1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa.h> 28 #include <sys/dmu.h> 29 #include <sys/zap.h> 30 #include <sys/arc.h> 31 #include <sys/stat.h> 32 #include <sys/resource.h> 33 #include <sys/zil.h> 34 #include <sys/zil_impl.h> 35 #include <sys/dsl_dataset.h> 36 #include <sys/vdev.h> 37 #include <sys/dmu_tx.h> 38 39 /* 40 * The zfs intent log (ZIL) saves transaction records of system calls 41 * that change the file system in memory with enough information 42 * to be able to replay them. These are stored in memory until 43 * either the DMU transaction group (txg) commits them to the stable pool 44 * and they can be discarded, or they are flushed to the stable log 45 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 46 * requirement. In the event of a panic or power fail then those log 47 * records (transactions) are replayed. 48 * 49 * There is one ZIL per file system. Its on-disk (pool) format consists 50 * of 3 parts: 51 * 52 * - ZIL header 53 * - ZIL blocks 54 * - ZIL records 55 * 56 * A log record holds a system call transaction. Log blocks can 57 * hold many log records and the blocks are chained together. 58 * Each ZIL block contains a block pointer (blkptr_t) to the next 59 * ZIL block in the chain. The ZIL header points to the first 60 * block in the chain. Note there is not a fixed place in the pool 61 * to hold blocks. They are dynamically allocated and freed as 62 * needed from the blocks available. Figure X shows the ZIL structure: 63 */ 64 65 /* 66 * This global ZIL switch affects all pools 67 */ 68 int zil_disable = 0; /* disable intent logging */ 69 70 /* 71 * Tunable parameter for debugging or performance analysis. Setting 72 * zfs_nocacheflush will cause corruption on power loss if a volatile 73 * out-of-order write cache is enabled. 74 */ 75 boolean_t zfs_nocacheflush = B_FALSE; 76 77 static kmem_cache_t *zil_lwb_cache; 78 79 static int 80 zil_dva_compare(const void *x1, const void *x2) 81 { 82 const dva_t *dva1 = x1; 83 const dva_t *dva2 = x2; 84 85 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 86 return (-1); 87 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 88 return (1); 89 90 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 91 return (-1); 92 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 93 return (1); 94 95 return (0); 96 } 97 98 static void 99 zil_dva_tree_init(avl_tree_t *t) 100 { 101 avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), 102 offsetof(zil_dva_node_t, zn_node)); 103 } 104 105 static void 106 zil_dva_tree_fini(avl_tree_t *t) 107 { 108 zil_dva_node_t *zn; 109 void *cookie = NULL; 110 111 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 112 kmem_free(zn, sizeof (zil_dva_node_t)); 113 114 avl_destroy(t); 115 } 116 117 static int 118 zil_dva_tree_add(avl_tree_t *t, dva_t *dva) 119 { 120 zil_dva_node_t *zn; 121 avl_index_t where; 122 123 if (avl_find(t, dva, &where) != NULL) 124 return (EEXIST); 125 126 zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); 127 zn->zn_dva = *dva; 128 avl_insert(t, zn, where); 129 130 return (0); 131 } 132 133 static zil_header_t * 134 zil_header_in_syncing_context(zilog_t *zilog) 135 { 136 return ((zil_header_t *)zilog->zl_header); 137 } 138 139 static void 140 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 141 { 142 zio_cksum_t *zc = &bp->blk_cksum; 143 144 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 145 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 146 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 147 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 148 } 149 150 /* 151 * Read a log block, make sure it's valid, and byteswap it if necessary. 152 */ 153 static int 154 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp) 155 { 156 blkptr_t blk = *bp; 157 zbookmark_t zb; 158 uint32_t aflags = ARC_WAIT; 159 int error; 160 161 zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET]; 162 zb.zb_object = 0; 163 zb.zb_level = -1; 164 zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ]; 165 166 *abufpp = NULL; 167 168 /* 169 * We shouldn't be doing any scrubbing while we're doing log 170 * replay, it's OK to not lock. 171 */ 172 error = arc_read_nolock(NULL, zilog->zl_spa, &blk, 173 arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | 174 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb); 175 176 if (error == 0) { 177 char *data = (*abufpp)->b_data; 178 uint64_t blksz = BP_GET_LSIZE(bp); 179 zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1; 180 zio_cksum_t cksum = bp->blk_cksum; 181 182 /* 183 * Validate the checksummed log block. 184 * 185 * Sequence numbers should be... sequential. The checksum 186 * verifier for the next block should be bp's checksum plus 1. 187 * 188 * Also check the log chain linkage and size used. 189 */ 190 cksum.zc_word[ZIL_ZC_SEQ]++; 191 192 if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, 193 sizeof (cksum)) || BP_IS_HOLE(&ztp->zit_next_blk) || 194 (ztp->zit_nused > (blksz - sizeof (zil_trailer_t)))) { 195 error = ECKSUM; 196 } 197 198 if (error) { 199 VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1); 200 *abufpp = NULL; 201 } 202 } 203 204 dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid); 205 206 return (error); 207 } 208 209 /* 210 * Parse the intent log, and call parse_func for each valid record within. 211 * Return the highest sequence number. 212 */ 213 uint64_t 214 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 215 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 216 { 217 const zil_header_t *zh = zilog->zl_header; 218 uint64_t claim_seq = zh->zh_claim_seq; 219 uint64_t seq = 0; 220 uint64_t max_seq = 0; 221 blkptr_t blk = zh->zh_log; 222 arc_buf_t *abuf; 223 char *lrbuf, *lrp; 224 zil_trailer_t *ztp; 225 int reclen, error; 226 227 if (BP_IS_HOLE(&blk)) 228 return (max_seq); 229 230 /* 231 * Starting at the block pointed to by zh_log we read the log chain. 232 * For each block in the chain we strongly check that block to 233 * ensure its validity. We stop when an invalid block is found. 234 * For each block pointer in the chain we call parse_blk_func(). 235 * For each record in each valid block we call parse_lr_func(). 236 * If the log has been claimed, stop if we encounter a sequence 237 * number greater than the highest claimed sequence number. 238 */ 239 zil_dva_tree_init(&zilog->zl_dva_tree); 240 for (;;) { 241 seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 242 243 if (claim_seq != 0 && seq > claim_seq) 244 break; 245 246 ASSERT(max_seq < seq); 247 max_seq = seq; 248 249 error = zil_read_log_block(zilog, &blk, &abuf); 250 251 if (parse_blk_func != NULL) 252 parse_blk_func(zilog, &blk, arg, txg); 253 254 if (error) 255 break; 256 257 lrbuf = abuf->b_data; 258 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 259 blk = ztp->zit_next_blk; 260 261 if (parse_lr_func == NULL) { 262 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 263 continue; 264 } 265 266 for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { 267 lr_t *lr = (lr_t *)lrp; 268 reclen = lr->lrc_reclen; 269 ASSERT3U(reclen, >=, sizeof (lr_t)); 270 parse_lr_func(zilog, lr, arg, txg); 271 } 272 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 273 } 274 zil_dva_tree_fini(&zilog->zl_dva_tree); 275 276 return (max_seq); 277 } 278 279 /* ARGSUSED */ 280 static void 281 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 282 { 283 spa_t *spa = zilog->zl_spa; 284 int err; 285 286 /* 287 * Claim log block if not already committed and not already claimed. 288 */ 289 if (bp->blk_birth >= first_txg && 290 zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { 291 err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL)); 292 ASSERT(err == 0); 293 } 294 } 295 296 static void 297 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 298 { 299 if (lrc->lrc_txtype == TX_WRITE) { 300 lr_write_t *lr = (lr_write_t *)lrc; 301 zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); 302 } 303 } 304 305 /* ARGSUSED */ 306 static void 307 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 308 { 309 zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); 310 } 311 312 static void 313 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 314 { 315 /* 316 * If we previously claimed it, we need to free it. 317 */ 318 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { 319 lr_write_t *lr = (lr_write_t *)lrc; 320 blkptr_t *bp = &lr->lr_blkptr; 321 if (bp->blk_birth >= claim_txg && 322 !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { 323 (void) arc_free(NULL, zilog->zl_spa, 324 dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); 325 } 326 } 327 } 328 329 /* 330 * Create an on-disk intent log. 331 */ 332 static void 333 zil_create(zilog_t *zilog) 334 { 335 const zil_header_t *zh = zilog->zl_header; 336 lwb_t *lwb; 337 uint64_t txg = 0; 338 dmu_tx_t *tx = NULL; 339 blkptr_t blk; 340 int error = 0; 341 342 /* 343 * Wait for any previous destroy to complete. 344 */ 345 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 346 347 ASSERT(zh->zh_claim_txg == 0); 348 ASSERT(zh->zh_replay_seq == 0); 349 350 blk = zh->zh_log; 351 352 /* 353 * If we don't already have an initial log block, allocate one now. 354 */ 355 if (BP_IS_HOLE(&blk)) { 356 tx = dmu_tx_create(zilog->zl_os); 357 (void) dmu_tx_assign(tx, TXG_WAIT); 358 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 359 txg = dmu_tx_get_txg(tx); 360 361 error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, 362 NULL, txg); 363 364 if (error == 0) 365 zil_init_log_chain(zilog, &blk); 366 } 367 368 /* 369 * Allocate a log write buffer (lwb) for the first log block. 370 */ 371 if (error == 0) { 372 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 373 lwb->lwb_zilog = zilog; 374 lwb->lwb_blk = blk; 375 lwb->lwb_nused = 0; 376 lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); 377 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); 378 lwb->lwb_max_txg = txg; 379 lwb->lwb_zio = NULL; 380 381 mutex_enter(&zilog->zl_lock); 382 list_insert_tail(&zilog->zl_lwb_list, lwb); 383 mutex_exit(&zilog->zl_lock); 384 } 385 386 /* 387 * If we just allocated the first log block, commit our transaction 388 * and wait for zil_sync() to stuff the block poiner into zh_log. 389 * (zh is part of the MOS, so we cannot modify it in open context.) 390 */ 391 if (tx != NULL) { 392 dmu_tx_commit(tx); 393 txg_wait_synced(zilog->zl_dmu_pool, txg); 394 } 395 396 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 397 } 398 399 /* 400 * In one tx, free all log blocks and clear the log header. 401 * If keep_first is set, then we're replaying a log with no content. 402 * We want to keep the first block, however, so that the first 403 * synchronous transaction doesn't require a txg_wait_synced() 404 * in zil_create(). We don't need to txg_wait_synced() here either 405 * when keep_first is set, because both zil_create() and zil_destroy() 406 * will wait for any in-progress destroys to complete. 407 */ 408 void 409 zil_destroy(zilog_t *zilog, boolean_t keep_first) 410 { 411 const zil_header_t *zh = zilog->zl_header; 412 lwb_t *lwb; 413 dmu_tx_t *tx; 414 uint64_t txg; 415 416 /* 417 * Wait for any previous destroy to complete. 418 */ 419 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 420 421 if (BP_IS_HOLE(&zh->zh_log)) 422 return; 423 424 tx = dmu_tx_create(zilog->zl_os); 425 (void) dmu_tx_assign(tx, TXG_WAIT); 426 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 427 txg = dmu_tx_get_txg(tx); 428 429 mutex_enter(&zilog->zl_lock); 430 431 /* 432 * It is possible for the ZIL to get the previously mounted zilog 433 * structure of the same dataset if quickly remounted and the dbuf 434 * eviction has not completed. In this case we can see a non 435 * empty lwb list and keep_first will be set. We fix this by 436 * clearing the keep_first. This will be slower but it's very rare. 437 */ 438 if (!list_is_empty(&zilog->zl_lwb_list) && keep_first) 439 keep_first = B_FALSE; 440 441 ASSERT3U(zilog->zl_destroy_txg, <, txg); 442 zilog->zl_destroy_txg = txg; 443 zilog->zl_keep_first = keep_first; 444 445 if (!list_is_empty(&zilog->zl_lwb_list)) { 446 ASSERT(zh->zh_claim_txg == 0); 447 ASSERT(!keep_first); 448 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 449 list_remove(&zilog->zl_lwb_list, lwb); 450 if (lwb->lwb_buf != NULL) 451 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 452 zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg); 453 kmem_cache_free(zil_lwb_cache, lwb); 454 } 455 } else { 456 if (!keep_first) { 457 (void) zil_parse(zilog, zil_free_log_block, 458 zil_free_log_record, tx, zh->zh_claim_txg); 459 } 460 } 461 mutex_exit(&zilog->zl_lock); 462 463 dmu_tx_commit(tx); 464 } 465 466 /* 467 * zil_rollback_destroy() is only called by the rollback code. 468 * We already have a syncing tx. Rollback has exclusive access to the 469 * dataset, so we don't have to worry about concurrent zil access. 470 * The actual freeing of any log blocks occurs in zil_sync() later in 471 * this txg syncing phase. 472 */ 473 void 474 zil_rollback_destroy(zilog_t *zilog, dmu_tx_t *tx) 475 { 476 const zil_header_t *zh = zilog->zl_header; 477 uint64_t txg; 478 479 if (BP_IS_HOLE(&zh->zh_log)) 480 return; 481 482 txg = dmu_tx_get_txg(tx); 483 ASSERT3U(zilog->zl_destroy_txg, <, txg); 484 zilog->zl_destroy_txg = txg; 485 zilog->zl_keep_first = B_FALSE; 486 487 /* 488 * Ensure there's no outstanding ZIL IO. No lwbs or just the 489 * unused one that allocated in advance is ok. 490 */ 491 ASSERT(zilog->zl_lwb_list.list_head.list_next == 492 zilog->zl_lwb_list.list_head.list_prev); 493 (void) zil_parse(zilog, zil_free_log_block, zil_free_log_record, 494 tx, zh->zh_claim_txg); 495 } 496 497 int 498 zil_claim(char *osname, void *txarg) 499 { 500 dmu_tx_t *tx = txarg; 501 uint64_t first_txg = dmu_tx_get_txg(tx); 502 zilog_t *zilog; 503 zil_header_t *zh; 504 objset_t *os; 505 int error; 506 507 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os); 508 if (error) { 509 cmn_err(CE_WARN, "can't open objset for %s", osname); 510 return (0); 511 } 512 513 zilog = dmu_objset_zil(os); 514 zh = zil_header_in_syncing_context(zilog); 515 516 /* 517 * Claim all log blocks if we haven't already done so, and remember 518 * the highest claimed sequence number. This ensures that if we can 519 * read only part of the log now (e.g. due to a missing device), 520 * but we can read the entire log later, we will not try to replay 521 * or destroy beyond the last block we successfully claimed. 522 */ 523 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 524 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 525 zh->zh_claim_txg = first_txg; 526 zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block, 527 zil_claim_log_record, tx, first_txg); 528 dsl_dataset_dirty(dmu_objset_ds(os), tx); 529 } 530 531 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 532 dmu_objset_close(os); 533 return (0); 534 } 535 536 /* 537 * Check the log by walking the log chain. 538 * Checksum errors are ok as they indicate the end of the chain. 539 * Any other error (no device or read failure) returns an error. 540 */ 541 /* ARGSUSED */ 542 int 543 zil_check_log_chain(char *osname, void *txarg) 544 { 545 zilog_t *zilog; 546 zil_header_t *zh; 547 blkptr_t blk; 548 arc_buf_t *abuf; 549 objset_t *os; 550 char *lrbuf; 551 zil_trailer_t *ztp; 552 int error; 553 554 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os); 555 if (error) { 556 cmn_err(CE_WARN, "can't open objset for %s", osname); 557 return (0); 558 } 559 560 zilog = dmu_objset_zil(os); 561 zh = zil_header_in_syncing_context(zilog); 562 blk = zh->zh_log; 563 if (BP_IS_HOLE(&blk)) { 564 dmu_objset_close(os); 565 return (0); /* no chain */ 566 } 567 568 for (;;) { 569 error = zil_read_log_block(zilog, &blk, &abuf); 570 if (error) 571 break; 572 lrbuf = abuf->b_data; 573 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 574 blk = ztp->zit_next_blk; 575 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 576 } 577 dmu_objset_close(os); 578 if (error == ECKSUM) 579 return (0); /* normal end of chain */ 580 return (error); 581 } 582 583 /* 584 * Clear a log chain 585 */ 586 /* ARGSUSED */ 587 int 588 zil_clear_log_chain(char *osname, void *txarg) 589 { 590 zilog_t *zilog; 591 zil_header_t *zh; 592 objset_t *os; 593 dmu_tx_t *tx; 594 int error; 595 596 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os); 597 if (error) { 598 cmn_err(CE_WARN, "can't open objset for %s", osname); 599 return (0); 600 } 601 602 zilog = dmu_objset_zil(os); 603 tx = dmu_tx_create(zilog->zl_os); 604 (void) dmu_tx_assign(tx, TXG_WAIT); 605 zh = zil_header_in_syncing_context(zilog); 606 BP_ZERO(&zh->zh_log); 607 dsl_dataset_dirty(dmu_objset_ds(os), tx); 608 dmu_tx_commit(tx); 609 dmu_objset_close(os); 610 return (0); 611 } 612 613 static int 614 zil_vdev_compare(const void *x1, const void *x2) 615 { 616 uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 617 uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 618 619 if (v1 < v2) 620 return (-1); 621 if (v1 > v2) 622 return (1); 623 624 return (0); 625 } 626 627 void 628 zil_add_block(zilog_t *zilog, blkptr_t *bp) 629 { 630 avl_tree_t *t = &zilog->zl_vdev_tree; 631 avl_index_t where; 632 zil_vdev_node_t *zv, zvsearch; 633 int ndvas = BP_GET_NDVAS(bp); 634 int i; 635 636 if (zfs_nocacheflush) 637 return; 638 639 ASSERT(zilog->zl_writer); 640 641 /* 642 * Even though we're zl_writer, we still need a lock because the 643 * zl_get_data() callbacks may have dmu_sync() done callbacks 644 * that will run concurrently. 645 */ 646 mutex_enter(&zilog->zl_vdev_lock); 647 for (i = 0; i < ndvas; i++) { 648 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 649 if (avl_find(t, &zvsearch, &where) == NULL) { 650 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 651 zv->zv_vdev = zvsearch.zv_vdev; 652 avl_insert(t, zv, where); 653 } 654 } 655 mutex_exit(&zilog->zl_vdev_lock); 656 } 657 658 void 659 zil_flush_vdevs(zilog_t *zilog) 660 { 661 spa_t *spa = zilog->zl_spa; 662 avl_tree_t *t = &zilog->zl_vdev_tree; 663 void *cookie = NULL; 664 zil_vdev_node_t *zv; 665 zio_t *zio; 666 667 ASSERT(zilog->zl_writer); 668 669 /* 670 * We don't need zl_vdev_lock here because we're the zl_writer, 671 * and all zl_get_data() callbacks are done. 672 */ 673 if (avl_numnodes(t) == 0) 674 return; 675 676 spa_config_enter(spa, RW_READER, FTAG); 677 678 zio = zio_root(spa, NULL, NULL, 679 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 680 681 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 682 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 683 if (vd != NULL) 684 zio_flush(zio, vd); 685 kmem_free(zv, sizeof (*zv)); 686 } 687 688 /* 689 * Wait for all the flushes to complete. Not all devices actually 690 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 691 */ 692 (void) zio_wait(zio); 693 694 spa_config_exit(spa, FTAG); 695 } 696 697 /* 698 * Function called when a log block write completes 699 */ 700 static void 701 zil_lwb_write_done(zio_t *zio) 702 { 703 lwb_t *lwb = zio->io_private; 704 zilog_t *zilog = lwb->lwb_zilog; 705 706 /* 707 * Now that we've written this log block, we have a stable pointer 708 * to the next block in the chain, so it's OK to let the txg in 709 * which we allocated the next block sync. 710 */ 711 txg_rele_to_sync(&lwb->lwb_txgh); 712 713 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 714 mutex_enter(&zilog->zl_lock); 715 lwb->lwb_buf = NULL; 716 if (zio->io_error) 717 zilog->zl_log_error = B_TRUE; 718 mutex_exit(&zilog->zl_lock); 719 } 720 721 /* 722 * Initialize the io for a log block. 723 * 724 * Note, we should not initialize the IO until we are about 725 * to use it, since zio_rewrite() does a spa_config_enter(). 726 */ 727 static void 728 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 729 { 730 zbookmark_t zb; 731 732 zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET]; 733 zb.zb_object = 0; 734 zb.zb_level = -1; 735 zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 736 737 if (zilog->zl_root_zio == NULL) { 738 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 739 ZIO_FLAG_CANFAIL); 740 } 741 if (lwb->lwb_zio == NULL) { 742 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 743 ZIO_CHECKSUM_ZILOG, 0, &lwb->lwb_blk, lwb->lwb_buf, 744 lwb->lwb_sz, zil_lwb_write_done, lwb, 745 ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_CANFAIL, &zb); 746 } 747 } 748 749 /* 750 * Start a log block write and advance to the next log block. 751 * Calls are serialized. 752 */ 753 static lwb_t * 754 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 755 { 756 lwb_t *nlwb; 757 zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; 758 spa_t *spa = zilog->zl_spa; 759 blkptr_t *bp = &ztp->zit_next_blk; 760 uint64_t txg; 761 uint64_t zil_blksz; 762 int error; 763 764 ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); 765 766 /* 767 * Allocate the next block and save its address in this block 768 * before writing it in order to establish the log chain. 769 * Note that if the allocation of nlwb synced before we wrote 770 * the block that points at it (lwb), we'd leak it if we crashed. 771 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). 772 */ 773 txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); 774 txg_rele_to_quiesce(&lwb->lwb_txgh); 775 776 /* 777 * Pick a ZIL blocksize. We request a size that is the 778 * maximum of the previous used size, the current used size and 779 * the amount waiting in the queue. 780 */ 781 zil_blksz = MAX(zilog->zl_prev_used, 782 zilog->zl_cur_used + sizeof (*ztp)); 783 zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); 784 zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t); 785 if (zil_blksz > ZIL_MAX_BLKSZ) 786 zil_blksz = ZIL_MAX_BLKSZ; 787 788 BP_ZERO(bp); 789 /* pass the old blkptr in order to spread log blocks across devs */ 790 error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg); 791 if (error) { 792 dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg); 793 794 /* 795 * We dirty the dataset to ensure that zil_sync() will 796 * be called to remove this lwb from our zl_lwb_list. 797 * Failing to do so, may leave an lwb with a NULL lwb_buf 798 * hanging around on the zl_lwb_list. 799 */ 800 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 801 dmu_tx_commit(tx); 802 803 /* 804 * Since we've just experienced an allocation failure so we 805 * terminate the current lwb and send it on its way. 806 */ 807 ztp->zit_pad = 0; 808 ztp->zit_nused = lwb->lwb_nused; 809 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 810 zio_nowait(lwb->lwb_zio); 811 812 /* 813 * By returning NULL the caller will call tx_wait_synced() 814 */ 815 return (NULL); 816 } 817 818 ASSERT3U(bp->blk_birth, ==, txg); 819 ztp->zit_pad = 0; 820 ztp->zit_nused = lwb->lwb_nused; 821 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 822 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 823 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 824 825 /* 826 * Allocate a new log write buffer (lwb). 827 */ 828 nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 829 830 nlwb->lwb_zilog = zilog; 831 nlwb->lwb_blk = *bp; 832 nlwb->lwb_nused = 0; 833 nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); 834 nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); 835 nlwb->lwb_max_txg = txg; 836 nlwb->lwb_zio = NULL; 837 838 /* 839 * Put new lwb at the end of the log chain 840 */ 841 mutex_enter(&zilog->zl_lock); 842 list_insert_tail(&zilog->zl_lwb_list, nlwb); 843 mutex_exit(&zilog->zl_lock); 844 845 /* Record the block for later vdev flushing */ 846 zil_add_block(zilog, &lwb->lwb_blk); 847 848 /* 849 * kick off the write for the old log block 850 */ 851 dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); 852 ASSERT(lwb->lwb_zio); 853 zio_nowait(lwb->lwb_zio); 854 855 return (nlwb); 856 } 857 858 static lwb_t * 859 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 860 { 861 lr_t *lrc = &itx->itx_lr; /* common log record */ 862 lr_write_t *lr = (lr_write_t *)lrc; 863 uint64_t txg = lrc->lrc_txg; 864 uint64_t reclen = lrc->lrc_reclen; 865 uint64_t dlen; 866 867 if (lwb == NULL) 868 return (NULL); 869 ASSERT(lwb->lwb_buf != NULL); 870 871 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 872 dlen = P2ROUNDUP_TYPED( 873 lr->lr_length, sizeof (uint64_t), uint64_t); 874 else 875 dlen = 0; 876 877 zilog->zl_cur_used += (reclen + dlen); 878 879 zil_lwb_write_init(zilog, lwb); 880 881 /* 882 * If this record won't fit in the current log block, start a new one. 883 */ 884 if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 885 lwb = zil_lwb_write_start(zilog, lwb); 886 if (lwb == NULL) 887 return (NULL); 888 zil_lwb_write_init(zilog, lwb); 889 ASSERT(lwb->lwb_nused == 0); 890 if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 891 txg_wait_synced(zilog->zl_dmu_pool, txg); 892 return (lwb); 893 } 894 } 895 896 /* 897 * Update the lrc_seq, to be log record sequence number. See zil.h 898 * Then copy the record to the log buffer. 899 */ 900 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 901 bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); 902 903 /* 904 * If it's a write, fetch the data or get its blkptr as appropriate. 905 */ 906 if (lrc->lrc_txtype == TX_WRITE) { 907 if (txg > spa_freeze_txg(zilog->zl_spa)) 908 txg_wait_synced(zilog->zl_dmu_pool, txg); 909 if (itx->itx_wr_state != WR_COPIED) { 910 char *dbuf; 911 int error; 912 913 /* alignment is guaranteed */ 914 lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused); 915 if (dlen) { 916 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 917 dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen; 918 lr->lr_common.lrc_reclen += dlen; 919 } else { 920 ASSERT(itx->itx_wr_state == WR_INDIRECT); 921 dbuf = NULL; 922 } 923 error = zilog->zl_get_data( 924 itx->itx_private, lr, dbuf, lwb->lwb_zio); 925 if (error) { 926 ASSERT(error == ENOENT || error == EEXIST || 927 error == EALREADY); 928 return (lwb); 929 } 930 } 931 } 932 933 lwb->lwb_nused += reclen + dlen; 934 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 935 ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); 936 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 937 938 return (lwb); 939 } 940 941 itx_t * 942 zil_itx_create(uint64_t txtype, size_t lrsize) 943 { 944 itx_t *itx; 945 946 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 947 948 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 949 itx->itx_lr.lrc_txtype = txtype; 950 itx->itx_lr.lrc_reclen = lrsize; 951 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 952 itx->itx_lr.lrc_seq = 0; /* defensive */ 953 954 return (itx); 955 } 956 957 uint64_t 958 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 959 { 960 uint64_t seq; 961 962 ASSERT(itx->itx_lr.lrc_seq == 0); 963 964 mutex_enter(&zilog->zl_lock); 965 list_insert_tail(&zilog->zl_itx_list, itx); 966 zilog->zl_itx_list_sz += itx->itx_sod; 967 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 968 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 969 mutex_exit(&zilog->zl_lock); 970 971 return (seq); 972 } 973 974 /* 975 * Free up all in-memory intent log transactions that have now been synced. 976 */ 977 static void 978 zil_itx_clean(zilog_t *zilog) 979 { 980 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 981 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 982 list_t clean_list; 983 itx_t *itx; 984 985 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 986 987 mutex_enter(&zilog->zl_lock); 988 /* wait for a log writer to finish walking list */ 989 while (zilog->zl_writer) { 990 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 991 } 992 993 /* 994 * Move the sync'd log transactions to a separate list so we can call 995 * kmem_free without holding the zl_lock. 996 * 997 * There is no need to set zl_writer as we don't drop zl_lock here 998 */ 999 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 1000 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 1001 list_remove(&zilog->zl_itx_list, itx); 1002 zilog->zl_itx_list_sz -= itx->itx_sod; 1003 list_insert_tail(&clean_list, itx); 1004 } 1005 cv_broadcast(&zilog->zl_cv_writer); 1006 mutex_exit(&zilog->zl_lock); 1007 1008 /* destroy sync'd log transactions */ 1009 while ((itx = list_head(&clean_list)) != NULL) { 1010 list_remove(&clean_list, itx); 1011 kmem_free(itx, offsetof(itx_t, itx_lr) 1012 + itx->itx_lr.lrc_reclen); 1013 } 1014 list_destroy(&clean_list); 1015 } 1016 1017 /* 1018 * If there are any in-memory intent log transactions which have now been 1019 * synced then start up a taskq to free them. 1020 */ 1021 void 1022 zil_clean(zilog_t *zilog) 1023 { 1024 itx_t *itx; 1025 1026 mutex_enter(&zilog->zl_lock); 1027 itx = list_head(&zilog->zl_itx_list); 1028 if ((itx != NULL) && 1029 (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) { 1030 (void) taskq_dispatch(zilog->zl_clean_taskq, 1031 (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP); 1032 } 1033 mutex_exit(&zilog->zl_lock); 1034 } 1035 1036 void 1037 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid) 1038 { 1039 uint64_t txg; 1040 uint64_t commit_seq = 0; 1041 itx_t *itx, *itx_next = (itx_t *)-1; 1042 lwb_t *lwb; 1043 spa_t *spa; 1044 1045 zilog->zl_writer = B_TRUE; 1046 zilog->zl_root_zio = NULL; 1047 spa = zilog->zl_spa; 1048 1049 if (zilog->zl_suspend) { 1050 lwb = NULL; 1051 } else { 1052 lwb = list_tail(&zilog->zl_lwb_list); 1053 if (lwb == NULL) { 1054 /* 1055 * Return if there's nothing to flush before we 1056 * dirty the fs by calling zil_create() 1057 */ 1058 if (list_is_empty(&zilog->zl_itx_list)) { 1059 zilog->zl_writer = B_FALSE; 1060 return; 1061 } 1062 mutex_exit(&zilog->zl_lock); 1063 zil_create(zilog); 1064 mutex_enter(&zilog->zl_lock); 1065 lwb = list_tail(&zilog->zl_lwb_list); 1066 } 1067 } 1068 1069 /* Loop through in-memory log transactions filling log blocks. */ 1070 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1071 for (;;) { 1072 /* 1073 * Find the next itx to push: 1074 * Push all transactions related to specified foid and all 1075 * other transactions except TX_WRITE, TX_TRUNCATE, 1076 * TX_SETATTR and TX_ACL for all other files. 1077 */ 1078 if (itx_next != (itx_t *)-1) 1079 itx = itx_next; 1080 else 1081 itx = list_head(&zilog->zl_itx_list); 1082 for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) { 1083 if (foid == 0) /* push all foids? */ 1084 break; 1085 if (itx->itx_sync) /* push all O_[D]SYNC */ 1086 break; 1087 switch (itx->itx_lr.lrc_txtype) { 1088 case TX_SETATTR: 1089 case TX_WRITE: 1090 case TX_TRUNCATE: 1091 case TX_ACL: 1092 /* lr_foid is same offset for these records */ 1093 if (((lr_write_t *)&itx->itx_lr)->lr_foid 1094 != foid) { 1095 continue; /* skip this record */ 1096 } 1097 } 1098 break; 1099 } 1100 if (itx == NULL) 1101 break; 1102 1103 if ((itx->itx_lr.lrc_seq > seq) && 1104 ((lwb == NULL) || (lwb->lwb_nused == 0) || 1105 (lwb->lwb_nused + itx->itx_sod > ZIL_BLK_DATA_SZ(lwb)))) { 1106 break; 1107 } 1108 1109 /* 1110 * Save the next pointer. Even though we soon drop 1111 * zl_lock all threads that may change the list 1112 * (another writer or zil_itx_clean) can't do so until 1113 * they have zl_writer. 1114 */ 1115 itx_next = list_next(&zilog->zl_itx_list, itx); 1116 list_remove(&zilog->zl_itx_list, itx); 1117 zilog->zl_itx_list_sz -= itx->itx_sod; 1118 mutex_exit(&zilog->zl_lock); 1119 txg = itx->itx_lr.lrc_txg; 1120 ASSERT(txg); 1121 1122 if (txg > spa_last_synced_txg(spa) || 1123 txg > spa_freeze_txg(spa)) 1124 lwb = zil_lwb_commit(zilog, itx, lwb); 1125 kmem_free(itx, offsetof(itx_t, itx_lr) 1126 + itx->itx_lr.lrc_reclen); 1127 mutex_enter(&zilog->zl_lock); 1128 } 1129 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1130 /* determine commit sequence number */ 1131 itx = list_head(&zilog->zl_itx_list); 1132 if (itx) 1133 commit_seq = itx->itx_lr.lrc_seq; 1134 else 1135 commit_seq = zilog->zl_itx_seq; 1136 mutex_exit(&zilog->zl_lock); 1137 1138 /* write the last block out */ 1139 if (lwb != NULL && lwb->lwb_zio != NULL) 1140 lwb = zil_lwb_write_start(zilog, lwb); 1141 1142 zilog->zl_prev_used = zilog->zl_cur_used; 1143 zilog->zl_cur_used = 0; 1144 1145 /* 1146 * Wait if necessary for the log blocks to be on stable storage. 1147 */ 1148 if (zilog->zl_root_zio) { 1149 DTRACE_PROBE1(zil__cw3, zilog_t *, zilog); 1150 (void) zio_wait(zilog->zl_root_zio); 1151 DTRACE_PROBE1(zil__cw4, zilog_t *, zilog); 1152 zil_flush_vdevs(zilog); 1153 } 1154 1155 if (zilog->zl_log_error || lwb == NULL) { 1156 zilog->zl_log_error = 0; 1157 txg_wait_synced(zilog->zl_dmu_pool, 0); 1158 } 1159 1160 mutex_enter(&zilog->zl_lock); 1161 zilog->zl_writer = B_FALSE; 1162 1163 ASSERT3U(commit_seq, >=, zilog->zl_commit_seq); 1164 zilog->zl_commit_seq = commit_seq; 1165 } 1166 1167 /* 1168 * Push zfs transactions to stable storage up to the supplied sequence number. 1169 * If foid is 0 push out all transactions, otherwise push only those 1170 * for that file or might have been used to create that file. 1171 */ 1172 void 1173 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid) 1174 { 1175 if (zilog == NULL || seq == 0) 1176 return; 1177 1178 mutex_enter(&zilog->zl_lock); 1179 1180 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 1181 1182 while (zilog->zl_writer) { 1183 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1184 if (seq < zilog->zl_commit_seq) { 1185 mutex_exit(&zilog->zl_lock); 1186 return; 1187 } 1188 } 1189 zil_commit_writer(zilog, seq, foid); /* drops zl_lock */ 1190 /* wake up others waiting on the commit */ 1191 cv_broadcast(&zilog->zl_cv_writer); 1192 mutex_exit(&zilog->zl_lock); 1193 } 1194 1195 /* 1196 * Called in syncing context to free committed log blocks and update log header. 1197 */ 1198 void 1199 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1200 { 1201 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1202 uint64_t txg = dmu_tx_get_txg(tx); 1203 spa_t *spa = zilog->zl_spa; 1204 lwb_t *lwb; 1205 1206 mutex_enter(&zilog->zl_lock); 1207 1208 ASSERT(zilog->zl_stop_sync == 0); 1209 1210 zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK]; 1211 1212 if (zilog->zl_destroy_txg == txg) { 1213 blkptr_t blk = zh->zh_log; 1214 1215 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1216 ASSERT(spa_sync_pass(spa) == 1); 1217 1218 bzero(zh, sizeof (zil_header_t)); 1219 bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq)); 1220 1221 if (zilog->zl_keep_first) { 1222 /* 1223 * If this block was part of log chain that couldn't 1224 * be claimed because a device was missing during 1225 * zil_claim(), but that device later returns, 1226 * then this block could erroneously appear valid. 1227 * To guard against this, assign a new GUID to the new 1228 * log chain so it doesn't matter what blk points to. 1229 */ 1230 zil_init_log_chain(zilog, &blk); 1231 zh->zh_log = blk; 1232 } 1233 } 1234 1235 for (;;) { 1236 lwb = list_head(&zilog->zl_lwb_list); 1237 if (lwb == NULL) { 1238 mutex_exit(&zilog->zl_lock); 1239 return; 1240 } 1241 zh->zh_log = lwb->lwb_blk; 1242 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1243 break; 1244 list_remove(&zilog->zl_lwb_list, lwb); 1245 zio_free_blk(spa, &lwb->lwb_blk, txg); 1246 kmem_cache_free(zil_lwb_cache, lwb); 1247 1248 /* 1249 * If we don't have anything left in the lwb list then 1250 * we've had an allocation failure and we need to zero 1251 * out the zil_header blkptr so that we don't end 1252 * up freeing the same block twice. 1253 */ 1254 if (list_head(&zilog->zl_lwb_list) == NULL) 1255 BP_ZERO(&zh->zh_log); 1256 } 1257 mutex_exit(&zilog->zl_lock); 1258 } 1259 1260 void 1261 zil_init(void) 1262 { 1263 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1264 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1265 } 1266 1267 void 1268 zil_fini(void) 1269 { 1270 kmem_cache_destroy(zil_lwb_cache); 1271 } 1272 1273 zilog_t * 1274 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1275 { 1276 zilog_t *zilog; 1277 1278 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1279 1280 zilog->zl_header = zh_phys; 1281 zilog->zl_os = os; 1282 zilog->zl_spa = dmu_objset_spa(os); 1283 zilog->zl_dmu_pool = dmu_objset_pool(os); 1284 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1285 1286 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1287 1288 list_create(&zilog->zl_itx_list, sizeof (itx_t), 1289 offsetof(itx_t, itx_node)); 1290 1291 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1292 offsetof(lwb_t, lwb_node)); 1293 1294 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1295 1296 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1297 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1298 1299 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1300 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1301 1302 return (zilog); 1303 } 1304 1305 void 1306 zil_free(zilog_t *zilog) 1307 { 1308 lwb_t *lwb; 1309 1310 zilog->zl_stop_sync = 1; 1311 1312 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1313 list_remove(&zilog->zl_lwb_list, lwb); 1314 if (lwb->lwb_buf != NULL) 1315 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1316 kmem_cache_free(zil_lwb_cache, lwb); 1317 } 1318 list_destroy(&zilog->zl_lwb_list); 1319 1320 avl_destroy(&zilog->zl_vdev_tree); 1321 mutex_destroy(&zilog->zl_vdev_lock); 1322 1323 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1324 list_destroy(&zilog->zl_itx_list); 1325 mutex_destroy(&zilog->zl_lock); 1326 1327 cv_destroy(&zilog->zl_cv_writer); 1328 cv_destroy(&zilog->zl_cv_suspend); 1329 1330 kmem_free(zilog, sizeof (zilog_t)); 1331 } 1332 1333 /* 1334 * return true if the initial log block is not valid 1335 */ 1336 static boolean_t 1337 zil_empty(zilog_t *zilog) 1338 { 1339 const zil_header_t *zh = zilog->zl_header; 1340 arc_buf_t *abuf = NULL; 1341 1342 if (BP_IS_HOLE(&zh->zh_log)) 1343 return (B_TRUE); 1344 1345 if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0) 1346 return (B_TRUE); 1347 1348 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 1349 return (B_FALSE); 1350 } 1351 1352 /* 1353 * Open an intent log. 1354 */ 1355 zilog_t * 1356 zil_open(objset_t *os, zil_get_data_t *get_data) 1357 { 1358 zilog_t *zilog = dmu_objset_zil(os); 1359 1360 zilog->zl_get_data = get_data; 1361 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1362 2, 2, TASKQ_PREPOPULATE); 1363 1364 return (zilog); 1365 } 1366 1367 /* 1368 * Close an intent log. 1369 */ 1370 void 1371 zil_close(zilog_t *zilog) 1372 { 1373 /* 1374 * If the log isn't already committed, mark the objset dirty 1375 * (so zil_sync() will be called) and wait for that txg to sync. 1376 */ 1377 if (!zil_is_committed(zilog)) { 1378 uint64_t txg; 1379 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1380 (void) dmu_tx_assign(tx, TXG_WAIT); 1381 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1382 txg = dmu_tx_get_txg(tx); 1383 dmu_tx_commit(tx); 1384 txg_wait_synced(zilog->zl_dmu_pool, txg); 1385 } 1386 1387 taskq_destroy(zilog->zl_clean_taskq); 1388 zilog->zl_clean_taskq = NULL; 1389 zilog->zl_get_data = NULL; 1390 1391 zil_itx_clean(zilog); 1392 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1393 } 1394 1395 /* 1396 * Suspend an intent log. While in suspended mode, we still honor 1397 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1398 * We suspend the log briefly when taking a snapshot so that the snapshot 1399 * contains all the data it's supposed to, and has an empty intent log. 1400 */ 1401 int 1402 zil_suspend(zilog_t *zilog) 1403 { 1404 const zil_header_t *zh = zilog->zl_header; 1405 1406 mutex_enter(&zilog->zl_lock); 1407 if (zh->zh_claim_txg != 0) { /* unplayed log */ 1408 mutex_exit(&zilog->zl_lock); 1409 return (EBUSY); 1410 } 1411 if (zilog->zl_suspend++ != 0) { 1412 /* 1413 * Someone else already began a suspend. 1414 * Just wait for them to finish. 1415 */ 1416 while (zilog->zl_suspending) 1417 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1418 mutex_exit(&zilog->zl_lock); 1419 return (0); 1420 } 1421 zilog->zl_suspending = B_TRUE; 1422 mutex_exit(&zilog->zl_lock); 1423 1424 zil_commit(zilog, UINT64_MAX, 0); 1425 1426 /* 1427 * Wait for any in-flight log writes to complete. 1428 */ 1429 mutex_enter(&zilog->zl_lock); 1430 while (zilog->zl_writer) 1431 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1432 mutex_exit(&zilog->zl_lock); 1433 1434 zil_destroy(zilog, B_FALSE); 1435 1436 mutex_enter(&zilog->zl_lock); 1437 zilog->zl_suspending = B_FALSE; 1438 cv_broadcast(&zilog->zl_cv_suspend); 1439 mutex_exit(&zilog->zl_lock); 1440 1441 return (0); 1442 } 1443 1444 void 1445 zil_resume(zilog_t *zilog) 1446 { 1447 mutex_enter(&zilog->zl_lock); 1448 ASSERT(zilog->zl_suspend != 0); 1449 zilog->zl_suspend--; 1450 mutex_exit(&zilog->zl_lock); 1451 } 1452 1453 typedef struct zil_replay_arg { 1454 objset_t *zr_os; 1455 zil_replay_func_t **zr_replay; 1456 void *zr_arg; 1457 uint64_t *zr_txgp; 1458 boolean_t zr_byteswap; 1459 char *zr_lrbuf; 1460 } zil_replay_arg_t; 1461 1462 static void 1463 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1464 { 1465 zil_replay_arg_t *zr = zra; 1466 const zil_header_t *zh = zilog->zl_header; 1467 uint64_t reclen = lr->lrc_reclen; 1468 uint64_t txtype = lr->lrc_txtype; 1469 char *name; 1470 int pass, error, sunk; 1471 1472 if (zilog->zl_stop_replay) 1473 return; 1474 1475 if (lr->lrc_txg < claim_txg) /* already committed */ 1476 return; 1477 1478 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1479 return; 1480 1481 /* Strip case-insensitive bit, still present in log record */ 1482 txtype &= ~TX_CI; 1483 1484 /* 1485 * Make a copy of the data so we can revise and extend it. 1486 */ 1487 bcopy(lr, zr->zr_lrbuf, reclen); 1488 1489 /* 1490 * The log block containing this lr may have been byteswapped 1491 * so that we can easily examine common fields like lrc_txtype. 1492 * However, the log is a mix of different data types, and only the 1493 * replay vectors know how to byteswap their records. Therefore, if 1494 * the lr was byteswapped, undo it before invoking the replay vector. 1495 */ 1496 if (zr->zr_byteswap) 1497 byteswap_uint64_array(zr->zr_lrbuf, reclen); 1498 1499 /* 1500 * If this is a TX_WRITE with a blkptr, suck in the data. 1501 */ 1502 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1503 lr_write_t *lrw = (lr_write_t *)lr; 1504 blkptr_t *wbp = &lrw->lr_blkptr; 1505 uint64_t wlen = lrw->lr_length; 1506 char *wbuf = zr->zr_lrbuf + reclen; 1507 1508 if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ 1509 bzero(wbuf, wlen); 1510 } else { 1511 /* 1512 * A subsequent write may have overwritten this block, 1513 * in which case wbp may have been been freed and 1514 * reallocated, and our read of wbp may fail with a 1515 * checksum error. We can safely ignore this because 1516 * the later write will provide the correct data. 1517 */ 1518 zbookmark_t zb; 1519 1520 zb.zb_objset = dmu_objset_id(zilog->zl_os); 1521 zb.zb_object = lrw->lr_foid; 1522 zb.zb_level = -1; 1523 zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp); 1524 1525 (void) zio_wait(zio_read(NULL, zilog->zl_spa, 1526 wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, 1527 ZIO_PRIORITY_SYNC_READ, 1528 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb)); 1529 (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); 1530 } 1531 } 1532 1533 /* 1534 * We must now do two things atomically: replay this log record, 1535 * and update the log header to reflect the fact that we did so. 1536 * We use the DMU's ability to assign into a specific txg to do this. 1537 */ 1538 for (pass = 1, sunk = B_FALSE; /* CONSTANTCONDITION */; pass++) { 1539 uint64_t replay_txg; 1540 dmu_tx_t *replay_tx; 1541 1542 replay_tx = dmu_tx_create(zr->zr_os); 1543 error = dmu_tx_assign(replay_tx, TXG_WAIT); 1544 if (error) { 1545 dmu_tx_abort(replay_tx); 1546 break; 1547 } 1548 1549 replay_txg = dmu_tx_get_txg(replay_tx); 1550 1551 if (txtype == 0 || txtype >= TX_MAX_TYPE) { 1552 error = EINVAL; 1553 } else { 1554 /* 1555 * On the first pass, arrange for the replay vector 1556 * to fail its dmu_tx_assign(). That's the only way 1557 * to ensure that those code paths remain well tested. 1558 * 1559 * Only byteswap (if needed) on the 1st pass. 1560 */ 1561 *zr->zr_txgp = replay_txg - (pass == 1); 1562 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, 1563 zr->zr_byteswap && pass == 1); 1564 *zr->zr_txgp = TXG_NOWAIT; 1565 } 1566 1567 if (error == 0) { 1568 dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx); 1569 zilog->zl_replay_seq[replay_txg & TXG_MASK] = 1570 lr->lrc_seq; 1571 } 1572 1573 dmu_tx_commit(replay_tx); 1574 1575 if (!error) 1576 return; 1577 1578 /* 1579 * The DMU's dnode layer doesn't see removes until the txg 1580 * commits, so a subsequent claim can spuriously fail with 1581 * EEXIST. So if we receive any error other than ERESTART 1582 * we try syncing out any removes then retrying the 1583 * transaction. 1584 */ 1585 if (error != ERESTART && !sunk) { 1586 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1587 sunk = B_TRUE; 1588 continue; /* retry */ 1589 } 1590 1591 if (error != ERESTART) 1592 break; 1593 1594 if (pass != 1) 1595 txg_wait_open(spa_get_dsl(zilog->zl_spa), 1596 replay_txg + 1); 1597 1598 dprintf("pass %d, retrying\n", pass); 1599 } 1600 1601 ASSERT(error && error != ERESTART); 1602 name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1603 dmu_objset_name(zr->zr_os, name); 1604 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1605 "dataset %s, seq 0x%llx, txtype %llu %s\n", 1606 error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype, 1607 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1608 zilog->zl_stop_replay = 1; 1609 kmem_free(name, MAXNAMELEN); 1610 } 1611 1612 /* ARGSUSED */ 1613 static void 1614 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1615 { 1616 zilog->zl_replay_blks++; 1617 } 1618 1619 /* 1620 * If this dataset has a non-empty intent log, replay it and destroy it. 1621 */ 1622 void 1623 zil_replay(objset_t *os, void *arg, uint64_t *txgp, 1624 zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1625 { 1626 zilog_t *zilog = dmu_objset_zil(os); 1627 const zil_header_t *zh = zilog->zl_header; 1628 zil_replay_arg_t zr; 1629 1630 if (zil_empty(zilog)) { 1631 zil_destroy(zilog, B_TRUE); 1632 return; 1633 } 1634 1635 zr.zr_os = os; 1636 zr.zr_replay = replay_func; 1637 zr.zr_arg = arg; 1638 zr.zr_txgp = txgp; 1639 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1640 zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1641 1642 /* 1643 * Wait for in-progress removes to sync before starting replay. 1644 */ 1645 txg_wait_synced(zilog->zl_dmu_pool, 0); 1646 1647 zilog->zl_stop_replay = 0; 1648 zilog->zl_replay_time = lbolt; 1649 ASSERT(zilog->zl_replay_blks == 0); 1650 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1651 zh->zh_claim_txg); 1652 kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); 1653 1654 zil_destroy(zilog, B_FALSE); 1655 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1656 } 1657 1658 /* 1659 * Report whether all transactions are committed 1660 */ 1661 int 1662 zil_is_committed(zilog_t *zilog) 1663 { 1664 lwb_t *lwb; 1665 int ret; 1666 1667 mutex_enter(&zilog->zl_lock); 1668 while (zilog->zl_writer) 1669 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1670 1671 /* recent unpushed intent log transactions? */ 1672 if (!list_is_empty(&zilog->zl_itx_list)) { 1673 ret = B_FALSE; 1674 goto out; 1675 } 1676 1677 /* intent log never used? */ 1678 lwb = list_head(&zilog->zl_lwb_list); 1679 if (lwb == NULL) { 1680 ret = B_TRUE; 1681 goto out; 1682 } 1683 1684 /* 1685 * more than 1 log buffer means zil_sync() hasn't yet freed 1686 * entries after a txg has committed 1687 */ 1688 if (list_next(&zilog->zl_lwb_list, lwb)) { 1689 ret = B_FALSE; 1690 goto out; 1691 } 1692 1693 ASSERT(zil_empty(zilog)); 1694 ret = B_TRUE; 1695 out: 1696 cv_broadcast(&zilog->zl_cv_writer); 1697 mutex_exit(&zilog->zl_lock); 1698 return (ret); 1699 } 1700