex_t gcgrp_lock; 2230 2231 #define GC_REFRELE(p) { \ 2232 ASSERT((p)->gc_grp != NULL); \ 2233 rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \ 2234 ASSERT((p)->gc_refcnt > 0); \ 2235 if (--((p)->gc_refcnt) == 0) \ 2236 gc_inactive(p); \ 2237 else \ 2238 rw_exit(&(p)->gc_grp->gcgrp_rwlock); \ 2239 } 2240 2241 #define GCGRP_REFHOLD(p) { \ 2242 mutex_enter(&gcgrp_lock); \ 2243 ++((p)->gcgrp_refcnt); \ 2244 ASSERT((p)->gcgrp_refcnt != 0); \ 2245 mutex_exit(&gcgrp_lock); \ 2246 } 2247 2248 #define GCGRP_REFRELE(p) { \ 2249 mutex_enter(&gcgrp_lock); \ 2250 ASSERT((p)->gcgrp_refcnt > 0); \ 2251 if (--((p)->gcgrp_refcnt) == 0) \ 2252 gcgrp_inactive(p); \ 2253 ASSERT(MUTEX_HELD(&gcgrp_lock)); \ 2254 mutex_exit(&gcgrp_lock); \ 2255 } 2256 2257 /* 2258 * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr 2259 */ 2260 struct tsol_tnrhc; 2261 2262 typedef struct tsol_ire_gw_secattr_s { 2263 kmutex_t igsa_lock; /* lock to protect following */ 2264 struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */ 2265 tsol_gc_t *igsa_gc; /* for prefix IREs */ 2266 tsol_gcgrp_t *igsa_gcgrp; /* for cache IREs */ 2267 } tsol_ire_gw_secattr_t; 2268 2269 /* 2270 * Following are the macros to increment/decrement the reference 2271 * count of the IREs and IRBs (ire bucket). 2272 * 2273 * 1) We bump up the reference count of an IRE to make sure that 2274 * it does not get deleted and freed while we are using it. 2275 * Typically all the lookup functions hold the bucket lock, 2276 * and look for the IRE. If it finds an IRE, it bumps up the 2277 * reference count before dropping the lock. Sometimes we *may* want 2278 * to bump up the reference count after we *looked* up i.e without 2279 * holding the bucket lock. So, the IRE_REFHOLD macro does not assert 2280 * on the bucket lock being held. Any thread trying to delete from 2281 * the hash bucket can still do so but cannot free the IRE if 2282 * ire_refcnt is not 0. 2283 * 2284 * 2) We bump up the reference count on the bucket where the IRE resides 2285 * (IRB), when we want to prevent the IREs getting deleted from a given 2286 * hash bucket. This makes life easier for ire_walk type functions which 2287 * wants to walk the IRE list, call a function, but needs to drop 2288 * the bucket lock to prevent recursive rw_enters. While the 2289 * lock is dropped, the list could be changed by other threads or 2290 * the same thread could end up deleting the ire or the ire pointed by 2291 * ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as 2292 * a delete will still remove the ire from the bucket while we have 2293 * dropped the lock and hence the ire_next would be NULL. Thus, we 2294 * need a mechanism to prevent deletions from a given bucket. 2295 * 2296 * To prevent deletions, we bump up the reference count on the 2297 * bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED 2298 * both on the ire's ire_marks and the bucket's irb_marks. When the 2299 * reference count on the bucket drops to zero, all the CONDEMNED ires 2300 * are deleted. We don't have to bump up the reference count on the 2301 * bucket if we are walking the bucket and never have to drop the bucket 2302 * lock. Note that IRB_REFHOLD does not prevent addition of new ires 2303 * in the list. It is okay because addition of new ires will not cause 2304 * ire_next to point to freed memory. We do IRB_REFHOLD only when 2305 * all of the 3 conditions are true : 2306 * 2307 * 1) The code needs to walk the IRE bucket from start to end. 2308 * 2) It may have to drop the bucket lock sometimes while doing (1) 2309 * 3) It does not want any ires to be deleted meanwhile. 2310 */ 2311 2312 /* 2313 * Bump up the reference count on the IRE. We cannot assert that the 2314 * bucket lock is being held as it is legal to bump up the reference 2315 * count after the first lookup has returned the IRE without 2316 * holding the lock. Currently ip_wput does this for caching IRE_CACHEs. 2317 */ 2318 2319 #ifndef IRE_DEBUG 2320 2321 #define IRE_REFHOLD_NOTR(ire) IRE_REFHOLD(ire) 2322 #define IRE_UNTRACE_REF(ire) 2323 #define IRE_TRACE_REF(ire) 2324 2325 #else 2326 2327 #define IRE_REFHOLD_NOTR(ire) { \ 2328 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2329 ASSERT((ire)->ire_refcnt != 0); \ 2330 } 2331 2332 #define IRE_UNTRACE_REF(ire) ire_untrace_ref(ire); 2333 #define IRE_TRACE_REF(ire) ire_trace_ref(ire); 2334 #endif 2335 2336 #define IRE_REFHOLD(ire) { \ 2337 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2338 ASSERT((ire)->ire_refcnt != 0); \ 2339 IRE_TRACE_REF(ire); \ 2340 } 2341 2342 #define IRE_REFHOLD_LOCKED(ire) { \ 2343 IRE_TRACE_REF(ire); \ 2344 (ire)->ire_refcnt++; \ 2345 } 2346 2347 /* 2348 * Decrement the reference count on the IRE. 2349 * In architectures e.g sun4u, where atomic_add_32_nv is just 2350 * a cas, we need to maintain the right memory barrier semantics 2351 * as that of mutex_exit i.e all the loads and stores should complete 2352 * before the cas is executed. membar_exit() does that here. 2353 * 2354 * NOTE : This macro is used only in places where we want performance. 2355 * To avoid bloating the code, we use the function "ire_refrele" 2356 * which essentially calls the macro. 2357 */ 2358 #ifndef IRE_DEBUG 2359 #define IRE_REFRELE(ire) { \ 2360 ASSERT((ire)->ire_refcnt != 0); \ 2361 membar_exit(); \ 2362 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2363 ire_inactive(ire); \ 2364 } 2365 #define IRE_REFRELE_NOTR(ire) IRE_REFRELE(ire) 2366 #else 2367 #define IRE_REFRELE(ire) { \ 2368 if (ire->ire_bucket != NULL) \ 2369 ire_untrace_ref(ire); \ 2370 ASSERT((ire)->ire_refcnt != 0); \ 2371 membar_exit(); \ 2372 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2373 ire_inactive(ire); \ 2374 } 2375 #define IRE_REFRELE_NOTR(ire) { \ 2376 ASSERT((ire)->ire_refcnt != 0); \ 2377 membar_exit(); \ 2378 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2379 ire_inactive(ire); \ 2380 } 2381 #endif 2382 2383 /* 2384 * Bump up the reference count on the hash bucket - IRB to 2385 * prevent ires from being deleted in this bucket. 2386 */ 2387 #define IRB_REFHOLD(irb) { \ 2388 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2389 (irb)->irb_refcnt++; \ 2390 ASSERT((irb)->irb_refcnt != 0); \ 2391 rw_exit(&(irb)->irb_lock); \ 2392 } 2393 #define IRB_REFHOLD_LOCKED(irb) { \ 2394 ASSERT(RW_WRITE_HELD(&(irb)->irb_lock)); \ 2395 (irb)->irb_refcnt++; \ 2396 ASSERT((irb)->irb_refcnt != 0); \ 2397 } 2398 2399 void irb_refrele_ftable(irb_t *); 2400 /* 2401 * Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t 2402 * is statically allocated, so that when the irb_refcnt goes to 0, 2403 * we simply clean up the ire list and continue. 2404 */ 2405 #define IRB_REFRELE(irb) { \ 2406 if ((irb)->irb_marks & IRB_MARK_FTABLE) { \ 2407 irb_refrele_ftable((irb)); \ 2408 } else { \ 2409 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2410 ASSERT((irb)->irb_refcnt != 0); \ 2411 if (--(irb)->irb_refcnt == 0 && \ 2412 ((irb)->irb_marks & IRE_MARK_CONDEMNED)) { \ 2413 ire_t *ire_list; \ 2414 \ 2415 ire_list = ire_unlink(irb); \ 2416 rw_exit(&(irb)->irb_lock); \ 2417 ASSERT(ire_list != NULL); \ 2418 ire_cleanup(ire_list); \ 2419 } else { \ 2420 rw_exit(&(irb)->irb_lock); \ 2421 } \ 2422 } \ 2423 } 2424 2425 extern struct kmem_cache *rt_entry_cache; 2426 2427 /* 2428 * Lock the fast path mp for access, since the fp_mp can be deleted 2429 * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST and IRE_MIPRTUN 2430 */ 2431 2432 #define LOCK_IRE_FP_MP(ire) { \ 2433 if ((ire)->ire_type == IRE_BROADCAST || \ 2434 (ire)->ire_type == IRE_MIPRTUN) \ 2435 mutex_enter(&ire->ire_nce->nce_lock); \ 2436 } 2437 #define UNLOCK_IRE_FP_MP(ire) { \ 2438 if ((ire)->ire_type == IRE_BROADCAST || \ 2439 (ire)->ire_type == IRE_MIPRTUN) \ 2440 mutex_exit(&ire->ire_nce->nce_lock); \ 2441 } 2442 2443 typedef struct ire4 { 2444 ipaddr_t ire4_src_addr; /* Source address to use. */ 2445 ipaddr_t ire4_mask; /* Mask for matching this IRE. */ 2446 ipaddr_t ire4_addr; /* Address this IRE represents. */ 2447 ipaddr_t ire4_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2448 ipaddr_t ire4_cmask; /* Mask from parent prefix route */ 2449 } ire4_t; 2450 2451 typedef struct ire6 { 2452 in6_addr_t ire6_src_addr; /* Source address to use. */ 2453 in6_addr_t ire6_mask; /* Mask for matching this IRE. */ 2454 in6_addr_t ire6_addr; /* Address this IRE represents. */ 2455 in6_addr_t ire6_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2456 in6_addr_t ire6_cmask; /* Mask from parent prefix route */ 2457 } ire6_t; 2458 2459 typedef union ire_addr { 2460 ire6_t ire6_u; 2461 ire4_t ire4_u; 2462 } ire_addr_u_t; 2463 2464 /* Internet Routing Entry */ 2465 typedef struct ire_s { 2466 struct ire_s *ire_next; /* The hash chain must be first. */ 2467 struct ire_s **ire_ptpn; /* Pointer to previous next. */ 2468 uint32_t ire_refcnt; /* Number of references */ 2469 mblk_t *ire_mp; /* Non-null if allocated as mblk */ 2470 queue_t *ire_rfq; /* recv from this queue */ 2471 queue_t *ire_stq; /* send to this queue */ 2472 union { 2473 uint_t *max_fragp; /* Used only during ire creation */ 2474 uint_t max_frag; /* MTU (next hop or path). */ 2475 } imf_u; 2476 #define ire_max_frag imf_u.max_frag 2477 #define ire_max_fragp imf_u.max_fragp 2478 uint32_t ire_frag_flag; /* IPH_DF or zero. */ 2479 uint32_t ire_ident; /* Per IRE IP ident. */ 2480 uint32_t ire_tire_mark; /* Used for reclaim of unused. */ 2481 uchar_t ire_ipversion; /* IPv4/IPv6 version */ 2482 uchar_t ire_marks; /* IRE_MARK_CONDEMNED etc. */ 2483 ushort_t ire_type; /* Type of IRE */ 2484 uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */ 2485 uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */ 2486 uint_t ire_ll_hdr_length; /* Non-zero if we do M_DATA prepends */ 2487 time_t ire_create_time; /* Time (in secs) IRE was created. */ 2488 uint32_t ire_phandle; /* Associate prefix IREs to cache */ 2489 uint32_t ire_ihandle; /* Associate interface IREs to cache */ 2490 ipif_t *ire_ipif; /* the interface that this ire uses */ 2491 uint32_t ire_flags; /* flags related to route (RTF_*) */ 2492 uint_t ire_ipsec_overhead; /* IPSEC overhead */ 2493 /* 2494 * Neighbor Cache Entry for IPv6; arp info for IPv4 2495 */ 2496 struct nce_s *ire_nce; 2497 uint_t ire_masklen; /* # bits in ire_mask{,_v6} */ 2498 ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */ 2499 2500 irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */ 2501 iulp_t ire_uinfo; /* Upper layer protocol info. */ 2502 /* 2503 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag. 2504 */ 2505 kmutex_t ire_lock; 2506 uint_t ire_ipif_seqid; /* ipif_seqid of ire_ipif */ 2507 /* 2508 * For regular routes in forwarding table and cache table the 2509 * the following entries are NULL/zero. Only reverse tunnel 2510 * table and interface based forwarding table use these fields. 2511 * Routes added with RTA_SRCIFP and RTA_SRC respectively have 2512 * non-zero values for the following fields. 2513 */ 2514 ill_t *ire_in_ill; /* Incoming ill interface */ 2515 ipaddr_t ire_in_src_addr; 2516 /* source ip-addr of incoming packet */ 2517 clock_t ire_last_used_time; /* Last used time */ 2518 struct ire_s *ire_fastpath; /* Pointer to next ire in fastpath */ 2519 tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */ 2520 zoneid_t ire_zoneid; /* for local address discrimination */ 2521 /* 2522 * ire's that are embedded inside mblk_t and sent to the external 2523 * resolver use the ire_stq_ifindex to track the ifindex of the 2524 * ire_stq, so that the ill (if it exists) can be correctly recovered 2525 * for cleanup in the esbfree routine when arp failure occurs 2526 */ 2527 uint_t ire_stq_ifindex; 2528 uint_t ire_defense_count; /* number of ARP conflicts */ 2529 uint_t ire_defense_time; /* last time defended (secs) */ 2530 #ifdef IRE_DEBUG 2531 th_trace_t *ire_trace[IP_TR_HASH_MAX]; 2532 boolean_t ire_trace_disable; /* True when alloc fails */ 2533 #endif 2534 } ire_t; 2535 2536 /* IPv4 compatiblity macros */ 2537 #define ire_src_addr ire_u.ire4_u.ire4_src_addr 2538 #define ire_mask ire_u.ire4_u.ire4_mask 2539 #define ire_addr ire_u.ire4_u.ire4_addr 2540 #define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr 2541 #define ire_cmask ire_u.ire4_u.ire4_cmask 2542 2543 #define ire_src_addr_v6 ire_u.ire6_u.ire6_src_addr 2544 #define ire_mask_v6 ire_u.ire6_u.ire6_mask 2545 #define ire_addr_v6 ire_u.ire6_u.ire6_addr 2546 #define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr 2547 #define ire_cmask_v6 ire_u.ire6_u.ire6_cmask 2548 2549 /* Convenient typedefs for sockaddrs */ 2550 typedef struct sockaddr_in sin_t; 2551 typedef struct sockaddr_in6 sin6_t; 2552 2553 /* Address structure used for internal bind with IP */ 2554 typedef struct ipa_conn_s { 2555 ipaddr_t ac_laddr; 2556 ipaddr_t ac_faddr; 2557 uint16_t ac_fport; 2558 uint16_t ac_lport; 2559 } ipa_conn_t; 2560 2561 typedef struct ipa6_conn_s { 2562 in6_addr_t ac6_laddr; 2563 in6_addr_t ac6_faddr; 2564 uint16_t ac6_fport; 2565 uint16_t ac6_lport; 2566 } ipa6_conn_t; 2567 2568 /* 2569 * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's 2570 * bind handler. 2571 */ 2572 typedef struct ipa_conn_extended_s { 2573 uint64_t acx_flags; 2574 ipa_conn_t acx_conn; 2575 } ipa_conn_x_t; 2576 2577 typedef struct ipa6_conn_extended_s { 2578 uint64_t ac6x_flags; 2579 ipa6_conn_t ac6x_conn; 2580 } ipa6_conn_x_t; 2581 2582 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */ 2583 #define ACX_VERIFY_DST 0x1ULL /* verify destination address is reachable */ 2584 2585 /* Name/Value Descriptor. */ 2586 typedef struct nv_s { 2587 uint64_t nv_value; 2588 char *nv_name; 2589 } nv_t; 2590 2591 /* IP Forwarding Ticket */ 2592 typedef struct ipftk_s { 2593 queue_t *ipftk_queue; 2594 ipaddr_t ipftk_dst; 2595 } ipftk_t; 2596 2597 typedef struct ipt_s { 2598 pfv_t func; /* Routine to call */ 2599 uchar_t *arg; /* ire or nce passed in */ 2600 } ipt_t; 2601 2602 #define ILL_FRAG_HASH(s, i) \ 2603 ((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT) 2604 2605 /* 2606 * The MAX number of allowed fragmented packets per hash bucket 2607 * calculation is based on the most common mtu size of 1500. This limit 2608 * will work well for other mtu sizes as well. 2609 */ 2610 #define COMMON_IP_MTU 1500 2611 #define MAX_FRAG_MIN 10 2612 #define MAX_FRAG_PKTS \ 2613 MAX(MAX_FRAG_MIN, (2 * (ip_reass_queue_bytes / \ 2614 (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT)))) 2615 2616 /* 2617 * Maximum dups allowed per packet. 2618 */ 2619 extern uint_t ip_max_frag_dups; 2620 2621 /* 2622 * Per-packet information for received packets and transmitted. 2623 * Used by the transport protocols when converting between the packet 2624 * and ancillary data and socket options. 2625 * 2626 * Note: This private data structure and related IPPF_* constant 2627 * definitions are exposed to enable compilation of some debugging tools 2628 * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be 2629 * a temporary hack and long term alternate interfaces should be defined 2630 * to support the needs of such tools and private definitions moved to 2631 * private headers. 2632 */ 2633 struct ip6_pkt_s { 2634 uint_t ipp_fields; /* Which fields are valid */ 2635 uint_t ipp_sticky_ignored; /* sticky fields to ignore */ 2636 uint_t ipp_ifindex; /* pktinfo ifindex */ 2637 in6_addr_t ipp_addr; /* pktinfo src/dst addr */ 2638 uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS */ 2639 uint_t ipp_multicast_hops; /* IPV6_MULTICAST_HOPS */ 2640 uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */ 2641 uint_t ipp_hopoptslen; 2642 uint_t ipp_rtdstoptslen; 2643 uint_t ipp_rthdrlen; 2644 uint_t ipp_dstoptslen; 2645 uint_t ipp_pathmtulen; 2646 ip6_hbh_t *ipp_hopopts; 2647 ip6_dest_t *ipp_rtdstopts; 2648 ip6_rthdr_t *ipp_rthdr; 2649 ip6_dest_t *ipp_dstopts; 2650 struct ip6_mtuinfo *ipp_pathmtu; 2651 in6_addr_t ipp_nexthop; /* Transmit only */ 2652 uint8_t ipp_tclass; 2653 int8_t ipp_use_min_mtu; 2654 }; 2655 typedef struct ip6_pkt_s ip6_pkt_t; 2656 2657 extern void ip6_pkt_free(ip6_pkt_t *); /* free storage inside ip6_pkt_t */ 2658 2659 /* 2660 * This structure is used to convey information from IP and the ULP. 2661 * Currently used for the IP_RECVSLLA and IP_RECVIF options. The 2662 * type of information field is set to IN_PKTINFO (i.e inbound pkt info) 2663 */ 2664 typedef struct in_pktinfo { 2665 uint32_t in_pkt_ulp_type; /* type of info sent */ 2666 /* to UDP */ 2667 uint32_t in_pkt_flags; /* what is sent up by IP */ 2668 uint32_t in_pkt_ifindex; /* inbound interface index */ 2669 struct sockaddr_dl in_pkt_slla; /* has source link layer addr */ 2670 } in_pktinfo_t; 2671 2672 /* 2673 * flags to tell UDP what IP is sending; in_pkt_flags 2674 */ 2675 #define IPF_RECVIF 0x01 /* inbound interface index */ 2676 #define IPF_RECVSLLA 0x02 /* source link layer address */ 2677 2678 /* ipp_fields values */ 2679 #define IPPF_IFINDEX 0x0001 /* Part of in6_pktinfo: ifindex */ 2680 #define IPPF_ADDR 0x0002 /* Part of in6_pktinfo: src/dst addr */ 2681 #define IPPF_SCOPE_ID 0x0004 /* Add xmit ip6i_t for sin6_scope_id */ 2682 #define IPPF_NO_CKSUM 0x0008 /* Add xmit ip6i_t for IP6I_NO_*_CKSUM */ 2683 2684 #define IPPF_RAW_CKSUM 0x0010 /* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */ 2685 #define IPPF_HOPLIMIT 0x0020 2686 #define IPPF_HOPOPTS 0x0040 2687 #define IPPF_RTHDR 0x0080 2688 2689 #define IPPF_RTDSTOPTS 0x0100 2690 #define IPPF_DSTOPTS 0x0200 2691 #define IPPF_NEXTHOP 0x0400 2692 #define IPPF_PATHMTU 0x0800 2693 2694 #define IPPF_TCLASS 0x1000 2695 #define IPPF_DONTFRAG 0x2000 2696 #define IPPF_USE_MIN_MTU 0x04000 2697 #define IPPF_MULTICAST_HOPS 0x08000 2698 #define IPPF_UNICAST_HOPS 0x10000 2699 2700 #define IPPF_HAS_IP6I \ 2701 (IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \ 2702 IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \ 2703 IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS) 2704 2705 #define TCP_PORTS_OFFSET 0 2706 #define UDP_PORTS_OFFSET 0 2707 2708 /* 2709 * lookups return the ill/ipif only if the flags are clear OR Iam writer. 2710 * ill / ipif lookup functions increment the refcnt on the ill / ipif only 2711 * after calling these macros. This ensures that the refcnt on the ipif or 2712 * ill will eventually drop down to zero. 2713 */ 2714 #define ILL_LOOKUP_FAILED 1 /* Used as error code */ 2715 #define IPIF_LOOKUP_FAILED 2 /* Used as error code */ 2716 2717 #define ILL_CAN_LOOKUP(ill) \ 2718 (!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) || \ 2719 IAM_WRITER_ILL(ill)) 2720 2721 #define ILL_CAN_WAIT(ill, q) \ 2722 (((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED))) 2723 2724 #define ILL_CAN_LOOKUP_WALKER(ill) \ 2725 (!((ill)->ill_state_flags & ILL_CONDEMNED)) 2726 2727 #define IPIF_CAN_LOOKUP(ipif) \ 2728 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \ 2729 IAM_WRITER_IPIF(ipif)) 2730 2731 /* 2732 * If the parameter 'q' is NULL, the caller is not interested in wait and 2733 * restart of the operation if the ILL or IPIF cannot be looked up when it is 2734 * marked as 'CHANGING'. Typically a thread that tries to send out data will 2735 * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and 2736 * in this case 'q' is NULL 2737 */ 2738 #define IPIF_CAN_WAIT(ipif, q) \ 2739 (((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED))) 2740 2741 #define IPIF_CAN_LOOKUP_WALKER(ipif) \ 2742 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) || \ 2743 IAM_WRITER_IPIF(ipif)) 2744 2745 /* 2746 * These macros are used by critical set ioctls and failover ioctls to 2747 * mark the ipif appropriately before starting the operation and to clear the 2748 * marks after completing the operation. 2749 */ 2750 #define IPIF_UNMARK_MOVING(ipif) \ 2751 (ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING; 2752 2753 #define ILL_UNMARK_CHANGING(ill) \ 2754 (ill)->ill_state_flags &= ~ILL_CHANGING; 2755 2756 /* Macros used to assert that this thread is a writer */ 2757 #define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_writer == curthread) 2758 #define IAM_WRITER_ILL(ill) \ 2759 ((ill)->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2760 #define IAM_WRITER_IPIF(ipif) \ 2761 ((ipif)->ipif_ill->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2762 2763 /* 2764 * Grab ill locks in the proper order. The order is highest addressed 2765 * ill is locked first. 2766 */ 2767 #define GRAB_ILL_LOCKS(ill_1, ill_2) \ 2768 { \ 2769 if ((ill_1) > (ill_2)) { \ 2770 if (ill_1 != NULL) \ 2771 mutex_enter(&(ill_1)->ill_lock); \ 2772 if (ill_2 != NULL) \ 2773 mutex_enter(&(ill_2)->ill_lock); \ 2774 } else { \ 2775 if (ill_2 != NULL) \ 2776 mutex_enter(&(ill_2)->ill_lock); \ 2777 if (ill_1 != NULL && ill_1 != ill_2) \ 2778 mutex_enter(&(ill_1)->ill_lock); \ 2779 } \ 2780 } 2781 2782 #define RELEASE_ILL_LOCKS(ill_1, ill_2) \ 2783 { \ 2784 if (ill_1 != NULL) \ 2785 mutex_exit(&(ill_1)->ill_lock); \ 2786 if (ill_2 != NULL && ill_2 != ill_1) \ 2787 mutex_exit(&(ill_2)->ill_lock); \ 2788 } 2789 2790 /* Get the other protocol instance ill */ 2791 #define ILL_OTHER(ill) \ 2792 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \ 2793 (ill)->ill_phyint->phyint_illv6) 2794 2795 #define MATCH_V4_ONLY 0x1 2796 #define MATCH_V6_ONLY 0x2 2797 #define MATCH_ILL_ONLY 0x4 2798 2799 /* ioctl command info: Ioctl properties extracted and stored in here */ 2800 typedef struct cmd_info_s 2801 { 2802 char ci_groupname[LIFNAMSIZ + 1]; /* SIOCSLIFGROUPNAME */ 2803 ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl's */ 2804 sin_t *ci_sin; /* the sin struct passed down */ 2805 sin6_t *ci_sin6; /* the sin6_t struct passed down */ 2806 struct lifreq *ci_lifr; /* the lifreq struct passed down */ 2807 } cmd_info_t; 2808 2809 extern krwlock_t ill_g_lock; 2810 extern kmutex_t ip_addr_avail_lock; 2811 extern ipsq_t *ipsq_g_head; 2812 2813 extern ill_t *ip_timer_ill; /* ILL for IRE expiration timer. */ 2814 extern timeout_id_t ip_ire_expire_id; /* IRE expiration timeout id. */ 2815 extern timeout_id_t ip_ire_reclaim_id; /* IRE recalaim timeout id. */ 2816 2817 extern kmutex_t ip_mi_lock; 2818 extern krwlock_t ip_g_nd_lock; /* For adding/removing nd variables */ 2819 extern kmutex_t ip_trash_timer_lock; /* Protects ip_ire_expire_id */ 2820 2821 extern kmutex_t igmp_timer_lock; /* Protects the igmp timer */ 2822 extern kmutex_t mld_timer_lock; /* Protects the mld timer */ 2823 2824 extern krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 2825 2826 extern struct kmem_cache *ire_cache; 2827 2828 extern uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */ 2829 2830 extern ipaddr_t ip_g_all_ones; 2831 extern caddr_t ip_g_nd; /* Named Dispatch List Head */ 2832 2833 extern uint_t ip_loopback_mtu; 2834 2835 extern ipparam_t *ip_param_arr; 2836 2837 extern int ip_g_forward; 2838 extern int ipv6_forward; 2839 extern vmem_t *ip_minor_arena; 2840 2841 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 2842 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 2843 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 2844 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 2845 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 2846 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 2847 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 2848 #define ip_debug ip_param_arr[7].ip_param_value 2849 #define ip_mrtdebug ip_param_arr[8].ip_param_value 2850 #define ip_timer_interval ip_param_arr[9].ip_param_value 2851 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value 2852 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 2853 #define ip_def_ttl ip_param_arr[12].ip_param_value 2854 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 2855 #define ip_wroff_extra ip_param_arr[14].ip_param_value 2856 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 2857 #define ip_icmp_return ip_param_arr[16].ip_param_value 2858 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value 2859 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value 2860 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 2861 #define ip_output_queue ip_param_arr[20].ip_param_value 2862 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 2863 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 2864 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 2865 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 2866 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 2867 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 2868 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value 2869 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 2870 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 2871 2872 /* IPv6 configuration knobs */ 2873 #define delay_first_probe_time ip_param_arr[30].ip_param_value 2874 #define max_unicast_solicit ip_param_arr[31].ip_param_value 2875 #define ipv6_def_hops ip_param_arr[32].ip_param_value 2876 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 2877 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 2878 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 2879 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 2880 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 2881 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 2882 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 2883 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 2884 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 2885 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 2886 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 2887 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 2888 #define ip_policy_mask ip_param_arr[45].ip_param_value 2889 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 2890 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 2891 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 2892 #define ip_ndp_defense_interval ip_param_arr[49].ip_param_value 2893 #define ip_max_temp_idle ip_param_arr[50].ip_param_value 2894 #define ip_max_temp_defend ip_param_arr[51].ip_param_value 2895 #define ip_max_defend ip_param_arr[52].ip_param_value 2896 #define ip_defend_interval ip_param_arr[53].ip_param_value 2897 #define ip_dup_recovery ip_param_arr[54].ip_param_value 2898 #define ip_restrict_interzone_loopback ip_param_arr[55].ip_param_value 2899 #ifdef DEBUG 2900 #define ipv6_drop_inbound_icmpv6 ip_param_arr[56].ip_param_value 2901 #else 2902 #define ipv6_drop_inbound_icmpv6 0 2903 #endif 2904 2905 extern hrtime_t ipsec_policy_failure_last; 2906 2907 extern int dohwcksum; /* use h/w cksum if supported by the h/w */ 2908 #ifdef ZC_TEST 2909 extern int noswcksum; 2910 #endif 2911 2912 extern char ipif_loopback_name[]; 2913 2914 extern nv_t *ire_nv_tbl; 2915 2916 extern time_t ip_g_frag_timeout; 2917 extern clock_t ip_g_frag_timo_ms; 2918 2919 extern mib2_ip_t ip_mib; /* For tcpInErrs and udpNoPorts */ 2920 2921 extern struct module_info ip_mod_info; 2922 2923 extern timeout_id_t igmp_slowtimeout_id; 2924 extern timeout_id_t mld_slowtimeout_id; 2925 2926 extern uint_t loopback_packets; 2927 2928 /* 2929 * Hooks structures used inside of ip 2930 */ 2931 extern hook_event_token_t ipv4firewall_physical_in; 2932 extern hook_event_token_t ipv4firewall_physical_out; 2933 extern hook_event_token_t ipv4firewall_forwarding; 2934 extern hook_event_token_t ipv4firewall_loopback_in; 2935 extern hook_event_token_t ipv4firewall_loopback_out; 2936 extern hook_event_token_t ipv4nicevents; 2937 2938 extern hook_event_token_t ipv6firewall_physical_in; 2939 extern hook_event_token_t ipv6firewall_physical_out; 2940 extern hook_event_token_t ipv6firewall_forwarding; 2941 extern hook_event_token_t ipv6firewall_loopback_in; 2942 extern hook_event_token_t ipv6firewall_loopback_out; 2943 extern hook_event_token_t ipv6nicevents; 2944 2945 extern hook_event_t ip4_physical_in_event; 2946 extern hook_event_t ip4_physical_out_event; 2947 extern hook_event_t ip4_forwarding_event; 2948 extern hook_event_t ip4_loopback_in_event; 2949 extern hook_event_t ip4_loopback_out_event; 2950 extern hook_event_t ip4_nic_events; 2951 2952 extern hook_event_t ip6_physical_in_event; 2953 extern hook_event_t ip6_physical_out_event; 2954 extern hook_event_t ip6_forwarding_event; 2955 extern hook_event_t ip6_loopback_in_event; 2956 extern hook_event_t ip6_loopback_out_event; 2957 extern hook_event_t ip6_nic_events; 2958 2959 #define HOOKS4_INTERESTED_PHYSICAL_IN \ 2960 (ip4_physical_in_event.he_interested) 2961 #define HOOKS6_INTERESTED_PHYSICAL_IN \ 2962 (ip6_physical_in_event.he_interested) 2963 #define HOOKS4_INTERESTED_PHYSICAL_OUT \ 2964 (ip4_physical_out_event.he_interested) 2965 #define HOOKS6_INTERESTED_PHYSICAL_OUT \ 2966 (ip6_physical_out_event.he_interested) 2967 #define HOOKS4_INTERESTED_FORWARDING \ 2968 (ip4_forwarding_event.he_interested) 2969 #define HOOKS6_INTERESTED_FORWARDING \ 2970 (ip6_forwarding_event.he_interested) 2971 #define HOOKS4_INTERESTED_LOOPBACK_IN \ 2972 (ip4_loopback_in_event.he_interested) 2973 #define HOOKS6_INTERESTED_LOOPBACK_IN \ 2974 (ip6_loopback_in_event.he_interested) 2975 #define HOOKS4_INTERESTED_LOOPBACK_OUT \ 2976 (ip4_loopback_out_event.he_interested) 2977 #define HOOKS6_INTERESTED_LOOPBACK_OUT \ 2978 (ip6_loopback_out_event.he_interested) 2979 2980 /* 2981 * Hooks marcos used inside of ip 2982 */ 2983 #define IPHA_VHL ipha_version_and_hdr_length 2984 2985 #define FW_HOOKS(_hook, _event, _flag, _ilp, _olp, _iph, _fm, _m) \ 2986 \ 2987 if ((_hook).he_interested) { \ 2988 hook_pkt_event_t info; \ 2989 \ 2990 _NOTE(CONSTCOND) \ 2991 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 2992 \ 2993 _NOTE(CONSTCOND) \ 2994 if ((_ilp != NULL) && \ 2995 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 2996 info.hpe_ifp = (phy_if_t)((ill_t *) \ 2997 (_ilp))->ill_phyint->phyint_ifindex; \ 2998 else \ 2999 info.hpe_ifp = 0; \ 3000 \ 3001 _NOTE(CONSTCOND) \ 3002 if ((_olp != NULL) && \ 3003 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 3004 info.hpe_ofp = (phy_if_t)((ill_t *) \ 3005 (_olp))->ill_phyint->phyint_ifindex; \ 3006 else \ 3007 info.hpe_ofp = 0; \ 3008 info.hpe_hdr = _iph; \ 3009 info.hpe_mp = &(_fm); \ 3010 info.hpe_mb = _m; \ 3011 if (hook_run(_event, (hook_data_t)&info) != 0) { \ 3012 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 3013 (_hook).he_name, (void *)_fm, (void *)_m)); \ 3014 if (_fm != NULL) { \ 3015 freemsg(_fm); \ 3016 _fm = NULL; \ 3017 } \ 3018 _iph = NULL; \ 3019 _m = NULL; \ 3020 } else { \ 3021 _iph = info.hpe_hdr; \ 3022 _m = info.hpe_mb; \ 3023 } \ 3024 } 3025 3026 #define FW_HOOKS6(_hook, _event, _flag, _ilp, _olp, _iph, _fm, _m) \ 3027 \ 3028 if ((_hook).he_interested) { \ 3029 hook_pkt_event_t info; \ 3030 \ 3031 _NOTE(CONSTCOND) \ 3032 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 3033 \ 3034 _NOTE(CONSTCOND) \ 3035 if ((_ilp != NULL) && \ 3036 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 3037 info.hpe_ifp = (phy_if_t)((ill_t *) \ 3038 (_ilp))->ill_phyint->phyint_ifindex; \ 3039 else \ 3040 info.hpe_ifp = 0; \ 3041 \ 3042 _NOTE(CONSTCOND) \ 3043 if ((_olp != NULL) && \ 3044 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 3045 info.hpe_ofp = (phy_if_t)((ill_t *) \ 3046 (_olp))->ill_phyint->phyint_ifindex; \ 3047 else \ 3048 info.hpe_ofp = 0; \ 3049 info.hpe_hdr = _iph; \ 3050 info.hpe_mp = &(_fm); \ 3051 info.hpe_mb = _m; \ 3052 if (hook_run(_event, (hook_data_t)&info) != 0) { \ 3053 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 3054 (_hook).he_name, (void *)_fm, (void *)_m)); \ 3055 if (_fm != NULL) { \ 3056 freemsg(_fm); \ 3057 _fm = NULL; \ 3058 } \ 3059 _iph = NULL; \ 3060 _m = NULL; \ 3061 } else { \ 3062 _iph = info.hpe_hdr; \ 3063 _m = info.hpe_mb; \ 3064 } \ 3065 } 3066 3067 /* 3068 * Network byte order macros 3069 */ 3070 #ifdef _BIG_ENDIAN 3071 #define N_IN_CLASSD_NET IN_CLASSD_NET 3072 #define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP 3073 #else /* _BIG_ENDIAN */ 3074 #define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U 3075 #define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U 3076 #endif /* _BIG_ENDIAN */ 3077 #define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP) 3078 3079 #define IP_LOOPBACK_ADDR(addr) \ 3080 ((ntohl(addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 3081 3082 #ifdef DEBUG 3083 /* IPsec HW acceleration debugging support */ 3084 3085 #define IPSECHW_CAPAB 0x0001 /* capability negotiation */ 3086 #define IPSECHW_SADB 0x0002 /* SADB exchange */ 3087 #define IPSECHW_PKT 0x0004 /* general packet flow */ 3088 #define IPSECHW_PKTIN 0x0008 /* driver in pkt processing details */ 3089 #define IPSECHW_PKTOUT 0x0010 /* driver out pkt processing details */ 3090 3091 #define IPSECHW_DEBUG(f, x) if (ipsechw_debug & (f)) { (void) printf x; } 3092 #define IPSECHW_CALL(f, r, x) if (ipsechw_debug & (f)) { (void) r x; } 3093 3094 extern uint32_t ipsechw_debug; 3095 #else 3096 #define IPSECHW_DEBUG(f, x) {} 3097 #define IPSECHW_CALL(f, r, x) {} 3098 #endif 3099 3100 #ifdef IP_DEBUG 3101 #include <sys/debug.h> 3102 #include <sys/promif.h> 3103 3104 #define ip0dbg(a) printf a 3105 #define ip1dbg(a) if (ip_debug > 2) printf a 3106 #define ip2dbg(a) if (ip_debug > 3) printf a 3107 #define ip3dbg(a) if (ip_debug > 4) printf a 3108 #else 3109 #define ip0dbg(a) /* */ 3110 #define ip1dbg(a) /* */ 3111 #define ip2dbg(a) /* */ 3112 #define ip3dbg(a) /* */ 3113 #endif /* IP_DEBUG */ 3114 3115 /* Default MAC-layer address string length for mac_colon_addr */ 3116 #define MAC_STR_LEN 128 3117 3118 struct ipsec_out_s; 3119 3120 struct mac_header_info_s; 3121 3122 extern const char *dlpi_prim_str(int); 3123 extern const char *dlpi_err_str(int); 3124 extern void ill_frag_timer(void *); 3125 extern ill_t *ill_first(int, int, ill_walk_context_t *); 3126 extern ill_t *ill_next(ill_walk_context_t *, ill_t *); 3127 extern void ill_frag_timer_start(ill_t *); 3128 extern mblk_t *ip_carve_mp(mblk_t **, ssize_t); 3129 extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 3130 extern char *ip_dot_addr(ipaddr_t, char *); 3131 extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t); 3132 extern void ip_lwput(queue_t *, mblk_t *); 3133 extern boolean_t icmp_err_rate_limit(void); 3134 extern void icmp_time_exceeded(queue_t *, mblk_t *, uint8_t, zoneid_t); 3135 extern void icmp_unreachable(queue_t *, mblk_t *, uint8_t, zoneid_t); 3136 extern mblk_t *ip_add_info(mblk_t *, ill_t *, uint_t); 3137 extern mblk_t *ip_bind_v4(queue_t *, mblk_t *, conn_t *); 3138 extern int ip_bind_connected(conn_t *, mblk_t *, ipaddr_t *, uint16_t, 3139 ipaddr_t, uint16_t, boolean_t, boolean_t, boolean_t, 3140 boolean_t); 3141 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *); 3142 extern int ip_bind_laddr(conn_t *, mblk_t *, ipaddr_t, uint16_t, 3143 boolean_t, boolean_t, boolean_t); 3144 extern uint_t ip_cksum(mblk_t *, int, uint32_t); 3145 extern int ip_close(queue_t *, int); 3146 extern uint16_t ip_csum_hdr(ipha_t *); 3147 extern void ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t); 3148 extern void ip_ire_fini(void); 3149 extern void ip_ire_init(void); 3150 extern int ip_open(queue_t *, dev_t *, int, int, cred_t *); 3151 extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *, 3152 size_t); 3153 extern int ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t, 3154 int, int, mblk_t *); 3155 extern void ip_rput(queue_t *, mblk_t *); 3156 extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, 3157 struct mac_header_info_s *); 3158 extern void ip_rput_dlpi(queue_t *, mblk_t *); 3159 extern void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 3160 extern void ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *); 3161 3162 extern int ip_snmpmod_close(queue_t *); 3163 extern void ip_snmpmod_wput(queue_t *, mblk_t *); 3164 extern void ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 3165 extern void ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 3166 extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *); 3167 extern void ip_setqinfo(queue_t *, minor_t, boolean_t); 3168 extern void ip_trash_ire_reclaim(void *); 3169 extern void ip_trash_timer_expire(void *); 3170 extern void ip_wput(queue_t *, mblk_t *); 3171 extern void ip_output(void *, mblk_t *, void *, int); 3172 extern void ip_wput_md(queue_t *, mblk_t *, conn_t *); 3173 3174 extern void ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int, 3175 zoneid_t); 3176 extern void ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *, 3177 int, zoneid_t); 3178 extern void ip_wput_multicast(queue_t *, mblk_t *, ipif_t *, zoneid_t); 3179 extern void ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *); 3180 extern void ip_wsrv(queue_t *); 3181 extern char *ip_nv_lookup(nv_t *, int); 3182 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3183 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3184 extern ipaddr_t ip_massage_options(ipha_t *); 3185 extern ipaddr_t ip_net_mask(ipaddr_t); 3186 extern void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 3187 zoneid_t); 3188 extern ipxmit_state_t ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *, 3189 boolean_t); 3190 extern int ip_hdr_complete(ipha_t *, zoneid_t); 3191 3192 extern struct qinit rinit_ipv6; 3193 extern struct qinit winit_ipv6; 3194 extern struct qinit rinit_tcp; 3195 extern struct qinit rinit_tcp6; 3196 extern struct qinit winit_tcp; 3197 extern struct qinit rinit_acceptor_tcp; 3198 extern struct qinit winit_acceptor_tcp; 3199 3200 extern net_data_t ipv4; 3201 extern net_data_t ipv6; 3202 3203 extern void conn_drain_insert(conn_t *connp); 3204 extern int conn_ipsec_length(conn_t *connp); 3205 extern void ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *, 3206 ire_t *); 3207 extern ipaddr_t ip_get_dst(ipha_t *); 3208 extern int ipsec_out_extra_length(mblk_t *); 3209 extern int ipsec_in_extra_length(mblk_t *); 3210 extern mblk_t *ipsec_in_alloc(); 3211 extern boolean_t ipsec_in_is_secure(mblk_t *); 3212 extern void ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t); 3213 extern void ipsec_out_to_in(mblk_t *); 3214 extern int ill_forward_set(queue_t *, mblk_t *, boolean_t, caddr_t); 3215 extern void ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *); 3216 3217 extern void ire_cleanup(ire_t *); 3218 extern void ire_inactive(ire_t *); 3219 extern boolean_t irb_inactive(irb_t *); 3220 extern ire_t *ire_unlink(irb_t *); 3221 #ifdef IRE_DEBUG 3222 extern void ire_trace_ref(ire_t *ire); 3223 extern void ire_untrace_ref(ire_t *ire); 3224 extern void ire_thread_exit(ire_t *ire, caddr_t); 3225 #endif 3226 #ifdef ILL_DEBUG 3227 extern void ill_trace_cleanup(ill_t *); 3228 extern void ipif_trace_cleanup(ipif_t *); 3229 #endif 3230 3231 extern int ip_srcid_insert(const in6_addr_t *, zoneid_t); 3232 extern int ip_srcid_remove(const in6_addr_t *, zoneid_t); 3233 extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t); 3234 extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t); 3235 extern int ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *); 3236 3237 extern uint8_t ipoptp_next(ipoptp_t *); 3238 extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *); 3239 extern int ip_opt_get_user(const ipha_t *, uchar_t *); 3240 extern ill_t *ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t); 3241 extern ire_t *conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **); 3242 extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int); 3243 extern int ip_snmp_get(queue_t *q, mblk_t *mctl); 3244 extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int); 3245 extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3246 extern void ip_quiesce_conn(conn_t *); 3247 extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3248 extern void ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *); 3249 extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipif_t *, 3250 ipsq_t *); 3251 3252 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *, 3253 uint_t); 3254 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *, 3255 uint_t); 3256 extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t); 3257 3258 extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *); 3259 extern void conn_ioctl_cleanup(conn_t *); 3260 extern ill_t *conn_get_held_ill(conn_t *, ill_t **, int *); 3261 extern ill_t *ip_newroute_get_dst_ill(ill_t *); 3262 3263 struct multidata_s; 3264 struct pdesc_s; 3265 3266 extern mblk_t *ip_mdinfo_alloc(ill_mdt_capab_t *); 3267 extern mblk_t *ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *); 3268 extern uint_t ip_md_cksum(struct pdesc_s *, int, uint_t); 3269 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *, 3270 const mblk_t *); 3271 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *, 3272 uint32_t, uint32_t, uint32_t, uint32_t); 3273 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *, 3274 uint_t); 3275 extern mblk_t *ip_unbind(queue_t *, mblk_t *); 3276 3277 extern void tnet_init(void); 3278 extern void tnet_fini(void); 3279 3280 /* Hooks for CGTP (multirt routes) filtering module */ 3281 #define CGTP_FILTER_REV_1 1 3282 #define CGTP_FILTER_REV_2 2 3283 #define CGTP_FILTER_REV CGTP_FILTER_REV_2 3284 3285 /* cfo_filter, cfo_filter_fp, cfo_filter_v6 hooks return values */ 3286 #define CGTP_IP_PKT_NOT_CGTP 0 3287 #define CGTP_IP_PKT_PREMIUM 1 3288 #define CGTP_IP_PKT_DUPLICATE 2 3289 3290 typedef struct cgtp_filter_ops { 3291 int cfo_filter_rev; 3292 int (*cfo_change_state)(int); 3293 int (*cfo_add_dest_v4)(ipaddr_t, ipaddr_t, ipaddr_t, ipaddr_t); 3294 int (*cfo_del_dest_v4)(ipaddr_t, ipaddr_t); 3295 int (*cfo_add_dest_v6)(in6_addr_t *, in6_addr_t *, in6_addr_t *, 3296 in6_addr_t *); 3297 int (*cfo_del_dest_v6)(in6_addr_t *, in6_addr_t *); 3298 int (*cfo_filter)(queue_t *, mblk_t *); 3299 int (*cfo_filter_fp)(queue_t *, mblk_t *); 3300 int (*cfo_filter_v6)(queue_t *, ip6_t *, ip6_frag_t *); 3301 } cgtp_filter_ops_t; 3302 3303 #define CGTP_MCAST_SUCCESS 1 3304 3305 extern cgtp_filter_ops_t *ip_cgtp_filter_ops; 3306 extern boolean_t ip_cgtp_filter; 3307 3308 extern int ip_cgtp_filter_supported(void); 3309 extern int ip_cgtp_filter_register(cgtp_filter_ops_t *); 3310 3311 /* Flags for ire_multirt_lookup() */ 3312 3313 #define MULTIRT_USESTAMP 0x0001 3314 #define MULTIRT_SETSTAMP 0x0002 3315 #define MULTIRT_CACHEGW 0x0004 3316 3317 /* Debug stuff for multirt route resolution. */ 3318 #if defined(DEBUG) && !defined(__lint) 3319 /* Our "don't send, rather drop" flag. */ 3320 #define MULTIRT_DEBUG_FLAG 0x8000 3321 3322 #define MULTIRT_TRACE(x) ip2dbg(x) 3323 3324 #define MULTIRT_DEBUG_TAG(mblk) \ 3325 do { \ 3326 ASSERT(mblk != NULL); \ 3327 MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \ 3328 __FILE__, __LINE__, \ 3329 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3330 (mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \ 3331 } while (0) 3332 3333 #define MULTIRT_DEBUG_UNTAG(mblk) \ 3334 do { \ 3335 ASSERT(mblk != NULL); \ 3336 MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \ 3337 __FILE__, __LINE__, \ 3338 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3339 (mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \ 3340 } while (0) 3341 3342 #define MULTIRT_DEBUG_TAGGED(mblk) \ 3343 (((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE) 3344 #else 3345 #define MULTIRT_DEBUG_TAG(mblk) ASSERT(mblk != NULL) 3346 #define MULTIRT_DEBUG_UNTAG(mblk) ASSERT(mblk != NULL) 3347 #define MULTIRT_DEBUG_TAGGED(mblk) B_FALSE 3348 #endif 3349 3350 /* 3351 * Per-ILL Multidata Transmit capabilities. 3352 */ 3353 struct ill_mdt_capab_s { 3354 uint_t ill_mdt_version; /* interface version */ 3355 uint_t ill_mdt_on; /* on/off switch for MDT on this ILL */ 3356 uint_t ill_mdt_hdr_head; /* leading header fragment extra space */ 3357 uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */ 3358 uint_t ill_mdt_max_pld; /* maximum payload buffers per Multidata */ 3359 uint_t ill_mdt_span_limit; /* maximum payload span per packet */ 3360 }; 3361 3362 struct ill_hcksum_capab_s { 3363 uint_t ill_hcksum_version; /* interface version */ 3364 uint_t ill_hcksum_txflags; /* capabilities on transmit */ 3365 }; 3366 3367 struct ill_zerocopy_capab_s { 3368 uint_t ill_zerocopy_version; /* interface version */ 3369 uint_t ill_zerocopy_flags; /* capabilities */ 3370 }; 3371 3372 /* Possible ill_states */ 3373 #define ILL_RING_INPROC 3 /* Being assigned to squeue */ 3374 #define ILL_RING_INUSE 2 /* Already Assigned to Rx Ring */ 3375 #define ILL_RING_BEING_FREED 1 /* Being Unassigned */ 3376 #define ILL_RING_FREE 0 /* Available to be assigned to Ring */ 3377 3378 #define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */ 3379 #define ILL_POLLING 0x01 /* Polling in use */ 3380 3381 /* 3382 * These functions pointer types are exported by the mac/dls layer. 3383 * we need to duplicate the definitions here because we cannot 3384 * include mac/dls header files here. 3385 */ 3386 typedef void (*ip_mac_blank_t)(void *, time_t, uint_t); 3387 typedef void (*ip_dld_tx_t)(void *, mblk_t *); 3388 3389 typedef void (*ip_dls_chg_soft_ring_t)(void *, int); 3390 typedef void (*ip_dls_bind_t)(void *, processorid_t); 3391 typedef void (*ip_dls_unbind_t)(void *); 3392 3393 struct ill_rx_ring { 3394 ip_mac_blank_t rr_blank; /* Driver interrupt blanking func */ 3395 void *rr_handle; /* Handle for Rx ring */ 3396 squeue_t *rr_sqp; /* Squeue the ring is bound to */ 3397 ill_t *rr_ill; /* back pointer to ill */ 3398 clock_t rr_poll_time; /* Last lbolt polling was used */ 3399 uint32_t rr_poll_state; /* polling state flags */ 3400 uint32_t rr_max_blank_time; /* Max interrupt blank */ 3401 uint32_t rr_min_blank_time; /* Min interrupt blank */ 3402 uint32_t rr_max_pkt_cnt; /* Max pkts before interrupt */ 3403 uint32_t rr_min_pkt_cnt; /* Mix pkts before interrupt */ 3404 uint32_t rr_normal_blank_time; /* Normal intr freq */ 3405 uint32_t rr_normal_pkt_cnt; /* Normal intr pkt cnt */ 3406 uint32_t rr_ring_state; /* State of this ring */ 3407 }; 3408 3409 struct ill_dls_capab_s { 3410 ip_dld_tx_t ill_tx; /* Driver Tx routine */ 3411 void *ill_tx_handle; /* Driver Tx handle */ 3412 ip_dls_chg_soft_ring_t ill_dls_change_status; 3413 /* change soft ring fanout */ 3414 ip_dls_bind_t ill_dls_bind; /* to add CPU affinity */ 3415 ip_dls_unbind_t ill_dls_unbind; /* remove CPU affinity */ 3416 ill_rx_ring_t *ill_ring_tbl; /* Ring to Sqp mapping table */ 3417 uint_t ill_dls_soft_ring_cnt; /* Number of soft ring */ 3418 conn_t *ill_unbind_conn; /* Conn used during unplumb */ 3419 }; 3420 3421 /* 3422 * This message is sent by an upper-layer protocol to tell IP that it knows all 3423 * about labels and will construct them itself. IP takes the slow path and 3424 * recomputes the label on every packet when this isn't true. 3425 */ 3426 #define IP_ULP_OUT_LABELED (('O' << 8) + 'L') 3427 typedef struct out_labeled_s { 3428 uint32_t out_labeled_type; /* OUT_LABELED */ 3429 queue_t *out_qnext; /* intermediate detection */ 3430 } out_labeled_t; 3431 3432 /* 3433 * IP squeues exports 3434 */ 3435 extern int ip_squeue_profile; 3436 extern int ip_squeue_bind; 3437 extern boolean_t ip_squeue_fanout; 3438 extern boolean_t ip_squeue_soft_ring; 3439 extern uint_t ip_threads_per_cpu; 3440 extern uint_t ip_squeues_per_cpu; 3441 extern uint_t ip_soft_rings_cnt; 3442 3443 typedef struct squeue_set_s { 3444 kmutex_t sqs_lock; 3445 struct squeue_s **sqs_list; 3446 int sqs_size; 3447 int sqs_max_size; 3448 processorid_t sqs_bind; 3449 } squeue_set_t; 3450 3451 #define IP_SQUEUE_GET(hint) \ 3452 ((!ip_squeue_fanout) ? (CPU->cpu_squeue_set->sqs_list[0]) : \ 3453 ip_squeue_random(hint)) 3454 3455 typedef void (*squeue_func_t)(squeue_t *, mblk_t *, sqproc_t, void *, uint8_t); 3456 3457 extern void ip_squeue_init(void (*)(squeue_t *)); 3458 extern squeue_t *ip_squeue_random(uint_t); 3459 extern squeue_t *ip_squeue_get(ill_rx_ring_t *); 3460 extern void ip_squeue_get_pkts(squeue_t *); 3461 extern int ip_squeue_bind_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 3462 extern int ip_squeue_bind_get(queue_t *, mblk_t *, caddr_t, cred_t *); 3463 extern void ip_squeue_clean(void *, mblk_t *, void *); 3464 extern void ip_resume_tcp_bind(void *, mblk_t *, void *); 3465 extern void ip_soft_ring_assignment(ill_t *, ill_rx_ring_t *, 3466 mblk_t *, struct mac_header_info_s *); 3467 3468 extern void tcp_wput(queue_t *, mblk_t *); 3469 3470 extern int ip_fill_mtuinfo(struct in6_addr *, in_port_t, 3471 struct ip6_mtuinfo *); 3472 extern ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 3473 3474 typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *); 3475 3476 /* 3477 * Squeue tags. Tags only need to be unique when the callback function is the 3478 * same to distinguish between different calls, but we use unique tags for 3479 * convenience anyway. 3480 */ 3481 #define SQTAG_IP_INPUT 1 3482 #define SQTAG_TCP_INPUT_ICMP_ERR 2 3483 #define SQTAG_TCP6_INPUT_ICMP_ERR 3 3484 #define SQTAG_IP_TCP_INPUT 4 3485 #define SQTAG_IP6_TCP_INPUT 5 3486 #define SQTAG_IP_TCP_CLOSE 6 3487 #define SQTAG_TCP_OUTPUT 7 3488 #define SQTAG_TCP_TIMER 8 3489 #define SQTAG_TCP_TIMEWAIT 9 3490 #define SQTAG_TCP_ACCEPT_FINISH 10 3491 #define SQTAG_TCP_ACCEPT_FINISH_Q0 11 3492 #define SQTAG_TCP_ACCEPT_PENDING 12 3493 #define SQTAG_TCP_LISTEN_DISCON 13 3494 #define SQTAG_TCP_CONN_REQ 14 3495 #define SQTAG_TCP_EAGER_BLOWOFF 15 3496 #define SQTAG_TCP_EAGER_CLEANUP 16 3497 #define SQTAG_TCP_EAGER_CLEANUP_Q0 17 3498 #define SQTAG_TCP_CONN_IND 18 3499 #define SQTAG_TCP_RSRV 19 3500 #define SQTAG_TCP_ABORT_BUCKET 20 3501 #define SQTAG_TCP_REINPUT 21 3502 #define SQTAG_TCP_REINPUT_EAGER 22 3503 #define SQTAG_TCP_INPUT_MCTL 23 3504 #define SQTAG_TCP_RPUTOTHER 24 3505 #define SQTAG_IP_PROTO_AGAIN 25 3506 #define SQTAG_IP_FANOUT_TCP 26 3507 #define SQTAG_IPSQ_CLEAN_RING 27 3508 #define SQTAG_TCP_WPUT_OTHER 28 3509 #define SQTAG_TCP_CONN_REQ_UNBOUND 29 3510 #define SQTAG_TCP_SEND_PENDING 30 3511 #define SQTAG_BIND_RETRY 31 3512 #define SQTAG_UDP_FANOUT 32 3513 #define SQTAG_UDP_INPUT 33 3514 #define SQTAG_UDP_WPUT 34 3515 #define SQTAG_UDP_OUTPUT 35 3516 #define SQTAG_TCP_KSSL_INPUT 36 3517 3518 #endif /* _KERNEL */ 3519 3520 #ifdef __cplusplus 3521 } 3522 #endif 3523 3524 #endif /* _INET_IP_H */ 3525