1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/txg.h> 31 #include <sys/spa_impl.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/zio_impl.h> 34 #include <sys/zio_compress.h> 35 #include <sys/zio_checksum.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/arc.h> 38 #include <sys/ddt.h> 39 40 /* 41 * ========================================================================== 42 * I/O priority table 43 * ========================================================================== 44 */ 45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 46 0, /* ZIO_PRIORITY_NOW */ 47 0, /* ZIO_PRIORITY_SYNC_READ */ 48 0, /* ZIO_PRIORITY_SYNC_WRITE */ 49 0, /* ZIO_PRIORITY_LOG_WRITE */ 50 1, /* ZIO_PRIORITY_CACHE_FILL */ 51 1, /* ZIO_PRIORITY_AGG */ 52 4, /* ZIO_PRIORITY_FREE */ 53 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 54 6, /* ZIO_PRIORITY_ASYNC_READ */ 55 10, /* ZIO_PRIORITY_RESILVER */ 56 20, /* ZIO_PRIORITY_SCRUB */ 57 2, /* ZIO_PRIORITY_DDT_PREFETCH */ 58 }; 59 60 /* 61 * ========================================================================== 62 * I/O type descriptions 63 * ========================================================================== 64 */ 65 char *zio_type_name[ZIO_TYPES] = { 66 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 67 "zio_ioctl" 68 }; 69 70 /* 71 * ========================================================================== 72 * I/O kmem caches 73 * ========================================================================== 74 */ 75 kmem_cache_t *zio_cache; 76 kmem_cache_t *zio_link_cache; 77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 79 80 #ifdef _KERNEL 81 extern vmem_t *zio_alloc_arena; 82 #endif 83 extern int zfs_mg_alloc_failures; 84 85 /* 86 * The following actions directly effect the spa's sync-to-convergence logic. 87 * The values below define the sync pass when we start performing the action. 88 * Care should be taken when changing these values as they directly impact 89 * spa_sync() performance. Tuning these values may introduce subtle performance 90 * pathologies and should only be done in the context of performance analysis. 91 * These tunables will eventually be removed and replaced with #defines once 92 * enough analysis has been done to determine optimal values. 93 * 94 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 95 * regular blocks are not deferred. 96 */ 97 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 98 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 99 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 100 101 /* 102 * An allocating zio is one that either currently has the DVA allocate 103 * stage set or will have it later in its lifetime. 104 */ 105 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 106 107 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 108 109 #ifdef ZFS_DEBUG 110 int zio_buf_debug_limit = 16384; 111 #else 112 int zio_buf_debug_limit = 0; 113 #endif 114 115 void 116 zio_init(void) 117 { 118 size_t c; 119 vmem_t *data_alloc_arena = NULL; 120 121 #ifdef _KERNEL 122 data_alloc_arena = zio_alloc_arena; 123 #endif 124 zio_cache = kmem_cache_create("zio_cache", 125 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 126 zio_link_cache = kmem_cache_create("zio_link_cache", 127 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 128 129 /* 130 * For small buffers, we want a cache for each multiple of 131 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 132 * for each quarter-power of 2. For large buffers, we want 133 * a cache for each multiple of PAGESIZE. 134 */ 135 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 136 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 137 size_t p2 = size; 138 size_t align = 0; 139 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 140 141 while (p2 & (p2 - 1)) 142 p2 &= p2 - 1; 143 144 #ifndef _KERNEL 145 /* 146 * If we are using watchpoints, put each buffer on its own page, 147 * to eliminate the performance overhead of trapping to the 148 * kernel when modifying a non-watched buffer that shares the 149 * page with a watched buffer. 150 */ 151 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 152 continue; 153 #endif 154 if (size <= 4 * SPA_MINBLOCKSIZE) { 155 align = SPA_MINBLOCKSIZE; 156 } else if (IS_P2ALIGNED(size, PAGESIZE)) { 157 align = PAGESIZE; 158 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 159 align = p2 >> 2; 160 } 161 162 if (align != 0) { 163 char name[36]; 164 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 165 zio_buf_cache[c] = kmem_cache_create(name, size, 166 align, NULL, NULL, NULL, NULL, NULL, cflags); 167 168 /* 169 * Since zio_data bufs do not appear in crash dumps, we 170 * pass KMC_NOTOUCH so that no allocator metadata is 171 * stored with the buffers. 172 */ 173 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 174 zio_data_buf_cache[c] = kmem_cache_create(name, size, 175 align, NULL, NULL, NULL, NULL, data_alloc_arena, 176 cflags | KMC_NOTOUCH); 177 } 178 } 179 180 while (--c != 0) { 181 ASSERT(zio_buf_cache[c] != NULL); 182 if (zio_buf_cache[c - 1] == NULL) 183 zio_buf_cache[c - 1] = zio_buf_cache[c]; 184 185 ASSERT(zio_data_buf_cache[c] != NULL); 186 if (zio_data_buf_cache[c - 1] == NULL) 187 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 188 } 189 190 /* 191 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs 192 * to fail 3 times per txg or 8 failures, whichever is greater. 193 */ 194 zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8); 195 196 zio_inject_init(); 197 } 198 199 void 200 zio_fini(void) 201 { 202 size_t c; 203 kmem_cache_t *last_cache = NULL; 204 kmem_cache_t *last_data_cache = NULL; 205 206 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 207 if (zio_buf_cache[c] != last_cache) { 208 last_cache = zio_buf_cache[c]; 209 kmem_cache_destroy(zio_buf_cache[c]); 210 } 211 zio_buf_cache[c] = NULL; 212 213 if (zio_data_buf_cache[c] != last_data_cache) { 214 last_data_cache = zio_data_buf_cache[c]; 215 kmem_cache_destroy(zio_data_buf_cache[c]); 216 } 217 zio_data_buf_cache[c] = NULL; 218 } 219 220 kmem_cache_destroy(zio_link_cache); 221 kmem_cache_destroy(zio_cache); 222 223 zio_inject_fini(); 224 } 225 226 /* 227 * ========================================================================== 228 * Allocate and free I/O buffers 229 * ========================================================================== 230 */ 231 232 /* 233 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 234 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 235 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 236 * excess / transient data in-core during a crashdump. 237 */ 238 void * 239 zio_buf_alloc(size_t size) 240 { 241 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 242 243 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 244 245 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 246 } 247 248 /* 249 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 250 * crashdump if the kernel panics. This exists so that we will limit the amount 251 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 252 * of kernel heap dumped to disk when the kernel panics) 253 */ 254 void * 255 zio_data_buf_alloc(size_t size) 256 { 257 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 258 259 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 260 261 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 262 } 263 264 void 265 zio_buf_free(void *buf, size_t size) 266 { 267 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 268 269 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 270 271 kmem_cache_free(zio_buf_cache[c], buf); 272 } 273 274 void 275 zio_data_buf_free(void *buf, size_t size) 276 { 277 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 278 279 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 280 281 kmem_cache_free(zio_data_buf_cache[c], buf); 282 } 283 284 /* 285 * ========================================================================== 286 * Push and pop I/O transform buffers 287 * ========================================================================== 288 */ 289 static void 290 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, 291 zio_transform_func_t *transform) 292 { 293 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 294 295 zt->zt_orig_data = zio->io_data; 296 zt->zt_orig_size = zio->io_size; 297 zt->zt_bufsize = bufsize; 298 zt->zt_transform = transform; 299 300 zt->zt_next = zio->io_transform_stack; 301 zio->io_transform_stack = zt; 302 303 zio->io_data = data; 304 zio->io_size = size; 305 } 306 307 static void 308 zio_pop_transforms(zio_t *zio) 309 { 310 zio_transform_t *zt; 311 312 while ((zt = zio->io_transform_stack) != NULL) { 313 if (zt->zt_transform != NULL) 314 zt->zt_transform(zio, 315 zt->zt_orig_data, zt->zt_orig_size); 316 317 if (zt->zt_bufsize != 0) 318 zio_buf_free(zio->io_data, zt->zt_bufsize); 319 320 zio->io_data = zt->zt_orig_data; 321 zio->io_size = zt->zt_orig_size; 322 zio->io_transform_stack = zt->zt_next; 323 324 kmem_free(zt, sizeof (zio_transform_t)); 325 } 326 } 327 328 /* 329 * ========================================================================== 330 * I/O transform callbacks for subblocks and decompression 331 * ========================================================================== 332 */ 333 static void 334 zio_subblock(zio_t *zio, void *data, uint64_t size) 335 { 336 ASSERT(zio->io_size > size); 337 338 if (zio->io_type == ZIO_TYPE_READ) 339 bcopy(zio->io_data, data, size); 340 } 341 342 static void 343 zio_decompress(zio_t *zio, void *data, uint64_t size) 344 { 345 if (zio->io_error == 0 && 346 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 347 zio->io_data, data, zio->io_size, size) != 0) 348 zio->io_error = SET_ERROR(EIO); 349 } 350 351 /* 352 * ========================================================================== 353 * I/O parent/child relationships and pipeline interlocks 354 * ========================================================================== 355 */ 356 /* 357 * NOTE - Callers to zio_walk_parents() and zio_walk_children must 358 * continue calling these functions until they return NULL. 359 * Otherwise, the next caller will pick up the list walk in 360 * some indeterminate state. (Otherwise every caller would 361 * have to pass in a cookie to keep the state represented by 362 * io_walk_link, which gets annoying.) 363 */ 364 zio_t * 365 zio_walk_parents(zio_t *cio) 366 { 367 zio_link_t *zl = cio->io_walk_link; 368 list_t *pl = &cio->io_parent_list; 369 370 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl); 371 cio->io_walk_link = zl; 372 373 if (zl == NULL) 374 return (NULL); 375 376 ASSERT(zl->zl_child == cio); 377 return (zl->zl_parent); 378 } 379 380 zio_t * 381 zio_walk_children(zio_t *pio) 382 { 383 zio_link_t *zl = pio->io_walk_link; 384 list_t *cl = &pio->io_child_list; 385 386 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl); 387 pio->io_walk_link = zl; 388 389 if (zl == NULL) 390 return (NULL); 391 392 ASSERT(zl->zl_parent == pio); 393 return (zl->zl_child); 394 } 395 396 zio_t * 397 zio_unique_parent(zio_t *cio) 398 { 399 zio_t *pio = zio_walk_parents(cio); 400 401 VERIFY(zio_walk_parents(cio) == NULL); 402 return (pio); 403 } 404 405 void 406 zio_add_child(zio_t *pio, zio_t *cio) 407 { 408 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 409 410 /* 411 * Logical I/Os can have logical, gang, or vdev children. 412 * Gang I/Os can have gang or vdev children. 413 * Vdev I/Os can only have vdev children. 414 * The following ASSERT captures all of these constraints. 415 */ 416 ASSERT(cio->io_child_type <= pio->io_child_type); 417 418 zl->zl_parent = pio; 419 zl->zl_child = cio; 420 421 mutex_enter(&cio->io_lock); 422 mutex_enter(&pio->io_lock); 423 424 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 425 426 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 427 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 428 429 list_insert_head(&pio->io_child_list, zl); 430 list_insert_head(&cio->io_parent_list, zl); 431 432 pio->io_child_count++; 433 cio->io_parent_count++; 434 435 mutex_exit(&pio->io_lock); 436 mutex_exit(&cio->io_lock); 437 } 438 439 static void 440 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 441 { 442 ASSERT(zl->zl_parent == pio); 443 ASSERT(zl->zl_child == cio); 444 445 mutex_enter(&cio->io_lock); 446 mutex_enter(&pio->io_lock); 447 448 list_remove(&pio->io_child_list, zl); 449 list_remove(&cio->io_parent_list, zl); 450 451 pio->io_child_count--; 452 cio->io_parent_count--; 453 454 mutex_exit(&pio->io_lock); 455 mutex_exit(&cio->io_lock); 456 457 kmem_cache_free(zio_link_cache, zl); 458 } 459 460 static boolean_t 461 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait) 462 { 463 uint64_t *countp = &zio->io_children[child][wait]; 464 boolean_t waiting = B_FALSE; 465 466 mutex_enter(&zio->io_lock); 467 ASSERT(zio->io_stall == NULL); 468 if (*countp != 0) { 469 zio->io_stage >>= 1; 470 zio->io_stall = countp; 471 waiting = B_TRUE; 472 } 473 mutex_exit(&zio->io_lock); 474 475 return (waiting); 476 } 477 478 static void 479 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 480 { 481 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 482 int *errorp = &pio->io_child_error[zio->io_child_type]; 483 484 mutex_enter(&pio->io_lock); 485 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 486 *errorp = zio_worst_error(*errorp, zio->io_error); 487 pio->io_reexecute |= zio->io_reexecute; 488 ASSERT3U(*countp, >, 0); 489 if (--*countp == 0 && pio->io_stall == countp) { 490 pio->io_stall = NULL; 491 mutex_exit(&pio->io_lock); 492 zio_execute(pio); 493 } else { 494 mutex_exit(&pio->io_lock); 495 } 496 } 497 498 static void 499 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 500 { 501 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 502 zio->io_error = zio->io_child_error[c]; 503 } 504 505 /* 506 * ========================================================================== 507 * Create the various types of I/O (read, write, free, etc) 508 * ========================================================================== 509 */ 510 static zio_t * 511 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 512 void *data, uint64_t size, zio_done_func_t *done, void *private, 513 zio_type_t type, int priority, enum zio_flag flags, 514 vdev_t *vd, uint64_t offset, const zbookmark_t *zb, 515 enum zio_stage stage, enum zio_stage pipeline) 516 { 517 zio_t *zio; 518 519 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 520 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 521 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 522 523 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 524 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 525 ASSERT(vd || stage == ZIO_STAGE_OPEN); 526 527 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 528 bzero(zio, sizeof (zio_t)); 529 530 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 531 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 532 533 list_create(&zio->io_parent_list, sizeof (zio_link_t), 534 offsetof(zio_link_t, zl_parent_node)); 535 list_create(&zio->io_child_list, sizeof (zio_link_t), 536 offsetof(zio_link_t, zl_child_node)); 537 538 if (vd != NULL) 539 zio->io_child_type = ZIO_CHILD_VDEV; 540 else if (flags & ZIO_FLAG_GANG_CHILD) 541 zio->io_child_type = ZIO_CHILD_GANG; 542 else if (flags & ZIO_FLAG_DDT_CHILD) 543 zio->io_child_type = ZIO_CHILD_DDT; 544 else 545 zio->io_child_type = ZIO_CHILD_LOGICAL; 546 547 if (bp != NULL) { 548 zio->io_bp = (blkptr_t *)bp; 549 zio->io_bp_copy = *bp; 550 zio->io_bp_orig = *bp; 551 if (type != ZIO_TYPE_WRITE || 552 zio->io_child_type == ZIO_CHILD_DDT) 553 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 554 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 555 zio->io_logical = zio; 556 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 557 pipeline |= ZIO_GANG_STAGES; 558 } 559 560 zio->io_spa = spa; 561 zio->io_txg = txg; 562 zio->io_done = done; 563 zio->io_private = private; 564 zio->io_type = type; 565 zio->io_priority = priority; 566 zio->io_vd = vd; 567 zio->io_offset = offset; 568 zio->io_orig_data = zio->io_data = data; 569 zio->io_orig_size = zio->io_size = size; 570 zio->io_orig_flags = zio->io_flags = flags; 571 zio->io_orig_stage = zio->io_stage = stage; 572 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 573 574 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 575 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 576 577 if (zb != NULL) 578 zio->io_bookmark = *zb; 579 580 if (pio != NULL) { 581 if (zio->io_logical == NULL) 582 zio->io_logical = pio->io_logical; 583 if (zio->io_child_type == ZIO_CHILD_GANG) 584 zio->io_gang_leader = pio->io_gang_leader; 585 zio_add_child(pio, zio); 586 } 587 588 return (zio); 589 } 590 591 static void 592 zio_destroy(zio_t *zio) 593 { 594 list_destroy(&zio->io_parent_list); 595 list_destroy(&zio->io_child_list); 596 mutex_destroy(&zio->io_lock); 597 cv_destroy(&zio->io_cv); 598 kmem_cache_free(zio_cache, zio); 599 } 600 601 zio_t * 602 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 603 void *private, enum zio_flag flags) 604 { 605 zio_t *zio; 606 607 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 608 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 609 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 610 611 return (zio); 612 } 613 614 zio_t * 615 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 616 { 617 return (zio_null(NULL, spa, NULL, done, private, flags)); 618 } 619 620 zio_t * 621 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 622 void *data, uint64_t size, zio_done_func_t *done, void *private, 623 int priority, enum zio_flag flags, const zbookmark_t *zb) 624 { 625 zio_t *zio; 626 627 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 628 data, size, done, private, 629 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 630 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 631 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 632 633 return (zio); 634 } 635 636 zio_t * 637 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 638 void *data, uint64_t size, const zio_prop_t *zp, 639 zio_done_func_t *ready, zio_done_func_t *done, void *private, 640 int priority, enum zio_flag flags, const zbookmark_t *zb) 641 { 642 zio_t *zio; 643 644 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 645 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 646 zp->zp_compress >= ZIO_COMPRESS_OFF && 647 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 648 DMU_OT_IS_VALID(zp->zp_type) && 649 zp->zp_level < 32 && 650 zp->zp_copies > 0 && 651 zp->zp_copies <= spa_max_replication(spa)); 652 653 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 654 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 655 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 656 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 657 658 zio->io_ready = ready; 659 zio->io_prop = *zp; 660 661 return (zio); 662 } 663 664 zio_t * 665 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, 666 uint64_t size, zio_done_func_t *done, void *private, int priority, 667 enum zio_flag flags, zbookmark_t *zb) 668 { 669 zio_t *zio; 670 671 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 672 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 673 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 674 675 return (zio); 676 } 677 678 void 679 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 680 { 681 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 682 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 683 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 684 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 685 686 /* 687 * We must reset the io_prop to match the values that existed 688 * when the bp was first written by dmu_sync() keeping in mind 689 * that nopwrite and dedup are mutually exclusive. 690 */ 691 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 692 zio->io_prop.zp_nopwrite = nopwrite; 693 zio->io_prop.zp_copies = copies; 694 zio->io_bp_override = bp; 695 } 696 697 void 698 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 699 { 700 metaslab_check_free(spa, bp); 701 702 /* 703 * Frees that are for the currently-syncing txg, are not going to be 704 * deferred, and which will not need to do a read (i.e. not GANG or 705 * DEDUP), can be processed immediately. Otherwise, put them on the 706 * in-memory list for later processing. 707 */ 708 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || 709 txg != spa->spa_syncing_txg || 710 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) { 711 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 712 } else { 713 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 714 } 715 } 716 717 zio_t * 718 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 719 enum zio_flag flags) 720 { 721 zio_t *zio; 722 enum zio_stage stage = ZIO_FREE_PIPELINE; 723 724 dprintf_bp(bp, "freeing in txg %llu, pass %u", 725 (longlong_t)txg, spa->spa_sync_pass); 726 727 ASSERT(!BP_IS_HOLE(bp)); 728 ASSERT(spa_syncing_txg(spa) == txg); 729 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free); 730 731 metaslab_check_free(spa, bp); 732 arc_freed(spa, bp); 733 734 /* 735 * GANG and DEDUP blocks can induce a read (for the gang block header, 736 * or the DDT), so issue them asynchronously so that this thread is 737 * not tied up. 738 */ 739 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 740 stage |= ZIO_STAGE_ISSUE_ASYNC; 741 742 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 743 NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags, 744 NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 745 746 747 return (zio); 748 } 749 750 zio_t * 751 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 752 zio_done_func_t *done, void *private, enum zio_flag flags) 753 { 754 zio_t *zio; 755 756 /* 757 * A claim is an allocation of a specific block. Claims are needed 758 * to support immediate writes in the intent log. The issue is that 759 * immediate writes contain committed data, but in a txg that was 760 * *not* committed. Upon opening the pool after an unclean shutdown, 761 * the intent log claims all blocks that contain immediate write data 762 * so that the SPA knows they're in use. 763 * 764 * All claims *must* be resolved in the first txg -- before the SPA 765 * starts allocating blocks -- so that nothing is allocated twice. 766 * If txg == 0 we just verify that the block is claimable. 767 */ 768 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 769 ASSERT(txg == spa_first_txg(spa) || txg == 0); 770 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 771 772 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 773 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, 774 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 775 776 return (zio); 777 } 778 779 zio_t * 780 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 781 zio_done_func_t *done, void *private, int priority, enum zio_flag flags) 782 { 783 zio_t *zio; 784 int c; 785 786 if (vd->vdev_children == 0) { 787 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 788 ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL, 789 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 790 791 zio->io_cmd = cmd; 792 } else { 793 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 794 795 for (c = 0; c < vd->vdev_children; c++) 796 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 797 done, private, priority, flags)); 798 } 799 800 return (zio); 801 } 802 803 zio_t * 804 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 805 void *data, int checksum, zio_done_func_t *done, void *private, 806 int priority, enum zio_flag flags, boolean_t labels) 807 { 808 zio_t *zio; 809 810 ASSERT(vd->vdev_children == 0); 811 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 812 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 813 ASSERT3U(offset + size, <=, vd->vdev_psize); 814 815 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 816 ZIO_TYPE_READ, priority, flags, vd, offset, NULL, 817 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 818 819 zio->io_prop.zp_checksum = checksum; 820 821 return (zio); 822 } 823 824 zio_t * 825 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 826 void *data, int checksum, zio_done_func_t *done, void *private, 827 int priority, enum zio_flag flags, boolean_t labels) 828 { 829 zio_t *zio; 830 831 ASSERT(vd->vdev_children == 0); 832 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 833 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 834 ASSERT3U(offset + size, <=, vd->vdev_psize); 835 836 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 837 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL, 838 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 839 840 zio->io_prop.zp_checksum = checksum; 841 842 if (zio_checksum_table[checksum].ci_eck) { 843 /* 844 * zec checksums are necessarily destructive -- they modify 845 * the end of the write buffer to hold the verifier/checksum. 846 * Therefore, we must make a local copy in case the data is 847 * being written to multiple places in parallel. 848 */ 849 void *wbuf = zio_buf_alloc(size); 850 bcopy(data, wbuf, size); 851 zio_push_transform(zio, wbuf, size, size, NULL); 852 } 853 854 return (zio); 855 } 856 857 /* 858 * Create a child I/O to do some work for us. 859 */ 860 zio_t * 861 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 862 void *data, uint64_t size, int type, int priority, enum zio_flag flags, 863 zio_done_func_t *done, void *private) 864 { 865 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 866 zio_t *zio; 867 868 ASSERT(vd->vdev_parent == 869 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 870 871 if (type == ZIO_TYPE_READ && bp != NULL) { 872 /* 873 * If we have the bp, then the child should perform the 874 * checksum and the parent need not. This pushes error 875 * detection as close to the leaves as possible and 876 * eliminates redundant checksums in the interior nodes. 877 */ 878 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 879 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 880 } 881 882 if (vd->vdev_children == 0) 883 offset += VDEV_LABEL_START_SIZE; 884 885 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE; 886 887 /* 888 * If we've decided to do a repair, the write is not speculative -- 889 * even if the original read was. 890 */ 891 if (flags & ZIO_FLAG_IO_REPAIR) 892 flags &= ~ZIO_FLAG_SPECULATIVE; 893 894 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, 895 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 896 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 897 898 return (zio); 899 } 900 901 zio_t * 902 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, 903 int type, int priority, enum zio_flag flags, 904 zio_done_func_t *done, void *private) 905 { 906 zio_t *zio; 907 908 ASSERT(vd->vdev_ops->vdev_op_leaf); 909 910 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 911 data, size, done, private, type, priority, 912 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY, 913 vd, offset, NULL, 914 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 915 916 return (zio); 917 } 918 919 void 920 zio_flush(zio_t *zio, vdev_t *vd) 921 { 922 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 923 NULL, NULL, ZIO_PRIORITY_NOW, 924 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 925 } 926 927 void 928 zio_shrink(zio_t *zio, uint64_t size) 929 { 930 ASSERT(zio->io_executor == NULL); 931 ASSERT(zio->io_orig_size == zio->io_size); 932 ASSERT(size <= zio->io_size); 933 934 /* 935 * We don't shrink for raidz because of problems with the 936 * reconstruction when reading back less than the block size. 937 * Note, BP_IS_RAIDZ() assumes no compression. 938 */ 939 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 940 if (!BP_IS_RAIDZ(zio->io_bp)) 941 zio->io_orig_size = zio->io_size = size; 942 } 943 944 /* 945 * ========================================================================== 946 * Prepare to read and write logical blocks 947 * ========================================================================== 948 */ 949 950 static int 951 zio_read_bp_init(zio_t *zio) 952 { 953 blkptr_t *bp = zio->io_bp; 954 955 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 956 zio->io_child_type == ZIO_CHILD_LOGICAL && 957 !(zio->io_flags & ZIO_FLAG_RAW)) { 958 uint64_t psize = BP_GET_PSIZE(bp); 959 void *cbuf = zio_buf_alloc(psize); 960 961 zio_push_transform(zio, cbuf, psize, psize, zio_decompress); 962 } 963 964 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 965 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 966 967 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 968 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 969 970 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 971 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 972 973 return (ZIO_PIPELINE_CONTINUE); 974 } 975 976 static int 977 zio_write_bp_init(zio_t *zio) 978 { 979 spa_t *spa = zio->io_spa; 980 zio_prop_t *zp = &zio->io_prop; 981 enum zio_compress compress = zp->zp_compress; 982 blkptr_t *bp = zio->io_bp; 983 uint64_t lsize = zio->io_size; 984 uint64_t psize = lsize; 985 int pass = 1; 986 987 /* 988 * If our children haven't all reached the ready stage, 989 * wait for them and then repeat this pipeline stage. 990 */ 991 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 992 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY)) 993 return (ZIO_PIPELINE_STOP); 994 995 if (!IO_IS_ALLOCATING(zio)) 996 return (ZIO_PIPELINE_CONTINUE); 997 998 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 999 1000 if (zio->io_bp_override) { 1001 ASSERT(bp->blk_birth != zio->io_txg); 1002 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1003 1004 *bp = *zio->io_bp_override; 1005 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1006 1007 /* 1008 * If we've been overridden and nopwrite is set then 1009 * set the flag accordingly to indicate that a nopwrite 1010 * has already occurred. 1011 */ 1012 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1013 ASSERT(!zp->zp_dedup); 1014 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1015 return (ZIO_PIPELINE_CONTINUE); 1016 } 1017 1018 ASSERT(!zp->zp_nopwrite); 1019 1020 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1021 return (ZIO_PIPELINE_CONTINUE); 1022 1023 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup || 1024 zp->zp_dedup_verify); 1025 1026 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { 1027 BP_SET_DEDUP(bp, 1); 1028 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1029 return (ZIO_PIPELINE_CONTINUE); 1030 } 1031 zio->io_bp_override = NULL; 1032 BP_ZERO(bp); 1033 } 1034 1035 if (bp->blk_birth == zio->io_txg) { 1036 /* 1037 * We're rewriting an existing block, which means we're 1038 * working on behalf of spa_sync(). For spa_sync() to 1039 * converge, it must eventually be the case that we don't 1040 * have to allocate new blocks. But compression changes 1041 * the blocksize, which forces a reallocate, and makes 1042 * convergence take longer. Therefore, after the first 1043 * few passes, stop compressing to ensure convergence. 1044 */ 1045 pass = spa_sync_pass(spa); 1046 1047 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1048 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1049 ASSERT(!BP_GET_DEDUP(bp)); 1050 1051 if (pass >= zfs_sync_pass_dont_compress) 1052 compress = ZIO_COMPRESS_OFF; 1053 1054 /* Make sure someone doesn't change their mind on overwrites */ 1055 ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp), 1056 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1057 } 1058 1059 if (compress != ZIO_COMPRESS_OFF) { 1060 void *cbuf = zio_buf_alloc(lsize); 1061 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize); 1062 if (psize == 0 || psize == lsize) { 1063 compress = ZIO_COMPRESS_OFF; 1064 zio_buf_free(cbuf, lsize); 1065 } else { 1066 ASSERT(psize < lsize); 1067 zio_push_transform(zio, cbuf, psize, lsize, NULL); 1068 } 1069 } 1070 1071 /* 1072 * The final pass of spa_sync() must be all rewrites, but the first 1073 * few passes offer a trade-off: allocating blocks defers convergence, 1074 * but newly allocated blocks are sequential, so they can be written 1075 * to disk faster. Therefore, we allow the first few passes of 1076 * spa_sync() to allocate new blocks, but force rewrites after that. 1077 * There should only be a handful of blocks after pass 1 in any case. 1078 */ 1079 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize && 1080 pass >= zfs_sync_pass_rewrite) { 1081 ASSERT(psize != 0); 1082 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1083 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1084 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1085 } else { 1086 BP_ZERO(bp); 1087 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1088 } 1089 1090 if (psize == 0) { 1091 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1092 } else { 1093 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1094 BP_SET_LSIZE(bp, lsize); 1095 BP_SET_PSIZE(bp, psize); 1096 BP_SET_COMPRESS(bp, compress); 1097 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1098 BP_SET_TYPE(bp, zp->zp_type); 1099 BP_SET_LEVEL(bp, zp->zp_level); 1100 BP_SET_DEDUP(bp, zp->zp_dedup); 1101 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1102 if (zp->zp_dedup) { 1103 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1104 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1105 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1106 } 1107 if (zp->zp_nopwrite) { 1108 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1109 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1110 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1111 } 1112 } 1113 1114 return (ZIO_PIPELINE_CONTINUE); 1115 } 1116 1117 static int 1118 zio_free_bp_init(zio_t *zio) 1119 { 1120 blkptr_t *bp = zio->io_bp; 1121 1122 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1123 if (BP_GET_DEDUP(bp)) 1124 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1125 } 1126 1127 return (ZIO_PIPELINE_CONTINUE); 1128 } 1129 1130 /* 1131 * ========================================================================== 1132 * Execute the I/O pipeline 1133 * ========================================================================== 1134 */ 1135 1136 static void 1137 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1138 { 1139 spa_t *spa = zio->io_spa; 1140 zio_type_t t = zio->io_type; 1141 int flags = (cutinline ? TQ_FRONT : 0); 1142 1143 /* 1144 * If we're a config writer or a probe, the normal issue and 1145 * interrupt threads may all be blocked waiting for the config lock. 1146 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1147 */ 1148 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1149 t = ZIO_TYPE_NULL; 1150 1151 /* 1152 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1153 */ 1154 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1155 t = ZIO_TYPE_NULL; 1156 1157 /* 1158 * If this is a high priority I/O, then use the high priority taskq if 1159 * available. 1160 */ 1161 if (zio->io_priority == ZIO_PRIORITY_NOW && 1162 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1163 q++; 1164 1165 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1166 1167 /* 1168 * NB: We are assuming that the zio can only be dispatched 1169 * to a single taskq at a time. It would be a grievous error 1170 * to dispatch the zio to another taskq at the same time. 1171 */ 1172 ASSERT(zio->io_tqent.tqent_next == NULL); 1173 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1174 flags, &zio->io_tqent); 1175 } 1176 1177 static boolean_t 1178 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1179 { 1180 kthread_t *executor = zio->io_executor; 1181 spa_t *spa = zio->io_spa; 1182 1183 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1184 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1185 uint_t i; 1186 for (i = 0; i < tqs->stqs_count; i++) { 1187 if (taskq_member(tqs->stqs_taskq[i], executor)) 1188 return (B_TRUE); 1189 } 1190 } 1191 1192 return (B_FALSE); 1193 } 1194 1195 static int 1196 zio_issue_async(zio_t *zio) 1197 { 1198 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1199 1200 return (ZIO_PIPELINE_STOP); 1201 } 1202 1203 void 1204 zio_interrupt(zio_t *zio) 1205 { 1206 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1207 } 1208 1209 /* 1210 * Execute the I/O pipeline until one of the following occurs: 1211 * 1212 * (1) the I/O completes 1213 * (2) the pipeline stalls waiting for dependent child I/Os 1214 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1215 * (4) the I/O is delegated by vdev-level caching or aggregation 1216 * (5) the I/O is deferred due to vdev-level queueing 1217 * (6) the I/O is handed off to another thread. 1218 * 1219 * In all cases, the pipeline stops whenever there's no CPU work; it never 1220 * burns a thread in cv_wait(). 1221 * 1222 * There's no locking on io_stage because there's no legitimate way 1223 * for multiple threads to be attempting to process the same I/O. 1224 */ 1225 static zio_pipe_stage_t *zio_pipeline[]; 1226 1227 void 1228 zio_execute(zio_t *zio) 1229 { 1230 zio->io_executor = curthread; 1231 1232 while (zio->io_stage < ZIO_STAGE_DONE) { 1233 enum zio_stage pipeline = zio->io_pipeline; 1234 enum zio_stage stage = zio->io_stage; 1235 int rv; 1236 1237 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1238 ASSERT(ISP2(stage)); 1239 ASSERT(zio->io_stall == NULL); 1240 1241 do { 1242 stage <<= 1; 1243 } while ((stage & pipeline) == 0); 1244 1245 ASSERT(stage <= ZIO_STAGE_DONE); 1246 1247 /* 1248 * If we are in interrupt context and this pipeline stage 1249 * will grab a config lock that is held across I/O, 1250 * or may wait for an I/O that needs an interrupt thread 1251 * to complete, issue async to avoid deadlock. 1252 * 1253 * For VDEV_IO_START, we cut in line so that the io will 1254 * be sent to disk promptly. 1255 */ 1256 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1257 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1258 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1259 zio_requeue_io_start_cut_in_line : B_FALSE; 1260 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1261 return; 1262 } 1263 1264 zio->io_stage = stage; 1265 rv = zio_pipeline[highbit(stage) - 1](zio); 1266 1267 if (rv == ZIO_PIPELINE_STOP) 1268 return; 1269 1270 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1271 } 1272 } 1273 1274 /* 1275 * ========================================================================== 1276 * Initiate I/O, either sync or async 1277 * ========================================================================== 1278 */ 1279 int 1280 zio_wait(zio_t *zio) 1281 { 1282 int error; 1283 1284 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1285 ASSERT(zio->io_executor == NULL); 1286 1287 zio->io_waiter = curthread; 1288 1289 zio_execute(zio); 1290 1291 mutex_enter(&zio->io_lock); 1292 while (zio->io_executor != NULL) 1293 cv_wait(&zio->io_cv, &zio->io_lock); 1294 mutex_exit(&zio->io_lock); 1295 1296 error = zio->io_error; 1297 zio_destroy(zio); 1298 1299 return (error); 1300 } 1301 1302 void 1303 zio_nowait(zio_t *zio) 1304 { 1305 ASSERT(zio->io_executor == NULL); 1306 1307 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1308 zio_unique_parent(zio) == NULL) { 1309 /* 1310 * This is a logical async I/O with no parent to wait for it. 1311 * We add it to the spa_async_root_zio "Godfather" I/O which 1312 * will ensure they complete prior to unloading the pool. 1313 */ 1314 spa_t *spa = zio->io_spa; 1315 1316 zio_add_child(spa->spa_async_zio_root, zio); 1317 } 1318 1319 zio_execute(zio); 1320 } 1321 1322 /* 1323 * ========================================================================== 1324 * Reexecute or suspend/resume failed I/O 1325 * ========================================================================== 1326 */ 1327 1328 static void 1329 zio_reexecute(zio_t *pio) 1330 { 1331 zio_t *cio, *cio_next; 1332 1333 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1334 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1335 ASSERT(pio->io_gang_leader == NULL); 1336 ASSERT(pio->io_gang_tree == NULL); 1337 1338 pio->io_flags = pio->io_orig_flags; 1339 pio->io_stage = pio->io_orig_stage; 1340 pio->io_pipeline = pio->io_orig_pipeline; 1341 pio->io_reexecute = 0; 1342 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1343 pio->io_error = 0; 1344 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1345 pio->io_state[w] = 0; 1346 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1347 pio->io_child_error[c] = 0; 1348 1349 if (IO_IS_ALLOCATING(pio)) 1350 BP_ZERO(pio->io_bp); 1351 1352 /* 1353 * As we reexecute pio's children, new children could be created. 1354 * New children go to the head of pio's io_child_list, however, 1355 * so we will (correctly) not reexecute them. The key is that 1356 * the remainder of pio's io_child_list, from 'cio_next' onward, 1357 * cannot be affected by any side effects of reexecuting 'cio'. 1358 */ 1359 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) { 1360 cio_next = zio_walk_children(pio); 1361 mutex_enter(&pio->io_lock); 1362 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1363 pio->io_children[cio->io_child_type][w]++; 1364 mutex_exit(&pio->io_lock); 1365 zio_reexecute(cio); 1366 } 1367 1368 /* 1369 * Now that all children have been reexecuted, execute the parent. 1370 * We don't reexecute "The Godfather" I/O here as it's the 1371 * responsibility of the caller to wait on him. 1372 */ 1373 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) 1374 zio_execute(pio); 1375 } 1376 1377 void 1378 zio_suspend(spa_t *spa, zio_t *zio) 1379 { 1380 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1381 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1382 "failure and the failure mode property for this pool " 1383 "is set to panic.", spa_name(spa)); 1384 1385 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1386 1387 mutex_enter(&spa->spa_suspend_lock); 1388 1389 if (spa->spa_suspend_zio_root == NULL) 1390 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1391 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1392 ZIO_FLAG_GODFATHER); 1393 1394 spa->spa_suspended = B_TRUE; 1395 1396 if (zio != NULL) { 1397 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1398 ASSERT(zio != spa->spa_suspend_zio_root); 1399 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1400 ASSERT(zio_unique_parent(zio) == NULL); 1401 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1402 zio_add_child(spa->spa_suspend_zio_root, zio); 1403 } 1404 1405 mutex_exit(&spa->spa_suspend_lock); 1406 } 1407 1408 int 1409 zio_resume(spa_t *spa) 1410 { 1411 zio_t *pio; 1412 1413 /* 1414 * Reexecute all previously suspended i/o. 1415 */ 1416 mutex_enter(&spa->spa_suspend_lock); 1417 spa->spa_suspended = B_FALSE; 1418 cv_broadcast(&spa->spa_suspend_cv); 1419 pio = spa->spa_suspend_zio_root; 1420 spa->spa_suspend_zio_root = NULL; 1421 mutex_exit(&spa->spa_suspend_lock); 1422 1423 if (pio == NULL) 1424 return (0); 1425 1426 zio_reexecute(pio); 1427 return (zio_wait(pio)); 1428 } 1429 1430 void 1431 zio_resume_wait(spa_t *spa) 1432 { 1433 mutex_enter(&spa->spa_suspend_lock); 1434 while (spa_suspended(spa)) 1435 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1436 mutex_exit(&spa->spa_suspend_lock); 1437 } 1438 1439 /* 1440 * ========================================================================== 1441 * Gang blocks. 1442 * 1443 * A gang block is a collection of small blocks that looks to the DMU 1444 * like one large block. When zio_dva_allocate() cannot find a block 1445 * of the requested size, due to either severe fragmentation or the pool 1446 * being nearly full, it calls zio_write_gang_block() to construct the 1447 * block from smaller fragments. 1448 * 1449 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1450 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1451 * an indirect block: it's an array of block pointers. It consumes 1452 * only one sector and hence is allocatable regardless of fragmentation. 1453 * The gang header's bps point to its gang members, which hold the data. 1454 * 1455 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1456 * as the verifier to ensure uniqueness of the SHA256 checksum. 1457 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1458 * not the gang header. This ensures that data block signatures (needed for 1459 * deduplication) are independent of how the block is physically stored. 1460 * 1461 * Gang blocks can be nested: a gang member may itself be a gang block. 1462 * Thus every gang block is a tree in which root and all interior nodes are 1463 * gang headers, and the leaves are normal blocks that contain user data. 1464 * The root of the gang tree is called the gang leader. 1465 * 1466 * To perform any operation (read, rewrite, free, claim) on a gang block, 1467 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1468 * in the io_gang_tree field of the original logical i/o by recursively 1469 * reading the gang leader and all gang headers below it. This yields 1470 * an in-core tree containing the contents of every gang header and the 1471 * bps for every constituent of the gang block. 1472 * 1473 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1474 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1475 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1476 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1477 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1478 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1479 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1480 * of the gang header plus zio_checksum_compute() of the data to update the 1481 * gang header's blk_cksum as described above. 1482 * 1483 * The two-phase assemble/issue model solves the problem of partial failure -- 1484 * what if you'd freed part of a gang block but then couldn't read the 1485 * gang header for another part? Assembling the entire gang tree first 1486 * ensures that all the necessary gang header I/O has succeeded before 1487 * starting the actual work of free, claim, or write. Once the gang tree 1488 * is assembled, free and claim are in-memory operations that cannot fail. 1489 * 1490 * In the event that a gang write fails, zio_dva_unallocate() walks the 1491 * gang tree to immediately free (i.e. insert back into the space map) 1492 * everything we've allocated. This ensures that we don't get ENOSPC 1493 * errors during repeated suspend/resume cycles due to a flaky device. 1494 * 1495 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1496 * the gang tree, we won't modify the block, so we can safely defer the free 1497 * (knowing that the block is still intact). If we *can* assemble the gang 1498 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1499 * each constituent bp and we can allocate a new block on the next sync pass. 1500 * 1501 * In all cases, the gang tree allows complete recovery from partial failure. 1502 * ========================================================================== 1503 */ 1504 1505 static zio_t * 1506 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1507 { 1508 if (gn != NULL) 1509 return (pio); 1510 1511 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), 1512 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1513 &pio->io_bookmark)); 1514 } 1515 1516 zio_t * 1517 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1518 { 1519 zio_t *zio; 1520 1521 if (gn != NULL) { 1522 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1523 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, 1524 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1525 /* 1526 * As we rewrite each gang header, the pipeline will compute 1527 * a new gang block header checksum for it; but no one will 1528 * compute a new data checksum, so we do that here. The one 1529 * exception is the gang leader: the pipeline already computed 1530 * its data checksum because that stage precedes gang assembly. 1531 * (Presently, nothing actually uses interior data checksums; 1532 * this is just good hygiene.) 1533 */ 1534 if (gn != pio->io_gang_leader->io_gang_tree) { 1535 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1536 data, BP_GET_PSIZE(bp)); 1537 } 1538 /* 1539 * If we are here to damage data for testing purposes, 1540 * leave the GBH alone so that we can detect the damage. 1541 */ 1542 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 1543 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 1544 } else { 1545 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1546 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, 1547 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1548 } 1549 1550 return (zio); 1551 } 1552 1553 /* ARGSUSED */ 1554 zio_t * 1555 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1556 { 1557 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 1558 ZIO_GANG_CHILD_FLAGS(pio))); 1559 } 1560 1561 /* ARGSUSED */ 1562 zio_t * 1563 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1564 { 1565 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1566 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1567 } 1568 1569 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1570 NULL, 1571 zio_read_gang, 1572 zio_rewrite_gang, 1573 zio_free_gang, 1574 zio_claim_gang, 1575 NULL 1576 }; 1577 1578 static void zio_gang_tree_assemble_done(zio_t *zio); 1579 1580 static zio_gang_node_t * 1581 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1582 { 1583 zio_gang_node_t *gn; 1584 1585 ASSERT(*gnpp == NULL); 1586 1587 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1588 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1589 *gnpp = gn; 1590 1591 return (gn); 1592 } 1593 1594 static void 1595 zio_gang_node_free(zio_gang_node_t **gnpp) 1596 { 1597 zio_gang_node_t *gn = *gnpp; 1598 1599 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1600 ASSERT(gn->gn_child[g] == NULL); 1601 1602 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1603 kmem_free(gn, sizeof (*gn)); 1604 *gnpp = NULL; 1605 } 1606 1607 static void 1608 zio_gang_tree_free(zio_gang_node_t **gnpp) 1609 { 1610 zio_gang_node_t *gn = *gnpp; 1611 1612 if (gn == NULL) 1613 return; 1614 1615 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1616 zio_gang_tree_free(&gn->gn_child[g]); 1617 1618 zio_gang_node_free(gnpp); 1619 } 1620 1621 static void 1622 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 1623 { 1624 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1625 1626 ASSERT(gio->io_gang_leader == gio); 1627 ASSERT(BP_IS_GANG(bp)); 1628 1629 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh, 1630 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, 1631 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 1632 } 1633 1634 static void 1635 zio_gang_tree_assemble_done(zio_t *zio) 1636 { 1637 zio_t *gio = zio->io_gang_leader; 1638 zio_gang_node_t *gn = zio->io_private; 1639 blkptr_t *bp = zio->io_bp; 1640 1641 ASSERT(gio == zio_unique_parent(zio)); 1642 ASSERT(zio->io_child_count == 0); 1643 1644 if (zio->io_error) 1645 return; 1646 1647 if (BP_SHOULD_BYTESWAP(bp)) 1648 byteswap_uint64_array(zio->io_data, zio->io_size); 1649 1650 ASSERT(zio->io_data == gn->gn_gbh); 1651 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1652 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1653 1654 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1655 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1656 if (!BP_IS_GANG(gbp)) 1657 continue; 1658 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 1659 } 1660 } 1661 1662 static void 1663 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) 1664 { 1665 zio_t *gio = pio->io_gang_leader; 1666 zio_t *zio; 1667 1668 ASSERT(BP_IS_GANG(bp) == !!gn); 1669 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 1670 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 1671 1672 /* 1673 * If you're a gang header, your data is in gn->gn_gbh. 1674 * If you're a gang member, your data is in 'data' and gn == NULL. 1675 */ 1676 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data); 1677 1678 if (gn != NULL) { 1679 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1680 1681 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1682 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1683 if (BP_IS_HOLE(gbp)) 1684 continue; 1685 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); 1686 data = (char *)data + BP_GET_PSIZE(gbp); 1687 } 1688 } 1689 1690 if (gn == gio->io_gang_tree) 1691 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data); 1692 1693 if (zio != pio) 1694 zio_nowait(zio); 1695 } 1696 1697 static int 1698 zio_gang_assemble(zio_t *zio) 1699 { 1700 blkptr_t *bp = zio->io_bp; 1701 1702 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 1703 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 1704 1705 zio->io_gang_leader = zio; 1706 1707 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 1708 1709 return (ZIO_PIPELINE_CONTINUE); 1710 } 1711 1712 static int 1713 zio_gang_issue(zio_t *zio) 1714 { 1715 blkptr_t *bp = zio->io_bp; 1716 1717 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)) 1718 return (ZIO_PIPELINE_STOP); 1719 1720 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 1721 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 1722 1723 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 1724 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data); 1725 else 1726 zio_gang_tree_free(&zio->io_gang_tree); 1727 1728 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1729 1730 return (ZIO_PIPELINE_CONTINUE); 1731 } 1732 1733 static void 1734 zio_write_gang_member_ready(zio_t *zio) 1735 { 1736 zio_t *pio = zio_unique_parent(zio); 1737 zio_t *gio = zio->io_gang_leader; 1738 dva_t *cdva = zio->io_bp->blk_dva; 1739 dva_t *pdva = pio->io_bp->blk_dva; 1740 uint64_t asize; 1741 1742 if (BP_IS_HOLE(zio->io_bp)) 1743 return; 1744 1745 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 1746 1747 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 1748 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 1749 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 1750 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 1751 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1752 1753 mutex_enter(&pio->io_lock); 1754 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 1755 ASSERT(DVA_GET_GANG(&pdva[d])); 1756 asize = DVA_GET_ASIZE(&pdva[d]); 1757 asize += DVA_GET_ASIZE(&cdva[d]); 1758 DVA_SET_ASIZE(&pdva[d], asize); 1759 } 1760 mutex_exit(&pio->io_lock); 1761 } 1762 1763 static int 1764 zio_write_gang_block(zio_t *pio) 1765 { 1766 spa_t *spa = pio->io_spa; 1767 blkptr_t *bp = pio->io_bp; 1768 zio_t *gio = pio->io_gang_leader; 1769 zio_t *zio; 1770 zio_gang_node_t *gn, **gnpp; 1771 zio_gbh_phys_t *gbh; 1772 uint64_t txg = pio->io_txg; 1773 uint64_t resid = pio->io_size; 1774 uint64_t lsize; 1775 int copies = gio->io_prop.zp_copies; 1776 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 1777 zio_prop_t zp; 1778 int error; 1779 1780 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE, 1781 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, 1782 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER); 1783 if (error) { 1784 pio->io_error = error; 1785 return (ZIO_PIPELINE_CONTINUE); 1786 } 1787 1788 if (pio == gio) { 1789 gnpp = &gio->io_gang_tree; 1790 } else { 1791 gnpp = pio->io_private; 1792 ASSERT(pio->io_ready == zio_write_gang_member_ready); 1793 } 1794 1795 gn = zio_gang_node_alloc(gnpp); 1796 gbh = gn->gn_gbh; 1797 bzero(gbh, SPA_GANGBLOCKSIZE); 1798 1799 /* 1800 * Create the gang header. 1801 */ 1802 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, 1803 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1804 1805 /* 1806 * Create and nowait the gang children. 1807 */ 1808 for (int g = 0; resid != 0; resid -= lsize, g++) { 1809 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 1810 SPA_MINBLOCKSIZE); 1811 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 1812 1813 zp.zp_checksum = gio->io_prop.zp_checksum; 1814 zp.zp_compress = ZIO_COMPRESS_OFF; 1815 zp.zp_type = DMU_OT_NONE; 1816 zp.zp_level = 0; 1817 zp.zp_copies = gio->io_prop.zp_copies; 1818 zp.zp_dedup = B_FALSE; 1819 zp.zp_dedup_verify = B_FALSE; 1820 zp.zp_nopwrite = B_FALSE; 1821 1822 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 1823 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp, 1824 zio_write_gang_member_ready, NULL, &gn->gn_child[g], 1825 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1826 &pio->io_bookmark)); 1827 } 1828 1829 /* 1830 * Set pio's pipeline to just wait for zio to finish. 1831 */ 1832 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1833 1834 zio_nowait(zio); 1835 1836 return (ZIO_PIPELINE_CONTINUE); 1837 } 1838 1839 /* 1840 * The zio_nop_write stage in the pipeline determines if allocating 1841 * a new bp is necessary. By leveraging a cryptographically secure checksum, 1842 * such as SHA256, we can compare the checksums of the new data and the old 1843 * to determine if allocating a new block is required. The nopwrite 1844 * feature can handle writes in either syncing or open context (i.e. zil 1845 * writes) and as a result is mutually exclusive with dedup. 1846 */ 1847 static int 1848 zio_nop_write(zio_t *zio) 1849 { 1850 blkptr_t *bp = zio->io_bp; 1851 blkptr_t *bp_orig = &zio->io_bp_orig; 1852 zio_prop_t *zp = &zio->io_prop; 1853 1854 ASSERT(BP_GET_LEVEL(bp) == 0); 1855 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1856 ASSERT(zp->zp_nopwrite); 1857 ASSERT(!zp->zp_dedup); 1858 ASSERT(zio->io_bp_override == NULL); 1859 ASSERT(IO_IS_ALLOCATING(zio)); 1860 1861 /* 1862 * Check to see if the original bp and the new bp have matching 1863 * characteristics (i.e. same checksum, compression algorithms, etc). 1864 * If they don't then just continue with the pipeline which will 1865 * allocate a new bp. 1866 */ 1867 if (BP_IS_HOLE(bp_orig) || 1868 !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup || 1869 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 1870 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 1871 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 1872 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 1873 return (ZIO_PIPELINE_CONTINUE); 1874 1875 /* 1876 * If the checksums match then reset the pipeline so that we 1877 * avoid allocating a new bp and issuing any I/O. 1878 */ 1879 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 1880 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup); 1881 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 1882 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 1883 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 1884 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 1885 sizeof (uint64_t)) == 0); 1886 1887 *bp = *bp_orig; 1888 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1889 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1890 } 1891 1892 return (ZIO_PIPELINE_CONTINUE); 1893 } 1894 1895 /* 1896 * ========================================================================== 1897 * Dedup 1898 * ========================================================================== 1899 */ 1900 static void 1901 zio_ddt_child_read_done(zio_t *zio) 1902 { 1903 blkptr_t *bp = zio->io_bp; 1904 ddt_entry_t *dde = zio->io_private; 1905 ddt_phys_t *ddp; 1906 zio_t *pio = zio_unique_parent(zio); 1907 1908 mutex_enter(&pio->io_lock); 1909 ddp = ddt_phys_select(dde, bp); 1910 if (zio->io_error == 0) 1911 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 1912 if (zio->io_error == 0 && dde->dde_repair_data == NULL) 1913 dde->dde_repair_data = zio->io_data; 1914 else 1915 zio_buf_free(zio->io_data, zio->io_size); 1916 mutex_exit(&pio->io_lock); 1917 } 1918 1919 static int 1920 zio_ddt_read_start(zio_t *zio) 1921 { 1922 blkptr_t *bp = zio->io_bp; 1923 1924 ASSERT(BP_GET_DEDUP(bp)); 1925 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 1926 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1927 1928 if (zio->io_child_error[ZIO_CHILD_DDT]) { 1929 ddt_t *ddt = ddt_select(zio->io_spa, bp); 1930 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 1931 ddt_phys_t *ddp = dde->dde_phys; 1932 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 1933 blkptr_t blk; 1934 1935 ASSERT(zio->io_vsd == NULL); 1936 zio->io_vsd = dde; 1937 1938 if (ddp_self == NULL) 1939 return (ZIO_PIPELINE_CONTINUE); 1940 1941 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 1942 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 1943 continue; 1944 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 1945 &blk); 1946 zio_nowait(zio_read(zio, zio->io_spa, &blk, 1947 zio_buf_alloc(zio->io_size), zio->io_size, 1948 zio_ddt_child_read_done, dde, zio->io_priority, 1949 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE, 1950 &zio->io_bookmark)); 1951 } 1952 return (ZIO_PIPELINE_CONTINUE); 1953 } 1954 1955 zio_nowait(zio_read(zio, zio->io_spa, bp, 1956 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority, 1957 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 1958 1959 return (ZIO_PIPELINE_CONTINUE); 1960 } 1961 1962 static int 1963 zio_ddt_read_done(zio_t *zio) 1964 { 1965 blkptr_t *bp = zio->io_bp; 1966 1967 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE)) 1968 return (ZIO_PIPELINE_STOP); 1969 1970 ASSERT(BP_GET_DEDUP(bp)); 1971 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 1972 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1973 1974 if (zio->io_child_error[ZIO_CHILD_DDT]) { 1975 ddt_t *ddt = ddt_select(zio->io_spa, bp); 1976 ddt_entry_t *dde = zio->io_vsd; 1977 if (ddt == NULL) { 1978 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 1979 return (ZIO_PIPELINE_CONTINUE); 1980 } 1981 if (dde == NULL) { 1982 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 1983 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1984 return (ZIO_PIPELINE_STOP); 1985 } 1986 if (dde->dde_repair_data != NULL) { 1987 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size); 1988 zio->io_child_error[ZIO_CHILD_DDT] = 0; 1989 } 1990 ddt_repair_done(ddt, dde); 1991 zio->io_vsd = NULL; 1992 } 1993 1994 ASSERT(zio->io_vsd == NULL); 1995 1996 return (ZIO_PIPELINE_CONTINUE); 1997 } 1998 1999 static boolean_t 2000 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2001 { 2002 spa_t *spa = zio->io_spa; 2003 2004 /* 2005 * Note: we compare the original data, not the transformed data, 2006 * because when zio->io_bp is an override bp, we will not have 2007 * pushed the I/O transforms. That's an important optimization 2008 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2009 */ 2010 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2011 zio_t *lio = dde->dde_lead_zio[p]; 2012 2013 if (lio != NULL) { 2014 return (lio->io_orig_size != zio->io_orig_size || 2015 bcmp(zio->io_orig_data, lio->io_orig_data, 2016 zio->io_orig_size) != 0); 2017 } 2018 } 2019 2020 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2021 ddt_phys_t *ddp = &dde->dde_phys[p]; 2022 2023 if (ddp->ddp_phys_birth != 0) { 2024 arc_buf_t *abuf = NULL; 2025 uint32_t aflags = ARC_WAIT; 2026 blkptr_t blk = *zio->io_bp; 2027 int error; 2028 2029 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2030 2031 ddt_exit(ddt); 2032 2033 error = arc_read(NULL, spa, &blk, 2034 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2035 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2036 &aflags, &zio->io_bookmark); 2037 2038 if (error == 0) { 2039 if (arc_buf_size(abuf) != zio->io_orig_size || 2040 bcmp(abuf->b_data, zio->io_orig_data, 2041 zio->io_orig_size) != 0) 2042 error = SET_ERROR(EEXIST); 2043 VERIFY(arc_buf_remove_ref(abuf, &abuf)); 2044 } 2045 2046 ddt_enter(ddt); 2047 return (error != 0); 2048 } 2049 } 2050 2051 return (B_FALSE); 2052 } 2053 2054 static void 2055 zio_ddt_child_write_ready(zio_t *zio) 2056 { 2057 int p = zio->io_prop.zp_copies; 2058 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2059 ddt_entry_t *dde = zio->io_private; 2060 ddt_phys_t *ddp = &dde->dde_phys[p]; 2061 zio_t *pio; 2062 2063 if (zio->io_error) 2064 return; 2065 2066 ddt_enter(ddt); 2067 2068 ASSERT(dde->dde_lead_zio[p] == zio); 2069 2070 ddt_phys_fill(ddp, zio->io_bp); 2071 2072 while ((pio = zio_walk_parents(zio)) != NULL) 2073 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2074 2075 ddt_exit(ddt); 2076 } 2077 2078 static void 2079 zio_ddt_child_write_done(zio_t *zio) 2080 { 2081 int p = zio->io_prop.zp_copies; 2082 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2083 ddt_entry_t *dde = zio->io_private; 2084 ddt_phys_t *ddp = &dde->dde_phys[p]; 2085 2086 ddt_enter(ddt); 2087 2088 ASSERT(ddp->ddp_refcnt == 0); 2089 ASSERT(dde->dde_lead_zio[p] == zio); 2090 dde->dde_lead_zio[p] = NULL; 2091 2092 if (zio->io_error == 0) { 2093 while (zio_walk_parents(zio) != NULL) 2094 ddt_phys_addref(ddp); 2095 } else { 2096 ddt_phys_clear(ddp); 2097 } 2098 2099 ddt_exit(ddt); 2100 } 2101 2102 static void 2103 zio_ddt_ditto_write_done(zio_t *zio) 2104 { 2105 int p = DDT_PHYS_DITTO; 2106 zio_prop_t *zp = &zio->io_prop; 2107 blkptr_t *bp = zio->io_bp; 2108 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2109 ddt_entry_t *dde = zio->io_private; 2110 ddt_phys_t *ddp = &dde->dde_phys[p]; 2111 ddt_key_t *ddk = &dde->dde_key; 2112 2113 ddt_enter(ddt); 2114 2115 ASSERT(ddp->ddp_refcnt == 0); 2116 ASSERT(dde->dde_lead_zio[p] == zio); 2117 dde->dde_lead_zio[p] = NULL; 2118 2119 if (zio->io_error == 0) { 2120 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2121 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2122 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2123 if (ddp->ddp_phys_birth != 0) 2124 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2125 ddt_phys_fill(ddp, bp); 2126 } 2127 2128 ddt_exit(ddt); 2129 } 2130 2131 static int 2132 zio_ddt_write(zio_t *zio) 2133 { 2134 spa_t *spa = zio->io_spa; 2135 blkptr_t *bp = zio->io_bp; 2136 uint64_t txg = zio->io_txg; 2137 zio_prop_t *zp = &zio->io_prop; 2138 int p = zp->zp_copies; 2139 int ditto_copies; 2140 zio_t *cio = NULL; 2141 zio_t *dio = NULL; 2142 ddt_t *ddt = ddt_select(spa, bp); 2143 ddt_entry_t *dde; 2144 ddt_phys_t *ddp; 2145 2146 ASSERT(BP_GET_DEDUP(bp)); 2147 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2148 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2149 2150 ddt_enter(ddt); 2151 dde = ddt_lookup(ddt, bp, B_TRUE); 2152 ddp = &dde->dde_phys[p]; 2153 2154 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2155 /* 2156 * If we're using a weak checksum, upgrade to a strong checksum 2157 * and try again. If we're already using a strong checksum, 2158 * we can't resolve it, so just convert to an ordinary write. 2159 * (And automatically e-mail a paper to Nature?) 2160 */ 2161 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) { 2162 zp->zp_checksum = spa_dedup_checksum(spa); 2163 zio_pop_transforms(zio); 2164 zio->io_stage = ZIO_STAGE_OPEN; 2165 BP_ZERO(bp); 2166 } else { 2167 zp->zp_dedup = B_FALSE; 2168 } 2169 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2170 ddt_exit(ddt); 2171 return (ZIO_PIPELINE_CONTINUE); 2172 } 2173 2174 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2175 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2176 2177 if (ditto_copies > ddt_ditto_copies_present(dde) && 2178 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2179 zio_prop_t czp = *zp; 2180 2181 czp.zp_copies = ditto_copies; 2182 2183 /* 2184 * If we arrived here with an override bp, we won't have run 2185 * the transform stack, so we won't have the data we need to 2186 * generate a child i/o. So, toss the override bp and restart. 2187 * This is safe, because using the override bp is just an 2188 * optimization; and it's rare, so the cost doesn't matter. 2189 */ 2190 if (zio->io_bp_override) { 2191 zio_pop_transforms(zio); 2192 zio->io_stage = ZIO_STAGE_OPEN; 2193 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2194 zio->io_bp_override = NULL; 2195 BP_ZERO(bp); 2196 ddt_exit(ddt); 2197 return (ZIO_PIPELINE_CONTINUE); 2198 } 2199 2200 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2201 zio->io_orig_size, &czp, NULL, 2202 zio_ddt_ditto_write_done, dde, zio->io_priority, 2203 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2204 2205 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL); 2206 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 2207 } 2208 2209 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 2210 if (ddp->ddp_phys_birth != 0) 2211 ddt_bp_fill(ddp, bp, txg); 2212 if (dde->dde_lead_zio[p] != NULL) 2213 zio_add_child(zio, dde->dde_lead_zio[p]); 2214 else 2215 ddt_phys_addref(ddp); 2216 } else if (zio->io_bp_override) { 2217 ASSERT(bp->blk_birth == txg); 2218 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 2219 ddt_phys_fill(ddp, bp); 2220 ddt_phys_addref(ddp); 2221 } else { 2222 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2223 zio->io_orig_size, zp, zio_ddt_child_write_ready, 2224 zio_ddt_child_write_done, dde, zio->io_priority, 2225 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2226 2227 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL); 2228 dde->dde_lead_zio[p] = cio; 2229 } 2230 2231 ddt_exit(ddt); 2232 2233 if (cio) 2234 zio_nowait(cio); 2235 if (dio) 2236 zio_nowait(dio); 2237 2238 return (ZIO_PIPELINE_CONTINUE); 2239 } 2240 2241 ddt_entry_t *freedde; /* for debugging */ 2242 2243 static int 2244 zio_ddt_free(zio_t *zio) 2245 { 2246 spa_t *spa = zio->io_spa; 2247 blkptr_t *bp = zio->io_bp; 2248 ddt_t *ddt = ddt_select(spa, bp); 2249 ddt_entry_t *dde; 2250 ddt_phys_t *ddp; 2251 2252 ASSERT(BP_GET_DEDUP(bp)); 2253 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2254 2255 ddt_enter(ddt); 2256 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 2257 ddp = ddt_phys_select(dde, bp); 2258 ddt_phys_decref(ddp); 2259 ddt_exit(ddt); 2260 2261 return (ZIO_PIPELINE_CONTINUE); 2262 } 2263 2264 /* 2265 * ========================================================================== 2266 * Allocate and free blocks 2267 * ========================================================================== 2268 */ 2269 static int 2270 zio_dva_allocate(zio_t *zio) 2271 { 2272 spa_t *spa = zio->io_spa; 2273 metaslab_class_t *mc = spa_normal_class(spa); 2274 blkptr_t *bp = zio->io_bp; 2275 int error; 2276 int flags = 0; 2277 2278 if (zio->io_gang_leader == NULL) { 2279 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2280 zio->io_gang_leader = zio; 2281 } 2282 2283 ASSERT(BP_IS_HOLE(bp)); 2284 ASSERT0(BP_GET_NDVAS(bp)); 2285 ASSERT3U(zio->io_prop.zp_copies, >, 0); 2286 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 2287 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 2288 2289 /* 2290 * The dump device does not support gang blocks so allocation on 2291 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid 2292 * the "fast" gang feature. 2293 */ 2294 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0; 2295 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ? 2296 METASLAB_GANG_CHILD : 0; 2297 error = metaslab_alloc(spa, mc, zio->io_size, bp, 2298 zio->io_prop.zp_copies, zio->io_txg, NULL, flags); 2299 2300 if (error) { 2301 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, " 2302 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 2303 error); 2304 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 2305 return (zio_write_gang_block(zio)); 2306 zio->io_error = error; 2307 } 2308 2309 return (ZIO_PIPELINE_CONTINUE); 2310 } 2311 2312 static int 2313 zio_dva_free(zio_t *zio) 2314 { 2315 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 2316 2317 return (ZIO_PIPELINE_CONTINUE); 2318 } 2319 2320 static int 2321 zio_dva_claim(zio_t *zio) 2322 { 2323 int error; 2324 2325 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 2326 if (error) 2327 zio->io_error = error; 2328 2329 return (ZIO_PIPELINE_CONTINUE); 2330 } 2331 2332 /* 2333 * Undo an allocation. This is used by zio_done() when an I/O fails 2334 * and we want to give back the block we just allocated. 2335 * This handles both normal blocks and gang blocks. 2336 */ 2337 static void 2338 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 2339 { 2340 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2341 ASSERT(zio->io_bp_override == NULL); 2342 2343 if (!BP_IS_HOLE(bp)) 2344 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 2345 2346 if (gn != NULL) { 2347 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2348 zio_dva_unallocate(zio, gn->gn_child[g], 2349 &gn->gn_gbh->zg_blkptr[g]); 2350 } 2351 } 2352 } 2353 2354 /* 2355 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2356 */ 2357 int 2358 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp, 2359 uint64_t size, boolean_t use_slog) 2360 { 2361 int error = 1; 2362 2363 ASSERT(txg > spa_syncing_txg(spa)); 2364 2365 /* 2366 * ZIL blocks are always contiguous (i.e. not gang blocks) so we 2367 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang" 2368 * when allocating them. 2369 */ 2370 if (use_slog) { 2371 error = metaslab_alloc(spa, spa_log_class(spa), size, 2372 new_bp, 1, txg, old_bp, 2373 METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID); 2374 } 2375 2376 if (error) { 2377 error = metaslab_alloc(spa, spa_normal_class(spa), size, 2378 new_bp, 1, txg, old_bp, 2379 METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID); 2380 } 2381 2382 if (error == 0) { 2383 BP_SET_LSIZE(new_bp, size); 2384 BP_SET_PSIZE(new_bp, size); 2385 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 2386 BP_SET_CHECKSUM(new_bp, 2387 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 2388 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 2389 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 2390 BP_SET_LEVEL(new_bp, 0); 2391 BP_SET_DEDUP(new_bp, 0); 2392 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 2393 } 2394 2395 return (error); 2396 } 2397 2398 /* 2399 * Free an intent log block. 2400 */ 2401 void 2402 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp) 2403 { 2404 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG); 2405 ASSERT(!BP_IS_GANG(bp)); 2406 2407 zio_free(spa, txg, bp); 2408 } 2409 2410 /* 2411 * ========================================================================== 2412 * Read and write to physical devices 2413 * ========================================================================== 2414 */ 2415 static int 2416 zio_vdev_io_start(zio_t *zio) 2417 { 2418 vdev_t *vd = zio->io_vd; 2419 uint64_t align; 2420 spa_t *spa = zio->io_spa; 2421 2422 ASSERT(zio->io_error == 0); 2423 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 2424 2425 if (vd == NULL) { 2426 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2427 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 2428 2429 /* 2430 * The mirror_ops handle multiple DVAs in a single BP. 2431 */ 2432 return (vdev_mirror_ops.vdev_op_io_start(zio)); 2433 } 2434 2435 /* 2436 * We keep track of time-sensitive I/Os so that the scan thread 2437 * can quickly react to certain workloads. In particular, we care 2438 * about non-scrubbing, top-level reads and writes with the following 2439 * characteristics: 2440 * - synchronous writes of user data to non-slog devices 2441 * - any reads of user data 2442 * When these conditions are met, adjust the timestamp of spa_last_io 2443 * which allows the scan thread to adjust its workload accordingly. 2444 */ 2445 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && 2446 vd == vd->vdev_top && !vd->vdev_islog && 2447 zio->io_bookmark.zb_objset != DMU_META_OBJSET && 2448 zio->io_txg != spa_syncing_txg(spa)) { 2449 uint64_t old = spa->spa_last_io; 2450 uint64_t new = ddi_get_lbolt64(); 2451 if (old != new) 2452 (void) atomic_cas_64(&spa->spa_last_io, old, new); 2453 } 2454 2455 align = 1ULL << vd->vdev_top->vdev_ashift; 2456 2457 if (P2PHASE(zio->io_size, align) != 0) { 2458 uint64_t asize = P2ROUNDUP(zio->io_size, align); 2459 char *abuf = zio_buf_alloc(asize); 2460 ASSERT(vd == vd->vdev_top); 2461 if (zio->io_type == ZIO_TYPE_WRITE) { 2462 bcopy(zio->io_data, abuf, zio->io_size); 2463 bzero(abuf + zio->io_size, asize - zio->io_size); 2464 } 2465 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 2466 } 2467 2468 ASSERT(P2PHASE(zio->io_offset, align) == 0); 2469 ASSERT(P2PHASE(zio->io_size, align) == 0); 2470 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 2471 2472 /* 2473 * If this is a repair I/O, and there's no self-healing involved -- 2474 * that is, we're just resilvering what we expect to resilver -- 2475 * then don't do the I/O unless zio's txg is actually in vd's DTL. 2476 * This prevents spurious resilvering with nested replication. 2477 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 2478 * A is out of date, we'll read from C+D, then use the data to 2479 * resilver A+B -- but we don't actually want to resilver B, just A. 2480 * The top-level mirror has no way to know this, so instead we just 2481 * discard unnecessary repairs as we work our way down the vdev tree. 2482 * The same logic applies to any form of nested replication: 2483 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 2484 */ 2485 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 2486 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 2487 zio->io_txg != 0 && /* not a delegated i/o */ 2488 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 2489 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 2490 zio_vdev_io_bypass(zio); 2491 return (ZIO_PIPELINE_CONTINUE); 2492 } 2493 2494 if (vd->vdev_ops->vdev_op_leaf && 2495 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 2496 2497 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0) 2498 return (ZIO_PIPELINE_CONTINUE); 2499 2500 if ((zio = vdev_queue_io(zio)) == NULL) 2501 return (ZIO_PIPELINE_STOP); 2502 2503 if (!vdev_accessible(vd, zio)) { 2504 zio->io_error = SET_ERROR(ENXIO); 2505 zio_interrupt(zio); 2506 return (ZIO_PIPELINE_STOP); 2507 } 2508 } 2509 2510 return (vd->vdev_ops->vdev_op_io_start(zio)); 2511 } 2512 2513 static int 2514 zio_vdev_io_done(zio_t *zio) 2515 { 2516 vdev_t *vd = zio->io_vd; 2517 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 2518 boolean_t unexpected_error = B_FALSE; 2519 2520 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 2521 return (ZIO_PIPELINE_STOP); 2522 2523 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 2524 2525 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 2526 2527 vdev_queue_io_done(zio); 2528 2529 if (zio->io_type == ZIO_TYPE_WRITE) 2530 vdev_cache_write(zio); 2531 2532 if (zio_injection_enabled && zio->io_error == 0) 2533 zio->io_error = zio_handle_device_injection(vd, 2534 zio, EIO); 2535 2536 if (zio_injection_enabled && zio->io_error == 0) 2537 zio->io_error = zio_handle_label_injection(zio, EIO); 2538 2539 if (zio->io_error) { 2540 if (!vdev_accessible(vd, zio)) { 2541 zio->io_error = SET_ERROR(ENXIO); 2542 } else { 2543 unexpected_error = B_TRUE; 2544 } 2545 } 2546 } 2547 2548 ops->vdev_op_io_done(zio); 2549 2550 if (unexpected_error) 2551 VERIFY(vdev_probe(vd, zio) == NULL); 2552 2553 return (ZIO_PIPELINE_CONTINUE); 2554 } 2555 2556 /* 2557 * For non-raidz ZIOs, we can just copy aside the bad data read from the 2558 * disk, and use that to finish the checksum ereport later. 2559 */ 2560 static void 2561 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 2562 const void *good_buf) 2563 { 2564 /* no processing needed */ 2565 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 2566 } 2567 2568 /*ARGSUSED*/ 2569 void 2570 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 2571 { 2572 void *buf = zio_buf_alloc(zio->io_size); 2573 2574 bcopy(zio->io_data, buf, zio->io_size); 2575 2576 zcr->zcr_cbinfo = zio->io_size; 2577 zcr->zcr_cbdata = buf; 2578 zcr->zcr_finish = zio_vsd_default_cksum_finish; 2579 zcr->zcr_free = zio_buf_free; 2580 } 2581 2582 static int 2583 zio_vdev_io_assess(zio_t *zio) 2584 { 2585 vdev_t *vd = zio->io_vd; 2586 2587 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)) 2588 return (ZIO_PIPELINE_STOP); 2589 2590 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2591 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 2592 2593 if (zio->io_vsd != NULL) { 2594 zio->io_vsd_ops->vsd_free(zio); 2595 zio->io_vsd = NULL; 2596 } 2597 2598 if (zio_injection_enabled && zio->io_error == 0) 2599 zio->io_error = zio_handle_fault_injection(zio, EIO); 2600 2601 /* 2602 * If the I/O failed, determine whether we should attempt to retry it. 2603 * 2604 * On retry, we cut in line in the issue queue, since we don't want 2605 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 2606 */ 2607 if (zio->io_error && vd == NULL && 2608 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 2609 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 2610 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 2611 zio->io_error = 0; 2612 zio->io_flags |= ZIO_FLAG_IO_RETRY | 2613 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 2614 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 2615 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 2616 zio_requeue_io_start_cut_in_line); 2617 return (ZIO_PIPELINE_STOP); 2618 } 2619 2620 /* 2621 * If we got an error on a leaf device, convert it to ENXIO 2622 * if the device is not accessible at all. 2623 */ 2624 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 2625 !vdev_accessible(vd, zio)) 2626 zio->io_error = SET_ERROR(ENXIO); 2627 2628 /* 2629 * If we can't write to an interior vdev (mirror or RAID-Z), 2630 * set vdev_cant_write so that we stop trying to allocate from it. 2631 */ 2632 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 2633 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 2634 vd->vdev_cant_write = B_TRUE; 2635 } 2636 2637 if (zio->io_error) 2638 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2639 2640 return (ZIO_PIPELINE_CONTINUE); 2641 } 2642 2643 void 2644 zio_vdev_io_reissue(zio_t *zio) 2645 { 2646 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 2647 ASSERT(zio->io_error == 0); 2648 2649 zio->io_stage >>= 1; 2650 } 2651 2652 void 2653 zio_vdev_io_redone(zio_t *zio) 2654 { 2655 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 2656 2657 zio->io_stage >>= 1; 2658 } 2659 2660 void 2661 zio_vdev_io_bypass(zio_t *zio) 2662 { 2663 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 2664 ASSERT(zio->io_error == 0); 2665 2666 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 2667 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 2668 } 2669 2670 /* 2671 * ========================================================================== 2672 * Generate and verify checksums 2673 * ========================================================================== 2674 */ 2675 static int 2676 zio_checksum_generate(zio_t *zio) 2677 { 2678 blkptr_t *bp = zio->io_bp; 2679 enum zio_checksum checksum; 2680 2681 if (bp == NULL) { 2682 /* 2683 * This is zio_write_phys(). 2684 * We're either generating a label checksum, or none at all. 2685 */ 2686 checksum = zio->io_prop.zp_checksum; 2687 2688 if (checksum == ZIO_CHECKSUM_OFF) 2689 return (ZIO_PIPELINE_CONTINUE); 2690 2691 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 2692 } else { 2693 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 2694 ASSERT(!IO_IS_ALLOCATING(zio)); 2695 checksum = ZIO_CHECKSUM_GANG_HEADER; 2696 } else { 2697 checksum = BP_GET_CHECKSUM(bp); 2698 } 2699 } 2700 2701 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); 2702 2703 return (ZIO_PIPELINE_CONTINUE); 2704 } 2705 2706 static int 2707 zio_checksum_verify(zio_t *zio) 2708 { 2709 zio_bad_cksum_t info; 2710 blkptr_t *bp = zio->io_bp; 2711 int error; 2712 2713 ASSERT(zio->io_vd != NULL); 2714 2715 if (bp == NULL) { 2716 /* 2717 * This is zio_read_phys(). 2718 * We're either verifying a label checksum, or nothing at all. 2719 */ 2720 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 2721 return (ZIO_PIPELINE_CONTINUE); 2722 2723 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 2724 } 2725 2726 if ((error = zio_checksum_error(zio, &info)) != 0) { 2727 zio->io_error = error; 2728 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2729 zfs_ereport_start_checksum(zio->io_spa, 2730 zio->io_vd, zio, zio->io_offset, 2731 zio->io_size, NULL, &info); 2732 } 2733 } 2734 2735 return (ZIO_PIPELINE_CONTINUE); 2736 } 2737 2738 /* 2739 * Called by RAID-Z to ensure we don't compute the checksum twice. 2740 */ 2741 void 2742 zio_checksum_verified(zio_t *zio) 2743 { 2744 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 2745 } 2746 2747 /* 2748 * ========================================================================== 2749 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 2750 * An error of 0 indictes success. ENXIO indicates whole-device failure, 2751 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 2752 * indicate errors that are specific to one I/O, and most likely permanent. 2753 * Any other error is presumed to be worse because we weren't expecting it. 2754 * ========================================================================== 2755 */ 2756 int 2757 zio_worst_error(int e1, int e2) 2758 { 2759 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 2760 int r1, r2; 2761 2762 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 2763 if (e1 == zio_error_rank[r1]) 2764 break; 2765 2766 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 2767 if (e2 == zio_error_rank[r2]) 2768 break; 2769 2770 return (r1 > r2 ? e1 : e2); 2771 } 2772 2773 /* 2774 * ========================================================================== 2775 * I/O completion 2776 * ========================================================================== 2777 */ 2778 static int 2779 zio_ready(zio_t *zio) 2780 { 2781 blkptr_t *bp = zio->io_bp; 2782 zio_t *pio, *pio_next; 2783 2784 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) || 2785 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY)) 2786 return (ZIO_PIPELINE_STOP); 2787 2788 if (zio->io_ready) { 2789 ASSERT(IO_IS_ALLOCATING(zio)); 2790 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 2791 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 2792 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 2793 2794 zio->io_ready(zio); 2795 } 2796 2797 if (bp != NULL && bp != &zio->io_bp_copy) 2798 zio->io_bp_copy = *bp; 2799 2800 if (zio->io_error) 2801 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2802 2803 mutex_enter(&zio->io_lock); 2804 zio->io_state[ZIO_WAIT_READY] = 1; 2805 pio = zio_walk_parents(zio); 2806 mutex_exit(&zio->io_lock); 2807 2808 /* 2809 * As we notify zio's parents, new parents could be added. 2810 * New parents go to the head of zio's io_parent_list, however, 2811 * so we will (correctly) not notify them. The remainder of zio's 2812 * io_parent_list, from 'pio_next' onward, cannot change because 2813 * all parents must wait for us to be done before they can be done. 2814 */ 2815 for (; pio != NULL; pio = pio_next) { 2816 pio_next = zio_walk_parents(zio); 2817 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 2818 } 2819 2820 if (zio->io_flags & ZIO_FLAG_NODATA) { 2821 if (BP_IS_GANG(bp)) { 2822 zio->io_flags &= ~ZIO_FLAG_NODATA; 2823 } else { 2824 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE); 2825 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2826 } 2827 } 2828 2829 if (zio_injection_enabled && 2830 zio->io_spa->spa_syncing_txg == zio->io_txg) 2831 zio_handle_ignored_writes(zio); 2832 2833 return (ZIO_PIPELINE_CONTINUE); 2834 } 2835 2836 static int 2837 zio_done(zio_t *zio) 2838 { 2839 spa_t *spa = zio->io_spa; 2840 zio_t *lio = zio->io_logical; 2841 blkptr_t *bp = zio->io_bp; 2842 vdev_t *vd = zio->io_vd; 2843 uint64_t psize = zio->io_size; 2844 zio_t *pio, *pio_next; 2845 2846 /* 2847 * If our children haven't all completed, 2848 * wait for them and then repeat this pipeline stage. 2849 */ 2850 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) || 2851 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) || 2852 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) || 2853 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)) 2854 return (ZIO_PIPELINE_STOP); 2855 2856 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2857 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2858 ASSERT(zio->io_children[c][w] == 0); 2859 2860 if (bp != NULL) { 2861 ASSERT(bp->blk_pad[0] == 0); 2862 ASSERT(bp->blk_pad[1] == 0); 2863 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 2864 (bp == zio_unique_parent(zio)->io_bp)); 2865 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 2866 zio->io_bp_override == NULL && 2867 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 2868 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 2869 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 2870 ASSERT(BP_COUNT_GANG(bp) == 0 || 2871 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 2872 } 2873 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 2874 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 2875 } 2876 2877 /* 2878 * If there were child vdev/gang/ddt errors, they apply to us now. 2879 */ 2880 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 2881 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 2882 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 2883 2884 /* 2885 * If the I/O on the transformed data was successful, generate any 2886 * checksum reports now while we still have the transformed data. 2887 */ 2888 if (zio->io_error == 0) { 2889 while (zio->io_cksum_report != NULL) { 2890 zio_cksum_report_t *zcr = zio->io_cksum_report; 2891 uint64_t align = zcr->zcr_align; 2892 uint64_t asize = P2ROUNDUP(psize, align); 2893 char *abuf = zio->io_data; 2894 2895 if (asize != psize) { 2896 abuf = zio_buf_alloc(asize); 2897 bcopy(zio->io_data, abuf, psize); 2898 bzero(abuf + psize, asize - psize); 2899 } 2900 2901 zio->io_cksum_report = zcr->zcr_next; 2902 zcr->zcr_next = NULL; 2903 zcr->zcr_finish(zcr, abuf); 2904 zfs_ereport_free_checksum(zcr); 2905 2906 if (asize != psize) 2907 zio_buf_free(abuf, asize); 2908 } 2909 } 2910 2911 zio_pop_transforms(zio); /* note: may set zio->io_error */ 2912 2913 vdev_stat_update(zio, psize); 2914 2915 if (zio->io_error) { 2916 /* 2917 * If this I/O is attached to a particular vdev, 2918 * generate an error message describing the I/O failure 2919 * at the block level. We ignore these errors if the 2920 * device is currently unavailable. 2921 */ 2922 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 2923 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 2924 2925 if ((zio->io_error == EIO || !(zio->io_flags & 2926 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 2927 zio == lio) { 2928 /* 2929 * For logical I/O requests, tell the SPA to log the 2930 * error and generate a logical data ereport. 2931 */ 2932 spa_log_error(spa, zio); 2933 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 2934 0, 0); 2935 } 2936 } 2937 2938 if (zio->io_error && zio == lio) { 2939 /* 2940 * Determine whether zio should be reexecuted. This will 2941 * propagate all the way to the root via zio_notify_parent(). 2942 */ 2943 ASSERT(vd == NULL && bp != NULL); 2944 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2945 2946 if (IO_IS_ALLOCATING(zio) && 2947 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 2948 if (zio->io_error != ENOSPC) 2949 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 2950 else 2951 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2952 } 2953 2954 if ((zio->io_type == ZIO_TYPE_READ || 2955 zio->io_type == ZIO_TYPE_FREE) && 2956 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 2957 zio->io_error == ENXIO && 2958 spa_load_state(spa) == SPA_LOAD_NONE && 2959 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 2960 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2961 2962 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 2963 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 2964 2965 /* 2966 * Here is a possibly good place to attempt to do 2967 * either combinatorial reconstruction or error correction 2968 * based on checksums. It also might be a good place 2969 * to send out preliminary ereports before we suspend 2970 * processing. 2971 */ 2972 } 2973 2974 /* 2975 * If there were logical child errors, they apply to us now. 2976 * We defer this until now to avoid conflating logical child 2977 * errors with errors that happened to the zio itself when 2978 * updating vdev stats and reporting FMA events above. 2979 */ 2980 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 2981 2982 if ((zio->io_error || zio->io_reexecute) && 2983 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 2984 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 2985 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 2986 2987 zio_gang_tree_free(&zio->io_gang_tree); 2988 2989 /* 2990 * Godfather I/Os should never suspend. 2991 */ 2992 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 2993 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 2994 zio->io_reexecute = 0; 2995 2996 if (zio->io_reexecute) { 2997 /* 2998 * This is a logical I/O that wants to reexecute. 2999 * 3000 * Reexecute is top-down. When an i/o fails, if it's not 3001 * the root, it simply notifies its parent and sticks around. 3002 * The parent, seeing that it still has children in zio_done(), 3003 * does the same. This percolates all the way up to the root. 3004 * The root i/o will reexecute or suspend the entire tree. 3005 * 3006 * This approach ensures that zio_reexecute() honors 3007 * all the original i/o dependency relationships, e.g. 3008 * parents not executing until children are ready. 3009 */ 3010 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3011 3012 zio->io_gang_leader = NULL; 3013 3014 mutex_enter(&zio->io_lock); 3015 zio->io_state[ZIO_WAIT_DONE] = 1; 3016 mutex_exit(&zio->io_lock); 3017 3018 /* 3019 * "The Godfather" I/O monitors its children but is 3020 * not a true parent to them. It will track them through 3021 * the pipeline but severs its ties whenever they get into 3022 * trouble (e.g. suspended). This allows "The Godfather" 3023 * I/O to return status without blocking. 3024 */ 3025 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 3026 zio_link_t *zl = zio->io_walk_link; 3027 pio_next = zio_walk_parents(zio); 3028 3029 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 3030 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 3031 zio_remove_child(pio, zio, zl); 3032 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3033 } 3034 } 3035 3036 if ((pio = zio_unique_parent(zio)) != NULL) { 3037 /* 3038 * We're not a root i/o, so there's nothing to do 3039 * but notify our parent. Don't propagate errors 3040 * upward since we haven't permanently failed yet. 3041 */ 3042 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 3043 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 3044 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3045 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 3046 /* 3047 * We'd fail again if we reexecuted now, so suspend 3048 * until conditions improve (e.g. device comes online). 3049 */ 3050 zio_suspend(spa, zio); 3051 } else { 3052 /* 3053 * Reexecution is potentially a huge amount of work. 3054 * Hand it off to the otherwise-unused claim taskq. 3055 */ 3056 ASSERT(zio->io_tqent.tqent_next == NULL); 3057 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 3058 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 3059 0, &zio->io_tqent); 3060 } 3061 return (ZIO_PIPELINE_STOP); 3062 } 3063 3064 ASSERT(zio->io_child_count == 0); 3065 ASSERT(zio->io_reexecute == 0); 3066 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 3067 3068 /* 3069 * Report any checksum errors, since the I/O is complete. 3070 */ 3071 while (zio->io_cksum_report != NULL) { 3072 zio_cksum_report_t *zcr = zio->io_cksum_report; 3073 zio->io_cksum_report = zcr->zcr_next; 3074 zcr->zcr_next = NULL; 3075 zcr->zcr_finish(zcr, NULL); 3076 zfs_ereport_free_checksum(zcr); 3077 } 3078 3079 /* 3080 * It is the responsibility of the done callback to ensure that this 3081 * particular zio is no longer discoverable for adoption, and as 3082 * such, cannot acquire any new parents. 3083 */ 3084 if (zio->io_done) 3085 zio->io_done(zio); 3086 3087 mutex_enter(&zio->io_lock); 3088 zio->io_state[ZIO_WAIT_DONE] = 1; 3089 mutex_exit(&zio->io_lock); 3090 3091 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 3092 zio_link_t *zl = zio->io_walk_link; 3093 pio_next = zio_walk_parents(zio); 3094 zio_remove_child(pio, zio, zl); 3095 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3096 } 3097 3098 if (zio->io_waiter != NULL) { 3099 mutex_enter(&zio->io_lock); 3100 zio->io_executor = NULL; 3101 cv_broadcast(&zio->io_cv); 3102 mutex_exit(&zio->io_lock); 3103 } else { 3104 zio_destroy(zio); 3105 } 3106 3107 return (ZIO_PIPELINE_STOP); 3108 } 3109 3110 /* 3111 * ========================================================================== 3112 * I/O pipeline definition 3113 * ========================================================================== 3114 */ 3115 static zio_pipe_stage_t *zio_pipeline[] = { 3116 NULL, 3117 zio_read_bp_init, 3118 zio_free_bp_init, 3119 zio_issue_async, 3120 zio_write_bp_init, 3121 zio_checksum_generate, 3122 zio_nop_write, 3123 zio_ddt_read_start, 3124 zio_ddt_read_done, 3125 zio_ddt_write, 3126 zio_ddt_free, 3127 zio_gang_assemble, 3128 zio_gang_issue, 3129 zio_dva_allocate, 3130 zio_dva_free, 3131 zio_dva_claim, 3132 zio_ready, 3133 zio_vdev_io_start, 3134 zio_vdev_io_done, 3135 zio_vdev_io_assess, 3136 zio_checksum_verify, 3137 zio_done 3138 }; 3139 3140 /* dnp is the dnode for zb1->zb_object */ 3141 boolean_t 3142 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1, 3143 const zbookmark_t *zb2) 3144 { 3145 uint64_t zb1nextL0, zb2thisobj; 3146 3147 ASSERT(zb1->zb_objset == zb2->zb_objset); 3148 ASSERT(zb2->zb_level == 0); 3149 3150 /* 3151 * A bookmark in the deadlist is considered to be after 3152 * everything else. 3153 */ 3154 if (zb2->zb_object == DMU_DEADLIST_OBJECT) 3155 return (B_TRUE); 3156 3157 /* The objset_phys_t isn't before anything. */ 3158 if (dnp == NULL) 3159 return (B_FALSE); 3160 3161 zb1nextL0 = (zb1->zb_blkid + 1) << 3162 ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT)); 3163 3164 zb2thisobj = zb2->zb_object ? zb2->zb_object : 3165 zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT); 3166 3167 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 3168 uint64_t nextobj = zb1nextL0 * 3169 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT; 3170 return (nextobj <= zb2thisobj); 3171 } 3172 3173 if (zb1->zb_object < zb2thisobj) 3174 return (B_TRUE); 3175 if (zb1->zb_object > zb2thisobj) 3176 return (B_FALSE); 3177 if (zb2->zb_object == DMU_META_DNODE_OBJECT) 3178 return (B_FALSE); 3179 return (zb1nextL0 <= zb2->zb_blkid); 3180 } 3181