xref: /titanic_51/usr/src/uts/common/fs/zfs/zio.c (revision c690e8405e15b1fe6f49347caf4294a3b199f2f3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <sys/zfs_context.h>
26 #include <sys/fm/fs/zfs.h>
27 #include <sys/spa.h>
28 #include <sys/txg.h>
29 #include <sys/spa_impl.h>
30 #include <sys/vdev_impl.h>
31 #include <sys/zio_impl.h>
32 #include <sys/zio_compress.h>
33 #include <sys/zio_checksum.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/arc.h>
36 #include <sys/ddt.h>
37 
38 /*
39  * ==========================================================================
40  * I/O priority table
41  * ==========================================================================
42  */
43 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
44 	0,	/* ZIO_PRIORITY_NOW		*/
45 	0,	/* ZIO_PRIORITY_SYNC_READ	*/
46 	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
47 	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
48 	1,	/* ZIO_PRIORITY_CACHE_FILL	*/
49 	1,	/* ZIO_PRIORITY_AGG		*/
50 	4,	/* ZIO_PRIORITY_FREE		*/
51 	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
52 	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
53 	10,	/* ZIO_PRIORITY_RESILVER	*/
54 	20,	/* ZIO_PRIORITY_SCRUB		*/
55 };
56 
57 /*
58  * ==========================================================================
59  * I/O type descriptions
60  * ==========================================================================
61  */
62 char *zio_type_name[ZIO_TYPES] = {
63 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
64 	"zio_ioctl"
65 };
66 
67 /*
68  * ==========================================================================
69  * I/O kmem caches
70  * ==========================================================================
71  */
72 kmem_cache_t *zio_cache;
73 kmem_cache_t *zio_link_cache;
74 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
75 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
76 
77 #ifdef _KERNEL
78 extern vmem_t *zio_alloc_arena;
79 #endif
80 
81 /*
82  * An allocating zio is one that either currently has the DVA allocate
83  * stage set or will have it later in its lifetime.
84  */
85 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
86 
87 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
88 
89 #ifdef ZFS_DEBUG
90 int zio_buf_debug_limit = 16384;
91 #else
92 int zio_buf_debug_limit = 0;
93 #endif
94 
95 void
96 zio_init(void)
97 {
98 	size_t c;
99 	vmem_t *data_alloc_arena = NULL;
100 
101 #ifdef _KERNEL
102 	data_alloc_arena = zio_alloc_arena;
103 #endif
104 	zio_cache = kmem_cache_create("zio_cache",
105 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
106 	zio_link_cache = kmem_cache_create("zio_link_cache",
107 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
108 
109 	/*
110 	 * For small buffers, we want a cache for each multiple of
111 	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
112 	 * for each quarter-power of 2.  For large buffers, we want
113 	 * a cache for each multiple of PAGESIZE.
114 	 */
115 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
116 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
117 		size_t p2 = size;
118 		size_t align = 0;
119 
120 		while (p2 & (p2 - 1))
121 			p2 &= p2 - 1;
122 
123 		if (size <= 4 * SPA_MINBLOCKSIZE) {
124 			align = SPA_MINBLOCKSIZE;
125 		} else if (P2PHASE(size, PAGESIZE) == 0) {
126 			align = PAGESIZE;
127 		} else if (P2PHASE(size, p2 >> 2) == 0) {
128 			align = p2 >> 2;
129 		}
130 
131 		if (align != 0) {
132 			char name[36];
133 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
134 			zio_buf_cache[c] = kmem_cache_create(name, size,
135 			    align, NULL, NULL, NULL, NULL, NULL,
136 			    size > zio_buf_debug_limit ? KMC_NODEBUG : 0);
137 
138 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
139 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
140 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
141 			    size > zio_buf_debug_limit ? KMC_NODEBUG : 0);
142 		}
143 	}
144 
145 	while (--c != 0) {
146 		ASSERT(zio_buf_cache[c] != NULL);
147 		if (zio_buf_cache[c - 1] == NULL)
148 			zio_buf_cache[c - 1] = zio_buf_cache[c];
149 
150 		ASSERT(zio_data_buf_cache[c] != NULL);
151 		if (zio_data_buf_cache[c - 1] == NULL)
152 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
153 	}
154 
155 	zio_inject_init();
156 }
157 
158 void
159 zio_fini(void)
160 {
161 	size_t c;
162 	kmem_cache_t *last_cache = NULL;
163 	kmem_cache_t *last_data_cache = NULL;
164 
165 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
166 		if (zio_buf_cache[c] != last_cache) {
167 			last_cache = zio_buf_cache[c];
168 			kmem_cache_destroy(zio_buf_cache[c]);
169 		}
170 		zio_buf_cache[c] = NULL;
171 
172 		if (zio_data_buf_cache[c] != last_data_cache) {
173 			last_data_cache = zio_data_buf_cache[c];
174 			kmem_cache_destroy(zio_data_buf_cache[c]);
175 		}
176 		zio_data_buf_cache[c] = NULL;
177 	}
178 
179 	kmem_cache_destroy(zio_link_cache);
180 	kmem_cache_destroy(zio_cache);
181 
182 	zio_inject_fini();
183 }
184 
185 /*
186  * ==========================================================================
187  * Allocate and free I/O buffers
188  * ==========================================================================
189  */
190 
191 /*
192  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
193  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
194  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
195  * excess / transient data in-core during a crashdump.
196  */
197 void *
198 zio_buf_alloc(size_t size)
199 {
200 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
201 
202 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
203 
204 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
205 }
206 
207 /*
208  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
209  * crashdump if the kernel panics.  This exists so that we will limit the amount
210  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
211  * of kernel heap dumped to disk when the kernel panics)
212  */
213 void *
214 zio_data_buf_alloc(size_t size)
215 {
216 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
217 
218 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
219 
220 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
221 }
222 
223 void
224 zio_buf_free(void *buf, size_t size)
225 {
226 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
227 
228 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
229 
230 	kmem_cache_free(zio_buf_cache[c], buf);
231 }
232 
233 void
234 zio_data_buf_free(void *buf, size_t size)
235 {
236 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
237 
238 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
239 
240 	kmem_cache_free(zio_data_buf_cache[c], buf);
241 }
242 
243 /*
244  * ==========================================================================
245  * Push and pop I/O transform buffers
246  * ==========================================================================
247  */
248 static void
249 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
250 	zio_transform_func_t *transform)
251 {
252 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
253 
254 	zt->zt_orig_data = zio->io_data;
255 	zt->zt_orig_size = zio->io_size;
256 	zt->zt_bufsize = bufsize;
257 	zt->zt_transform = transform;
258 
259 	zt->zt_next = zio->io_transform_stack;
260 	zio->io_transform_stack = zt;
261 
262 	zio->io_data = data;
263 	zio->io_size = size;
264 }
265 
266 static void
267 zio_pop_transforms(zio_t *zio)
268 {
269 	zio_transform_t *zt;
270 
271 	while ((zt = zio->io_transform_stack) != NULL) {
272 		if (zt->zt_transform != NULL)
273 			zt->zt_transform(zio,
274 			    zt->zt_orig_data, zt->zt_orig_size);
275 
276 		if (zt->zt_bufsize != 0)
277 			zio_buf_free(zio->io_data, zt->zt_bufsize);
278 
279 		zio->io_data = zt->zt_orig_data;
280 		zio->io_size = zt->zt_orig_size;
281 		zio->io_transform_stack = zt->zt_next;
282 
283 		kmem_free(zt, sizeof (zio_transform_t));
284 	}
285 }
286 
287 /*
288  * ==========================================================================
289  * I/O transform callbacks for subblocks and decompression
290  * ==========================================================================
291  */
292 static void
293 zio_subblock(zio_t *zio, void *data, uint64_t size)
294 {
295 	ASSERT(zio->io_size > size);
296 
297 	if (zio->io_type == ZIO_TYPE_READ)
298 		bcopy(zio->io_data, data, size);
299 }
300 
301 static void
302 zio_decompress(zio_t *zio, void *data, uint64_t size)
303 {
304 	if (zio->io_error == 0 &&
305 	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
306 	    zio->io_data, data, zio->io_size, size) != 0)
307 		zio->io_error = EIO;
308 }
309 
310 /*
311  * ==========================================================================
312  * I/O parent/child relationships and pipeline interlocks
313  * ==========================================================================
314  */
315 /*
316  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
317  *        continue calling these functions until they return NULL.
318  *        Otherwise, the next caller will pick up the list walk in
319  *        some indeterminate state.  (Otherwise every caller would
320  *        have to pass in a cookie to keep the state represented by
321  *        io_walk_link, which gets annoying.)
322  */
323 zio_t *
324 zio_walk_parents(zio_t *cio)
325 {
326 	zio_link_t *zl = cio->io_walk_link;
327 	list_t *pl = &cio->io_parent_list;
328 
329 	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
330 	cio->io_walk_link = zl;
331 
332 	if (zl == NULL)
333 		return (NULL);
334 
335 	ASSERT(zl->zl_child == cio);
336 	return (zl->zl_parent);
337 }
338 
339 zio_t *
340 zio_walk_children(zio_t *pio)
341 {
342 	zio_link_t *zl = pio->io_walk_link;
343 	list_t *cl = &pio->io_child_list;
344 
345 	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
346 	pio->io_walk_link = zl;
347 
348 	if (zl == NULL)
349 		return (NULL);
350 
351 	ASSERT(zl->zl_parent == pio);
352 	return (zl->zl_child);
353 }
354 
355 zio_t *
356 zio_unique_parent(zio_t *cio)
357 {
358 	zio_t *pio = zio_walk_parents(cio);
359 
360 	VERIFY(zio_walk_parents(cio) == NULL);
361 	return (pio);
362 }
363 
364 void
365 zio_add_child(zio_t *pio, zio_t *cio)
366 {
367 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
368 
369 	/*
370 	 * Logical I/Os can have logical, gang, or vdev children.
371 	 * Gang I/Os can have gang or vdev children.
372 	 * Vdev I/Os can only have vdev children.
373 	 * The following ASSERT captures all of these constraints.
374 	 */
375 	ASSERT(cio->io_child_type <= pio->io_child_type);
376 
377 	zl->zl_parent = pio;
378 	zl->zl_child = cio;
379 
380 	mutex_enter(&cio->io_lock);
381 	mutex_enter(&pio->io_lock);
382 
383 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
384 
385 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
386 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
387 
388 	list_insert_head(&pio->io_child_list, zl);
389 	list_insert_head(&cio->io_parent_list, zl);
390 
391 	pio->io_child_count++;
392 	cio->io_parent_count++;
393 
394 	mutex_exit(&pio->io_lock);
395 	mutex_exit(&cio->io_lock);
396 }
397 
398 static void
399 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
400 {
401 	ASSERT(zl->zl_parent == pio);
402 	ASSERT(zl->zl_child == cio);
403 
404 	mutex_enter(&cio->io_lock);
405 	mutex_enter(&pio->io_lock);
406 
407 	list_remove(&pio->io_child_list, zl);
408 	list_remove(&cio->io_parent_list, zl);
409 
410 	pio->io_child_count--;
411 	cio->io_parent_count--;
412 
413 	mutex_exit(&pio->io_lock);
414 	mutex_exit(&cio->io_lock);
415 
416 	kmem_cache_free(zio_link_cache, zl);
417 }
418 
419 static boolean_t
420 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
421 {
422 	uint64_t *countp = &zio->io_children[child][wait];
423 	boolean_t waiting = B_FALSE;
424 
425 	mutex_enter(&zio->io_lock);
426 	ASSERT(zio->io_stall == NULL);
427 	if (*countp != 0) {
428 		zio->io_stage >>= 1;
429 		zio->io_stall = countp;
430 		waiting = B_TRUE;
431 	}
432 	mutex_exit(&zio->io_lock);
433 
434 	return (waiting);
435 }
436 
437 static void
438 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
439 {
440 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
441 	int *errorp = &pio->io_child_error[zio->io_child_type];
442 
443 	mutex_enter(&pio->io_lock);
444 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
445 		*errorp = zio_worst_error(*errorp, zio->io_error);
446 	pio->io_reexecute |= zio->io_reexecute;
447 	ASSERT3U(*countp, >, 0);
448 	if (--*countp == 0 && pio->io_stall == countp) {
449 		pio->io_stall = NULL;
450 		mutex_exit(&pio->io_lock);
451 		zio_execute(pio);
452 	} else {
453 		mutex_exit(&pio->io_lock);
454 	}
455 }
456 
457 static void
458 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
459 {
460 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
461 		zio->io_error = zio->io_child_error[c];
462 }
463 
464 /*
465  * ==========================================================================
466  * Create the various types of I/O (read, write, free, etc)
467  * ==========================================================================
468  */
469 static zio_t *
470 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
471     void *data, uint64_t size, zio_done_func_t *done, void *private,
472     zio_type_t type, int priority, enum zio_flag flags,
473     vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
474     enum zio_stage stage, enum zio_stage pipeline)
475 {
476 	zio_t *zio;
477 
478 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
479 	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
480 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
481 
482 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
483 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
484 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
485 
486 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
487 	bzero(zio, sizeof (zio_t));
488 
489 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
490 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
491 
492 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
493 	    offsetof(zio_link_t, zl_parent_node));
494 	list_create(&zio->io_child_list, sizeof (zio_link_t),
495 	    offsetof(zio_link_t, zl_child_node));
496 
497 	if (vd != NULL)
498 		zio->io_child_type = ZIO_CHILD_VDEV;
499 	else if (flags & ZIO_FLAG_GANG_CHILD)
500 		zio->io_child_type = ZIO_CHILD_GANG;
501 	else if (flags & ZIO_FLAG_DDT_CHILD)
502 		zio->io_child_type = ZIO_CHILD_DDT;
503 	else
504 		zio->io_child_type = ZIO_CHILD_LOGICAL;
505 
506 	if (bp != NULL) {
507 		zio->io_bp = (blkptr_t *)bp;
508 		zio->io_bp_copy = *bp;
509 		zio->io_bp_orig = *bp;
510 		if (type != ZIO_TYPE_WRITE ||
511 		    zio->io_child_type == ZIO_CHILD_DDT)
512 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
513 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
514 			zio->io_logical = zio;
515 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
516 			pipeline |= ZIO_GANG_STAGES;
517 	}
518 
519 	zio->io_spa = spa;
520 	zio->io_txg = txg;
521 	zio->io_done = done;
522 	zio->io_private = private;
523 	zio->io_type = type;
524 	zio->io_priority = priority;
525 	zio->io_vd = vd;
526 	zio->io_offset = offset;
527 	zio->io_orig_data = zio->io_data = data;
528 	zio->io_orig_size = zio->io_size = size;
529 	zio->io_orig_flags = zio->io_flags = flags;
530 	zio->io_orig_stage = zio->io_stage = stage;
531 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
532 
533 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
534 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
535 
536 	if (zb != NULL)
537 		zio->io_bookmark = *zb;
538 
539 	if (pio != NULL) {
540 		if (zio->io_logical == NULL)
541 			zio->io_logical = pio->io_logical;
542 		if (zio->io_child_type == ZIO_CHILD_GANG)
543 			zio->io_gang_leader = pio->io_gang_leader;
544 		zio_add_child(pio, zio);
545 	}
546 
547 	return (zio);
548 }
549 
550 static void
551 zio_destroy(zio_t *zio)
552 {
553 	list_destroy(&zio->io_parent_list);
554 	list_destroy(&zio->io_child_list);
555 	mutex_destroy(&zio->io_lock);
556 	cv_destroy(&zio->io_cv);
557 	kmem_cache_free(zio_cache, zio);
558 }
559 
560 zio_t *
561 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
562     void *private, enum zio_flag flags)
563 {
564 	zio_t *zio;
565 
566 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
567 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
568 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
569 
570 	return (zio);
571 }
572 
573 zio_t *
574 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
575 {
576 	return (zio_null(NULL, spa, NULL, done, private, flags));
577 }
578 
579 zio_t *
580 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
581     void *data, uint64_t size, zio_done_func_t *done, void *private,
582     int priority, enum zio_flag flags, const zbookmark_t *zb)
583 {
584 	zio_t *zio;
585 
586 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
587 	    data, size, done, private,
588 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
589 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
590 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
591 
592 	return (zio);
593 }
594 
595 zio_t *
596 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
597     void *data, uint64_t size, const zio_prop_t *zp,
598     zio_done_func_t *ready, zio_done_func_t *done, void *private,
599     int priority, enum zio_flag flags, const zbookmark_t *zb)
600 {
601 	zio_t *zio;
602 
603 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
604 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
605 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
606 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
607 	    zp->zp_type < DMU_OT_NUMTYPES &&
608 	    zp->zp_level < 32 &&
609 	    zp->zp_copies > 0 &&
610 	    zp->zp_copies <= spa_max_replication(spa) &&
611 	    zp->zp_dedup <= 1 &&
612 	    zp->zp_dedup_verify <= 1);
613 
614 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
615 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
616 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
617 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
618 
619 	zio->io_ready = ready;
620 	zio->io_prop = *zp;
621 
622 	return (zio);
623 }
624 
625 zio_t *
626 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
627     uint64_t size, zio_done_func_t *done, void *private, int priority,
628     enum zio_flag flags, zbookmark_t *zb)
629 {
630 	zio_t *zio;
631 
632 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
633 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
634 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
635 
636 	return (zio);
637 }
638 
639 void
640 zio_write_override(zio_t *zio, blkptr_t *bp, int copies)
641 {
642 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
643 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
644 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
645 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
646 
647 	zio->io_prop.zp_copies = copies;
648 	zio->io_bp_override = bp;
649 }
650 
651 void
652 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
653 {
654 	bplist_enqueue_deferred(&spa->spa_free_bplist[txg & TXG_MASK], bp);
655 }
656 
657 zio_t *
658 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
659     enum zio_flag flags)
660 {
661 	zio_t *zio;
662 
663 	dprintf_bp(bp, "freeing in txg %llu, pass %u",
664 	    (longlong_t)txg, spa->spa_sync_pass);
665 
666 	ASSERT(!BP_IS_HOLE(bp));
667 	ASSERT(spa_syncing_txg(spa) == txg);
668 	ASSERT(spa_sync_pass(spa) <= SYNC_PASS_DEFERRED_FREE);
669 
670 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
671 	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
672 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
673 
674 	return (zio);
675 }
676 
677 zio_t *
678 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
679     zio_done_func_t *done, void *private, enum zio_flag flags)
680 {
681 	zio_t *zio;
682 
683 	/*
684 	 * A claim is an allocation of a specific block.  Claims are needed
685 	 * to support immediate writes in the intent log.  The issue is that
686 	 * immediate writes contain committed data, but in a txg that was
687 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
688 	 * the intent log claims all blocks that contain immediate write data
689 	 * so that the SPA knows they're in use.
690 	 *
691 	 * All claims *must* be resolved in the first txg -- before the SPA
692 	 * starts allocating blocks -- so that nothing is allocated twice.
693 	 * If txg == 0 we just verify that the block is claimable.
694 	 */
695 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
696 	ASSERT(txg == spa_first_txg(spa) || txg == 0);
697 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
698 
699 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
700 	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
701 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
702 
703 	return (zio);
704 }
705 
706 zio_t *
707 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
708     zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
709 {
710 	zio_t *zio;
711 	int c;
712 
713 	if (vd->vdev_children == 0) {
714 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
715 		    ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
716 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
717 
718 		zio->io_cmd = cmd;
719 	} else {
720 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
721 
722 		for (c = 0; c < vd->vdev_children; c++)
723 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
724 			    done, private, priority, flags));
725 	}
726 
727 	return (zio);
728 }
729 
730 zio_t *
731 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
732     void *data, int checksum, zio_done_func_t *done, void *private,
733     int priority, enum zio_flag flags, boolean_t labels)
734 {
735 	zio_t *zio;
736 
737 	ASSERT(vd->vdev_children == 0);
738 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
739 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
740 	ASSERT3U(offset + size, <=, vd->vdev_psize);
741 
742 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
743 	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
744 	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
745 
746 	zio->io_prop.zp_checksum = checksum;
747 
748 	return (zio);
749 }
750 
751 zio_t *
752 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
753     void *data, int checksum, zio_done_func_t *done, void *private,
754     int priority, enum zio_flag flags, boolean_t labels)
755 {
756 	zio_t *zio;
757 
758 	ASSERT(vd->vdev_children == 0);
759 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
760 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
761 	ASSERT3U(offset + size, <=, vd->vdev_psize);
762 
763 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
764 	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
765 	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
766 
767 	zio->io_prop.zp_checksum = checksum;
768 
769 	if (zio_checksum_table[checksum].ci_eck) {
770 		/*
771 		 * zec checksums are necessarily destructive -- they modify
772 		 * the end of the write buffer to hold the verifier/checksum.
773 		 * Therefore, we must make a local copy in case the data is
774 		 * being written to multiple places in parallel.
775 		 */
776 		void *wbuf = zio_buf_alloc(size);
777 		bcopy(data, wbuf, size);
778 		zio_push_transform(zio, wbuf, size, size, NULL);
779 	}
780 
781 	return (zio);
782 }
783 
784 /*
785  * Create a child I/O to do some work for us.
786  */
787 zio_t *
788 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
789 	void *data, uint64_t size, int type, int priority, enum zio_flag flags,
790 	zio_done_func_t *done, void *private)
791 {
792 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
793 	zio_t *zio;
794 
795 	ASSERT(vd->vdev_parent ==
796 	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
797 
798 	if (type == ZIO_TYPE_READ && bp != NULL) {
799 		/*
800 		 * If we have the bp, then the child should perform the
801 		 * checksum and the parent need not.  This pushes error
802 		 * detection as close to the leaves as possible and
803 		 * eliminates redundant checksums in the interior nodes.
804 		 */
805 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
806 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
807 	}
808 
809 	if (vd->vdev_children == 0)
810 		offset += VDEV_LABEL_START_SIZE;
811 
812 	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
813 
814 	/*
815 	 * If we've decided to do a repair, the write is not speculative --
816 	 * even if the original read was.
817 	 */
818 	if (flags & ZIO_FLAG_IO_REPAIR)
819 		flags &= ~ZIO_FLAG_SPECULATIVE;
820 
821 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
822 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
823 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
824 
825 	return (zio);
826 }
827 
828 zio_t *
829 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
830 	int type, int priority, enum zio_flag flags,
831 	zio_done_func_t *done, void *private)
832 {
833 	zio_t *zio;
834 
835 	ASSERT(vd->vdev_ops->vdev_op_leaf);
836 
837 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
838 	    data, size, done, private, type, priority,
839 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
840 	    vd, offset, NULL,
841 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
842 
843 	return (zio);
844 }
845 
846 void
847 zio_flush(zio_t *zio, vdev_t *vd)
848 {
849 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
850 	    NULL, NULL, ZIO_PRIORITY_NOW,
851 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
852 }
853 
854 void
855 zio_shrink(zio_t *zio, uint64_t size)
856 {
857 	ASSERT(zio->io_executor == NULL);
858 	ASSERT(zio->io_orig_size == zio->io_size);
859 	ASSERT(size <= zio->io_size);
860 
861 	/*
862 	 * We don't shrink for raidz because of problems with the
863 	 * reconstruction when reading back less than the block size.
864 	 * Note, BP_IS_RAIDZ() assumes no compression.
865 	 */
866 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
867 	if (!BP_IS_RAIDZ(zio->io_bp))
868 		zio->io_orig_size = zio->io_size = size;
869 }
870 
871 /*
872  * ==========================================================================
873  * Prepare to read and write logical blocks
874  * ==========================================================================
875  */
876 
877 static int
878 zio_read_bp_init(zio_t *zio)
879 {
880 	blkptr_t *bp = zio->io_bp;
881 
882 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
883 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
884 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
885 		uint64_t psize = BP_GET_PSIZE(bp);
886 		void *cbuf = zio_buf_alloc(psize);
887 
888 		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
889 	}
890 
891 	if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0)
892 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
893 
894 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
895 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
896 
897 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
898 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
899 
900 	return (ZIO_PIPELINE_CONTINUE);
901 }
902 
903 static int
904 zio_write_bp_init(zio_t *zio)
905 {
906 	spa_t *spa = zio->io_spa;
907 	zio_prop_t *zp = &zio->io_prop;
908 	enum zio_compress compress = zp->zp_compress;
909 	blkptr_t *bp = zio->io_bp;
910 	uint64_t lsize = zio->io_size;
911 	uint64_t psize = lsize;
912 	int pass = 1;
913 
914 	/*
915 	 * If our children haven't all reached the ready stage,
916 	 * wait for them and then repeat this pipeline stage.
917 	 */
918 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
919 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
920 		return (ZIO_PIPELINE_STOP);
921 
922 	if (!IO_IS_ALLOCATING(zio))
923 		return (ZIO_PIPELINE_CONTINUE);
924 
925 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
926 
927 	if (zio->io_bp_override) {
928 		ASSERT(bp->blk_birth != zio->io_txg);
929 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
930 
931 		*bp = *zio->io_bp_override;
932 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
933 
934 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
935 			return (ZIO_PIPELINE_CONTINUE);
936 
937 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
938 		    zp->zp_dedup_verify);
939 
940 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
941 			BP_SET_DEDUP(bp, 1);
942 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
943 			return (ZIO_PIPELINE_CONTINUE);
944 		}
945 		zio->io_bp_override = NULL;
946 		BP_ZERO(bp);
947 	}
948 
949 	if (bp->blk_birth == zio->io_txg) {
950 		/*
951 		 * We're rewriting an existing block, which means we're
952 		 * working on behalf of spa_sync().  For spa_sync() to
953 		 * converge, it must eventually be the case that we don't
954 		 * have to allocate new blocks.  But compression changes
955 		 * the blocksize, which forces a reallocate, and makes
956 		 * convergence take longer.  Therefore, after the first
957 		 * few passes, stop compressing to ensure convergence.
958 		 */
959 		pass = spa_sync_pass(spa);
960 
961 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
962 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
963 		ASSERT(!BP_GET_DEDUP(bp));
964 
965 		if (pass > SYNC_PASS_DONT_COMPRESS)
966 			compress = ZIO_COMPRESS_OFF;
967 
968 		/* Make sure someone doesn't change their mind on overwrites */
969 		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
970 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
971 	}
972 
973 	if (compress != ZIO_COMPRESS_OFF) {
974 		void *cbuf = zio_buf_alloc(lsize);
975 		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
976 		if (psize == 0 || psize == lsize) {
977 			compress = ZIO_COMPRESS_OFF;
978 			zio_buf_free(cbuf, lsize);
979 		} else {
980 			ASSERT(psize < lsize);
981 			zio_push_transform(zio, cbuf, psize, lsize, NULL);
982 		}
983 	}
984 
985 	/*
986 	 * The final pass of spa_sync() must be all rewrites, but the first
987 	 * few passes offer a trade-off: allocating blocks defers convergence,
988 	 * but newly allocated blocks are sequential, so they can be written
989 	 * to disk faster.  Therefore, we allow the first few passes of
990 	 * spa_sync() to allocate new blocks, but force rewrites after that.
991 	 * There should only be a handful of blocks after pass 1 in any case.
992 	 */
993 	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
994 	    pass > SYNC_PASS_REWRITE) {
995 		ASSERT(psize != 0);
996 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
997 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
998 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
999 	} else {
1000 		BP_ZERO(bp);
1001 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1002 	}
1003 
1004 	if (psize == 0) {
1005 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1006 	} else {
1007 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1008 		BP_SET_LSIZE(bp, lsize);
1009 		BP_SET_PSIZE(bp, psize);
1010 		BP_SET_COMPRESS(bp, compress);
1011 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1012 		BP_SET_TYPE(bp, zp->zp_type);
1013 		BP_SET_LEVEL(bp, zp->zp_level);
1014 		BP_SET_DEDUP(bp, zp->zp_dedup);
1015 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1016 		if (zp->zp_dedup) {
1017 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1018 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1019 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1020 		}
1021 	}
1022 
1023 	return (ZIO_PIPELINE_CONTINUE);
1024 }
1025 
1026 static int
1027 zio_free_bp_init(zio_t *zio)
1028 {
1029 	blkptr_t *bp = zio->io_bp;
1030 
1031 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1032 		if (BP_GET_DEDUP(bp))
1033 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1034 	}
1035 
1036 	return (ZIO_PIPELINE_CONTINUE);
1037 }
1038 
1039 /*
1040  * ==========================================================================
1041  * Execute the I/O pipeline
1042  * ==========================================================================
1043  */
1044 
1045 static void
1046 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q, boolean_t cutinline)
1047 {
1048 	spa_t *spa = zio->io_spa;
1049 	zio_type_t t = zio->io_type;
1050 	int flags = TQ_SLEEP | (cutinline ? TQ_FRONT : 0);
1051 
1052 	/*
1053 	 * If we're a config writer or a probe, the normal issue and
1054 	 * interrupt threads may all be blocked waiting for the config lock.
1055 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1056 	 */
1057 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1058 		t = ZIO_TYPE_NULL;
1059 
1060 	/*
1061 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1062 	 */
1063 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1064 		t = ZIO_TYPE_NULL;
1065 
1066 	/*
1067 	 * If this is a high priority I/O, then use the high priority taskq.
1068 	 */
1069 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1070 	    spa->spa_zio_taskq[t][q + 1] != NULL)
1071 		q++;
1072 
1073 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1074 	(void) taskq_dispatch(spa->spa_zio_taskq[t][q],
1075 	    (task_func_t *)zio_execute, zio, flags);
1076 }
1077 
1078 static boolean_t
1079 zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
1080 {
1081 	kthread_t *executor = zio->io_executor;
1082 	spa_t *spa = zio->io_spa;
1083 
1084 	for (zio_type_t t = 0; t < ZIO_TYPES; t++)
1085 		if (taskq_member(spa->spa_zio_taskq[t][q], executor))
1086 			return (B_TRUE);
1087 
1088 	return (B_FALSE);
1089 }
1090 
1091 static int
1092 zio_issue_async(zio_t *zio)
1093 {
1094 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1095 
1096 	return (ZIO_PIPELINE_STOP);
1097 }
1098 
1099 void
1100 zio_interrupt(zio_t *zio)
1101 {
1102 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1103 }
1104 
1105 /*
1106  * Execute the I/O pipeline until one of the following occurs:
1107  * (1) the I/O completes; (2) the pipeline stalls waiting for
1108  * dependent child I/Os; (3) the I/O issues, so we're waiting
1109  * for an I/O completion interrupt; (4) the I/O is delegated by
1110  * vdev-level caching or aggregation; (5) the I/O is deferred
1111  * due to vdev-level queueing; (6) the I/O is handed off to
1112  * another thread.  In all cases, the pipeline stops whenever
1113  * there's no CPU work; it never burns a thread in cv_wait().
1114  *
1115  * There's no locking on io_stage because there's no legitimate way
1116  * for multiple threads to be attempting to process the same I/O.
1117  */
1118 static zio_pipe_stage_t *zio_pipeline[];
1119 
1120 void
1121 zio_execute(zio_t *zio)
1122 {
1123 	zio->io_executor = curthread;
1124 
1125 	while (zio->io_stage < ZIO_STAGE_DONE) {
1126 		enum zio_stage pipeline = zio->io_pipeline;
1127 		enum zio_stage stage = zio->io_stage;
1128 		int rv;
1129 
1130 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1131 		ASSERT(ISP2(stage));
1132 		ASSERT(zio->io_stall == NULL);
1133 
1134 		do {
1135 			stage <<= 1;
1136 		} while ((stage & pipeline) == 0);
1137 
1138 		ASSERT(stage <= ZIO_STAGE_DONE);
1139 
1140 		/*
1141 		 * If we are in interrupt context and this pipeline stage
1142 		 * will grab a config lock that is held across I/O,
1143 		 * or may wait for an I/O that needs an interrupt thread
1144 		 * to complete, issue async to avoid deadlock.
1145 		 *
1146 		 * For VDEV_IO_START, we cut in line so that the io will
1147 		 * be sent to disk promptly.
1148 		 */
1149 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1150 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1151 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1152 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1153 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1154 			return;
1155 		}
1156 
1157 		zio->io_stage = stage;
1158 		rv = zio_pipeline[highbit(stage) - 1](zio);
1159 
1160 		if (rv == ZIO_PIPELINE_STOP)
1161 			return;
1162 
1163 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1164 	}
1165 }
1166 
1167 /*
1168  * ==========================================================================
1169  * Initiate I/O, either sync or async
1170  * ==========================================================================
1171  */
1172 int
1173 zio_wait(zio_t *zio)
1174 {
1175 	int error;
1176 
1177 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1178 	ASSERT(zio->io_executor == NULL);
1179 
1180 	zio->io_waiter = curthread;
1181 
1182 	zio_execute(zio);
1183 
1184 	mutex_enter(&zio->io_lock);
1185 	while (zio->io_executor != NULL)
1186 		cv_wait(&zio->io_cv, &zio->io_lock);
1187 	mutex_exit(&zio->io_lock);
1188 
1189 	error = zio->io_error;
1190 	zio_destroy(zio);
1191 
1192 	return (error);
1193 }
1194 
1195 void
1196 zio_nowait(zio_t *zio)
1197 {
1198 	ASSERT(zio->io_executor == NULL);
1199 
1200 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1201 	    zio_unique_parent(zio) == NULL) {
1202 		/*
1203 		 * This is a logical async I/O with no parent to wait for it.
1204 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1205 		 * will ensure they complete prior to unloading the pool.
1206 		 */
1207 		spa_t *spa = zio->io_spa;
1208 
1209 		zio_add_child(spa->spa_async_zio_root, zio);
1210 	}
1211 
1212 	zio_execute(zio);
1213 }
1214 
1215 /*
1216  * ==========================================================================
1217  * Reexecute or suspend/resume failed I/O
1218  * ==========================================================================
1219  */
1220 
1221 static void
1222 zio_reexecute(zio_t *pio)
1223 {
1224 	zio_t *cio, *cio_next;
1225 
1226 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1227 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1228 	ASSERT(pio->io_gang_leader == NULL);
1229 	ASSERT(pio->io_gang_tree == NULL);
1230 
1231 	pio->io_flags = pio->io_orig_flags;
1232 	pio->io_stage = pio->io_orig_stage;
1233 	pio->io_pipeline = pio->io_orig_pipeline;
1234 	pio->io_reexecute = 0;
1235 	pio->io_error = 0;
1236 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1237 		pio->io_state[w] = 0;
1238 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1239 		pio->io_child_error[c] = 0;
1240 
1241 	if (IO_IS_ALLOCATING(pio))
1242 		BP_ZERO(pio->io_bp);
1243 
1244 	/*
1245 	 * As we reexecute pio's children, new children could be created.
1246 	 * New children go to the head of pio's io_child_list, however,
1247 	 * so we will (correctly) not reexecute them.  The key is that
1248 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1249 	 * cannot be affected by any side effects of reexecuting 'cio'.
1250 	 */
1251 	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1252 		cio_next = zio_walk_children(pio);
1253 		mutex_enter(&pio->io_lock);
1254 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1255 			pio->io_children[cio->io_child_type][w]++;
1256 		mutex_exit(&pio->io_lock);
1257 		zio_reexecute(cio);
1258 	}
1259 
1260 	/*
1261 	 * Now that all children have been reexecuted, execute the parent.
1262 	 * We don't reexecute "The Godfather" I/O here as it's the
1263 	 * responsibility of the caller to wait on him.
1264 	 */
1265 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1266 		zio_execute(pio);
1267 }
1268 
1269 void
1270 zio_suspend(spa_t *spa, zio_t *zio)
1271 {
1272 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1273 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1274 		    "failure and the failure mode property for this pool "
1275 		    "is set to panic.", spa_name(spa));
1276 
1277 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1278 
1279 	mutex_enter(&spa->spa_suspend_lock);
1280 
1281 	if (spa->spa_suspend_zio_root == NULL)
1282 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1283 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1284 		    ZIO_FLAG_GODFATHER);
1285 
1286 	spa->spa_suspended = B_TRUE;
1287 
1288 	if (zio != NULL) {
1289 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1290 		ASSERT(zio != spa->spa_suspend_zio_root);
1291 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1292 		ASSERT(zio_unique_parent(zio) == NULL);
1293 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1294 		zio_add_child(spa->spa_suspend_zio_root, zio);
1295 	}
1296 
1297 	mutex_exit(&spa->spa_suspend_lock);
1298 }
1299 
1300 int
1301 zio_resume(spa_t *spa)
1302 {
1303 	zio_t *pio;
1304 
1305 	/*
1306 	 * Reexecute all previously suspended i/o.
1307 	 */
1308 	mutex_enter(&spa->spa_suspend_lock);
1309 	spa->spa_suspended = B_FALSE;
1310 	cv_broadcast(&spa->spa_suspend_cv);
1311 	pio = spa->spa_suspend_zio_root;
1312 	spa->spa_suspend_zio_root = NULL;
1313 	mutex_exit(&spa->spa_suspend_lock);
1314 
1315 	if (pio == NULL)
1316 		return (0);
1317 
1318 	zio_reexecute(pio);
1319 	return (zio_wait(pio));
1320 }
1321 
1322 void
1323 zio_resume_wait(spa_t *spa)
1324 {
1325 	mutex_enter(&spa->spa_suspend_lock);
1326 	while (spa_suspended(spa))
1327 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1328 	mutex_exit(&spa->spa_suspend_lock);
1329 }
1330 
1331 /*
1332  * ==========================================================================
1333  * Gang blocks.
1334  *
1335  * A gang block is a collection of small blocks that looks to the DMU
1336  * like one large block.  When zio_dva_allocate() cannot find a block
1337  * of the requested size, due to either severe fragmentation or the pool
1338  * being nearly full, it calls zio_write_gang_block() to construct the
1339  * block from smaller fragments.
1340  *
1341  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1342  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1343  * an indirect block: it's an array of block pointers.  It consumes
1344  * only one sector and hence is allocatable regardless of fragmentation.
1345  * The gang header's bps point to its gang members, which hold the data.
1346  *
1347  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1348  * as the verifier to ensure uniqueness of the SHA256 checksum.
1349  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1350  * not the gang header.  This ensures that data block signatures (needed for
1351  * deduplication) are independent of how the block is physically stored.
1352  *
1353  * Gang blocks can be nested: a gang member may itself be a gang block.
1354  * Thus every gang block is a tree in which root and all interior nodes are
1355  * gang headers, and the leaves are normal blocks that contain user data.
1356  * The root of the gang tree is called the gang leader.
1357  *
1358  * To perform any operation (read, rewrite, free, claim) on a gang block,
1359  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1360  * in the io_gang_tree field of the original logical i/o by recursively
1361  * reading the gang leader and all gang headers below it.  This yields
1362  * an in-core tree containing the contents of every gang header and the
1363  * bps for every constituent of the gang block.
1364  *
1365  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1366  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1367  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1368  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1369  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1370  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1371  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1372  * of the gang header plus zio_checksum_compute() of the data to update the
1373  * gang header's blk_cksum as described above.
1374  *
1375  * The two-phase assemble/issue model solves the problem of partial failure --
1376  * what if you'd freed part of a gang block but then couldn't read the
1377  * gang header for another part?  Assembling the entire gang tree first
1378  * ensures that all the necessary gang header I/O has succeeded before
1379  * starting the actual work of free, claim, or write.  Once the gang tree
1380  * is assembled, free and claim are in-memory operations that cannot fail.
1381  *
1382  * In the event that a gang write fails, zio_dva_unallocate() walks the
1383  * gang tree to immediately free (i.e. insert back into the space map)
1384  * everything we've allocated.  This ensures that we don't get ENOSPC
1385  * errors during repeated suspend/resume cycles due to a flaky device.
1386  *
1387  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1388  * the gang tree, we won't modify the block, so we can safely defer the free
1389  * (knowing that the block is still intact).  If we *can* assemble the gang
1390  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1391  * each constituent bp and we can allocate a new block on the next sync pass.
1392  *
1393  * In all cases, the gang tree allows complete recovery from partial failure.
1394  * ==========================================================================
1395  */
1396 
1397 static zio_t *
1398 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1399 {
1400 	if (gn != NULL)
1401 		return (pio);
1402 
1403 	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1404 	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1405 	    &pio->io_bookmark));
1406 }
1407 
1408 zio_t *
1409 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1410 {
1411 	zio_t *zio;
1412 
1413 	if (gn != NULL) {
1414 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1415 		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1416 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1417 		/*
1418 		 * As we rewrite each gang header, the pipeline will compute
1419 		 * a new gang block header checksum for it; but no one will
1420 		 * compute a new data checksum, so we do that here.  The one
1421 		 * exception is the gang leader: the pipeline already computed
1422 		 * its data checksum because that stage precedes gang assembly.
1423 		 * (Presently, nothing actually uses interior data checksums;
1424 		 * this is just good hygiene.)
1425 		 */
1426 		if (gn != pio->io_gang_leader->io_gang_tree) {
1427 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1428 			    data, BP_GET_PSIZE(bp));
1429 		}
1430 		/*
1431 		 * If we are here to damage data for testing purposes,
1432 		 * leave the GBH alone so that we can detect the damage.
1433 		 */
1434 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1435 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1436 	} else {
1437 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1438 		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1439 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1440 	}
1441 
1442 	return (zio);
1443 }
1444 
1445 /* ARGSUSED */
1446 zio_t *
1447 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1448 {
1449 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1450 	    ZIO_GANG_CHILD_FLAGS(pio)));
1451 }
1452 
1453 /* ARGSUSED */
1454 zio_t *
1455 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1456 {
1457 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1458 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1459 }
1460 
1461 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1462 	NULL,
1463 	zio_read_gang,
1464 	zio_rewrite_gang,
1465 	zio_free_gang,
1466 	zio_claim_gang,
1467 	NULL
1468 };
1469 
1470 static void zio_gang_tree_assemble_done(zio_t *zio);
1471 
1472 static zio_gang_node_t *
1473 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1474 {
1475 	zio_gang_node_t *gn;
1476 
1477 	ASSERT(*gnpp == NULL);
1478 
1479 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1480 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1481 	*gnpp = gn;
1482 
1483 	return (gn);
1484 }
1485 
1486 static void
1487 zio_gang_node_free(zio_gang_node_t **gnpp)
1488 {
1489 	zio_gang_node_t *gn = *gnpp;
1490 
1491 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1492 		ASSERT(gn->gn_child[g] == NULL);
1493 
1494 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1495 	kmem_free(gn, sizeof (*gn));
1496 	*gnpp = NULL;
1497 }
1498 
1499 static void
1500 zio_gang_tree_free(zio_gang_node_t **gnpp)
1501 {
1502 	zio_gang_node_t *gn = *gnpp;
1503 
1504 	if (gn == NULL)
1505 		return;
1506 
1507 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1508 		zio_gang_tree_free(&gn->gn_child[g]);
1509 
1510 	zio_gang_node_free(gnpp);
1511 }
1512 
1513 static void
1514 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1515 {
1516 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1517 
1518 	ASSERT(gio->io_gang_leader == gio);
1519 	ASSERT(BP_IS_GANG(bp));
1520 
1521 	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1522 	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1523 	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1524 }
1525 
1526 static void
1527 zio_gang_tree_assemble_done(zio_t *zio)
1528 {
1529 	zio_t *gio = zio->io_gang_leader;
1530 	zio_gang_node_t *gn = zio->io_private;
1531 	blkptr_t *bp = zio->io_bp;
1532 
1533 	ASSERT(gio == zio_unique_parent(zio));
1534 	ASSERT(zio->io_child_count == 0);
1535 
1536 	if (zio->io_error)
1537 		return;
1538 
1539 	if (BP_SHOULD_BYTESWAP(bp))
1540 		byteswap_uint64_array(zio->io_data, zio->io_size);
1541 
1542 	ASSERT(zio->io_data == gn->gn_gbh);
1543 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1544 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1545 
1546 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1547 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1548 		if (!BP_IS_GANG(gbp))
1549 			continue;
1550 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1551 	}
1552 }
1553 
1554 static void
1555 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1556 {
1557 	zio_t *gio = pio->io_gang_leader;
1558 	zio_t *zio;
1559 
1560 	ASSERT(BP_IS_GANG(bp) == !!gn);
1561 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1562 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1563 
1564 	/*
1565 	 * If you're a gang header, your data is in gn->gn_gbh.
1566 	 * If you're a gang member, your data is in 'data' and gn == NULL.
1567 	 */
1568 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1569 
1570 	if (gn != NULL) {
1571 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1572 
1573 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1574 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1575 			if (BP_IS_HOLE(gbp))
1576 				continue;
1577 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1578 			data = (char *)data + BP_GET_PSIZE(gbp);
1579 		}
1580 	}
1581 
1582 	if (gn == gio->io_gang_tree)
1583 		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1584 
1585 	if (zio != pio)
1586 		zio_nowait(zio);
1587 }
1588 
1589 static int
1590 zio_gang_assemble(zio_t *zio)
1591 {
1592 	blkptr_t *bp = zio->io_bp;
1593 
1594 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1595 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1596 
1597 	zio->io_gang_leader = zio;
1598 
1599 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1600 
1601 	return (ZIO_PIPELINE_CONTINUE);
1602 }
1603 
1604 static int
1605 zio_gang_issue(zio_t *zio)
1606 {
1607 	blkptr_t *bp = zio->io_bp;
1608 
1609 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1610 		return (ZIO_PIPELINE_STOP);
1611 
1612 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1613 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1614 
1615 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1616 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1617 	else
1618 		zio_gang_tree_free(&zio->io_gang_tree);
1619 
1620 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1621 
1622 	return (ZIO_PIPELINE_CONTINUE);
1623 }
1624 
1625 static void
1626 zio_write_gang_member_ready(zio_t *zio)
1627 {
1628 	zio_t *pio = zio_unique_parent(zio);
1629 	zio_t *gio = zio->io_gang_leader;
1630 	dva_t *cdva = zio->io_bp->blk_dva;
1631 	dva_t *pdva = pio->io_bp->blk_dva;
1632 	uint64_t asize;
1633 
1634 	if (BP_IS_HOLE(zio->io_bp))
1635 		return;
1636 
1637 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1638 
1639 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1640 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1641 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1642 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1643 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1644 
1645 	mutex_enter(&pio->io_lock);
1646 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1647 		ASSERT(DVA_GET_GANG(&pdva[d]));
1648 		asize = DVA_GET_ASIZE(&pdva[d]);
1649 		asize += DVA_GET_ASIZE(&cdva[d]);
1650 		DVA_SET_ASIZE(&pdva[d], asize);
1651 	}
1652 	mutex_exit(&pio->io_lock);
1653 }
1654 
1655 static int
1656 zio_write_gang_block(zio_t *pio)
1657 {
1658 	spa_t *spa = pio->io_spa;
1659 	blkptr_t *bp = pio->io_bp;
1660 	zio_t *gio = pio->io_gang_leader;
1661 	zio_t *zio;
1662 	zio_gang_node_t *gn, **gnpp;
1663 	zio_gbh_phys_t *gbh;
1664 	uint64_t txg = pio->io_txg;
1665 	uint64_t resid = pio->io_size;
1666 	uint64_t lsize;
1667 	int copies = gio->io_prop.zp_copies;
1668 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1669 	zio_prop_t zp;
1670 	int error;
1671 
1672 	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1673 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1674 	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1675 	if (error) {
1676 		pio->io_error = error;
1677 		return (ZIO_PIPELINE_CONTINUE);
1678 	}
1679 
1680 	if (pio == gio) {
1681 		gnpp = &gio->io_gang_tree;
1682 	} else {
1683 		gnpp = pio->io_private;
1684 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1685 	}
1686 
1687 	gn = zio_gang_node_alloc(gnpp);
1688 	gbh = gn->gn_gbh;
1689 	bzero(gbh, SPA_GANGBLOCKSIZE);
1690 
1691 	/*
1692 	 * Create the gang header.
1693 	 */
1694 	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1695 	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1696 
1697 	/*
1698 	 * Create and nowait the gang children.
1699 	 */
1700 	for (int g = 0; resid != 0; resid -= lsize, g++) {
1701 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1702 		    SPA_MINBLOCKSIZE);
1703 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1704 
1705 		zp.zp_checksum = gio->io_prop.zp_checksum;
1706 		zp.zp_compress = ZIO_COMPRESS_OFF;
1707 		zp.zp_type = DMU_OT_NONE;
1708 		zp.zp_level = 0;
1709 		zp.zp_copies = gio->io_prop.zp_copies;
1710 		zp.zp_dedup = 0;
1711 		zp.zp_dedup_verify = 0;
1712 
1713 		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1714 		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1715 		    zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1716 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1717 		    &pio->io_bookmark));
1718 	}
1719 
1720 	/*
1721 	 * Set pio's pipeline to just wait for zio to finish.
1722 	 */
1723 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1724 
1725 	zio_nowait(zio);
1726 
1727 	return (ZIO_PIPELINE_CONTINUE);
1728 }
1729 
1730 /*
1731  * ==========================================================================
1732  * Dedup
1733  * ==========================================================================
1734  */
1735 static void
1736 zio_ddt_child_read_done(zio_t *zio)
1737 {
1738 	blkptr_t *bp = zio->io_bp;
1739 	ddt_entry_t *dde = zio->io_private;
1740 	ddt_phys_t *ddp;
1741 	zio_t *pio = zio_unique_parent(zio);
1742 
1743 	mutex_enter(&pio->io_lock);
1744 	ddp = ddt_phys_select(dde, bp);
1745 	if (zio->io_error == 0)
1746 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1747 	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1748 		dde->dde_repair_data = zio->io_data;
1749 	else
1750 		zio_buf_free(zio->io_data, zio->io_size);
1751 	mutex_exit(&pio->io_lock);
1752 }
1753 
1754 static int
1755 zio_ddt_read_start(zio_t *zio)
1756 {
1757 	blkptr_t *bp = zio->io_bp;
1758 
1759 	ASSERT(BP_GET_DEDUP(bp));
1760 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1761 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1762 
1763 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1764 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1765 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1766 		ddt_phys_t *ddp = dde->dde_phys;
1767 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1768 		blkptr_t blk;
1769 
1770 		ASSERT(zio->io_vsd == NULL);
1771 		zio->io_vsd = dde;
1772 
1773 		if (ddp_self == NULL)
1774 			return (ZIO_PIPELINE_CONTINUE);
1775 
1776 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1777 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1778 				continue;
1779 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1780 			    &blk);
1781 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
1782 			    zio_buf_alloc(zio->io_size), zio->io_size,
1783 			    zio_ddt_child_read_done, dde, zio->io_priority,
1784 			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1785 			    &zio->io_bookmark));
1786 		}
1787 		return (ZIO_PIPELINE_CONTINUE);
1788 	}
1789 
1790 	zio_nowait(zio_read(zio, zio->io_spa, bp,
1791 	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1792 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1793 
1794 	return (ZIO_PIPELINE_CONTINUE);
1795 }
1796 
1797 static int
1798 zio_ddt_read_done(zio_t *zio)
1799 {
1800 	blkptr_t *bp = zio->io_bp;
1801 
1802 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1803 		return (ZIO_PIPELINE_STOP);
1804 
1805 	ASSERT(BP_GET_DEDUP(bp));
1806 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1807 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1808 
1809 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1810 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1811 		ddt_entry_t *dde = zio->io_vsd;
1812 		if (ddt == NULL) {
1813 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1814 			return (ZIO_PIPELINE_CONTINUE);
1815 		}
1816 		if (dde == NULL) {
1817 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1818 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1819 			return (ZIO_PIPELINE_STOP);
1820 		}
1821 		if (dde->dde_repair_data != NULL) {
1822 			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1823 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
1824 		}
1825 		ddt_repair_done(ddt, dde);
1826 		zio->io_vsd = NULL;
1827 	}
1828 
1829 	ASSERT(zio->io_vsd == NULL);
1830 
1831 	return (ZIO_PIPELINE_CONTINUE);
1832 }
1833 
1834 static boolean_t
1835 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1836 {
1837 	spa_t *spa = zio->io_spa;
1838 
1839 	/*
1840 	 * Note: we compare the original data, not the transformed data,
1841 	 * because when zio->io_bp is an override bp, we will not have
1842 	 * pushed the I/O transforms.  That's an important optimization
1843 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
1844 	 */
1845 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1846 		zio_t *lio = dde->dde_lead_zio[p];
1847 
1848 		if (lio != NULL) {
1849 			return (lio->io_orig_size != zio->io_orig_size ||
1850 			    bcmp(zio->io_orig_data, lio->io_orig_data,
1851 			    zio->io_orig_size) != 0);
1852 		}
1853 	}
1854 
1855 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1856 		ddt_phys_t *ddp = &dde->dde_phys[p];
1857 
1858 		if (ddp->ddp_phys_birth != 0) {
1859 			arc_buf_t *abuf = NULL;
1860 			uint32_t aflags = ARC_WAIT;
1861 			blkptr_t blk = *zio->io_bp;
1862 			int error;
1863 
1864 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
1865 
1866 			ddt_exit(ddt);
1867 
1868 			error = arc_read_nolock(NULL, spa, &blk,
1869 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
1870 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1871 			    &aflags, &zio->io_bookmark);
1872 
1873 			if (error == 0) {
1874 				if (arc_buf_size(abuf) != zio->io_orig_size ||
1875 				    bcmp(abuf->b_data, zio->io_orig_data,
1876 				    zio->io_orig_size) != 0)
1877 					error = EEXIST;
1878 				VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
1879 			}
1880 
1881 			ddt_enter(ddt);
1882 			return (error != 0);
1883 		}
1884 	}
1885 
1886 	return (B_FALSE);
1887 }
1888 
1889 static void
1890 zio_ddt_child_write_ready(zio_t *zio)
1891 {
1892 	int p = zio->io_prop.zp_copies;
1893 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
1894 	ddt_entry_t *dde = zio->io_private;
1895 	ddt_phys_t *ddp = &dde->dde_phys[p];
1896 	zio_t *pio;
1897 
1898 	if (zio->io_error)
1899 		return;
1900 
1901 	ddt_enter(ddt);
1902 
1903 	ASSERT(dde->dde_lead_zio[p] == zio);
1904 
1905 	ddt_phys_fill(ddp, zio->io_bp);
1906 
1907 	while ((pio = zio_walk_parents(zio)) != NULL)
1908 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
1909 
1910 	ddt_exit(ddt);
1911 }
1912 
1913 static void
1914 zio_ddt_child_write_done(zio_t *zio)
1915 {
1916 	int p = zio->io_prop.zp_copies;
1917 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
1918 	ddt_entry_t *dde = zio->io_private;
1919 	ddt_phys_t *ddp = &dde->dde_phys[p];
1920 
1921 	ddt_enter(ddt);
1922 
1923 	ASSERT(ddp->ddp_refcnt == 0);
1924 	ASSERT(dde->dde_lead_zio[p] == zio);
1925 	dde->dde_lead_zio[p] = NULL;
1926 
1927 	if (zio->io_error == 0) {
1928 		while (zio_walk_parents(zio) != NULL)
1929 			ddt_phys_addref(ddp);
1930 	} else {
1931 		ddt_phys_clear(ddp);
1932 	}
1933 
1934 	ddt_exit(ddt);
1935 }
1936 
1937 static void
1938 zio_ddt_ditto_write_done(zio_t *zio)
1939 {
1940 	int p = DDT_PHYS_DITTO;
1941 	zio_prop_t *zp = &zio->io_prop;
1942 	blkptr_t *bp = zio->io_bp;
1943 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
1944 	ddt_entry_t *dde = zio->io_private;
1945 	ddt_phys_t *ddp = &dde->dde_phys[p];
1946 	ddt_key_t *ddk = &dde->dde_key;
1947 
1948 	ddt_enter(ddt);
1949 
1950 	ASSERT(ddp->ddp_refcnt == 0);
1951 	ASSERT(dde->dde_lead_zio[p] == zio);
1952 	dde->dde_lead_zio[p] = NULL;
1953 
1954 	if (zio->io_error == 0) {
1955 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
1956 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
1957 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
1958 		if (ddp->ddp_phys_birth != 0)
1959 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
1960 		ddt_phys_fill(ddp, bp);
1961 	}
1962 
1963 	ddt_exit(ddt);
1964 }
1965 
1966 static int
1967 zio_ddt_write(zio_t *zio)
1968 {
1969 	spa_t *spa = zio->io_spa;
1970 	blkptr_t *bp = zio->io_bp;
1971 	uint64_t txg = zio->io_txg;
1972 	zio_prop_t *zp = &zio->io_prop;
1973 	int p = zp->zp_copies;
1974 	int ditto_copies;
1975 	zio_t *cio = NULL;
1976 	zio_t *dio = NULL;
1977 	ddt_t *ddt = ddt_select(spa, bp);
1978 	ddt_entry_t *dde;
1979 	ddt_phys_t *ddp;
1980 
1981 	ASSERT(BP_GET_DEDUP(bp));
1982 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
1983 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
1984 
1985 	ddt_enter(ddt);
1986 	dde = ddt_lookup(ddt, bp, B_TRUE);
1987 	ddp = &dde->dde_phys[p];
1988 
1989 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
1990 		/*
1991 		 * If we're using a weak checksum, upgrade to a strong checksum
1992 		 * and try again.  If we're already using a strong checksum,
1993 		 * we can't resolve it, so just convert to an ordinary write.
1994 		 * (And automatically e-mail a paper to Nature?)
1995 		 */
1996 		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
1997 			zp->zp_checksum = spa_dedup_checksum(spa);
1998 			zio_pop_transforms(zio);
1999 			zio->io_stage = ZIO_STAGE_OPEN;
2000 			BP_ZERO(bp);
2001 		} else {
2002 			zp->zp_dedup = 0;
2003 		}
2004 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2005 		ddt_exit(ddt);
2006 		return (ZIO_PIPELINE_CONTINUE);
2007 	}
2008 
2009 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2010 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2011 
2012 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2013 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2014 		zio_prop_t czp = *zp;
2015 
2016 		czp.zp_copies = ditto_copies;
2017 
2018 		/*
2019 		 * If we arrived here with an override bp, we won't have run
2020 		 * the transform stack, so we won't have the data we need to
2021 		 * generate a child i/o.  So, toss the override bp and restart.
2022 		 * This is safe, because using the override bp is just an
2023 		 * optimization; and it's rare, so the cost doesn't matter.
2024 		 */
2025 		if (zio->io_bp_override) {
2026 			zio_pop_transforms(zio);
2027 			zio->io_stage = ZIO_STAGE_OPEN;
2028 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2029 			zio->io_bp_override = NULL;
2030 			BP_ZERO(bp);
2031 			ddt_exit(ddt);
2032 			return (ZIO_PIPELINE_CONTINUE);
2033 		}
2034 
2035 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2036 		    zio->io_orig_size, &czp, NULL,
2037 		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2038 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2039 
2040 		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2041 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2042 	}
2043 
2044 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2045 		if (ddp->ddp_phys_birth != 0)
2046 			ddt_bp_fill(ddp, bp, txg);
2047 		if (dde->dde_lead_zio[p] != NULL)
2048 			zio_add_child(zio, dde->dde_lead_zio[p]);
2049 		else
2050 			ddt_phys_addref(ddp);
2051 	} else if (zio->io_bp_override) {
2052 		ASSERT(bp->blk_birth == txg);
2053 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2054 		ddt_phys_fill(ddp, bp);
2055 		ddt_phys_addref(ddp);
2056 	} else {
2057 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2058 		    zio->io_orig_size, zp, zio_ddt_child_write_ready,
2059 		    zio_ddt_child_write_done, dde, zio->io_priority,
2060 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2061 
2062 		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2063 		dde->dde_lead_zio[p] = cio;
2064 	}
2065 
2066 	ddt_exit(ddt);
2067 
2068 	if (cio)
2069 		zio_nowait(cio);
2070 	if (dio)
2071 		zio_nowait(dio);
2072 
2073 	return (ZIO_PIPELINE_CONTINUE);
2074 }
2075 
2076 ddt_entry_t *freedde; /* for debugging */
2077 
2078 static int
2079 zio_ddt_free(zio_t *zio)
2080 {
2081 	spa_t *spa = zio->io_spa;
2082 	blkptr_t *bp = zio->io_bp;
2083 	ddt_t *ddt = ddt_select(spa, bp);
2084 	ddt_entry_t *dde;
2085 	ddt_phys_t *ddp;
2086 
2087 	ASSERT(BP_GET_DEDUP(bp));
2088 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2089 
2090 	ddt_enter(ddt);
2091 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2092 	ddp = ddt_phys_select(dde, bp);
2093 	ddt_phys_decref(ddp);
2094 	ddt_exit(ddt);
2095 
2096 	return (ZIO_PIPELINE_CONTINUE);
2097 }
2098 
2099 /*
2100  * ==========================================================================
2101  * Allocate and free blocks
2102  * ==========================================================================
2103  */
2104 static int
2105 zio_dva_allocate(zio_t *zio)
2106 {
2107 	spa_t *spa = zio->io_spa;
2108 	metaslab_class_t *mc = spa_normal_class(spa);
2109 	blkptr_t *bp = zio->io_bp;
2110 	int error;
2111 
2112 	if (zio->io_gang_leader == NULL) {
2113 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2114 		zio->io_gang_leader = zio;
2115 	}
2116 
2117 	ASSERT(BP_IS_HOLE(bp));
2118 	ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
2119 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2120 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2121 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2122 
2123 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2124 	    zio->io_prop.zp_copies, zio->io_txg, NULL, 0);
2125 
2126 	if (error) {
2127 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2128 			return (zio_write_gang_block(zio));
2129 		zio->io_error = error;
2130 	}
2131 
2132 	return (ZIO_PIPELINE_CONTINUE);
2133 }
2134 
2135 static int
2136 zio_dva_free(zio_t *zio)
2137 {
2138 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2139 
2140 	return (ZIO_PIPELINE_CONTINUE);
2141 }
2142 
2143 static int
2144 zio_dva_claim(zio_t *zio)
2145 {
2146 	int error;
2147 
2148 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2149 	if (error)
2150 		zio->io_error = error;
2151 
2152 	return (ZIO_PIPELINE_CONTINUE);
2153 }
2154 
2155 /*
2156  * Undo an allocation.  This is used by zio_done() when an I/O fails
2157  * and we want to give back the block we just allocated.
2158  * This handles both normal blocks and gang blocks.
2159  */
2160 static void
2161 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2162 {
2163 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2164 	ASSERT(zio->io_bp_override == NULL);
2165 
2166 	if (!BP_IS_HOLE(bp))
2167 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2168 
2169 	if (gn != NULL) {
2170 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2171 			zio_dva_unallocate(zio, gn->gn_child[g],
2172 			    &gn->gn_gbh->zg_blkptr[g]);
2173 		}
2174 	}
2175 }
2176 
2177 /*
2178  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2179  */
2180 int
2181 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2182     uint64_t size, boolean_t use_slog)
2183 {
2184 	int error = 1;
2185 
2186 	ASSERT(txg > spa_syncing_txg(spa));
2187 
2188 	if (use_slog)
2189 		error = metaslab_alloc(spa, spa_log_class(spa), size,
2190 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
2191 
2192 	if (error)
2193 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2194 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
2195 
2196 	if (error == 0) {
2197 		BP_SET_LSIZE(new_bp, size);
2198 		BP_SET_PSIZE(new_bp, size);
2199 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2200 		BP_SET_CHECKSUM(new_bp,
2201 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2202 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2203 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2204 		BP_SET_LEVEL(new_bp, 0);
2205 		BP_SET_DEDUP(new_bp, 0);
2206 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2207 	}
2208 
2209 	return (error);
2210 }
2211 
2212 /*
2213  * Free an intent log block.
2214  */
2215 void
2216 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2217 {
2218 	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2219 	ASSERT(!BP_IS_GANG(bp));
2220 
2221 	zio_free(spa, txg, bp);
2222 }
2223 
2224 /*
2225  * ==========================================================================
2226  * Read and write to physical devices
2227  * ==========================================================================
2228  */
2229 static int
2230 zio_vdev_io_start(zio_t *zio)
2231 {
2232 	vdev_t *vd = zio->io_vd;
2233 	uint64_t align;
2234 	spa_t *spa = zio->io_spa;
2235 
2236 	ASSERT(zio->io_error == 0);
2237 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2238 
2239 	if (vd == NULL) {
2240 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2241 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2242 
2243 		/*
2244 		 * The mirror_ops handle multiple DVAs in a single BP.
2245 		 */
2246 		return (vdev_mirror_ops.vdev_op_io_start(zio));
2247 	}
2248 
2249 	align = 1ULL << vd->vdev_top->vdev_ashift;
2250 
2251 	if (P2PHASE(zio->io_size, align) != 0) {
2252 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2253 		char *abuf = zio_buf_alloc(asize);
2254 		ASSERT(vd == vd->vdev_top);
2255 		if (zio->io_type == ZIO_TYPE_WRITE) {
2256 			bcopy(zio->io_data, abuf, zio->io_size);
2257 			bzero(abuf + zio->io_size, asize - zio->io_size);
2258 		}
2259 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2260 	}
2261 
2262 	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2263 	ASSERT(P2PHASE(zio->io_size, align) == 0);
2264 	ASSERT(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2265 
2266 	/*
2267 	 * If this is a repair I/O, and there's no self-healing involved --
2268 	 * that is, we're just resilvering what we expect to resilver --
2269 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2270 	 * This prevents spurious resilvering with nested replication.
2271 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2272 	 * A is out of date, we'll read from C+D, then use the data to
2273 	 * resilver A+B -- but we don't actually want to resilver B, just A.
2274 	 * The top-level mirror has no way to know this, so instead we just
2275 	 * discard unnecessary repairs as we work our way down the vdev tree.
2276 	 * The same logic applies to any form of nested replication:
2277 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2278 	 */
2279 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2280 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2281 	    zio->io_txg != 0 &&	/* not a delegated i/o */
2282 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2283 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2284 		zio_vdev_io_bypass(zio);
2285 		return (ZIO_PIPELINE_CONTINUE);
2286 	}
2287 
2288 	if (vd->vdev_ops->vdev_op_leaf &&
2289 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2290 
2291 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2292 			return (ZIO_PIPELINE_CONTINUE);
2293 
2294 		if ((zio = vdev_queue_io(zio)) == NULL)
2295 			return (ZIO_PIPELINE_STOP);
2296 
2297 		if (!vdev_accessible(vd, zio)) {
2298 			zio->io_error = ENXIO;
2299 			zio_interrupt(zio);
2300 			return (ZIO_PIPELINE_STOP);
2301 		}
2302 	}
2303 
2304 	return (vd->vdev_ops->vdev_op_io_start(zio));
2305 }
2306 
2307 static int
2308 zio_vdev_io_done(zio_t *zio)
2309 {
2310 	vdev_t *vd = zio->io_vd;
2311 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2312 	boolean_t unexpected_error = B_FALSE;
2313 
2314 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2315 		return (ZIO_PIPELINE_STOP);
2316 
2317 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2318 
2319 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2320 
2321 		vdev_queue_io_done(zio);
2322 
2323 		if (zio->io_type == ZIO_TYPE_WRITE)
2324 			vdev_cache_write(zio);
2325 
2326 		if (zio_injection_enabled && zio->io_error == 0)
2327 			zio->io_error = zio_handle_device_injection(vd,
2328 			    zio, EIO);
2329 
2330 		if (zio_injection_enabled && zio->io_error == 0)
2331 			zio->io_error = zio_handle_label_injection(zio, EIO);
2332 
2333 		if (zio->io_error) {
2334 			if (!vdev_accessible(vd, zio)) {
2335 				zio->io_error = ENXIO;
2336 			} else {
2337 				unexpected_error = B_TRUE;
2338 			}
2339 		}
2340 	}
2341 
2342 	ops->vdev_op_io_done(zio);
2343 
2344 	if (unexpected_error)
2345 		VERIFY(vdev_probe(vd, zio) == NULL);
2346 
2347 	return (ZIO_PIPELINE_CONTINUE);
2348 }
2349 
2350 /*
2351  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2352  * disk, and use that to finish the checksum ereport later.
2353  */
2354 static void
2355 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2356     const void *good_buf)
2357 {
2358 	/* no processing needed */
2359 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2360 }
2361 
2362 /*ARGSUSED*/
2363 void
2364 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2365 {
2366 	void *buf = zio_buf_alloc(zio->io_size);
2367 
2368 	bcopy(zio->io_data, buf, zio->io_size);
2369 
2370 	zcr->zcr_cbinfo = zio->io_size;
2371 	zcr->zcr_cbdata = buf;
2372 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2373 	zcr->zcr_free = zio_buf_free;
2374 }
2375 
2376 static int
2377 zio_vdev_io_assess(zio_t *zio)
2378 {
2379 	vdev_t *vd = zio->io_vd;
2380 
2381 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2382 		return (ZIO_PIPELINE_STOP);
2383 
2384 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2385 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2386 
2387 	if (zio->io_vsd != NULL) {
2388 		zio->io_vsd_ops->vsd_free(zio);
2389 		zio->io_vsd = NULL;
2390 	}
2391 
2392 	if (zio_injection_enabled && zio->io_error == 0)
2393 		zio->io_error = zio_handle_fault_injection(zio, EIO);
2394 
2395 	/*
2396 	 * If the I/O failed, determine whether we should attempt to retry it.
2397 	 *
2398 	 * On retry, we cut in line in the issue queue, since we don't want
2399 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2400 	 */
2401 	if (zio->io_error && vd == NULL &&
2402 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2403 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2404 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2405 		zio->io_error = 0;
2406 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2407 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2408 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2409 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2410 		    zio_requeue_io_start_cut_in_line);
2411 		return (ZIO_PIPELINE_STOP);
2412 	}
2413 
2414 	/*
2415 	 * If we got an error on a leaf device, convert it to ENXIO
2416 	 * if the device is not accessible at all.
2417 	 */
2418 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2419 	    !vdev_accessible(vd, zio))
2420 		zio->io_error = ENXIO;
2421 
2422 	/*
2423 	 * If we can't write to an interior vdev (mirror or RAID-Z),
2424 	 * set vdev_cant_write so that we stop trying to allocate from it.
2425 	 */
2426 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2427 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf)
2428 		vd->vdev_cant_write = B_TRUE;
2429 
2430 	if (zio->io_error)
2431 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2432 
2433 	return (ZIO_PIPELINE_CONTINUE);
2434 }
2435 
2436 void
2437 zio_vdev_io_reissue(zio_t *zio)
2438 {
2439 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2440 	ASSERT(zio->io_error == 0);
2441 
2442 	zio->io_stage >>= 1;
2443 }
2444 
2445 void
2446 zio_vdev_io_redone(zio_t *zio)
2447 {
2448 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2449 
2450 	zio->io_stage >>= 1;
2451 }
2452 
2453 void
2454 zio_vdev_io_bypass(zio_t *zio)
2455 {
2456 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2457 	ASSERT(zio->io_error == 0);
2458 
2459 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2460 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2461 }
2462 
2463 /*
2464  * ==========================================================================
2465  * Generate and verify checksums
2466  * ==========================================================================
2467  */
2468 static int
2469 zio_checksum_generate(zio_t *zio)
2470 {
2471 	blkptr_t *bp = zio->io_bp;
2472 	enum zio_checksum checksum;
2473 
2474 	if (bp == NULL) {
2475 		/*
2476 		 * This is zio_write_phys().
2477 		 * We're either generating a label checksum, or none at all.
2478 		 */
2479 		checksum = zio->io_prop.zp_checksum;
2480 
2481 		if (checksum == ZIO_CHECKSUM_OFF)
2482 			return (ZIO_PIPELINE_CONTINUE);
2483 
2484 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2485 	} else {
2486 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2487 			ASSERT(!IO_IS_ALLOCATING(zio));
2488 			checksum = ZIO_CHECKSUM_GANG_HEADER;
2489 		} else {
2490 			checksum = BP_GET_CHECKSUM(bp);
2491 		}
2492 	}
2493 
2494 	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2495 
2496 	return (ZIO_PIPELINE_CONTINUE);
2497 }
2498 
2499 static int
2500 zio_checksum_verify(zio_t *zio)
2501 {
2502 	zio_bad_cksum_t info;
2503 	blkptr_t *bp = zio->io_bp;
2504 	int error;
2505 
2506 	ASSERT(zio->io_vd != NULL);
2507 
2508 	if (bp == NULL) {
2509 		/*
2510 		 * This is zio_read_phys().
2511 		 * We're either verifying a label checksum, or nothing at all.
2512 		 */
2513 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2514 			return (ZIO_PIPELINE_CONTINUE);
2515 
2516 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2517 	}
2518 
2519 	if ((error = zio_checksum_error(zio, &info)) != 0) {
2520 		zio->io_error = error;
2521 		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2522 			zfs_ereport_start_checksum(zio->io_spa,
2523 			    zio->io_vd, zio, zio->io_offset,
2524 			    zio->io_size, NULL, &info);
2525 		}
2526 	}
2527 
2528 	return (ZIO_PIPELINE_CONTINUE);
2529 }
2530 
2531 /*
2532  * Called by RAID-Z to ensure we don't compute the checksum twice.
2533  */
2534 void
2535 zio_checksum_verified(zio_t *zio)
2536 {
2537 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2538 }
2539 
2540 /*
2541  * ==========================================================================
2542  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2543  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2544  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2545  * indicate errors that are specific to one I/O, and most likely permanent.
2546  * Any other error is presumed to be worse because we weren't expecting it.
2547  * ==========================================================================
2548  */
2549 int
2550 zio_worst_error(int e1, int e2)
2551 {
2552 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2553 	int r1, r2;
2554 
2555 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2556 		if (e1 == zio_error_rank[r1])
2557 			break;
2558 
2559 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2560 		if (e2 == zio_error_rank[r2])
2561 			break;
2562 
2563 	return (r1 > r2 ? e1 : e2);
2564 }
2565 
2566 /*
2567  * ==========================================================================
2568  * I/O completion
2569  * ==========================================================================
2570  */
2571 static int
2572 zio_ready(zio_t *zio)
2573 {
2574 	blkptr_t *bp = zio->io_bp;
2575 	zio_t *pio, *pio_next;
2576 
2577 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2578 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2579 		return (ZIO_PIPELINE_STOP);
2580 
2581 	if (zio->io_ready) {
2582 		ASSERT(IO_IS_ALLOCATING(zio));
2583 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2584 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2585 
2586 		zio->io_ready(zio);
2587 	}
2588 
2589 	if (bp != NULL && bp != &zio->io_bp_copy)
2590 		zio->io_bp_copy = *bp;
2591 
2592 	if (zio->io_error)
2593 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2594 
2595 	mutex_enter(&zio->io_lock);
2596 	zio->io_state[ZIO_WAIT_READY] = 1;
2597 	pio = zio_walk_parents(zio);
2598 	mutex_exit(&zio->io_lock);
2599 
2600 	/*
2601 	 * As we notify zio's parents, new parents could be added.
2602 	 * New parents go to the head of zio's io_parent_list, however,
2603 	 * so we will (correctly) not notify them.  The remainder of zio's
2604 	 * io_parent_list, from 'pio_next' onward, cannot change because
2605 	 * all parents must wait for us to be done before they can be done.
2606 	 */
2607 	for (; pio != NULL; pio = pio_next) {
2608 		pio_next = zio_walk_parents(zio);
2609 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2610 	}
2611 
2612 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2613 		if (BP_IS_GANG(bp)) {
2614 			zio->io_flags &= ~ZIO_FLAG_NODATA;
2615 		} else {
2616 			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2617 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2618 		}
2619 	}
2620 
2621 	if (zio_injection_enabled &&
2622 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2623 		zio_handle_ignored_writes(zio);
2624 
2625 	return (ZIO_PIPELINE_CONTINUE);
2626 }
2627 
2628 static int
2629 zio_done(zio_t *zio)
2630 {
2631 	spa_t *spa = zio->io_spa;
2632 	zio_t *lio = zio->io_logical;
2633 	blkptr_t *bp = zio->io_bp;
2634 	vdev_t *vd = zio->io_vd;
2635 	uint64_t psize = zio->io_size;
2636 	zio_t *pio, *pio_next;
2637 
2638 	/*
2639 	 * If our children haven't all completed,
2640 	 * wait for them and then repeat this pipeline stage.
2641 	 */
2642 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2643 	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2644 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2645 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2646 		return (ZIO_PIPELINE_STOP);
2647 
2648 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2649 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2650 			ASSERT(zio->io_children[c][w] == 0);
2651 
2652 	if (bp != NULL) {
2653 		ASSERT(bp->blk_pad[0] == 0);
2654 		ASSERT(bp->blk_pad[1] == 0);
2655 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2656 		    (bp == zio_unique_parent(zio)->io_bp));
2657 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2658 		    zio->io_bp_override == NULL &&
2659 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2660 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2661 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2662 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2663 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2664 		}
2665 	}
2666 
2667 	/*
2668 	 * If there were child vdev/gang/ddt errors, they apply to us now.
2669 	 */
2670 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2671 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2672 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2673 
2674 	/*
2675 	 * If the I/O on the transformed data was successful, generate any
2676 	 * checksum reports now while we still have the transformed data.
2677 	 */
2678 	if (zio->io_error == 0) {
2679 		while (zio->io_cksum_report != NULL) {
2680 			zio_cksum_report_t *zcr = zio->io_cksum_report;
2681 			uint64_t align = zcr->zcr_align;
2682 			uint64_t asize = P2ROUNDUP(psize, align);
2683 			char *abuf = zio->io_data;
2684 
2685 			if (asize != psize) {
2686 				abuf = zio_buf_alloc(asize);
2687 				bcopy(zio->io_data, abuf, psize);
2688 				bzero(abuf + psize, asize - psize);
2689 			}
2690 
2691 			zio->io_cksum_report = zcr->zcr_next;
2692 			zcr->zcr_next = NULL;
2693 			zcr->zcr_finish(zcr, abuf);
2694 			zfs_ereport_free_checksum(zcr);
2695 
2696 			if (asize != psize)
2697 				zio_buf_free(abuf, asize);
2698 		}
2699 	}
2700 
2701 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
2702 
2703 	vdev_stat_update(zio, psize);
2704 
2705 	if (zio->io_error) {
2706 		/*
2707 		 * If this I/O is attached to a particular vdev,
2708 		 * generate an error message describing the I/O failure
2709 		 * at the block level.  We ignore these errors if the
2710 		 * device is currently unavailable.
2711 		 */
2712 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2713 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2714 
2715 		if ((zio->io_error == EIO || !(zio->io_flags &
2716 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2717 		    zio == lio) {
2718 			/*
2719 			 * For logical I/O requests, tell the SPA to log the
2720 			 * error and generate a logical data ereport.
2721 			 */
2722 			spa_log_error(spa, zio);
2723 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2724 			    0, 0);
2725 		}
2726 	}
2727 
2728 	if (zio->io_error && zio == lio) {
2729 		/*
2730 		 * Determine whether zio should be reexecuted.  This will
2731 		 * propagate all the way to the root via zio_notify_parent().
2732 		 */
2733 		ASSERT(vd == NULL && bp != NULL);
2734 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2735 
2736 		if (IO_IS_ALLOCATING(zio) &&
2737 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2738 			if (zio->io_error != ENOSPC)
2739 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2740 			else
2741 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2742 		}
2743 
2744 		if ((zio->io_type == ZIO_TYPE_READ ||
2745 		    zio->io_type == ZIO_TYPE_FREE) &&
2746 		    zio->io_error == ENXIO &&
2747 		    spa_load_state(spa) == SPA_LOAD_NONE &&
2748 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2749 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2750 
2751 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2752 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2753 
2754 		/*
2755 		 * Here is a possibly good place to attempt to do
2756 		 * either combinatorial reconstruction or error correction
2757 		 * based on checksums.  It also might be a good place
2758 		 * to send out preliminary ereports before we suspend
2759 		 * processing.
2760 		 */
2761 	}
2762 
2763 	/*
2764 	 * If there were logical child errors, they apply to us now.
2765 	 * We defer this until now to avoid conflating logical child
2766 	 * errors with errors that happened to the zio itself when
2767 	 * updating vdev stats and reporting FMA events above.
2768 	 */
2769 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2770 
2771 	if ((zio->io_error || zio->io_reexecute) &&
2772 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2773 	    !(zio->io_flags & ZIO_FLAG_IO_REWRITE))
2774 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2775 
2776 	zio_gang_tree_free(&zio->io_gang_tree);
2777 
2778 	/*
2779 	 * Godfather I/Os should never suspend.
2780 	 */
2781 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2782 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2783 		zio->io_reexecute = 0;
2784 
2785 	if (zio->io_reexecute) {
2786 		/*
2787 		 * This is a logical I/O that wants to reexecute.
2788 		 *
2789 		 * Reexecute is top-down.  When an i/o fails, if it's not
2790 		 * the root, it simply notifies its parent and sticks around.
2791 		 * The parent, seeing that it still has children in zio_done(),
2792 		 * does the same.  This percolates all the way up to the root.
2793 		 * The root i/o will reexecute or suspend the entire tree.
2794 		 *
2795 		 * This approach ensures that zio_reexecute() honors
2796 		 * all the original i/o dependency relationships, e.g.
2797 		 * parents not executing until children are ready.
2798 		 */
2799 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2800 
2801 		zio->io_gang_leader = NULL;
2802 
2803 		mutex_enter(&zio->io_lock);
2804 		zio->io_state[ZIO_WAIT_DONE] = 1;
2805 		mutex_exit(&zio->io_lock);
2806 
2807 		/*
2808 		 * "The Godfather" I/O monitors its children but is
2809 		 * not a true parent to them. It will track them through
2810 		 * the pipeline but severs its ties whenever they get into
2811 		 * trouble (e.g. suspended). This allows "The Godfather"
2812 		 * I/O to return status without blocking.
2813 		 */
2814 		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2815 			zio_link_t *zl = zio->io_walk_link;
2816 			pio_next = zio_walk_parents(zio);
2817 
2818 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
2819 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
2820 				zio_remove_child(pio, zio, zl);
2821 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2822 			}
2823 		}
2824 
2825 		if ((pio = zio_unique_parent(zio)) != NULL) {
2826 			/*
2827 			 * We're not a root i/o, so there's nothing to do
2828 			 * but notify our parent.  Don't propagate errors
2829 			 * upward since we haven't permanently failed yet.
2830 			 */
2831 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2832 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
2833 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2834 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
2835 			/*
2836 			 * We'd fail again if we reexecuted now, so suspend
2837 			 * until conditions improve (e.g. device comes online).
2838 			 */
2839 			zio_suspend(spa, zio);
2840 		} else {
2841 			/*
2842 			 * Reexecution is potentially a huge amount of work.
2843 			 * Hand it off to the otherwise-unused claim taskq.
2844 			 */
2845 			(void) taskq_dispatch(
2846 			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
2847 			    (task_func_t *)zio_reexecute, zio, TQ_SLEEP);
2848 		}
2849 		return (ZIO_PIPELINE_STOP);
2850 	}
2851 
2852 	ASSERT(zio->io_child_count == 0);
2853 	ASSERT(zio->io_reexecute == 0);
2854 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
2855 
2856 	/*
2857 	 * Report any checksum errors, since the I/O is complete.
2858 	 */
2859 	while (zio->io_cksum_report != NULL) {
2860 		zio_cksum_report_t *zcr = zio->io_cksum_report;
2861 		zio->io_cksum_report = zcr->zcr_next;
2862 		zcr->zcr_next = NULL;
2863 		zcr->zcr_finish(zcr, NULL);
2864 		zfs_ereport_free_checksum(zcr);
2865 	}
2866 
2867 	/*
2868 	 * It is the responsibility of the done callback to ensure that this
2869 	 * particular zio is no longer discoverable for adoption, and as
2870 	 * such, cannot acquire any new parents.
2871 	 */
2872 	if (zio->io_done)
2873 		zio->io_done(zio);
2874 
2875 	mutex_enter(&zio->io_lock);
2876 	zio->io_state[ZIO_WAIT_DONE] = 1;
2877 	mutex_exit(&zio->io_lock);
2878 
2879 	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2880 		zio_link_t *zl = zio->io_walk_link;
2881 		pio_next = zio_walk_parents(zio);
2882 		zio_remove_child(pio, zio, zl);
2883 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2884 	}
2885 
2886 	if (zio->io_waiter != NULL) {
2887 		mutex_enter(&zio->io_lock);
2888 		zio->io_executor = NULL;
2889 		cv_broadcast(&zio->io_cv);
2890 		mutex_exit(&zio->io_lock);
2891 	} else {
2892 		zio_destroy(zio);
2893 	}
2894 
2895 	return (ZIO_PIPELINE_STOP);
2896 }
2897 
2898 /*
2899  * ==========================================================================
2900  * I/O pipeline definition
2901  * ==========================================================================
2902  */
2903 static zio_pipe_stage_t *zio_pipeline[] = {
2904 	NULL,
2905 	zio_read_bp_init,
2906 	zio_free_bp_init,
2907 	zio_issue_async,
2908 	zio_write_bp_init,
2909 	zio_checksum_generate,
2910 	zio_ddt_read_start,
2911 	zio_ddt_read_done,
2912 	zio_ddt_write,
2913 	zio_ddt_free,
2914 	zio_gang_assemble,
2915 	zio_gang_issue,
2916 	zio_dva_allocate,
2917 	zio_dva_free,
2918 	zio_dva_claim,
2919 	zio_ready,
2920 	zio_vdev_io_start,
2921 	zio_vdev_io_done,
2922 	zio_vdev_io_assess,
2923 	zio_checksum_verify,
2924 	zio_done
2925 };
2926