1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zap.h> 32 #include <sys/arc.h> 33 #include <sys/stat.h> 34 #include <sys/resource.h> 35 #include <sys/zil.h> 36 #include <sys/zil_impl.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vdev.h> 39 #include <sys/dmu_tx.h> 40 41 /* 42 * The zfs intent log (ZIL) saves transaction records of system calls 43 * that change the file system in memory with enough information 44 * to be able to replay them. These are stored in memory until 45 * either the DMU transaction group (txg) commits them to the stable pool 46 * and they can be discarded, or they are flushed to the stable log 47 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 48 * requirement. In the event of a panic or power fail then those log 49 * records (transactions) are replayed. 50 * 51 * There is one ZIL per file system. Its on-disk (pool) format consists 52 * of 3 parts: 53 * 54 * - ZIL header 55 * - ZIL blocks 56 * - ZIL records 57 * 58 * A log record holds a system call transaction. Log blocks can 59 * hold many log records and the blocks are chained together. 60 * Each ZIL block contains a block pointer (blkptr_t) to the next 61 * ZIL block in the chain. The ZIL header points to the first 62 * block in the chain. Note there is not a fixed place in the pool 63 * to hold blocks. They are dynamically allocated and freed as 64 * needed from the blocks available. Figure X shows the ZIL structure: 65 */ 66 67 /* 68 * This global ZIL switch affects all pools 69 */ 70 int zil_disable = 0; /* disable intent logging */ 71 72 /* 73 * Tunable parameter for debugging or performance analysis. Setting 74 * zfs_nocacheflush will cause corruption on power loss if a volatile 75 * out-of-order write cache is enabled. 76 */ 77 boolean_t zfs_nocacheflush = B_FALSE; 78 79 static kmem_cache_t *zil_lwb_cache; 80 81 static int 82 zil_dva_compare(const void *x1, const void *x2) 83 { 84 const dva_t *dva1 = x1; 85 const dva_t *dva2 = x2; 86 87 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 88 return (-1); 89 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 90 return (1); 91 92 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 93 return (-1); 94 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 95 return (1); 96 97 return (0); 98 } 99 100 static void 101 zil_dva_tree_init(avl_tree_t *t) 102 { 103 avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), 104 offsetof(zil_dva_node_t, zn_node)); 105 } 106 107 static void 108 zil_dva_tree_fini(avl_tree_t *t) 109 { 110 zil_dva_node_t *zn; 111 void *cookie = NULL; 112 113 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 114 kmem_free(zn, sizeof (zil_dva_node_t)); 115 116 avl_destroy(t); 117 } 118 119 static int 120 zil_dva_tree_add(avl_tree_t *t, dva_t *dva) 121 { 122 zil_dva_node_t *zn; 123 avl_index_t where; 124 125 if (avl_find(t, dva, &where) != NULL) 126 return (EEXIST); 127 128 zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); 129 zn->zn_dva = *dva; 130 avl_insert(t, zn, where); 131 132 return (0); 133 } 134 135 static zil_header_t * 136 zil_header_in_syncing_context(zilog_t *zilog) 137 { 138 return ((zil_header_t *)zilog->zl_header); 139 } 140 141 static void 142 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 143 { 144 zio_cksum_t *zc = &bp->blk_cksum; 145 146 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 147 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 148 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 149 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 150 } 151 152 /* 153 * Read a log block, make sure it's valid, and byteswap it if necessary. 154 */ 155 static int 156 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp) 157 { 158 blkptr_t blk = *bp; 159 zbookmark_t zb; 160 uint32_t aflags = ARC_WAIT; 161 int error; 162 163 zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET]; 164 zb.zb_object = 0; 165 zb.zb_level = -1; 166 zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ]; 167 168 *abufpp = NULL; 169 170 /* 171 * We shouldn't be doing any scrubbing while we're doing log 172 * replay, it's OK to not lock. 173 */ 174 error = arc_read_nolock(NULL, zilog->zl_spa, &blk, 175 arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | 176 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb); 177 178 if (error == 0) { 179 char *data = (*abufpp)->b_data; 180 uint64_t blksz = BP_GET_LSIZE(bp); 181 zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1; 182 zio_cksum_t cksum = bp->blk_cksum; 183 184 /* 185 * Sequence numbers should be... sequential. The checksum 186 * verifier for the next block should be bp's checksum plus 1. 187 */ 188 cksum.zc_word[ZIL_ZC_SEQ]++; 189 190 if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, sizeof (cksum))) 191 error = ESTALE; 192 else if (BP_IS_HOLE(&ztp->zit_next_blk)) 193 error = ENOENT; 194 else if (ztp->zit_nused > (blksz - sizeof (zil_trailer_t))) 195 error = EOVERFLOW; 196 197 if (error) { 198 VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1); 199 *abufpp = NULL; 200 } 201 } 202 203 dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid); 204 205 return (error); 206 } 207 208 /* 209 * Parse the intent log, and call parse_func for each valid record within. 210 * Return the highest sequence number. 211 */ 212 uint64_t 213 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 214 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 215 { 216 const zil_header_t *zh = zilog->zl_header; 217 uint64_t claim_seq = zh->zh_claim_seq; 218 uint64_t seq = 0; 219 uint64_t max_seq = 0; 220 blkptr_t blk = zh->zh_log; 221 arc_buf_t *abuf; 222 char *lrbuf, *lrp; 223 zil_trailer_t *ztp; 224 int reclen, error; 225 226 if (BP_IS_HOLE(&blk)) 227 return (max_seq); 228 229 /* 230 * Starting at the block pointed to by zh_log we read the log chain. 231 * For each block in the chain we strongly check that block to 232 * ensure its validity. We stop when an invalid block is found. 233 * For each block pointer in the chain we call parse_blk_func(). 234 * For each record in each valid block we call parse_lr_func(). 235 * If the log has been claimed, stop if we encounter a sequence 236 * number greater than the highest claimed sequence number. 237 */ 238 zil_dva_tree_init(&zilog->zl_dva_tree); 239 for (;;) { 240 seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 241 242 if (claim_seq != 0 && seq > claim_seq) 243 break; 244 245 ASSERT(max_seq < seq); 246 max_seq = seq; 247 248 error = zil_read_log_block(zilog, &blk, &abuf); 249 250 if (parse_blk_func != NULL) 251 parse_blk_func(zilog, &blk, arg, txg); 252 253 if (error) 254 break; 255 256 lrbuf = abuf->b_data; 257 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 258 blk = ztp->zit_next_blk; 259 260 if (parse_lr_func == NULL) { 261 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 262 continue; 263 } 264 265 for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { 266 lr_t *lr = (lr_t *)lrp; 267 reclen = lr->lrc_reclen; 268 ASSERT3U(reclen, >=, sizeof (lr_t)); 269 parse_lr_func(zilog, lr, arg, txg); 270 } 271 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 272 } 273 zil_dva_tree_fini(&zilog->zl_dva_tree); 274 275 return (max_seq); 276 } 277 278 /* ARGSUSED */ 279 static void 280 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 281 { 282 spa_t *spa = zilog->zl_spa; 283 int err; 284 285 /* 286 * Claim log block if not already committed and not already claimed. 287 */ 288 if (bp->blk_birth >= first_txg && 289 zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { 290 err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL)); 291 ASSERT(err == 0); 292 } 293 } 294 295 static void 296 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 297 { 298 if (lrc->lrc_txtype == TX_WRITE) { 299 lr_write_t *lr = (lr_write_t *)lrc; 300 zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); 301 } 302 } 303 304 /* ARGSUSED */ 305 static void 306 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 307 { 308 zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); 309 } 310 311 static void 312 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 313 { 314 /* 315 * If we previously claimed it, we need to free it. 316 */ 317 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { 318 lr_write_t *lr = (lr_write_t *)lrc; 319 blkptr_t *bp = &lr->lr_blkptr; 320 if (bp->blk_birth >= claim_txg && 321 !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { 322 (void) arc_free(NULL, zilog->zl_spa, 323 dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); 324 } 325 } 326 } 327 328 /* 329 * Create an on-disk intent log. 330 */ 331 static void 332 zil_create(zilog_t *zilog) 333 { 334 const zil_header_t *zh = zilog->zl_header; 335 lwb_t *lwb; 336 uint64_t txg = 0; 337 dmu_tx_t *tx = NULL; 338 blkptr_t blk; 339 int error = 0; 340 341 /* 342 * Wait for any previous destroy to complete. 343 */ 344 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 345 346 ASSERT(zh->zh_claim_txg == 0); 347 ASSERT(zh->zh_replay_seq == 0); 348 349 blk = zh->zh_log; 350 351 /* 352 * If we don't already have an initial log block, allocate one now. 353 */ 354 if (BP_IS_HOLE(&blk)) { 355 tx = dmu_tx_create(zilog->zl_os); 356 (void) dmu_tx_assign(tx, TXG_WAIT); 357 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 358 txg = dmu_tx_get_txg(tx); 359 360 error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, 361 NULL, txg); 362 363 if (error == 0) 364 zil_init_log_chain(zilog, &blk); 365 } 366 367 /* 368 * Allocate a log write buffer (lwb) for the first log block. 369 */ 370 if (error == 0) { 371 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 372 lwb->lwb_zilog = zilog; 373 lwb->lwb_blk = blk; 374 lwb->lwb_nused = 0; 375 lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); 376 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); 377 lwb->lwb_max_txg = txg; 378 lwb->lwb_zio = NULL; 379 380 mutex_enter(&zilog->zl_lock); 381 list_insert_tail(&zilog->zl_lwb_list, lwb); 382 mutex_exit(&zilog->zl_lock); 383 } 384 385 /* 386 * If we just allocated the first log block, commit our transaction 387 * and wait for zil_sync() to stuff the block poiner into zh_log. 388 * (zh is part of the MOS, so we cannot modify it in open context.) 389 */ 390 if (tx != NULL) { 391 dmu_tx_commit(tx); 392 txg_wait_synced(zilog->zl_dmu_pool, txg); 393 } 394 395 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 396 } 397 398 /* 399 * In one tx, free all log blocks and clear the log header. 400 * If keep_first is set, then we're replaying a log with no content. 401 * We want to keep the first block, however, so that the first 402 * synchronous transaction doesn't require a txg_wait_synced() 403 * in zil_create(). We don't need to txg_wait_synced() here either 404 * when keep_first is set, because both zil_create() and zil_destroy() 405 * will wait for any in-progress destroys to complete. 406 */ 407 void 408 zil_destroy(zilog_t *zilog, boolean_t keep_first) 409 { 410 const zil_header_t *zh = zilog->zl_header; 411 lwb_t *lwb; 412 dmu_tx_t *tx; 413 uint64_t txg; 414 415 /* 416 * Wait for any previous destroy to complete. 417 */ 418 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 419 420 if (BP_IS_HOLE(&zh->zh_log)) 421 return; 422 423 tx = dmu_tx_create(zilog->zl_os); 424 (void) dmu_tx_assign(tx, TXG_WAIT); 425 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 426 txg = dmu_tx_get_txg(tx); 427 428 mutex_enter(&zilog->zl_lock); 429 430 /* 431 * It is possible for the ZIL to get the previously mounted zilog 432 * structure of the same dataset if quickly remounted and the dbuf 433 * eviction has not completed. In this case we can see a non 434 * empty lwb list and keep_first will be set. We fix this by 435 * clearing the keep_first. This will be slower but it's very rare. 436 */ 437 if (!list_is_empty(&zilog->zl_lwb_list) && keep_first) 438 keep_first = B_FALSE; 439 440 ASSERT3U(zilog->zl_destroy_txg, <, txg); 441 zilog->zl_destroy_txg = txg; 442 zilog->zl_keep_first = keep_first; 443 444 if (!list_is_empty(&zilog->zl_lwb_list)) { 445 ASSERT(zh->zh_claim_txg == 0); 446 ASSERT(!keep_first); 447 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 448 list_remove(&zilog->zl_lwb_list, lwb); 449 if (lwb->lwb_buf != NULL) 450 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 451 zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg); 452 kmem_cache_free(zil_lwb_cache, lwb); 453 } 454 } else { 455 if (!keep_first) { 456 (void) zil_parse(zilog, zil_free_log_block, 457 zil_free_log_record, tx, zh->zh_claim_txg); 458 } 459 } 460 mutex_exit(&zilog->zl_lock); 461 462 dmu_tx_commit(tx); 463 } 464 465 /* 466 * zil_rollback_destroy() is only called by the rollback code. 467 * We already have a syncing tx. Rollback has exclusive access to the 468 * dataset, so we don't have to worry about concurrent zil access. 469 * The actual freeing of any log blocks occurs in zil_sync() later in 470 * this txg syncing phase. 471 */ 472 void 473 zil_rollback_destroy(zilog_t *zilog, dmu_tx_t *tx) 474 { 475 const zil_header_t *zh = zilog->zl_header; 476 uint64_t txg; 477 478 if (BP_IS_HOLE(&zh->zh_log)) 479 return; 480 481 txg = dmu_tx_get_txg(tx); 482 ASSERT3U(zilog->zl_destroy_txg, <, txg); 483 zilog->zl_destroy_txg = txg; 484 zilog->zl_keep_first = B_FALSE; 485 486 /* 487 * Ensure there's no outstanding ZIL IO. No lwbs or just the 488 * unused one that allocated in advance is ok. 489 */ 490 ASSERT(zilog->zl_lwb_list.list_head.list_next == 491 zilog->zl_lwb_list.list_head.list_prev); 492 (void) zil_parse(zilog, zil_free_log_block, zil_free_log_record, 493 tx, zh->zh_claim_txg); 494 } 495 496 int 497 zil_claim(char *osname, void *txarg) 498 { 499 dmu_tx_t *tx = txarg; 500 uint64_t first_txg = dmu_tx_get_txg(tx); 501 zilog_t *zilog; 502 zil_header_t *zh; 503 objset_t *os; 504 int error; 505 506 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os); 507 if (error) { 508 cmn_err(CE_WARN, "can't process intent log for %s", osname); 509 return (0); 510 } 511 512 zilog = dmu_objset_zil(os); 513 zh = zil_header_in_syncing_context(zilog); 514 515 /* 516 * Claim all log blocks if we haven't already done so, and remember 517 * the highest claimed sequence number. This ensures that if we can 518 * read only part of the log now (e.g. due to a missing device), 519 * but we can read the entire log later, we will not try to replay 520 * or destroy beyond the last block we successfully claimed. 521 */ 522 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 523 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 524 zh->zh_claim_txg = first_txg; 525 zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block, 526 zil_claim_log_record, tx, first_txg); 527 dsl_dataset_dirty(dmu_objset_ds(os), tx); 528 } 529 530 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 531 dmu_objset_close(os); 532 return (0); 533 } 534 535 static int 536 zil_vdev_compare(const void *x1, const void *x2) 537 { 538 uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 539 uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 540 541 if (v1 < v2) 542 return (-1); 543 if (v1 > v2) 544 return (1); 545 546 return (0); 547 } 548 549 void 550 zil_add_block(zilog_t *zilog, blkptr_t *bp) 551 { 552 avl_tree_t *t = &zilog->zl_vdev_tree; 553 avl_index_t where; 554 zil_vdev_node_t *zv, zvsearch; 555 int ndvas = BP_GET_NDVAS(bp); 556 int i; 557 558 if (zfs_nocacheflush) 559 return; 560 561 ASSERT(zilog->zl_writer); 562 563 /* 564 * Even though we're zl_writer, we still need a lock because the 565 * zl_get_data() callbacks may have dmu_sync() done callbacks 566 * that will run concurrently. 567 */ 568 mutex_enter(&zilog->zl_vdev_lock); 569 for (i = 0; i < ndvas; i++) { 570 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 571 if (avl_find(t, &zvsearch, &where) == NULL) { 572 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 573 zv->zv_vdev = zvsearch.zv_vdev; 574 avl_insert(t, zv, where); 575 } 576 } 577 mutex_exit(&zilog->zl_vdev_lock); 578 } 579 580 void 581 zil_flush_vdevs(zilog_t *zilog) 582 { 583 spa_t *spa = zilog->zl_spa; 584 avl_tree_t *t = &zilog->zl_vdev_tree; 585 void *cookie = NULL; 586 zil_vdev_node_t *zv; 587 zio_t *zio; 588 589 ASSERT(zilog->zl_writer); 590 591 /* 592 * We don't need zl_vdev_lock here because we're the zl_writer, 593 * and all zl_get_data() callbacks are done. 594 */ 595 if (avl_numnodes(t) == 0) 596 return; 597 598 spa_config_enter(spa, RW_READER, FTAG); 599 600 zio = zio_root(spa, NULL, NULL, 601 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 602 603 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 604 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 605 if (vd != NULL) 606 zio_flush(zio, vd); 607 kmem_free(zv, sizeof (*zv)); 608 } 609 610 /* 611 * Wait for all the flushes to complete. Not all devices actually 612 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 613 */ 614 (void) zio_wait(zio); 615 616 spa_config_exit(spa, FTAG); 617 } 618 619 /* 620 * Function called when a log block write completes 621 */ 622 static void 623 zil_lwb_write_done(zio_t *zio) 624 { 625 lwb_t *lwb = zio->io_private; 626 zilog_t *zilog = lwb->lwb_zilog; 627 628 /* 629 * Now that we've written this log block, we have a stable pointer 630 * to the next block in the chain, so it's OK to let the txg in 631 * which we allocated the next block sync. 632 */ 633 txg_rele_to_sync(&lwb->lwb_txgh); 634 635 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 636 mutex_enter(&zilog->zl_lock); 637 lwb->lwb_buf = NULL; 638 if (zio->io_error) 639 zilog->zl_log_error = B_TRUE; 640 mutex_exit(&zilog->zl_lock); 641 } 642 643 /* 644 * Initialize the io for a log block. 645 * 646 * Note, we should not initialize the IO until we are about 647 * to use it, since zio_rewrite() does a spa_config_enter(). 648 */ 649 static void 650 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 651 { 652 zbookmark_t zb; 653 654 zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET]; 655 zb.zb_object = 0; 656 zb.zb_level = -1; 657 zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 658 659 if (zilog->zl_root_zio == NULL) { 660 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 661 ZIO_FLAG_CANFAIL); 662 } 663 if (lwb->lwb_zio == NULL) { 664 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 665 ZIO_CHECKSUM_ZILOG, &lwb->lwb_blk, lwb->lwb_buf, 666 lwb->lwb_sz, zil_lwb_write_done, lwb, 667 ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_CANFAIL, &zb); 668 } 669 } 670 671 /* 672 * Start a log block write and advance to the next log block. 673 * Calls are serialized. 674 */ 675 static lwb_t * 676 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 677 { 678 lwb_t *nlwb; 679 zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; 680 spa_t *spa = zilog->zl_spa; 681 blkptr_t *bp = &ztp->zit_next_blk; 682 uint64_t txg; 683 uint64_t zil_blksz; 684 int error; 685 686 ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); 687 688 /* 689 * Allocate the next block and save its address in this block 690 * before writing it in order to establish the log chain. 691 * Note that if the allocation of nlwb synced before we wrote 692 * the block that points at it (lwb), we'd leak it if we crashed. 693 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). 694 */ 695 txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); 696 txg_rele_to_quiesce(&lwb->lwb_txgh); 697 698 /* 699 * Pick a ZIL blocksize. We request a size that is the 700 * maximum of the previous used size, the current used size and 701 * the amount waiting in the queue. 702 */ 703 zil_blksz = MAX(zilog->zl_prev_used, 704 zilog->zl_cur_used + sizeof (*ztp)); 705 zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); 706 zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t); 707 if (zil_blksz > ZIL_MAX_BLKSZ) 708 zil_blksz = ZIL_MAX_BLKSZ; 709 710 BP_ZERO(bp); 711 /* pass the old blkptr in order to spread log blocks across devs */ 712 error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg); 713 if (error) { 714 dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg); 715 716 /* 717 * We dirty the dataset to ensure that zil_sync() will 718 * be called to remove this lwb from our zl_lwb_list. 719 * Failing to do so, may leave an lwb with a NULL lwb_buf 720 * hanging around on the zl_lwb_list. 721 */ 722 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 723 dmu_tx_commit(tx); 724 725 /* 726 * Since we've just experienced an allocation failure so we 727 * terminate the current lwb and send it on its way. 728 */ 729 ztp->zit_pad = 0; 730 ztp->zit_nused = lwb->lwb_nused; 731 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 732 zio_nowait(lwb->lwb_zio); 733 734 /* 735 * By returning NULL the caller will call tx_wait_synced() 736 */ 737 return (NULL); 738 } 739 740 ASSERT3U(bp->blk_birth, ==, txg); 741 ztp->zit_pad = 0; 742 ztp->zit_nused = lwb->lwb_nused; 743 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 744 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 745 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 746 747 /* 748 * Allocate a new log write buffer (lwb). 749 */ 750 nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 751 752 nlwb->lwb_zilog = zilog; 753 nlwb->lwb_blk = *bp; 754 nlwb->lwb_nused = 0; 755 nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); 756 nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); 757 nlwb->lwb_max_txg = txg; 758 nlwb->lwb_zio = NULL; 759 760 /* 761 * Put new lwb at the end of the log chain 762 */ 763 mutex_enter(&zilog->zl_lock); 764 list_insert_tail(&zilog->zl_lwb_list, nlwb); 765 mutex_exit(&zilog->zl_lock); 766 767 /* Record the block for later vdev flushing */ 768 zil_add_block(zilog, &lwb->lwb_blk); 769 770 /* 771 * kick off the write for the old log block 772 */ 773 dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); 774 ASSERT(lwb->lwb_zio); 775 zio_nowait(lwb->lwb_zio); 776 777 return (nlwb); 778 } 779 780 static lwb_t * 781 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 782 { 783 lr_t *lrc = &itx->itx_lr; /* common log record */ 784 lr_write_t *lr = (lr_write_t *)lrc; 785 uint64_t txg = lrc->lrc_txg; 786 uint64_t reclen = lrc->lrc_reclen; 787 uint64_t dlen; 788 789 if (lwb == NULL) 790 return (NULL); 791 ASSERT(lwb->lwb_buf != NULL); 792 793 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 794 dlen = P2ROUNDUP_TYPED( 795 lr->lr_length, sizeof (uint64_t), uint64_t); 796 else 797 dlen = 0; 798 799 zilog->zl_cur_used += (reclen + dlen); 800 801 zil_lwb_write_init(zilog, lwb); 802 803 /* 804 * If this record won't fit in the current log block, start a new one. 805 */ 806 if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 807 lwb = zil_lwb_write_start(zilog, lwb); 808 if (lwb == NULL) 809 return (NULL); 810 zil_lwb_write_init(zilog, lwb); 811 ASSERT(lwb->lwb_nused == 0); 812 if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 813 txg_wait_synced(zilog->zl_dmu_pool, txg); 814 return (lwb); 815 } 816 } 817 818 /* 819 * Update the lrc_seq, to be log record sequence number. See zil.h 820 * Then copy the record to the log buffer. 821 */ 822 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 823 bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); 824 825 /* 826 * If it's a write, fetch the data or get its blkptr as appropriate. 827 */ 828 if (lrc->lrc_txtype == TX_WRITE) { 829 if (txg > spa_freeze_txg(zilog->zl_spa)) 830 txg_wait_synced(zilog->zl_dmu_pool, txg); 831 if (itx->itx_wr_state != WR_COPIED) { 832 char *dbuf; 833 int error; 834 835 /* alignment is guaranteed */ 836 lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused); 837 if (dlen) { 838 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 839 dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen; 840 lr->lr_common.lrc_reclen += dlen; 841 } else { 842 ASSERT(itx->itx_wr_state == WR_INDIRECT); 843 dbuf = NULL; 844 } 845 error = zilog->zl_get_data( 846 itx->itx_private, lr, dbuf, lwb->lwb_zio); 847 if (error) { 848 ASSERT(error == ENOENT || error == EEXIST || 849 error == EALREADY); 850 return (lwb); 851 } 852 } 853 } 854 855 lwb->lwb_nused += reclen + dlen; 856 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 857 ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); 858 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 859 860 return (lwb); 861 } 862 863 itx_t * 864 zil_itx_create(uint64_t txtype, size_t lrsize) 865 { 866 itx_t *itx; 867 868 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 869 870 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 871 itx->itx_lr.lrc_txtype = txtype; 872 itx->itx_lr.lrc_reclen = lrsize; 873 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 874 itx->itx_lr.lrc_seq = 0; /* defensive */ 875 876 return (itx); 877 } 878 879 uint64_t 880 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 881 { 882 uint64_t seq; 883 884 ASSERT(itx->itx_lr.lrc_seq == 0); 885 886 mutex_enter(&zilog->zl_lock); 887 list_insert_tail(&zilog->zl_itx_list, itx); 888 zilog->zl_itx_list_sz += itx->itx_sod; 889 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 890 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 891 mutex_exit(&zilog->zl_lock); 892 893 return (seq); 894 } 895 896 /* 897 * Free up all in-memory intent log transactions that have now been synced. 898 */ 899 static void 900 zil_itx_clean(zilog_t *zilog) 901 { 902 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 903 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 904 list_t clean_list; 905 itx_t *itx; 906 907 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 908 909 mutex_enter(&zilog->zl_lock); 910 /* wait for a log writer to finish walking list */ 911 while (zilog->zl_writer) { 912 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 913 } 914 915 /* 916 * Move the sync'd log transactions to a separate list so we can call 917 * kmem_free without holding the zl_lock. 918 * 919 * There is no need to set zl_writer as we don't drop zl_lock here 920 */ 921 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 922 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 923 list_remove(&zilog->zl_itx_list, itx); 924 zilog->zl_itx_list_sz -= itx->itx_sod; 925 list_insert_tail(&clean_list, itx); 926 } 927 cv_broadcast(&zilog->zl_cv_writer); 928 mutex_exit(&zilog->zl_lock); 929 930 /* destroy sync'd log transactions */ 931 while ((itx = list_head(&clean_list)) != NULL) { 932 list_remove(&clean_list, itx); 933 kmem_free(itx, offsetof(itx_t, itx_lr) 934 + itx->itx_lr.lrc_reclen); 935 } 936 list_destroy(&clean_list); 937 } 938 939 /* 940 * If there are any in-memory intent log transactions which have now been 941 * synced then start up a taskq to free them. 942 */ 943 void 944 zil_clean(zilog_t *zilog) 945 { 946 itx_t *itx; 947 948 mutex_enter(&zilog->zl_lock); 949 itx = list_head(&zilog->zl_itx_list); 950 if ((itx != NULL) && 951 (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) { 952 (void) taskq_dispatch(zilog->zl_clean_taskq, 953 (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP); 954 } 955 mutex_exit(&zilog->zl_lock); 956 } 957 958 void 959 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid) 960 { 961 uint64_t txg; 962 uint64_t commit_seq = 0; 963 itx_t *itx, *itx_next = (itx_t *)-1; 964 lwb_t *lwb; 965 spa_t *spa; 966 967 zilog->zl_writer = B_TRUE; 968 zilog->zl_root_zio = NULL; 969 spa = zilog->zl_spa; 970 971 if (zilog->zl_suspend) { 972 lwb = NULL; 973 } else { 974 lwb = list_tail(&zilog->zl_lwb_list); 975 if (lwb == NULL) { 976 /* 977 * Return if there's nothing to flush before we 978 * dirty the fs by calling zil_create() 979 */ 980 if (list_is_empty(&zilog->zl_itx_list)) { 981 zilog->zl_writer = B_FALSE; 982 return; 983 } 984 mutex_exit(&zilog->zl_lock); 985 zil_create(zilog); 986 mutex_enter(&zilog->zl_lock); 987 lwb = list_tail(&zilog->zl_lwb_list); 988 } 989 } 990 991 /* Loop through in-memory log transactions filling log blocks. */ 992 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 993 for (;;) { 994 /* 995 * Find the next itx to push: 996 * Push all transactions related to specified foid and all 997 * other transactions except TX_WRITE, TX_TRUNCATE, 998 * TX_SETATTR and TX_ACL for all other files. 999 */ 1000 if (itx_next != (itx_t *)-1) 1001 itx = itx_next; 1002 else 1003 itx = list_head(&zilog->zl_itx_list); 1004 for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) { 1005 if (foid == 0) /* push all foids? */ 1006 break; 1007 if (itx->itx_sync) /* push all O_[D]SYNC */ 1008 break; 1009 switch (itx->itx_lr.lrc_txtype) { 1010 case TX_SETATTR: 1011 case TX_WRITE: 1012 case TX_TRUNCATE: 1013 case TX_ACL: 1014 /* lr_foid is same offset for these records */ 1015 if (((lr_write_t *)&itx->itx_lr)->lr_foid 1016 != foid) { 1017 continue; /* skip this record */ 1018 } 1019 } 1020 break; 1021 } 1022 if (itx == NULL) 1023 break; 1024 1025 if ((itx->itx_lr.lrc_seq > seq) && 1026 ((lwb == NULL) || (lwb->lwb_nused == 0) || 1027 (lwb->lwb_nused + itx->itx_sod > ZIL_BLK_DATA_SZ(lwb)))) { 1028 break; 1029 } 1030 1031 /* 1032 * Save the next pointer. Even though we soon drop 1033 * zl_lock all threads that may change the list 1034 * (another writer or zil_itx_clean) can't do so until 1035 * they have zl_writer. 1036 */ 1037 itx_next = list_next(&zilog->zl_itx_list, itx); 1038 list_remove(&zilog->zl_itx_list, itx); 1039 zilog->zl_itx_list_sz -= itx->itx_sod; 1040 mutex_exit(&zilog->zl_lock); 1041 txg = itx->itx_lr.lrc_txg; 1042 ASSERT(txg); 1043 1044 if (txg > spa_last_synced_txg(spa) || 1045 txg > spa_freeze_txg(spa)) 1046 lwb = zil_lwb_commit(zilog, itx, lwb); 1047 kmem_free(itx, offsetof(itx_t, itx_lr) 1048 + itx->itx_lr.lrc_reclen); 1049 mutex_enter(&zilog->zl_lock); 1050 } 1051 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1052 /* determine commit sequence number */ 1053 itx = list_head(&zilog->zl_itx_list); 1054 if (itx) 1055 commit_seq = itx->itx_lr.lrc_seq; 1056 else 1057 commit_seq = zilog->zl_itx_seq; 1058 mutex_exit(&zilog->zl_lock); 1059 1060 /* write the last block out */ 1061 if (lwb != NULL && lwb->lwb_zio != NULL) 1062 lwb = zil_lwb_write_start(zilog, lwb); 1063 1064 zilog->zl_prev_used = zilog->zl_cur_used; 1065 zilog->zl_cur_used = 0; 1066 1067 /* 1068 * Wait if necessary for the log blocks to be on stable storage. 1069 */ 1070 if (zilog->zl_root_zio) { 1071 DTRACE_PROBE1(zil__cw3, zilog_t *, zilog); 1072 (void) zio_wait(zilog->zl_root_zio); 1073 DTRACE_PROBE1(zil__cw4, zilog_t *, zilog); 1074 zil_flush_vdevs(zilog); 1075 } 1076 1077 if (zilog->zl_log_error || lwb == NULL) { 1078 zilog->zl_log_error = 0; 1079 txg_wait_synced(zilog->zl_dmu_pool, 0); 1080 } 1081 1082 mutex_enter(&zilog->zl_lock); 1083 zilog->zl_writer = B_FALSE; 1084 1085 ASSERT3U(commit_seq, >=, zilog->zl_commit_seq); 1086 zilog->zl_commit_seq = commit_seq; 1087 } 1088 1089 /* 1090 * Push zfs transactions to stable storage up to the supplied sequence number. 1091 * If foid is 0 push out all transactions, otherwise push only those 1092 * for that file or might have been used to create that file. 1093 */ 1094 void 1095 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid) 1096 { 1097 if (zilog == NULL || seq == 0) 1098 return; 1099 1100 mutex_enter(&zilog->zl_lock); 1101 1102 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 1103 1104 while (zilog->zl_writer) { 1105 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1106 if (seq < zilog->zl_commit_seq) { 1107 mutex_exit(&zilog->zl_lock); 1108 return; 1109 } 1110 } 1111 zil_commit_writer(zilog, seq, foid); /* drops zl_lock */ 1112 /* wake up others waiting on the commit */ 1113 cv_broadcast(&zilog->zl_cv_writer); 1114 mutex_exit(&zilog->zl_lock); 1115 } 1116 1117 /* 1118 * Called in syncing context to free committed log blocks and update log header. 1119 */ 1120 void 1121 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1122 { 1123 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1124 uint64_t txg = dmu_tx_get_txg(tx); 1125 spa_t *spa = zilog->zl_spa; 1126 lwb_t *lwb; 1127 1128 mutex_enter(&zilog->zl_lock); 1129 1130 ASSERT(zilog->zl_stop_sync == 0); 1131 1132 zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK]; 1133 1134 if (zilog->zl_destroy_txg == txg) { 1135 blkptr_t blk = zh->zh_log; 1136 1137 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1138 ASSERT(spa_sync_pass(spa) == 1); 1139 1140 bzero(zh, sizeof (zil_header_t)); 1141 bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq)); 1142 1143 if (zilog->zl_keep_first) { 1144 /* 1145 * If this block was part of log chain that couldn't 1146 * be claimed because a device was missing during 1147 * zil_claim(), but that device later returns, 1148 * then this block could erroneously appear valid. 1149 * To guard against this, assign a new GUID to the new 1150 * log chain so it doesn't matter what blk points to. 1151 */ 1152 zil_init_log_chain(zilog, &blk); 1153 zh->zh_log = blk; 1154 } 1155 } 1156 1157 for (;;) { 1158 lwb = list_head(&zilog->zl_lwb_list); 1159 if (lwb == NULL) { 1160 mutex_exit(&zilog->zl_lock); 1161 return; 1162 } 1163 zh->zh_log = lwb->lwb_blk; 1164 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1165 break; 1166 list_remove(&zilog->zl_lwb_list, lwb); 1167 zio_free_blk(spa, &lwb->lwb_blk, txg); 1168 kmem_cache_free(zil_lwb_cache, lwb); 1169 1170 /* 1171 * If we don't have anything left in the lwb list then 1172 * we've had an allocation failure and we need to zero 1173 * out the zil_header blkptr so that we don't end 1174 * up freeing the same block twice. 1175 */ 1176 if (list_head(&zilog->zl_lwb_list) == NULL) 1177 BP_ZERO(&zh->zh_log); 1178 } 1179 mutex_exit(&zilog->zl_lock); 1180 } 1181 1182 void 1183 zil_init(void) 1184 { 1185 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1186 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1187 } 1188 1189 void 1190 zil_fini(void) 1191 { 1192 kmem_cache_destroy(zil_lwb_cache); 1193 } 1194 1195 zilog_t * 1196 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1197 { 1198 zilog_t *zilog; 1199 1200 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1201 1202 zilog->zl_header = zh_phys; 1203 zilog->zl_os = os; 1204 zilog->zl_spa = dmu_objset_spa(os); 1205 zilog->zl_dmu_pool = dmu_objset_pool(os); 1206 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1207 1208 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1209 1210 list_create(&zilog->zl_itx_list, sizeof (itx_t), 1211 offsetof(itx_t, itx_node)); 1212 1213 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1214 offsetof(lwb_t, lwb_node)); 1215 1216 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1217 1218 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1219 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1220 1221 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1222 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1223 1224 return (zilog); 1225 } 1226 1227 void 1228 zil_free(zilog_t *zilog) 1229 { 1230 lwb_t *lwb; 1231 1232 zilog->zl_stop_sync = 1; 1233 1234 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1235 list_remove(&zilog->zl_lwb_list, lwb); 1236 if (lwb->lwb_buf != NULL) 1237 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1238 kmem_cache_free(zil_lwb_cache, lwb); 1239 } 1240 list_destroy(&zilog->zl_lwb_list); 1241 1242 avl_destroy(&zilog->zl_vdev_tree); 1243 mutex_destroy(&zilog->zl_vdev_lock); 1244 1245 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1246 list_destroy(&zilog->zl_itx_list); 1247 mutex_destroy(&zilog->zl_lock); 1248 1249 cv_destroy(&zilog->zl_cv_writer); 1250 cv_destroy(&zilog->zl_cv_suspend); 1251 1252 kmem_free(zilog, sizeof (zilog_t)); 1253 } 1254 1255 /* 1256 * return true if the initial log block is not valid 1257 */ 1258 static int 1259 zil_empty(zilog_t *zilog) 1260 { 1261 const zil_header_t *zh = zilog->zl_header; 1262 arc_buf_t *abuf = NULL; 1263 1264 if (BP_IS_HOLE(&zh->zh_log)) 1265 return (1); 1266 1267 if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0) 1268 return (1); 1269 1270 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 1271 return (0); 1272 } 1273 1274 /* 1275 * Open an intent log. 1276 */ 1277 zilog_t * 1278 zil_open(objset_t *os, zil_get_data_t *get_data) 1279 { 1280 zilog_t *zilog = dmu_objset_zil(os); 1281 1282 zilog->zl_get_data = get_data; 1283 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1284 2, 2, TASKQ_PREPOPULATE); 1285 1286 return (zilog); 1287 } 1288 1289 /* 1290 * Close an intent log. 1291 */ 1292 void 1293 zil_close(zilog_t *zilog) 1294 { 1295 /* 1296 * If the log isn't already committed, mark the objset dirty 1297 * (so zil_sync() will be called) and wait for that txg to sync. 1298 */ 1299 if (!zil_is_committed(zilog)) { 1300 uint64_t txg; 1301 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1302 (void) dmu_tx_assign(tx, TXG_WAIT); 1303 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1304 txg = dmu_tx_get_txg(tx); 1305 dmu_tx_commit(tx); 1306 txg_wait_synced(zilog->zl_dmu_pool, txg); 1307 } 1308 1309 taskq_destroy(zilog->zl_clean_taskq); 1310 zilog->zl_clean_taskq = NULL; 1311 zilog->zl_get_data = NULL; 1312 1313 zil_itx_clean(zilog); 1314 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1315 } 1316 1317 /* 1318 * Suspend an intent log. While in suspended mode, we still honor 1319 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1320 * We suspend the log briefly when taking a snapshot so that the snapshot 1321 * contains all the data it's supposed to, and has an empty intent log. 1322 */ 1323 int 1324 zil_suspend(zilog_t *zilog) 1325 { 1326 const zil_header_t *zh = zilog->zl_header; 1327 1328 mutex_enter(&zilog->zl_lock); 1329 if (zh->zh_claim_txg != 0) { /* unplayed log */ 1330 mutex_exit(&zilog->zl_lock); 1331 return (EBUSY); 1332 } 1333 if (zilog->zl_suspend++ != 0) { 1334 /* 1335 * Someone else already began a suspend. 1336 * Just wait for them to finish. 1337 */ 1338 while (zilog->zl_suspending) 1339 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1340 ASSERT(BP_IS_HOLE(&zh->zh_log)); 1341 mutex_exit(&zilog->zl_lock); 1342 return (0); 1343 } 1344 zilog->zl_suspending = B_TRUE; 1345 mutex_exit(&zilog->zl_lock); 1346 1347 zil_commit(zilog, UINT64_MAX, 0); 1348 1349 /* 1350 * Wait for any in-flight log writes to complete. 1351 */ 1352 mutex_enter(&zilog->zl_lock); 1353 while (zilog->zl_writer) 1354 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1355 mutex_exit(&zilog->zl_lock); 1356 1357 zil_destroy(zilog, B_FALSE); 1358 1359 mutex_enter(&zilog->zl_lock); 1360 zilog->zl_suspending = B_FALSE; 1361 cv_broadcast(&zilog->zl_cv_suspend); 1362 mutex_exit(&zilog->zl_lock); 1363 1364 return (0); 1365 } 1366 1367 void 1368 zil_resume(zilog_t *zilog) 1369 { 1370 mutex_enter(&zilog->zl_lock); 1371 ASSERT(zilog->zl_suspend != 0); 1372 zilog->zl_suspend--; 1373 mutex_exit(&zilog->zl_lock); 1374 } 1375 1376 typedef struct zil_replay_arg { 1377 objset_t *zr_os; 1378 zil_replay_func_t **zr_replay; 1379 void *zr_arg; 1380 uint64_t *zr_txgp; 1381 boolean_t zr_byteswap; 1382 char *zr_lrbuf; 1383 } zil_replay_arg_t; 1384 1385 static void 1386 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1387 { 1388 zil_replay_arg_t *zr = zra; 1389 const zil_header_t *zh = zilog->zl_header; 1390 uint64_t reclen = lr->lrc_reclen; 1391 uint64_t txtype = lr->lrc_txtype; 1392 char *name; 1393 int pass, error, sunk; 1394 1395 if (zilog->zl_stop_replay) 1396 return; 1397 1398 if (lr->lrc_txg < claim_txg) /* already committed */ 1399 return; 1400 1401 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1402 return; 1403 1404 /* Strip case-insensitive bit, still present in log record */ 1405 txtype &= ~TX_CI; 1406 1407 /* 1408 * Make a copy of the data so we can revise and extend it. 1409 */ 1410 bcopy(lr, zr->zr_lrbuf, reclen); 1411 1412 /* 1413 * The log block containing this lr may have been byteswapped 1414 * so that we can easily examine common fields like lrc_txtype. 1415 * However, the log is a mix of different data types, and only the 1416 * replay vectors know how to byteswap their records. Therefore, if 1417 * the lr was byteswapped, undo it before invoking the replay vector. 1418 */ 1419 if (zr->zr_byteswap) 1420 byteswap_uint64_array(zr->zr_lrbuf, reclen); 1421 1422 /* 1423 * If this is a TX_WRITE with a blkptr, suck in the data. 1424 */ 1425 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1426 lr_write_t *lrw = (lr_write_t *)lr; 1427 blkptr_t *wbp = &lrw->lr_blkptr; 1428 uint64_t wlen = lrw->lr_length; 1429 char *wbuf = zr->zr_lrbuf + reclen; 1430 1431 if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ 1432 bzero(wbuf, wlen); 1433 } else { 1434 /* 1435 * A subsequent write may have overwritten this block, 1436 * in which case wbp may have been been freed and 1437 * reallocated, and our read of wbp may fail with a 1438 * checksum error. We can safely ignore this because 1439 * the later write will provide the correct data. 1440 */ 1441 zbookmark_t zb; 1442 1443 zb.zb_objset = dmu_objset_id(zilog->zl_os); 1444 zb.zb_object = lrw->lr_foid; 1445 zb.zb_level = -1; 1446 zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp); 1447 1448 (void) zio_wait(zio_read(NULL, zilog->zl_spa, 1449 wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, 1450 ZIO_PRIORITY_SYNC_READ, 1451 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb)); 1452 (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); 1453 } 1454 } 1455 1456 /* 1457 * We must now do two things atomically: replay this log record, 1458 * and update the log header to reflect the fact that we did so. 1459 * We use the DMU's ability to assign into a specific txg to do this. 1460 */ 1461 for (pass = 1, sunk = B_FALSE; /* CONSTANTCONDITION */; pass++) { 1462 uint64_t replay_txg; 1463 dmu_tx_t *replay_tx; 1464 1465 replay_tx = dmu_tx_create(zr->zr_os); 1466 error = dmu_tx_assign(replay_tx, TXG_WAIT); 1467 if (error) { 1468 dmu_tx_abort(replay_tx); 1469 break; 1470 } 1471 1472 replay_txg = dmu_tx_get_txg(replay_tx); 1473 1474 if (txtype == 0 || txtype >= TX_MAX_TYPE) { 1475 error = EINVAL; 1476 } else { 1477 /* 1478 * On the first pass, arrange for the replay vector 1479 * to fail its dmu_tx_assign(). That's the only way 1480 * to ensure that those code paths remain well tested. 1481 * 1482 * Only byteswap (if needed) on the 1st pass. 1483 */ 1484 *zr->zr_txgp = replay_txg - (pass == 1); 1485 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, 1486 zr->zr_byteswap && pass == 1); 1487 *zr->zr_txgp = TXG_NOWAIT; 1488 } 1489 1490 if (error == 0) { 1491 dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx); 1492 zilog->zl_replay_seq[replay_txg & TXG_MASK] = 1493 lr->lrc_seq; 1494 } 1495 1496 dmu_tx_commit(replay_tx); 1497 1498 if (!error) 1499 return; 1500 1501 /* 1502 * The DMU's dnode layer doesn't see removes until the txg 1503 * commits, so a subsequent claim can spuriously fail with 1504 * EEXIST. So if we receive any error other than ERESTART 1505 * we try syncing out any removes then retrying the 1506 * transaction. 1507 */ 1508 if (error != ERESTART && !sunk) { 1509 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1510 sunk = B_TRUE; 1511 continue; /* retry */ 1512 } 1513 1514 if (error != ERESTART) 1515 break; 1516 1517 if (pass != 1) 1518 txg_wait_open(spa_get_dsl(zilog->zl_spa), 1519 replay_txg + 1); 1520 1521 dprintf("pass %d, retrying\n", pass); 1522 } 1523 1524 ASSERT(error && error != ERESTART); 1525 name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1526 dmu_objset_name(zr->zr_os, name); 1527 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1528 "dataset %s, seq 0x%llx, txtype %llu %s\n", 1529 error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype, 1530 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1531 zilog->zl_stop_replay = 1; 1532 kmem_free(name, MAXNAMELEN); 1533 } 1534 1535 /* ARGSUSED */ 1536 static void 1537 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1538 { 1539 zilog->zl_replay_blks++; 1540 } 1541 1542 /* 1543 * If this dataset has a non-empty intent log, replay it and destroy it. 1544 */ 1545 void 1546 zil_replay(objset_t *os, void *arg, uint64_t *txgp, 1547 zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1548 { 1549 zilog_t *zilog = dmu_objset_zil(os); 1550 const zil_header_t *zh = zilog->zl_header; 1551 zil_replay_arg_t zr; 1552 1553 if (zil_empty(zilog)) { 1554 zil_destroy(zilog, B_TRUE); 1555 return; 1556 } 1557 1558 zr.zr_os = os; 1559 zr.zr_replay = replay_func; 1560 zr.zr_arg = arg; 1561 zr.zr_txgp = txgp; 1562 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1563 zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1564 1565 /* 1566 * Wait for in-progress removes to sync before starting replay. 1567 */ 1568 txg_wait_synced(zilog->zl_dmu_pool, 0); 1569 1570 zilog->zl_stop_replay = 0; 1571 zilog->zl_replay_time = lbolt; 1572 ASSERT(zilog->zl_replay_blks == 0); 1573 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1574 zh->zh_claim_txg); 1575 kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); 1576 1577 zil_destroy(zilog, B_FALSE); 1578 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1579 } 1580 1581 /* 1582 * Report whether all transactions are committed 1583 */ 1584 int 1585 zil_is_committed(zilog_t *zilog) 1586 { 1587 lwb_t *lwb; 1588 int ret; 1589 1590 mutex_enter(&zilog->zl_lock); 1591 while (zilog->zl_writer) 1592 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1593 1594 /* recent unpushed intent log transactions? */ 1595 if (!list_is_empty(&zilog->zl_itx_list)) { 1596 ret = B_FALSE; 1597 goto out; 1598 } 1599 1600 /* intent log never used? */ 1601 lwb = list_head(&zilog->zl_lwb_list); 1602 if (lwb == NULL) { 1603 ret = B_TRUE; 1604 goto out; 1605 } 1606 1607 /* 1608 * more than 1 log buffer means zil_sync() hasn't yet freed 1609 * entries after a txg has committed 1610 */ 1611 if (list_next(&zilog->zl_lwb_list, lwb)) { 1612 ret = B_FALSE; 1613 goto out; 1614 } 1615 1616 ASSERT(zil_empty(zilog)); 1617 ret = B_TRUE; 1618 out: 1619 cv_broadcast(&zilog->zl_cv_writer); 1620 mutex_exit(&zilog->zl_lock); 1621 return (ret); 1622 } 1623