xref: /titanic_51/usr/src/uts/common/fs/zfs/zrlock.c (revision 356f72340a69936724c69f2f87fffa6f5887f885)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2014, 2015 by Delphix. All rights reserved.
24  */
25 
26 /*
27  * A Zero Reference Lock (ZRL) is a reference count that can lock out new
28  * references only when the count is zero and only without waiting if the count
29  * is not already zero. It is similar to a read-write lock in that it allows
30  * multiple readers and only a single writer, but it does not allow a writer to
31  * block while waiting for readers to exit, and therefore the question of
32  * reader/writer priority is moot (no WRWANT bit). Since the equivalent of
33  * rw_enter(&lock, RW_WRITER) is disallowed and only tryenter() is allowed, it
34  * is perfectly safe for the same reader to acquire the same lock multiple
35  * times. The fact that a ZRL is reentrant for readers (through multiple calls
36  * to zrl_add()) makes it convenient for determining whether something is
37  * actively referenced without the fuss of flagging lock ownership across
38  * function calls.
39  */
40 #include <sys/zrlock.h>
41 
42 /*
43  * A ZRL can be locked only while there are zero references, so ZRL_LOCKED is
44  * treated as zero references.
45  */
46 #define	ZRL_LOCKED	-1
47 #define	ZRL_DESTROYED	-2
48 
49 void
50 zrl_init(zrlock_t *zrl)
51 {
52 	mutex_init(&zrl->zr_mtx, NULL, MUTEX_DEFAULT, NULL);
53 	zrl->zr_refcount = 0;
54 	cv_init(&zrl->zr_cv, NULL, CV_DEFAULT, NULL);
55 #ifdef	ZFS_DEBUG
56 	zrl->zr_owner = NULL;
57 	zrl->zr_caller = NULL;
58 #endif
59 }
60 
61 void
62 zrl_destroy(zrlock_t *zrl)
63 {
64 	ASSERT0(zrl->zr_refcount);
65 
66 	mutex_destroy(&zrl->zr_mtx);
67 	zrl->zr_refcount = ZRL_DESTROYED;
68 	cv_destroy(&zrl->zr_cv);
69 }
70 
71 void
72 zrl_add_impl(zrlock_t *zrl, const char *zc)
73 {
74 	uint32_t n = (uint32_t)zrl->zr_refcount;
75 
76 	while (n != ZRL_LOCKED) {
77 		uint32_t cas = atomic_cas_32(
78 		    (uint32_t *)&zrl->zr_refcount, n, n + 1);
79 		if (cas == n) {
80 			ASSERT3S((int32_t)n, >=, 0);
81 #ifdef	ZFS_DEBUG
82 			if (zrl->zr_owner == curthread) {
83 				DTRACE_PROBE2(zrlock__reentry,
84 				    zrlock_t *, zrl, uint32_t, n);
85 			}
86 			zrl->zr_owner = curthread;
87 			zrl->zr_caller = zc;
88 #endif
89 			return;
90 		}
91 		n = cas;
92 	}
93 
94 	mutex_enter(&zrl->zr_mtx);
95 	while (zrl->zr_refcount == ZRL_LOCKED) {
96 		cv_wait(&zrl->zr_cv, &zrl->zr_mtx);
97 	}
98 	ASSERT3S(zrl->zr_refcount, >=, 0);
99 	zrl->zr_refcount++;
100 #ifdef	ZFS_DEBUG
101 	zrl->zr_owner = curthread;
102 	zrl->zr_caller = zc;
103 #endif
104 	mutex_exit(&zrl->zr_mtx);
105 }
106 
107 void
108 zrl_remove(zrlock_t *zrl)
109 {
110 	uint32_t n;
111 
112 #ifdef	ZFS_DEBUG
113 	if (zrl->zr_owner == curthread) {
114 		zrl->zr_owner = NULL;
115 		zrl->zr_caller = NULL;
116 	}
117 #endif
118 	n = atomic_dec_32_nv((uint32_t *)&zrl->zr_refcount);
119 	ASSERT3S((int32_t)n, >=, 0);
120 }
121 
122 int
123 zrl_tryenter(zrlock_t *zrl)
124 {
125 	uint32_t n = (uint32_t)zrl->zr_refcount;
126 
127 	if (n == 0) {
128 		uint32_t cas = atomic_cas_32(
129 		    (uint32_t *)&zrl->zr_refcount, 0, ZRL_LOCKED);
130 		if (cas == 0) {
131 #ifdef	ZFS_DEBUG
132 			ASSERT3P(zrl->zr_owner, ==, NULL);
133 			zrl->zr_owner = curthread;
134 #endif
135 			return (1);
136 		}
137 	}
138 
139 	ASSERT3S((int32_t)n, >, ZRL_DESTROYED);
140 
141 	return (0);
142 }
143 
144 void
145 zrl_exit(zrlock_t *zrl)
146 {
147 	ASSERT3S(zrl->zr_refcount, ==, ZRL_LOCKED);
148 
149 	mutex_enter(&zrl->zr_mtx);
150 #ifdef	ZFS_DEBUG
151 	ASSERT3P(zrl->zr_owner, ==, curthread);
152 	zrl->zr_owner = NULL;
153 	membar_producer();	/* make sure the owner store happens first */
154 #endif
155 	zrl->zr_refcount = 0;
156 	cv_broadcast(&zrl->zr_cv);
157 	mutex_exit(&zrl->zr_mtx);
158 }
159 
160 int
161 zrl_refcount(zrlock_t *zrl)
162 {
163 	ASSERT3S(zrl->zr_refcount, >, ZRL_DESTROYED);
164 
165 	int n = (int)zrl->zr_refcount;
166 	return (n <= 0 ? 0 : n);
167 }
168 
169 int
170 zrl_is_zero(zrlock_t *zrl)
171 {
172 	ASSERT3S(zrl->zr_refcount, >, ZRL_DESTROYED);
173 
174 	return (zrl->zr_refcount <= 0);
175 }
176 
177 int
178 zrl_is_locked(zrlock_t *zrl)
179 {
180 	ASSERT3S(zrl->zr_refcount, >, ZRL_DESTROYED);
181 
182 	return (zrl->zr_refcount == ZRL_LOCKED);
183 }
184 
185 #ifdef	ZFS_DEBUG
186 kthread_t *
187 zrl_owner(zrlock_t *zrl)
188 {
189 	return (zrl->zr_owner);
190 }
191 #endif
192