1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa.h> 28 #include <sys/spa_impl.h> 29 #include <sys/dmu.h> 30 #include <sys/zap.h> 31 #include <sys/arc.h> 32 #include <sys/stat.h> 33 #include <sys/resource.h> 34 #include <sys/zil.h> 35 #include <sys/zil_impl.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/vdev.h> 38 #include <sys/dmu_tx.h> 39 40 /* 41 * The zfs intent log (ZIL) saves transaction records of system calls 42 * that change the file system in memory with enough information 43 * to be able to replay them. These are stored in memory until 44 * either the DMU transaction group (txg) commits them to the stable pool 45 * and they can be discarded, or they are flushed to the stable log 46 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 47 * requirement. In the event of a panic or power fail then those log 48 * records (transactions) are replayed. 49 * 50 * There is one ZIL per file system. Its on-disk (pool) format consists 51 * of 3 parts: 52 * 53 * - ZIL header 54 * - ZIL blocks 55 * - ZIL records 56 * 57 * A log record holds a system call transaction. Log blocks can 58 * hold many log records and the blocks are chained together. 59 * Each ZIL block contains a block pointer (blkptr_t) to the next 60 * ZIL block in the chain. The ZIL header points to the first 61 * block in the chain. Note there is not a fixed place in the pool 62 * to hold blocks. They are dynamically allocated and freed as 63 * needed from the blocks available. Figure X shows the ZIL structure: 64 */ 65 66 /* 67 * This global ZIL switch affects all pools 68 */ 69 int zil_disable = 0; /* disable intent logging */ 70 71 /* 72 * Tunable parameter for debugging or performance analysis. Setting 73 * zfs_nocacheflush will cause corruption on power loss if a volatile 74 * out-of-order write cache is enabled. 75 */ 76 boolean_t zfs_nocacheflush = B_FALSE; 77 78 static kmem_cache_t *zil_lwb_cache; 79 80 static int 81 zil_dva_compare(const void *x1, const void *x2) 82 { 83 const dva_t *dva1 = x1; 84 const dva_t *dva2 = x2; 85 86 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 87 return (-1); 88 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 89 return (1); 90 91 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 92 return (-1); 93 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 94 return (1); 95 96 return (0); 97 } 98 99 static void 100 zil_dva_tree_init(avl_tree_t *t) 101 { 102 avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), 103 offsetof(zil_dva_node_t, zn_node)); 104 } 105 106 static void 107 zil_dva_tree_fini(avl_tree_t *t) 108 { 109 zil_dva_node_t *zn; 110 void *cookie = NULL; 111 112 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 113 kmem_free(zn, sizeof (zil_dva_node_t)); 114 115 avl_destroy(t); 116 } 117 118 static int 119 zil_dva_tree_add(avl_tree_t *t, dva_t *dva) 120 { 121 zil_dva_node_t *zn; 122 avl_index_t where; 123 124 if (avl_find(t, dva, &where) != NULL) 125 return (EEXIST); 126 127 zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); 128 zn->zn_dva = *dva; 129 avl_insert(t, zn, where); 130 131 return (0); 132 } 133 134 static zil_header_t * 135 zil_header_in_syncing_context(zilog_t *zilog) 136 { 137 return ((zil_header_t *)zilog->zl_header); 138 } 139 140 static void 141 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 142 { 143 zio_cksum_t *zc = &bp->blk_cksum; 144 145 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 146 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 147 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 148 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 149 } 150 151 /* 152 * Read a log block, make sure it's valid, and byteswap it if necessary. 153 */ 154 static int 155 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp) 156 { 157 blkptr_t blk = *bp; 158 zbookmark_t zb; 159 uint32_t aflags = ARC_WAIT; 160 int error; 161 162 zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET]; 163 zb.zb_object = 0; 164 zb.zb_level = -1; 165 zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ]; 166 167 *abufpp = NULL; 168 169 /* 170 * We shouldn't be doing any scrubbing while we're doing log 171 * replay, it's OK to not lock. 172 */ 173 error = arc_read_nolock(NULL, zilog->zl_spa, &blk, 174 arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | 175 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb); 176 177 if (error == 0) { 178 char *data = (*abufpp)->b_data; 179 uint64_t blksz = BP_GET_LSIZE(bp); 180 zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1; 181 zio_cksum_t cksum = bp->blk_cksum; 182 183 /* 184 * Validate the checksummed log block. 185 * 186 * Sequence numbers should be... sequential. The checksum 187 * verifier for the next block should be bp's checksum plus 1. 188 * 189 * Also check the log chain linkage and size used. 190 */ 191 cksum.zc_word[ZIL_ZC_SEQ]++; 192 193 if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, 194 sizeof (cksum)) || BP_IS_HOLE(&ztp->zit_next_blk) || 195 (ztp->zit_nused > (blksz - sizeof (zil_trailer_t)))) { 196 error = ECKSUM; 197 } 198 199 if (error) { 200 VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1); 201 *abufpp = NULL; 202 } 203 } 204 205 dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid); 206 207 return (error); 208 } 209 210 /* 211 * Parse the intent log, and call parse_func for each valid record within. 212 * Return the highest sequence number. 213 */ 214 uint64_t 215 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 216 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 217 { 218 const zil_header_t *zh = zilog->zl_header; 219 uint64_t claim_seq = zh->zh_claim_seq; 220 uint64_t seq = 0; 221 uint64_t max_seq = 0; 222 blkptr_t blk = zh->zh_log; 223 arc_buf_t *abuf; 224 char *lrbuf, *lrp; 225 zil_trailer_t *ztp; 226 int reclen, error; 227 228 if (BP_IS_HOLE(&blk)) 229 return (max_seq); 230 231 /* 232 * Starting at the block pointed to by zh_log we read the log chain. 233 * For each block in the chain we strongly check that block to 234 * ensure its validity. We stop when an invalid block is found. 235 * For each block pointer in the chain we call parse_blk_func(). 236 * For each record in each valid block we call parse_lr_func(). 237 * If the log has been claimed, stop if we encounter a sequence 238 * number greater than the highest claimed sequence number. 239 */ 240 zil_dva_tree_init(&zilog->zl_dva_tree); 241 for (;;) { 242 seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 243 244 if (claim_seq != 0 && seq > claim_seq) 245 break; 246 247 ASSERT(max_seq < seq); 248 max_seq = seq; 249 250 error = zil_read_log_block(zilog, &blk, &abuf); 251 252 if (parse_blk_func != NULL) 253 parse_blk_func(zilog, &blk, arg, txg); 254 255 if (error) 256 break; 257 258 lrbuf = abuf->b_data; 259 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 260 blk = ztp->zit_next_blk; 261 262 if (parse_lr_func == NULL) { 263 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 264 continue; 265 } 266 267 for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { 268 lr_t *lr = (lr_t *)lrp; 269 reclen = lr->lrc_reclen; 270 ASSERT3U(reclen, >=, sizeof (lr_t)); 271 parse_lr_func(zilog, lr, arg, txg); 272 } 273 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 274 } 275 zil_dva_tree_fini(&zilog->zl_dva_tree); 276 277 return (max_seq); 278 } 279 280 /* ARGSUSED */ 281 static void 282 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 283 { 284 spa_t *spa = zilog->zl_spa; 285 int err; 286 287 /* 288 * Claim log block if not already committed and not already claimed. 289 */ 290 if (bp->blk_birth >= first_txg && 291 zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { 292 err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL, 293 ZIO_FLAG_MUSTSUCCEED)); 294 ASSERT(err == 0); 295 } 296 } 297 298 static void 299 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 300 { 301 if (lrc->lrc_txtype == TX_WRITE) { 302 lr_write_t *lr = (lr_write_t *)lrc; 303 zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); 304 } 305 } 306 307 /* ARGSUSED */ 308 static void 309 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 310 { 311 zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); 312 } 313 314 static void 315 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 316 { 317 /* 318 * If we previously claimed it, we need to free it. 319 */ 320 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { 321 lr_write_t *lr = (lr_write_t *)lrc; 322 blkptr_t *bp = &lr->lr_blkptr; 323 if (bp->blk_birth >= claim_txg && 324 !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { 325 (void) arc_free(NULL, zilog->zl_spa, 326 dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); 327 } 328 } 329 } 330 331 /* 332 * Create an on-disk intent log. 333 */ 334 static void 335 zil_create(zilog_t *zilog) 336 { 337 const zil_header_t *zh = zilog->zl_header; 338 lwb_t *lwb; 339 uint64_t txg = 0; 340 dmu_tx_t *tx = NULL; 341 blkptr_t blk; 342 int error = 0; 343 344 /* 345 * Wait for any previous destroy to complete. 346 */ 347 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 348 349 ASSERT(zh->zh_claim_txg == 0); 350 ASSERT(zh->zh_replay_seq == 0); 351 352 blk = zh->zh_log; 353 354 /* 355 * If we don't already have an initial log block or we have one 356 * but it's the wrong endianness then allocate one. 357 */ 358 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 359 tx = dmu_tx_create(zilog->zl_os); 360 (void) dmu_tx_assign(tx, TXG_WAIT); 361 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 362 txg = dmu_tx_get_txg(tx); 363 364 if (!BP_IS_HOLE(&blk)) { 365 zio_free_blk(zilog->zl_spa, &blk, txg); 366 BP_ZERO(&blk); 367 } 368 369 error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, 370 NULL, txg); 371 372 if (error == 0) 373 zil_init_log_chain(zilog, &blk); 374 } 375 376 /* 377 * Allocate a log write buffer (lwb) for the first log block. 378 */ 379 if (error == 0) { 380 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 381 lwb->lwb_zilog = zilog; 382 lwb->lwb_blk = blk; 383 lwb->lwb_nused = 0; 384 lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); 385 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); 386 lwb->lwb_max_txg = txg; 387 lwb->lwb_zio = NULL; 388 389 mutex_enter(&zilog->zl_lock); 390 list_insert_tail(&zilog->zl_lwb_list, lwb); 391 mutex_exit(&zilog->zl_lock); 392 } 393 394 /* 395 * If we just allocated the first log block, commit our transaction 396 * and wait for zil_sync() to stuff the block poiner into zh_log. 397 * (zh is part of the MOS, so we cannot modify it in open context.) 398 */ 399 if (tx != NULL) { 400 dmu_tx_commit(tx); 401 txg_wait_synced(zilog->zl_dmu_pool, txg); 402 } 403 404 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 405 } 406 407 /* 408 * In one tx, free all log blocks and clear the log header. 409 * If keep_first is set, then we're replaying a log with no content. 410 * We want to keep the first block, however, so that the first 411 * synchronous transaction doesn't require a txg_wait_synced() 412 * in zil_create(). We don't need to txg_wait_synced() here either 413 * when keep_first is set, because both zil_create() and zil_destroy() 414 * will wait for any in-progress destroys to complete. 415 */ 416 void 417 zil_destroy(zilog_t *zilog, boolean_t keep_first) 418 { 419 const zil_header_t *zh = zilog->zl_header; 420 lwb_t *lwb; 421 dmu_tx_t *tx; 422 uint64_t txg; 423 424 /* 425 * Wait for any previous destroy to complete. 426 */ 427 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 428 429 if (BP_IS_HOLE(&zh->zh_log)) 430 return; 431 432 tx = dmu_tx_create(zilog->zl_os); 433 (void) dmu_tx_assign(tx, TXG_WAIT); 434 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 435 txg = dmu_tx_get_txg(tx); 436 437 mutex_enter(&zilog->zl_lock); 438 439 /* 440 * It is possible for the ZIL to get the previously mounted zilog 441 * structure of the same dataset if quickly remounted and the dbuf 442 * eviction has not completed. In this case we can see a non 443 * empty lwb list and keep_first will be set. We fix this by 444 * clearing the keep_first. This will be slower but it's very rare. 445 */ 446 if (!list_is_empty(&zilog->zl_lwb_list) && keep_first) 447 keep_first = B_FALSE; 448 449 ASSERT3U(zilog->zl_destroy_txg, <, txg); 450 zilog->zl_destroy_txg = txg; 451 zilog->zl_keep_first = keep_first; 452 453 if (!list_is_empty(&zilog->zl_lwb_list)) { 454 ASSERT(zh->zh_claim_txg == 0); 455 ASSERT(!keep_first); 456 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 457 list_remove(&zilog->zl_lwb_list, lwb); 458 if (lwb->lwb_buf != NULL) 459 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 460 zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg); 461 kmem_cache_free(zil_lwb_cache, lwb); 462 } 463 } else { 464 if (!keep_first) { 465 (void) zil_parse(zilog, zil_free_log_block, 466 zil_free_log_record, tx, zh->zh_claim_txg); 467 } 468 } 469 mutex_exit(&zilog->zl_lock); 470 471 dmu_tx_commit(tx); 472 } 473 474 /* 475 * return true if the initial log block is not valid 476 */ 477 static boolean_t 478 zil_empty(zilog_t *zilog) 479 { 480 const zil_header_t *zh = zilog->zl_header; 481 arc_buf_t *abuf = NULL; 482 483 if (BP_IS_HOLE(&zh->zh_log)) 484 return (B_TRUE); 485 486 if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0) 487 return (B_TRUE); 488 489 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 490 return (B_FALSE); 491 } 492 493 int 494 zil_claim(char *osname, void *txarg) 495 { 496 dmu_tx_t *tx = txarg; 497 uint64_t first_txg = dmu_tx_get_txg(tx); 498 zilog_t *zilog; 499 zil_header_t *zh; 500 objset_t *os; 501 int error; 502 503 error = dmu_objset_hold(osname, FTAG, &os); 504 if (error) { 505 cmn_err(CE_WARN, "can't open objset for %s", osname); 506 return (0); 507 } 508 509 zilog = dmu_objset_zil(os); 510 zh = zil_header_in_syncing_context(zilog); 511 512 if (zilog->zl_spa->spa_log_state == SPA_LOG_CLEAR) { 513 if (!BP_IS_HOLE(&zh->zh_log)) 514 zio_free_blk(zilog->zl_spa, &zh->zh_log, first_txg); 515 BP_ZERO(&zh->zh_log); 516 dsl_dataset_dirty(dmu_objset_ds(os), tx); 517 } 518 519 /* 520 * Record here whether the zil has any records to replay. 521 * If the header block pointer is null or the block points 522 * to the stubby then we know there are no valid log records. 523 * We use the header to store this state as the the zilog gets 524 * freed later in dmu_objset_close(). 525 * The flags (and the rest of the header fields) are cleared in 526 * zil_sync() as a result of a zil_destroy(), after replaying the log. 527 * 528 * Note, the intent log can be empty but still need the 529 * stubby to be claimed. 530 */ 531 if (!zil_empty(zilog)) { 532 zh->zh_flags |= ZIL_REPLAY_NEEDED; 533 dsl_dataset_dirty(dmu_objset_ds(os), tx); 534 } 535 536 /* 537 * Claim all log blocks if we haven't already done so, and remember 538 * the highest claimed sequence number. This ensures that if we can 539 * read only part of the log now (e.g. due to a missing device), 540 * but we can read the entire log later, we will not try to replay 541 * or destroy beyond the last block we successfully claimed. 542 */ 543 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 544 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 545 zh->zh_claim_txg = first_txg; 546 zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block, 547 zil_claim_log_record, tx, first_txg); 548 dsl_dataset_dirty(dmu_objset_ds(os), tx); 549 } 550 551 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 552 dmu_objset_rele(os, FTAG); 553 return (0); 554 } 555 556 /* 557 * Check the log by walking the log chain. 558 * Checksum errors are ok as they indicate the end of the chain. 559 * Any other error (no device or read failure) returns an error. 560 */ 561 /* ARGSUSED */ 562 int 563 zil_check_log_chain(char *osname, void *txarg) 564 { 565 zilog_t *zilog; 566 zil_header_t *zh; 567 blkptr_t blk; 568 arc_buf_t *abuf; 569 objset_t *os; 570 char *lrbuf; 571 zil_trailer_t *ztp; 572 int error; 573 574 error = dmu_objset_hold(osname, FTAG, &os); 575 if (error) { 576 cmn_err(CE_WARN, "can't open objset for %s", osname); 577 return (0); 578 } 579 580 zilog = dmu_objset_zil(os); 581 zh = zil_header_in_syncing_context(zilog); 582 blk = zh->zh_log; 583 if (BP_IS_HOLE(&blk)) { 584 dmu_objset_rele(os, FTAG); 585 return (0); /* no chain */ 586 } 587 588 for (;;) { 589 error = zil_read_log_block(zilog, &blk, &abuf); 590 if (error) 591 break; 592 lrbuf = abuf->b_data; 593 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 594 blk = ztp->zit_next_blk; 595 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 596 } 597 dmu_objset_rele(os, FTAG); 598 if (error == ECKSUM) 599 return (0); /* normal end of chain */ 600 return (error); 601 } 602 603 static int 604 zil_vdev_compare(const void *x1, const void *x2) 605 { 606 uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 607 uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 608 609 if (v1 < v2) 610 return (-1); 611 if (v1 > v2) 612 return (1); 613 614 return (0); 615 } 616 617 void 618 zil_add_block(zilog_t *zilog, blkptr_t *bp) 619 { 620 avl_tree_t *t = &zilog->zl_vdev_tree; 621 avl_index_t where; 622 zil_vdev_node_t *zv, zvsearch; 623 int ndvas = BP_GET_NDVAS(bp); 624 int i; 625 626 if (zfs_nocacheflush) 627 return; 628 629 ASSERT(zilog->zl_writer); 630 631 /* 632 * Even though we're zl_writer, we still need a lock because the 633 * zl_get_data() callbacks may have dmu_sync() done callbacks 634 * that will run concurrently. 635 */ 636 mutex_enter(&zilog->zl_vdev_lock); 637 for (i = 0; i < ndvas; i++) { 638 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 639 if (avl_find(t, &zvsearch, &where) == NULL) { 640 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 641 zv->zv_vdev = zvsearch.zv_vdev; 642 avl_insert(t, zv, where); 643 } 644 } 645 mutex_exit(&zilog->zl_vdev_lock); 646 } 647 648 void 649 zil_flush_vdevs(zilog_t *zilog) 650 { 651 spa_t *spa = zilog->zl_spa; 652 avl_tree_t *t = &zilog->zl_vdev_tree; 653 void *cookie = NULL; 654 zil_vdev_node_t *zv; 655 zio_t *zio; 656 657 ASSERT(zilog->zl_writer); 658 659 /* 660 * We don't need zl_vdev_lock here because we're the zl_writer, 661 * and all zl_get_data() callbacks are done. 662 */ 663 if (avl_numnodes(t) == 0) 664 return; 665 666 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 667 668 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 669 670 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 671 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 672 if (vd != NULL) 673 zio_flush(zio, vd); 674 kmem_free(zv, sizeof (*zv)); 675 } 676 677 /* 678 * Wait for all the flushes to complete. Not all devices actually 679 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 680 */ 681 (void) zio_wait(zio); 682 683 spa_config_exit(spa, SCL_STATE, FTAG); 684 } 685 686 /* 687 * Function called when a log block write completes 688 */ 689 static void 690 zil_lwb_write_done(zio_t *zio) 691 { 692 lwb_t *lwb = zio->io_private; 693 zilog_t *zilog = lwb->lwb_zilog; 694 695 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 696 ASSERT(BP_GET_CHECKSUM(zio->io_bp) == ZIO_CHECKSUM_ZILOG); 697 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); 698 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 699 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); 700 ASSERT(!BP_IS_GANG(zio->io_bp)); 701 ASSERT(!BP_IS_HOLE(zio->io_bp)); 702 ASSERT(zio->io_bp->blk_fill == 0); 703 704 /* 705 * Ensure the lwb buffer pointer is cleared before releasing 706 * the txg. If we have had an allocation failure and 707 * the txg is waiting to sync then we want want zil_sync() 708 * to remove the lwb so that it's not picked up as the next new 709 * one in zil_commit_writer(). zil_sync() will only remove 710 * the lwb if lwb_buf is null. 711 */ 712 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 713 mutex_enter(&zilog->zl_lock); 714 lwb->lwb_buf = NULL; 715 if (zio->io_error) 716 zilog->zl_log_error = B_TRUE; 717 718 /* 719 * Now that we've written this log block, we have a stable pointer 720 * to the next block in the chain, so it's OK to let the txg in 721 * which we allocated the next block sync. We still have the 722 * zl_lock to ensure zil_sync doesn't kmem free the lwb. 723 */ 724 txg_rele_to_sync(&lwb->lwb_txgh); 725 mutex_exit(&zilog->zl_lock); 726 } 727 728 /* 729 * Initialize the io for a log block. 730 */ 731 static void 732 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 733 { 734 zbookmark_t zb; 735 736 zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET]; 737 zb.zb_object = 0; 738 zb.zb_level = -1; 739 zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 740 741 if (zilog->zl_root_zio == NULL) { 742 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 743 ZIO_FLAG_CANFAIL); 744 } 745 if (lwb->lwb_zio == NULL) { 746 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 747 0, &lwb->lwb_blk, lwb->lwb_buf, lwb->lwb_sz, 748 zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE, 749 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb); 750 } 751 } 752 753 /* 754 * Start a log block write and advance to the next log block. 755 * Calls are serialized. 756 */ 757 static lwb_t * 758 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 759 { 760 lwb_t *nlwb; 761 zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; 762 spa_t *spa = zilog->zl_spa; 763 blkptr_t *bp = &ztp->zit_next_blk; 764 uint64_t txg; 765 uint64_t zil_blksz; 766 int error; 767 768 ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); 769 770 /* 771 * Allocate the next block and save its address in this block 772 * before writing it in order to establish the log chain. 773 * Note that if the allocation of nlwb synced before we wrote 774 * the block that points at it (lwb), we'd leak it if we crashed. 775 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). 776 */ 777 txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); 778 txg_rele_to_quiesce(&lwb->lwb_txgh); 779 780 /* 781 * Pick a ZIL blocksize. We request a size that is the 782 * maximum of the previous used size, the current used size and 783 * the amount waiting in the queue. 784 */ 785 zil_blksz = MAX(zilog->zl_prev_used, 786 zilog->zl_cur_used + sizeof (*ztp)); 787 zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); 788 zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t); 789 if (zil_blksz > ZIL_MAX_BLKSZ) 790 zil_blksz = ZIL_MAX_BLKSZ; 791 792 BP_ZERO(bp); 793 /* pass the old blkptr in order to spread log blocks across devs */ 794 error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg); 795 if (error) { 796 dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg); 797 798 /* 799 * We dirty the dataset to ensure that zil_sync() will 800 * be called to remove this lwb from our zl_lwb_list. 801 * Failing to do so, may leave an lwb with a NULL lwb_buf 802 * hanging around on the zl_lwb_list. 803 */ 804 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 805 dmu_tx_commit(tx); 806 807 /* 808 * Since we've just experienced an allocation failure so we 809 * terminate the current lwb and send it on its way. 810 */ 811 ztp->zit_pad = 0; 812 ztp->zit_nused = lwb->lwb_nused; 813 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 814 zio_nowait(lwb->lwb_zio); 815 816 /* 817 * By returning NULL the caller will call tx_wait_synced() 818 */ 819 return (NULL); 820 } 821 822 ASSERT3U(bp->blk_birth, ==, txg); 823 ztp->zit_pad = 0; 824 ztp->zit_nused = lwb->lwb_nused; 825 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 826 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 827 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 828 829 /* 830 * Allocate a new log write buffer (lwb). 831 */ 832 nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 833 834 nlwb->lwb_zilog = zilog; 835 nlwb->lwb_blk = *bp; 836 nlwb->lwb_nused = 0; 837 nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); 838 nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); 839 nlwb->lwb_max_txg = txg; 840 nlwb->lwb_zio = NULL; 841 842 /* 843 * Put new lwb at the end of the log chain 844 */ 845 mutex_enter(&zilog->zl_lock); 846 list_insert_tail(&zilog->zl_lwb_list, nlwb); 847 mutex_exit(&zilog->zl_lock); 848 849 /* Record the block for later vdev flushing */ 850 zil_add_block(zilog, &lwb->lwb_blk); 851 852 /* 853 * kick off the write for the old log block 854 */ 855 dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); 856 ASSERT(lwb->lwb_zio); 857 zio_nowait(lwb->lwb_zio); 858 859 return (nlwb); 860 } 861 862 static lwb_t * 863 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 864 { 865 lr_t *lrc = &itx->itx_lr; /* common log record */ 866 lr_write_t *lr = (lr_write_t *)lrc; 867 uint64_t txg = lrc->lrc_txg; 868 uint64_t reclen = lrc->lrc_reclen; 869 uint64_t dlen; 870 871 if (lwb == NULL) 872 return (NULL); 873 ASSERT(lwb->lwb_buf != NULL); 874 875 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 876 dlen = P2ROUNDUP_TYPED( 877 lr->lr_length, sizeof (uint64_t), uint64_t); 878 else 879 dlen = 0; 880 881 zilog->zl_cur_used += (reclen + dlen); 882 883 zil_lwb_write_init(zilog, lwb); 884 885 /* 886 * If this record won't fit in the current log block, start a new one. 887 */ 888 if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 889 lwb = zil_lwb_write_start(zilog, lwb); 890 if (lwb == NULL) 891 return (NULL); 892 zil_lwb_write_init(zilog, lwb); 893 ASSERT(lwb->lwb_nused == 0); 894 if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 895 txg_wait_synced(zilog->zl_dmu_pool, txg); 896 return (lwb); 897 } 898 } 899 900 /* 901 * Update the lrc_seq, to be log record sequence number. See zil.h 902 * Then copy the record to the log buffer. 903 */ 904 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 905 bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); 906 907 /* 908 * If it's a write, fetch the data or get its blkptr as appropriate. 909 */ 910 if (lrc->lrc_txtype == TX_WRITE) { 911 if (txg > spa_freeze_txg(zilog->zl_spa)) 912 txg_wait_synced(zilog->zl_dmu_pool, txg); 913 if (itx->itx_wr_state != WR_COPIED) { 914 char *dbuf; 915 int error; 916 917 /* alignment is guaranteed */ 918 lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused); 919 if (dlen) { 920 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 921 dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen; 922 lr->lr_common.lrc_reclen += dlen; 923 } else { 924 ASSERT(itx->itx_wr_state == WR_INDIRECT); 925 dbuf = NULL; 926 } 927 error = zilog->zl_get_data( 928 itx->itx_private, lr, dbuf, lwb->lwb_zio); 929 if (error == EIO) { 930 txg_wait_synced(zilog->zl_dmu_pool, txg); 931 return (lwb); 932 } 933 if (error) { 934 ASSERT(error == ENOENT || error == EEXIST || 935 error == EALREADY); 936 return (lwb); 937 } 938 } 939 } 940 941 lwb->lwb_nused += reclen + dlen; 942 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 943 ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); 944 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 945 946 return (lwb); 947 } 948 949 itx_t * 950 zil_itx_create(uint64_t txtype, size_t lrsize) 951 { 952 itx_t *itx; 953 954 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 955 956 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 957 itx->itx_lr.lrc_txtype = txtype; 958 itx->itx_lr.lrc_reclen = lrsize; 959 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 960 itx->itx_lr.lrc_seq = 0; /* defensive */ 961 962 return (itx); 963 } 964 965 uint64_t 966 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 967 { 968 uint64_t seq; 969 970 ASSERT(itx->itx_lr.lrc_seq == 0); 971 972 mutex_enter(&zilog->zl_lock); 973 list_insert_tail(&zilog->zl_itx_list, itx); 974 zilog->zl_itx_list_sz += itx->itx_sod; 975 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 976 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 977 mutex_exit(&zilog->zl_lock); 978 979 return (seq); 980 } 981 982 /* 983 * Free up all in-memory intent log transactions that have now been synced. 984 */ 985 static void 986 zil_itx_clean(zilog_t *zilog) 987 { 988 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 989 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 990 list_t clean_list; 991 itx_t *itx; 992 993 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 994 995 mutex_enter(&zilog->zl_lock); 996 /* wait for a log writer to finish walking list */ 997 while (zilog->zl_writer) { 998 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 999 } 1000 1001 /* 1002 * Move the sync'd log transactions to a separate list so we can call 1003 * kmem_free without holding the zl_lock. 1004 * 1005 * There is no need to set zl_writer as we don't drop zl_lock here 1006 */ 1007 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 1008 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 1009 list_remove(&zilog->zl_itx_list, itx); 1010 zilog->zl_itx_list_sz -= itx->itx_sod; 1011 list_insert_tail(&clean_list, itx); 1012 } 1013 cv_broadcast(&zilog->zl_cv_writer); 1014 mutex_exit(&zilog->zl_lock); 1015 1016 /* destroy sync'd log transactions */ 1017 while ((itx = list_head(&clean_list)) != NULL) { 1018 list_remove(&clean_list, itx); 1019 kmem_free(itx, offsetof(itx_t, itx_lr) 1020 + itx->itx_lr.lrc_reclen); 1021 } 1022 list_destroy(&clean_list); 1023 } 1024 1025 /* 1026 * If there are any in-memory intent log transactions which have now been 1027 * synced then start up a taskq to free them. 1028 */ 1029 void 1030 zil_clean(zilog_t *zilog) 1031 { 1032 itx_t *itx; 1033 1034 mutex_enter(&zilog->zl_lock); 1035 itx = list_head(&zilog->zl_itx_list); 1036 if ((itx != NULL) && 1037 (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) { 1038 (void) taskq_dispatch(zilog->zl_clean_taskq, 1039 (task_func_t *)zil_itx_clean, zilog, TQ_SLEEP); 1040 } 1041 mutex_exit(&zilog->zl_lock); 1042 } 1043 1044 static void 1045 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid) 1046 { 1047 uint64_t txg; 1048 uint64_t commit_seq = 0; 1049 itx_t *itx, *itx_next = (itx_t *)-1; 1050 lwb_t *lwb; 1051 spa_t *spa; 1052 1053 zilog->zl_writer = B_TRUE; 1054 ASSERT(zilog->zl_root_zio == NULL); 1055 spa = zilog->zl_spa; 1056 1057 if (zilog->zl_suspend) { 1058 lwb = NULL; 1059 } else { 1060 lwb = list_tail(&zilog->zl_lwb_list); 1061 if (lwb == NULL) { 1062 /* 1063 * Return if there's nothing to flush before we 1064 * dirty the fs by calling zil_create() 1065 */ 1066 if (list_is_empty(&zilog->zl_itx_list)) { 1067 zilog->zl_writer = B_FALSE; 1068 return; 1069 } 1070 mutex_exit(&zilog->zl_lock); 1071 zil_create(zilog); 1072 mutex_enter(&zilog->zl_lock); 1073 lwb = list_tail(&zilog->zl_lwb_list); 1074 } 1075 } 1076 1077 /* Loop through in-memory log transactions filling log blocks. */ 1078 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 1079 for (;;) { 1080 /* 1081 * Find the next itx to push: 1082 * Push all transactions related to specified foid and all 1083 * other transactions except TX_WRITE, TX_TRUNCATE, 1084 * TX_SETATTR and TX_ACL for all other files. 1085 */ 1086 if (itx_next != (itx_t *)-1) 1087 itx = itx_next; 1088 else 1089 itx = list_head(&zilog->zl_itx_list); 1090 for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) { 1091 if (foid == 0) /* push all foids? */ 1092 break; 1093 if (itx->itx_sync) /* push all O_[D]SYNC */ 1094 break; 1095 switch (itx->itx_lr.lrc_txtype) { 1096 case TX_SETATTR: 1097 case TX_WRITE: 1098 case TX_TRUNCATE: 1099 case TX_ACL: 1100 /* lr_foid is same offset for these records */ 1101 if (((lr_write_t *)&itx->itx_lr)->lr_foid 1102 != foid) { 1103 continue; /* skip this record */ 1104 } 1105 } 1106 break; 1107 } 1108 if (itx == NULL) 1109 break; 1110 1111 if ((itx->itx_lr.lrc_seq > seq) && 1112 ((lwb == NULL) || (lwb->lwb_nused == 0) || 1113 (lwb->lwb_nused + itx->itx_sod > ZIL_BLK_DATA_SZ(lwb)))) { 1114 break; 1115 } 1116 1117 /* 1118 * Save the next pointer. Even though we soon drop 1119 * zl_lock all threads that may change the list 1120 * (another writer or zil_itx_clean) can't do so until 1121 * they have zl_writer. 1122 */ 1123 itx_next = list_next(&zilog->zl_itx_list, itx); 1124 list_remove(&zilog->zl_itx_list, itx); 1125 zilog->zl_itx_list_sz -= itx->itx_sod; 1126 mutex_exit(&zilog->zl_lock); 1127 txg = itx->itx_lr.lrc_txg; 1128 ASSERT(txg); 1129 1130 if (txg > spa_last_synced_txg(spa) || 1131 txg > spa_freeze_txg(spa)) 1132 lwb = zil_lwb_commit(zilog, itx, lwb); 1133 kmem_free(itx, offsetof(itx_t, itx_lr) 1134 + itx->itx_lr.lrc_reclen); 1135 mutex_enter(&zilog->zl_lock); 1136 } 1137 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1138 /* determine commit sequence number */ 1139 itx = list_head(&zilog->zl_itx_list); 1140 if (itx) 1141 commit_seq = itx->itx_lr.lrc_seq; 1142 else 1143 commit_seq = zilog->zl_itx_seq; 1144 mutex_exit(&zilog->zl_lock); 1145 1146 /* write the last block out */ 1147 if (lwb != NULL && lwb->lwb_zio != NULL) 1148 lwb = zil_lwb_write_start(zilog, lwb); 1149 1150 zilog->zl_prev_used = zilog->zl_cur_used; 1151 zilog->zl_cur_used = 0; 1152 1153 /* 1154 * Wait if necessary for the log blocks to be on stable storage. 1155 */ 1156 if (zilog->zl_root_zio) { 1157 DTRACE_PROBE1(zil__cw3, zilog_t *, zilog); 1158 (void) zio_wait(zilog->zl_root_zio); 1159 zilog->zl_root_zio = NULL; 1160 DTRACE_PROBE1(zil__cw4, zilog_t *, zilog); 1161 zil_flush_vdevs(zilog); 1162 } 1163 1164 if (zilog->zl_log_error || lwb == NULL) { 1165 zilog->zl_log_error = 0; 1166 txg_wait_synced(zilog->zl_dmu_pool, 0); 1167 } 1168 1169 mutex_enter(&zilog->zl_lock); 1170 zilog->zl_writer = B_FALSE; 1171 1172 ASSERT3U(commit_seq, >=, zilog->zl_commit_seq); 1173 zilog->zl_commit_seq = commit_seq; 1174 } 1175 1176 /* 1177 * Push zfs transactions to stable storage up to the supplied sequence number. 1178 * If foid is 0 push out all transactions, otherwise push only those 1179 * for that file or might have been used to create that file. 1180 */ 1181 void 1182 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid) 1183 { 1184 if (zilog == NULL || seq == 0) 1185 return; 1186 1187 mutex_enter(&zilog->zl_lock); 1188 1189 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 1190 1191 while (zilog->zl_writer) { 1192 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1193 if (seq < zilog->zl_commit_seq) { 1194 mutex_exit(&zilog->zl_lock); 1195 return; 1196 } 1197 } 1198 zil_commit_writer(zilog, seq, foid); /* drops zl_lock */ 1199 /* wake up others waiting on the commit */ 1200 cv_broadcast(&zilog->zl_cv_writer); 1201 mutex_exit(&zilog->zl_lock); 1202 } 1203 1204 /* 1205 * Called in syncing context to free committed log blocks and update log header. 1206 */ 1207 void 1208 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1209 { 1210 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1211 uint64_t txg = dmu_tx_get_txg(tx); 1212 spa_t *spa = zilog->zl_spa; 1213 lwb_t *lwb; 1214 1215 /* 1216 * We don't zero out zl_destroy_txg, so make sure we don't try 1217 * to destroy it twice. 1218 */ 1219 if (spa_sync_pass(spa) != 1) 1220 return; 1221 1222 mutex_enter(&zilog->zl_lock); 1223 1224 ASSERT(zilog->zl_stop_sync == 0); 1225 1226 zh->zh_replay_seq = zilog->zl_replayed_seq[txg & TXG_MASK]; 1227 1228 if (zilog->zl_destroy_txg == txg) { 1229 blkptr_t blk = zh->zh_log; 1230 1231 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1232 1233 bzero(zh, sizeof (zil_header_t)); 1234 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); 1235 1236 if (zilog->zl_keep_first) { 1237 /* 1238 * If this block was part of log chain that couldn't 1239 * be claimed because a device was missing during 1240 * zil_claim(), but that device later returns, 1241 * then this block could erroneously appear valid. 1242 * To guard against this, assign a new GUID to the new 1243 * log chain so it doesn't matter what blk points to. 1244 */ 1245 zil_init_log_chain(zilog, &blk); 1246 zh->zh_log = blk; 1247 } 1248 } 1249 1250 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1251 zh->zh_log = lwb->lwb_blk; 1252 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1253 break; 1254 list_remove(&zilog->zl_lwb_list, lwb); 1255 zio_free_blk(spa, &lwb->lwb_blk, txg); 1256 kmem_cache_free(zil_lwb_cache, lwb); 1257 1258 /* 1259 * If we don't have anything left in the lwb list then 1260 * we've had an allocation failure and we need to zero 1261 * out the zil_header blkptr so that we don't end 1262 * up freeing the same block twice. 1263 */ 1264 if (list_head(&zilog->zl_lwb_list) == NULL) 1265 BP_ZERO(&zh->zh_log); 1266 } 1267 mutex_exit(&zilog->zl_lock); 1268 } 1269 1270 void 1271 zil_init(void) 1272 { 1273 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1274 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1275 } 1276 1277 void 1278 zil_fini(void) 1279 { 1280 kmem_cache_destroy(zil_lwb_cache); 1281 } 1282 1283 zilog_t * 1284 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1285 { 1286 zilog_t *zilog; 1287 1288 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1289 1290 zilog->zl_header = zh_phys; 1291 zilog->zl_os = os; 1292 zilog->zl_spa = dmu_objset_spa(os); 1293 zilog->zl_dmu_pool = dmu_objset_pool(os); 1294 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1295 1296 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1297 1298 list_create(&zilog->zl_itx_list, sizeof (itx_t), 1299 offsetof(itx_t, itx_node)); 1300 1301 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1302 offsetof(lwb_t, lwb_node)); 1303 1304 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1305 1306 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1307 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1308 1309 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1310 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1311 1312 return (zilog); 1313 } 1314 1315 void 1316 zil_free(zilog_t *zilog) 1317 { 1318 lwb_t *lwb; 1319 1320 zilog->zl_stop_sync = 1; 1321 1322 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1323 list_remove(&zilog->zl_lwb_list, lwb); 1324 if (lwb->lwb_buf != NULL) 1325 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1326 kmem_cache_free(zil_lwb_cache, lwb); 1327 } 1328 list_destroy(&zilog->zl_lwb_list); 1329 1330 avl_destroy(&zilog->zl_vdev_tree); 1331 mutex_destroy(&zilog->zl_vdev_lock); 1332 1333 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1334 list_destroy(&zilog->zl_itx_list); 1335 mutex_destroy(&zilog->zl_lock); 1336 1337 cv_destroy(&zilog->zl_cv_writer); 1338 cv_destroy(&zilog->zl_cv_suspend); 1339 1340 kmem_free(zilog, sizeof (zilog_t)); 1341 } 1342 1343 /* 1344 * Open an intent log. 1345 */ 1346 zilog_t * 1347 zil_open(objset_t *os, zil_get_data_t *get_data) 1348 { 1349 zilog_t *zilog = dmu_objset_zil(os); 1350 1351 zilog->zl_get_data = get_data; 1352 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1353 2, 2, TASKQ_PREPOPULATE); 1354 1355 return (zilog); 1356 } 1357 1358 /* 1359 * Close an intent log. 1360 */ 1361 void 1362 zil_close(zilog_t *zilog) 1363 { 1364 /* 1365 * If the log isn't already committed, mark the objset dirty 1366 * (so zil_sync() will be called) and wait for that txg to sync. 1367 */ 1368 if (!zil_is_committed(zilog)) { 1369 uint64_t txg; 1370 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1371 (void) dmu_tx_assign(tx, TXG_WAIT); 1372 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1373 txg = dmu_tx_get_txg(tx); 1374 dmu_tx_commit(tx); 1375 txg_wait_synced(zilog->zl_dmu_pool, txg); 1376 } 1377 1378 taskq_destroy(zilog->zl_clean_taskq); 1379 zilog->zl_clean_taskq = NULL; 1380 zilog->zl_get_data = NULL; 1381 1382 zil_itx_clean(zilog); 1383 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1384 } 1385 1386 /* 1387 * Suspend an intent log. While in suspended mode, we still honor 1388 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1389 * We suspend the log briefly when taking a snapshot so that the snapshot 1390 * contains all the data it's supposed to, and has an empty intent log. 1391 */ 1392 int 1393 zil_suspend(zilog_t *zilog) 1394 { 1395 const zil_header_t *zh = zilog->zl_header; 1396 1397 mutex_enter(&zilog->zl_lock); 1398 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 1399 mutex_exit(&zilog->zl_lock); 1400 return (EBUSY); 1401 } 1402 if (zilog->zl_suspend++ != 0) { 1403 /* 1404 * Someone else already began a suspend. 1405 * Just wait for them to finish. 1406 */ 1407 while (zilog->zl_suspending) 1408 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1409 mutex_exit(&zilog->zl_lock); 1410 return (0); 1411 } 1412 zilog->zl_suspending = B_TRUE; 1413 mutex_exit(&zilog->zl_lock); 1414 1415 zil_commit(zilog, UINT64_MAX, 0); 1416 1417 /* 1418 * Wait for any in-flight log writes to complete. 1419 */ 1420 mutex_enter(&zilog->zl_lock); 1421 while (zilog->zl_writer) 1422 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1423 mutex_exit(&zilog->zl_lock); 1424 1425 zil_destroy(zilog, B_FALSE); 1426 1427 mutex_enter(&zilog->zl_lock); 1428 zilog->zl_suspending = B_FALSE; 1429 cv_broadcast(&zilog->zl_cv_suspend); 1430 mutex_exit(&zilog->zl_lock); 1431 1432 return (0); 1433 } 1434 1435 void 1436 zil_resume(zilog_t *zilog) 1437 { 1438 mutex_enter(&zilog->zl_lock); 1439 ASSERT(zilog->zl_suspend != 0); 1440 zilog->zl_suspend--; 1441 mutex_exit(&zilog->zl_lock); 1442 } 1443 1444 typedef struct zil_replay_arg { 1445 objset_t *zr_os; 1446 zil_replay_func_t **zr_replay; 1447 void *zr_arg; 1448 boolean_t zr_byteswap; 1449 char *zr_lrbuf; 1450 } zil_replay_arg_t; 1451 1452 static void 1453 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1454 { 1455 zil_replay_arg_t *zr = zra; 1456 const zil_header_t *zh = zilog->zl_header; 1457 uint64_t reclen = lr->lrc_reclen; 1458 uint64_t txtype = lr->lrc_txtype; 1459 char *name; 1460 int pass, error; 1461 1462 if (!zilog->zl_replay) /* giving up */ 1463 return; 1464 1465 if (lr->lrc_txg < claim_txg) /* already committed */ 1466 return; 1467 1468 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1469 return; 1470 1471 /* Strip case-insensitive bit, still present in log record */ 1472 txtype &= ~TX_CI; 1473 1474 if (txtype == 0 || txtype >= TX_MAX_TYPE) { 1475 error = EINVAL; 1476 goto bad; 1477 } 1478 1479 /* 1480 * Make a copy of the data so we can revise and extend it. 1481 */ 1482 bcopy(lr, zr->zr_lrbuf, reclen); 1483 1484 /* 1485 * The log block containing this lr may have been byteswapped 1486 * so that we can easily examine common fields like lrc_txtype. 1487 * However, the log is a mix of different data types, and only the 1488 * replay vectors know how to byteswap their records. Therefore, if 1489 * the lr was byteswapped, undo it before invoking the replay vector. 1490 */ 1491 if (zr->zr_byteswap) 1492 byteswap_uint64_array(zr->zr_lrbuf, reclen); 1493 1494 /* 1495 * If this is a TX_WRITE with a blkptr, suck in the data. 1496 */ 1497 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1498 lr_write_t *lrw = (lr_write_t *)lr; 1499 blkptr_t *wbp = &lrw->lr_blkptr; 1500 uint64_t wlen = lrw->lr_length; 1501 char *wbuf = zr->zr_lrbuf + reclen; 1502 1503 if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ 1504 bzero(wbuf, wlen); 1505 } else { 1506 /* 1507 * A subsequent write may have overwritten this block, 1508 * in which case wbp may have been been freed and 1509 * reallocated, and our read of wbp may fail with a 1510 * checksum error. We can safely ignore this because 1511 * the later write will provide the correct data. 1512 */ 1513 zbookmark_t zb; 1514 1515 zb.zb_objset = dmu_objset_id(zilog->zl_os); 1516 zb.zb_object = lrw->lr_foid; 1517 zb.zb_level = -1; 1518 zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp); 1519 1520 (void) zio_wait(zio_read(NULL, zilog->zl_spa, 1521 wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, 1522 ZIO_PRIORITY_SYNC_READ, 1523 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb)); 1524 (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); 1525 } 1526 } 1527 1528 /* 1529 * We must now do two things atomically: replay this log record, 1530 * and update the log header sequence number to reflect the fact that 1531 * we did so. At the end of each replay function the sequence number 1532 * is updated if we are in replay mode. 1533 */ 1534 for (pass = 1; pass <= 2; pass++) { 1535 zilog->zl_replaying_seq = lr->lrc_seq; 1536 /* Only byteswap (if needed) on the 1st pass. */ 1537 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, 1538 zr->zr_byteswap && pass == 1); 1539 1540 if (!error) 1541 return; 1542 1543 /* 1544 * The DMU's dnode layer doesn't see removes until the txg 1545 * commits, so a subsequent claim can spuriously fail with 1546 * EEXIST. So if we receive any error we try syncing out 1547 * any removes then retry the transaction. 1548 */ 1549 if (pass == 1) 1550 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1551 } 1552 1553 bad: 1554 ASSERT(error); 1555 name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1556 dmu_objset_name(zr->zr_os, name); 1557 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1558 "dataset %s, seq 0x%llx, txtype %llu %s\n", 1559 error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype, 1560 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1561 zilog->zl_replay = B_FALSE; 1562 kmem_free(name, MAXNAMELEN); 1563 } 1564 1565 /* ARGSUSED */ 1566 static void 1567 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1568 { 1569 zilog->zl_replay_blks++; 1570 } 1571 1572 /* 1573 * If this dataset has a non-empty intent log, replay it and destroy it. 1574 */ 1575 void 1576 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1577 { 1578 zilog_t *zilog = dmu_objset_zil(os); 1579 const zil_header_t *zh = zilog->zl_header; 1580 zil_replay_arg_t zr; 1581 1582 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 1583 zil_destroy(zilog, B_TRUE); 1584 return; 1585 } 1586 1587 zr.zr_os = os; 1588 zr.zr_replay = replay_func; 1589 zr.zr_arg = arg; 1590 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1591 zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1592 1593 /* 1594 * Wait for in-progress removes to sync before starting replay. 1595 */ 1596 txg_wait_synced(zilog->zl_dmu_pool, 0); 1597 1598 zilog->zl_replay = B_TRUE; 1599 zilog->zl_replay_time = lbolt; 1600 ASSERT(zilog->zl_replay_blks == 0); 1601 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1602 zh->zh_claim_txg); 1603 kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); 1604 1605 zil_destroy(zilog, B_FALSE); 1606 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1607 zilog->zl_replay = B_FALSE; 1608 } 1609 1610 /* 1611 * Report whether all transactions are committed 1612 */ 1613 int 1614 zil_is_committed(zilog_t *zilog) 1615 { 1616 lwb_t *lwb; 1617 int ret; 1618 1619 mutex_enter(&zilog->zl_lock); 1620 while (zilog->zl_writer) 1621 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1622 1623 /* recent unpushed intent log transactions? */ 1624 if (!list_is_empty(&zilog->zl_itx_list)) { 1625 ret = B_FALSE; 1626 goto out; 1627 } 1628 1629 /* intent log never used? */ 1630 lwb = list_head(&zilog->zl_lwb_list); 1631 if (lwb == NULL) { 1632 ret = B_TRUE; 1633 goto out; 1634 } 1635 1636 /* 1637 * more than 1 log buffer means zil_sync() hasn't yet freed 1638 * entries after a txg has committed 1639 */ 1640 if (list_next(&zilog->zl_lwb_list, lwb)) { 1641 ret = B_FALSE; 1642 goto out; 1643 } 1644 1645 ASSERT(zil_empty(zilog)); 1646 ret = B_TRUE; 1647 out: 1648 cv_broadcast(&zilog->zl_cv_writer); 1649 mutex_exit(&zilog->zl_lock); 1650 return (ret); 1651 } 1652 1653 /* ARGSUSED */ 1654 int 1655 zil_vdev_offline(char *osname, void *arg) 1656 { 1657 objset_t *os; 1658 zilog_t *zilog; 1659 int error; 1660 1661 error = dmu_objset_hold(osname, FTAG, &os); 1662 if (error) 1663 return (error); 1664 1665 zilog = dmu_objset_zil(os); 1666 if (zil_suspend(zilog) != 0) 1667 error = EEXIST; 1668 else 1669 zil_resume(zilog); 1670 dmu_objset_rele(os, FTAG); 1671 return (error); 1672 } 1673