1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * ZFS volume emulation driver. 30 * 31 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. 32 * Volumes are accessed through the symbolic links named: 33 * 34 * /dev/zvol/dsk/<pool_name>/<dataset_name> 35 * /dev/zvol/rdsk/<pool_name>/<dataset_name> 36 * 37 * These links are created by the ZFS-specific devfsadm link generator. 38 * Volumes are persistent through reboot. No user command needs to be 39 * run before opening and using a device. 40 */ 41 42 #include <sys/types.h> 43 #include <sys/param.h> 44 #include <sys/errno.h> 45 #include <sys/aio_req.h> 46 #include <sys/uio.h> 47 #include <sys/buf.h> 48 #include <sys/modctl.h> 49 #include <sys/open.h> 50 #include <sys/kmem.h> 51 #include <sys/conf.h> 52 #include <sys/cmn_err.h> 53 #include <sys/stat.h> 54 #include <sys/zap.h> 55 #include <sys/spa.h> 56 #include <sys/zio.h> 57 #include <sys/dsl_prop.h> 58 #include <sys/dkio.h> 59 #include <sys/efi_partition.h> 60 #include <sys/byteorder.h> 61 #include <sys/pathname.h> 62 #include <sys/ddi.h> 63 #include <sys/sunddi.h> 64 #include <sys/crc32.h> 65 #include <sys/dirent.h> 66 #include <sys/policy.h> 67 #include <sys/fs/zfs.h> 68 #include <sys/zfs_ioctl.h> 69 #include <sys/mkdev.h> 70 #include <sys/zil.h> 71 #include <sys/refcount.h> 72 73 #include "zfs_namecheck.h" 74 75 #define ZVOL_OBJ 1ULL 76 #define ZVOL_ZAP_OBJ 2ULL 77 78 static void *zvol_state; 79 80 /* 81 * This lock protects the zvol_state structure from being modified 82 * while it's being used, e.g. an open that comes in before a create 83 * finishes. It also protects temporary opens of the dataset so that, 84 * e.g., an open doesn't get a spurious EBUSY. 85 */ 86 static kmutex_t zvol_state_lock; 87 static uint32_t zvol_minors; 88 89 /* 90 * The in-core state of each volume. 91 */ 92 typedef struct zvol_state { 93 char zv_name[MAXPATHLEN]; /* pool/dd name */ 94 uint64_t zv_volsize; /* amount of space we advertise */ 95 uint64_t zv_volblocksize; /* volume block size */ 96 minor_t zv_minor; /* minor number */ 97 uint8_t zv_min_bs; /* minimum addressable block shift */ 98 uint8_t zv_readonly; /* hard readonly; like write-protect */ 99 objset_t *zv_objset; /* objset handle */ 100 uint32_t zv_mode; /* DS_MODE_* flags at open time */ 101 uint32_t zv_open_count[OTYPCNT]; /* open counts */ 102 uint32_t zv_total_opens; /* total open count */ 103 zilog_t *zv_zilog; /* ZIL handle */ 104 uint64_t zv_txg_assign; /* txg to assign during ZIL replay */ 105 krwlock_t zv_dslock; /* dmu_sync() rwlock */ 106 } zvol_state_t; 107 108 /* 109 * zvol maximum transfer in one DMU tx. 110 */ 111 int zvol_maxphys = DMU_MAX_ACCESS/2; 112 113 int zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio); 114 115 static void 116 zvol_size_changed(zvol_state_t *zv, dev_t dev) 117 { 118 dev = makedevice(getmajor(dev), zv->zv_minor); 119 120 VERIFY(ddi_prop_update_int64(dev, zfs_dip, 121 "Size", zv->zv_volsize) == DDI_SUCCESS); 122 VERIFY(ddi_prop_update_int64(dev, zfs_dip, 123 "Nblocks", lbtodb(zv->zv_volsize)) == DDI_SUCCESS); 124 } 125 126 int 127 zvol_check_volsize(uint64_t volsize, uint64_t blocksize) 128 { 129 if (volsize == 0) 130 return (EINVAL); 131 132 if (volsize % blocksize != 0) 133 return (EINVAL); 134 135 #ifdef _ILP32 136 if (volsize - 1 > SPEC_MAXOFFSET_T) 137 return (EOVERFLOW); 138 #endif 139 return (0); 140 } 141 142 int 143 zvol_check_volblocksize(uint64_t volblocksize) 144 { 145 if (volblocksize < SPA_MINBLOCKSIZE || 146 volblocksize > SPA_MAXBLOCKSIZE || 147 !ISP2(volblocksize)) 148 return (EDOM); 149 150 return (0); 151 } 152 153 static void 154 zvol_readonly_changed_cb(void *arg, uint64_t newval) 155 { 156 zvol_state_t *zv = arg; 157 158 zv->zv_readonly = (uint8_t)newval; 159 } 160 161 int 162 zvol_get_stats(objset_t *os, nvlist_t *nv) 163 { 164 int error; 165 dmu_object_info_t doi; 166 uint64_t val; 167 168 169 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); 170 if (error) 171 return (error); 172 173 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); 174 175 error = dmu_object_info(os, ZVOL_OBJ, &doi); 176 177 if (error == 0) { 178 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, 179 doi.doi_data_block_size); 180 } 181 182 return (error); 183 } 184 185 /* 186 * Find a free minor number. 187 */ 188 static minor_t 189 zvol_minor_alloc(void) 190 { 191 minor_t minor; 192 193 ASSERT(MUTEX_HELD(&zvol_state_lock)); 194 195 for (minor = 1; minor <= ZVOL_MAX_MINOR; minor++) 196 if (ddi_get_soft_state(zvol_state, minor) == NULL) 197 return (minor); 198 199 return (0); 200 } 201 202 static zvol_state_t * 203 zvol_minor_lookup(const char *name) 204 { 205 minor_t minor; 206 zvol_state_t *zv; 207 208 ASSERT(MUTEX_HELD(&zvol_state_lock)); 209 210 for (minor = 1; minor <= ZVOL_MAX_MINOR; minor++) { 211 zv = ddi_get_soft_state(zvol_state, minor); 212 if (zv == NULL) 213 continue; 214 if (strcmp(zv->zv_name, name) == 0) 215 break; 216 } 217 218 return (zv); 219 } 220 221 void 222 zvol_create_cb(objset_t *os, void *arg, dmu_tx_t *tx) 223 { 224 zfs_create_data_t *zc = arg; 225 int error; 226 uint64_t volblocksize, volsize; 227 228 VERIFY(nvlist_lookup_uint64(zc->zc_props, 229 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); 230 if (nvlist_lookup_uint64(zc->zc_props, 231 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) 232 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); 233 234 /* 235 * These properites must be removed from the list so the generic 236 * property setting step won't apply to them. 237 */ 238 VERIFY(nvlist_remove_all(zc->zc_props, 239 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); 240 (void) nvlist_remove_all(zc->zc_props, 241 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); 242 243 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, 244 DMU_OT_NONE, 0, tx); 245 ASSERT(error == 0); 246 247 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, 248 DMU_OT_NONE, 0, tx); 249 ASSERT(error == 0); 250 251 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); 252 ASSERT(error == 0); 253 } 254 255 /* 256 * Replay a TX_WRITE ZIL transaction that didn't get committed 257 * after a system failure 258 */ 259 static int 260 zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap) 261 { 262 objset_t *os = zv->zv_objset; 263 char *data = (char *)(lr + 1); /* data follows lr_write_t */ 264 uint64_t off = lr->lr_offset; 265 uint64_t len = lr->lr_length; 266 dmu_tx_t *tx; 267 int error; 268 269 if (byteswap) 270 byteswap_uint64_array(lr, sizeof (*lr)); 271 272 tx = dmu_tx_create(os); 273 dmu_tx_hold_write(tx, ZVOL_OBJ, off, len); 274 error = dmu_tx_assign(tx, zv->zv_txg_assign); 275 if (error) { 276 dmu_tx_abort(tx); 277 } else { 278 dmu_write(os, ZVOL_OBJ, off, len, data, tx); 279 dmu_tx_commit(tx); 280 } 281 282 return (error); 283 } 284 285 /* ARGSUSED */ 286 static int 287 zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap) 288 { 289 return (ENOTSUP); 290 } 291 292 /* 293 * Callback vectors for replaying records. 294 * Only TX_WRITE is needed for zvol. 295 */ 296 zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = { 297 zvol_replay_err, /* 0 no such transaction type */ 298 zvol_replay_err, /* TX_CREATE */ 299 zvol_replay_err, /* TX_MKDIR */ 300 zvol_replay_err, /* TX_MKXATTR */ 301 zvol_replay_err, /* TX_SYMLINK */ 302 zvol_replay_err, /* TX_REMOVE */ 303 zvol_replay_err, /* TX_RMDIR */ 304 zvol_replay_err, /* TX_LINK */ 305 zvol_replay_err, /* TX_RENAME */ 306 zvol_replay_write, /* TX_WRITE */ 307 zvol_replay_err, /* TX_TRUNCATE */ 308 zvol_replay_err, /* TX_SETATTR */ 309 zvol_replay_err, /* TX_ACL */ 310 }; 311 312 /* 313 * Create a minor node for the specified volume. 314 */ 315 int 316 zvol_create_minor(const char *name, dev_t dev) 317 { 318 zvol_state_t *zv; 319 objset_t *os; 320 dmu_object_info_t doi; 321 uint64_t volsize; 322 minor_t minor = 0; 323 struct pathname linkpath; 324 int ds_mode = DS_MODE_PRIMARY; 325 vnode_t *vp = NULL; 326 char *devpath; 327 size_t devpathlen = strlen(ZVOL_FULL_DEV_DIR) + 1 + strlen(name) + 1; 328 char chrbuf[30], blkbuf[30]; 329 int error; 330 331 mutex_enter(&zvol_state_lock); 332 333 if ((zv = zvol_minor_lookup(name)) != NULL) { 334 mutex_exit(&zvol_state_lock); 335 return (EEXIST); 336 } 337 338 if (strchr(name, '@') != 0) 339 ds_mode |= DS_MODE_READONLY; 340 341 error = dmu_objset_open(name, DMU_OST_ZVOL, ds_mode, &os); 342 343 if (error) { 344 mutex_exit(&zvol_state_lock); 345 return (error); 346 } 347 348 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); 349 350 if (error) { 351 dmu_objset_close(os); 352 mutex_exit(&zvol_state_lock); 353 return (error); 354 } 355 356 /* 357 * If there's an existing /dev/zvol symlink, try to use the 358 * same minor number we used last time. 359 */ 360 devpath = kmem_alloc(devpathlen, KM_SLEEP); 361 362 (void) sprintf(devpath, "%s/%s", ZVOL_FULL_DEV_DIR, name); 363 364 error = lookupname(devpath, UIO_SYSSPACE, NO_FOLLOW, NULL, &vp); 365 366 kmem_free(devpath, devpathlen); 367 368 if (error == 0 && vp->v_type != VLNK) 369 error = EINVAL; 370 371 if (error == 0) { 372 pn_alloc(&linkpath); 373 error = pn_getsymlink(vp, &linkpath, kcred); 374 if (error == 0) { 375 char *ms = strstr(linkpath.pn_path, ZVOL_PSEUDO_DEV); 376 if (ms != NULL) { 377 ms += strlen(ZVOL_PSEUDO_DEV); 378 minor = stoi(&ms); 379 } 380 } 381 pn_free(&linkpath); 382 } 383 384 if (vp != NULL) 385 VN_RELE(vp); 386 387 /* 388 * If we found a minor but it's already in use, we must pick a new one. 389 */ 390 if (minor != 0 && ddi_get_soft_state(zvol_state, minor) != NULL) 391 minor = 0; 392 393 if (minor == 0) 394 minor = zvol_minor_alloc(); 395 396 if (minor == 0) { 397 dmu_objset_close(os); 398 mutex_exit(&zvol_state_lock); 399 return (ENXIO); 400 } 401 402 if (ddi_soft_state_zalloc(zvol_state, minor) != DDI_SUCCESS) { 403 dmu_objset_close(os); 404 mutex_exit(&zvol_state_lock); 405 return (EAGAIN); 406 } 407 408 (void) ddi_prop_update_string(minor, zfs_dip, ZVOL_PROP_NAME, 409 (char *)name); 410 411 (void) sprintf(chrbuf, "%uc,raw", minor); 412 413 if (ddi_create_minor_node(zfs_dip, chrbuf, S_IFCHR, 414 minor, DDI_PSEUDO, 0) == DDI_FAILURE) { 415 ddi_soft_state_free(zvol_state, minor); 416 dmu_objset_close(os); 417 mutex_exit(&zvol_state_lock); 418 return (EAGAIN); 419 } 420 421 (void) sprintf(blkbuf, "%uc", minor); 422 423 if (ddi_create_minor_node(zfs_dip, blkbuf, S_IFBLK, 424 minor, DDI_PSEUDO, 0) == DDI_FAILURE) { 425 ddi_remove_minor_node(zfs_dip, chrbuf); 426 ddi_soft_state_free(zvol_state, minor); 427 dmu_objset_close(os); 428 mutex_exit(&zvol_state_lock); 429 return (EAGAIN); 430 } 431 432 zv = ddi_get_soft_state(zvol_state, minor); 433 434 (void) strcpy(zv->zv_name, name); 435 zv->zv_min_bs = DEV_BSHIFT; 436 zv->zv_minor = minor; 437 zv->zv_volsize = volsize; 438 zv->zv_objset = os; 439 zv->zv_mode = ds_mode; 440 zv->zv_zilog = zil_open(os, zvol_get_data); 441 442 /* get and cache the blocksize */ 443 error = dmu_object_info(os, ZVOL_OBJ, &doi); 444 ASSERT(error == 0); 445 zv->zv_volblocksize = doi.doi_data_block_size; 446 447 rw_init(&zv->zv_dslock, NULL, RW_DEFAULT, NULL); 448 449 zil_replay(os, zv, &zv->zv_txg_assign, zvol_replay_vector, NULL); 450 451 zvol_size_changed(zv, dev); 452 453 /* XXX this should handle the possible i/o error */ 454 VERIFY(dsl_prop_register(dmu_objset_ds(zv->zv_objset), 455 "readonly", zvol_readonly_changed_cb, zv) == 0); 456 457 zvol_minors++; 458 459 mutex_exit(&zvol_state_lock); 460 461 return (0); 462 } 463 464 /* 465 * Remove minor node for the specified volume. 466 */ 467 int 468 zvol_remove_minor(const char *name) 469 { 470 zvol_state_t *zv; 471 char namebuf[30]; 472 473 mutex_enter(&zvol_state_lock); 474 475 if ((zv = zvol_minor_lookup(name)) == NULL) { 476 mutex_exit(&zvol_state_lock); 477 return (ENXIO); 478 } 479 480 if (zv->zv_total_opens != 0) { 481 mutex_exit(&zvol_state_lock); 482 return (EBUSY); 483 } 484 485 (void) sprintf(namebuf, "%uc,raw", zv->zv_minor); 486 ddi_remove_minor_node(zfs_dip, namebuf); 487 488 (void) sprintf(namebuf, "%uc", zv->zv_minor); 489 ddi_remove_minor_node(zfs_dip, namebuf); 490 491 VERIFY(dsl_prop_unregister(dmu_objset_ds(zv->zv_objset), 492 "readonly", zvol_readonly_changed_cb, zv) == 0); 493 494 zil_close(zv->zv_zilog); 495 zv->zv_zilog = NULL; 496 dmu_objset_close(zv->zv_objset); 497 zv->zv_objset = NULL; 498 499 ddi_soft_state_free(zvol_state, zv->zv_minor); 500 501 zvol_minors--; 502 503 mutex_exit(&zvol_state_lock); 504 505 return (0); 506 } 507 508 int 509 zvol_set_volsize(const char *name, dev_t dev, uint64_t volsize) 510 { 511 zvol_state_t *zv; 512 dmu_tx_t *tx; 513 int error; 514 dmu_object_info_t doi; 515 516 mutex_enter(&zvol_state_lock); 517 518 if ((zv = zvol_minor_lookup(name)) == NULL) { 519 mutex_exit(&zvol_state_lock); 520 return (ENXIO); 521 } 522 523 if ((error = dmu_object_info(zv->zv_objset, ZVOL_OBJ, &doi)) != 0 || 524 (error = zvol_check_volsize(volsize, 525 doi.doi_data_block_size)) != 0) { 526 mutex_exit(&zvol_state_lock); 527 return (error); 528 } 529 530 if (zv->zv_readonly || (zv->zv_mode & DS_MODE_READONLY)) { 531 mutex_exit(&zvol_state_lock); 532 return (EROFS); 533 } 534 535 tx = dmu_tx_create(zv->zv_objset); 536 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); 537 dmu_tx_hold_free(tx, ZVOL_OBJ, volsize, DMU_OBJECT_END); 538 error = dmu_tx_assign(tx, TXG_WAIT); 539 if (error) { 540 dmu_tx_abort(tx); 541 mutex_exit(&zvol_state_lock); 542 return (error); 543 } 544 545 error = zap_update(zv->zv_objset, ZVOL_ZAP_OBJ, "size", 8, 1, 546 &volsize, tx); 547 if (error == 0) { 548 error = dmu_free_range(zv->zv_objset, ZVOL_OBJ, volsize, 549 DMU_OBJECT_END, tx); 550 } 551 552 dmu_tx_commit(tx); 553 554 if (error == 0) { 555 zv->zv_volsize = volsize; 556 zvol_size_changed(zv, dev); 557 } 558 559 mutex_exit(&zvol_state_lock); 560 561 return (error); 562 } 563 564 int 565 zvol_set_volblocksize(const char *name, uint64_t volblocksize) 566 { 567 zvol_state_t *zv; 568 dmu_tx_t *tx; 569 int error; 570 571 mutex_enter(&zvol_state_lock); 572 573 if ((zv = zvol_minor_lookup(name)) == NULL) { 574 mutex_exit(&zvol_state_lock); 575 return (ENXIO); 576 } 577 578 if (zv->zv_readonly || (zv->zv_mode & DS_MODE_READONLY)) { 579 mutex_exit(&zvol_state_lock); 580 return (EROFS); 581 } 582 583 tx = dmu_tx_create(zv->zv_objset); 584 dmu_tx_hold_bonus(tx, ZVOL_OBJ); 585 error = dmu_tx_assign(tx, TXG_WAIT); 586 if (error) { 587 dmu_tx_abort(tx); 588 } else { 589 error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ, 590 volblocksize, 0, tx); 591 if (error == ENOTSUP) 592 error = EBUSY; 593 dmu_tx_commit(tx); 594 } 595 596 mutex_exit(&zvol_state_lock); 597 598 return (error); 599 } 600 601 /*ARGSUSED*/ 602 int 603 zvol_open(dev_t *devp, int flag, int otyp, cred_t *cr) 604 { 605 minor_t minor = getminor(*devp); 606 zvol_state_t *zv; 607 608 if (minor == 0) /* This is the control device */ 609 return (0); 610 611 mutex_enter(&zvol_state_lock); 612 613 zv = ddi_get_soft_state(zvol_state, minor); 614 if (zv == NULL) { 615 mutex_exit(&zvol_state_lock); 616 return (ENXIO); 617 } 618 619 ASSERT(zv->zv_objset != NULL); 620 621 if ((flag & FWRITE) && 622 (zv->zv_readonly || (zv->zv_mode & DS_MODE_READONLY))) { 623 mutex_exit(&zvol_state_lock); 624 return (EROFS); 625 } 626 627 if (zv->zv_open_count[otyp] == 0 || otyp == OTYP_LYR) { 628 zv->zv_open_count[otyp]++; 629 zv->zv_total_opens++; 630 } 631 632 mutex_exit(&zvol_state_lock); 633 634 return (0); 635 } 636 637 /*ARGSUSED*/ 638 int 639 zvol_close(dev_t dev, int flag, int otyp, cred_t *cr) 640 { 641 minor_t minor = getminor(dev); 642 zvol_state_t *zv; 643 644 if (minor == 0) /* This is the control device */ 645 return (0); 646 647 mutex_enter(&zvol_state_lock); 648 649 zv = ddi_get_soft_state(zvol_state, minor); 650 if (zv == NULL) { 651 mutex_exit(&zvol_state_lock); 652 return (ENXIO); 653 } 654 655 /* 656 * The next statement is a workaround for the following DDI bug: 657 * 6343604 specfs race: multiple "last-close" of the same device 658 */ 659 if (zv->zv_total_opens == 0) { 660 mutex_exit(&zvol_state_lock); 661 return (0); 662 } 663 664 /* 665 * If the open count is zero, this is a spurious close. 666 * That indicates a bug in the kernel / DDI framework. 667 */ 668 ASSERT(zv->zv_open_count[otyp] != 0); 669 ASSERT(zv->zv_total_opens != 0); 670 671 /* 672 * You may get multiple opens, but only one close. 673 */ 674 zv->zv_open_count[otyp]--; 675 zv->zv_total_opens--; 676 677 mutex_exit(&zvol_state_lock); 678 679 return (0); 680 } 681 682 /* 683 * Create and return an immediate write ZIL transaction. 684 */ 685 itx_t * 686 zvol_immediate_itx(offset_t off, ssize_t len, char *addr) 687 { 688 itx_t *itx; 689 lr_write_t *lr; 690 691 itx = zil_itx_create(TX_WRITE, sizeof (*lr) + len); 692 lr = (lr_write_t *)&itx->itx_lr; 693 lr->lr_foid = ZVOL_OBJ; 694 lr->lr_offset = off; 695 lr->lr_length = len; 696 lr->lr_blkoff = 0; 697 BP_ZERO(&lr->lr_blkptr); 698 bcopy(addr, (char *)itx + offsetof(itx_t, itx_lr) + 699 sizeof (*lr), len); 700 itx->itx_wr_state = WR_COPIED; 701 return (itx); 702 } 703 704 void 705 zvol_get_done(dmu_buf_t *db, void *vzgd) 706 { 707 zgd_t *zgd = (zgd_t *)vzgd; 708 709 dmu_buf_rele(db, vzgd); 710 zil_add_vdev(zgd->zgd_zilog, DVA_GET_VDEV(BP_IDENTITY(zgd->zgd_bp))); 711 kmem_free(zgd, sizeof (zgd_t)); 712 } 713 714 /* 715 * Get data to generate a TX_WRITE intent log record. 716 */ 717 int 718 zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 719 { 720 zvol_state_t *zv = arg; 721 objset_t *os = zv->zv_objset; 722 dmu_buf_t *db; 723 zgd_t *zgd; 724 int dlen = lr->lr_length; /* length of user data */ 725 int error; 726 727 ASSERT(zio); 728 ASSERT(dlen != 0); 729 ASSERT(buf == NULL); 730 731 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 732 zgd->zgd_zilog = zv->zv_zilog; 733 zgd->zgd_bp = &lr->lr_blkptr; 734 735 VERIFY(0 == dmu_buf_hold(os, ZVOL_OBJ, lr->lr_offset, zgd, &db)); 736 /* 737 * Have to lock to ensure when when the data is 738 * written out and it's checksum is being calculated 739 * that no one can change the data. 740 */ 741 rw_enter(&zv->zv_dslock, RW_READER); 742 error = dmu_sync(zio, db, &lr->lr_blkptr, 743 lr->lr_common.lrc_txg, zvol_get_done, zgd); 744 rw_exit(&zv->zv_dslock); 745 if (error == 0) { 746 zil_add_vdev(zv->zv_zilog, 747 DVA_GET_VDEV(BP_IDENTITY(&lr->lr_blkptr))); 748 } 749 /* 750 * If we get EINPROGRESS, then we need to wait for a 751 * write IO initiated by dmu_sync() to complete before 752 * we can release this dbuf. We will finish everything 753 * up in the zvol_get_done() callback. 754 */ 755 if (error == EINPROGRESS) 756 return (0); 757 dmu_buf_rele(db, zgd); 758 kmem_free(zgd, sizeof (zgd_t)); 759 return (error); 760 } 761 762 /* 763 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. 764 * 765 * We store data in the log buffers if it's small enough. 766 * Otherwise we will later flush the data out via dmu_sync(). 767 */ 768 ssize_t zvol_immediate_write_sz = 32768; 769 770 void 771 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, offset_t off, ssize_t len, 772 char *addr) 773 { 774 ssize_t nbytes; 775 itx_t *itx; 776 lr_write_t *lr; 777 zilog_t *zilog = zv->zv_zilog; 778 uint64_t boff; 779 uint32_t blocksize; 780 781 /* handle common case */ 782 if (len <= zvol_immediate_write_sz) { 783 itx = zvol_immediate_itx(off, len, addr); 784 (void) zil_itx_assign(zilog, itx, tx); 785 } 786 787 blocksize = zv->zv_volblocksize; 788 789 while (len) { 790 nbytes = MIN(len, blocksize - P2PHASE(off, blocksize)); 791 if (nbytes <= zvol_immediate_write_sz) { 792 itx = zvol_immediate_itx(off, nbytes, addr); 793 } else { 794 boff = P2ALIGN_TYPED(off, blocksize, uint64_t); 795 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 796 itx->itx_wr_state = WR_INDIRECT; 797 itx->itx_private = zv; 798 lr = (lr_write_t *)&itx->itx_lr; 799 lr->lr_foid = ZVOL_OBJ; 800 lr->lr_offset = off; 801 lr->lr_length = nbytes; 802 lr->lr_blkoff = off - boff; 803 BP_ZERO(&lr->lr_blkptr); 804 } 805 (void) zil_itx_assign(zilog, itx, tx); 806 len -= nbytes; 807 off += nbytes; 808 } 809 } 810 811 int 812 zvol_strategy(buf_t *bp) 813 { 814 zvol_state_t *zv = ddi_get_soft_state(zvol_state, getminor(bp->b_edev)); 815 uint64_t off, volsize; 816 size_t size, resid; 817 char *addr; 818 objset_t *os; 819 int error = 0; 820 int sync; 821 int reading; 822 823 if (zv == NULL) { 824 bioerror(bp, ENXIO); 825 biodone(bp); 826 return (0); 827 } 828 829 if (getminor(bp->b_edev) == 0) { 830 bioerror(bp, EINVAL); 831 biodone(bp); 832 return (0); 833 } 834 835 if ((zv->zv_readonly || (zv->zv_mode & DS_MODE_READONLY)) && 836 !(bp->b_flags & B_READ)) { 837 bioerror(bp, EROFS); 838 biodone(bp); 839 return (0); 840 } 841 842 off = ldbtob(bp->b_blkno); 843 volsize = zv->zv_volsize; 844 845 os = zv->zv_objset; 846 ASSERT(os != NULL); 847 sync = !(bp->b_flags & B_ASYNC) && !(zil_disable); 848 849 bp_mapin(bp); 850 addr = bp->b_un.b_addr; 851 resid = bp->b_bcount; 852 853 /* 854 * There must be no buffer changes when doing a dmu_sync() because 855 * we can't change the data whilst calculating the checksum. 856 * A better approach than a per zvol rwlock would be to lock ranges. 857 */ 858 reading = bp->b_flags & B_READ; 859 if (reading || resid <= zvol_immediate_write_sz) 860 rw_enter(&zv->zv_dslock, RW_READER); 861 else 862 rw_enter(&zv->zv_dslock, RW_WRITER); 863 864 while (resid != 0 && off < volsize) { 865 866 size = MIN(resid, zvol_maxphys); /* zvol_maxphys per tx */ 867 868 if (size > volsize - off) /* don't write past the end */ 869 size = volsize - off; 870 871 if (reading) { 872 error = dmu_read(os, ZVOL_OBJ, off, size, addr); 873 } else { 874 dmu_tx_t *tx = dmu_tx_create(os); 875 dmu_tx_hold_write(tx, ZVOL_OBJ, off, size); 876 error = dmu_tx_assign(tx, TXG_WAIT); 877 if (error) { 878 dmu_tx_abort(tx); 879 } else { 880 dmu_write(os, ZVOL_OBJ, off, size, addr, tx); 881 /* add a log write transaction */ 882 if (sync) 883 zvol_log_write(zv, tx, off, size, addr); 884 dmu_tx_commit(tx); 885 } 886 } 887 if (error) 888 break; 889 off += size; 890 addr += size; 891 resid -= size; 892 } 893 rw_exit(&zv->zv_dslock); 894 895 if ((bp->b_resid = resid) == bp->b_bcount) 896 bioerror(bp, off > volsize ? EINVAL : error); 897 898 biodone(bp); 899 900 if (sync) 901 zil_commit(zv->zv_zilog, UINT64_MAX, 0); 902 903 return (0); 904 } 905 906 /* 907 * Set the buffer count to the zvol maximum transfer. 908 * Using our own routine instead of the default minphys() 909 * means that for larger writes we write bigger buffers on X86 910 * (128K instead of 56K) and flush the disk write cache less often 911 * (every zvol_maxphys - currently 1MB) instead of minphys (currently 912 * 56K on X86 and 128K on sparc). 913 */ 914 void 915 zvol_minphys(struct buf *bp) 916 { 917 if (bp->b_bcount > zvol_maxphys) 918 bp->b_bcount = zvol_maxphys; 919 } 920 921 /*ARGSUSED*/ 922 int 923 zvol_read(dev_t dev, uio_t *uiop, cred_t *cr) 924 { 925 return (physio(zvol_strategy, NULL, dev, B_READ, zvol_minphys, uiop)); 926 } 927 928 /*ARGSUSED*/ 929 int 930 zvol_write(dev_t dev, uio_t *uiop, cred_t *cr) 931 { 932 return (physio(zvol_strategy, NULL, dev, B_WRITE, zvol_minphys, uiop)); 933 } 934 935 /*ARGSUSED*/ 936 int 937 zvol_aread(dev_t dev, struct aio_req *aio, cred_t *cr) 938 { 939 return (aphysio(zvol_strategy, anocancel, dev, B_READ, zvol_minphys, 940 aio)); 941 } 942 943 /*ARGSUSED*/ 944 int 945 zvol_awrite(dev_t dev, struct aio_req *aio, cred_t *cr) 946 { 947 return (aphysio(zvol_strategy, anocancel, dev, B_WRITE, zvol_minphys, 948 aio)); 949 } 950 951 /* 952 * Dirtbag ioctls to support mkfs(1M) for UFS filesystems. See dkio(7I). 953 */ 954 /*ARGSUSED*/ 955 int 956 zvol_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) 957 { 958 zvol_state_t *zv; 959 struct dk_cinfo dkc; 960 struct dk_minfo dkm; 961 dk_efi_t efi; 962 struct uuid uuid = EFI_RESERVED; 963 uint32_t crc; 964 int error = 0; 965 966 mutex_enter(&zvol_state_lock); 967 968 zv = ddi_get_soft_state(zvol_state, getminor(dev)); 969 970 if (zv == NULL) { 971 mutex_exit(&zvol_state_lock); 972 return (ENXIO); 973 } 974 975 switch (cmd) { 976 977 case DKIOCINFO: 978 bzero(&dkc, sizeof (dkc)); 979 (void) strcpy(dkc.dki_cname, "zvol"); 980 (void) strcpy(dkc.dki_dname, "zvol"); 981 dkc.dki_ctype = DKC_UNKNOWN; 982 dkc.dki_maxtransfer = 1 << (SPA_MAXBLOCKSHIFT - zv->zv_min_bs); 983 mutex_exit(&zvol_state_lock); 984 if (ddi_copyout(&dkc, (void *)arg, sizeof (dkc), flag)) 985 error = EFAULT; 986 return (error); 987 988 case DKIOCGMEDIAINFO: 989 bzero(&dkm, sizeof (dkm)); 990 dkm.dki_lbsize = 1U << zv->zv_min_bs; 991 dkm.dki_capacity = zv->zv_volsize >> zv->zv_min_bs; 992 dkm.dki_media_type = DK_UNKNOWN; 993 mutex_exit(&zvol_state_lock); 994 if (ddi_copyout(&dkm, (void *)arg, sizeof (dkm), flag)) 995 error = EFAULT; 996 return (error); 997 998 case DKIOCGETEFI: 999 if (ddi_copyin((void *)arg, &efi, sizeof (dk_efi_t), flag)) { 1000 mutex_exit(&zvol_state_lock); 1001 return (EFAULT); 1002 } 1003 efi.dki_data = (void *)(uintptr_t)efi.dki_data_64; 1004 1005 /* 1006 * Some clients may attempt to request a PMBR for the 1007 * zvol. Currently this interface will return ENOTTY to 1008 * such requests. These requests could be supported by 1009 * adding a check for lba == 0 and consing up an appropriate 1010 * RMBR. 1011 */ 1012 if (efi.dki_lba == 1) { 1013 efi_gpt_t gpt; 1014 efi_gpe_t gpe; 1015 1016 bzero(&gpt, sizeof (gpt)); 1017 bzero(&gpe, sizeof (gpe)); 1018 1019 if (efi.dki_length < sizeof (gpt)) { 1020 mutex_exit(&zvol_state_lock); 1021 return (EINVAL); 1022 } 1023 1024 gpt.efi_gpt_Signature = LE_64(EFI_SIGNATURE); 1025 gpt.efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); 1026 gpt.efi_gpt_HeaderSize = LE_32(sizeof (gpt)); 1027 gpt.efi_gpt_FirstUsableLBA = LE_64(34ULL); 1028 gpt.efi_gpt_LastUsableLBA = 1029 LE_64((zv->zv_volsize >> zv->zv_min_bs) - 1); 1030 gpt.efi_gpt_NumberOfPartitionEntries = LE_32(1); 1031 gpt.efi_gpt_PartitionEntryLBA = LE_32(2); 1032 gpt.efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (gpe)); 1033 1034 UUID_LE_CONVERT(gpe.efi_gpe_PartitionTypeGUID, uuid); 1035 gpe.efi_gpe_StartingLBA = gpt.efi_gpt_FirstUsableLBA; 1036 gpe.efi_gpe_EndingLBA = gpt.efi_gpt_LastUsableLBA; 1037 1038 CRC32(crc, &gpe, sizeof (gpe), -1U, crc32_table); 1039 gpt.efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); 1040 1041 CRC32(crc, &gpt, sizeof (gpt), -1U, crc32_table); 1042 gpt.efi_gpt_HeaderCRC32 = LE_32(~crc); 1043 1044 mutex_exit(&zvol_state_lock); 1045 if (ddi_copyout(&gpt, efi.dki_data, sizeof (gpt), flag)) 1046 error = EFAULT; 1047 } else if (efi.dki_lba == 2) { 1048 efi_gpe_t gpe; 1049 1050 bzero(&gpe, sizeof (gpe)); 1051 1052 if (efi.dki_length < sizeof (gpe)) { 1053 mutex_exit(&zvol_state_lock); 1054 return (EINVAL); 1055 } 1056 1057 UUID_LE_CONVERT(gpe.efi_gpe_PartitionTypeGUID, uuid); 1058 gpe.efi_gpe_StartingLBA = LE_64(34ULL); 1059 gpe.efi_gpe_EndingLBA = 1060 LE_64((zv->zv_volsize >> zv->zv_min_bs) - 1); 1061 1062 mutex_exit(&zvol_state_lock); 1063 if (ddi_copyout(&gpe, efi.dki_data, sizeof (gpe), flag)) 1064 error = EFAULT; 1065 } else { 1066 mutex_exit(&zvol_state_lock); 1067 error = EINVAL; 1068 } 1069 return (error); 1070 1071 default: 1072 error = ENOTTY; 1073 break; 1074 1075 } 1076 mutex_exit(&zvol_state_lock); 1077 return (error); 1078 } 1079 1080 int 1081 zvol_busy(void) 1082 { 1083 return (zvol_minors != 0); 1084 } 1085 1086 void 1087 zvol_init(void) 1088 { 1089 VERIFY(ddi_soft_state_init(&zvol_state, sizeof (zvol_state_t), 1) == 0); 1090 mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL); 1091 } 1092 1093 void 1094 zvol_fini(void) 1095 { 1096 mutex_destroy(&zvol_state_lock); 1097 ddi_soft_state_fini(&zvol_state); 1098 } 1099