1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/txg.h> 32 #include <sys/spa_impl.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio_impl.h> 35 #include <sys/zio_compress.h> 36 #include <sys/zio_checksum.h> 37 38 /* 39 * ========================================================================== 40 * I/O priority table 41 * ========================================================================== 42 */ 43 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 44 0, /* ZIO_PRIORITY_NOW */ 45 0, /* ZIO_PRIORITY_SYNC_READ */ 46 0, /* ZIO_PRIORITY_SYNC_WRITE */ 47 6, /* ZIO_PRIORITY_ASYNC_READ */ 48 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 49 4, /* ZIO_PRIORITY_FREE */ 50 0, /* ZIO_PRIORITY_CACHE_FILL */ 51 0, /* ZIO_PRIORITY_LOG_WRITE */ 52 10, /* ZIO_PRIORITY_RESILVER */ 53 20, /* ZIO_PRIORITY_SCRUB */ 54 }; 55 56 /* 57 * ========================================================================== 58 * I/O type descriptions 59 * ========================================================================== 60 */ 61 char *zio_type_name[ZIO_TYPES] = { 62 "null", "read", "write", "free", "claim", "ioctl" }; 63 64 /* At or above this size, force gang blocking - for testing */ 65 uint64_t zio_gang_bang = SPA_MAXBLOCKSIZE + 1; 66 67 /* Force an allocation failure when non-zero */ 68 uint16_t zio_zil_fail_shift = 0; 69 uint16_t zio_io_fail_shift = 0; 70 71 /* Enable/disable the write-retry logic */ 72 int zio_write_retry = 1; 73 74 /* Taskq to handle reissuing of I/Os */ 75 taskq_t *zio_taskq; 76 int zio_resume_threads = 4; 77 78 typedef struct zio_sync_pass { 79 int zp_defer_free; /* defer frees after this pass */ 80 int zp_dontcompress; /* don't compress after this pass */ 81 int zp_rewrite; /* rewrite new bps after this pass */ 82 } zio_sync_pass_t; 83 84 zio_sync_pass_t zio_sync_pass = { 85 1, /* zp_defer_free */ 86 4, /* zp_dontcompress */ 87 1, /* zp_rewrite */ 88 }; 89 90 static boolean_t zio_io_should_fail(uint16_t); 91 92 /* 93 * ========================================================================== 94 * I/O kmem caches 95 * ========================================================================== 96 */ 97 kmem_cache_t *zio_cache; 98 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 99 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 100 101 #ifdef _KERNEL 102 extern vmem_t *zio_alloc_arena; 103 #endif 104 105 /* 106 * Determine if we are allowed to issue the IO based on the 107 * pool state. If we must wait then block until we are told 108 * that we may continue. 109 */ 110 #define ZIO_ENTER(spa) { \ 111 if (spa->spa_state == POOL_STATE_IO_FAILURE) { \ 112 mutex_enter(&spa->spa_zio_lock); \ 113 while (spa->spa_state == POOL_STATE_IO_FAILURE) \ 114 cv_wait(&spa->spa_zio_cv, &spa->spa_zio_lock); \ 115 mutex_exit(&spa->spa_zio_lock); \ 116 } \ 117 } 118 119 /* 120 * An allocation zio is one that either currently has the DVA allocate 121 * stage set or will have it later in it's lifetime. 122 */ 123 #define IO_IS_ALLOCATING(zio) \ 124 ((zio)->io_orig_pipeline == ZIO_WRITE_PIPELINE || \ 125 (zio)->io_pipeline & (1U << ZIO_STAGE_DVA_ALLOCATE)) 126 127 void 128 zio_init(void) 129 { 130 size_t c; 131 vmem_t *data_alloc_arena = NULL; 132 133 #ifdef _KERNEL 134 data_alloc_arena = zio_alloc_arena; 135 #endif 136 137 zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0, 138 NULL, NULL, NULL, NULL, NULL, 0); 139 140 /* 141 * For small buffers, we want a cache for each multiple of 142 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 143 * for each quarter-power of 2. For large buffers, we want 144 * a cache for each multiple of PAGESIZE. 145 */ 146 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 147 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 148 size_t p2 = size; 149 size_t align = 0; 150 151 while (p2 & (p2 - 1)) 152 p2 &= p2 - 1; 153 154 if (size <= 4 * SPA_MINBLOCKSIZE) { 155 align = SPA_MINBLOCKSIZE; 156 } else if (P2PHASE(size, PAGESIZE) == 0) { 157 align = PAGESIZE; 158 } else if (P2PHASE(size, p2 >> 2) == 0) { 159 align = p2 >> 2; 160 } 161 162 if (align != 0) { 163 char name[36]; 164 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 165 zio_buf_cache[c] = kmem_cache_create(name, size, 166 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 167 168 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 169 zio_data_buf_cache[c] = kmem_cache_create(name, size, 170 align, NULL, NULL, NULL, NULL, data_alloc_arena, 171 KMC_NODEBUG); 172 173 dprintf("creating cache for size %5lx align %5lx\n", 174 size, align); 175 } 176 } 177 178 while (--c != 0) { 179 ASSERT(zio_buf_cache[c] != NULL); 180 if (zio_buf_cache[c - 1] == NULL) 181 zio_buf_cache[c - 1] = zio_buf_cache[c]; 182 183 ASSERT(zio_data_buf_cache[c] != NULL); 184 if (zio_data_buf_cache[c - 1] == NULL) 185 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 186 } 187 188 zio_taskq = taskq_create("zio_taskq", zio_resume_threads, 189 maxclsyspri, 50, INT_MAX, TASKQ_PREPOPULATE); 190 191 zio_inject_init(); 192 } 193 194 void 195 zio_fini(void) 196 { 197 size_t c; 198 kmem_cache_t *last_cache = NULL; 199 kmem_cache_t *last_data_cache = NULL; 200 201 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 202 if (zio_buf_cache[c] != last_cache) { 203 last_cache = zio_buf_cache[c]; 204 kmem_cache_destroy(zio_buf_cache[c]); 205 } 206 zio_buf_cache[c] = NULL; 207 208 if (zio_data_buf_cache[c] != last_data_cache) { 209 last_data_cache = zio_data_buf_cache[c]; 210 kmem_cache_destroy(zio_data_buf_cache[c]); 211 } 212 zio_data_buf_cache[c] = NULL; 213 } 214 215 taskq_destroy(zio_taskq); 216 217 kmem_cache_destroy(zio_cache); 218 219 zio_inject_fini(); 220 } 221 222 /* 223 * ========================================================================== 224 * Allocate and free I/O buffers 225 * ========================================================================== 226 */ 227 228 /* 229 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 230 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 231 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 232 * excess / transient data in-core during a crashdump. 233 */ 234 void * 235 zio_buf_alloc(size_t size) 236 { 237 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 238 239 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 240 241 return (kmem_cache_alloc(zio_buf_cache[c], KM_SLEEP)); 242 } 243 244 /* 245 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 246 * crashdump if the kernel panics. This exists so that we will limit the amount 247 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 248 * of kernel heap dumped to disk when the kernel panics) 249 */ 250 void * 251 zio_data_buf_alloc(size_t size) 252 { 253 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 254 255 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 256 257 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_SLEEP)); 258 } 259 260 void 261 zio_buf_free(void *buf, size_t size) 262 { 263 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 264 265 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 266 267 kmem_cache_free(zio_buf_cache[c], buf); 268 } 269 270 void 271 zio_data_buf_free(void *buf, size_t size) 272 { 273 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 274 275 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 276 277 kmem_cache_free(zio_data_buf_cache[c], buf); 278 } 279 280 /* 281 * ========================================================================== 282 * Push and pop I/O transform buffers 283 * ========================================================================== 284 */ 285 static void 286 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize) 287 { 288 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 289 290 zt->zt_data = data; 291 zt->zt_size = size; 292 zt->zt_bufsize = bufsize; 293 294 zt->zt_next = zio->io_transform_stack; 295 zio->io_transform_stack = zt; 296 297 zio->io_data = data; 298 zio->io_size = size; 299 } 300 301 static void 302 zio_pop_transform(zio_t *zio, void **data, uint64_t *size, uint64_t *bufsize) 303 { 304 zio_transform_t *zt = zio->io_transform_stack; 305 306 *data = zt->zt_data; 307 *size = zt->zt_size; 308 *bufsize = zt->zt_bufsize; 309 310 zio->io_transform_stack = zt->zt_next; 311 kmem_free(zt, sizeof (zio_transform_t)); 312 313 if ((zt = zio->io_transform_stack) != NULL) { 314 zio->io_data = zt->zt_data; 315 zio->io_size = zt->zt_size; 316 } 317 } 318 319 static void 320 zio_clear_transform_stack(zio_t *zio) 321 { 322 void *data; 323 uint64_t size, bufsize; 324 325 ASSERT(zio->io_transform_stack != NULL); 326 327 zio_pop_transform(zio, &data, &size, &bufsize); 328 while (zio->io_transform_stack != NULL) { 329 zio_buf_free(data, bufsize); 330 zio_pop_transform(zio, &data, &size, &bufsize); 331 } 332 } 333 334 /* 335 * ========================================================================== 336 * Create the various types of I/O (read, write, free) 337 * ========================================================================== 338 */ 339 static zio_t * 340 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 341 void *data, uint64_t size, zio_done_func_t *done, void *private, 342 zio_type_t type, int priority, int flags, uint8_t stage, uint32_t pipeline) 343 { 344 zio_t *zio; 345 346 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 347 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 348 349 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 350 bzero(zio, sizeof (zio_t)); 351 zio->io_parent = pio; 352 zio->io_spa = spa; 353 zio->io_txg = txg; 354 zio->io_flags = flags; 355 if (bp != NULL) { 356 zio->io_bp = bp; 357 zio->io_bp_copy = *bp; 358 zio->io_bp_orig = *bp; 359 if (dmu_ot[BP_GET_TYPE(bp)].ot_metadata || 360 BP_GET_LEVEL(bp) != 0) 361 zio->io_flags |= ZIO_FLAG_METADATA; 362 } 363 zio->io_done = done; 364 zio->io_private = private; 365 zio->io_type = type; 366 zio->io_priority = priority; 367 zio->io_stage = stage; 368 zio->io_pipeline = pipeline; 369 zio->io_async_stages = ZIO_ASYNC_PIPELINE_STAGES; 370 zio->io_timestamp = lbolt64; 371 if (pio != NULL) 372 zio->io_flags |= (pio->io_flags & ZIO_FLAG_METADATA); 373 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 374 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 375 zio_push_transform(zio, data, size, size); 376 377 /* 378 * Note on config lock: 379 * 380 * If CONFIG_HELD is set, then the caller already has the config 381 * lock, so we don't need it for this io. 382 * 383 * We set CONFIG_GRABBED to indicate that we have grabbed the 384 * config lock on behalf of this io, so it should be released 385 * in zio_done. 386 * 387 * Unless CONFIG_HELD is set, we will grab the config lock for 388 * any top-level (parent-less) io, *except* NULL top-level ios. 389 * The NULL top-level ios rarely have any children, so we delay 390 * grabbing the lock until the first child is added (but it is 391 * still grabbed on behalf of the top-level i/o, so additional 392 * children don't need to also grab it). This greatly reduces 393 * contention on the config lock. 394 */ 395 if (pio == NULL) { 396 if (type != ZIO_TYPE_NULL && 397 !(flags & ZIO_FLAG_CONFIG_HELD)) { 398 spa_config_enter(zio->io_spa, RW_READER, zio); 399 zio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 400 } 401 zio->io_root = zio; 402 } else { 403 zio->io_root = pio->io_root; 404 if (!(flags & ZIO_FLAG_NOBOOKMARK)) 405 zio->io_logical = pio->io_logical; 406 mutex_enter(&pio->io_lock); 407 if (pio->io_parent == NULL && 408 pio->io_type == ZIO_TYPE_NULL && 409 !(pio->io_flags & ZIO_FLAG_CONFIG_GRABBED) && 410 !(pio->io_flags & ZIO_FLAG_CONFIG_HELD)) { 411 pio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 412 spa_config_enter(zio->io_spa, RW_READER, pio); 413 } 414 if (stage < ZIO_STAGE_READY) 415 pio->io_children_notready++; 416 pio->io_children_notdone++; 417 zio->io_sibling_next = pio->io_child; 418 zio->io_sibling_prev = NULL; 419 if (pio->io_child != NULL) 420 pio->io_child->io_sibling_prev = zio; 421 pio->io_child = zio; 422 zio->io_ndvas = pio->io_ndvas; 423 mutex_exit(&pio->io_lock); 424 } 425 426 /* 427 * Save off the original state incase we need to retry later. 428 */ 429 zio->io_orig_stage = zio->io_stage; 430 zio->io_orig_pipeline = zio->io_pipeline; 431 zio->io_orig_flags = zio->io_flags; 432 433 return (zio); 434 } 435 436 static void 437 zio_reset(zio_t *zio) 438 { 439 zio_clear_transform_stack(zio); 440 441 zio->io_flags = zio->io_orig_flags; 442 zio->io_stage = zio->io_orig_stage; 443 zio->io_pipeline = zio->io_orig_pipeline; 444 zio_push_transform(zio, zio->io_data, zio->io_size, zio->io_size); 445 } 446 447 zio_t * 448 zio_null(zio_t *pio, spa_t *spa, zio_done_func_t *done, void *private, 449 int flags) 450 { 451 zio_t *zio; 452 453 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 454 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, ZIO_STAGE_OPEN, 455 ZIO_WAIT_FOR_CHILDREN_PIPELINE); 456 457 return (zio); 458 } 459 460 zio_t * 461 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags) 462 { 463 return (zio_null(NULL, spa, done, private, flags)); 464 } 465 466 zio_t * 467 zio_read(zio_t *pio, spa_t *spa, blkptr_t *bp, void *data, 468 uint64_t size, zio_done_func_t *done, void *private, 469 int priority, int flags, zbookmark_t *zb) 470 { 471 zio_t *zio; 472 473 ASSERT3U(size, ==, BP_GET_LSIZE(bp)); 474 475 /* 476 * If the user has specified that we allow I/Os to continue 477 * then attempt to satisfy the read. 478 */ 479 if (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 480 ZIO_ENTER(spa); 481 482 zio = zio_create(pio, spa, bp->blk_birth, bp, data, size, done, private, 483 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_USER, 484 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE); 485 zio->io_bookmark = *zb; 486 487 zio->io_logical = zio; 488 489 /* 490 * Work off our copy of the bp so the caller can free it. 491 */ 492 zio->io_bp = &zio->io_bp_copy; 493 494 return (zio); 495 } 496 497 zio_t * 498 zio_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 499 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 500 zio_done_func_t *ready, zio_done_func_t *done, void *private, int priority, 501 int flags, zbookmark_t *zb) 502 { 503 zio_t *zio; 504 505 ASSERT(checksum >= ZIO_CHECKSUM_OFF && 506 checksum < ZIO_CHECKSUM_FUNCTIONS); 507 508 ASSERT(compress >= ZIO_COMPRESS_OFF && 509 compress < ZIO_COMPRESS_FUNCTIONS); 510 511 ZIO_ENTER(spa); 512 513 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 514 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 515 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE); 516 517 zio->io_ready = ready; 518 519 zio->io_bookmark = *zb; 520 521 zio->io_logical = zio; 522 523 zio->io_checksum = checksum; 524 zio->io_compress = compress; 525 zio->io_ndvas = ncopies; 526 527 if (compress != ZIO_COMPRESS_OFF) 528 zio->io_async_stages |= 1U << ZIO_STAGE_WRITE_COMPRESS; 529 530 if (bp->blk_birth != txg) { 531 /* XXX the bp usually (always?) gets re-zeroed later */ 532 BP_ZERO(bp); 533 BP_SET_LSIZE(bp, size); 534 BP_SET_PSIZE(bp, size); 535 } else { 536 /* Make sure someone doesn't change their mind on overwrites */ 537 ASSERT(MIN(zio->io_ndvas + BP_IS_GANG(bp), 538 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 539 } 540 541 return (zio); 542 } 543 544 zio_t * 545 zio_rewrite(zio_t *pio, spa_t *spa, int checksum, 546 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 547 zio_done_func_t *done, void *private, int priority, int flags, 548 zbookmark_t *zb) 549 { 550 zio_t *zio; 551 552 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 553 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 554 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 555 556 zio->io_bookmark = *zb; 557 zio->io_checksum = checksum; 558 zio->io_compress = ZIO_COMPRESS_OFF; 559 560 if (pio != NULL) 561 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 562 563 return (zio); 564 } 565 566 static void 567 zio_write_allocate_ready(zio_t *zio) 568 { 569 /* Free up the previous block */ 570 if (!BP_IS_HOLE(&zio->io_bp_orig)) { 571 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg, 572 &zio->io_bp_orig, NULL, NULL)); 573 } 574 } 575 576 static zio_t * 577 zio_write_allocate(zio_t *pio, spa_t *spa, int checksum, 578 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 579 zio_done_func_t *done, void *private, int priority, int flags) 580 { 581 zio_t *zio; 582 583 BP_ZERO(bp); 584 BP_SET_LSIZE(bp, size); 585 BP_SET_PSIZE(bp, size); 586 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 587 588 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 589 ZIO_TYPE_WRITE, priority, flags, 590 ZIO_STAGE_OPEN, ZIO_WRITE_ALLOCATE_PIPELINE); 591 592 zio->io_checksum = checksum; 593 zio->io_compress = ZIO_COMPRESS_OFF; 594 zio->io_ready = zio_write_allocate_ready; 595 596 return (zio); 597 } 598 599 zio_t * 600 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 601 zio_done_func_t *done, void *private) 602 { 603 zio_t *zio; 604 605 ASSERT(!BP_IS_HOLE(bp)); 606 607 if (txg == spa->spa_syncing_txg && 608 spa->spa_sync_pass > zio_sync_pass.zp_defer_free) { 609 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 610 return (zio_null(pio, spa, NULL, NULL, 0)); 611 } 612 613 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 614 ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, ZIO_FLAG_USER, 615 ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); 616 617 zio->io_bp = &zio->io_bp_copy; 618 619 return (zio); 620 } 621 622 zio_t * 623 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 624 zio_done_func_t *done, void *private) 625 { 626 zio_t *zio; 627 628 /* 629 * A claim is an allocation of a specific block. Claims are needed 630 * to support immediate writes in the intent log. The issue is that 631 * immediate writes contain committed data, but in a txg that was 632 * *not* committed. Upon opening the pool after an unclean shutdown, 633 * the intent log claims all blocks that contain immediate write data 634 * so that the SPA knows they're in use. 635 * 636 * All claims *must* be resolved in the first txg -- before the SPA 637 * starts allocating blocks -- so that nothing is allocated twice. 638 */ 639 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 640 ASSERT3U(spa_first_txg(spa), <=, txg); 641 642 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 643 ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 0, 644 ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 645 646 zio->io_bp = &zio->io_bp_copy; 647 648 return (zio); 649 } 650 651 zio_t * 652 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 653 zio_done_func_t *done, void *private, int priority, int flags) 654 { 655 zio_t *zio; 656 int c; 657 658 if (vd->vdev_children == 0) { 659 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 660 ZIO_TYPE_IOCTL, priority, flags, 661 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 662 663 zio->io_vd = vd; 664 zio->io_cmd = cmd; 665 } else { 666 zio = zio_null(pio, spa, NULL, NULL, flags); 667 668 for (c = 0; c < vd->vdev_children; c++) 669 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 670 done, private, priority, flags)); 671 } 672 673 return (zio); 674 } 675 676 static void 677 zio_phys_bp_init(vdev_t *vd, blkptr_t *bp, uint64_t offset, uint64_t size, 678 int checksum, boolean_t labels) 679 { 680 ASSERT(vd->vdev_children == 0); 681 682 ASSERT(size <= SPA_MAXBLOCKSIZE); 683 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 684 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 685 686 #ifdef ZFS_DEBUG 687 if (labels) { 688 ASSERT(offset + size <= VDEV_LABEL_START_SIZE || 689 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 690 } 691 #endif 692 ASSERT3U(offset + size, <=, vd->vdev_psize); 693 694 BP_ZERO(bp); 695 696 BP_SET_LSIZE(bp, size); 697 BP_SET_PSIZE(bp, size); 698 699 BP_SET_CHECKSUM(bp, checksum); 700 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 701 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 702 703 if (checksum != ZIO_CHECKSUM_OFF) 704 ZIO_SET_CHECKSUM(&bp->blk_cksum, offset, 0, 0, 0); 705 } 706 707 zio_t * 708 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 709 void *data, int checksum, zio_done_func_t *done, void *private, 710 int priority, int flags, boolean_t labels) 711 { 712 zio_t *zio; 713 blkptr_t blk; 714 715 ZIO_ENTER(vd->vdev_spa); 716 717 zio_phys_bp_init(vd, &blk, offset, size, checksum, labels); 718 719 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 720 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, 721 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 722 723 zio->io_vd = vd; 724 zio->io_offset = offset; 725 726 /* 727 * Work off our copy of the bp so the caller can free it. 728 */ 729 zio->io_bp = &zio->io_bp_copy; 730 731 return (zio); 732 } 733 734 zio_t * 735 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 736 void *data, int checksum, zio_done_func_t *done, void *private, 737 int priority, int flags, boolean_t labels) 738 { 739 zio_block_tail_t *zbt; 740 void *wbuf; 741 zio_t *zio; 742 blkptr_t blk; 743 744 ZIO_ENTER(vd->vdev_spa); 745 746 zio_phys_bp_init(vd, &blk, offset, size, checksum, labels); 747 748 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 749 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, 750 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 751 752 zio->io_vd = vd; 753 zio->io_offset = offset; 754 755 zio->io_bp = &zio->io_bp_copy; 756 zio->io_checksum = checksum; 757 758 if (zio_checksum_table[checksum].ci_zbt) { 759 /* 760 * zbt checksums are necessarily destructive -- they modify 761 * one word of the write buffer to hold the verifier/checksum. 762 * Therefore, we must make a local copy in case the data is 763 * being written to multiple places. 764 */ 765 wbuf = zio_buf_alloc(size); 766 bcopy(data, wbuf, size); 767 zio_push_transform(zio, wbuf, size, size); 768 769 zbt = (zio_block_tail_t *)((char *)wbuf + size) - 1; 770 zbt->zbt_cksum = blk.blk_cksum; 771 } 772 773 return (zio); 774 } 775 776 /* 777 * Create a child I/O to do some work for us. It has no associated bp. 778 */ 779 zio_t * 780 zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 781 void *data, uint64_t size, int type, int priority, int flags, 782 zio_done_func_t *done, void *private) 783 { 784 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE; 785 zio_t *cio; 786 787 if (type == ZIO_TYPE_READ && bp != NULL) { 788 /* 789 * If we have the bp, then the child should perform the 790 * checksum and the parent need not. This pushes error 791 * detection as close to the leaves as possible and 792 * eliminates redundant checksums in the interior nodes. 793 */ 794 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY; 795 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 796 } 797 798 cio = zio_create(zio, zio->io_spa, zio->io_txg, bp, data, size, 799 done, private, type, priority, 800 (zio->io_flags & ZIO_FLAG_VDEV_INHERIT) | ZIO_FLAG_CANFAIL | flags, 801 ZIO_STAGE_VDEV_IO_START - 1, pipeline); 802 803 cio->io_vd = vd; 804 cio->io_offset = offset; 805 806 return (cio); 807 } 808 809 /* 810 * ========================================================================== 811 * Initiate I/O, either sync or async 812 * ========================================================================== 813 */ 814 int 815 zio_wait(zio_t *zio) 816 { 817 int error; 818 819 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 820 821 zio->io_waiter = curthread; 822 823 zio_next_stage_async(zio); 824 825 mutex_enter(&zio->io_lock); 826 while (zio->io_stalled != ZIO_STAGE_DONE) 827 cv_wait(&zio->io_cv, &zio->io_lock); 828 mutex_exit(&zio->io_lock); 829 830 error = zio->io_error; 831 mutex_destroy(&zio->io_lock); 832 cv_destroy(&zio->io_cv); 833 kmem_cache_free(zio_cache, zio); 834 835 return (error); 836 } 837 838 void 839 zio_nowait(zio_t *zio) 840 { 841 zio_next_stage_async(zio); 842 } 843 844 /* 845 * ========================================================================== 846 * I/O pipeline interlocks: parent/child dependency scoreboarding 847 * ========================================================================== 848 */ 849 static void 850 zio_wait_for_children(zio_t *zio, uint32_t stage, uint64_t *countp) 851 { 852 mutex_enter(&zio->io_lock); 853 if (*countp == 0) { 854 ASSERT(zio->io_stalled == 0); 855 mutex_exit(&zio->io_lock); 856 zio_next_stage(zio); 857 } else { 858 zio->io_stalled = stage; 859 mutex_exit(&zio->io_lock); 860 } 861 } 862 863 static void 864 zio_notify_parent(zio_t *zio, uint32_t stage, uint64_t *countp) 865 { 866 zio_t *pio = zio->io_parent; 867 868 mutex_enter(&pio->io_lock); 869 if (pio->io_error == 0 && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 870 pio->io_error = zio->io_error; 871 ASSERT3U(*countp, >, 0); 872 if (--*countp == 0 && pio->io_stalled == stage) { 873 pio->io_stalled = 0; 874 mutex_exit(&pio->io_lock); 875 zio_next_stage_async(pio); 876 } else { 877 mutex_exit(&pio->io_lock); 878 } 879 } 880 881 static void 882 zio_wait_children_ready(zio_t *zio) 883 { 884 zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_READY, 885 &zio->io_children_notready); 886 } 887 888 void 889 zio_wait_children_done(zio_t *zio) 890 { 891 zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_DONE, 892 &zio->io_children_notdone); 893 } 894 895 static void 896 zio_read_init(zio_t *zio) 897 { 898 if (BP_GET_COMPRESS(zio->io_bp) != ZIO_COMPRESS_OFF) { 899 uint64_t csize = BP_GET_PSIZE(zio->io_bp); 900 void *cbuf = zio_buf_alloc(csize); 901 902 zio_push_transform(zio, cbuf, csize, csize); 903 zio->io_pipeline |= 1U << ZIO_STAGE_READ_DECOMPRESS; 904 } 905 906 if (BP_IS_GANG(zio->io_bp)) { 907 uint64_t gsize = SPA_GANGBLOCKSIZE; 908 void *gbuf = zio_buf_alloc(gsize); 909 910 zio_push_transform(zio, gbuf, gsize, gsize); 911 zio->io_pipeline |= 1U << ZIO_STAGE_READ_GANG_MEMBERS; 912 } 913 zio_next_stage(zio); 914 } 915 916 static void 917 zio_ready(zio_t *zio) 918 { 919 zio_t *pio = zio->io_parent; 920 921 if (zio->io_ready) 922 zio->io_ready(zio); 923 924 if (pio != NULL) 925 zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_READY, 926 &pio->io_children_notready); 927 928 if (zio->io_bp) 929 zio->io_bp_copy = *zio->io_bp; 930 931 zio_next_stage(zio); 932 } 933 934 static void 935 zio_vdev_retry_io(zio_t *zio) 936 { 937 zio_t *pio = zio->io_parent; 938 939 /* 940 * Preserve the failed bp so that the io_ready() callback can 941 * update the accounting accordingly. The callback will also be 942 * responsible for freeing the previously allocated block, if one 943 * exists. 944 */ 945 zio->io_bp_orig = *zio->io_bp; 946 947 /* 948 * We must zero out the old DVA and blk_birth before reallocating 949 * the bp. 950 */ 951 BP_ZERO_DVAS(zio->io_bp); 952 zio_reset(zio); 953 954 if (pio) { 955 /* 956 * Let the parent know that we will 957 * re-alloc the write (=> new bp info). 958 */ 959 mutex_enter(&pio->io_lock); 960 pio->io_children_notready++; 961 962 /* 963 * If the parent I/O is still in the open stage, then 964 * don't bother telling it to retry since it hasn't 965 * progressed far enough for it to care. 966 */ 967 if (pio->io_stage > ZIO_STAGE_OPEN && IO_IS_ALLOCATING(pio)) 968 pio->io_flags |= ZIO_FLAG_WRITE_RETRY; 969 970 ASSERT(pio->io_stage <= ZIO_STAGE_WAIT_CHILDREN_DONE); 971 mutex_exit(&pio->io_lock); 972 } 973 974 /* 975 * We are getting ready to process the retry request so clear 976 * the flag and the zio's current error status. 977 */ 978 zio->io_flags &= ~ZIO_FLAG_WRITE_RETRY; 979 zio->io_error = 0; 980 zio_next_stage_async(zio); 981 } 982 983 int 984 zio_vdev_resume_io(spa_t *spa) 985 { 986 zio_t *zio; 987 988 mutex_enter(&spa->spa_zio_lock); 989 990 /* 991 * Probe all of vdevs that have experienced an I/O error. 992 * If we are still unable to verify the integrity of the vdev 993 * then we prevent the resume from proceeeding. 994 */ 995 for (zio = list_head(&spa->spa_zio_list); zio != NULL; 996 zio = list_next(&spa->spa_zio_list, zio)) { 997 int error = 0; 998 999 /* We only care about I/Os that must succeed */ 1000 if (zio->io_vd == NULL || zio->io_flags & ZIO_FLAG_CANFAIL) 1001 continue; 1002 error = vdev_probe(zio->io_vd); 1003 if (error) { 1004 mutex_exit(&spa->spa_zio_lock); 1005 return (error); 1006 } 1007 } 1008 1009 /* 1010 * Clear the vdev stats so that I/O can flow. 1011 */ 1012 vdev_clear(spa, NULL, B_FALSE); 1013 1014 spa->spa_state = POOL_STATE_ACTIVE; 1015 while ((zio = list_head(&spa->spa_zio_list)) != NULL) { 1016 list_remove(&spa->spa_zio_list, zio); 1017 zio->io_error = 0; 1018 1019 /* 1020 * If we are resuming an allocating I/O then we force it 1021 * to retry and let it resume operation where it left off. 1022 * Otherwise, go back to the ready stage and pick up from 1023 * there. 1024 */ 1025 if (zio_write_retry && IO_IS_ALLOCATING(zio)) { 1026 zio->io_flags |= ZIO_FLAG_WRITE_RETRY; 1027 zio->io_stage--; 1028 } else { 1029 zio->io_stage = ZIO_STAGE_READY; 1030 } 1031 1032 (void) taskq_dispatch(zio_taskq, zio_resubmit_stage_async, 1033 zio, TQ_SLEEP); 1034 } 1035 mutex_exit(&spa->spa_zio_lock); 1036 1037 /* 1038 * Wait for the taskqs to finish and recheck the pool state since 1039 * it's possible that a resumed I/O has failed again. 1040 */ 1041 taskq_wait(zio_taskq); 1042 if (spa_state(spa) == POOL_STATE_IO_FAILURE) 1043 return (EIO); 1044 1045 mutex_enter(&spa->spa_zio_lock); 1046 cv_broadcast(&spa->spa_zio_cv); 1047 mutex_exit(&spa->spa_zio_lock); 1048 1049 return (0); 1050 } 1051 1052 static void 1053 zio_vdev_suspend_io(zio_t *zio) 1054 { 1055 spa_t *spa = zio->io_spa; 1056 1057 /* 1058 * We've experienced an unrecoverable failure so 1059 * set the pool state accordingly and queue all 1060 * failed IOs. 1061 */ 1062 spa->spa_state = POOL_STATE_IO_FAILURE; 1063 1064 mutex_enter(&spa->spa_zio_lock); 1065 list_insert_tail(&spa->spa_zio_list, zio); 1066 1067 #ifndef _KERNEL 1068 /* Used to notify ztest that the pool has suspended */ 1069 cv_broadcast(&spa->spa_zio_cv); 1070 #endif 1071 mutex_exit(&spa->spa_zio_lock); 1072 } 1073 1074 static void 1075 zio_assess(zio_t *zio) 1076 { 1077 spa_t *spa = zio->io_spa; 1078 blkptr_t *bp = zio->io_bp; 1079 vdev_t *vd = zio->io_vd; 1080 1081 ASSERT(zio->io_children_notready == 0); 1082 ASSERT(zio->io_children_notdone == 0); 1083 1084 if (bp != NULL) { 1085 ASSERT(bp->blk_pad[0] == 0); 1086 ASSERT(bp->blk_pad[1] == 0); 1087 ASSERT(bp->blk_pad[2] == 0); 1088 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0); 1089 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 1090 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 1091 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 1092 if (zio->io_ndvas != 0) 1093 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 1094 ASSERT(BP_COUNT_GANG(bp) == 0 || 1095 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 1096 } 1097 } 1098 1099 /* 1100 * Some child I/O has indicated that a retry is necessary, so 1101 * we set an error on the I/O and let the logic below do the 1102 * rest. 1103 */ 1104 if (zio->io_flags & ZIO_FLAG_WRITE_RETRY) 1105 zio->io_error = ERESTART; 1106 1107 if (vd != NULL) 1108 vdev_stat_update(zio); 1109 1110 if (zio->io_error) { 1111 /* 1112 * If this I/O is attached to a particular vdev, 1113 * generate an error message describing the I/O failure 1114 * at the block level. We ignore these errors if the 1115 * device is currently unavailable. 1116 */ 1117 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 1118 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 1119 1120 if ((zio->io_error == EIO || 1121 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && 1122 zio->io_logical == zio) { 1123 /* 1124 * For root I/O requests, tell the SPA to log the error 1125 * appropriately. Also, generate a logical data 1126 * ereport. 1127 */ 1128 spa_log_error(spa, zio); 1129 1130 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 1131 0, 0); 1132 } 1133 1134 /* 1135 * If we are an allocating I/O then we attempt to reissue 1136 * the I/O on another vdev unless the pool is out of space. 1137 * We handle this condition based on the spa's failmode 1138 * property. 1139 */ 1140 if (zio_write_retry && zio->io_error != ENOSPC && 1141 IO_IS_ALLOCATING(zio)) { 1142 zio_vdev_retry_io(zio); 1143 return; 1144 } 1145 ASSERT(!(zio->io_flags & ZIO_FLAG_WRITE_RETRY)); 1146 1147 /* 1148 * For I/O requests that cannot fail, we carry out 1149 * the requested behavior based on the failmode pool 1150 * property. 1151 * 1152 * XXX - Need to differentiate between an ENOSPC as 1153 * a result of vdev failures vs. a full pool. 1154 */ 1155 if (!(zio->io_flags & ZIO_FLAG_CANFAIL)) { 1156 char *blkbuf; 1157 1158 #ifdef ZFS_DEBUG 1159 blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_NOSLEEP); 1160 if (blkbuf) { 1161 sprintf_blkptr(blkbuf, BP_SPRINTF_LEN, 1162 bp ? bp : &zio->io_bp_copy); 1163 } 1164 cmn_err(CE_WARN, "ZFS: %s (%s on %s off %llx: zio %p " 1165 "%s): error %d", zio->io_error == ECKSUM ? 1166 "bad checksum" : "I/O failure", 1167 zio_type_name[zio->io_type], 1168 vdev_description(vd), 1169 (u_longlong_t)zio->io_offset, 1170 (void *)zio, blkbuf ? blkbuf : "", zio->io_error); 1171 #endif 1172 1173 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) { 1174 fm_panic("Pool '%s' has encountered an " 1175 "uncorrectable I/O failure and the " 1176 "failure mode property for this pool " 1177 "is set to panic.", spa_name(spa)); 1178 } else { 1179 cmn_err(CE_WARN, "Pool '%s' has encountered " 1180 "an uncorrectable I/O error. Manual " 1181 "intervention is required.", 1182 spa_name(spa)); 1183 zio_vdev_suspend_io(zio); 1184 } 1185 return; 1186 } 1187 } 1188 ASSERT(!(zio->io_flags & ZIO_FLAG_WRITE_RETRY)); 1189 ASSERT(zio->io_children_notready == 0); 1190 zio_next_stage(zio); 1191 } 1192 1193 static void 1194 zio_done(zio_t *zio) 1195 { 1196 zio_t *pio = zio->io_parent; 1197 spa_t *spa = zio->io_spa; 1198 1199 ASSERT(zio->io_children_notready == 0); 1200 ASSERT(zio->io_children_notdone == 0); 1201 1202 zio_clear_transform_stack(zio); 1203 1204 if (zio->io_done) 1205 zio->io_done(zio); 1206 1207 ASSERT(zio->io_delegate_list == NULL); 1208 ASSERT(zio->io_delegate_next == NULL); 1209 1210 if (pio != NULL) { 1211 zio_t *next, *prev; 1212 1213 mutex_enter(&pio->io_lock); 1214 next = zio->io_sibling_next; 1215 prev = zio->io_sibling_prev; 1216 if (next != NULL) 1217 next->io_sibling_prev = prev; 1218 if (prev != NULL) 1219 prev->io_sibling_next = next; 1220 if (pio->io_child == zio) 1221 pio->io_child = next; 1222 mutex_exit(&pio->io_lock); 1223 1224 zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_DONE, 1225 &pio->io_children_notdone); 1226 } 1227 1228 /* 1229 * Note: this I/O is now done, and will shortly be freed, so there is no 1230 * need to clear this (or any other) flag. 1231 */ 1232 if (zio->io_flags & ZIO_FLAG_CONFIG_GRABBED) 1233 spa_config_exit(spa, zio); 1234 1235 if (zio->io_waiter != NULL) { 1236 mutex_enter(&zio->io_lock); 1237 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1238 zio->io_stalled = zio->io_stage; 1239 cv_broadcast(&zio->io_cv); 1240 mutex_exit(&zio->io_lock); 1241 } else { 1242 mutex_destroy(&zio->io_lock); 1243 cv_destroy(&zio->io_cv); 1244 kmem_cache_free(zio_cache, zio); 1245 } 1246 } 1247 1248 /* 1249 * ========================================================================== 1250 * Compression support 1251 * ========================================================================== 1252 */ 1253 static void 1254 zio_write_compress(zio_t *zio) 1255 { 1256 int compress = zio->io_compress; 1257 blkptr_t *bp = zio->io_bp; 1258 void *cbuf; 1259 uint64_t lsize = zio->io_size; 1260 uint64_t csize = lsize; 1261 uint64_t cbufsize = 0; 1262 int pass; 1263 1264 if (bp->blk_birth == zio->io_txg) { 1265 /* 1266 * We're rewriting an existing block, which means we're 1267 * working on behalf of spa_sync(). For spa_sync() to 1268 * converge, it must eventually be the case that we don't 1269 * have to allocate new blocks. But compression changes 1270 * the blocksize, which forces a reallocate, and makes 1271 * convergence take longer. Therefore, after the first 1272 * few passes, stop compressing to ensure convergence. 1273 */ 1274 pass = spa_sync_pass(zio->io_spa); 1275 if (pass > zio_sync_pass.zp_dontcompress) 1276 compress = ZIO_COMPRESS_OFF; 1277 } else { 1278 ASSERT(BP_IS_HOLE(bp)); 1279 pass = 1; 1280 } 1281 1282 if (compress != ZIO_COMPRESS_OFF) 1283 if (!zio_compress_data(compress, zio->io_data, zio->io_size, 1284 &cbuf, &csize, &cbufsize)) 1285 compress = ZIO_COMPRESS_OFF; 1286 1287 if (compress != ZIO_COMPRESS_OFF && csize != 0) 1288 zio_push_transform(zio, cbuf, csize, cbufsize); 1289 1290 /* 1291 * The final pass of spa_sync() must be all rewrites, but the first 1292 * few passes offer a trade-off: allocating blocks defers convergence, 1293 * but newly allocated blocks are sequential, so they can be written 1294 * to disk faster. Therefore, we allow the first few passes of 1295 * spa_sync() to reallocate new blocks, but force rewrites after that. 1296 * There should only be a handful of blocks after pass 1 in any case. 1297 */ 1298 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize && 1299 pass > zio_sync_pass.zp_rewrite) { 1300 ASSERT(csize != 0); 1301 BP_SET_LSIZE(bp, lsize); 1302 BP_SET_COMPRESS(bp, compress); 1303 zio->io_pipeline = ZIO_REWRITE_PIPELINE; 1304 } else { 1305 if (bp->blk_birth == zio->io_txg) 1306 BP_ZERO(bp); 1307 if (csize == 0) { 1308 BP_ZERO(bp); 1309 zio->io_pipeline = ZIO_WAIT_FOR_CHILDREN_PIPELINE; 1310 } else { 1311 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1312 BP_SET_LSIZE(bp, lsize); 1313 BP_SET_PSIZE(bp, csize); 1314 BP_SET_COMPRESS(bp, compress); 1315 zio->io_pipeline = ZIO_WRITE_ALLOCATE_PIPELINE; 1316 } 1317 } 1318 1319 zio_next_stage(zio); 1320 } 1321 1322 static void 1323 zio_read_decompress(zio_t *zio) 1324 { 1325 blkptr_t *bp = zio->io_bp; 1326 void *data; 1327 uint64_t size; 1328 uint64_t bufsize; 1329 int compress = BP_GET_COMPRESS(bp); 1330 1331 ASSERT(compress != ZIO_COMPRESS_OFF); 1332 1333 zio_pop_transform(zio, &data, &size, &bufsize); 1334 1335 if (zio_decompress_data(compress, data, size, 1336 zio->io_data, zio->io_size)) 1337 zio->io_error = EIO; 1338 1339 zio_buf_free(data, bufsize); 1340 1341 zio_next_stage(zio); 1342 } 1343 1344 /* 1345 * ========================================================================== 1346 * Gang block support 1347 * ========================================================================== 1348 */ 1349 static void 1350 zio_gang_pipeline(zio_t *zio) 1351 { 1352 /* 1353 * By default, the pipeline assumes that we're dealing with a gang 1354 * block. If we're not, strip out any gang-specific stages. 1355 */ 1356 if (!BP_IS_GANG(zio->io_bp)) 1357 zio->io_pipeline &= ~ZIO_GANG_STAGES; 1358 1359 zio_next_stage(zio); 1360 } 1361 1362 static void 1363 zio_gang_byteswap(zio_t *zio) 1364 { 1365 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1366 1367 if (BP_SHOULD_BYTESWAP(zio->io_bp)) 1368 byteswap_uint64_array(zio->io_data, zio->io_size); 1369 } 1370 1371 static void 1372 zio_get_gang_header(zio_t *zio) 1373 { 1374 blkptr_t *bp = zio->io_bp; 1375 uint64_t gsize = SPA_GANGBLOCKSIZE; 1376 void *gbuf = zio_buf_alloc(gsize); 1377 1378 ASSERT(BP_IS_GANG(bp)); 1379 1380 zio_push_transform(zio, gbuf, gsize, gsize); 1381 1382 zio_nowait(zio_create(zio, zio->io_spa, bp->blk_birth, bp, gbuf, gsize, 1383 NULL, NULL, ZIO_TYPE_READ, zio->io_priority, 1384 zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1385 ZIO_STAGE_OPEN, ZIO_READ_GANG_PIPELINE)); 1386 1387 zio_wait_children_done(zio); 1388 } 1389 1390 static void 1391 zio_read_gang_members(zio_t *zio) 1392 { 1393 zio_gbh_phys_t *gbh; 1394 uint64_t gsize, gbufsize, loff, lsize; 1395 int i; 1396 1397 ASSERT(BP_IS_GANG(zio->io_bp)); 1398 1399 zio_gang_byteswap(zio); 1400 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1401 1402 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1403 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1404 lsize = BP_GET_PSIZE(gbp); 1405 1406 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1407 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1408 ASSERT3U(loff + lsize, <=, zio->io_size); 1409 ASSERT(i < SPA_GBH_NBLKPTRS); 1410 ASSERT(!BP_IS_HOLE(gbp)); 1411 1412 zio_nowait(zio_read(zio, zio->io_spa, gbp, 1413 (char *)zio->io_data + loff, lsize, NULL, NULL, 1414 zio->io_priority, zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1415 &zio->io_bookmark)); 1416 } 1417 1418 zio_buf_free(gbh, gbufsize); 1419 zio_wait_children_done(zio); 1420 } 1421 1422 static void 1423 zio_rewrite_gang_members(zio_t *zio) 1424 { 1425 zio_gbh_phys_t *gbh; 1426 uint64_t gsize, gbufsize, loff, lsize; 1427 int i; 1428 1429 ASSERT(BP_IS_GANG(zio->io_bp)); 1430 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1431 1432 zio_gang_byteswap(zio); 1433 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1434 1435 ASSERT(gsize == gbufsize); 1436 1437 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1438 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1439 lsize = BP_GET_PSIZE(gbp); 1440 1441 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1442 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1443 ASSERT3U(loff + lsize, <=, zio->io_size); 1444 ASSERT(i < SPA_GBH_NBLKPTRS); 1445 ASSERT(!BP_IS_HOLE(gbp)); 1446 1447 zio_nowait(zio_rewrite(zio, zio->io_spa, zio->io_checksum, 1448 zio->io_txg, gbp, (char *)zio->io_data + loff, lsize, 1449 NULL, NULL, zio->io_priority, zio->io_flags, 1450 &zio->io_bookmark)); 1451 } 1452 1453 zio_push_transform(zio, gbh, gsize, gbufsize); 1454 zio_wait_children_ready(zio); 1455 } 1456 1457 static void 1458 zio_free_gang_members(zio_t *zio) 1459 { 1460 zio_gbh_phys_t *gbh; 1461 uint64_t gsize, gbufsize; 1462 int i; 1463 1464 ASSERT(BP_IS_GANG(zio->io_bp)); 1465 1466 zio_gang_byteswap(zio); 1467 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1468 1469 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1470 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1471 1472 if (BP_IS_HOLE(gbp)) 1473 continue; 1474 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg, 1475 gbp, NULL, NULL)); 1476 } 1477 1478 zio_buf_free(gbh, gbufsize); 1479 zio_next_stage(zio); 1480 } 1481 1482 static void 1483 zio_claim_gang_members(zio_t *zio) 1484 { 1485 zio_gbh_phys_t *gbh; 1486 uint64_t gsize, gbufsize; 1487 int i; 1488 1489 ASSERT(BP_IS_GANG(zio->io_bp)); 1490 1491 zio_gang_byteswap(zio); 1492 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1493 1494 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1495 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1496 if (BP_IS_HOLE(gbp)) 1497 continue; 1498 zio_nowait(zio_claim(zio, zio->io_spa, zio->io_txg, 1499 gbp, NULL, NULL)); 1500 } 1501 1502 zio_buf_free(gbh, gbufsize); 1503 zio_next_stage(zio); 1504 } 1505 1506 static void 1507 zio_write_allocate_gang_member_done(zio_t *zio) 1508 { 1509 zio_t *pio = zio->io_parent; 1510 dva_t *cdva = zio->io_bp->blk_dva; 1511 dva_t *pdva = pio->io_bp->blk_dva; 1512 uint64_t asize; 1513 int d; 1514 1515 ASSERT3U(pio->io_ndvas, ==, zio->io_ndvas); 1516 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1517 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(zio->io_bp)); 1518 ASSERT3U(pio->io_ndvas, <=, BP_GET_NDVAS(pio->io_bp)); 1519 1520 mutex_enter(&pio->io_lock); 1521 for (d = 0; d < BP_GET_NDVAS(pio->io_bp); d++) { 1522 ASSERT(DVA_GET_GANG(&pdva[d])); 1523 asize = DVA_GET_ASIZE(&pdva[d]); 1524 asize += DVA_GET_ASIZE(&cdva[d]); 1525 DVA_SET_ASIZE(&pdva[d], asize); 1526 } 1527 mutex_exit(&pio->io_lock); 1528 } 1529 1530 static int 1531 zio_write_allocate_gang_members(zio_t *zio, metaslab_class_t *mc) 1532 { 1533 blkptr_t *bp = zio->io_bp; 1534 dva_t *dva = bp->blk_dva; 1535 spa_t *spa = zio->io_spa; 1536 zio_gbh_phys_t *gbh; 1537 uint64_t txg = zio->io_txg; 1538 uint64_t resid = zio->io_size; 1539 uint64_t maxalloc = P2ROUNDUP(zio->io_size >> 1, SPA_MINBLOCKSIZE); 1540 uint64_t gsize, loff, lsize; 1541 uint32_t gbps_left; 1542 int ndvas = zio->io_ndvas; 1543 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa)); 1544 int error; 1545 int i, d; 1546 1547 gsize = SPA_GANGBLOCKSIZE; 1548 gbps_left = SPA_GBH_NBLKPTRS; 1549 1550 error = metaslab_alloc(spa, mc, gsize, bp, gbh_ndvas, txg, NULL, 1551 B_FALSE); 1552 if (error) 1553 return (error); 1554 1555 for (d = 0; d < gbh_ndvas; d++) 1556 DVA_SET_GANG(&dva[d], 1); 1557 1558 bp->blk_birth = txg; 1559 1560 gbh = zio_buf_alloc(gsize); 1561 bzero(gbh, gsize); 1562 1563 /* We need to test multi-level gang blocks */ 1564 if (maxalloc >= zio_gang_bang && (lbolt & 0x1) == 0) 1565 maxalloc = MAX(maxalloc >> 2, SPA_MINBLOCKSIZE); 1566 1567 for (loff = 0, i = 0; loff != zio->io_size; 1568 loff += lsize, resid -= lsize, gbps_left--, i++) { 1569 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1570 dva = gbp->blk_dva; 1571 1572 ASSERT(gbps_left != 0); 1573 maxalloc = MIN(maxalloc, resid); 1574 1575 while (resid <= maxalloc * gbps_left) { 1576 error = metaslab_alloc(spa, mc, maxalloc, gbp, ndvas, 1577 txg, bp, B_FALSE); 1578 if (error == 0) 1579 break; 1580 ASSERT3U(error, ==, ENOSPC); 1581 /* XXX - free up previous allocations? */ 1582 if (maxalloc == SPA_MINBLOCKSIZE) 1583 return (error); 1584 maxalloc = P2ROUNDUP(maxalloc >> 1, SPA_MINBLOCKSIZE); 1585 } 1586 1587 if (resid <= maxalloc * gbps_left) { 1588 lsize = maxalloc; 1589 BP_SET_LSIZE(gbp, lsize); 1590 BP_SET_PSIZE(gbp, lsize); 1591 BP_SET_COMPRESS(gbp, ZIO_COMPRESS_OFF); 1592 gbp->blk_birth = txg; 1593 zio_nowait(zio_rewrite(zio, spa, 1594 zio->io_checksum, txg, gbp, 1595 (char *)zio->io_data + loff, lsize, 1596 zio_write_allocate_gang_member_done, NULL, 1597 zio->io_priority, 1598 zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1599 &zio->io_bookmark)); 1600 } else { 1601 lsize = P2ROUNDUP(resid / gbps_left, SPA_MINBLOCKSIZE); 1602 ASSERT(lsize != SPA_MINBLOCKSIZE); 1603 zio_nowait(zio_write_allocate(zio, spa, 1604 zio->io_checksum, txg, gbp, 1605 (char *)zio->io_data + loff, lsize, 1606 zio_write_allocate_gang_member_done, NULL, 1607 zio->io_priority, 1608 zio->io_flags & ZIO_FLAG_GANG_INHERIT)); 1609 } 1610 } 1611 1612 ASSERT(resid == 0 && loff == zio->io_size); 1613 1614 zio->io_pipeline |= 1U << ZIO_STAGE_GANG_CHECKSUM_GENERATE; 1615 1616 zio_push_transform(zio, gbh, gsize, gsize); 1617 /* 1618 * As much as we'd like this to be zio_wait_children_ready(), 1619 * updating our ASIZE doesn't happen until the io_done callback, 1620 * so we have to wait for that to finish in order for our BP 1621 * to be stable. 1622 */ 1623 zio_wait_children_done(zio); 1624 return (0); 1625 } 1626 1627 /* 1628 * ========================================================================== 1629 * Allocate and free blocks 1630 * ========================================================================== 1631 */ 1632 static void 1633 zio_dva_allocate(zio_t *zio) 1634 { 1635 spa_t *spa = zio->io_spa; 1636 metaslab_class_t *mc = spa->spa_normal_class; 1637 blkptr_t *bp = zio->io_bp; 1638 int error; 1639 1640 ASSERT(BP_IS_HOLE(bp)); 1641 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1642 ASSERT3U(zio->io_ndvas, >, 0); 1643 ASSERT3U(zio->io_ndvas, <=, spa_max_replication(spa)); 1644 1645 /* For testing, make some blocks above a certain size be gang blocks */ 1646 if (zio->io_size >= zio_gang_bang && (lbolt & 0x3) == 0) { 1647 error = zio_write_allocate_gang_members(zio, mc); 1648 if (error) 1649 zio->io_error = error; 1650 return; 1651 } 1652 1653 /* 1654 * For testing purposes, we force I/Os to retry. We don't allow 1655 * retries beyond the first pass since those I/Os are non-allocating 1656 * writes. 1657 */ 1658 if (zio_io_fail_shift && 1659 spa_sync_pass(zio->io_spa) <= zio_sync_pass.zp_rewrite && 1660 zio_io_should_fail(zio_io_fail_shift)) 1661 zio->io_flags |= ZIO_FLAG_WRITE_RETRY; 1662 1663 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1664 1665 error = metaslab_alloc(spa, mc, zio->io_size, bp, zio->io_ndvas, 1666 zio->io_txg, NULL, B_FALSE); 1667 1668 if (error == 0) { 1669 bp->blk_birth = zio->io_txg; 1670 } else if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 1671 error = zio_write_allocate_gang_members(zio, mc); 1672 if (error == 0) 1673 return; 1674 zio->io_error = error; 1675 } else { 1676 zio->io_error = error; 1677 } 1678 zio_next_stage(zio); 1679 } 1680 1681 static void 1682 zio_dva_free(zio_t *zio) 1683 { 1684 blkptr_t *bp = zio->io_bp; 1685 1686 metaslab_free(zio->io_spa, bp, zio->io_txg, B_FALSE); 1687 1688 BP_ZERO(bp); 1689 1690 zio_next_stage(zio); 1691 } 1692 1693 static void 1694 zio_dva_claim(zio_t *zio) 1695 { 1696 zio->io_error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 1697 1698 zio_next_stage(zio); 1699 } 1700 1701 /* 1702 * ========================================================================== 1703 * Read and write to physical devices 1704 * ========================================================================== 1705 */ 1706 1707 static void 1708 zio_vdev_io_start(zio_t *zio) 1709 { 1710 vdev_t *vd = zio->io_vd; 1711 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1712 blkptr_t *bp = zio->io_bp; 1713 uint64_t align; 1714 spa_t *spa = zio->io_spa; 1715 1716 /* 1717 * If the pool is already in a failure state then just suspend 1718 * this IO until the problem is resolved. We will reissue them 1719 * at that time. 1720 */ 1721 if (spa_state(spa) == POOL_STATE_IO_FAILURE && 1722 zio->io_type == ZIO_TYPE_WRITE) { 1723 zio_vdev_suspend_io(zio); 1724 return; 1725 } 1726 1727 if (vd == NULL) { 1728 /* The mirror_ops handle multiple DVAs in a single BP */ 1729 vdev_mirror_ops.vdev_op_io_start(zio); 1730 return; 1731 } 1732 1733 align = 1ULL << tvd->vdev_ashift; 1734 1735 if (zio->io_retries == 0 && vd == tvd) 1736 zio->io_flags |= ZIO_FLAG_FAILFAST; 1737 1738 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 1739 vd->vdev_children == 0) { 1740 zio->io_flags |= ZIO_FLAG_PHYSICAL; 1741 zio->io_offset += VDEV_LABEL_START_SIZE; 1742 } 1743 1744 if (P2PHASE(zio->io_size, align) != 0) { 1745 uint64_t asize = P2ROUNDUP(zio->io_size, align); 1746 char *abuf = zio_buf_alloc(asize); 1747 ASSERT(vd == tvd); 1748 if (zio->io_type == ZIO_TYPE_WRITE) { 1749 bcopy(zio->io_data, abuf, zio->io_size); 1750 bzero(abuf + zio->io_size, asize - zio->io_size); 1751 } 1752 zio_push_transform(zio, abuf, asize, asize); 1753 ASSERT(!(zio->io_flags & ZIO_FLAG_SUBBLOCK)); 1754 zio->io_flags |= ZIO_FLAG_SUBBLOCK; 1755 } 1756 1757 ASSERT(P2PHASE(zio->io_offset, align) == 0); 1758 ASSERT(P2PHASE(zio->io_size, align) == 0); 1759 ASSERT(bp == NULL || 1760 P2ROUNDUP(ZIO_GET_IOSIZE(zio), align) == zio->io_size); 1761 ASSERT(zio->io_type != ZIO_TYPE_WRITE || (spa_mode & FWRITE)); 1762 1763 vdev_io_start(zio); 1764 1765 /* zio_next_stage_async() gets called from io completion interrupt */ 1766 } 1767 1768 static void 1769 zio_vdev_io_done(zio_t *zio) 1770 { 1771 if (zio->io_vd == NULL) 1772 /* The mirror_ops handle multiple DVAs in a single BP */ 1773 vdev_mirror_ops.vdev_op_io_done(zio); 1774 else 1775 vdev_io_done(zio); 1776 } 1777 1778 /* XXPOLICY */ 1779 boolean_t 1780 zio_should_retry(zio_t *zio) 1781 { 1782 vdev_t *vd = zio->io_vd; 1783 1784 if (zio->io_error == 0) 1785 return (B_FALSE); 1786 if (zio->io_delegate_list != NULL) 1787 return (B_FALSE); 1788 if (vd && vd != vd->vdev_top) 1789 return (B_FALSE); 1790 if (zio->io_flags & ZIO_FLAG_DONT_RETRY) 1791 return (B_FALSE); 1792 if (zio->io_retries > 0) 1793 return (B_FALSE); 1794 1795 return (B_TRUE); 1796 } 1797 1798 static void 1799 zio_vdev_io_assess(zio_t *zio) 1800 { 1801 vdev_t *vd = zio->io_vd; 1802 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1803 1804 ASSERT(zio->io_vsd == NULL); 1805 1806 if (zio->io_flags & ZIO_FLAG_SUBBLOCK) { 1807 void *abuf; 1808 uint64_t asize; 1809 ASSERT(vd == tvd); 1810 zio_pop_transform(zio, &abuf, &asize, &asize); 1811 if (zio->io_type == ZIO_TYPE_READ) 1812 bcopy(abuf, zio->io_data, zio->io_size); 1813 zio_buf_free(abuf, asize); 1814 zio->io_flags &= ~ZIO_FLAG_SUBBLOCK; 1815 } 1816 1817 if (zio_injection_enabled && !zio->io_error) 1818 zio->io_error = zio_handle_fault_injection(zio, EIO); 1819 1820 /* 1821 * If the I/O failed, determine whether we should attempt to retry it. 1822 */ 1823 /* XXPOLICY */ 1824 if (zio_should_retry(zio)) { 1825 ASSERT(tvd == vd); 1826 1827 zio->io_retries++; 1828 zio->io_error = 0; 1829 zio->io_flags &= ZIO_FLAG_VDEV_INHERIT | 1830 ZIO_FLAG_CONFIG_GRABBED; 1831 /* XXPOLICY */ 1832 zio->io_flags &= ~ZIO_FLAG_FAILFAST; 1833 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1834 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1; 1835 1836 dprintf("retry #%d for %s to %s offset %llx\n", 1837 zio->io_retries, zio_type_name[zio->io_type], 1838 vdev_description(vd), zio->io_offset); 1839 1840 zio_next_stage_async(zio); 1841 return; 1842 } 1843 1844 zio_next_stage(zio); 1845 } 1846 1847 void 1848 zio_vdev_io_reissue(zio_t *zio) 1849 { 1850 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1851 ASSERT(zio->io_error == 0); 1852 1853 zio->io_stage--; 1854 } 1855 1856 void 1857 zio_vdev_io_redone(zio_t *zio) 1858 { 1859 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 1860 1861 zio->io_stage--; 1862 } 1863 1864 void 1865 zio_vdev_io_bypass(zio_t *zio) 1866 { 1867 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1868 ASSERT(zio->io_error == 0); 1869 1870 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 1871 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1; 1872 } 1873 1874 /* 1875 * ========================================================================== 1876 * Generate and verify checksums 1877 * ========================================================================== 1878 */ 1879 static void 1880 zio_checksum_generate(zio_t *zio) 1881 { 1882 int checksum = zio->io_checksum; 1883 blkptr_t *bp = zio->io_bp; 1884 1885 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1886 1887 BP_SET_CHECKSUM(bp, checksum); 1888 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1889 1890 zio_checksum(checksum, &bp->blk_cksum, zio->io_data, zio->io_size); 1891 1892 zio_next_stage(zio); 1893 } 1894 1895 static void 1896 zio_gang_checksum_generate(zio_t *zio) 1897 { 1898 zio_cksum_t zc; 1899 zio_gbh_phys_t *gbh = zio->io_data; 1900 1901 ASSERT(BP_IS_GANG(zio->io_bp)); 1902 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1903 1904 zio_set_gang_verifier(zio, &gbh->zg_tail.zbt_cksum); 1905 1906 zio_checksum(ZIO_CHECKSUM_GANG_HEADER, &zc, zio->io_data, zio->io_size); 1907 1908 zio_next_stage(zio); 1909 } 1910 1911 static void 1912 zio_checksum_verify(zio_t *zio) 1913 { 1914 if (zio->io_bp != NULL) { 1915 zio->io_error = zio_checksum_error(zio); 1916 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) 1917 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, 1918 zio->io_spa, zio->io_vd, zio, 0, 0); 1919 } 1920 1921 zio_next_stage(zio); 1922 } 1923 1924 /* 1925 * Called by RAID-Z to ensure we don't compute the checksum twice. 1926 */ 1927 void 1928 zio_checksum_verified(zio_t *zio) 1929 { 1930 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 1931 } 1932 1933 /* 1934 * Set the external verifier for a gang block based on stuff in the bp 1935 */ 1936 void 1937 zio_set_gang_verifier(zio_t *zio, zio_cksum_t *zcp) 1938 { 1939 blkptr_t *bp = zio->io_bp; 1940 1941 zcp->zc_word[0] = DVA_GET_VDEV(BP_IDENTITY(bp)); 1942 zcp->zc_word[1] = DVA_GET_OFFSET(BP_IDENTITY(bp)); 1943 zcp->zc_word[2] = bp->blk_birth; 1944 zcp->zc_word[3] = 0; 1945 } 1946 1947 /* 1948 * ========================================================================== 1949 * Define the pipeline 1950 * ========================================================================== 1951 */ 1952 typedef void zio_pipe_stage_t(zio_t *zio); 1953 1954 static void 1955 zio_badop(zio_t *zio) 1956 { 1957 panic("Invalid I/O pipeline stage %u for zio %p", zio->io_stage, zio); 1958 } 1959 1960 zio_pipe_stage_t *zio_pipeline[ZIO_STAGE_DONE + 2] = { 1961 zio_badop, 1962 zio_wait_children_ready, 1963 zio_write_compress, 1964 zio_checksum_generate, 1965 zio_gang_pipeline, 1966 zio_get_gang_header, 1967 zio_rewrite_gang_members, 1968 zio_free_gang_members, 1969 zio_claim_gang_members, 1970 zio_dva_allocate, 1971 zio_dva_free, 1972 zio_dva_claim, 1973 zio_gang_checksum_generate, 1974 zio_ready, 1975 zio_read_init, 1976 zio_vdev_io_start, 1977 zio_vdev_io_done, 1978 zio_vdev_io_assess, 1979 zio_wait_children_done, 1980 zio_checksum_verify, 1981 zio_read_gang_members, 1982 zio_read_decompress, 1983 zio_assess, 1984 zio_done, 1985 zio_badop 1986 }; 1987 1988 /* 1989 * Move an I/O to the next stage of the pipeline and execute that stage. 1990 * There's no locking on io_stage because there's no legitimate way for 1991 * multiple threads to be attempting to process the same I/O. 1992 */ 1993 void 1994 zio_next_stage(zio_t *zio) 1995 { 1996 uint32_t pipeline = zio->io_pipeline; 1997 1998 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1999 2000 if (zio->io_error) { 2001 dprintf("zio %p vdev %s offset %llx stage %d error %d\n", 2002 zio, vdev_description(zio->io_vd), 2003 zio->io_offset, zio->io_stage, zio->io_error); 2004 if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0) 2005 pipeline &= ZIO_ERROR_PIPELINE_MASK; 2006 } 2007 2008 while (((1U << ++zio->io_stage) & pipeline) == 0) 2009 continue; 2010 2011 ASSERT(zio->io_stage <= ZIO_STAGE_DONE); 2012 ASSERT(zio->io_stalled == 0); 2013 2014 /* 2015 * See the comment in zio_next_stage_async() about per-CPU taskqs. 2016 */ 2017 if (((1U << zio->io_stage) & zio->io_async_stages) && 2018 (zio->io_stage == ZIO_STAGE_WRITE_COMPRESS) && 2019 !(zio->io_flags & ZIO_FLAG_METADATA)) { 2020 taskq_t *tq = zio->io_spa->spa_zio_issue_taskq[zio->io_type]; 2021 (void) taskq_dispatch(tq, 2022 (task_func_t *)zio_pipeline[zio->io_stage], zio, TQ_SLEEP); 2023 } else { 2024 zio_pipeline[zio->io_stage](zio); 2025 } 2026 } 2027 2028 void 2029 zio_next_stage_async(zio_t *zio) 2030 { 2031 taskq_t *tq; 2032 uint32_t pipeline = zio->io_pipeline; 2033 2034 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2035 2036 if (zio->io_error) { 2037 dprintf("zio %p vdev %s offset %llx stage %d error %d\n", 2038 zio, vdev_description(zio->io_vd), 2039 zio->io_offset, zio->io_stage, zio->io_error); 2040 if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0) 2041 pipeline &= ZIO_ERROR_PIPELINE_MASK; 2042 } 2043 2044 while (((1U << ++zio->io_stage) & pipeline) == 0) 2045 continue; 2046 2047 ASSERT(zio->io_stage <= ZIO_STAGE_DONE); 2048 ASSERT(zio->io_stalled == 0); 2049 2050 /* 2051 * For performance, we'll probably want two sets of task queues: 2052 * per-CPU issue taskqs and per-CPU completion taskqs. The per-CPU 2053 * part is for read performance: since we have to make a pass over 2054 * the data to checksum it anyway, we want to do this on the same CPU 2055 * that issued the read, because (assuming CPU scheduling affinity) 2056 * that thread is probably still there. Getting this optimization 2057 * right avoids performance-hostile cache-to-cache transfers. 2058 * 2059 * Note that having two sets of task queues is also necessary for 2060 * correctness: if all of the issue threads get bogged down waiting 2061 * for dependent reads (e.g. metaslab freelist) to complete, then 2062 * there won't be any threads available to service I/O completion 2063 * interrupts. 2064 */ 2065 if ((1U << zio->io_stage) & zio->io_async_stages) { 2066 if (zio->io_stage < ZIO_STAGE_VDEV_IO_DONE) 2067 tq = zio->io_spa->spa_zio_issue_taskq[zio->io_type]; 2068 else 2069 tq = zio->io_spa->spa_zio_intr_taskq[zio->io_type]; 2070 (void) taskq_dispatch(tq, 2071 (task_func_t *)zio_pipeline[zio->io_stage], zio, TQ_SLEEP); 2072 } else { 2073 zio_pipeline[zio->io_stage](zio); 2074 } 2075 } 2076 2077 void 2078 zio_resubmit_stage_async(void *arg) 2079 { 2080 zio_t *zio = (zio_t *)(uintptr_t)arg; 2081 2082 zio_next_stage_async(zio); 2083 } 2084 2085 static boolean_t 2086 zio_io_should_fail(uint16_t range) 2087 { 2088 static uint16_t allocs = 0; 2089 2090 return (P2PHASE(allocs++, 1U<<range) == 0); 2091 } 2092 2093 /* 2094 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2095 */ 2096 int 2097 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp, 2098 uint64_t txg) 2099 { 2100 int error; 2101 2102 spa_config_enter(spa, RW_READER, FTAG); 2103 2104 if (zio_zil_fail_shift && zio_io_should_fail(zio_zil_fail_shift)) { 2105 spa_config_exit(spa, FTAG); 2106 return (ENOSPC); 2107 } 2108 2109 /* 2110 * We were passed the previous log block's DVA in bp->blk_dva[0]. 2111 * We use that as a hint for which vdev to allocate from next. 2112 */ 2113 error = metaslab_alloc(spa, spa->spa_log_class, size, 2114 new_bp, 1, txg, old_bp, B_TRUE); 2115 2116 if (error) 2117 error = metaslab_alloc(spa, spa->spa_normal_class, size, 2118 new_bp, 1, txg, old_bp, B_TRUE); 2119 2120 if (error == 0) { 2121 BP_SET_LSIZE(new_bp, size); 2122 BP_SET_PSIZE(new_bp, size); 2123 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 2124 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG); 2125 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 2126 BP_SET_LEVEL(new_bp, 0); 2127 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 2128 new_bp->blk_birth = txg; 2129 } 2130 2131 spa_config_exit(spa, FTAG); 2132 2133 return (error); 2134 } 2135 2136 /* 2137 * Free an intent log block. We know it can't be a gang block, so there's 2138 * nothing to do except metaslab_free() it. 2139 */ 2140 void 2141 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg) 2142 { 2143 ASSERT(!BP_IS_GANG(bp)); 2144 2145 spa_config_enter(spa, RW_READER, FTAG); 2146 2147 metaslab_free(spa, bp, txg, B_FALSE); 2148 2149 spa_config_exit(spa, FTAG); 2150 } 2151 2152 /* 2153 * start an async flush of the write cache for this vdev 2154 */ 2155 void 2156 zio_flush_vdev(spa_t *spa, uint64_t vdev, zio_t **zio) 2157 { 2158 vdev_t *vd; 2159 2160 /* 2161 * Lock out configuration changes. 2162 */ 2163 spa_config_enter(spa, RW_READER, FTAG); 2164 2165 if (*zio == NULL) 2166 *zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 2167 2168 vd = vdev_lookup_top(spa, vdev); 2169 ASSERT(vd); 2170 2171 (void) zio_nowait(zio_ioctl(*zio, spa, vd, DKIOCFLUSHWRITECACHE, 2172 NULL, NULL, ZIO_PRIORITY_NOW, 2173 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 2174 2175 spa_config_exit(spa, FTAG); 2176 } 2177