1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * 24 * Portions Copyright 2010 Robert Milkowski 25 * 26 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 28 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 29 * Copyright (c) 2014 Integros [integros.com] 30 */ 31 32 /* 33 * ZFS volume emulation driver. 34 * 35 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. 36 * Volumes are accessed through the symbolic links named: 37 * 38 * /dev/zvol/dsk/<pool_name>/<dataset_name> 39 * /dev/zvol/rdsk/<pool_name>/<dataset_name> 40 * 41 * These links are created by the /dev filesystem (sdev_zvolops.c). 42 * Volumes are persistent through reboot. No user command needs to be 43 * run before opening and using a device. 44 */ 45 46 #include <sys/types.h> 47 #include <sys/param.h> 48 #include <sys/errno.h> 49 #include <sys/uio.h> 50 #include <sys/buf.h> 51 #include <sys/modctl.h> 52 #include <sys/open.h> 53 #include <sys/kmem.h> 54 #include <sys/conf.h> 55 #include <sys/cmn_err.h> 56 #include <sys/stat.h> 57 #include <sys/zap.h> 58 #include <sys/spa.h> 59 #include <sys/spa_impl.h> 60 #include <sys/zio.h> 61 #include <sys/dmu_traverse.h> 62 #include <sys/dnode.h> 63 #include <sys/dsl_dataset.h> 64 #include <sys/dsl_prop.h> 65 #include <sys/dkio.h> 66 #include <sys/efi_partition.h> 67 #include <sys/byteorder.h> 68 #include <sys/pathname.h> 69 #include <sys/ddi.h> 70 #include <sys/sunddi.h> 71 #include <sys/crc32.h> 72 #include <sys/dirent.h> 73 #include <sys/policy.h> 74 #include <sys/fs/zfs.h> 75 #include <sys/zfs_ioctl.h> 76 #include <sys/mkdev.h> 77 #include <sys/zil.h> 78 #include <sys/refcount.h> 79 #include <sys/zfs_znode.h> 80 #include <sys/zfs_rlock.h> 81 #include <sys/vdev_disk.h> 82 #include <sys/vdev_impl.h> 83 #include <sys/vdev_raidz.h> 84 #include <sys/zvol.h> 85 #include <sys/dumphdr.h> 86 #include <sys/zil_impl.h> 87 #include <sys/dbuf.h> 88 #include <sys/zfs_events.h> 89 #include <sys/dmu_tx.h> 90 #include <sys/zfeature.h> 91 #include <sys/zio_checksum.h> 92 93 #include "zfs_namecheck.h" 94 95 void *zfsdev_state; 96 static char *zvol_tag = "zvol_tag"; 97 98 #define ZVOL_DUMPSIZE "dumpsize" 99 100 /* 101 * This lock protects the zfsdev_state structure from being modified 102 * while it's being used, e.g. an open that comes in before a create 103 * finishes. It also protects temporary opens of the dataset so that, 104 * e.g., an open doesn't get a spurious EBUSY. 105 */ 106 kmutex_t zfsdev_state_lock; 107 static uint32_t zvol_minors; 108 109 typedef struct zvol_extent { 110 list_node_t ze_node; 111 dva_t ze_dva; /* dva associated with this extent */ 112 uint64_t ze_nblks; /* number of blocks in extent */ 113 } zvol_extent_t; 114 115 /* 116 * The in-core state of each volume. 117 */ 118 typedef struct zvol_state { 119 char zv_name[MAXPATHLEN]; /* pool/dd name */ 120 uint64_t zv_volsize; /* amount of space we advertise */ 121 uint64_t zv_volblocksize; /* volume block size */ 122 minor_t zv_minor; /* minor number */ 123 uint8_t zv_min_bs; /* minimum addressable block shift */ 124 uint8_t zv_flags; /* readonly, dumpified, etc. */ 125 objset_t *zv_objset; /* objset handle */ 126 uint32_t zv_open_count[OTYPCNT]; /* open counts */ 127 uint32_t zv_total_opens; /* total open count */ 128 zilog_t *zv_zilog; /* ZIL handle */ 129 list_t zv_extents; /* List of extents for dump */ 130 znode_t zv_znode; /* for range locking */ 131 dmu_buf_t *zv_dbuf; /* bonus handle */ 132 } zvol_state_t; 133 134 /* 135 * zvol specific flags 136 */ 137 #define ZVOL_RDONLY 0x1 138 #define ZVOL_DUMPIFIED 0x2 139 #define ZVOL_EXCL 0x4 140 #define ZVOL_WCE 0x8 141 142 /* 143 * zvol maximum transfer in one DMU tx. 144 */ 145 int zvol_maxphys = DMU_MAX_ACCESS/2; 146 147 /* 148 * Toggle unmap functionality. 149 */ 150 boolean_t zvol_unmap_enabled = B_TRUE; 151 152 extern int zfs_set_prop_nvlist(const char *, zprop_source_t, 153 nvlist_t *, nvlist_t *); 154 static int zvol_remove_zv(zvol_state_t *); 155 static int zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio); 156 static int zvol_dumpify(zvol_state_t *zv); 157 static int zvol_dump_fini(zvol_state_t *zv); 158 static int zvol_dump_init(zvol_state_t *zv, boolean_t resize); 159 160 static void 161 zvol_size_changed(zvol_state_t *zv, uint64_t volsize) 162 { 163 dev_t dev = makedevice(ddi_driver_major(zfs_dip), zv->zv_minor); 164 165 zv->zv_volsize = volsize; 166 VERIFY(ddi_prop_update_int64(dev, zfs_dip, 167 "Size", volsize) == DDI_SUCCESS); 168 VERIFY(ddi_prop_update_int64(dev, zfs_dip, 169 "Nblocks", lbtodb(volsize)) == DDI_SUCCESS); 170 171 /* Notify specfs to invalidate the cached size */ 172 spec_size_invalidate(dev, VBLK); 173 spec_size_invalidate(dev, VCHR); 174 } 175 176 int 177 zvol_check_volsize(uint64_t volsize, uint64_t blocksize) 178 { 179 if (volsize == 0) 180 return (SET_ERROR(EINVAL)); 181 182 if (volsize % blocksize != 0) 183 return (SET_ERROR(EINVAL)); 184 185 #ifdef _ILP32 186 if (volsize - 1 > SPEC_MAXOFFSET_T) 187 return (SET_ERROR(EOVERFLOW)); 188 #endif 189 return (0); 190 } 191 192 int 193 zvol_check_volblocksize(uint64_t volblocksize) 194 { 195 if (volblocksize < SPA_MINBLOCKSIZE || 196 volblocksize > SPA_OLD_MAXBLOCKSIZE || 197 !ISP2(volblocksize)) 198 return (SET_ERROR(EDOM)); 199 200 return (0); 201 } 202 203 int 204 zvol_get_stats(objset_t *os, nvlist_t *nv) 205 { 206 int error; 207 dmu_object_info_t doi; 208 uint64_t val; 209 210 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); 211 if (error) 212 return (error); 213 214 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); 215 216 error = dmu_object_info(os, ZVOL_OBJ, &doi); 217 218 if (error == 0) { 219 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, 220 doi.doi_data_block_size); 221 } 222 223 return (error); 224 } 225 226 static zvol_state_t * 227 zvol_minor_lookup(const char *name) 228 { 229 minor_t minor; 230 zvol_state_t *zv; 231 232 ASSERT(MUTEX_HELD(&zfsdev_state_lock)); 233 234 for (minor = 1; minor <= ZFSDEV_MAX_MINOR; minor++) { 235 zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); 236 if (zv == NULL) 237 continue; 238 if (strcmp(zv->zv_name, name) == 0) 239 return (zv); 240 } 241 242 return (NULL); 243 } 244 245 /* extent mapping arg */ 246 struct maparg { 247 zvol_state_t *ma_zv; 248 uint64_t ma_blks; 249 }; 250 251 /*ARGSUSED*/ 252 static int 253 zvol_map_block(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 254 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 255 { 256 struct maparg *ma = arg; 257 zvol_extent_t *ze; 258 int bs = ma->ma_zv->zv_volblocksize; 259 260 if (bp == NULL || BP_IS_HOLE(bp) || 261 zb->zb_object != ZVOL_OBJ || zb->zb_level != 0) 262 return (0); 263 264 VERIFY(!BP_IS_EMBEDDED(bp)); 265 266 VERIFY3U(ma->ma_blks, ==, zb->zb_blkid); 267 ma->ma_blks++; 268 269 /* Abort immediately if we have encountered gang blocks */ 270 if (BP_IS_GANG(bp)) 271 return (SET_ERROR(EFRAGS)); 272 273 /* 274 * See if the block is at the end of the previous extent. 275 */ 276 ze = list_tail(&ma->ma_zv->zv_extents); 277 if (ze && 278 DVA_GET_VDEV(BP_IDENTITY(bp)) == DVA_GET_VDEV(&ze->ze_dva) && 279 DVA_GET_OFFSET(BP_IDENTITY(bp)) == 280 DVA_GET_OFFSET(&ze->ze_dva) + ze->ze_nblks * bs) { 281 ze->ze_nblks++; 282 return (0); 283 } 284 285 dprintf_bp(bp, "%s", "next blkptr:"); 286 287 /* start a new extent */ 288 ze = kmem_zalloc(sizeof (zvol_extent_t), KM_SLEEP); 289 ze->ze_dva = bp->blk_dva[0]; /* structure assignment */ 290 ze->ze_nblks = 1; 291 list_insert_tail(&ma->ma_zv->zv_extents, ze); 292 return (0); 293 } 294 295 static void 296 zvol_free_extents(zvol_state_t *zv) 297 { 298 zvol_extent_t *ze; 299 300 while (ze = list_head(&zv->zv_extents)) { 301 list_remove(&zv->zv_extents, ze); 302 kmem_free(ze, sizeof (zvol_extent_t)); 303 } 304 } 305 306 static int 307 zvol_get_lbas(zvol_state_t *zv) 308 { 309 objset_t *os = zv->zv_objset; 310 struct maparg ma; 311 int err; 312 313 ma.ma_zv = zv; 314 ma.ma_blks = 0; 315 zvol_free_extents(zv); 316 317 /* commit any in-flight changes before traversing the dataset */ 318 txg_wait_synced(dmu_objset_pool(os), 0); 319 err = traverse_dataset(dmu_objset_ds(os), 0, 320 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, zvol_map_block, &ma); 321 if (err || ma.ma_blks != (zv->zv_volsize / zv->zv_volblocksize)) { 322 zvol_free_extents(zv); 323 return (err ? err : EIO); 324 } 325 326 return (0); 327 } 328 329 /* ARGSUSED */ 330 void 331 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 332 { 333 zfs_creat_t *zct = arg; 334 nvlist_t *nvprops = zct->zct_props; 335 int error; 336 uint64_t volblocksize, volsize; 337 338 VERIFY(nvlist_lookup_uint64(nvprops, 339 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); 340 if (nvlist_lookup_uint64(nvprops, 341 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) 342 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); 343 344 /* 345 * These properties must be removed from the list so the generic 346 * property setting step won't apply to them. 347 */ 348 VERIFY(nvlist_remove_all(nvprops, 349 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); 350 (void) nvlist_remove_all(nvprops, 351 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); 352 353 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, 354 DMU_OT_NONE, 0, tx); 355 ASSERT(error == 0); 356 357 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, 358 DMU_OT_NONE, 0, tx); 359 ASSERT(error == 0); 360 361 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); 362 ASSERT(error == 0); 363 } 364 365 /* 366 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we 367 * implement DKIOCFREE/free-long-range. 368 */ 369 static int 370 zvol_replay_truncate(zvol_state_t *zv, lr_truncate_t *lr, boolean_t byteswap) 371 { 372 uint64_t offset, length; 373 374 if (byteswap) 375 byteswap_uint64_array(lr, sizeof (*lr)); 376 377 offset = lr->lr_offset; 378 length = lr->lr_length; 379 380 return (dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, length)); 381 } 382 383 /* 384 * Replay a TX_WRITE ZIL transaction that didn't get committed 385 * after a system failure 386 */ 387 static int 388 zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap) 389 { 390 objset_t *os = zv->zv_objset; 391 char *data = (char *)(lr + 1); /* data follows lr_write_t */ 392 uint64_t offset, length; 393 dmu_tx_t *tx; 394 int error; 395 396 if (byteswap) 397 byteswap_uint64_array(lr, sizeof (*lr)); 398 399 offset = lr->lr_offset; 400 length = lr->lr_length; 401 402 /* If it's a dmu_sync() block, write the whole block */ 403 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 404 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 405 if (length < blocksize) { 406 offset -= offset % blocksize; 407 length = blocksize; 408 } 409 } 410 411 tx = dmu_tx_create(os); 412 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length); 413 error = dmu_tx_assign(tx, TXG_WAIT); 414 if (error) { 415 dmu_tx_abort(tx); 416 } else { 417 dmu_write(os, ZVOL_OBJ, offset, length, data, tx); 418 dmu_tx_commit(tx); 419 } 420 421 return (error); 422 } 423 424 /* ARGSUSED */ 425 static int 426 zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap) 427 { 428 return (SET_ERROR(ENOTSUP)); 429 } 430 431 /* 432 * Callback vectors for replaying records. 433 * Only TX_WRITE and TX_TRUNCATE are needed for zvol. 434 */ 435 zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = { 436 zvol_replay_err, /* 0 no such transaction type */ 437 zvol_replay_err, /* TX_CREATE */ 438 zvol_replay_err, /* TX_MKDIR */ 439 zvol_replay_err, /* TX_MKXATTR */ 440 zvol_replay_err, /* TX_SYMLINK */ 441 zvol_replay_err, /* TX_REMOVE */ 442 zvol_replay_err, /* TX_RMDIR */ 443 zvol_replay_err, /* TX_LINK */ 444 zvol_replay_err, /* TX_RENAME */ 445 zvol_replay_write, /* TX_WRITE */ 446 zvol_replay_truncate, /* TX_TRUNCATE */ 447 zvol_replay_err, /* TX_SETATTR */ 448 zvol_replay_err, /* TX_ACL */ 449 zvol_replay_err, /* TX_CREATE_ACL */ 450 zvol_replay_err, /* TX_CREATE_ATTR */ 451 zvol_replay_err, /* TX_CREATE_ACL_ATTR */ 452 zvol_replay_err, /* TX_MKDIR_ACL */ 453 zvol_replay_err, /* TX_MKDIR_ATTR */ 454 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */ 455 zvol_replay_err, /* TX_WRITE2 */ 456 }; 457 458 int 459 zvol_name2minor(const char *name, minor_t *minor) 460 { 461 zvol_state_t *zv; 462 463 mutex_enter(&zfsdev_state_lock); 464 zv = zvol_minor_lookup(name); 465 if (minor && zv) 466 *minor = zv->zv_minor; 467 mutex_exit(&zfsdev_state_lock); 468 return (zv ? 0 : -1); 469 } 470 471 /* 472 * Create a minor node (plus a whole lot more) for the specified volume. 473 */ 474 int 475 zvol_create_minor(const char *name) 476 { 477 zfs_soft_state_t *zs; 478 zvol_state_t *zv; 479 objset_t *os; 480 dmu_object_info_t doi; 481 minor_t minor = 0; 482 char chrbuf[30], blkbuf[30]; 483 int error; 484 485 mutex_enter(&zfsdev_state_lock); 486 487 if (zvol_minor_lookup(name) != NULL) { 488 mutex_exit(&zfsdev_state_lock); 489 return (SET_ERROR(EEXIST)); 490 } 491 492 /* lie and say we're read-only */ 493 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, FTAG, &os); 494 495 if (error) { 496 mutex_exit(&zfsdev_state_lock); 497 return (error); 498 } 499 500 if ((minor = zfsdev_minor_alloc()) == 0) { 501 dmu_objset_disown(os, FTAG); 502 mutex_exit(&zfsdev_state_lock); 503 return (SET_ERROR(ENXIO)); 504 } 505 506 if (ddi_soft_state_zalloc(zfsdev_state, minor) != DDI_SUCCESS) { 507 dmu_objset_disown(os, FTAG); 508 mutex_exit(&zfsdev_state_lock); 509 return (SET_ERROR(EAGAIN)); 510 } 511 (void) ddi_prop_update_string(minor, zfs_dip, ZVOL_PROP_NAME, 512 (char *)name); 513 514 (void) snprintf(chrbuf, sizeof (chrbuf), "%u,raw", minor); 515 516 if (ddi_create_minor_node(zfs_dip, chrbuf, S_IFCHR, 517 minor, DDI_PSEUDO, 0) == DDI_FAILURE) { 518 ddi_soft_state_free(zfsdev_state, minor); 519 dmu_objset_disown(os, FTAG); 520 mutex_exit(&zfsdev_state_lock); 521 return (SET_ERROR(EAGAIN)); 522 } 523 524 (void) snprintf(blkbuf, sizeof (blkbuf), "%u", minor); 525 526 if (ddi_create_minor_node(zfs_dip, blkbuf, S_IFBLK, 527 minor, DDI_PSEUDO, 0) == DDI_FAILURE) { 528 ddi_remove_minor_node(zfs_dip, chrbuf); 529 ddi_soft_state_free(zfsdev_state, minor); 530 dmu_objset_disown(os, FTAG); 531 mutex_exit(&zfsdev_state_lock); 532 return (SET_ERROR(EAGAIN)); 533 } 534 535 zs = ddi_get_soft_state(zfsdev_state, minor); 536 zs->zss_type = ZSST_ZVOL; 537 zv = zs->zss_data = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP); 538 (void) strlcpy(zv->zv_name, name, MAXPATHLEN); 539 zv->zv_min_bs = DEV_BSHIFT; 540 zv->zv_minor = minor; 541 zv->zv_objset = os; 542 if (dmu_objset_is_snapshot(os) || !spa_writeable(dmu_objset_spa(os))) 543 zv->zv_flags |= ZVOL_RDONLY; 544 mutex_init(&zv->zv_znode.z_range_lock, NULL, MUTEX_DEFAULT, NULL); 545 avl_create(&zv->zv_znode.z_range_avl, zfs_range_compare, 546 sizeof (rl_t), offsetof(rl_t, r_node)); 547 list_create(&zv->zv_extents, sizeof (zvol_extent_t), 548 offsetof(zvol_extent_t, ze_node)); 549 /* get and cache the blocksize */ 550 error = dmu_object_info(os, ZVOL_OBJ, &doi); 551 ASSERT(error == 0); 552 zv->zv_volblocksize = doi.doi_data_block_size; 553 554 if (spa_writeable(dmu_objset_spa(os))) { 555 if (zil_replay_disable) 556 zil_destroy(dmu_objset_zil(os), B_FALSE); 557 else 558 zil_replay(os, zv, zvol_replay_vector); 559 } 560 dmu_objset_disown(os, FTAG); 561 zv->zv_objset = NULL; 562 563 zvol_minors++; 564 565 mutex_exit(&zfsdev_state_lock); 566 567 return (0); 568 } 569 570 /* 571 * Remove minor node for the specified volume. 572 */ 573 static int 574 zvol_remove_zv(zvol_state_t *zv) 575 { 576 char nmbuf[20]; 577 minor_t minor = zv->zv_minor; 578 579 ASSERT(MUTEX_HELD(&zfsdev_state_lock)); 580 if (zv->zv_total_opens != 0) 581 return (SET_ERROR(EBUSY)); 582 583 (void) snprintf(nmbuf, sizeof (nmbuf), "%u,raw", minor); 584 ddi_remove_minor_node(zfs_dip, nmbuf); 585 586 (void) snprintf(nmbuf, sizeof (nmbuf), "%u", minor); 587 ddi_remove_minor_node(zfs_dip, nmbuf); 588 589 avl_destroy(&zv->zv_znode.z_range_avl); 590 mutex_destroy(&zv->zv_znode.z_range_lock); 591 592 kmem_free(zv, sizeof (zvol_state_t)); 593 594 ddi_soft_state_free(zfsdev_state, minor); 595 596 zvol_minors--; 597 return (0); 598 } 599 600 int 601 zvol_remove_minor(const char *name) 602 { 603 zvol_state_t *zv; 604 int rc; 605 606 mutex_enter(&zfsdev_state_lock); 607 if ((zv = zvol_minor_lookup(name)) == NULL) { 608 mutex_exit(&zfsdev_state_lock); 609 return (SET_ERROR(ENXIO)); 610 } 611 rc = zvol_remove_zv(zv); 612 mutex_exit(&zfsdev_state_lock); 613 return (rc); 614 } 615 616 int 617 zvol_first_open(zvol_state_t *zv) 618 { 619 objset_t *os; 620 uint64_t volsize; 621 int error; 622 uint64_t readonly; 623 624 /* lie and say we're read-only */ 625 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, B_TRUE, 626 zvol_tag, &os); 627 if (error) 628 return (error); 629 630 zv->zv_objset = os; 631 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); 632 if (error) { 633 ASSERT(error == 0); 634 dmu_objset_disown(os, zvol_tag); 635 return (error); 636 } 637 638 error = dmu_bonus_hold(os, ZVOL_OBJ, zvol_tag, &zv->zv_dbuf); 639 if (error) { 640 dmu_objset_disown(os, zvol_tag); 641 return (error); 642 } 643 644 zvol_size_changed(zv, volsize); 645 zv->zv_zilog = zil_open(os, zvol_get_data); 646 647 VERIFY(dsl_prop_get_integer(zv->zv_name, "readonly", &readonly, 648 NULL) == 0); 649 if (readonly || dmu_objset_is_snapshot(os) || 650 !spa_writeable(dmu_objset_spa(os))) 651 zv->zv_flags |= ZVOL_RDONLY; 652 else 653 zv->zv_flags &= ~ZVOL_RDONLY; 654 return (error); 655 } 656 657 void 658 zvol_last_close(zvol_state_t *zv) 659 { 660 zil_close(zv->zv_zilog); 661 zv->zv_zilog = NULL; 662 663 dmu_buf_rele(zv->zv_dbuf, zvol_tag); 664 zv->zv_dbuf = NULL; 665 666 /* 667 * Evict cached data 668 */ 669 if (dsl_dataset_is_dirty(dmu_objset_ds(zv->zv_objset)) && 670 !(zv->zv_flags & ZVOL_RDONLY)) 671 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); 672 dmu_objset_evict_dbufs(zv->zv_objset); 673 674 dmu_objset_disown(zv->zv_objset, zvol_tag); 675 zv->zv_objset = NULL; 676 } 677 678 int 679 zvol_prealloc(zvol_state_t *zv) 680 { 681 objset_t *os = zv->zv_objset; 682 dmu_tx_t *tx; 683 uint64_t refd, avail, usedobjs, availobjs; 684 uint64_t resid = zv->zv_volsize; 685 uint64_t off = 0; 686 687 /* Check the space usage before attempting to allocate the space */ 688 dmu_objset_space(os, &refd, &avail, &usedobjs, &availobjs); 689 if (avail < zv->zv_volsize) 690 return (SET_ERROR(ENOSPC)); 691 692 /* Free old extents if they exist */ 693 zvol_free_extents(zv); 694 695 while (resid != 0) { 696 int error; 697 uint64_t bytes = MIN(resid, SPA_OLD_MAXBLOCKSIZE); 698 699 tx = dmu_tx_create(os); 700 dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes); 701 error = dmu_tx_assign(tx, TXG_WAIT); 702 if (error) { 703 dmu_tx_abort(tx); 704 (void) dmu_free_long_range(os, ZVOL_OBJ, 0, off); 705 return (error); 706 } 707 dmu_prealloc(os, ZVOL_OBJ, off, bytes, tx); 708 dmu_tx_commit(tx); 709 off += bytes; 710 resid -= bytes; 711 } 712 txg_wait_synced(dmu_objset_pool(os), 0); 713 714 return (0); 715 } 716 717 static int 718 zvol_update_volsize(objset_t *os, uint64_t volsize) 719 { 720 dmu_tx_t *tx; 721 int error; 722 723 ASSERT(MUTEX_HELD(&zfsdev_state_lock)); 724 725 tx = dmu_tx_create(os); 726 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); 727 dmu_tx_mark_netfree(tx); 728 error = dmu_tx_assign(tx, TXG_WAIT); 729 if (error) { 730 dmu_tx_abort(tx); 731 return (error); 732 } 733 734 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, 735 &volsize, tx); 736 dmu_tx_commit(tx); 737 738 if (error == 0) 739 error = dmu_free_long_range(os, 740 ZVOL_OBJ, volsize, DMU_OBJECT_END); 741 return (error); 742 } 743 744 void 745 zvol_remove_minors(const char *name) 746 { 747 zvol_state_t *zv; 748 char *namebuf; 749 minor_t minor; 750 751 namebuf = kmem_zalloc(strlen(name) + 2, KM_SLEEP); 752 (void) strncpy(namebuf, name, strlen(name)); 753 (void) strcat(namebuf, "/"); 754 mutex_enter(&zfsdev_state_lock); 755 for (minor = 1; minor <= ZFSDEV_MAX_MINOR; minor++) { 756 757 zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); 758 if (zv == NULL) 759 continue; 760 if (strncmp(namebuf, zv->zv_name, strlen(namebuf)) == 0) 761 (void) zvol_remove_zv(zv); 762 } 763 kmem_free(namebuf, strlen(name) + 2); 764 765 mutex_exit(&zfsdev_state_lock); 766 } 767 768 static int 769 zvol_update_live_volsize(zvol_state_t *zv, uint64_t volsize) 770 { 771 uint64_t old_volsize = 0ULL; 772 int error = 0; 773 774 ASSERT(MUTEX_HELD(&zfsdev_state_lock)); 775 776 /* 777 * Reinitialize the dump area to the new size. If we 778 * failed to resize the dump area then restore it back to 779 * its original size. We must set the new volsize prior 780 * to calling dumpvp_resize() to ensure that the devices' 781 * size(9P) is not visible by the dump subsystem. 782 */ 783 old_volsize = zv->zv_volsize; 784 zvol_size_changed(zv, volsize); 785 786 if (zv->zv_flags & ZVOL_DUMPIFIED) { 787 if ((error = zvol_dumpify(zv)) != 0 || 788 (error = dumpvp_resize()) != 0) { 789 int dumpify_error; 790 791 (void) zvol_update_volsize(zv->zv_objset, old_volsize); 792 zvol_size_changed(zv, old_volsize); 793 dumpify_error = zvol_dumpify(zv); 794 error = dumpify_error ? dumpify_error : error; 795 } 796 } 797 798 /* 799 * Generate a LUN expansion event. 800 */ 801 if (error == 0) { 802 sysevent_id_t eid; 803 nvlist_t *attr; 804 char *physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 805 806 (void) snprintf(physpath, MAXPATHLEN, "%s%u", ZVOL_PSEUDO_DEV, 807 zv->zv_minor); 808 809 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 810 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 811 812 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 813 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 814 815 nvlist_free(attr); 816 kmem_free(physpath, MAXPATHLEN); 817 } 818 return (error); 819 } 820 821 int 822 zvol_set_volsize(const char *name, uint64_t volsize) 823 { 824 zvol_state_t *zv = NULL; 825 objset_t *os; 826 int error; 827 dmu_object_info_t doi; 828 uint64_t readonly; 829 boolean_t owned = B_FALSE; 830 831 error = dsl_prop_get_integer(name, 832 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL); 833 if (error != 0) 834 return (error); 835 if (readonly) 836 return (SET_ERROR(EROFS)); 837 838 mutex_enter(&zfsdev_state_lock); 839 zv = zvol_minor_lookup(name); 840 841 if (zv == NULL || zv->zv_objset == NULL) { 842 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, 843 FTAG, &os)) != 0) { 844 mutex_exit(&zfsdev_state_lock); 845 return (error); 846 } 847 owned = B_TRUE; 848 if (zv != NULL) 849 zv->zv_objset = os; 850 } else { 851 os = zv->zv_objset; 852 } 853 854 if ((error = dmu_object_info(os, ZVOL_OBJ, &doi)) != 0 || 855 (error = zvol_check_volsize(volsize, doi.doi_data_block_size)) != 0) 856 goto out; 857 858 error = zvol_update_volsize(os, volsize); 859 860 if (error == 0 && zv != NULL) 861 error = zvol_update_live_volsize(zv, volsize); 862 out: 863 if (owned) { 864 dmu_objset_disown(os, FTAG); 865 if (zv != NULL) 866 zv->zv_objset = NULL; 867 } 868 mutex_exit(&zfsdev_state_lock); 869 return (error); 870 } 871 872 /*ARGSUSED*/ 873 int 874 zvol_open(dev_t *devp, int flag, int otyp, cred_t *cr) 875 { 876 zvol_state_t *zv; 877 int err = 0; 878 879 mutex_enter(&zfsdev_state_lock); 880 881 zv = zfsdev_get_soft_state(getminor(*devp), ZSST_ZVOL); 882 if (zv == NULL) { 883 mutex_exit(&zfsdev_state_lock); 884 return (SET_ERROR(ENXIO)); 885 } 886 887 if (zv->zv_total_opens == 0) 888 err = zvol_first_open(zv); 889 if (err) { 890 mutex_exit(&zfsdev_state_lock); 891 return (err); 892 } 893 if ((flag & FWRITE) && (zv->zv_flags & ZVOL_RDONLY)) { 894 err = SET_ERROR(EROFS); 895 goto out; 896 } 897 if (zv->zv_flags & ZVOL_EXCL) { 898 err = SET_ERROR(EBUSY); 899 goto out; 900 } 901 if (flag & FEXCL) { 902 if (zv->zv_total_opens != 0) { 903 err = SET_ERROR(EBUSY); 904 goto out; 905 } 906 zv->zv_flags |= ZVOL_EXCL; 907 } 908 909 if (zv->zv_open_count[otyp] == 0 || otyp == OTYP_LYR) { 910 zv->zv_open_count[otyp]++; 911 zv->zv_total_opens++; 912 } 913 mutex_exit(&zfsdev_state_lock); 914 915 return (err); 916 out: 917 if (zv->zv_total_opens == 0) 918 zvol_last_close(zv); 919 mutex_exit(&zfsdev_state_lock); 920 return (err); 921 } 922 923 /*ARGSUSED*/ 924 int 925 zvol_close(dev_t dev, int flag, int otyp, cred_t *cr) 926 { 927 minor_t minor = getminor(dev); 928 zvol_state_t *zv; 929 int error = 0; 930 931 mutex_enter(&zfsdev_state_lock); 932 933 zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); 934 if (zv == NULL) { 935 mutex_exit(&zfsdev_state_lock); 936 return (SET_ERROR(ENXIO)); 937 } 938 939 if (zv->zv_flags & ZVOL_EXCL) { 940 ASSERT(zv->zv_total_opens == 1); 941 zv->zv_flags &= ~ZVOL_EXCL; 942 } 943 944 /* 945 * If the open count is zero, this is a spurious close. 946 * That indicates a bug in the kernel / DDI framework. 947 */ 948 ASSERT(zv->zv_open_count[otyp] != 0); 949 ASSERT(zv->zv_total_opens != 0); 950 951 /* 952 * You may get multiple opens, but only one close. 953 */ 954 zv->zv_open_count[otyp]--; 955 zv->zv_total_opens--; 956 957 if (zv->zv_total_opens == 0) 958 zvol_last_close(zv); 959 960 mutex_exit(&zfsdev_state_lock); 961 return (error); 962 } 963 964 static void 965 zvol_get_done(zgd_t *zgd, int error) 966 { 967 if (zgd->zgd_db) 968 dmu_buf_rele(zgd->zgd_db, zgd); 969 970 zfs_range_unlock(zgd->zgd_rl); 971 972 if (error == 0 && zgd->zgd_bp) 973 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 974 975 kmem_free(zgd, sizeof (zgd_t)); 976 } 977 978 /* 979 * Get data to generate a TX_WRITE intent log record. 980 */ 981 static int 982 zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 983 { 984 zvol_state_t *zv = arg; 985 objset_t *os = zv->zv_objset; 986 uint64_t object = ZVOL_OBJ; 987 uint64_t offset = lr->lr_offset; 988 uint64_t size = lr->lr_length; /* length of user data */ 989 blkptr_t *bp = &lr->lr_blkptr; 990 dmu_buf_t *db; 991 zgd_t *zgd; 992 int error; 993 994 ASSERT(zio != NULL); 995 ASSERT(size != 0); 996 997 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 998 zgd->zgd_zilog = zv->zv_zilog; 999 zgd->zgd_rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER); 1000 1001 /* 1002 * Write records come in two flavors: immediate and indirect. 1003 * For small writes it's cheaper to store the data with the 1004 * log record (immediate); for large writes it's cheaper to 1005 * sync the data and get a pointer to it (indirect) so that 1006 * we don't have to write the data twice. 1007 */ 1008 if (buf != NULL) { /* immediate write */ 1009 error = dmu_read(os, object, offset, size, buf, 1010 DMU_READ_NO_PREFETCH); 1011 } else { 1012 size = zv->zv_volblocksize; 1013 offset = P2ALIGN(offset, size); 1014 error = dmu_buf_hold(os, object, offset, zgd, &db, 1015 DMU_READ_NO_PREFETCH); 1016 if (error == 0) { 1017 blkptr_t *obp = dmu_buf_get_blkptr(db); 1018 if (obp) { 1019 ASSERT(BP_IS_HOLE(bp)); 1020 *bp = *obp; 1021 } 1022 1023 zgd->zgd_db = db; 1024 zgd->zgd_bp = bp; 1025 1026 ASSERT(db->db_offset == offset); 1027 ASSERT(db->db_size == size); 1028 1029 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1030 zvol_get_done, zgd); 1031 1032 if (error == 0) 1033 return (0); 1034 } 1035 } 1036 1037 zvol_get_done(zgd, error); 1038 1039 return (error); 1040 } 1041 1042 /* 1043 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. 1044 * 1045 * We store data in the log buffers if it's small enough. 1046 * Otherwise we will later flush the data out via dmu_sync(). 1047 */ 1048 ssize_t zvol_immediate_write_sz = 32768; 1049 1050 static void 1051 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, offset_t off, ssize_t resid, 1052 boolean_t sync) 1053 { 1054 uint32_t blocksize = zv->zv_volblocksize; 1055 zilog_t *zilog = zv->zv_zilog; 1056 boolean_t slogging; 1057 ssize_t immediate_write_sz; 1058 1059 if (zil_replaying(zilog, tx)) 1060 return; 1061 1062 immediate_write_sz = (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) 1063 ? 0 : zvol_immediate_write_sz; 1064 1065 slogging = spa_has_slogs(zilog->zl_spa) && 1066 (zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); 1067 1068 while (resid) { 1069 itx_t *itx; 1070 lr_write_t *lr; 1071 ssize_t len; 1072 itx_wr_state_t write_state; 1073 1074 /* 1075 * Unlike zfs_log_write() we can be called with 1076 * upto DMU_MAX_ACCESS/2 (5MB) writes. 1077 */ 1078 if (blocksize > immediate_write_sz && !slogging && 1079 resid >= blocksize && off % blocksize == 0) { 1080 write_state = WR_INDIRECT; /* uses dmu_sync */ 1081 len = blocksize; 1082 } else if (sync) { 1083 write_state = WR_COPIED; 1084 len = MIN(ZIL_MAX_LOG_DATA, resid); 1085 } else { 1086 write_state = WR_NEED_COPY; 1087 len = MIN(ZIL_MAX_LOG_DATA, resid); 1088 } 1089 1090 itx = zil_itx_create(TX_WRITE, sizeof (*lr) + 1091 (write_state == WR_COPIED ? len : 0)); 1092 lr = (lr_write_t *)&itx->itx_lr; 1093 if (write_state == WR_COPIED && dmu_read(zv->zv_objset, 1094 ZVOL_OBJ, off, len, lr + 1, DMU_READ_NO_PREFETCH) != 0) { 1095 zil_itx_destroy(itx); 1096 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1097 lr = (lr_write_t *)&itx->itx_lr; 1098 write_state = WR_NEED_COPY; 1099 } 1100 1101 itx->itx_wr_state = write_state; 1102 if (write_state == WR_NEED_COPY) 1103 itx->itx_sod += len; 1104 lr->lr_foid = ZVOL_OBJ; 1105 lr->lr_offset = off; 1106 lr->lr_length = len; 1107 lr->lr_blkoff = 0; 1108 BP_ZERO(&lr->lr_blkptr); 1109 1110 itx->itx_private = zv; 1111 itx->itx_sync = sync; 1112 1113 zil_itx_assign(zilog, itx, tx); 1114 1115 rw_enter(&rz_zev_rwlock, RW_READER); 1116 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_zvol_write) 1117 rz_zev_callbacks->rz_zev_zvol_write(zv->zv_name, 1118 zv->zv_objset, off, len); 1119 rw_exit(&rz_zev_rwlock); 1120 1121 off += len; 1122 resid -= len; 1123 } 1124 } 1125 1126 static int 1127 zvol_dumpio_vdev(vdev_t *vd, void *addr, uint64_t offset, uint64_t origoffset, 1128 uint64_t size, boolean_t doread, boolean_t isdump) 1129 { 1130 vdev_disk_t *dvd; 1131 int c; 1132 int numerrors = 0; 1133 1134 if (vd->vdev_ops == &vdev_mirror_ops || 1135 vd->vdev_ops == &vdev_replacing_ops || 1136 vd->vdev_ops == &vdev_spare_ops) { 1137 for (c = 0; c < vd->vdev_children; c++) { 1138 int err = zvol_dumpio_vdev(vd->vdev_child[c], 1139 addr, offset, origoffset, size, doread, isdump); 1140 if (err != 0) { 1141 numerrors++; 1142 } else if (doread) { 1143 break; 1144 } 1145 } 1146 } 1147 1148 if (!vd->vdev_ops->vdev_op_leaf && vd->vdev_ops != &vdev_raidz_ops) 1149 return (numerrors < vd->vdev_children ? 0 : EIO); 1150 1151 if (doread && !vdev_readable(vd)) 1152 return (SET_ERROR(EIO)); 1153 else if (!doread && !vdev_writeable(vd)) 1154 return (SET_ERROR(EIO)); 1155 1156 if (vd->vdev_ops == &vdev_raidz_ops) { 1157 return (vdev_raidz_physio(vd, 1158 addr, size, offset, origoffset, doread, isdump)); 1159 } 1160 1161 offset += VDEV_LABEL_START_SIZE; 1162 1163 if (ddi_in_panic() || isdump) { 1164 ASSERT(!doread); 1165 if (doread) 1166 return (SET_ERROR(EIO)); 1167 dvd = vd->vdev_tsd; 1168 ASSERT3P(dvd, !=, NULL); 1169 return (ldi_dump(dvd->vd_lh, addr, lbtodb(offset), 1170 lbtodb(size))); 1171 } else { 1172 dvd = vd->vdev_tsd; 1173 ASSERT3P(dvd, !=, NULL); 1174 return (vdev_disk_ldi_physio(dvd->vd_lh, addr, size, 1175 offset, doread ? B_READ : B_WRITE)); 1176 } 1177 } 1178 1179 static int 1180 zvol_dumpio(zvol_state_t *zv, void *addr, uint64_t offset, uint64_t size, 1181 boolean_t doread, boolean_t isdump) 1182 { 1183 vdev_t *vd; 1184 int error; 1185 zvol_extent_t *ze; 1186 spa_t *spa = dmu_objset_spa(zv->zv_objset); 1187 1188 /* Must be sector aligned, and not stradle a block boundary. */ 1189 if (P2PHASE(offset, DEV_BSIZE) || P2PHASE(size, DEV_BSIZE) || 1190 P2BOUNDARY(offset, size, zv->zv_volblocksize)) { 1191 return (SET_ERROR(EINVAL)); 1192 } 1193 ASSERT(size <= zv->zv_volblocksize); 1194 1195 /* Locate the extent this belongs to */ 1196 ze = list_head(&zv->zv_extents); 1197 while (offset >= ze->ze_nblks * zv->zv_volblocksize) { 1198 offset -= ze->ze_nblks * zv->zv_volblocksize; 1199 ze = list_next(&zv->zv_extents, ze); 1200 } 1201 1202 if (ze == NULL) 1203 return (SET_ERROR(EINVAL)); 1204 1205 if (!ddi_in_panic()) 1206 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 1207 1208 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&ze->ze_dva)); 1209 offset += DVA_GET_OFFSET(&ze->ze_dva); 1210 error = zvol_dumpio_vdev(vd, addr, offset, DVA_GET_OFFSET(&ze->ze_dva), 1211 size, doread, isdump); 1212 1213 if (!ddi_in_panic()) 1214 spa_config_exit(spa, SCL_STATE, FTAG); 1215 1216 return (error); 1217 } 1218 1219 int 1220 zvol_strategy(buf_t *bp) 1221 { 1222 zfs_soft_state_t *zs = NULL; 1223 zvol_state_t *zv; 1224 uint64_t off, volsize; 1225 size_t resid; 1226 char *addr; 1227 objset_t *os; 1228 rl_t *rl; 1229 int error = 0; 1230 boolean_t doread = bp->b_flags & B_READ; 1231 boolean_t is_dumpified; 1232 boolean_t sync; 1233 1234 if (getminor(bp->b_edev) == 0) { 1235 error = SET_ERROR(EINVAL); 1236 } else { 1237 zs = ddi_get_soft_state(zfsdev_state, getminor(bp->b_edev)); 1238 if (zs == NULL) 1239 error = SET_ERROR(ENXIO); 1240 else if (zs->zss_type != ZSST_ZVOL) 1241 error = SET_ERROR(EINVAL); 1242 } 1243 1244 if (error) { 1245 bioerror(bp, error); 1246 biodone(bp); 1247 return (0); 1248 } 1249 1250 zv = zs->zss_data; 1251 1252 if (!(bp->b_flags & B_READ) && (zv->zv_flags & ZVOL_RDONLY)) { 1253 bioerror(bp, EROFS); 1254 biodone(bp); 1255 return (0); 1256 } 1257 1258 off = ldbtob(bp->b_blkno); 1259 volsize = zv->zv_volsize; 1260 1261 os = zv->zv_objset; 1262 ASSERT(os != NULL); 1263 1264 bp_mapin(bp); 1265 addr = bp->b_un.b_addr; 1266 resid = bp->b_bcount; 1267 1268 if (resid > 0 && (off < 0 || off >= volsize)) { 1269 bioerror(bp, EIO); 1270 biodone(bp); 1271 return (0); 1272 } 1273 1274 is_dumpified = zv->zv_flags & ZVOL_DUMPIFIED; 1275 sync = ((!(bp->b_flags & B_ASYNC) && 1276 !(zv->zv_flags & ZVOL_WCE)) || 1277 (zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS)) && 1278 !doread && !is_dumpified; 1279 1280 /* 1281 * There must be no buffer changes when doing a dmu_sync() because 1282 * we can't change the data whilst calculating the checksum. 1283 */ 1284 rl = zfs_range_lock(&zv->zv_znode, off, resid, 1285 doread ? RL_READER : RL_WRITER); 1286 1287 while (resid != 0 && off < volsize) { 1288 size_t size = MIN(resid, zvol_maxphys); 1289 if (is_dumpified) { 1290 size = MIN(size, P2END(off, zv->zv_volblocksize) - off); 1291 error = zvol_dumpio(zv, addr, off, size, 1292 doread, B_FALSE); 1293 } else if (doread) { 1294 error = dmu_read(os, ZVOL_OBJ, off, size, addr, 1295 DMU_READ_PREFETCH); 1296 } else { 1297 dmu_tx_t *tx = dmu_tx_create(os); 1298 dmu_tx_hold_write(tx, ZVOL_OBJ, off, size); 1299 error = dmu_tx_assign(tx, TXG_WAIT); 1300 if (error) { 1301 dmu_tx_abort(tx); 1302 } else { 1303 dmu_write(os, ZVOL_OBJ, off, size, addr, tx); 1304 zvol_log_write(zv, tx, off, size, sync); 1305 dmu_tx_commit(tx); 1306 } 1307 } 1308 if (error) { 1309 /* convert checksum errors into IO errors */ 1310 if (error == ECKSUM) 1311 error = SET_ERROR(EIO); 1312 break; 1313 } 1314 off += size; 1315 addr += size; 1316 resid -= size; 1317 } 1318 zfs_range_unlock(rl); 1319 1320 if ((bp->b_resid = resid) == bp->b_bcount) 1321 bioerror(bp, off > volsize ? EINVAL : error); 1322 1323 if (sync) 1324 zil_commit(zv->zv_zilog, ZVOL_OBJ); 1325 biodone(bp); 1326 1327 return (0); 1328 } 1329 1330 /* 1331 * Set the buffer count to the zvol maximum transfer. 1332 * Using our own routine instead of the default minphys() 1333 * means that for larger writes we write bigger buffers on X86 1334 * (128K instead of 56K) and flush the disk write cache less often 1335 * (every zvol_maxphys - currently 1MB) instead of minphys (currently 1336 * 56K on X86 and 128K on sparc). 1337 */ 1338 void 1339 zvol_minphys(struct buf *bp) 1340 { 1341 if (bp->b_bcount > zvol_maxphys) 1342 bp->b_bcount = zvol_maxphys; 1343 } 1344 1345 int 1346 zvol_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblocks) 1347 { 1348 minor_t minor = getminor(dev); 1349 zvol_state_t *zv; 1350 int error = 0; 1351 uint64_t size; 1352 uint64_t boff; 1353 uint64_t resid; 1354 1355 zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); 1356 if (zv == NULL) 1357 return (SET_ERROR(ENXIO)); 1358 1359 if ((zv->zv_flags & ZVOL_DUMPIFIED) == 0) 1360 return (SET_ERROR(EINVAL)); 1361 1362 boff = ldbtob(blkno); 1363 resid = ldbtob(nblocks); 1364 1365 VERIFY3U(boff + resid, <=, zv->zv_volsize); 1366 1367 while (resid) { 1368 size = MIN(resid, P2END(boff, zv->zv_volblocksize) - boff); 1369 error = zvol_dumpio(zv, addr, boff, size, B_FALSE, B_TRUE); 1370 if (error) 1371 break; 1372 boff += size; 1373 addr += size; 1374 resid -= size; 1375 } 1376 1377 return (error); 1378 } 1379 1380 /*ARGSUSED*/ 1381 int 1382 zvol_read(dev_t dev, uio_t *uio, cred_t *cr) 1383 { 1384 minor_t minor = getminor(dev); 1385 zvol_state_t *zv; 1386 uint64_t volsize; 1387 rl_t *rl; 1388 int error = 0; 1389 1390 zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); 1391 if (zv == NULL) 1392 return (SET_ERROR(ENXIO)); 1393 1394 volsize = zv->zv_volsize; 1395 if (uio->uio_resid > 0 && 1396 (uio->uio_loffset < 0 || uio->uio_loffset >= volsize)) 1397 return (SET_ERROR(EIO)); 1398 1399 if (zv->zv_flags & ZVOL_DUMPIFIED) { 1400 error = physio(zvol_strategy, NULL, dev, B_READ, 1401 zvol_minphys, uio); 1402 return (error); 1403 } 1404 1405 rl = zfs_range_lock(&zv->zv_znode, uio->uio_loffset, uio->uio_resid, 1406 RL_READER); 1407 while (uio->uio_resid > 0 && uio->uio_loffset < volsize) { 1408 uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1); 1409 1410 /* don't read past the end */ 1411 if (bytes > volsize - uio->uio_loffset) 1412 bytes = volsize - uio->uio_loffset; 1413 1414 error = dmu_read_uio(zv->zv_objset, ZVOL_OBJ, uio, bytes); 1415 if (error) { 1416 /* convert checksum errors into IO errors */ 1417 if (error == ECKSUM) 1418 error = SET_ERROR(EIO); 1419 break; 1420 } 1421 } 1422 zfs_range_unlock(rl); 1423 return (error); 1424 } 1425 1426 /*ARGSUSED*/ 1427 int 1428 zvol_write(dev_t dev, uio_t *uio, cred_t *cr) 1429 { 1430 minor_t minor = getminor(dev); 1431 zvol_state_t *zv; 1432 uint64_t volsize; 1433 rl_t *rl; 1434 int error = 0; 1435 boolean_t sync; 1436 1437 zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); 1438 if (zv == NULL) 1439 return (SET_ERROR(ENXIO)); 1440 1441 volsize = zv->zv_volsize; 1442 if (uio->uio_resid > 0 && 1443 (uio->uio_loffset < 0 || uio->uio_loffset >= volsize)) 1444 return (SET_ERROR(EIO)); 1445 1446 if (zv->zv_flags & ZVOL_DUMPIFIED) { 1447 error = physio(zvol_strategy, NULL, dev, B_WRITE, 1448 zvol_minphys, uio); 1449 return (error); 1450 } 1451 1452 sync = !(zv->zv_flags & ZVOL_WCE) || 1453 (zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS); 1454 1455 rl = zfs_range_lock(&zv->zv_znode, uio->uio_loffset, uio->uio_resid, 1456 RL_WRITER); 1457 while (uio->uio_resid > 0 && uio->uio_loffset < volsize) { 1458 uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1); 1459 uint64_t off = uio->uio_loffset; 1460 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); 1461 1462 if (bytes > volsize - off) /* don't write past the end */ 1463 bytes = volsize - off; 1464 1465 dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes); 1466 error = dmu_tx_assign(tx, TXG_WAIT); 1467 if (error) { 1468 dmu_tx_abort(tx); 1469 break; 1470 } 1471 error = dmu_write_uio_dbuf(zv->zv_dbuf, uio, bytes, tx); 1472 if (error == 0) 1473 zvol_log_write(zv, tx, off, bytes, sync); 1474 dmu_tx_commit(tx); 1475 1476 if (error) 1477 break; 1478 } 1479 zfs_range_unlock(rl); 1480 if (sync) 1481 zil_commit(zv->zv_zilog, ZVOL_OBJ); 1482 return (error); 1483 } 1484 1485 int 1486 zvol_getefi(void *arg, int flag, uint64_t vs, uint8_t bs) 1487 { 1488 struct uuid uuid = EFI_RESERVED; 1489 efi_gpe_t gpe = { 0 }; 1490 uint32_t crc; 1491 dk_efi_t efi; 1492 int length; 1493 char *ptr; 1494 1495 if (ddi_copyin(arg, &efi, sizeof (dk_efi_t), flag)) 1496 return (SET_ERROR(EFAULT)); 1497 ptr = (char *)(uintptr_t)efi.dki_data_64; 1498 length = efi.dki_length; 1499 /* 1500 * Some clients may attempt to request a PMBR for the 1501 * zvol. Currently this interface will return EINVAL to 1502 * such requests. These requests could be supported by 1503 * adding a check for lba == 0 and consing up an appropriate 1504 * PMBR. 1505 */ 1506 if (efi.dki_lba < 1 || efi.dki_lba > 2 || length <= 0) 1507 return (SET_ERROR(EINVAL)); 1508 1509 gpe.efi_gpe_StartingLBA = LE_64(34ULL); 1510 gpe.efi_gpe_EndingLBA = LE_64((vs >> bs) - 1); 1511 UUID_LE_CONVERT(gpe.efi_gpe_PartitionTypeGUID, uuid); 1512 1513 if (efi.dki_lba == 1) { 1514 efi_gpt_t gpt = { 0 }; 1515 1516 gpt.efi_gpt_Signature = LE_64(EFI_SIGNATURE); 1517 gpt.efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); 1518 gpt.efi_gpt_HeaderSize = LE_32(sizeof (gpt)); 1519 gpt.efi_gpt_MyLBA = LE_64(1ULL); 1520 gpt.efi_gpt_FirstUsableLBA = LE_64(34ULL); 1521 gpt.efi_gpt_LastUsableLBA = LE_64((vs >> bs) - 1); 1522 gpt.efi_gpt_PartitionEntryLBA = LE_64(2ULL); 1523 gpt.efi_gpt_NumberOfPartitionEntries = LE_32(1); 1524 gpt.efi_gpt_SizeOfPartitionEntry = 1525 LE_32(sizeof (efi_gpe_t)); 1526 CRC32(crc, &gpe, sizeof (gpe), -1U, crc32_table); 1527 gpt.efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); 1528 CRC32(crc, &gpt, sizeof (gpt), -1U, crc32_table); 1529 gpt.efi_gpt_HeaderCRC32 = LE_32(~crc); 1530 if (ddi_copyout(&gpt, ptr, MIN(sizeof (gpt), length), 1531 flag)) 1532 return (SET_ERROR(EFAULT)); 1533 ptr += sizeof (gpt); 1534 length -= sizeof (gpt); 1535 } 1536 if (length > 0 && ddi_copyout(&gpe, ptr, MIN(sizeof (gpe), 1537 length), flag)) 1538 return (SET_ERROR(EFAULT)); 1539 return (0); 1540 } 1541 1542 /* 1543 * BEGIN entry points to allow external callers access to the volume. 1544 */ 1545 /* 1546 * Return the volume parameters needed for access from an external caller. 1547 * These values are invariant as long as the volume is held open. 1548 */ 1549 int 1550 zvol_get_volume_params(minor_t minor, uint64_t *blksize, 1551 uint64_t *max_xfer_len, void **minor_hdl, void **objset_hdl, void **zil_hdl, 1552 void **rl_hdl, void **bonus_hdl) 1553 { 1554 zvol_state_t *zv; 1555 1556 zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); 1557 if (zv == NULL) 1558 return (SET_ERROR(ENXIO)); 1559 if (zv->zv_flags & ZVOL_DUMPIFIED) 1560 return (SET_ERROR(ENXIO)); 1561 1562 ASSERT(blksize && max_xfer_len && minor_hdl && 1563 objset_hdl && zil_hdl && rl_hdl && bonus_hdl); 1564 1565 *blksize = zv->zv_volblocksize; 1566 *max_xfer_len = (uint64_t)zvol_maxphys; 1567 *minor_hdl = zv; 1568 *objset_hdl = zv->zv_objset; 1569 *zil_hdl = zv->zv_zilog; 1570 *rl_hdl = &zv->zv_znode; 1571 *bonus_hdl = zv->zv_dbuf; 1572 return (0); 1573 } 1574 1575 /* 1576 * Return the current volume size to an external caller. 1577 * The size can change while the volume is open. 1578 */ 1579 uint64_t 1580 zvol_get_volume_size(void *minor_hdl) 1581 { 1582 zvol_state_t *zv = minor_hdl; 1583 1584 return (zv->zv_volsize); 1585 } 1586 1587 /* 1588 * Return the current WCE setting to an external caller. 1589 * The WCE setting can change while the volume is open. 1590 */ 1591 int 1592 zvol_get_volume_wce(void *minor_hdl) 1593 { 1594 zvol_state_t *zv = minor_hdl; 1595 1596 return ((zv->zv_flags & ZVOL_WCE) ? 1 : 0); 1597 } 1598 1599 /* 1600 * Entry point for external callers to zvol_log_write 1601 */ 1602 void 1603 zvol_log_write_minor(void *minor_hdl, dmu_tx_t *tx, offset_t off, ssize_t resid, 1604 boolean_t sync) 1605 { 1606 zvol_state_t *zv = minor_hdl; 1607 1608 zvol_log_write(zv, tx, off, resid, sync); 1609 } 1610 /* 1611 * END entry points to allow external callers access to the volume. 1612 */ 1613 1614 /* 1615 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE. 1616 */ 1617 static void 1618 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len, 1619 boolean_t sync) 1620 { 1621 itx_t *itx; 1622 lr_truncate_t *lr; 1623 zilog_t *zilog = zv->zv_zilog; 1624 1625 if (zil_replaying(zilog, tx)) 1626 return; 1627 1628 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1629 lr = (lr_truncate_t *)&itx->itx_lr; 1630 lr->lr_foid = ZVOL_OBJ; 1631 lr->lr_offset = off; 1632 lr->lr_length = len; 1633 1634 itx->itx_sync = sync; 1635 zil_itx_assign(zilog, itx, tx); 1636 1637 rw_enter(&rz_zev_rwlock, RW_READER); 1638 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_zvol_truncate) 1639 rz_zev_callbacks->rz_zev_zvol_truncate(zv->zv_name, 1640 zv->zv_objset, off, len); 1641 rw_exit(&rz_zev_rwlock); 1642 } 1643 1644 /* 1645 * Dirtbag ioctls to support mkfs(1M) for UFS filesystems. See dkio(7I). 1646 * Also a dirtbag dkio ioctl for unmap/free-block functionality. 1647 */ 1648 /*ARGSUSED*/ 1649 int 1650 zvol_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) 1651 { 1652 zvol_state_t *zv; 1653 struct dk_callback *dkc; 1654 int error = 0; 1655 rl_t *rl; 1656 1657 mutex_enter(&zfsdev_state_lock); 1658 1659 zv = zfsdev_get_soft_state(getminor(dev), ZSST_ZVOL); 1660 1661 if (zv == NULL) { 1662 mutex_exit(&zfsdev_state_lock); 1663 return (SET_ERROR(ENXIO)); 1664 } 1665 ASSERT(zv->zv_total_opens > 0); 1666 1667 switch (cmd) { 1668 1669 case DKIOCINFO: 1670 { 1671 struct dk_cinfo dki; 1672 1673 bzero(&dki, sizeof (dki)); 1674 (void) strcpy(dki.dki_cname, "zvol"); 1675 (void) strcpy(dki.dki_dname, "zvol"); 1676 dki.dki_ctype = DKC_UNKNOWN; 1677 dki.dki_unit = getminor(dev); 1678 dki.dki_maxtransfer = 1679 1 << (SPA_OLD_MAXBLOCKSHIFT - zv->zv_min_bs); 1680 mutex_exit(&zfsdev_state_lock); 1681 if (ddi_copyout(&dki, (void *)arg, sizeof (dki), flag)) 1682 error = SET_ERROR(EFAULT); 1683 return (error); 1684 } 1685 1686 case DKIOCGMEDIAINFO: 1687 { 1688 struct dk_minfo dkm; 1689 1690 bzero(&dkm, sizeof (dkm)); 1691 dkm.dki_lbsize = 1U << zv->zv_min_bs; 1692 dkm.dki_capacity = zv->zv_volsize >> zv->zv_min_bs; 1693 dkm.dki_media_type = DK_UNKNOWN; 1694 mutex_exit(&zfsdev_state_lock); 1695 if (ddi_copyout(&dkm, (void *)arg, sizeof (dkm), flag)) 1696 error = SET_ERROR(EFAULT); 1697 return (error); 1698 } 1699 1700 case DKIOCGMEDIAINFOEXT: 1701 { 1702 struct dk_minfo_ext dkmext; 1703 1704 bzero(&dkmext, sizeof (dkmext)); 1705 dkmext.dki_lbsize = 1U << zv->zv_min_bs; 1706 dkmext.dki_pbsize = zv->zv_volblocksize; 1707 dkmext.dki_capacity = zv->zv_volsize >> zv->zv_min_bs; 1708 dkmext.dki_media_type = DK_UNKNOWN; 1709 mutex_exit(&zfsdev_state_lock); 1710 if (ddi_copyout(&dkmext, (void *)arg, sizeof (dkmext), flag)) 1711 error = SET_ERROR(EFAULT); 1712 return (error); 1713 } 1714 1715 case DKIOCGETEFI: 1716 { 1717 uint64_t vs = zv->zv_volsize; 1718 uint8_t bs = zv->zv_min_bs; 1719 1720 mutex_exit(&zfsdev_state_lock); 1721 error = zvol_getefi((void *)arg, flag, vs, bs); 1722 return (error); 1723 } 1724 1725 case DKIOCFLUSHWRITECACHE: 1726 dkc = (struct dk_callback *)arg; 1727 mutex_exit(&zfsdev_state_lock); 1728 zil_commit(zv->zv_zilog, ZVOL_OBJ); 1729 if ((flag & FKIOCTL) && dkc != NULL && dkc->dkc_callback) { 1730 (*dkc->dkc_callback)(dkc->dkc_cookie, error); 1731 error = 0; 1732 } 1733 return (error); 1734 1735 case DKIOCGETWCE: 1736 { 1737 int wce = (zv->zv_flags & ZVOL_WCE) ? 1 : 0; 1738 if (ddi_copyout(&wce, (void *)arg, sizeof (int), 1739 flag)) 1740 error = SET_ERROR(EFAULT); 1741 break; 1742 } 1743 case DKIOCSETWCE: 1744 { 1745 int wce; 1746 if (ddi_copyin((void *)arg, &wce, sizeof (int), 1747 flag)) { 1748 error = SET_ERROR(EFAULT); 1749 break; 1750 } 1751 if (wce) { 1752 zv->zv_flags |= ZVOL_WCE; 1753 mutex_exit(&zfsdev_state_lock); 1754 } else { 1755 zv->zv_flags &= ~ZVOL_WCE; 1756 mutex_exit(&zfsdev_state_lock); 1757 zil_commit(zv->zv_zilog, ZVOL_OBJ); 1758 } 1759 return (0); 1760 } 1761 1762 case DKIOCGGEOM: 1763 case DKIOCGVTOC: 1764 /* 1765 * commands using these (like prtvtoc) expect ENOTSUP 1766 * since we're emulating an EFI label 1767 */ 1768 error = SET_ERROR(ENOTSUP); 1769 break; 1770 1771 case DKIOCDUMPINIT: 1772 rl = zfs_range_lock(&zv->zv_znode, 0, zv->zv_volsize, 1773 RL_WRITER); 1774 error = zvol_dumpify(zv); 1775 zfs_range_unlock(rl); 1776 break; 1777 1778 case DKIOCDUMPFINI: 1779 if (!(zv->zv_flags & ZVOL_DUMPIFIED)) 1780 break; 1781 rl = zfs_range_lock(&zv->zv_znode, 0, zv->zv_volsize, 1782 RL_WRITER); 1783 error = zvol_dump_fini(zv); 1784 zfs_range_unlock(rl); 1785 break; 1786 1787 case DKIOCFREE: 1788 { 1789 dkioc_free_t df; 1790 dmu_tx_t *tx; 1791 1792 if (!zvol_unmap_enabled) 1793 break; 1794 1795 if (ddi_copyin((void *)arg, &df, sizeof (df), flag)) { 1796 error = SET_ERROR(EFAULT); 1797 break; 1798 } 1799 1800 /* 1801 * Apply Postel's Law to length-checking. If they overshoot, 1802 * just blank out until the end, if there's a need to blank 1803 * out anything. 1804 */ 1805 if (df.df_start >= zv->zv_volsize) 1806 break; /* No need to do anything... */ 1807 1808 mutex_exit(&zfsdev_state_lock); 1809 1810 rl = zfs_range_lock(&zv->zv_znode, df.df_start, df.df_length, 1811 RL_WRITER); 1812 tx = dmu_tx_create(zv->zv_objset); 1813 dmu_tx_mark_netfree(tx); 1814 error = dmu_tx_assign(tx, TXG_WAIT); 1815 if (error != 0) { 1816 dmu_tx_abort(tx); 1817 } else { 1818 zvol_log_truncate(zv, tx, df.df_start, 1819 df.df_length, B_TRUE); 1820 dmu_tx_commit(tx); 1821 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, 1822 df.df_start, df.df_length); 1823 } 1824 1825 zfs_range_unlock(rl); 1826 1827 if (error == 0) { 1828 /* 1829 * If the write-cache is disabled or 'sync' property 1830 * is set to 'always' then treat this as a synchronous 1831 * operation (i.e. commit to zil). 1832 */ 1833 if (!(zv->zv_flags & ZVOL_WCE) || 1834 (zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS)) 1835 zil_commit(zv->zv_zilog, ZVOL_OBJ); 1836 1837 /* 1838 * If the caller really wants synchronous writes, and 1839 * can't wait for them, don't return until the write 1840 * is done. 1841 */ 1842 if (df.df_flags & DF_WAIT_SYNC) { 1843 txg_wait_synced( 1844 dmu_objset_pool(zv->zv_objset), 0); 1845 } 1846 } 1847 return (error); 1848 } 1849 1850 default: 1851 error = SET_ERROR(ENOTTY); 1852 break; 1853 1854 } 1855 mutex_exit(&zfsdev_state_lock); 1856 return (error); 1857 } 1858 1859 int 1860 zvol_busy(void) 1861 { 1862 return (zvol_minors != 0); 1863 } 1864 1865 void 1866 zvol_init(void) 1867 { 1868 VERIFY(ddi_soft_state_init(&zfsdev_state, sizeof (zfs_soft_state_t), 1869 1) == 0); 1870 mutex_init(&zfsdev_state_lock, NULL, MUTEX_DEFAULT, NULL); 1871 } 1872 1873 void 1874 zvol_fini(void) 1875 { 1876 mutex_destroy(&zfsdev_state_lock); 1877 ddi_soft_state_fini(&zfsdev_state); 1878 } 1879 1880 /*ARGSUSED*/ 1881 static int 1882 zfs_mvdev_dump_feature_check(void *arg, dmu_tx_t *tx) 1883 { 1884 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1885 1886 if (spa_feature_is_active(spa, SPA_FEATURE_MULTI_VDEV_CRASH_DUMP)) 1887 return (1); 1888 return (0); 1889 } 1890 1891 /*ARGSUSED*/ 1892 static void 1893 zfs_mvdev_dump_activate_feature_sync(void *arg, dmu_tx_t *tx) 1894 { 1895 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1896 1897 spa_feature_incr(spa, SPA_FEATURE_MULTI_VDEV_CRASH_DUMP, tx); 1898 } 1899 1900 static int 1901 zvol_dump_init(zvol_state_t *zv, boolean_t resize) 1902 { 1903 dmu_tx_t *tx; 1904 int error; 1905 objset_t *os = zv->zv_objset; 1906 spa_t *spa = dmu_objset_spa(os); 1907 vdev_t *vd = spa->spa_root_vdev; 1908 nvlist_t *nv = NULL; 1909 uint64_t version = spa_version(spa); 1910 uint64_t checksum, compress, refresrv, vbs, dedup; 1911 1912 ASSERT(MUTEX_HELD(&zfsdev_state_lock)); 1913 ASSERT(vd->vdev_ops == &vdev_root_ops); 1914 1915 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, 0, 1916 DMU_OBJECT_END); 1917 if (error != 0) 1918 return (error); 1919 /* wait for dmu_free_long_range to actually free the blocks */ 1920 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); 1921 1922 /* 1923 * If the pool on which the dump device is being initialized has more 1924 * than one child vdev, check that the MULTI_VDEV_CRASH_DUMP feature is 1925 * enabled. If so, bump that feature's counter to indicate that the 1926 * feature is active. We also check the vdev type to handle the 1927 * following case: 1928 * # zpool create test raidz disk1 disk2 disk3 1929 * Now have spa_root_vdev->vdev_children == 1 (the raidz vdev), 1930 * the raidz vdev itself has 3 children. 1931 */ 1932 if (vd->vdev_children > 1 || vd->vdev_ops == &vdev_raidz_ops) { 1933 if (!spa_feature_is_enabled(spa, 1934 SPA_FEATURE_MULTI_VDEV_CRASH_DUMP)) 1935 return (SET_ERROR(ENOTSUP)); 1936 (void) dsl_sync_task(spa_name(spa), 1937 zfs_mvdev_dump_feature_check, 1938 zfs_mvdev_dump_activate_feature_sync, NULL, 1939 2, ZFS_SPACE_CHECK_RESERVED); 1940 } 1941 1942 if (!resize) { 1943 error = dsl_prop_get_integer(zv->zv_name, 1944 zfs_prop_to_name(ZFS_PROP_COMPRESSION), &compress, NULL); 1945 if (error == 0) { 1946 error = dsl_prop_get_integer(zv->zv_name, 1947 zfs_prop_to_name(ZFS_PROP_CHECKSUM), &checksum, 1948 NULL); 1949 } 1950 if (error == 0) { 1951 error = dsl_prop_get_integer(zv->zv_name, 1952 zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 1953 &refresrv, NULL); 1954 } 1955 if (error == 0) { 1956 error = dsl_prop_get_integer(zv->zv_name, 1957 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &vbs, 1958 NULL); 1959 } 1960 if (version >= SPA_VERSION_DEDUP && error == 0) { 1961 error = dsl_prop_get_integer(zv->zv_name, 1962 zfs_prop_to_name(ZFS_PROP_DEDUP), &dedup, NULL); 1963 } 1964 } 1965 if (error != 0) 1966 return (error); 1967 1968 tx = dmu_tx_create(os); 1969 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); 1970 dmu_tx_hold_bonus(tx, ZVOL_OBJ); 1971 error = dmu_tx_assign(tx, TXG_WAIT); 1972 if (error != 0) { 1973 dmu_tx_abort(tx); 1974 return (error); 1975 } 1976 1977 /* 1978 * If we are resizing the dump device then we only need to 1979 * update the refreservation to match the newly updated 1980 * zvolsize. Otherwise, we save off the original state of the 1981 * zvol so that we can restore them if the zvol is ever undumpified. 1982 */ 1983 if (resize) { 1984 error = zap_update(os, ZVOL_ZAP_OBJ, 1985 zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1, 1986 &zv->zv_volsize, tx); 1987 } else { 1988 error = zap_update(os, ZVOL_ZAP_OBJ, 1989 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 8, 1, 1990 &compress, tx); 1991 if (error == 0) { 1992 error = zap_update(os, ZVOL_ZAP_OBJ, 1993 zfs_prop_to_name(ZFS_PROP_CHECKSUM), 8, 1, 1994 &checksum, tx); 1995 } 1996 if (error == 0) { 1997 error = zap_update(os, ZVOL_ZAP_OBJ, 1998 zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1, 1999 &refresrv, tx); 2000 } 2001 if (error == 0) { 2002 error = zap_update(os, ZVOL_ZAP_OBJ, 2003 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), 8, 1, 2004 &vbs, tx); 2005 } 2006 if (error == 0) { 2007 error = dmu_object_set_blocksize( 2008 os, ZVOL_OBJ, SPA_OLD_MAXBLOCKSIZE, 0, tx); 2009 } 2010 if (version >= SPA_VERSION_DEDUP && error == 0) { 2011 error = zap_update(os, ZVOL_ZAP_OBJ, 2012 zfs_prop_to_name(ZFS_PROP_DEDUP), 8, 1, 2013 &dedup, tx); 2014 } 2015 if (error == 0) 2016 zv->zv_volblocksize = SPA_OLD_MAXBLOCKSIZE; 2017 } 2018 dmu_tx_commit(tx); 2019 2020 /* 2021 * We only need update the zvol's property if we are initializing 2022 * the dump area for the first time. 2023 */ 2024 if (error == 0 && !resize) { 2025 /* 2026 * If MULTI_VDEV_CRASH_DUMP is active, use the NOPARITY checksum 2027 * function. Otherwise, use the old default -- OFF. 2028 */ 2029 checksum = spa_feature_is_active(spa, 2030 SPA_FEATURE_MULTI_VDEV_CRASH_DUMP) ? ZIO_CHECKSUM_NOPARITY : 2031 ZIO_CHECKSUM_OFF; 2032 2033 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2034 VERIFY(nvlist_add_uint64(nv, 2035 zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 0) == 0); 2036 VERIFY(nvlist_add_uint64(nv, 2037 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 2038 ZIO_COMPRESS_OFF) == 0); 2039 VERIFY(nvlist_add_uint64(nv, 2040 zfs_prop_to_name(ZFS_PROP_CHECKSUM), 2041 checksum) == 0); 2042 if (version >= SPA_VERSION_DEDUP) { 2043 VERIFY(nvlist_add_uint64(nv, 2044 zfs_prop_to_name(ZFS_PROP_DEDUP), 2045 ZIO_CHECKSUM_OFF) == 0); 2046 } 2047 2048 error = zfs_set_prop_nvlist(zv->zv_name, ZPROP_SRC_LOCAL, 2049 nv, NULL); 2050 nvlist_free(nv); 2051 } 2052 2053 /* Allocate the space for the dump */ 2054 if (error == 0) 2055 error = zvol_prealloc(zv); 2056 return (error); 2057 } 2058 2059 static int 2060 zvol_dumpify(zvol_state_t *zv) 2061 { 2062 int error = 0; 2063 uint64_t dumpsize = 0; 2064 dmu_tx_t *tx; 2065 objset_t *os = zv->zv_objset; 2066 2067 if (zv->zv_flags & ZVOL_RDONLY) 2068 return (SET_ERROR(EROFS)); 2069 2070 if (zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, 2071 8, 1, &dumpsize) != 0 || dumpsize != zv->zv_volsize) { 2072 boolean_t resize = (dumpsize > 0); 2073 2074 if ((error = zvol_dump_init(zv, resize)) != 0) { 2075 (void) zvol_dump_fini(zv); 2076 return (error); 2077 } 2078 } 2079 2080 /* 2081 * Build up our lba mapping. 2082 */ 2083 error = zvol_get_lbas(zv); 2084 if (error) { 2085 (void) zvol_dump_fini(zv); 2086 return (error); 2087 } 2088 2089 tx = dmu_tx_create(os); 2090 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); 2091 error = dmu_tx_assign(tx, TXG_WAIT); 2092 if (error) { 2093 dmu_tx_abort(tx); 2094 (void) zvol_dump_fini(zv); 2095 return (error); 2096 } 2097 2098 zv->zv_flags |= ZVOL_DUMPIFIED; 2099 error = zap_update(os, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, 8, 1, 2100 &zv->zv_volsize, tx); 2101 dmu_tx_commit(tx); 2102 2103 if (error) { 2104 (void) zvol_dump_fini(zv); 2105 return (error); 2106 } 2107 2108 txg_wait_synced(dmu_objset_pool(os), 0); 2109 return (0); 2110 } 2111 2112 static int 2113 zvol_dump_fini(zvol_state_t *zv) 2114 { 2115 dmu_tx_t *tx; 2116 objset_t *os = zv->zv_objset; 2117 nvlist_t *nv; 2118 int error = 0; 2119 uint64_t checksum, compress, refresrv, vbs, dedup; 2120 uint64_t version = spa_version(dmu_objset_spa(zv->zv_objset)); 2121 2122 /* 2123 * Attempt to restore the zvol back to its pre-dumpified state. 2124 * This is a best-effort attempt as it's possible that not all 2125 * of these properties were initialized during the dumpify process 2126 * (i.e. error during zvol_dump_init). 2127 */ 2128 2129 tx = dmu_tx_create(os); 2130 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); 2131 error = dmu_tx_assign(tx, TXG_WAIT); 2132 if (error) { 2133 dmu_tx_abort(tx); 2134 return (error); 2135 } 2136 (void) zap_remove(os, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, tx); 2137 dmu_tx_commit(tx); 2138 2139 (void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, 2140 zfs_prop_to_name(ZFS_PROP_CHECKSUM), 8, 1, &checksum); 2141 (void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, 2142 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 8, 1, &compress); 2143 (void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, 2144 zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1, &refresrv); 2145 (void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, 2146 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), 8, 1, &vbs); 2147 2148 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2149 (void) nvlist_add_uint64(nv, 2150 zfs_prop_to_name(ZFS_PROP_CHECKSUM), checksum); 2151 (void) nvlist_add_uint64(nv, 2152 zfs_prop_to_name(ZFS_PROP_COMPRESSION), compress); 2153 (void) nvlist_add_uint64(nv, 2154 zfs_prop_to_name(ZFS_PROP_REFRESERVATION), refresrv); 2155 if (version >= SPA_VERSION_DEDUP && 2156 zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, 2157 zfs_prop_to_name(ZFS_PROP_DEDUP), 8, 1, &dedup) == 0) { 2158 (void) nvlist_add_uint64(nv, 2159 zfs_prop_to_name(ZFS_PROP_DEDUP), dedup); 2160 } 2161 (void) zfs_set_prop_nvlist(zv->zv_name, ZPROP_SRC_LOCAL, 2162 nv, NULL); 2163 nvlist_free(nv); 2164 2165 zvol_free_extents(zv); 2166 zv->zv_flags &= ~ZVOL_DUMPIFIED; 2167 (void) dmu_free_long_range(os, ZVOL_OBJ, 0, DMU_OBJECT_END); 2168 /* wait for dmu_free_long_range to actually free the blocks */ 2169 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); 2170 tx = dmu_tx_create(os); 2171 dmu_tx_hold_bonus(tx, ZVOL_OBJ); 2172 error = dmu_tx_assign(tx, TXG_WAIT); 2173 if (error) { 2174 dmu_tx_abort(tx); 2175 return (error); 2176 } 2177 if (dmu_object_set_blocksize(os, ZVOL_OBJ, vbs, 0, tx) == 0) 2178 zv->zv_volblocksize = vbs; 2179 dmu_tx_commit(tx); 2180 2181 return (0); 2182 } 2183