1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zap.h> 32 #include <sys/arc.h> 33 #include <sys/stat.h> 34 #include <sys/resource.h> 35 #include <sys/zil.h> 36 #include <sys/zil_impl.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vdev.h> 39 #include <sys/dmu_tx.h> 40 41 /* 42 * The zfs intent log (ZIL) saves transaction records of system calls 43 * that change the file system in memory with enough information 44 * to be able to replay them. These are stored in memory until 45 * either the DMU transaction group (txg) commits them to the stable pool 46 * and they can be discarded, or they are flushed to the stable log 47 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 48 * requirement. In the event of a panic or power fail then those log 49 * records (transactions) are replayed. 50 * 51 * There is one ZIL per file system. Its on-disk (pool) format consists 52 * of 3 parts: 53 * 54 * - ZIL header 55 * - ZIL blocks 56 * - ZIL records 57 * 58 * A log record holds a system call transaction. Log blocks can 59 * hold many log records and the blocks are chained together. 60 * Each ZIL block contains a block pointer (blkptr_t) to the next 61 * ZIL block in the chain. The ZIL header points to the first 62 * block in the chain. Note there is not a fixed place in the pool 63 * to hold blocks. They are dynamically allocated and freed as 64 * needed from the blocks available. Figure X shows the ZIL structure: 65 */ 66 67 /* 68 * This global ZIL switch affects all pools 69 */ 70 int zil_disable = 0; /* disable intent logging */ 71 72 /* 73 * Tunable parameter for debugging or performance analysis. Setting 74 * zfs_nocacheflush will cause corruption on power loss if a volatile 75 * out-of-order write cache is enabled. 76 */ 77 boolean_t zfs_nocacheflush = B_FALSE; 78 79 static kmem_cache_t *zil_lwb_cache; 80 81 static int 82 zil_dva_compare(const void *x1, const void *x2) 83 { 84 const dva_t *dva1 = x1; 85 const dva_t *dva2 = x2; 86 87 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 88 return (-1); 89 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 90 return (1); 91 92 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 93 return (-1); 94 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 95 return (1); 96 97 return (0); 98 } 99 100 static void 101 zil_dva_tree_init(avl_tree_t *t) 102 { 103 avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), 104 offsetof(zil_dva_node_t, zn_node)); 105 } 106 107 static void 108 zil_dva_tree_fini(avl_tree_t *t) 109 { 110 zil_dva_node_t *zn; 111 void *cookie = NULL; 112 113 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 114 kmem_free(zn, sizeof (zil_dva_node_t)); 115 116 avl_destroy(t); 117 } 118 119 static int 120 zil_dva_tree_add(avl_tree_t *t, dva_t *dva) 121 { 122 zil_dva_node_t *zn; 123 avl_index_t where; 124 125 if (avl_find(t, dva, &where) != NULL) 126 return (EEXIST); 127 128 zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); 129 zn->zn_dva = *dva; 130 avl_insert(t, zn, where); 131 132 return (0); 133 } 134 135 static zil_header_t * 136 zil_header_in_syncing_context(zilog_t *zilog) 137 { 138 return ((zil_header_t *)zilog->zl_header); 139 } 140 141 static void 142 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 143 { 144 zio_cksum_t *zc = &bp->blk_cksum; 145 146 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 147 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 148 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 149 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 150 } 151 152 /* 153 * Read a log block, make sure it's valid, and byteswap it if necessary. 154 */ 155 static int 156 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp) 157 { 158 blkptr_t blk = *bp; 159 zbookmark_t zb; 160 uint32_t aflags = ARC_WAIT; 161 int error; 162 163 zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET]; 164 zb.zb_object = 0; 165 zb.zb_level = -1; 166 zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ]; 167 168 *abufpp = NULL; 169 170 /* 171 * We shouldn't be doing any scrubbing while we're doing log 172 * replay, it's OK to not lock. 173 */ 174 error = arc_read_nolock(NULL, zilog->zl_spa, &blk, 175 arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | 176 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb); 177 178 if (error == 0) { 179 char *data = (*abufpp)->b_data; 180 uint64_t blksz = BP_GET_LSIZE(bp); 181 zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1; 182 zio_cksum_t cksum = bp->blk_cksum; 183 184 /* 185 * Sequence numbers should be... sequential. The checksum 186 * verifier for the next block should be bp's checksum plus 1. 187 */ 188 cksum.zc_word[ZIL_ZC_SEQ]++; 189 190 if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, sizeof (cksum))) 191 error = ESTALE; 192 else if (BP_IS_HOLE(&ztp->zit_next_blk)) 193 error = ENOENT; 194 else if (ztp->zit_nused > (blksz - sizeof (zil_trailer_t))) 195 error = EOVERFLOW; 196 197 if (error) { 198 VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1); 199 *abufpp = NULL; 200 } 201 } 202 203 dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid); 204 205 return (error); 206 } 207 208 /* 209 * Parse the intent log, and call parse_func for each valid record within. 210 * Return the highest sequence number. 211 */ 212 uint64_t 213 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 214 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 215 { 216 const zil_header_t *zh = zilog->zl_header; 217 uint64_t claim_seq = zh->zh_claim_seq; 218 uint64_t seq = 0; 219 uint64_t max_seq = 0; 220 blkptr_t blk = zh->zh_log; 221 arc_buf_t *abuf; 222 char *lrbuf, *lrp; 223 zil_trailer_t *ztp; 224 int reclen, error; 225 226 if (BP_IS_HOLE(&blk)) 227 return (max_seq); 228 229 /* 230 * Starting at the block pointed to by zh_log we read the log chain. 231 * For each block in the chain we strongly check that block to 232 * ensure its validity. We stop when an invalid block is found. 233 * For each block pointer in the chain we call parse_blk_func(). 234 * For each record in each valid block we call parse_lr_func(). 235 * If the log has been claimed, stop if we encounter a sequence 236 * number greater than the highest claimed sequence number. 237 */ 238 zil_dva_tree_init(&zilog->zl_dva_tree); 239 for (;;) { 240 seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 241 242 if (claim_seq != 0 && seq > claim_seq) 243 break; 244 245 ASSERT(max_seq < seq); 246 max_seq = seq; 247 248 error = zil_read_log_block(zilog, &blk, &abuf); 249 250 if (parse_blk_func != NULL) 251 parse_blk_func(zilog, &blk, arg, txg); 252 253 if (error) 254 break; 255 256 lrbuf = abuf->b_data; 257 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 258 blk = ztp->zit_next_blk; 259 260 if (parse_lr_func == NULL) { 261 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 262 continue; 263 } 264 265 for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { 266 lr_t *lr = (lr_t *)lrp; 267 reclen = lr->lrc_reclen; 268 ASSERT3U(reclen, >=, sizeof (lr_t)); 269 parse_lr_func(zilog, lr, arg, txg); 270 } 271 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 272 } 273 zil_dva_tree_fini(&zilog->zl_dva_tree); 274 275 return (max_seq); 276 } 277 278 /* ARGSUSED */ 279 static void 280 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 281 { 282 spa_t *spa = zilog->zl_spa; 283 int err; 284 285 /* 286 * Claim log block if not already committed and not already claimed. 287 */ 288 if (bp->blk_birth >= first_txg && 289 zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { 290 err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL)); 291 ASSERT(err == 0); 292 } 293 } 294 295 static void 296 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 297 { 298 if (lrc->lrc_txtype == TX_WRITE) { 299 lr_write_t *lr = (lr_write_t *)lrc; 300 zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); 301 } 302 } 303 304 /* ARGSUSED */ 305 static void 306 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 307 { 308 zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); 309 } 310 311 static void 312 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 313 { 314 /* 315 * If we previously claimed it, we need to free it. 316 */ 317 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { 318 lr_write_t *lr = (lr_write_t *)lrc; 319 blkptr_t *bp = &lr->lr_blkptr; 320 if (bp->blk_birth >= claim_txg && 321 !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { 322 (void) arc_free(NULL, zilog->zl_spa, 323 dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); 324 } 325 } 326 } 327 328 /* 329 * Create an on-disk intent log. 330 */ 331 static void 332 zil_create(zilog_t *zilog) 333 { 334 const zil_header_t *zh = zilog->zl_header; 335 lwb_t *lwb; 336 uint64_t txg = 0; 337 dmu_tx_t *tx = NULL; 338 blkptr_t blk; 339 int error = 0; 340 341 /* 342 * Wait for any previous destroy to complete. 343 */ 344 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 345 346 ASSERT(zh->zh_claim_txg == 0); 347 ASSERT(zh->zh_replay_seq == 0); 348 349 blk = zh->zh_log; 350 351 /* 352 * If we don't already have an initial log block, allocate one now. 353 */ 354 if (BP_IS_HOLE(&blk)) { 355 tx = dmu_tx_create(zilog->zl_os); 356 (void) dmu_tx_assign(tx, TXG_WAIT); 357 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 358 txg = dmu_tx_get_txg(tx); 359 360 error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, 361 NULL, txg); 362 363 if (error == 0) 364 zil_init_log_chain(zilog, &blk); 365 } 366 367 /* 368 * Allocate a log write buffer (lwb) for the first log block. 369 */ 370 if (error == 0) { 371 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 372 lwb->lwb_zilog = zilog; 373 lwb->lwb_blk = blk; 374 lwb->lwb_nused = 0; 375 lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); 376 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); 377 lwb->lwb_max_txg = txg; 378 lwb->lwb_zio = NULL; 379 380 mutex_enter(&zilog->zl_lock); 381 list_insert_tail(&zilog->zl_lwb_list, lwb); 382 mutex_exit(&zilog->zl_lock); 383 } 384 385 /* 386 * If we just allocated the first log block, commit our transaction 387 * and wait for zil_sync() to stuff the block poiner into zh_log. 388 * (zh is part of the MOS, so we cannot modify it in open context.) 389 */ 390 if (tx != NULL) { 391 dmu_tx_commit(tx); 392 txg_wait_synced(zilog->zl_dmu_pool, txg); 393 } 394 395 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 396 } 397 398 /* 399 * In one tx, free all log blocks and clear the log header. 400 * If keep_first is set, then we're replaying a log with no content. 401 * We want to keep the first block, however, so that the first 402 * synchronous transaction doesn't require a txg_wait_synced() 403 * in zil_create(). We don't need to txg_wait_synced() here either 404 * when keep_first is set, because both zil_create() and zil_destroy() 405 * will wait for any in-progress destroys to complete. 406 */ 407 void 408 zil_destroy(zilog_t *zilog, boolean_t keep_first) 409 { 410 const zil_header_t *zh = zilog->zl_header; 411 lwb_t *lwb; 412 dmu_tx_t *tx; 413 uint64_t txg; 414 415 /* 416 * Wait for any previous destroy to complete. 417 */ 418 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 419 420 if (BP_IS_HOLE(&zh->zh_log)) 421 return; 422 423 tx = dmu_tx_create(zilog->zl_os); 424 (void) dmu_tx_assign(tx, TXG_WAIT); 425 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 426 txg = dmu_tx_get_txg(tx); 427 428 mutex_enter(&zilog->zl_lock); 429 430 /* 431 * It is possible for the ZIL to get the previously mounted zilog 432 * structure of the same dataset if quickly remounted and the dbuf 433 * eviction has not completed. In this case we can see a non 434 * empty lwb list and keep_first will be set. We fix this by 435 * clearing the keep_first. This will be slower but it's very rare. 436 */ 437 if (!list_is_empty(&zilog->zl_lwb_list) && keep_first) 438 keep_first = B_FALSE; 439 440 ASSERT3U(zilog->zl_destroy_txg, <, txg); 441 zilog->zl_destroy_txg = txg; 442 zilog->zl_keep_first = keep_first; 443 444 if (!list_is_empty(&zilog->zl_lwb_list)) { 445 ASSERT(zh->zh_claim_txg == 0); 446 ASSERT(!keep_first); 447 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 448 list_remove(&zilog->zl_lwb_list, lwb); 449 if (lwb->lwb_buf != NULL) 450 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 451 zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg); 452 kmem_cache_free(zil_lwb_cache, lwb); 453 } 454 } else { 455 if (!keep_first) { 456 (void) zil_parse(zilog, zil_free_log_block, 457 zil_free_log_record, tx, zh->zh_claim_txg); 458 } 459 } 460 mutex_exit(&zilog->zl_lock); 461 462 dmu_tx_commit(tx); 463 } 464 465 /* 466 * zil_rollback_destroy() is only called by the rollback code. 467 * We already have a syncing tx. Rollback has exclusive access to the 468 * dataset, so we don't have to worry about concurrent zil access. 469 * The actual freeing of any log blocks occurs in zil_sync() later in 470 * this txg syncing phase. 471 */ 472 void 473 zil_rollback_destroy(zilog_t *zilog, dmu_tx_t *tx) 474 { 475 const zil_header_t *zh = zilog->zl_header; 476 uint64_t txg; 477 478 if (BP_IS_HOLE(&zh->zh_log)) 479 return; 480 481 txg = dmu_tx_get_txg(tx); 482 ASSERT3U(zilog->zl_destroy_txg, <, txg); 483 zilog->zl_destroy_txg = txg; 484 zilog->zl_keep_first = B_FALSE; 485 486 /* 487 * Ensure there's no outstanding ZIL IO. No lwbs or just the 488 * unused one that allocated in advance is ok. 489 */ 490 ASSERT(zilog->zl_lwb_list.list_head.list_next == 491 zilog->zl_lwb_list.list_head.list_prev); 492 (void) zil_parse(zilog, zil_free_log_block, zil_free_log_record, 493 tx, zh->zh_claim_txg); 494 } 495 496 int 497 zil_claim(char *osname, void *txarg) 498 { 499 dmu_tx_t *tx = txarg; 500 uint64_t first_txg = dmu_tx_get_txg(tx); 501 zilog_t *zilog; 502 zil_header_t *zh; 503 objset_t *os; 504 int error; 505 506 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os); 507 if (error) { 508 cmn_err(CE_WARN, "can't open objset for %s", osname); 509 return (0); 510 } 511 512 zilog = dmu_objset_zil(os); 513 zh = zil_header_in_syncing_context(zilog); 514 515 /* 516 * Claim all log blocks if we haven't already done so, and remember 517 * the highest claimed sequence number. This ensures that if we can 518 * read only part of the log now (e.g. due to a missing device), 519 * but we can read the entire log later, we will not try to replay 520 * or destroy beyond the last block we successfully claimed. 521 */ 522 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 523 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 524 zh->zh_claim_txg = first_txg; 525 zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block, 526 zil_claim_log_record, tx, first_txg); 527 dsl_dataset_dirty(dmu_objset_ds(os), tx); 528 } 529 530 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 531 dmu_objset_close(os); 532 return (0); 533 } 534 535 /* 536 * Check the log by walking the log chain. 537 * Checksum errors are ok as they indicate the end of the chain. 538 * Any other error (no device or read failure) returns an error. 539 */ 540 /* ARGSUSED */ 541 int 542 zil_check_log_chain(char *osname, void *txarg) 543 { 544 zilog_t *zilog; 545 zil_header_t *zh; 546 blkptr_t blk; 547 arc_buf_t *abuf; 548 objset_t *os; 549 char *lrbuf; 550 zil_trailer_t *ztp; 551 int error; 552 553 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os); 554 if (error) { 555 cmn_err(CE_WARN, "can't open objset for %s", osname); 556 return (0); 557 } 558 559 zilog = dmu_objset_zil(os); 560 zh = zil_header_in_syncing_context(zilog); 561 blk = zh->zh_log; 562 if (BP_IS_HOLE(&blk)) { 563 dmu_objset_close(os); 564 return (0); /* no chain */ 565 } 566 567 for (;;) { 568 error = zil_read_log_block(zilog, &blk, &abuf); 569 if (error) 570 break; 571 lrbuf = abuf->b_data; 572 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 573 blk = ztp->zit_next_blk; 574 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 575 } 576 dmu_objset_close(os); 577 if (error == ECKSUM) 578 return (0); /* normal end of chain */ 579 return (error); 580 } 581 582 /* 583 * Clear a log chain 584 */ 585 /* ARGSUSED */ 586 int 587 zil_clear_log_chain(char *osname, void *txarg) 588 { 589 zilog_t *zilog; 590 zil_header_t *zh; 591 objset_t *os; 592 dmu_tx_t *tx; 593 int error; 594 595 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os); 596 if (error) { 597 cmn_err(CE_WARN, "can't open objset for %s", osname); 598 return (0); 599 } 600 601 zilog = dmu_objset_zil(os); 602 tx = dmu_tx_create(zilog->zl_os); 603 (void) dmu_tx_assign(tx, TXG_WAIT); 604 zh = zil_header_in_syncing_context(zilog); 605 BP_ZERO(&zh->zh_log); 606 dsl_dataset_dirty(dmu_objset_ds(os), tx); 607 dmu_tx_commit(tx); 608 dmu_objset_close(os); 609 return (0); 610 } 611 612 static int 613 zil_vdev_compare(const void *x1, const void *x2) 614 { 615 uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 616 uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 617 618 if (v1 < v2) 619 return (-1); 620 if (v1 > v2) 621 return (1); 622 623 return (0); 624 } 625 626 void 627 zil_add_block(zilog_t *zilog, blkptr_t *bp) 628 { 629 avl_tree_t *t = &zilog->zl_vdev_tree; 630 avl_index_t where; 631 zil_vdev_node_t *zv, zvsearch; 632 int ndvas = BP_GET_NDVAS(bp); 633 int i; 634 635 if (zfs_nocacheflush) 636 return; 637 638 ASSERT(zilog->zl_writer); 639 640 /* 641 * Even though we're zl_writer, we still need a lock because the 642 * zl_get_data() callbacks may have dmu_sync() done callbacks 643 * that will run concurrently. 644 */ 645 mutex_enter(&zilog->zl_vdev_lock); 646 for (i = 0; i < ndvas; i++) { 647 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 648 if (avl_find(t, &zvsearch, &where) == NULL) { 649 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 650 zv->zv_vdev = zvsearch.zv_vdev; 651 avl_insert(t, zv, where); 652 } 653 } 654 mutex_exit(&zilog->zl_vdev_lock); 655 } 656 657 void 658 zil_flush_vdevs(zilog_t *zilog) 659 { 660 spa_t *spa = zilog->zl_spa; 661 avl_tree_t *t = &zilog->zl_vdev_tree; 662 void *cookie = NULL; 663 zil_vdev_node_t *zv; 664 zio_t *zio; 665 666 ASSERT(zilog->zl_writer); 667 668 /* 669 * We don't need zl_vdev_lock here because we're the zl_writer, 670 * and all zl_get_data() callbacks are done. 671 */ 672 if (avl_numnodes(t) == 0) 673 return; 674 675 spa_config_enter(spa, RW_READER, FTAG); 676 677 zio = zio_root(spa, NULL, NULL, 678 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 679 680 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 681 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 682 if (vd != NULL) 683 zio_flush(zio, vd); 684 kmem_free(zv, sizeof (*zv)); 685 } 686 687 /* 688 * Wait for all the flushes to complete. Not all devices actually 689 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 690 */ 691 (void) zio_wait(zio); 692 693 spa_config_exit(spa, FTAG); 694 } 695 696 /* 697 * Function called when a log block write completes 698 */ 699 static void 700 zil_lwb_write_done(zio_t *zio) 701 { 702 lwb_t *lwb = zio->io_private; 703 zilog_t *zilog = lwb->lwb_zilog; 704 705 /* 706 * Now that we've written this log block, we have a stable pointer 707 * to the next block in the chain, so it's OK to let the txg in 708 * which we allocated the next block sync. 709 */ 710 txg_rele_to_sync(&lwb->lwb_txgh); 711 712 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 713 mutex_enter(&zilog->zl_lock); 714 lwb->lwb_buf = NULL; 715 if (zio->io_error) 716 zilog->zl_log_error = B_TRUE; 717 mutex_exit(&zilog->zl_lock); 718 } 719 720 /* 721 * Initialize the io for a log block. 722 * 723 * Note, we should not initialize the IO until we are about 724 * to use it, since zio_rewrite() does a spa_config_enter(). 725 */ 726 static void 727 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 728 { 729 zbookmark_t zb; 730 731 zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET]; 732 zb.zb_object = 0; 733 zb.zb_level = -1; 734 zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 735 736 if (zilog->zl_root_zio == NULL) { 737 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 738 ZIO_FLAG_CANFAIL); 739 } 740 if (lwb->lwb_zio == NULL) { 741 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 742 ZIO_CHECKSUM_ZILOG, 0, &lwb->lwb_blk, lwb->lwb_buf, 743 lwb->lwb_sz, zil_lwb_write_done, lwb, 744 ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_CANFAIL, &zb); 745 } 746 } 747 748 /* 749 * Start a log block write and advance to the next log block. 750 * Calls are serialized. 751 */ 752 static lwb_t * 753 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 754 { 755 lwb_t *nlwb; 756 zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; 757 spa_t *spa = zilog->zl_spa; 758 blkptr_t *bp = &ztp->zit_next_blk; 759 uint64_t txg; 760 uint64_t zil_blksz; 761 int error; 762 763 ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); 764 765 /* 766 * Allocate the next block and save its address in this block 767 * before writing it in order to establish the log chain. 768 * Note that if the allocation of nlwb synced before we wrote 769 * the block that points at it (lwb), we'd leak it if we crashed. 770 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). 771 */ 772 txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); 773 txg_rele_to_quiesce(&lwb->lwb_txgh); 774 775 /* 776 * Pick a ZIL blocksize. We request a size that is the 777 * maximum of the previous used size, the current used size and 778 * the amount waiting in the queue. 779 */ 780 zil_blksz = MAX(zilog->zl_prev_used, 781 zilog->zl_cur_used + sizeof (*ztp)); 782 zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); 783 zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t); 784 if (zil_blksz > ZIL_MAX_BLKSZ) 785 zil_blksz = ZIL_MAX_BLKSZ; 786 787 BP_ZERO(bp); 788 /* pass the old blkptr in order to spread log blocks across devs */ 789 error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg); 790 if (error) { 791 dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg); 792 793 /* 794 * We dirty the dataset to ensure that zil_sync() will 795 * be called to remove this lwb from our zl_lwb_list. 796 * Failing to do so, may leave an lwb with a NULL lwb_buf 797 * hanging around on the zl_lwb_list. 798 */ 799 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 800 dmu_tx_commit(tx); 801 802 /* 803 * Since we've just experienced an allocation failure so we 804 * terminate the current lwb and send it on its way. 805 */ 806 ztp->zit_pad = 0; 807 ztp->zit_nused = lwb->lwb_nused; 808 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 809 zio_nowait(lwb->lwb_zio); 810 811 /* 812 * By returning NULL the caller will call tx_wait_synced() 813 */ 814 return (NULL); 815 } 816 817 ASSERT3U(bp->blk_birth, ==, txg); 818 ztp->zit_pad = 0; 819 ztp->zit_nused = lwb->lwb_nused; 820 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 821 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 822 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 823 824 /* 825 * Allocate a new log write buffer (lwb). 826 */ 827 nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 828 829 nlwb->lwb_zilog = zilog; 830 nlwb->lwb_blk = *bp; 831 nlwb->lwb_nused = 0; 832 nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); 833 nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); 834 nlwb->lwb_max_txg = txg; 835 nlwb->lwb_zio = NULL; 836 837 /* 838 * Put new lwb at the end of the log chain 839 */ 840 mutex_enter(&zilog->zl_lock); 841 list_insert_tail(&zilog->zl_lwb_list, nlwb); 842 mutex_exit(&zilog->zl_lock); 843 844 /* Record the block for later vdev flushing */ 845 zil_add_block(zilog, &lwb->lwb_blk); 846 847 /* 848 * kick off the write for the old log block 849 */ 850 dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); 851 ASSERT(lwb->lwb_zio); 852 zio_nowait(lwb->lwb_zio); 853 854 return (nlwb); 855 } 856 857 static lwb_t * 858 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 859 { 860 lr_t *lrc = &itx->itx_lr; /* common log record */ 861 lr_write_t *lr = (lr_write_t *)lrc; 862 uint64_t txg = lrc->lrc_txg; 863 uint64_t reclen = lrc->lrc_reclen; 864 uint64_t dlen; 865 866 if (lwb == NULL) 867 return (NULL); 868 ASSERT(lwb->lwb_buf != NULL); 869 870 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 871 dlen = P2ROUNDUP_TYPED( 872 lr->lr_length, sizeof (uint64_t), uint64_t); 873 else 874 dlen = 0; 875 876 zilog->zl_cur_used += (reclen + dlen); 877 878 zil_lwb_write_init(zilog, lwb); 879 880 /* 881 * If this record won't fit in the current log block, start a new one. 882 */ 883 if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 884 lwb = zil_lwb_write_start(zilog, lwb); 885 if (lwb == NULL) 886 return (NULL); 887 zil_lwb_write_init(zilog, lwb); 888 ASSERT(lwb->lwb_nused == 0); 889 if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 890 txg_wait_synced(zilog->zl_dmu_pool, txg); 891 return (lwb); 892 } 893 } 894 895 /* 896 * Update the lrc_seq, to be log record sequence number. See zil.h 897 * Then copy the record to the log buffer. 898 */ 899 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 900 bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); 901 902 /* 903 * If it's a write, fetch the data or get its blkptr as appropriate. 904 */ 905 if (lrc->lrc_txtype == TX_WRITE) { 906 if (txg > spa_freeze_txg(zilog->zl_spa)) 907 txg_wait_synced(zilog->zl_dmu_pool, txg); 908 if (itx->itx_wr_state != WR_COPIED) { 909 char *dbuf; 910 int error; 911 912 /* alignment is guaranteed */ 913 lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused); 914 if (dlen) { 915 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 916 dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen; 917 lr->lr_common.lrc_reclen += dlen; 918 } else { 919 ASSERT(itx->itx_wr_state == WR_INDIRECT); 920 dbuf = NULL; 921 } 922 error = zilog->zl_get_data( 923 itx->itx_private, lr, dbuf, lwb->lwb_zio); 924 if (error) { 925 ASSERT(error == ENOENT || error == EEXIST || 926 error == EALREADY); 927 return (lwb); 928 } 929 } 930 } 931 932 lwb->lwb_nused += reclen + dlen; 933 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 934 ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); 935 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 936 937 return (lwb); 938 } 939 940 itx_t * 941 zil_itx_create(uint64_t txtype, size_t lrsize) 942 { 943 itx_t *itx; 944 945 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 946 947 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 948 itx->itx_lr.lrc_txtype = txtype; 949 itx->itx_lr.lrc_reclen = lrsize; 950 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 951 itx->itx_lr.lrc_seq = 0; /* defensive */ 952 953 return (itx); 954 } 955 956 uint64_t 957 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 958 { 959 uint64_t seq; 960 961 ASSERT(itx->itx_lr.lrc_seq == 0); 962 963 mutex_enter(&zilog->zl_lock); 964 list_insert_tail(&zilog->zl_itx_list, itx); 965 zilog->zl_itx_list_sz += itx->itx_sod; 966 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 967 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 968 mutex_exit(&zilog->zl_lock); 969 970 return (seq); 971 } 972 973 /* 974 * Free up all in-memory intent log transactions that have now been synced. 975 */ 976 static void 977 zil_itx_clean(zilog_t *zilog) 978 { 979 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 980 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 981 list_t clean_list; 982 itx_t *itx; 983 984 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 985 986 mutex_enter(&zilog->zl_lock); 987 /* wait for a log writer to finish walking list */ 988 while (zilog->zl_writer) { 989 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 990 } 991 992 /* 993 * Move the sync'd log transactions to a separate list so we can call 994 * kmem_free without holding the zl_lock. 995 * 996 * There is no need to set zl_writer as we don't drop zl_lock here 997 */ 998 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 999 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 1000 list_remove(&zilog->zl_itx_list, itx); 1001 zilog->zl_itx_list_sz -= itx->itx_sod; 1002 list_insert_tail(&clean_list, itx); 1003 } 1004 cv_broadcast(&zilog->zl_cv_writer); 1005 mutex_exit(&zilog->zl_lock); 1006 1007 /* destroy sync'd log transactions */ 1008 while ((itx = list_head(&clean_list)) != NULL) { 1009 list_remove(&clean_list, itx); 1010 kmem_free(itx, offsetof(itx_t, itx_lr) 1011 + itx->itx_lr.lrc_reclen); 1012 } 1013 list_destroy(&clean_list); 1014 } 1015 1016 /* 1017 * If there are any in-memory intent log transactions which have now been 1018 * synced then start up a taskq to free them. 1019 */ 1020 void 1021 zil_clean(zilog_t *zilog) 1022 { 1023 itx_t *itx; 1024 1025 mutex_enter(&zilog->zl_lock); 1026 itx = list_head(&zilog->zl_itx_list); 1027 if ((itx != NULL) && 1028 (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) { 1029 (void) taskq_dispatch(zilog->zl_clean_taskq, 1030 (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP); 1031 } 1032 mutex_exit(&zilog->zl_lock); 1033 } 1034 1035 void 1036 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid) 1037 { 1038 uint64_t txg; 1039 uint64_t commit_seq = 0; 1040 itx_t *itx, *itx_next = (itx_t *)-1; 1041 lwb_t *lwb; 1042 spa_t *spa; 1043 1044 zilog->zl_writer = B_TRUE; 1045 zilog->zl_root_zio = NULL; 1046 spa = zilog->zl_spa; 1047 1048 if (zilog->zl_suspend) { 1049 lwb = NULL; 1050 } else { 1051 lwb = list_tail(&zilog->zl_lwb_list); 1052 if (lwb == NULL) { 1053 /* 1054 * Return if there's nothing to flush before we 1055 * dirty the fs by calling zil_create() 1056 */ 1057 if (list_is_empty(&zilog->zl_itx_list)) { 1058 zilog->zl_writer = B_FALSE; 1059 return; 1060 } 1061 mutex_exit(&zilog->zl_lock); 1062 zil_create(zilog); 1063 mutex_enter(&zilog->zl_lock); 1064 lwb = list_tail(&zilog->zl_lwb_list); 1065 } 1066 } 1067 1068 /* Loop through in-memory log transactions filling log blocks. */ 1069 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1070 for (;;) { 1071 /* 1072 * Find the next itx to push: 1073 * Push all transactions related to specified foid and all 1074 * other transactions except TX_WRITE, TX_TRUNCATE, 1075 * TX_SETATTR and TX_ACL for all other files. 1076 */ 1077 if (itx_next != (itx_t *)-1) 1078 itx = itx_next; 1079 else 1080 itx = list_head(&zilog->zl_itx_list); 1081 for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) { 1082 if (foid == 0) /* push all foids? */ 1083 break; 1084 if (itx->itx_sync) /* push all O_[D]SYNC */ 1085 break; 1086 switch (itx->itx_lr.lrc_txtype) { 1087 case TX_SETATTR: 1088 case TX_WRITE: 1089 case TX_TRUNCATE: 1090 case TX_ACL: 1091 /* lr_foid is same offset for these records */ 1092 if (((lr_write_t *)&itx->itx_lr)->lr_foid 1093 != foid) { 1094 continue; /* skip this record */ 1095 } 1096 } 1097 break; 1098 } 1099 if (itx == NULL) 1100 break; 1101 1102 if ((itx->itx_lr.lrc_seq > seq) && 1103 ((lwb == NULL) || (lwb->lwb_nused == 0) || 1104 (lwb->lwb_nused + itx->itx_sod > ZIL_BLK_DATA_SZ(lwb)))) { 1105 break; 1106 } 1107 1108 /* 1109 * Save the next pointer. Even though we soon drop 1110 * zl_lock all threads that may change the list 1111 * (another writer or zil_itx_clean) can't do so until 1112 * they have zl_writer. 1113 */ 1114 itx_next = list_next(&zilog->zl_itx_list, itx); 1115 list_remove(&zilog->zl_itx_list, itx); 1116 zilog->zl_itx_list_sz -= itx->itx_sod; 1117 mutex_exit(&zilog->zl_lock); 1118 txg = itx->itx_lr.lrc_txg; 1119 ASSERT(txg); 1120 1121 if (txg > spa_last_synced_txg(spa) || 1122 txg > spa_freeze_txg(spa)) 1123 lwb = zil_lwb_commit(zilog, itx, lwb); 1124 kmem_free(itx, offsetof(itx_t, itx_lr) 1125 + itx->itx_lr.lrc_reclen); 1126 mutex_enter(&zilog->zl_lock); 1127 } 1128 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1129 /* determine commit sequence number */ 1130 itx = list_head(&zilog->zl_itx_list); 1131 if (itx) 1132 commit_seq = itx->itx_lr.lrc_seq; 1133 else 1134 commit_seq = zilog->zl_itx_seq; 1135 mutex_exit(&zilog->zl_lock); 1136 1137 /* write the last block out */ 1138 if (lwb != NULL && lwb->lwb_zio != NULL) 1139 lwb = zil_lwb_write_start(zilog, lwb); 1140 1141 zilog->zl_prev_used = zilog->zl_cur_used; 1142 zilog->zl_cur_used = 0; 1143 1144 /* 1145 * Wait if necessary for the log blocks to be on stable storage. 1146 */ 1147 if (zilog->zl_root_zio) { 1148 DTRACE_PROBE1(zil__cw3, zilog_t *, zilog); 1149 (void) zio_wait(zilog->zl_root_zio); 1150 DTRACE_PROBE1(zil__cw4, zilog_t *, zilog); 1151 zil_flush_vdevs(zilog); 1152 } 1153 1154 if (zilog->zl_log_error || lwb == NULL) { 1155 zilog->zl_log_error = 0; 1156 txg_wait_synced(zilog->zl_dmu_pool, 0); 1157 } 1158 1159 mutex_enter(&zilog->zl_lock); 1160 zilog->zl_writer = B_FALSE; 1161 1162 ASSERT3U(commit_seq, >=, zilog->zl_commit_seq); 1163 zilog->zl_commit_seq = commit_seq; 1164 } 1165 1166 /* 1167 * Push zfs transactions to stable storage up to the supplied sequence number. 1168 * If foid is 0 push out all transactions, otherwise push only those 1169 * for that file or might have been used to create that file. 1170 */ 1171 void 1172 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid) 1173 { 1174 if (zilog == NULL || seq == 0) 1175 return; 1176 1177 mutex_enter(&zilog->zl_lock); 1178 1179 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 1180 1181 while (zilog->zl_writer) { 1182 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1183 if (seq < zilog->zl_commit_seq) { 1184 mutex_exit(&zilog->zl_lock); 1185 return; 1186 } 1187 } 1188 zil_commit_writer(zilog, seq, foid); /* drops zl_lock */ 1189 /* wake up others waiting on the commit */ 1190 cv_broadcast(&zilog->zl_cv_writer); 1191 mutex_exit(&zilog->zl_lock); 1192 } 1193 1194 /* 1195 * Called in syncing context to free committed log blocks and update log header. 1196 */ 1197 void 1198 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1199 { 1200 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1201 uint64_t txg = dmu_tx_get_txg(tx); 1202 spa_t *spa = zilog->zl_spa; 1203 lwb_t *lwb; 1204 1205 mutex_enter(&zilog->zl_lock); 1206 1207 ASSERT(zilog->zl_stop_sync == 0); 1208 1209 zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK]; 1210 1211 if (zilog->zl_destroy_txg == txg) { 1212 blkptr_t blk = zh->zh_log; 1213 1214 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1215 ASSERT(spa_sync_pass(spa) == 1); 1216 1217 bzero(zh, sizeof (zil_header_t)); 1218 bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq)); 1219 1220 if (zilog->zl_keep_first) { 1221 /* 1222 * If this block was part of log chain that couldn't 1223 * be claimed because a device was missing during 1224 * zil_claim(), but that device later returns, 1225 * then this block could erroneously appear valid. 1226 * To guard against this, assign a new GUID to the new 1227 * log chain so it doesn't matter what blk points to. 1228 */ 1229 zil_init_log_chain(zilog, &blk); 1230 zh->zh_log = blk; 1231 } 1232 } 1233 1234 for (;;) { 1235 lwb = list_head(&zilog->zl_lwb_list); 1236 if (lwb == NULL) { 1237 mutex_exit(&zilog->zl_lock); 1238 return; 1239 } 1240 zh->zh_log = lwb->lwb_blk; 1241 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1242 break; 1243 list_remove(&zilog->zl_lwb_list, lwb); 1244 zio_free_blk(spa, &lwb->lwb_blk, txg); 1245 kmem_cache_free(zil_lwb_cache, lwb); 1246 1247 /* 1248 * If we don't have anything left in the lwb list then 1249 * we've had an allocation failure and we need to zero 1250 * out the zil_header blkptr so that we don't end 1251 * up freeing the same block twice. 1252 */ 1253 if (list_head(&zilog->zl_lwb_list) == NULL) 1254 BP_ZERO(&zh->zh_log); 1255 } 1256 mutex_exit(&zilog->zl_lock); 1257 } 1258 1259 void 1260 zil_init(void) 1261 { 1262 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1263 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1264 } 1265 1266 void 1267 zil_fini(void) 1268 { 1269 kmem_cache_destroy(zil_lwb_cache); 1270 } 1271 1272 zilog_t * 1273 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1274 { 1275 zilog_t *zilog; 1276 1277 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1278 1279 zilog->zl_header = zh_phys; 1280 zilog->zl_os = os; 1281 zilog->zl_spa = dmu_objset_spa(os); 1282 zilog->zl_dmu_pool = dmu_objset_pool(os); 1283 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1284 1285 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1286 1287 list_create(&zilog->zl_itx_list, sizeof (itx_t), 1288 offsetof(itx_t, itx_node)); 1289 1290 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1291 offsetof(lwb_t, lwb_node)); 1292 1293 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1294 1295 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1296 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1297 1298 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1299 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1300 1301 return (zilog); 1302 } 1303 1304 void 1305 zil_free(zilog_t *zilog) 1306 { 1307 lwb_t *lwb; 1308 1309 zilog->zl_stop_sync = 1; 1310 1311 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1312 list_remove(&zilog->zl_lwb_list, lwb); 1313 if (lwb->lwb_buf != NULL) 1314 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1315 kmem_cache_free(zil_lwb_cache, lwb); 1316 } 1317 list_destroy(&zilog->zl_lwb_list); 1318 1319 avl_destroy(&zilog->zl_vdev_tree); 1320 mutex_destroy(&zilog->zl_vdev_lock); 1321 1322 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1323 list_destroy(&zilog->zl_itx_list); 1324 mutex_destroy(&zilog->zl_lock); 1325 1326 cv_destroy(&zilog->zl_cv_writer); 1327 cv_destroy(&zilog->zl_cv_suspend); 1328 1329 kmem_free(zilog, sizeof (zilog_t)); 1330 } 1331 1332 /* 1333 * return true if the initial log block is not valid 1334 */ 1335 static int 1336 zil_empty(zilog_t *zilog) 1337 { 1338 const zil_header_t *zh = zilog->zl_header; 1339 arc_buf_t *abuf = NULL; 1340 1341 if (BP_IS_HOLE(&zh->zh_log)) 1342 return (1); 1343 1344 if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0) 1345 return (1); 1346 1347 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 1348 return (0); 1349 } 1350 1351 /* 1352 * Open an intent log. 1353 */ 1354 zilog_t * 1355 zil_open(objset_t *os, zil_get_data_t *get_data) 1356 { 1357 zilog_t *zilog = dmu_objset_zil(os); 1358 1359 zilog->zl_get_data = get_data; 1360 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1361 2, 2, TASKQ_PREPOPULATE); 1362 1363 return (zilog); 1364 } 1365 1366 /* 1367 * Close an intent log. 1368 */ 1369 void 1370 zil_close(zilog_t *zilog) 1371 { 1372 /* 1373 * If the log isn't already committed, mark the objset dirty 1374 * (so zil_sync() will be called) and wait for that txg to sync. 1375 */ 1376 if (!zil_is_committed(zilog)) { 1377 uint64_t txg; 1378 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1379 (void) dmu_tx_assign(tx, TXG_WAIT); 1380 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1381 txg = dmu_tx_get_txg(tx); 1382 dmu_tx_commit(tx); 1383 txg_wait_synced(zilog->zl_dmu_pool, txg); 1384 } 1385 1386 taskq_destroy(zilog->zl_clean_taskq); 1387 zilog->zl_clean_taskq = NULL; 1388 zilog->zl_get_data = NULL; 1389 1390 zil_itx_clean(zilog); 1391 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1392 } 1393 1394 /* 1395 * Suspend an intent log. While in suspended mode, we still honor 1396 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1397 * We suspend the log briefly when taking a snapshot so that the snapshot 1398 * contains all the data it's supposed to, and has an empty intent log. 1399 */ 1400 int 1401 zil_suspend(zilog_t *zilog) 1402 { 1403 const zil_header_t *zh = zilog->zl_header; 1404 1405 mutex_enter(&zilog->zl_lock); 1406 if (zh->zh_claim_txg != 0) { /* unplayed log */ 1407 mutex_exit(&zilog->zl_lock); 1408 return (EBUSY); 1409 } 1410 if (zilog->zl_suspend++ != 0) { 1411 /* 1412 * Someone else already began a suspend. 1413 * Just wait for them to finish. 1414 */ 1415 while (zilog->zl_suspending) 1416 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1417 mutex_exit(&zilog->zl_lock); 1418 return (0); 1419 } 1420 zilog->zl_suspending = B_TRUE; 1421 mutex_exit(&zilog->zl_lock); 1422 1423 zil_commit(zilog, UINT64_MAX, 0); 1424 1425 /* 1426 * Wait for any in-flight log writes to complete. 1427 */ 1428 mutex_enter(&zilog->zl_lock); 1429 while (zilog->zl_writer) 1430 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1431 mutex_exit(&zilog->zl_lock); 1432 1433 zil_destroy(zilog, B_FALSE); 1434 1435 mutex_enter(&zilog->zl_lock); 1436 zilog->zl_suspending = B_FALSE; 1437 cv_broadcast(&zilog->zl_cv_suspend); 1438 mutex_exit(&zilog->zl_lock); 1439 1440 return (0); 1441 } 1442 1443 void 1444 zil_resume(zilog_t *zilog) 1445 { 1446 mutex_enter(&zilog->zl_lock); 1447 ASSERT(zilog->zl_suspend != 0); 1448 zilog->zl_suspend--; 1449 mutex_exit(&zilog->zl_lock); 1450 } 1451 1452 typedef struct zil_replay_arg { 1453 objset_t *zr_os; 1454 zil_replay_func_t **zr_replay; 1455 void *zr_arg; 1456 uint64_t *zr_txgp; 1457 boolean_t zr_byteswap; 1458 char *zr_lrbuf; 1459 } zil_replay_arg_t; 1460 1461 static void 1462 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1463 { 1464 zil_replay_arg_t *zr = zra; 1465 const zil_header_t *zh = zilog->zl_header; 1466 uint64_t reclen = lr->lrc_reclen; 1467 uint64_t txtype = lr->lrc_txtype; 1468 char *name; 1469 int pass, error, sunk; 1470 1471 if (zilog->zl_stop_replay) 1472 return; 1473 1474 if (lr->lrc_txg < claim_txg) /* already committed */ 1475 return; 1476 1477 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1478 return; 1479 1480 /* Strip case-insensitive bit, still present in log record */ 1481 txtype &= ~TX_CI; 1482 1483 /* 1484 * Make a copy of the data so we can revise and extend it. 1485 */ 1486 bcopy(lr, zr->zr_lrbuf, reclen); 1487 1488 /* 1489 * The log block containing this lr may have been byteswapped 1490 * so that we can easily examine common fields like lrc_txtype. 1491 * However, the log is a mix of different data types, and only the 1492 * replay vectors know how to byteswap their records. Therefore, if 1493 * the lr was byteswapped, undo it before invoking the replay vector. 1494 */ 1495 if (zr->zr_byteswap) 1496 byteswap_uint64_array(zr->zr_lrbuf, reclen); 1497 1498 /* 1499 * If this is a TX_WRITE with a blkptr, suck in the data. 1500 */ 1501 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1502 lr_write_t *lrw = (lr_write_t *)lr; 1503 blkptr_t *wbp = &lrw->lr_blkptr; 1504 uint64_t wlen = lrw->lr_length; 1505 char *wbuf = zr->zr_lrbuf + reclen; 1506 1507 if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ 1508 bzero(wbuf, wlen); 1509 } else { 1510 /* 1511 * A subsequent write may have overwritten this block, 1512 * in which case wbp may have been been freed and 1513 * reallocated, and our read of wbp may fail with a 1514 * checksum error. We can safely ignore this because 1515 * the later write will provide the correct data. 1516 */ 1517 zbookmark_t zb; 1518 1519 zb.zb_objset = dmu_objset_id(zilog->zl_os); 1520 zb.zb_object = lrw->lr_foid; 1521 zb.zb_level = -1; 1522 zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp); 1523 1524 (void) zio_wait(zio_read(NULL, zilog->zl_spa, 1525 wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, 1526 ZIO_PRIORITY_SYNC_READ, 1527 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb)); 1528 (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); 1529 } 1530 } 1531 1532 /* 1533 * We must now do two things atomically: replay this log record, 1534 * and update the log header to reflect the fact that we did so. 1535 * We use the DMU's ability to assign into a specific txg to do this. 1536 */ 1537 for (pass = 1, sunk = B_FALSE; /* CONSTANTCONDITION */; pass++) { 1538 uint64_t replay_txg; 1539 dmu_tx_t *replay_tx; 1540 1541 replay_tx = dmu_tx_create(zr->zr_os); 1542 error = dmu_tx_assign(replay_tx, TXG_WAIT); 1543 if (error) { 1544 dmu_tx_abort(replay_tx); 1545 break; 1546 } 1547 1548 replay_txg = dmu_tx_get_txg(replay_tx); 1549 1550 if (txtype == 0 || txtype >= TX_MAX_TYPE) { 1551 error = EINVAL; 1552 } else { 1553 /* 1554 * On the first pass, arrange for the replay vector 1555 * to fail its dmu_tx_assign(). That's the only way 1556 * to ensure that those code paths remain well tested. 1557 * 1558 * Only byteswap (if needed) on the 1st pass. 1559 */ 1560 *zr->zr_txgp = replay_txg - (pass == 1); 1561 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, 1562 zr->zr_byteswap && pass == 1); 1563 *zr->zr_txgp = TXG_NOWAIT; 1564 } 1565 1566 if (error == 0) { 1567 dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx); 1568 zilog->zl_replay_seq[replay_txg & TXG_MASK] = 1569 lr->lrc_seq; 1570 } 1571 1572 dmu_tx_commit(replay_tx); 1573 1574 if (!error) 1575 return; 1576 1577 /* 1578 * The DMU's dnode layer doesn't see removes until the txg 1579 * commits, so a subsequent claim can spuriously fail with 1580 * EEXIST. So if we receive any error other than ERESTART 1581 * we try syncing out any removes then retrying the 1582 * transaction. 1583 */ 1584 if (error != ERESTART && !sunk) { 1585 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1586 sunk = B_TRUE; 1587 continue; /* retry */ 1588 } 1589 1590 if (error != ERESTART) 1591 break; 1592 1593 if (pass != 1) 1594 txg_wait_open(spa_get_dsl(zilog->zl_spa), 1595 replay_txg + 1); 1596 1597 dprintf("pass %d, retrying\n", pass); 1598 } 1599 1600 ASSERT(error && error != ERESTART); 1601 name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1602 dmu_objset_name(zr->zr_os, name); 1603 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1604 "dataset %s, seq 0x%llx, txtype %llu %s\n", 1605 error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype, 1606 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1607 zilog->zl_stop_replay = 1; 1608 kmem_free(name, MAXNAMELEN); 1609 } 1610 1611 /* ARGSUSED */ 1612 static void 1613 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1614 { 1615 zilog->zl_replay_blks++; 1616 } 1617 1618 /* 1619 * If this dataset has a non-empty intent log, replay it and destroy it. 1620 */ 1621 void 1622 zil_replay(objset_t *os, void *arg, uint64_t *txgp, 1623 zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1624 { 1625 zilog_t *zilog = dmu_objset_zil(os); 1626 const zil_header_t *zh = zilog->zl_header; 1627 zil_replay_arg_t zr; 1628 1629 if (zil_empty(zilog)) { 1630 zil_destroy(zilog, B_TRUE); 1631 return; 1632 } 1633 1634 zr.zr_os = os; 1635 zr.zr_replay = replay_func; 1636 zr.zr_arg = arg; 1637 zr.zr_txgp = txgp; 1638 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1639 zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1640 1641 /* 1642 * Wait for in-progress removes to sync before starting replay. 1643 */ 1644 txg_wait_synced(zilog->zl_dmu_pool, 0); 1645 1646 zilog->zl_stop_replay = 0; 1647 zilog->zl_replay_time = lbolt; 1648 ASSERT(zilog->zl_replay_blks == 0); 1649 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1650 zh->zh_claim_txg); 1651 kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); 1652 1653 zil_destroy(zilog, B_FALSE); 1654 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1655 } 1656 1657 /* 1658 * Report whether all transactions are committed 1659 */ 1660 int 1661 zil_is_committed(zilog_t *zilog) 1662 { 1663 lwb_t *lwb; 1664 int ret; 1665 1666 mutex_enter(&zilog->zl_lock); 1667 while (zilog->zl_writer) 1668 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1669 1670 /* recent unpushed intent log transactions? */ 1671 if (!list_is_empty(&zilog->zl_itx_list)) { 1672 ret = B_FALSE; 1673 goto out; 1674 } 1675 1676 /* intent log never used? */ 1677 lwb = list_head(&zilog->zl_lwb_list); 1678 if (lwb == NULL) { 1679 ret = B_TRUE; 1680 goto out; 1681 } 1682 1683 /* 1684 * more than 1 log buffer means zil_sync() hasn't yet freed 1685 * entries after a txg has committed 1686 */ 1687 if (list_next(&zilog->zl_lwb_list, lwb)) { 1688 ret = B_FALSE; 1689 goto out; 1690 } 1691 1692 ASSERT(zil_empty(zilog)); 1693 ret = B_TRUE; 1694 out: 1695 cv_broadcast(&zilog->zl_cv_writer); 1696 mutex_exit(&zilog->zl_lock); 1697 return (ret); 1698 } 1699