1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/txg.h> 32 #include <sys/spa_impl.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio_impl.h> 35 #include <sys/zio_compress.h> 36 #include <sys/zio_checksum.h> 37 38 /* 39 * ========================================================================== 40 * I/O priority table 41 * ========================================================================== 42 */ 43 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 44 0, /* ZIO_PRIORITY_NOW */ 45 0, /* ZIO_PRIORITY_SYNC_READ */ 46 0, /* ZIO_PRIORITY_SYNC_WRITE */ 47 6, /* ZIO_PRIORITY_ASYNC_READ */ 48 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 49 4, /* ZIO_PRIORITY_FREE */ 50 0, /* ZIO_PRIORITY_CACHE_FILL */ 51 0, /* ZIO_PRIORITY_LOG_WRITE */ 52 10, /* ZIO_PRIORITY_RESILVER */ 53 20, /* ZIO_PRIORITY_SCRUB */ 54 }; 55 56 /* 57 * ========================================================================== 58 * I/O type descriptions 59 * ========================================================================== 60 */ 61 char *zio_type_name[ZIO_TYPES] = { 62 "null", "read", "write", "free", "claim", "ioctl" }; 63 64 /* Force an allocation failure when non-zero */ 65 uint16_t zio_zil_fail_shift = 0; 66 uint16_t zio_io_fail_shift = 0; 67 68 /* Enable/disable the write-retry logic */ 69 int zio_write_retry = 1; 70 71 /* Taskq to handle reissuing of I/Os */ 72 taskq_t *zio_taskq; 73 int zio_resume_threads = 4; 74 75 typedef struct zio_sync_pass { 76 int zp_defer_free; /* defer frees after this pass */ 77 int zp_dontcompress; /* don't compress after this pass */ 78 int zp_rewrite; /* rewrite new bps after this pass */ 79 } zio_sync_pass_t; 80 81 zio_sync_pass_t zio_sync_pass = { 82 1, /* zp_defer_free */ 83 4, /* zp_dontcompress */ 84 1, /* zp_rewrite */ 85 }; 86 87 static boolean_t zio_io_should_fail(uint16_t); 88 89 /* 90 * ========================================================================== 91 * I/O kmem caches 92 * ========================================================================== 93 */ 94 kmem_cache_t *zio_cache; 95 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 96 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 97 98 #ifdef _KERNEL 99 extern vmem_t *zio_alloc_arena; 100 #endif 101 102 /* 103 * Determine if we are allowed to issue the IO based on the 104 * pool state. If we must wait then block until we are told 105 * that we may continue. 106 */ 107 #define ZIO_ENTER(spa) { \ 108 if (spa->spa_state == POOL_STATE_IO_FAILURE) { \ 109 mutex_enter(&spa->spa_zio_lock); \ 110 while (spa->spa_state == POOL_STATE_IO_FAILURE) \ 111 cv_wait(&spa->spa_zio_cv, &spa->spa_zio_lock); \ 112 mutex_exit(&spa->spa_zio_lock); \ 113 } \ 114 } 115 116 /* 117 * An allocation zio is one that either currently has the DVA allocate 118 * stage set or will have it later in it's lifetime. 119 */ 120 #define IO_IS_ALLOCATING(zio) \ 121 ((zio)->io_orig_pipeline == ZIO_WRITE_PIPELINE || \ 122 (zio)->io_pipeline & (1U << ZIO_STAGE_DVA_ALLOCATE)) 123 124 void 125 zio_init(void) 126 { 127 size_t c; 128 vmem_t *data_alloc_arena = NULL; 129 130 #ifdef _KERNEL 131 data_alloc_arena = zio_alloc_arena; 132 #endif 133 134 zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0, 135 NULL, NULL, NULL, NULL, NULL, 0); 136 137 /* 138 * For small buffers, we want a cache for each multiple of 139 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 140 * for each quarter-power of 2. For large buffers, we want 141 * a cache for each multiple of PAGESIZE. 142 */ 143 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 144 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 145 size_t p2 = size; 146 size_t align = 0; 147 148 while (p2 & (p2 - 1)) 149 p2 &= p2 - 1; 150 151 if (size <= 4 * SPA_MINBLOCKSIZE) { 152 align = SPA_MINBLOCKSIZE; 153 } else if (P2PHASE(size, PAGESIZE) == 0) { 154 align = PAGESIZE; 155 } else if (P2PHASE(size, p2 >> 2) == 0) { 156 align = p2 >> 2; 157 } 158 159 if (align != 0) { 160 char name[36]; 161 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 162 zio_buf_cache[c] = kmem_cache_create(name, size, 163 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 164 165 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 166 zio_data_buf_cache[c] = kmem_cache_create(name, size, 167 align, NULL, NULL, NULL, NULL, data_alloc_arena, 168 KMC_NODEBUG); 169 170 } 171 } 172 173 while (--c != 0) { 174 ASSERT(zio_buf_cache[c] != NULL); 175 if (zio_buf_cache[c - 1] == NULL) 176 zio_buf_cache[c - 1] = zio_buf_cache[c]; 177 178 ASSERT(zio_data_buf_cache[c] != NULL); 179 if (zio_data_buf_cache[c - 1] == NULL) 180 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 181 } 182 183 zio_taskq = taskq_create("zio_taskq", zio_resume_threads, 184 maxclsyspri, 50, INT_MAX, TASKQ_PREPOPULATE); 185 186 zio_inject_init(); 187 } 188 189 void 190 zio_fini(void) 191 { 192 size_t c; 193 kmem_cache_t *last_cache = NULL; 194 kmem_cache_t *last_data_cache = NULL; 195 196 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 197 if (zio_buf_cache[c] != last_cache) { 198 last_cache = zio_buf_cache[c]; 199 kmem_cache_destroy(zio_buf_cache[c]); 200 } 201 zio_buf_cache[c] = NULL; 202 203 if (zio_data_buf_cache[c] != last_data_cache) { 204 last_data_cache = zio_data_buf_cache[c]; 205 kmem_cache_destroy(zio_data_buf_cache[c]); 206 } 207 zio_data_buf_cache[c] = NULL; 208 } 209 210 taskq_destroy(zio_taskq); 211 212 kmem_cache_destroy(zio_cache); 213 214 zio_inject_fini(); 215 } 216 217 /* 218 * ========================================================================== 219 * Allocate and free I/O buffers 220 * ========================================================================== 221 */ 222 223 /* 224 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 225 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 226 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 227 * excess / transient data in-core during a crashdump. 228 */ 229 void * 230 zio_buf_alloc(size_t size) 231 { 232 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 233 234 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 235 236 return (kmem_cache_alloc(zio_buf_cache[c], KM_SLEEP)); 237 } 238 239 /* 240 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 241 * crashdump if the kernel panics. This exists so that we will limit the amount 242 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 243 * of kernel heap dumped to disk when the kernel panics) 244 */ 245 void * 246 zio_data_buf_alloc(size_t size) 247 { 248 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 249 250 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 251 252 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_SLEEP)); 253 } 254 255 void 256 zio_buf_free(void *buf, size_t size) 257 { 258 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 259 260 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 261 262 kmem_cache_free(zio_buf_cache[c], buf); 263 } 264 265 void 266 zio_data_buf_free(void *buf, size_t size) 267 { 268 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 269 270 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 271 272 kmem_cache_free(zio_data_buf_cache[c], buf); 273 } 274 275 /* 276 * ========================================================================== 277 * Push and pop I/O transform buffers 278 * ========================================================================== 279 */ 280 static void 281 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize) 282 { 283 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 284 285 zt->zt_data = data; 286 zt->zt_size = size; 287 zt->zt_bufsize = bufsize; 288 289 zt->zt_next = zio->io_transform_stack; 290 zio->io_transform_stack = zt; 291 292 zio->io_data = data; 293 zio->io_size = size; 294 } 295 296 static void 297 zio_pop_transform(zio_t *zio, void **data, uint64_t *size, uint64_t *bufsize) 298 { 299 zio_transform_t *zt = zio->io_transform_stack; 300 301 *data = zt->zt_data; 302 *size = zt->zt_size; 303 *bufsize = zt->zt_bufsize; 304 305 zio->io_transform_stack = zt->zt_next; 306 kmem_free(zt, sizeof (zio_transform_t)); 307 308 if ((zt = zio->io_transform_stack) != NULL) { 309 zio->io_data = zt->zt_data; 310 zio->io_size = zt->zt_size; 311 } 312 } 313 314 static void 315 zio_clear_transform_stack(zio_t *zio) 316 { 317 void *data; 318 uint64_t size, bufsize; 319 320 ASSERT(zio->io_transform_stack != NULL); 321 322 zio_pop_transform(zio, &data, &size, &bufsize); 323 while (zio->io_transform_stack != NULL) { 324 zio_buf_free(data, bufsize); 325 zio_pop_transform(zio, &data, &size, &bufsize); 326 } 327 } 328 329 /* 330 * ========================================================================== 331 * Create the various types of I/O (read, write, free) 332 * ========================================================================== 333 */ 334 static zio_t * 335 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 336 void *data, uint64_t size, zio_done_func_t *done, void *private, 337 zio_type_t type, int priority, int flags, uint8_t stage, uint32_t pipeline) 338 { 339 zio_t *zio; 340 341 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 342 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 343 344 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 345 bzero(zio, sizeof (zio_t)); 346 zio->io_parent = pio; 347 zio->io_spa = spa; 348 zio->io_txg = txg; 349 zio->io_flags = flags; 350 if (bp != NULL) { 351 zio->io_bp = bp; 352 zio->io_bp_copy = *bp; 353 zio->io_bp_orig = *bp; 354 } 355 zio->io_done = done; 356 zio->io_private = private; 357 zio->io_type = type; 358 zio->io_priority = priority; 359 zio->io_stage = stage; 360 zio->io_pipeline = pipeline; 361 zio->io_timestamp = lbolt64; 362 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 363 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 364 zio_push_transform(zio, data, size, size); 365 366 /* 367 * Note on config lock: 368 * 369 * If CONFIG_HELD is set, then the caller already has the config 370 * lock, so we don't need it for this io. 371 * 372 * We set CONFIG_GRABBED to indicate that we have grabbed the 373 * config lock on behalf of this io, so it should be released 374 * in zio_done. 375 * 376 * Unless CONFIG_HELD is set, we will grab the config lock for 377 * any top-level (parent-less) io, *except* NULL top-level ios. 378 * The NULL top-level ios rarely have any children, so we delay 379 * grabbing the lock until the first child is added (but it is 380 * still grabbed on behalf of the top-level i/o, so additional 381 * children don't need to also grab it). This greatly reduces 382 * contention on the config lock. 383 */ 384 if (pio == NULL) { 385 if (type != ZIO_TYPE_NULL && 386 !(flags & ZIO_FLAG_CONFIG_HELD)) { 387 spa_config_enter(spa, RW_READER, zio); 388 zio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 389 } 390 zio->io_root = zio; 391 } else { 392 zio->io_root = pio->io_root; 393 if (!(flags & ZIO_FLAG_NOBOOKMARK)) 394 zio->io_logical = pio->io_logical; 395 mutex_enter(&pio->io_lock); 396 if (pio->io_parent == NULL && 397 pio->io_type == ZIO_TYPE_NULL && 398 !(pio->io_flags & ZIO_FLAG_CONFIG_GRABBED) && 399 !(pio->io_flags & ZIO_FLAG_CONFIG_HELD)) { 400 pio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 401 spa_config_enter(spa, RW_READER, pio); 402 } 403 if (stage < ZIO_STAGE_READY) 404 pio->io_children_notready++; 405 pio->io_children_notdone++; 406 zio->io_sibling_next = pio->io_child; 407 zio->io_sibling_prev = NULL; 408 if (pio->io_child != NULL) 409 pio->io_child->io_sibling_prev = zio; 410 pio->io_child = zio; 411 zio->io_ndvas = pio->io_ndvas; 412 mutex_exit(&pio->io_lock); 413 } 414 415 /* 416 * Save off the original state incase we need to retry later. 417 */ 418 zio->io_orig_stage = zio->io_stage; 419 zio->io_orig_pipeline = zio->io_pipeline; 420 zio->io_orig_flags = zio->io_flags; 421 422 return (zio); 423 } 424 425 static void 426 zio_reset(zio_t *zio) 427 { 428 zio_clear_transform_stack(zio); 429 430 zio->io_flags = zio->io_orig_flags; 431 zio->io_stage = zio->io_orig_stage; 432 zio->io_pipeline = zio->io_orig_pipeline; 433 zio_push_transform(zio, zio->io_data, zio->io_size, zio->io_size); 434 } 435 436 zio_t * 437 zio_null(zio_t *pio, spa_t *spa, zio_done_func_t *done, void *private, 438 int flags) 439 { 440 zio_t *zio; 441 442 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 443 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, ZIO_STAGE_OPEN, 444 ZIO_WAIT_FOR_CHILDREN_PIPELINE); 445 446 return (zio); 447 } 448 449 zio_t * 450 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags) 451 { 452 return (zio_null(NULL, spa, done, private, flags)); 453 } 454 455 zio_t * 456 zio_read(zio_t *pio, spa_t *spa, blkptr_t *bp, void *data, 457 uint64_t size, zio_done_func_t *done, void *private, 458 int priority, int flags, zbookmark_t *zb) 459 { 460 zio_t *zio; 461 462 ASSERT3U(size, ==, BP_GET_LSIZE(bp)); 463 464 /* 465 * If the user has specified that we allow I/Os to continue 466 * then attempt to satisfy the read. 467 */ 468 if (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 469 ZIO_ENTER(spa); 470 471 zio = zio_create(pio, spa, bp->blk_birth, bp, data, size, done, private, 472 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_USER, 473 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE); 474 zio->io_bookmark = *zb; 475 476 zio->io_logical = zio; 477 478 /* 479 * Work off our copy of the bp so the caller can free it. 480 */ 481 zio->io_bp = &zio->io_bp_copy; 482 483 return (zio); 484 } 485 486 zio_t * 487 zio_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 488 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 489 zio_done_func_t *ready, zio_done_func_t *done, void *private, int priority, 490 int flags, zbookmark_t *zb) 491 { 492 zio_t *zio; 493 494 ASSERT(checksum >= ZIO_CHECKSUM_OFF && 495 checksum < ZIO_CHECKSUM_FUNCTIONS); 496 497 ASSERT(compress >= ZIO_COMPRESS_OFF && 498 compress < ZIO_COMPRESS_FUNCTIONS); 499 500 ZIO_ENTER(spa); 501 502 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 503 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 504 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE); 505 506 zio->io_ready = ready; 507 508 zio->io_bookmark = *zb; 509 510 zio->io_logical = zio; 511 512 zio->io_checksum = checksum; 513 zio->io_compress = compress; 514 zio->io_ndvas = ncopies; 515 516 if (bp->blk_birth != txg) { 517 /* XXX the bp usually (always?) gets re-zeroed later */ 518 BP_ZERO(bp); 519 BP_SET_LSIZE(bp, size); 520 BP_SET_PSIZE(bp, size); 521 } else { 522 /* Make sure someone doesn't change their mind on overwrites */ 523 ASSERT(MIN(zio->io_ndvas + BP_IS_GANG(bp), 524 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 525 } 526 527 return (zio); 528 } 529 530 zio_t * 531 zio_rewrite(zio_t *pio, spa_t *spa, int checksum, 532 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 533 zio_done_func_t *done, void *private, int priority, int flags, 534 zbookmark_t *zb) 535 { 536 zio_t *zio; 537 538 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 539 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 540 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE(bp)); 541 542 zio->io_bookmark = *zb; 543 zio->io_checksum = checksum; 544 zio->io_compress = ZIO_COMPRESS_OFF; 545 546 if (pio != NULL) 547 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 548 549 return (zio); 550 } 551 552 static void 553 zio_write_allocate_ready(zio_t *zio) 554 { 555 /* Free up the previous block */ 556 if (!BP_IS_HOLE(&zio->io_bp_orig)) { 557 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg, 558 &zio->io_bp_orig, NULL, NULL)); 559 } 560 } 561 562 static zio_t * 563 zio_write_allocate(zio_t *pio, spa_t *spa, int checksum, 564 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 565 zio_done_func_t *done, void *private, int priority, int flags) 566 { 567 zio_t *zio; 568 569 BP_ZERO(bp); 570 BP_SET_LSIZE(bp, size); 571 BP_SET_PSIZE(bp, size); 572 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 573 574 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 575 ZIO_TYPE_WRITE, priority, flags, 576 ZIO_STAGE_OPEN, ZIO_WRITE_ALLOCATE_PIPELINE); 577 578 zio->io_checksum = checksum; 579 zio->io_compress = ZIO_COMPRESS_OFF; 580 zio->io_ready = zio_write_allocate_ready; 581 582 return (zio); 583 } 584 585 zio_t * 586 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 587 zio_done_func_t *done, void *private) 588 { 589 zio_t *zio; 590 591 ASSERT(!BP_IS_HOLE(bp)); 592 593 if (txg == spa->spa_syncing_txg && 594 spa->spa_sync_pass > zio_sync_pass.zp_defer_free) { 595 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 596 return (zio_null(pio, spa, NULL, NULL, 0)); 597 } 598 599 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 600 ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, ZIO_FLAG_USER, 601 ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE(bp)); 602 603 zio->io_bp = &zio->io_bp_copy; 604 605 return (zio); 606 } 607 608 zio_t * 609 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 610 zio_done_func_t *done, void *private) 611 { 612 zio_t *zio; 613 614 /* 615 * A claim is an allocation of a specific block. Claims are needed 616 * to support immediate writes in the intent log. The issue is that 617 * immediate writes contain committed data, but in a txg that was 618 * *not* committed. Upon opening the pool after an unclean shutdown, 619 * the intent log claims all blocks that contain immediate write data 620 * so that the SPA knows they're in use. 621 * 622 * All claims *must* be resolved in the first txg -- before the SPA 623 * starts allocating blocks -- so that nothing is allocated twice. 624 */ 625 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 626 ASSERT3U(spa_first_txg(spa), <=, txg); 627 628 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 629 ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 0, 630 ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE(bp)); 631 632 zio->io_bp = &zio->io_bp_copy; 633 634 return (zio); 635 } 636 637 zio_t * 638 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 639 zio_done_func_t *done, void *private, int priority, int flags) 640 { 641 zio_t *zio; 642 int c; 643 644 if (vd->vdev_children == 0) { 645 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 646 ZIO_TYPE_IOCTL, priority, flags, 647 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 648 649 zio->io_vd = vd; 650 zio->io_cmd = cmd; 651 } else { 652 zio = zio_null(pio, spa, NULL, NULL, flags); 653 654 for (c = 0; c < vd->vdev_children; c++) 655 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 656 done, private, priority, flags)); 657 } 658 659 return (zio); 660 } 661 662 static void 663 zio_phys_bp_init(vdev_t *vd, blkptr_t *bp, uint64_t offset, uint64_t size, 664 int checksum, boolean_t labels) 665 { 666 ASSERT(vd->vdev_children == 0); 667 668 ASSERT(size <= SPA_MAXBLOCKSIZE); 669 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 670 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 671 672 #ifdef ZFS_DEBUG 673 if (labels) { 674 ASSERT(offset + size <= VDEV_LABEL_START_SIZE || 675 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 676 } 677 #endif 678 ASSERT3U(offset + size, <=, vd->vdev_psize); 679 680 BP_ZERO(bp); 681 682 BP_SET_LSIZE(bp, size); 683 BP_SET_PSIZE(bp, size); 684 685 BP_SET_CHECKSUM(bp, checksum); 686 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 687 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 688 689 if (checksum != ZIO_CHECKSUM_OFF) 690 ZIO_SET_CHECKSUM(&bp->blk_cksum, offset, 0, 0, 0); 691 } 692 693 zio_t * 694 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 695 void *data, int checksum, zio_done_func_t *done, void *private, 696 int priority, int flags, boolean_t labels) 697 { 698 zio_t *zio; 699 blkptr_t blk; 700 701 ZIO_ENTER(vd->vdev_spa); 702 703 zio_phys_bp_init(vd, &blk, offset, size, checksum, labels); 704 705 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 706 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, 707 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 708 709 zio->io_vd = vd; 710 zio->io_offset = offset; 711 712 /* 713 * Work off our copy of the bp so the caller can free it. 714 */ 715 zio->io_bp = &zio->io_bp_copy; 716 717 return (zio); 718 } 719 720 zio_t * 721 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 722 void *data, int checksum, zio_done_func_t *done, void *private, 723 int priority, int flags, boolean_t labels) 724 { 725 zio_block_tail_t *zbt; 726 void *wbuf; 727 zio_t *zio; 728 blkptr_t blk; 729 730 ZIO_ENTER(vd->vdev_spa); 731 732 zio_phys_bp_init(vd, &blk, offset, size, checksum, labels); 733 734 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 735 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, 736 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 737 738 zio->io_vd = vd; 739 zio->io_offset = offset; 740 741 zio->io_bp = &zio->io_bp_copy; 742 zio->io_checksum = checksum; 743 744 if (zio_checksum_table[checksum].ci_zbt) { 745 /* 746 * zbt checksums are necessarily destructive -- they modify 747 * one word of the write buffer to hold the verifier/checksum. 748 * Therefore, we must make a local copy in case the data is 749 * being written to multiple places. 750 */ 751 wbuf = zio_buf_alloc(size); 752 bcopy(data, wbuf, size); 753 zio_push_transform(zio, wbuf, size, size); 754 755 zbt = (zio_block_tail_t *)((char *)wbuf + size) - 1; 756 zbt->zbt_cksum = blk.blk_cksum; 757 } 758 759 return (zio); 760 } 761 762 /* 763 * Create a child I/O to do some work for us. It has no associated bp. 764 */ 765 zio_t * 766 zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 767 void *data, uint64_t size, int type, int priority, int flags, 768 zio_done_func_t *done, void *private) 769 { 770 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE; 771 zio_t *cio; 772 773 if (type == ZIO_TYPE_READ && bp != NULL) { 774 /* 775 * If we have the bp, then the child should perform the 776 * checksum and the parent need not. This pushes error 777 * detection as close to the leaves as possible and 778 * eliminates redundant checksums in the interior nodes. 779 */ 780 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY; 781 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 782 } 783 784 cio = zio_create(zio, zio->io_spa, zio->io_txg, bp, data, size, 785 done, private, type, priority, 786 (zio->io_flags & ZIO_FLAG_VDEV_INHERIT) | ZIO_FLAG_CANFAIL | flags, 787 ZIO_STAGE_VDEV_IO_START - 1, pipeline); 788 789 cio->io_vd = vd; 790 cio->io_offset = offset; 791 792 return (cio); 793 } 794 795 /* 796 * ========================================================================== 797 * Initiate I/O, either sync or async 798 * ========================================================================== 799 */ 800 int 801 zio_wait(zio_t *zio) 802 { 803 int error; 804 805 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 806 807 zio->io_waiter = curthread; 808 809 zio_execute(zio); 810 811 mutex_enter(&zio->io_lock); 812 while (zio->io_stalled != ZIO_STAGE_DONE) 813 cv_wait(&zio->io_cv, &zio->io_lock); 814 mutex_exit(&zio->io_lock); 815 816 error = zio->io_error; 817 mutex_destroy(&zio->io_lock); 818 cv_destroy(&zio->io_cv); 819 kmem_cache_free(zio_cache, zio); 820 821 return (error); 822 } 823 824 void 825 zio_nowait(zio_t *zio) 826 { 827 zio_execute(zio); 828 } 829 830 void 831 zio_interrupt(zio_t *zio) 832 { 833 (void) taskq_dispatch(zio->io_spa->spa_zio_intr_taskq[zio->io_type], 834 (task_func_t *)zio_execute, zio, TQ_SLEEP); 835 } 836 837 static int 838 zio_issue_async(zio_t *zio) 839 { 840 (void) taskq_dispatch(zio->io_spa->spa_zio_issue_taskq[zio->io_type], 841 (task_func_t *)zio_execute, zio, TQ_SLEEP); 842 843 return (ZIO_PIPELINE_STOP); 844 } 845 846 /* 847 * ========================================================================== 848 * I/O pipeline interlocks: parent/child dependency scoreboarding 849 * ========================================================================== 850 */ 851 static int 852 zio_wait_for_children(zio_t *zio, uint32_t stage, uint64_t *countp) 853 { 854 int rv = ZIO_PIPELINE_CONTINUE; 855 856 mutex_enter(&zio->io_lock); 857 ASSERT(zio->io_stalled == 0); 858 if (*countp != 0) { 859 zio->io_stalled = stage; 860 rv = ZIO_PIPELINE_STOP; 861 } 862 mutex_exit(&zio->io_lock); 863 864 return (rv); 865 } 866 867 static void 868 zio_notify_parent(zio_t *zio, uint32_t stage, uint64_t *countp) 869 { 870 zio_t *pio = zio->io_parent; 871 872 mutex_enter(&pio->io_lock); 873 if (pio->io_error == 0 && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 874 pio->io_error = zio->io_error; 875 ASSERT3U(*countp, >, 0); 876 if (--*countp == 0 && pio->io_stalled == stage) { 877 pio->io_stalled = 0; 878 mutex_exit(&pio->io_lock); 879 zio_execute(pio); 880 } else { 881 mutex_exit(&pio->io_lock); 882 } 883 } 884 885 int 886 zio_wait_for_children_ready(zio_t *zio) 887 { 888 return (zio_wait_for_children(zio, ZIO_STAGE_WAIT_FOR_CHILDREN_READY, 889 &zio->io_children_notready)); 890 } 891 892 int 893 zio_wait_for_children_done(zio_t *zio) 894 { 895 return (zio_wait_for_children(zio, ZIO_STAGE_WAIT_FOR_CHILDREN_DONE, 896 &zio->io_children_notdone)); 897 } 898 899 static int 900 zio_read_init(zio_t *zio) 901 { 902 blkptr_t *bp = zio->io_bp; 903 904 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 905 uint64_t csize = BP_GET_PSIZE(bp); 906 void *cbuf = zio_buf_alloc(csize); 907 908 zio_push_transform(zio, cbuf, csize, csize); 909 zio->io_pipeline |= 1U << ZIO_STAGE_READ_DECOMPRESS; 910 } 911 912 if (BP_IS_GANG(bp)) { 913 uint64_t gsize = SPA_GANGBLOCKSIZE; 914 void *gbuf = zio_buf_alloc(gsize); 915 916 zio_push_transform(zio, gbuf, gsize, gsize); 917 zio->io_pipeline |= 1U << ZIO_STAGE_READ_GANG_MEMBERS; 918 } 919 920 if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0) 921 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 922 923 return (ZIO_PIPELINE_CONTINUE); 924 } 925 926 static int 927 zio_ready(zio_t *zio) 928 { 929 zio_t *pio = zio->io_parent; 930 931 if (zio->io_ready) 932 zio->io_ready(zio); 933 934 if (pio != NULL) 935 zio_notify_parent(zio, ZIO_STAGE_WAIT_FOR_CHILDREN_READY, 936 &pio->io_children_notready); 937 938 if (zio->io_bp) 939 zio->io_bp_copy = *zio->io_bp; 940 941 return (ZIO_PIPELINE_CONTINUE); 942 } 943 944 static int 945 zio_vdev_retry_io(zio_t *zio) 946 { 947 zio_t *pio = zio->io_parent; 948 949 /* 950 * Preserve the failed bp so that the io_ready() callback can 951 * update the accounting accordingly. The callback will also be 952 * responsible for freeing the previously allocated block, if one 953 * exists. 954 */ 955 zio->io_bp_orig = *zio->io_bp; 956 957 /* 958 * We must zero out the old DVA and blk_birth before reallocating 959 * the bp. 960 */ 961 BP_ZERO_DVAS(zio->io_bp); 962 zio_reset(zio); 963 964 if (pio) { 965 /* 966 * Let the parent know that we will 967 * re-alloc the write (=> new bp info). 968 */ 969 mutex_enter(&pio->io_lock); 970 pio->io_children_notready++; 971 972 /* 973 * If the parent I/O is still in the open stage, then 974 * don't bother telling it to retry since it hasn't 975 * progressed far enough for it to care. 976 */ 977 if (pio->io_stage > ZIO_STAGE_OPEN && IO_IS_ALLOCATING(pio)) 978 pio->io_flags |= ZIO_FLAG_WRITE_RETRY; 979 980 ASSERT(pio->io_stage <= ZIO_STAGE_WAIT_FOR_CHILDREN_DONE); 981 mutex_exit(&pio->io_lock); 982 } 983 984 /* 985 * We are getting ready to process the retry request so clear 986 * the flag and the zio's current error status. 987 */ 988 zio->io_flags &= ~ZIO_FLAG_WRITE_RETRY; 989 zio->io_error = 0; 990 991 return (ZIO_PIPELINE_CONTINUE); 992 } 993 994 int 995 zio_vdev_resume_io(spa_t *spa) 996 { 997 zio_t *zio; 998 999 mutex_enter(&spa->spa_zio_lock); 1000 1001 /* 1002 * Probe all of vdevs that have experienced an I/O error. 1003 * If we are still unable to verify the integrity of the vdev 1004 * then we prevent the resume from proceeeding. 1005 */ 1006 for (zio = list_head(&spa->spa_zio_list); zio != NULL; 1007 zio = list_next(&spa->spa_zio_list, zio)) { 1008 int error = 0; 1009 1010 /* We only care about I/Os that must succeed */ 1011 if (zio->io_vd == NULL || zio->io_flags & ZIO_FLAG_CANFAIL) 1012 continue; 1013 error = vdev_probe(zio->io_vd); 1014 if (error) { 1015 mutex_exit(&spa->spa_zio_lock); 1016 return (error); 1017 } 1018 } 1019 1020 /* 1021 * Clear the vdev stats so that I/O can flow. 1022 */ 1023 vdev_clear(spa, NULL, B_FALSE); 1024 1025 spa->spa_state = POOL_STATE_ACTIVE; 1026 while ((zio = list_head(&spa->spa_zio_list)) != NULL) { 1027 list_remove(&spa->spa_zio_list, zio); 1028 zio->io_error = 0; 1029 1030 /* 1031 * If we are resuming an allocating I/O then we force it 1032 * to retry and let it resume operation where it left off. 1033 * Otherwise, go back to the ready stage and pick up from 1034 * there. 1035 */ 1036 if (zio_write_retry && IO_IS_ALLOCATING(zio)) { 1037 zio->io_flags |= ZIO_FLAG_WRITE_RETRY; 1038 zio->io_stage--; 1039 } else { 1040 zio->io_stage = ZIO_STAGE_READY; 1041 } 1042 1043 (void) taskq_dispatch(zio_taskq, (task_func_t *)zio_execute, 1044 zio, TQ_SLEEP); 1045 } 1046 mutex_exit(&spa->spa_zio_lock); 1047 1048 /* 1049 * Wait for the taskqs to finish and recheck the pool state since 1050 * it's possible that a resumed I/O has failed again. 1051 */ 1052 taskq_wait(zio_taskq); 1053 if (spa_state(spa) == POOL_STATE_IO_FAILURE) 1054 return (EIO); 1055 1056 mutex_enter(&spa->spa_zio_lock); 1057 cv_broadcast(&spa->spa_zio_cv); 1058 mutex_exit(&spa->spa_zio_lock); 1059 1060 return (0); 1061 } 1062 1063 static int 1064 zio_vdev_suspend_io(zio_t *zio) 1065 { 1066 spa_t *spa = zio->io_spa; 1067 1068 /* 1069 * We've experienced an unrecoverable failure so 1070 * set the pool state accordingly and queue all 1071 * failed IOs. 1072 */ 1073 spa->spa_state = POOL_STATE_IO_FAILURE; 1074 1075 mutex_enter(&spa->spa_zio_lock); 1076 list_insert_tail(&spa->spa_zio_list, zio); 1077 1078 #ifndef _KERNEL 1079 /* Used to notify ztest that the pool has suspended */ 1080 cv_broadcast(&spa->spa_zio_cv); 1081 #endif 1082 mutex_exit(&spa->spa_zio_lock); 1083 1084 return (ZIO_PIPELINE_STOP); 1085 } 1086 1087 static int 1088 zio_assess(zio_t *zio) 1089 { 1090 spa_t *spa = zio->io_spa; 1091 blkptr_t *bp = zio->io_bp; 1092 vdev_t *vd = zio->io_vd; 1093 1094 ASSERT(zio->io_children_notready == 0); 1095 ASSERT(zio->io_children_notdone == 0); 1096 1097 if (bp != NULL) { 1098 ASSERT(bp->blk_pad[0] == 0); 1099 ASSERT(bp->blk_pad[1] == 0); 1100 ASSERT(bp->blk_pad[2] == 0); 1101 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0); 1102 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 1103 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 1104 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 1105 if (zio->io_ndvas != 0) 1106 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 1107 ASSERT(BP_COUNT_GANG(bp) == 0 || 1108 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 1109 } 1110 } 1111 1112 /* 1113 * Some child I/O has indicated that a retry is necessary, so 1114 * we set an error on the I/O and let the logic below do the 1115 * rest. 1116 */ 1117 if (zio->io_flags & ZIO_FLAG_WRITE_RETRY) 1118 zio->io_error = ERESTART; 1119 1120 if (vd != NULL) 1121 vdev_stat_update(zio); 1122 1123 if (zio->io_error) { 1124 /* 1125 * If this I/O is attached to a particular vdev, 1126 * generate an error message describing the I/O failure 1127 * at the block level. We ignore these errors if the 1128 * device is currently unavailable. 1129 */ 1130 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 1131 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 1132 1133 if ((zio->io_error == EIO || 1134 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && 1135 zio->io_logical == zio) { 1136 /* 1137 * For root I/O requests, tell the SPA to log the error 1138 * appropriately. Also, generate a logical data 1139 * ereport. 1140 */ 1141 spa_log_error(spa, zio); 1142 1143 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 1144 0, 0); 1145 } 1146 1147 /* 1148 * If we are an allocating I/O then we attempt to reissue 1149 * the I/O on another vdev unless the pool is out of space. 1150 * We handle this condition based on the spa's failmode 1151 * property. 1152 */ 1153 if (zio_write_retry && zio->io_error != ENOSPC && 1154 IO_IS_ALLOCATING(zio)) 1155 return (zio_vdev_retry_io(zio)); 1156 1157 ASSERT(!(zio->io_flags & ZIO_FLAG_WRITE_RETRY)); 1158 1159 /* 1160 * For I/O requests that cannot fail, we carry out 1161 * the requested behavior based on the failmode pool 1162 * property. 1163 * 1164 * XXX - Need to differentiate between an ENOSPC as 1165 * a result of vdev failures vs. a full pool. 1166 */ 1167 if (!(zio->io_flags & ZIO_FLAG_CANFAIL)) { 1168 char *blkbuf; 1169 1170 #ifdef ZFS_DEBUG 1171 blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_NOSLEEP); 1172 if (blkbuf) { 1173 sprintf_blkptr(blkbuf, BP_SPRINTF_LEN, 1174 bp ? bp : &zio->io_bp_copy); 1175 } 1176 cmn_err(CE_WARN, "ZFS: %s (%s on %s off %llx: zio %p " 1177 "%s): error %d", zio->io_error == ECKSUM ? 1178 "bad checksum" : "I/O failure", 1179 zio_type_name[zio->io_type], 1180 vdev_description(vd), 1181 (u_longlong_t)zio->io_offset, 1182 (void *)zio, blkbuf ? blkbuf : "", zio->io_error); 1183 #endif 1184 1185 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) { 1186 fm_panic("Pool '%s' has encountered an " 1187 "uncorrectable I/O failure and the " 1188 "failure mode property for this pool " 1189 "is set to panic.", spa_name(spa)); 1190 } 1191 cmn_err(CE_WARN, "Pool '%s' has encountered " 1192 "an uncorrectable I/O error. " 1193 "Manual intervention is required.", spa_name(spa)); 1194 return (zio_vdev_suspend_io(zio)); 1195 } 1196 } 1197 ASSERT(!(zio->io_flags & ZIO_FLAG_WRITE_RETRY)); 1198 ASSERT(zio->io_children_notready == 0); 1199 1200 return (ZIO_PIPELINE_CONTINUE); 1201 } 1202 1203 static int 1204 zio_done(zio_t *zio) 1205 { 1206 zio_t *pio = zio->io_parent; 1207 spa_t *spa = zio->io_spa; 1208 1209 ASSERT(zio->io_children_notready == 0); 1210 ASSERT(zio->io_children_notdone == 0); 1211 1212 zio_clear_transform_stack(zio); 1213 1214 if (zio->io_done) 1215 zio->io_done(zio); 1216 1217 ASSERT(zio->io_delegate_list == NULL); 1218 ASSERT(zio->io_delegate_next == NULL); 1219 1220 if (pio != NULL) { 1221 zio_t *next, *prev; 1222 1223 mutex_enter(&pio->io_lock); 1224 next = zio->io_sibling_next; 1225 prev = zio->io_sibling_prev; 1226 if (next != NULL) 1227 next->io_sibling_prev = prev; 1228 if (prev != NULL) 1229 prev->io_sibling_next = next; 1230 if (pio->io_child == zio) 1231 pio->io_child = next; 1232 mutex_exit(&pio->io_lock); 1233 1234 zio_notify_parent(zio, ZIO_STAGE_WAIT_FOR_CHILDREN_DONE, 1235 &pio->io_children_notdone); 1236 } 1237 1238 /* 1239 * Note: this I/O is now done, and will shortly be freed, so there is no 1240 * need to clear this (or any other) flag. 1241 */ 1242 if (zio->io_flags & ZIO_FLAG_CONFIG_GRABBED) 1243 spa_config_exit(spa, zio); 1244 1245 if (zio->io_waiter != NULL) { 1246 mutex_enter(&zio->io_lock); 1247 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1248 zio->io_stalled = zio->io_stage; 1249 cv_broadcast(&zio->io_cv); 1250 mutex_exit(&zio->io_lock); 1251 } else { 1252 mutex_destroy(&zio->io_lock); 1253 cv_destroy(&zio->io_cv); 1254 kmem_cache_free(zio_cache, zio); 1255 } 1256 1257 return (ZIO_PIPELINE_STOP); 1258 } 1259 1260 /* 1261 * ========================================================================== 1262 * Compression support 1263 * ========================================================================== 1264 */ 1265 static int 1266 zio_write_compress(zio_t *zio) 1267 { 1268 int compress = zio->io_compress; 1269 blkptr_t *bp = zio->io_bp; 1270 void *cbuf; 1271 uint64_t lsize = zio->io_size; 1272 uint64_t csize = lsize; 1273 uint64_t cbufsize = 0; 1274 int pass; 1275 1276 if (bp->blk_birth == zio->io_txg) { 1277 /* 1278 * We're rewriting an existing block, which means we're 1279 * working on behalf of spa_sync(). For spa_sync() to 1280 * converge, it must eventually be the case that we don't 1281 * have to allocate new blocks. But compression changes 1282 * the blocksize, which forces a reallocate, and makes 1283 * convergence take longer. Therefore, after the first 1284 * few passes, stop compressing to ensure convergence. 1285 */ 1286 pass = spa_sync_pass(zio->io_spa); 1287 if (pass > zio_sync_pass.zp_dontcompress) 1288 compress = ZIO_COMPRESS_OFF; 1289 } else { 1290 ASSERT(BP_IS_HOLE(bp)); 1291 pass = 1; 1292 } 1293 1294 if (compress != ZIO_COMPRESS_OFF) 1295 if (!zio_compress_data(compress, zio->io_data, zio->io_size, 1296 &cbuf, &csize, &cbufsize)) 1297 compress = ZIO_COMPRESS_OFF; 1298 1299 if (compress != ZIO_COMPRESS_OFF && csize != 0) 1300 zio_push_transform(zio, cbuf, csize, cbufsize); 1301 1302 /* 1303 * The final pass of spa_sync() must be all rewrites, but the first 1304 * few passes offer a trade-off: allocating blocks defers convergence, 1305 * but newly allocated blocks are sequential, so they can be written 1306 * to disk faster. Therefore, we allow the first few passes of 1307 * spa_sync() to reallocate new blocks, but force rewrites after that. 1308 * There should only be a handful of blocks after pass 1 in any case. 1309 */ 1310 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize && 1311 pass > zio_sync_pass.zp_rewrite) { 1312 ASSERT(csize != 0); 1313 BP_SET_LSIZE(bp, lsize); 1314 BP_SET_COMPRESS(bp, compress); 1315 zio->io_pipeline = ZIO_REWRITE_PIPELINE(bp); 1316 } else { 1317 if (bp->blk_birth == zio->io_txg) 1318 BP_ZERO(bp); 1319 if (csize == 0) { 1320 BP_ZERO(bp); 1321 zio->io_pipeline = ZIO_WAIT_FOR_CHILDREN_PIPELINE; 1322 } else { 1323 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1324 BP_SET_LSIZE(bp, lsize); 1325 BP_SET_PSIZE(bp, csize); 1326 BP_SET_COMPRESS(bp, compress); 1327 zio->io_pipeline = ZIO_WRITE_ALLOCATE_PIPELINE; 1328 } 1329 } 1330 1331 return (ZIO_PIPELINE_CONTINUE); 1332 } 1333 1334 static int 1335 zio_read_decompress(zio_t *zio) 1336 { 1337 blkptr_t *bp = zio->io_bp; 1338 void *data; 1339 uint64_t size; 1340 uint64_t bufsize; 1341 int compress = BP_GET_COMPRESS(bp); 1342 1343 ASSERT(compress != ZIO_COMPRESS_OFF); 1344 1345 zio_pop_transform(zio, &data, &size, &bufsize); 1346 1347 if (zio_decompress_data(compress, data, size, 1348 zio->io_data, zio->io_size)) 1349 zio->io_error = EIO; 1350 1351 zio_buf_free(data, bufsize); 1352 1353 return (ZIO_PIPELINE_CONTINUE); 1354 } 1355 1356 /* 1357 * ========================================================================== 1358 * Gang block support 1359 * ========================================================================== 1360 */ 1361 static void 1362 zio_gang_byteswap(zio_t *zio) 1363 { 1364 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1365 1366 if (BP_SHOULD_BYTESWAP(zio->io_bp)) 1367 byteswap_uint64_array(zio->io_data, zio->io_size); 1368 } 1369 1370 static int 1371 zio_get_gang_header(zio_t *zio) 1372 { 1373 blkptr_t *bp = zio->io_bp; 1374 uint64_t gsize = SPA_GANGBLOCKSIZE; 1375 void *gbuf = zio_buf_alloc(gsize); 1376 1377 ASSERT(BP_IS_GANG(bp)); 1378 1379 zio_push_transform(zio, gbuf, gsize, gsize); 1380 1381 zio_nowait(zio_create(zio, zio->io_spa, bp->blk_birth, bp, gbuf, gsize, 1382 NULL, NULL, ZIO_TYPE_READ, zio->io_priority, 1383 zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1384 ZIO_STAGE_OPEN, ZIO_READ_GANG_PIPELINE)); 1385 1386 return (zio_wait_for_children_done(zio)); 1387 } 1388 1389 static int 1390 zio_read_gang_members(zio_t *zio) 1391 { 1392 zio_gbh_phys_t *gbh; 1393 uint64_t gsize, gbufsize, loff, lsize; 1394 int i; 1395 1396 ASSERT(BP_IS_GANG(zio->io_bp)); 1397 1398 zio_gang_byteswap(zio); 1399 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1400 1401 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1402 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1403 lsize = BP_GET_PSIZE(gbp); 1404 1405 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1406 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1407 ASSERT3U(loff + lsize, <=, zio->io_size); 1408 ASSERT(i < SPA_GBH_NBLKPTRS); 1409 ASSERT(!BP_IS_HOLE(gbp)); 1410 1411 zio_nowait(zio_read(zio, zio->io_spa, gbp, 1412 (char *)zio->io_data + loff, lsize, 1413 NULL, NULL, zio->io_priority, 1414 zio->io_flags & ZIO_FLAG_GANG_INHERIT, &zio->io_bookmark)); 1415 } 1416 1417 zio_buf_free(gbh, gbufsize); 1418 1419 return (zio_wait_for_children_done(zio)); 1420 } 1421 1422 static int 1423 zio_rewrite_gang_members(zio_t *zio) 1424 { 1425 zio_gbh_phys_t *gbh; 1426 uint64_t gsize, gbufsize, loff, lsize; 1427 int i; 1428 1429 ASSERT(BP_IS_GANG(zio->io_bp)); 1430 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1431 1432 zio_gang_byteswap(zio); 1433 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1434 1435 ASSERT(gsize == gbufsize); 1436 1437 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1438 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1439 lsize = BP_GET_PSIZE(gbp); 1440 1441 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1442 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1443 ASSERT3U(loff + lsize, <=, zio->io_size); 1444 ASSERT(i < SPA_GBH_NBLKPTRS); 1445 ASSERT(!BP_IS_HOLE(gbp)); 1446 1447 zio_nowait(zio_rewrite(zio, zio->io_spa, zio->io_checksum, 1448 zio->io_txg, gbp, (char *)zio->io_data + loff, lsize, 1449 NULL, NULL, zio->io_priority, 1450 zio->io_flags & ZIO_FLAG_GANG_INHERIT, &zio->io_bookmark)); 1451 } 1452 1453 zio_push_transform(zio, gbh, gsize, gbufsize); 1454 1455 return (zio_wait_for_children_ready(zio)); 1456 } 1457 1458 static int 1459 zio_free_gang_members(zio_t *zio) 1460 { 1461 zio_gbh_phys_t *gbh; 1462 uint64_t gsize, gbufsize; 1463 int i; 1464 1465 ASSERT(BP_IS_GANG(zio->io_bp)); 1466 1467 zio_gang_byteswap(zio); 1468 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1469 1470 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1471 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1472 1473 if (BP_IS_HOLE(gbp)) 1474 continue; 1475 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg, 1476 gbp, NULL, NULL)); 1477 } 1478 1479 zio_buf_free(gbh, gbufsize); 1480 1481 return (ZIO_PIPELINE_CONTINUE); 1482 } 1483 1484 static int 1485 zio_claim_gang_members(zio_t *zio) 1486 { 1487 zio_gbh_phys_t *gbh; 1488 uint64_t gsize, gbufsize; 1489 int i; 1490 1491 ASSERT(BP_IS_GANG(zio->io_bp)); 1492 1493 zio_gang_byteswap(zio); 1494 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1495 1496 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1497 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1498 if (BP_IS_HOLE(gbp)) 1499 continue; 1500 zio_nowait(zio_claim(zio, zio->io_spa, zio->io_txg, 1501 gbp, NULL, NULL)); 1502 } 1503 1504 zio_buf_free(gbh, gbufsize); 1505 1506 return (ZIO_PIPELINE_CONTINUE); 1507 } 1508 1509 static void 1510 zio_write_allocate_gang_member_done(zio_t *zio) 1511 { 1512 zio_t *pio = zio->io_parent; 1513 dva_t *cdva = zio->io_bp->blk_dva; 1514 dva_t *pdva = pio->io_bp->blk_dva; 1515 uint64_t asize; 1516 int d; 1517 1518 ASSERT3U(pio->io_ndvas, ==, zio->io_ndvas); 1519 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1520 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(zio->io_bp)); 1521 ASSERT3U(pio->io_ndvas, <=, BP_GET_NDVAS(pio->io_bp)); 1522 1523 mutex_enter(&pio->io_lock); 1524 for (d = 0; d < BP_GET_NDVAS(pio->io_bp); d++) { 1525 ASSERT(DVA_GET_GANG(&pdva[d])); 1526 asize = DVA_GET_ASIZE(&pdva[d]); 1527 asize += DVA_GET_ASIZE(&cdva[d]); 1528 DVA_SET_ASIZE(&pdva[d], asize); 1529 } 1530 mutex_exit(&pio->io_lock); 1531 } 1532 1533 static int 1534 zio_write_allocate_gang_members(zio_t *zio, metaslab_class_t *mc) 1535 { 1536 blkptr_t *bp = zio->io_bp; 1537 dva_t *dva = bp->blk_dva; 1538 spa_t *spa = zio->io_spa; 1539 zio_gbh_phys_t *gbh; 1540 uint64_t txg = zio->io_txg; 1541 uint64_t resid = zio->io_size; 1542 uint64_t maxalloc = P2ROUNDUP(zio->io_size >> 1, SPA_MINBLOCKSIZE); 1543 uint64_t gsize, loff, lsize; 1544 uint32_t gbps_left; 1545 int ndvas = zio->io_ndvas; 1546 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa)); 1547 int error; 1548 int i, d; 1549 1550 gsize = SPA_GANGBLOCKSIZE; 1551 gbps_left = SPA_GBH_NBLKPTRS; 1552 1553 error = metaslab_alloc(spa, mc, gsize, bp, gbh_ndvas, txg, NULL, 1554 B_FALSE); 1555 if (error) { 1556 zio->io_error = error; 1557 return (ZIO_PIPELINE_CONTINUE); 1558 } 1559 1560 for (d = 0; d < gbh_ndvas; d++) 1561 DVA_SET_GANG(&dva[d], 1); 1562 1563 bp->blk_birth = txg; 1564 1565 gbh = zio_buf_alloc(gsize); 1566 bzero(gbh, gsize); 1567 1568 for (loff = 0, i = 0; loff != zio->io_size; 1569 loff += lsize, resid -= lsize, gbps_left--, i++) { 1570 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1571 dva = gbp->blk_dva; 1572 1573 ASSERT(gbps_left != 0); 1574 maxalloc = MIN(maxalloc, resid); 1575 1576 while (resid <= maxalloc * gbps_left) { 1577 error = metaslab_alloc(spa, mc, maxalloc, gbp, ndvas, 1578 txg, bp, B_FALSE); 1579 if (error == 0) 1580 break; 1581 ASSERT3U(error, ==, ENOSPC); 1582 /* XXX - free up previous allocations? */ 1583 if (maxalloc == SPA_MINBLOCKSIZE) { 1584 zio->io_error = error; 1585 return (ZIO_PIPELINE_CONTINUE); 1586 } 1587 maxalloc = P2ROUNDUP(maxalloc >> 1, SPA_MINBLOCKSIZE); 1588 } 1589 1590 if (resid <= maxalloc * gbps_left) { 1591 lsize = maxalloc; 1592 BP_SET_LSIZE(gbp, lsize); 1593 BP_SET_PSIZE(gbp, lsize); 1594 BP_SET_COMPRESS(gbp, ZIO_COMPRESS_OFF); 1595 gbp->blk_birth = txg; 1596 zio_nowait(zio_rewrite(zio, spa, 1597 zio->io_checksum, txg, gbp, 1598 (char *)zio->io_data + loff, lsize, 1599 zio_write_allocate_gang_member_done, NULL, 1600 zio->io_priority, 1601 zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1602 &zio->io_bookmark)); 1603 } else { 1604 lsize = P2ROUNDUP(resid / gbps_left, SPA_MINBLOCKSIZE); 1605 ASSERT(lsize != SPA_MINBLOCKSIZE); 1606 zio_nowait(zio_write_allocate(zio, spa, 1607 zio->io_checksum, txg, gbp, 1608 (char *)zio->io_data + loff, lsize, 1609 zio_write_allocate_gang_member_done, NULL, 1610 zio->io_priority, 1611 zio->io_flags & ZIO_FLAG_GANG_INHERIT)); 1612 } 1613 } 1614 1615 ASSERT(resid == 0 && loff == zio->io_size); 1616 1617 zio->io_pipeline |= 1U << ZIO_STAGE_GANG_CHECKSUM_GENERATE; 1618 1619 zio_push_transform(zio, gbh, gsize, gsize); 1620 1621 /* 1622 * As much as we'd like this to be 'ready' instead of 'done', 1623 * updating our ASIZE doesn't happen until the io_done callback, 1624 * so we have to wait for that to finish in order for our BP 1625 * to be stable. 1626 */ 1627 return (zio_wait_for_children_done(zio)); 1628 } 1629 1630 /* 1631 * ========================================================================== 1632 * Allocate and free blocks 1633 * ========================================================================== 1634 */ 1635 static int 1636 zio_dva_allocate(zio_t *zio) 1637 { 1638 spa_t *spa = zio->io_spa; 1639 metaslab_class_t *mc = spa->spa_normal_class; 1640 blkptr_t *bp = zio->io_bp; 1641 int error; 1642 1643 ASSERT(BP_IS_HOLE(bp)); 1644 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1645 ASSERT3U(zio->io_ndvas, >, 0); 1646 ASSERT3U(zio->io_ndvas, <=, spa_max_replication(spa)); 1647 1648 /* 1649 * For testing purposes, we force I/Os to retry. We don't allow 1650 * retries beyond the first pass since those I/Os are non-allocating 1651 * writes. 1652 */ 1653 if (zio_io_fail_shift && 1654 spa_sync_pass(zio->io_spa) <= zio_sync_pass.zp_rewrite && 1655 zio_io_should_fail(zio_io_fail_shift)) 1656 zio->io_flags |= ZIO_FLAG_WRITE_RETRY; 1657 1658 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1659 1660 error = metaslab_alloc(spa, mc, zio->io_size, bp, zio->io_ndvas, 1661 zio->io_txg, NULL, B_FALSE); 1662 1663 if (error == 0) { 1664 bp->blk_birth = zio->io_txg; 1665 } else if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 1666 return (zio_write_allocate_gang_members(zio, mc)); 1667 } else { 1668 zio->io_error = error; 1669 } 1670 1671 return (ZIO_PIPELINE_CONTINUE); 1672 } 1673 1674 static int 1675 zio_dva_free(zio_t *zio) 1676 { 1677 blkptr_t *bp = zio->io_bp; 1678 1679 metaslab_free(zio->io_spa, bp, zio->io_txg, B_FALSE); 1680 1681 BP_ZERO(bp); 1682 1683 return (ZIO_PIPELINE_CONTINUE); 1684 } 1685 1686 static int 1687 zio_dva_claim(zio_t *zio) 1688 { 1689 zio->io_error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 1690 1691 return (ZIO_PIPELINE_CONTINUE); 1692 } 1693 1694 /* 1695 * ========================================================================== 1696 * Read and write to physical devices 1697 * ========================================================================== 1698 */ 1699 1700 static int 1701 zio_vdev_io_start(zio_t *zio) 1702 { 1703 vdev_t *vd = zio->io_vd; 1704 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1705 blkptr_t *bp = zio->io_bp; 1706 uint64_t align; 1707 spa_t *spa = zio->io_spa; 1708 1709 /* 1710 * If the pool is already in a failure state then just suspend 1711 * this IO until the problem is resolved. We will reissue them 1712 * at that time. 1713 */ 1714 if (spa_state(spa) == POOL_STATE_IO_FAILURE && 1715 zio->io_type == ZIO_TYPE_WRITE) 1716 return (zio_vdev_suspend_io(zio)); 1717 1718 /* 1719 * The mirror_ops handle multiple DVAs in a single BP 1720 */ 1721 if (vd == NULL) 1722 return (vdev_mirror_ops.vdev_op_io_start(zio)); 1723 1724 align = 1ULL << tvd->vdev_ashift; 1725 1726 if (zio->io_retries == 0 && vd == tvd) 1727 zio->io_flags |= ZIO_FLAG_FAILFAST; 1728 1729 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && vd->vdev_children == 0) { 1730 zio->io_flags |= ZIO_FLAG_PHYSICAL; 1731 zio->io_offset += VDEV_LABEL_START_SIZE; 1732 } 1733 1734 if (P2PHASE(zio->io_size, align) != 0) { 1735 uint64_t asize = P2ROUNDUP(zio->io_size, align); 1736 char *abuf = zio_buf_alloc(asize); 1737 ASSERT(vd == tvd); 1738 if (zio->io_type == ZIO_TYPE_WRITE) { 1739 bcopy(zio->io_data, abuf, zio->io_size); 1740 bzero(abuf + zio->io_size, asize - zio->io_size); 1741 } 1742 zio_push_transform(zio, abuf, asize, asize); 1743 ASSERT(!(zio->io_flags & ZIO_FLAG_SUBBLOCK)); 1744 zio->io_flags |= ZIO_FLAG_SUBBLOCK; 1745 } 1746 1747 ASSERT(P2PHASE(zio->io_offset, align) == 0); 1748 ASSERT(P2PHASE(zio->io_size, align) == 0); 1749 ASSERT(bp == NULL || 1750 P2ROUNDUP(ZIO_GET_IOSIZE(zio), align) == zio->io_size); 1751 ASSERT(zio->io_type != ZIO_TYPE_WRITE || (spa_mode & FWRITE)); 1752 1753 return (vd->vdev_ops->vdev_op_io_start(zio)); 1754 } 1755 1756 static int 1757 zio_vdev_io_done(zio_t *zio) 1758 { 1759 if (zio->io_vd == NULL) 1760 return (vdev_mirror_ops.vdev_op_io_done(zio)); 1761 1762 return (zio->io_vd->vdev_ops->vdev_op_io_done(zio)); 1763 } 1764 1765 /* XXPOLICY */ 1766 boolean_t 1767 zio_should_retry(zio_t *zio) 1768 { 1769 vdev_t *vd = zio->io_vd; 1770 1771 if (zio->io_error == 0) 1772 return (B_FALSE); 1773 if (zio->io_delegate_list != NULL) 1774 return (B_FALSE); 1775 if (vd && vd != vd->vdev_top) 1776 return (B_FALSE); 1777 if (zio->io_flags & ZIO_FLAG_DONT_RETRY) 1778 return (B_FALSE); 1779 if (zio->io_retries > 0) 1780 return (B_FALSE); 1781 1782 return (B_TRUE); 1783 } 1784 1785 static int 1786 zio_vdev_io_assess(zio_t *zio) 1787 { 1788 vdev_t *vd = zio->io_vd; 1789 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1790 1791 ASSERT(zio->io_vsd == NULL); 1792 1793 if (zio->io_flags & ZIO_FLAG_SUBBLOCK) { 1794 void *abuf; 1795 uint64_t asize; 1796 ASSERT(vd == tvd); 1797 zio_pop_transform(zio, &abuf, &asize, &asize); 1798 if (zio->io_type == ZIO_TYPE_READ) 1799 bcopy(abuf, zio->io_data, zio->io_size); 1800 zio_buf_free(abuf, asize); 1801 zio->io_flags &= ~ZIO_FLAG_SUBBLOCK; 1802 } 1803 1804 if (zio_injection_enabled && !zio->io_error) 1805 zio->io_error = zio_handle_fault_injection(zio, EIO); 1806 1807 /* 1808 * If the I/O failed, determine whether we should attempt to retry it. 1809 */ 1810 /* XXPOLICY */ 1811 if (zio_should_retry(zio)) { 1812 ASSERT(tvd == vd); 1813 1814 zio->io_retries++; 1815 zio->io_error = 0; 1816 zio->io_flags &= ZIO_FLAG_VDEV_INHERIT | 1817 ZIO_FLAG_CONFIG_GRABBED; 1818 /* XXPOLICY */ 1819 zio->io_flags &= ~ZIO_FLAG_FAILFAST; 1820 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1821 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1; 1822 1823 return (ZIO_PIPELINE_CONTINUE); 1824 } 1825 1826 return (ZIO_PIPELINE_CONTINUE); 1827 } 1828 1829 void 1830 zio_vdev_io_reissue(zio_t *zio) 1831 { 1832 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1833 ASSERT(zio->io_error == 0); 1834 1835 zio->io_stage--; 1836 } 1837 1838 void 1839 zio_vdev_io_redone(zio_t *zio) 1840 { 1841 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 1842 1843 zio->io_stage--; 1844 } 1845 1846 void 1847 zio_vdev_io_bypass(zio_t *zio) 1848 { 1849 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1850 ASSERT(zio->io_error == 0); 1851 1852 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 1853 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1; 1854 } 1855 1856 /* 1857 * ========================================================================== 1858 * Generate and verify checksums 1859 * ========================================================================== 1860 */ 1861 static int 1862 zio_checksum_generate(zio_t *zio) 1863 { 1864 int checksum = zio->io_checksum; 1865 blkptr_t *bp = zio->io_bp; 1866 1867 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1868 1869 BP_SET_CHECKSUM(bp, checksum); 1870 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1871 1872 zio_checksum(checksum, &bp->blk_cksum, zio->io_data, zio->io_size); 1873 1874 return (ZIO_PIPELINE_CONTINUE); 1875 } 1876 1877 static int 1878 zio_gang_checksum_generate(zio_t *zio) 1879 { 1880 zio_cksum_t zc; 1881 zio_gbh_phys_t *gbh = zio->io_data; 1882 1883 ASSERT(BP_IS_GANG(zio->io_bp)); 1884 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1885 1886 zio_set_gang_verifier(zio, &gbh->zg_tail.zbt_cksum); 1887 1888 zio_checksum(ZIO_CHECKSUM_GANG_HEADER, &zc, zio->io_data, zio->io_size); 1889 1890 return (ZIO_PIPELINE_CONTINUE); 1891 } 1892 1893 static int 1894 zio_checksum_verify(zio_t *zio) 1895 { 1896 if (zio->io_bp != NULL) { 1897 zio->io_error = zio_checksum_error(zio); 1898 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) 1899 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, 1900 zio->io_spa, zio->io_vd, zio, 0, 0); 1901 } 1902 1903 return (ZIO_PIPELINE_CONTINUE); 1904 } 1905 1906 /* 1907 * Called by RAID-Z to ensure we don't compute the checksum twice. 1908 */ 1909 void 1910 zio_checksum_verified(zio_t *zio) 1911 { 1912 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 1913 } 1914 1915 /* 1916 * Set the external verifier for a gang block based on stuff in the bp 1917 */ 1918 void 1919 zio_set_gang_verifier(zio_t *zio, zio_cksum_t *zcp) 1920 { 1921 blkptr_t *bp = zio->io_bp; 1922 1923 zcp->zc_word[0] = DVA_GET_VDEV(BP_IDENTITY(bp)); 1924 zcp->zc_word[1] = DVA_GET_OFFSET(BP_IDENTITY(bp)); 1925 zcp->zc_word[2] = bp->blk_birth; 1926 zcp->zc_word[3] = 0; 1927 } 1928 1929 /* 1930 * ========================================================================== 1931 * Define the pipeline 1932 * ========================================================================== 1933 */ 1934 typedef int zio_pipe_stage_t(zio_t *zio); 1935 1936 zio_pipe_stage_t *zio_pipeline[ZIO_STAGE_DONE + 2] = { 1937 NULL, 1938 zio_wait_for_children_ready, 1939 zio_read_init, 1940 zio_issue_async, 1941 zio_write_compress, 1942 zio_checksum_generate, 1943 zio_get_gang_header, 1944 zio_rewrite_gang_members, 1945 zio_free_gang_members, 1946 zio_claim_gang_members, 1947 zio_dva_allocate, 1948 zio_dva_free, 1949 zio_dva_claim, 1950 zio_gang_checksum_generate, 1951 zio_ready, 1952 zio_vdev_io_start, 1953 zio_vdev_io_done, 1954 zio_vdev_io_assess, 1955 zio_wait_for_children_done, 1956 zio_checksum_verify, 1957 zio_read_gang_members, 1958 zio_read_decompress, 1959 zio_assess, 1960 zio_done, 1961 NULL 1962 }; 1963 1964 /* 1965 * Execute the I/O pipeline until one of the following occurs: 1966 * (1) the I/O completes; (2) the pipeline stalls waiting for 1967 * dependent child I/Os; (3) the I/O issues, so we're waiting 1968 * for an I/O completion interrupt; (4) the I/O is delegated by 1969 * vdev-level caching or aggregation; (5) the I/O is deferred 1970 * due to vdev-level queueing; (6) the I/O is handed off to 1971 * another thread. In all cases, the pipeline stops whenever 1972 * there's no CPU work; it never burns a thread in cv_wait(). 1973 * 1974 * There's no locking on io_stage because there's no legitimate way 1975 * for multiple threads to be attempting to process the same I/O. 1976 */ 1977 void 1978 zio_execute(zio_t *zio) 1979 { 1980 while (zio->io_stage < ZIO_STAGE_DONE) { 1981 uint32_t pipeline = zio->io_pipeline; 1982 int rv; 1983 1984 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1985 1986 /* 1987 * If an error occurred outside the vdev stack, 1988 * just execute the interlock stages to clean up. 1989 */ 1990 if (zio->io_error && 1991 ((1U << zio->io_stage) & ZIO_VDEV_IO_STAGES) == 0) 1992 pipeline &= ZIO_ERROR_PIPELINE_MASK; 1993 1994 while (((1U << ++zio->io_stage) & pipeline) == 0) 1995 continue; 1996 1997 ASSERT(zio->io_stage <= ZIO_STAGE_DONE); 1998 ASSERT(zio->io_stalled == 0); 1999 2000 rv = zio_pipeline[zio->io_stage](zio); 2001 2002 if (rv == ZIO_PIPELINE_STOP) 2003 return; 2004 2005 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 2006 } 2007 } 2008 2009 static boolean_t 2010 zio_io_should_fail(uint16_t range) 2011 { 2012 static uint16_t allocs = 0; 2013 2014 return (P2PHASE(allocs++, 1U<<range) == 0); 2015 } 2016 2017 /* 2018 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2019 */ 2020 int 2021 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp, 2022 uint64_t txg) 2023 { 2024 int error; 2025 2026 spa_config_enter(spa, RW_READER, FTAG); 2027 2028 if (zio_zil_fail_shift && zio_io_should_fail(zio_zil_fail_shift)) { 2029 spa_config_exit(spa, FTAG); 2030 return (ENOSPC); 2031 } 2032 2033 /* 2034 * We were passed the previous log block's DVA in bp->blk_dva[0]. 2035 * We use that as a hint for which vdev to allocate from next. 2036 */ 2037 error = metaslab_alloc(spa, spa->spa_log_class, size, 2038 new_bp, 1, txg, old_bp, B_TRUE); 2039 2040 if (error) 2041 error = metaslab_alloc(spa, spa->spa_normal_class, size, 2042 new_bp, 1, txg, old_bp, B_TRUE); 2043 2044 if (error == 0) { 2045 BP_SET_LSIZE(new_bp, size); 2046 BP_SET_PSIZE(new_bp, size); 2047 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 2048 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG); 2049 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 2050 BP_SET_LEVEL(new_bp, 0); 2051 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 2052 new_bp->blk_birth = txg; 2053 } 2054 2055 spa_config_exit(spa, FTAG); 2056 2057 return (error); 2058 } 2059 2060 /* 2061 * Free an intent log block. We know it can't be a gang block, so there's 2062 * nothing to do except metaslab_free() it. 2063 */ 2064 void 2065 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg) 2066 { 2067 ASSERT(!BP_IS_GANG(bp)); 2068 2069 spa_config_enter(spa, RW_READER, FTAG); 2070 2071 metaslab_free(spa, bp, txg, B_FALSE); 2072 2073 spa_config_exit(spa, FTAG); 2074 } 2075 2076 /* 2077 * start an async flush of the write cache for this vdev 2078 */ 2079 void 2080 zio_flush_vdev(spa_t *spa, uint64_t vdev, zio_t **zio) 2081 { 2082 vdev_t *vd; 2083 2084 /* 2085 * Lock out configuration changes. 2086 */ 2087 spa_config_enter(spa, RW_READER, FTAG); 2088 2089 if (*zio == NULL) 2090 *zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 2091 2092 vd = vdev_lookup_top(spa, vdev); 2093 ASSERT(vd); 2094 2095 (void) zio_nowait(zio_ioctl(*zio, spa, vd, DKIOCFLUSHWRITECACHE, 2096 NULL, NULL, ZIO_PRIORITY_NOW, 2097 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 2098 2099 spa_config_exit(spa, FTAG); 2100 } 2101