xref: /titanic_51/usr/src/uts/common/fs/zfs/zio_checksum.c (revision 8fd04b8338ed5093ec2d1e668fa620b7de44c177)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zil.h>
31 
32 /*
33  * Checksum vectors.
34  *
35  * In the SPA, everything is checksummed.  We support checksum vectors
36  * for three distinct reasons:
37  *
38  *   1. Different kinds of data need different levels of protection.
39  *	For SPA metadata, we always want a very strong checksum.
40  *	For user data, we let users make the trade-off between speed
41  *	and checksum strength.
42  *
43  *   2. Cryptographic hash and MAC algorithms are an area of active research.
44  *	It is likely that in future hash functions will be at least as strong
45  *	as current best-of-breed, and may be substantially faster as well.
46  *	We want the ability to take advantage of these new hashes as soon as
47  *	they become available.
48  *
49  *   3. If someone develops hardware that can compute a strong hash quickly,
50  *	we want the ability to take advantage of that hardware.
51  *
52  * Of course, we don't want a checksum upgrade to invalidate existing
53  * data, so we store the checksum *function* in eight bits of the bp.
54  * This gives us room for up to 256 different checksum functions.
55  *
56  * When writing a block, we always checksum it with the latest-and-greatest
57  * checksum function of the appropriate strength.  When reading a block,
58  * we compare the expected checksum against the actual checksum, which we
59  * compute via the checksum function specified by BP_GET_CHECKSUM(bp).
60  */
61 
62 /*ARGSUSED*/
63 static void
64 zio_checksum_off(const void *buf, uint64_t size, zio_cksum_t *zcp)
65 {
66 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
67 }
68 
69 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
70 	{{NULL,			NULL},			0, 0, 0, "inherit"},
71 	{{NULL,			NULL},			0, 0, 0, "on"},
72 	{{zio_checksum_off,	zio_checksum_off},	0, 0, 0, "off"},
73 	{{zio_checksum_SHA256,	zio_checksum_SHA256},	1, 1, 0, "label"},
74 	{{zio_checksum_SHA256,	zio_checksum_SHA256},	1, 1, 0, "gang_header"},
75 	{{fletcher_2_native,	fletcher_2_byteswap},	0, 1, 0, "zilog"},
76 	{{fletcher_2_native,	fletcher_2_byteswap},	0, 0, 0, "fletcher2"},
77 	{{fletcher_4_native,	fletcher_4_byteswap},	1, 0, 0, "fletcher4"},
78 	{{zio_checksum_SHA256,	zio_checksum_SHA256},	1, 0, 1, "sha256"},
79 	{{fletcher_4_native,	fletcher_4_byteswap},	0, 1, 0, "zilog2"},
80 };
81 
82 enum zio_checksum
83 zio_checksum_select(enum zio_checksum child, enum zio_checksum parent)
84 {
85 	ASSERT(child < ZIO_CHECKSUM_FUNCTIONS);
86 	ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS);
87 	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
88 
89 	if (child == ZIO_CHECKSUM_INHERIT)
90 		return (parent);
91 
92 	if (child == ZIO_CHECKSUM_ON)
93 		return (ZIO_CHECKSUM_ON_VALUE);
94 
95 	return (child);
96 }
97 
98 enum zio_checksum
99 zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child,
100     enum zio_checksum parent)
101 {
102 	ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
103 	ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
104 	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
105 
106 	if (child == ZIO_CHECKSUM_INHERIT)
107 		return (parent);
108 
109 	if (child == ZIO_CHECKSUM_ON)
110 		return (spa_dedup_checksum(spa));
111 
112 	if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY))
113 		return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY);
114 
115 	ASSERT(zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_dedup ||
116 	    (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF);
117 
118 	return (child);
119 }
120 
121 /*
122  * Set the external verifier for a gang block based on <vdev, offset, txg>,
123  * a tuple which is guaranteed to be unique for the life of the pool.
124  */
125 static void
126 zio_checksum_gang_verifier(zio_cksum_t *zcp, blkptr_t *bp)
127 {
128 	dva_t *dva = BP_IDENTITY(bp);
129 	uint64_t txg = BP_PHYSICAL_BIRTH(bp);
130 
131 	ASSERT(BP_IS_GANG(bp));
132 
133 	ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0);
134 }
135 
136 /*
137  * Set the external verifier for a label block based on its offset.
138  * The vdev is implicit, and the txg is unknowable at pool open time --
139  * hence the logic in vdev_uberblock_load() to find the most recent copy.
140  */
141 static void
142 zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset)
143 {
144 	ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0);
145 }
146 
147 /*
148  * Generate the checksum.
149  */
150 void
151 zio_checksum_compute(zio_t *zio, enum zio_checksum checksum,
152 	void *data, uint64_t size)
153 {
154 	blkptr_t *bp = zio->io_bp;
155 	uint64_t offset = zio->io_offset;
156 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
157 	zio_cksum_t cksum;
158 
159 	ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS);
160 	ASSERT(ci->ci_func[0] != NULL);
161 
162 	if (ci->ci_eck) {
163 		zio_eck_t *eck;
164 
165 		if (checksum == ZIO_CHECKSUM_ZILOG2) {
166 			zil_chain_t *zilc = data;
167 
168 			size = P2ROUNDUP_TYPED(zilc->zc_nused, ZIL_MIN_BLKSZ,
169 			    uint64_t);
170 			eck = &zilc->zc_eck;
171 		} else {
172 			eck = (zio_eck_t *)((char *)data + size) - 1;
173 		}
174 		if (checksum == ZIO_CHECKSUM_GANG_HEADER)
175 			zio_checksum_gang_verifier(&eck->zec_cksum, bp);
176 		else if (checksum == ZIO_CHECKSUM_LABEL)
177 			zio_checksum_label_verifier(&eck->zec_cksum, offset);
178 		else
179 			bp->blk_cksum = eck->zec_cksum;
180 		eck->zec_magic = ZEC_MAGIC;
181 		ci->ci_func[0](data, size, &cksum);
182 		eck->zec_cksum = cksum;
183 	} else {
184 		ci->ci_func[0](data, size, &bp->blk_cksum);
185 	}
186 }
187 
188 int
189 zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info)
190 {
191 	blkptr_t *bp = zio->io_bp;
192 	uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum :
193 	    (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
194 	int byteswap;
195 	int error;
196 	uint64_t size = (bp == NULL ? zio->io_size :
197 	    (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp)));
198 	uint64_t offset = zio->io_offset;
199 	void *data = zio->io_data;
200 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
201 	zio_cksum_t actual_cksum, expected_cksum, verifier;
202 
203 	if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL)
204 		return (EINVAL);
205 
206 	if (ci->ci_eck) {
207 		zio_eck_t *eck;
208 
209 		if (checksum == ZIO_CHECKSUM_ZILOG2) {
210 			zil_chain_t *zilc = data;
211 			uint64_t nused;
212 
213 			eck = &zilc->zc_eck;
214 			if (eck->zec_magic == ZEC_MAGIC)
215 				nused = zilc->zc_nused;
216 			else if (eck->zec_magic == BSWAP_64(ZEC_MAGIC))
217 				nused = BSWAP_64(zilc->zc_nused);
218 			else
219 				return (ECKSUM);
220 
221 			if (nused > size)
222 				return (ECKSUM);
223 
224 			size = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t);
225 		} else {
226 			eck = (zio_eck_t *)((char *)data + size) - 1;
227 		}
228 
229 		if (checksum == ZIO_CHECKSUM_GANG_HEADER)
230 			zio_checksum_gang_verifier(&verifier, bp);
231 		else if (checksum == ZIO_CHECKSUM_LABEL)
232 			zio_checksum_label_verifier(&verifier, offset);
233 		else
234 			verifier = bp->blk_cksum;
235 
236 		byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
237 
238 		if (byteswap)
239 			byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
240 
241 		expected_cksum = eck->zec_cksum;
242 		eck->zec_cksum = verifier;
243 		ci->ci_func[byteswap](data, size, &actual_cksum);
244 		eck->zec_cksum = expected_cksum;
245 
246 		if (byteswap)
247 			byteswap_uint64_array(&expected_cksum,
248 			    sizeof (zio_cksum_t));
249 	} else {
250 		ASSERT(!BP_IS_GANG(bp));
251 		byteswap = BP_SHOULD_BYTESWAP(bp);
252 		expected_cksum = bp->blk_cksum;
253 		ci->ci_func[byteswap](data, size, &actual_cksum);
254 	}
255 
256 	info->zbc_expected = expected_cksum;
257 	info->zbc_actual = actual_cksum;
258 	info->zbc_checksum_name = ci->ci_name;
259 	info->zbc_byteswapped = byteswap;
260 	info->zbc_injected = 0;
261 	info->zbc_has_cksum = 1;
262 
263 	if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
264 		return (ECKSUM);
265 
266 	if (zio_injection_enabled && !zio->io_error &&
267 	    (error = zio_handle_fault_injection(zio, ECKSUM)) != 0) {
268 
269 		info->zbc_injected = 1;
270 		return (error);
271 	}
272 
273 	return (0);
274 }
275