xref: /titanic_51/usr/src/uts/common/fs/zfs/zil.c (revision 356f72340a69936724c69f2f87fffa6f5887f885)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  */
26 
27 /* Portions Copyright 2010 Robert Milkowski */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zap.h>
33 #include <sys/arc.h>
34 #include <sys/stat.h>
35 #include <sys/resource.h>
36 #include <sys/zil.h>
37 #include <sys/zil_impl.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dsl_pool.h>
42 
43 /*
44  * The zfs intent log (ZIL) saves transaction records of system calls
45  * that change the file system in memory with enough information
46  * to be able to replay them. These are stored in memory until
47  * either the DMU transaction group (txg) commits them to the stable pool
48  * and they can be discarded, or they are flushed to the stable log
49  * (also in the pool) due to a fsync, O_DSYNC or other synchronous
50  * requirement. In the event of a panic or power fail then those log
51  * records (transactions) are replayed.
52  *
53  * There is one ZIL per file system. Its on-disk (pool) format consists
54  * of 3 parts:
55  *
56  * 	- ZIL header
57  * 	- ZIL blocks
58  * 	- ZIL records
59  *
60  * A log record holds a system call transaction. Log blocks can
61  * hold many log records and the blocks are chained together.
62  * Each ZIL block contains a block pointer (blkptr_t) to the next
63  * ZIL block in the chain. The ZIL header points to the first
64  * block in the chain. Note there is not a fixed place in the pool
65  * to hold blocks. They are dynamically allocated and freed as
66  * needed from the blocks available. Figure X shows the ZIL structure:
67  */
68 
69 /*
70  * Disable intent logging replay.  This global ZIL switch affects all pools.
71  */
72 int zil_replay_disable = 0;
73 
74 /*
75  * Tunable parameter for debugging or performance analysis.  Setting
76  * zfs_nocacheflush will cause corruption on power loss if a volatile
77  * out-of-order write cache is enabled.
78  */
79 boolean_t zfs_nocacheflush = B_FALSE;
80 
81 static kmem_cache_t *zil_lwb_cache;
82 
83 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
84 
85 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
86     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
87 
88 
89 /*
90  * ziltest is by and large an ugly hack, but very useful in
91  * checking replay without tedious work.
92  * When running ziltest we want to keep all itx's and so maintain
93  * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
94  * We subtract TXG_CONCURRENT_STATES to allow for common code.
95  */
96 #define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
97 
98 static int
99 zil_bp_compare(const void *x1, const void *x2)
100 {
101 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
102 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
103 
104 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
105 		return (-1);
106 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
107 		return (1);
108 
109 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
110 		return (-1);
111 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
112 		return (1);
113 
114 	return (0);
115 }
116 
117 static void
118 zil_bp_tree_init(zilog_t *zilog)
119 {
120 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
121 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
122 }
123 
124 static void
125 zil_bp_tree_fini(zilog_t *zilog)
126 {
127 	avl_tree_t *t = &zilog->zl_bp_tree;
128 	zil_bp_node_t *zn;
129 	void *cookie = NULL;
130 
131 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
132 		kmem_free(zn, sizeof (zil_bp_node_t));
133 
134 	avl_destroy(t);
135 }
136 
137 int
138 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
139 {
140 	avl_tree_t *t = &zilog->zl_bp_tree;
141 	const dva_t *dva;
142 	zil_bp_node_t *zn;
143 	avl_index_t where;
144 
145 	if (BP_IS_EMBEDDED(bp))
146 		return (0);
147 
148 	dva = BP_IDENTITY(bp);
149 
150 	if (avl_find(t, dva, &where) != NULL)
151 		return (SET_ERROR(EEXIST));
152 
153 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
154 	zn->zn_dva = *dva;
155 	avl_insert(t, zn, where);
156 
157 	return (0);
158 }
159 
160 static zil_header_t *
161 zil_header_in_syncing_context(zilog_t *zilog)
162 {
163 	return ((zil_header_t *)zilog->zl_header);
164 }
165 
166 static void
167 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
168 {
169 	zio_cksum_t *zc = &bp->blk_cksum;
170 
171 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
172 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
173 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
174 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
175 }
176 
177 /*
178  * Read a log block and make sure it's valid.
179  */
180 static int
181 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
182     char **end)
183 {
184 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
185 	arc_flags_t aflags = ARC_FLAG_WAIT;
186 	arc_buf_t *abuf = NULL;
187 	zbookmark_phys_t zb;
188 	int error;
189 
190 	if (zilog->zl_header->zh_claim_txg == 0)
191 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
192 
193 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
194 		zio_flags |= ZIO_FLAG_SPECULATIVE;
195 
196 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
197 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
198 
199 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
200 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
201 
202 	if (error == 0) {
203 		zio_cksum_t cksum = bp->blk_cksum;
204 
205 		/*
206 		 * Validate the checksummed log block.
207 		 *
208 		 * Sequence numbers should be... sequential.  The checksum
209 		 * verifier for the next block should be bp's checksum plus 1.
210 		 *
211 		 * Also check the log chain linkage and size used.
212 		 */
213 		cksum.zc_word[ZIL_ZC_SEQ]++;
214 
215 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
216 			zil_chain_t *zilc = abuf->b_data;
217 			char *lr = (char *)(zilc + 1);
218 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
219 
220 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
221 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
222 				error = SET_ERROR(ECKSUM);
223 			} else {
224 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
225 				bcopy(lr, dst, len);
226 				*end = (char *)dst + len;
227 				*nbp = zilc->zc_next_blk;
228 			}
229 		} else {
230 			char *lr = abuf->b_data;
231 			uint64_t size = BP_GET_LSIZE(bp);
232 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
233 
234 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
235 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
236 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
237 				error = SET_ERROR(ECKSUM);
238 			} else {
239 				ASSERT3U(zilc->zc_nused, <=,
240 				    SPA_OLD_MAXBLOCKSIZE);
241 				bcopy(lr, dst, zilc->zc_nused);
242 				*end = (char *)dst + zilc->zc_nused;
243 				*nbp = zilc->zc_next_blk;
244 			}
245 		}
246 
247 		VERIFY(arc_buf_remove_ref(abuf, &abuf));
248 	}
249 
250 	return (error);
251 }
252 
253 /*
254  * Read a TX_WRITE log data block.
255  */
256 static int
257 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
258 {
259 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
260 	const blkptr_t *bp = &lr->lr_blkptr;
261 	arc_flags_t aflags = ARC_FLAG_WAIT;
262 	arc_buf_t *abuf = NULL;
263 	zbookmark_phys_t zb;
264 	int error;
265 
266 	if (BP_IS_HOLE(bp)) {
267 		if (wbuf != NULL)
268 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
269 		return (0);
270 	}
271 
272 	if (zilog->zl_header->zh_claim_txg == 0)
273 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
274 
275 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
276 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
277 
278 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
279 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
280 
281 	if (error == 0) {
282 		if (wbuf != NULL)
283 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
284 		(void) arc_buf_remove_ref(abuf, &abuf);
285 	}
286 
287 	return (error);
288 }
289 
290 /*
291  * Parse the intent log, and call parse_func for each valid record within.
292  */
293 int
294 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
295     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
296 {
297 	const zil_header_t *zh = zilog->zl_header;
298 	boolean_t claimed = !!zh->zh_claim_txg;
299 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
300 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
301 	uint64_t max_blk_seq = 0;
302 	uint64_t max_lr_seq = 0;
303 	uint64_t blk_count = 0;
304 	uint64_t lr_count = 0;
305 	blkptr_t blk, next_blk;
306 	char *lrbuf, *lrp;
307 	int error = 0;
308 
309 	/*
310 	 * Old logs didn't record the maximum zh_claim_lr_seq.
311 	 */
312 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
313 		claim_lr_seq = UINT64_MAX;
314 
315 	/*
316 	 * Starting at the block pointed to by zh_log we read the log chain.
317 	 * For each block in the chain we strongly check that block to
318 	 * ensure its validity.  We stop when an invalid block is found.
319 	 * For each block pointer in the chain we call parse_blk_func().
320 	 * For each record in each valid block we call parse_lr_func().
321 	 * If the log has been claimed, stop if we encounter a sequence
322 	 * number greater than the highest claimed sequence number.
323 	 */
324 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
325 	zil_bp_tree_init(zilog);
326 
327 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
328 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
329 		int reclen;
330 		char *end;
331 
332 		if (blk_seq > claim_blk_seq)
333 			break;
334 		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
335 			break;
336 		ASSERT3U(max_blk_seq, <, blk_seq);
337 		max_blk_seq = blk_seq;
338 		blk_count++;
339 
340 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
341 			break;
342 
343 		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
344 		if (error != 0)
345 			break;
346 
347 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
348 			lr_t *lr = (lr_t *)lrp;
349 			reclen = lr->lrc_reclen;
350 			ASSERT3U(reclen, >=, sizeof (lr_t));
351 			if (lr->lrc_seq > claim_lr_seq)
352 				goto done;
353 			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
354 				goto done;
355 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
356 			max_lr_seq = lr->lrc_seq;
357 			lr_count++;
358 		}
359 	}
360 done:
361 	zilog->zl_parse_error = error;
362 	zilog->zl_parse_blk_seq = max_blk_seq;
363 	zilog->zl_parse_lr_seq = max_lr_seq;
364 	zilog->zl_parse_blk_count = blk_count;
365 	zilog->zl_parse_lr_count = lr_count;
366 
367 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
368 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
369 
370 	zil_bp_tree_fini(zilog);
371 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
372 
373 	return (error);
374 }
375 
376 static int
377 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
378 {
379 	/*
380 	 * Claim log block if not already committed and not already claimed.
381 	 * If tx == NULL, just verify that the block is claimable.
382 	 */
383 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
384 	    zil_bp_tree_add(zilog, bp) != 0)
385 		return (0);
386 
387 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
388 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
389 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
390 }
391 
392 static int
393 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
394 {
395 	lr_write_t *lr = (lr_write_t *)lrc;
396 	int error;
397 
398 	if (lrc->lrc_txtype != TX_WRITE)
399 		return (0);
400 
401 	/*
402 	 * If the block is not readable, don't claim it.  This can happen
403 	 * in normal operation when a log block is written to disk before
404 	 * some of the dmu_sync() blocks it points to.  In this case, the
405 	 * transaction cannot have been committed to anyone (we would have
406 	 * waited for all writes to be stable first), so it is semantically
407 	 * correct to declare this the end of the log.
408 	 */
409 	if (lr->lr_blkptr.blk_birth >= first_txg &&
410 	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
411 		return (error);
412 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
413 }
414 
415 /* ARGSUSED */
416 static int
417 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
418 {
419 	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
420 
421 	return (0);
422 }
423 
424 static int
425 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
426 {
427 	lr_write_t *lr = (lr_write_t *)lrc;
428 	blkptr_t *bp = &lr->lr_blkptr;
429 
430 	/*
431 	 * If we previously claimed it, we need to free it.
432 	 */
433 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
434 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
435 	    !BP_IS_HOLE(bp))
436 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
437 
438 	return (0);
439 }
440 
441 static lwb_t *
442 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
443 {
444 	lwb_t *lwb;
445 
446 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
447 	lwb->lwb_zilog = zilog;
448 	lwb->lwb_blk = *bp;
449 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
450 	lwb->lwb_max_txg = txg;
451 	lwb->lwb_zio = NULL;
452 	lwb->lwb_tx = NULL;
453 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
454 		lwb->lwb_nused = sizeof (zil_chain_t);
455 		lwb->lwb_sz = BP_GET_LSIZE(bp);
456 	} else {
457 		lwb->lwb_nused = 0;
458 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
459 	}
460 
461 	mutex_enter(&zilog->zl_lock);
462 	list_insert_tail(&zilog->zl_lwb_list, lwb);
463 	mutex_exit(&zilog->zl_lock);
464 
465 	return (lwb);
466 }
467 
468 /*
469  * Called when we create in-memory log transactions so that we know
470  * to cleanup the itxs at the end of spa_sync().
471  */
472 void
473 zilog_dirty(zilog_t *zilog, uint64_t txg)
474 {
475 	dsl_pool_t *dp = zilog->zl_dmu_pool;
476 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
477 
478 	if (ds->ds_is_snapshot)
479 		panic("dirtying snapshot!");
480 
481 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
482 		/* up the hold count until we can be written out */
483 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
484 	}
485 }
486 
487 boolean_t
488 zilog_is_dirty(zilog_t *zilog)
489 {
490 	dsl_pool_t *dp = zilog->zl_dmu_pool;
491 
492 	for (int t = 0; t < TXG_SIZE; t++) {
493 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
494 			return (B_TRUE);
495 	}
496 	return (B_FALSE);
497 }
498 
499 /*
500  * Create an on-disk intent log.
501  */
502 static lwb_t *
503 zil_create(zilog_t *zilog)
504 {
505 	const zil_header_t *zh = zilog->zl_header;
506 	lwb_t *lwb = NULL;
507 	uint64_t txg = 0;
508 	dmu_tx_t *tx = NULL;
509 	blkptr_t blk;
510 	int error = 0;
511 
512 	/*
513 	 * Wait for any previous destroy to complete.
514 	 */
515 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
516 
517 	ASSERT(zh->zh_claim_txg == 0);
518 	ASSERT(zh->zh_replay_seq == 0);
519 
520 	blk = zh->zh_log;
521 
522 	/*
523 	 * Allocate an initial log block if:
524 	 *    - there isn't one already
525 	 *    - the existing block is the wrong endianess
526 	 */
527 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
528 		tx = dmu_tx_create(zilog->zl_os);
529 		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
530 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
531 		txg = dmu_tx_get_txg(tx);
532 
533 		if (!BP_IS_HOLE(&blk)) {
534 			zio_free_zil(zilog->zl_spa, txg, &blk);
535 			BP_ZERO(&blk);
536 		}
537 
538 		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
539 		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
540 
541 		if (error == 0)
542 			zil_init_log_chain(zilog, &blk);
543 	}
544 
545 	/*
546 	 * Allocate a log write buffer (lwb) for the first log block.
547 	 */
548 	if (error == 0)
549 		lwb = zil_alloc_lwb(zilog, &blk, txg);
550 
551 	/*
552 	 * If we just allocated the first log block, commit our transaction
553 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
554 	 * (zh is part of the MOS, so we cannot modify it in open context.)
555 	 */
556 	if (tx != NULL) {
557 		dmu_tx_commit(tx);
558 		txg_wait_synced(zilog->zl_dmu_pool, txg);
559 	}
560 
561 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
562 
563 	return (lwb);
564 }
565 
566 /*
567  * In one tx, free all log blocks and clear the log header.
568  * If keep_first is set, then we're replaying a log with no content.
569  * We want to keep the first block, however, so that the first
570  * synchronous transaction doesn't require a txg_wait_synced()
571  * in zil_create().  We don't need to txg_wait_synced() here either
572  * when keep_first is set, because both zil_create() and zil_destroy()
573  * will wait for any in-progress destroys to complete.
574  */
575 void
576 zil_destroy(zilog_t *zilog, boolean_t keep_first)
577 {
578 	const zil_header_t *zh = zilog->zl_header;
579 	lwb_t *lwb;
580 	dmu_tx_t *tx;
581 	uint64_t txg;
582 
583 	/*
584 	 * Wait for any previous destroy to complete.
585 	 */
586 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
587 
588 	zilog->zl_old_header = *zh;		/* debugging aid */
589 
590 	if (BP_IS_HOLE(&zh->zh_log))
591 		return;
592 
593 	tx = dmu_tx_create(zilog->zl_os);
594 	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
595 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
596 	txg = dmu_tx_get_txg(tx);
597 
598 	mutex_enter(&zilog->zl_lock);
599 
600 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
601 	zilog->zl_destroy_txg = txg;
602 	zilog->zl_keep_first = keep_first;
603 
604 	if (!list_is_empty(&zilog->zl_lwb_list)) {
605 		ASSERT(zh->zh_claim_txg == 0);
606 		VERIFY(!keep_first);
607 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
608 			list_remove(&zilog->zl_lwb_list, lwb);
609 			if (lwb->lwb_buf != NULL)
610 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
611 			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
612 			kmem_cache_free(zil_lwb_cache, lwb);
613 		}
614 	} else if (!keep_first) {
615 		zil_destroy_sync(zilog, tx);
616 	}
617 	mutex_exit(&zilog->zl_lock);
618 
619 	dmu_tx_commit(tx);
620 }
621 
622 void
623 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
624 {
625 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
626 	(void) zil_parse(zilog, zil_free_log_block,
627 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
628 }
629 
630 int
631 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
632 {
633 	dmu_tx_t *tx = txarg;
634 	uint64_t first_txg = dmu_tx_get_txg(tx);
635 	zilog_t *zilog;
636 	zil_header_t *zh;
637 	objset_t *os;
638 	int error;
639 
640 	error = dmu_objset_own_obj(dp, ds->ds_object,
641 	    DMU_OST_ANY, B_FALSE, FTAG, &os);
642 	if (error != 0) {
643 		/*
644 		 * EBUSY indicates that the objset is inconsistent, in which
645 		 * case it can not have a ZIL.
646 		 */
647 		if (error != EBUSY) {
648 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
649 			    (unsigned long long)ds->ds_object, error);
650 		}
651 		return (0);
652 	}
653 
654 	zilog = dmu_objset_zil(os);
655 	zh = zil_header_in_syncing_context(zilog);
656 
657 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
658 		if (!BP_IS_HOLE(&zh->zh_log))
659 			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
660 		BP_ZERO(&zh->zh_log);
661 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
662 		dmu_objset_disown(os, FTAG);
663 		return (0);
664 	}
665 
666 	/*
667 	 * Claim all log blocks if we haven't already done so, and remember
668 	 * the highest claimed sequence number.  This ensures that if we can
669 	 * read only part of the log now (e.g. due to a missing device),
670 	 * but we can read the entire log later, we will not try to replay
671 	 * or destroy beyond the last block we successfully claimed.
672 	 */
673 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
674 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
675 		(void) zil_parse(zilog, zil_claim_log_block,
676 		    zil_claim_log_record, tx, first_txg);
677 		zh->zh_claim_txg = first_txg;
678 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
679 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
680 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
681 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
682 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
683 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
684 	}
685 
686 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
687 	dmu_objset_disown(os, FTAG);
688 	return (0);
689 }
690 
691 /*
692  * Check the log by walking the log chain.
693  * Checksum errors are ok as they indicate the end of the chain.
694  * Any other error (no device or read failure) returns an error.
695  */
696 /* ARGSUSED */
697 int
698 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
699 {
700 	zilog_t *zilog;
701 	objset_t *os;
702 	blkptr_t *bp;
703 	int error;
704 
705 	ASSERT(tx == NULL);
706 
707 	error = dmu_objset_from_ds(ds, &os);
708 	if (error != 0) {
709 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
710 		    (unsigned long long)ds->ds_object, error);
711 		return (0);
712 	}
713 
714 	zilog = dmu_objset_zil(os);
715 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
716 
717 	/*
718 	 * Check the first block and determine if it's on a log device
719 	 * which may have been removed or faulted prior to loading this
720 	 * pool.  If so, there's no point in checking the rest of the log
721 	 * as its content should have already been synced to the pool.
722 	 */
723 	if (!BP_IS_HOLE(bp)) {
724 		vdev_t *vd;
725 		boolean_t valid = B_TRUE;
726 
727 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
728 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
729 		if (vd->vdev_islog && vdev_is_dead(vd))
730 			valid = vdev_log_state_valid(vd);
731 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
732 
733 		if (!valid)
734 			return (0);
735 	}
736 
737 	/*
738 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
739 	 * any blocks, but just determine whether it is possible to do so.
740 	 * In addition to checking the log chain, zil_claim_log_block()
741 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
742 	 * which will update spa_max_claim_txg.  See spa_load() for details.
743 	 */
744 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
745 	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
746 
747 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
748 }
749 
750 static int
751 zil_vdev_compare(const void *x1, const void *x2)
752 {
753 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
754 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
755 
756 	if (v1 < v2)
757 		return (-1);
758 	if (v1 > v2)
759 		return (1);
760 
761 	return (0);
762 }
763 
764 void
765 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
766 {
767 	avl_tree_t *t = &zilog->zl_vdev_tree;
768 	avl_index_t where;
769 	zil_vdev_node_t *zv, zvsearch;
770 	int ndvas = BP_GET_NDVAS(bp);
771 	int i;
772 
773 	if (zfs_nocacheflush)
774 		return;
775 
776 	ASSERT(zilog->zl_writer);
777 
778 	/*
779 	 * Even though we're zl_writer, we still need a lock because the
780 	 * zl_get_data() callbacks may have dmu_sync() done callbacks
781 	 * that will run concurrently.
782 	 */
783 	mutex_enter(&zilog->zl_vdev_lock);
784 	for (i = 0; i < ndvas; i++) {
785 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
786 		if (avl_find(t, &zvsearch, &where) == NULL) {
787 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
788 			zv->zv_vdev = zvsearch.zv_vdev;
789 			avl_insert(t, zv, where);
790 		}
791 	}
792 	mutex_exit(&zilog->zl_vdev_lock);
793 }
794 
795 static void
796 zil_flush_vdevs(zilog_t *zilog)
797 {
798 	spa_t *spa = zilog->zl_spa;
799 	avl_tree_t *t = &zilog->zl_vdev_tree;
800 	void *cookie = NULL;
801 	zil_vdev_node_t *zv;
802 	zio_t *zio;
803 
804 	ASSERT(zilog->zl_writer);
805 
806 	/*
807 	 * We don't need zl_vdev_lock here because we're the zl_writer,
808 	 * and all zl_get_data() callbacks are done.
809 	 */
810 	if (avl_numnodes(t) == 0)
811 		return;
812 
813 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
814 
815 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
816 
817 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
818 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
819 		if (vd != NULL)
820 			zio_flush(zio, vd);
821 		kmem_free(zv, sizeof (*zv));
822 	}
823 
824 	/*
825 	 * Wait for all the flushes to complete.  Not all devices actually
826 	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
827 	 */
828 	(void) zio_wait(zio);
829 
830 	spa_config_exit(spa, SCL_STATE, FTAG);
831 }
832 
833 /*
834  * Function called when a log block write completes
835  */
836 static void
837 zil_lwb_write_done(zio_t *zio)
838 {
839 	lwb_t *lwb = zio->io_private;
840 	zilog_t *zilog = lwb->lwb_zilog;
841 	dmu_tx_t *tx = lwb->lwb_tx;
842 
843 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
844 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
845 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
846 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
847 	ASSERT(!BP_IS_GANG(zio->io_bp));
848 	ASSERT(!BP_IS_HOLE(zio->io_bp));
849 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
850 
851 	/*
852 	 * Ensure the lwb buffer pointer is cleared before releasing
853 	 * the txg. If we have had an allocation failure and
854 	 * the txg is waiting to sync then we want want zil_sync()
855 	 * to remove the lwb so that it's not picked up as the next new
856 	 * one in zil_commit_writer(). zil_sync() will only remove
857 	 * the lwb if lwb_buf is null.
858 	 */
859 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
860 	mutex_enter(&zilog->zl_lock);
861 	lwb->lwb_buf = NULL;
862 	lwb->lwb_tx = NULL;
863 	mutex_exit(&zilog->zl_lock);
864 
865 	/*
866 	 * Now that we've written this log block, we have a stable pointer
867 	 * to the next block in the chain, so it's OK to let the txg in
868 	 * which we allocated the next block sync.
869 	 */
870 	dmu_tx_commit(tx);
871 }
872 
873 /*
874  * Initialize the io for a log block.
875  */
876 static void
877 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
878 {
879 	zbookmark_phys_t zb;
880 
881 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
882 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
883 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
884 
885 	if (zilog->zl_root_zio == NULL) {
886 		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
887 		    ZIO_FLAG_CANFAIL);
888 	}
889 	if (lwb->lwb_zio == NULL) {
890 		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
891 		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
892 		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
893 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
894 	}
895 }
896 
897 /*
898  * Define a limited set of intent log block sizes.
899  *
900  * These must be a multiple of 4KB. Note only the amount used (again
901  * aligned to 4KB) actually gets written. However, we can't always just
902  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
903  */
904 uint64_t zil_block_buckets[] = {
905     4096,		/* non TX_WRITE */
906     8192+4096,		/* data base */
907     32*1024 + 4096, 	/* NFS writes */
908     UINT64_MAX
909 };
910 
911 /*
912  * Use the slog as long as the logbias is 'latency' and the current commit size
913  * is less than the limit or the total list size is less than 2X the limit.
914  * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
915  */
916 uint64_t zil_slog_limit = 1024 * 1024;
917 #define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
918 	(((zilog)->zl_cur_used < zil_slog_limit) || \
919 	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
920 
921 /*
922  * Start a log block write and advance to the next log block.
923  * Calls are serialized.
924  */
925 static lwb_t *
926 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
927 {
928 	lwb_t *nlwb = NULL;
929 	zil_chain_t *zilc;
930 	spa_t *spa = zilog->zl_spa;
931 	blkptr_t *bp;
932 	dmu_tx_t *tx;
933 	uint64_t txg;
934 	uint64_t zil_blksz, wsz;
935 	int i, error;
936 
937 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
938 		zilc = (zil_chain_t *)lwb->lwb_buf;
939 		bp = &zilc->zc_next_blk;
940 	} else {
941 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
942 		bp = &zilc->zc_next_blk;
943 	}
944 
945 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
946 
947 	/*
948 	 * Allocate the next block and save its address in this block
949 	 * before writing it in order to establish the log chain.
950 	 * Note that if the allocation of nlwb synced before we wrote
951 	 * the block that points at it (lwb), we'd leak it if we crashed.
952 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
953 	 * We dirty the dataset to ensure that zil_sync() will be called
954 	 * to clean up in the event of allocation failure or I/O failure.
955 	 */
956 	tx = dmu_tx_create(zilog->zl_os);
957 	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
958 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
959 	txg = dmu_tx_get_txg(tx);
960 
961 	lwb->lwb_tx = tx;
962 
963 	/*
964 	 * Log blocks are pre-allocated. Here we select the size of the next
965 	 * block, based on size used in the last block.
966 	 * - first find the smallest bucket that will fit the block from a
967 	 *   limited set of block sizes. This is because it's faster to write
968 	 *   blocks allocated from the same metaslab as they are adjacent or
969 	 *   close.
970 	 * - next find the maximum from the new suggested size and an array of
971 	 *   previous sizes. This lessens a picket fence effect of wrongly
972 	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
973 	 *   requests.
974 	 *
975 	 * Note we only write what is used, but we can't just allocate
976 	 * the maximum block size because we can exhaust the available
977 	 * pool log space.
978 	 */
979 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
980 	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
981 		continue;
982 	zil_blksz = zil_block_buckets[i];
983 	if (zil_blksz == UINT64_MAX)
984 		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
985 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
986 	for (i = 0; i < ZIL_PREV_BLKS; i++)
987 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
988 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
989 
990 	BP_ZERO(bp);
991 	/* pass the old blkptr in order to spread log blocks across devs */
992 	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
993 	    USE_SLOG(zilog));
994 	if (error == 0) {
995 		ASSERT3U(bp->blk_birth, ==, txg);
996 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
997 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
998 
999 		/*
1000 		 * Allocate a new log write buffer (lwb).
1001 		 */
1002 		nlwb = zil_alloc_lwb(zilog, bp, txg);
1003 
1004 		/* Record the block for later vdev flushing */
1005 		zil_add_block(zilog, &lwb->lwb_blk);
1006 	}
1007 
1008 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1009 		/* For Slim ZIL only write what is used. */
1010 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1011 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1012 		zio_shrink(lwb->lwb_zio, wsz);
1013 
1014 	} else {
1015 		wsz = lwb->lwb_sz;
1016 	}
1017 
1018 	zilc->zc_pad = 0;
1019 	zilc->zc_nused = lwb->lwb_nused;
1020 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1021 
1022 	/*
1023 	 * clear unused data for security
1024 	 */
1025 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1026 
1027 	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1028 
1029 	/*
1030 	 * If there was an allocation failure then nlwb will be null which
1031 	 * forces a txg_wait_synced().
1032 	 */
1033 	return (nlwb);
1034 }
1035 
1036 static lwb_t *
1037 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1038 {
1039 	lr_t *lrc = &itx->itx_lr; /* common log record */
1040 	lr_write_t *lrw = (lr_write_t *)lrc;
1041 	char *lr_buf;
1042 	uint64_t txg = lrc->lrc_txg;
1043 	uint64_t reclen = lrc->lrc_reclen;
1044 	uint64_t dlen = 0;
1045 
1046 	if (lwb == NULL)
1047 		return (NULL);
1048 
1049 	ASSERT(lwb->lwb_buf != NULL);
1050 	ASSERT(zilog_is_dirty(zilog) ||
1051 	    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1052 
1053 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1054 		dlen = P2ROUNDUP_TYPED(
1055 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1056 
1057 	zilog->zl_cur_used += (reclen + dlen);
1058 
1059 	zil_lwb_write_init(zilog, lwb);
1060 
1061 	/*
1062 	 * If this record won't fit in the current log block, start a new one.
1063 	 */
1064 	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1065 		lwb = zil_lwb_write_start(zilog, lwb);
1066 		if (lwb == NULL)
1067 			return (NULL);
1068 		zil_lwb_write_init(zilog, lwb);
1069 		ASSERT(LWB_EMPTY(lwb));
1070 		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1071 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1072 			return (lwb);
1073 		}
1074 	}
1075 
1076 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1077 	bcopy(lrc, lr_buf, reclen);
1078 	lrc = (lr_t *)lr_buf;
1079 	lrw = (lr_write_t *)lrc;
1080 
1081 	/*
1082 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1083 	 */
1084 	if (lrc->lrc_txtype == TX_WRITE) {
1085 		if (txg > spa_freeze_txg(zilog->zl_spa))
1086 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1087 		if (itx->itx_wr_state != WR_COPIED) {
1088 			char *dbuf;
1089 			int error;
1090 
1091 			if (dlen) {
1092 				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1093 				dbuf = lr_buf + reclen;
1094 				lrw->lr_common.lrc_reclen += dlen;
1095 			} else {
1096 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1097 				dbuf = NULL;
1098 			}
1099 			error = zilog->zl_get_data(
1100 			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1101 			if (error == EIO) {
1102 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1103 				return (lwb);
1104 			}
1105 			if (error != 0) {
1106 				ASSERT(error == ENOENT || error == EEXIST ||
1107 				    error == EALREADY);
1108 				return (lwb);
1109 			}
1110 		}
1111 	}
1112 
1113 	/*
1114 	 * We're actually making an entry, so update lrc_seq to be the
1115 	 * log record sequence number.  Note that this is generally not
1116 	 * equal to the itx sequence number because not all transactions
1117 	 * are synchronous, and sometimes spa_sync() gets there first.
1118 	 */
1119 	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1120 	lwb->lwb_nused += reclen + dlen;
1121 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1122 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1123 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1124 
1125 	return (lwb);
1126 }
1127 
1128 itx_t *
1129 zil_itx_create(uint64_t txtype, size_t lrsize)
1130 {
1131 	itx_t *itx;
1132 
1133 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1134 
1135 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1136 	itx->itx_lr.lrc_txtype = txtype;
1137 	itx->itx_lr.lrc_reclen = lrsize;
1138 	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1139 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1140 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1141 
1142 	return (itx);
1143 }
1144 
1145 void
1146 zil_itx_destroy(itx_t *itx)
1147 {
1148 	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1149 }
1150 
1151 /*
1152  * Free up the sync and async itxs. The itxs_t has already been detached
1153  * so no locks are needed.
1154  */
1155 static void
1156 zil_itxg_clean(itxs_t *itxs)
1157 {
1158 	itx_t *itx;
1159 	list_t *list;
1160 	avl_tree_t *t;
1161 	void *cookie;
1162 	itx_async_node_t *ian;
1163 
1164 	list = &itxs->i_sync_list;
1165 	while ((itx = list_head(list)) != NULL) {
1166 		list_remove(list, itx);
1167 		kmem_free(itx, offsetof(itx_t, itx_lr) +
1168 		    itx->itx_lr.lrc_reclen);
1169 	}
1170 
1171 	cookie = NULL;
1172 	t = &itxs->i_async_tree;
1173 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1174 		list = &ian->ia_list;
1175 		while ((itx = list_head(list)) != NULL) {
1176 			list_remove(list, itx);
1177 			kmem_free(itx, offsetof(itx_t, itx_lr) +
1178 			    itx->itx_lr.lrc_reclen);
1179 		}
1180 		list_destroy(list);
1181 		kmem_free(ian, sizeof (itx_async_node_t));
1182 	}
1183 	avl_destroy(t);
1184 
1185 	kmem_free(itxs, sizeof (itxs_t));
1186 }
1187 
1188 static int
1189 zil_aitx_compare(const void *x1, const void *x2)
1190 {
1191 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1192 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1193 
1194 	if (o1 < o2)
1195 		return (-1);
1196 	if (o1 > o2)
1197 		return (1);
1198 
1199 	return (0);
1200 }
1201 
1202 /*
1203  * Remove all async itx with the given oid.
1204  */
1205 static void
1206 zil_remove_async(zilog_t *zilog, uint64_t oid)
1207 {
1208 	uint64_t otxg, txg;
1209 	itx_async_node_t *ian;
1210 	avl_tree_t *t;
1211 	avl_index_t where;
1212 	list_t clean_list;
1213 	itx_t *itx;
1214 
1215 	ASSERT(oid != 0);
1216 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1217 
1218 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1219 		otxg = ZILTEST_TXG;
1220 	else
1221 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1222 
1223 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1224 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1225 
1226 		mutex_enter(&itxg->itxg_lock);
1227 		if (itxg->itxg_txg != txg) {
1228 			mutex_exit(&itxg->itxg_lock);
1229 			continue;
1230 		}
1231 
1232 		/*
1233 		 * Locate the object node and append its list.
1234 		 */
1235 		t = &itxg->itxg_itxs->i_async_tree;
1236 		ian = avl_find(t, &oid, &where);
1237 		if (ian != NULL)
1238 			list_move_tail(&clean_list, &ian->ia_list);
1239 		mutex_exit(&itxg->itxg_lock);
1240 	}
1241 	while ((itx = list_head(&clean_list)) != NULL) {
1242 		list_remove(&clean_list, itx);
1243 		kmem_free(itx, offsetof(itx_t, itx_lr) +
1244 		    itx->itx_lr.lrc_reclen);
1245 	}
1246 	list_destroy(&clean_list);
1247 }
1248 
1249 void
1250 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1251 {
1252 	uint64_t txg;
1253 	itxg_t *itxg;
1254 	itxs_t *itxs, *clean = NULL;
1255 
1256 	/*
1257 	 * Object ids can be re-instantiated in the next txg so
1258 	 * remove any async transactions to avoid future leaks.
1259 	 * This can happen if a fsync occurs on the re-instantiated
1260 	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1261 	 * the new file data and flushes a write record for the old object.
1262 	 */
1263 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1264 		zil_remove_async(zilog, itx->itx_oid);
1265 
1266 	/*
1267 	 * Ensure the data of a renamed file is committed before the rename.
1268 	 */
1269 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1270 		zil_async_to_sync(zilog, itx->itx_oid);
1271 
1272 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1273 		txg = ZILTEST_TXG;
1274 	else
1275 		txg = dmu_tx_get_txg(tx);
1276 
1277 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1278 	mutex_enter(&itxg->itxg_lock);
1279 	itxs = itxg->itxg_itxs;
1280 	if (itxg->itxg_txg != txg) {
1281 		if (itxs != NULL) {
1282 			/*
1283 			 * The zil_clean callback hasn't got around to cleaning
1284 			 * this itxg. Save the itxs for release below.
1285 			 * This should be rare.
1286 			 */
1287 			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1288 			itxg->itxg_sod = 0;
1289 			clean = itxg->itxg_itxs;
1290 		}
1291 		ASSERT(itxg->itxg_sod == 0);
1292 		itxg->itxg_txg = txg;
1293 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1294 
1295 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1296 		    offsetof(itx_t, itx_node));
1297 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1298 		    sizeof (itx_async_node_t),
1299 		    offsetof(itx_async_node_t, ia_node));
1300 	}
1301 	if (itx->itx_sync) {
1302 		list_insert_tail(&itxs->i_sync_list, itx);
1303 		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1304 		itxg->itxg_sod += itx->itx_sod;
1305 	} else {
1306 		avl_tree_t *t = &itxs->i_async_tree;
1307 		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1308 		itx_async_node_t *ian;
1309 		avl_index_t where;
1310 
1311 		ian = avl_find(t, &foid, &where);
1312 		if (ian == NULL) {
1313 			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1314 			list_create(&ian->ia_list, sizeof (itx_t),
1315 			    offsetof(itx_t, itx_node));
1316 			ian->ia_foid = foid;
1317 			avl_insert(t, ian, where);
1318 		}
1319 		list_insert_tail(&ian->ia_list, itx);
1320 	}
1321 
1322 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1323 	zilog_dirty(zilog, txg);
1324 	mutex_exit(&itxg->itxg_lock);
1325 
1326 	/* Release the old itxs now we've dropped the lock */
1327 	if (clean != NULL)
1328 		zil_itxg_clean(clean);
1329 }
1330 
1331 /*
1332  * If there are any in-memory intent log transactions which have now been
1333  * synced then start up a taskq to free them. We should only do this after we
1334  * have written out the uberblocks (i.e. txg has been comitted) so that
1335  * don't inadvertently clean out in-memory log records that would be required
1336  * by zil_commit().
1337  */
1338 void
1339 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1340 {
1341 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1342 	itxs_t *clean_me;
1343 
1344 	mutex_enter(&itxg->itxg_lock);
1345 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1346 		mutex_exit(&itxg->itxg_lock);
1347 		return;
1348 	}
1349 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1350 	ASSERT(itxg->itxg_txg != 0);
1351 	ASSERT(zilog->zl_clean_taskq != NULL);
1352 	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1353 	itxg->itxg_sod = 0;
1354 	clean_me = itxg->itxg_itxs;
1355 	itxg->itxg_itxs = NULL;
1356 	itxg->itxg_txg = 0;
1357 	mutex_exit(&itxg->itxg_lock);
1358 	/*
1359 	 * Preferably start a task queue to free up the old itxs but
1360 	 * if taskq_dispatch can't allocate resources to do that then
1361 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1362 	 * created a bad performance problem.
1363 	 */
1364 	if (taskq_dispatch(zilog->zl_clean_taskq,
1365 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1366 		zil_itxg_clean(clean_me);
1367 }
1368 
1369 /*
1370  * Get the list of itxs to commit into zl_itx_commit_list.
1371  */
1372 static void
1373 zil_get_commit_list(zilog_t *zilog)
1374 {
1375 	uint64_t otxg, txg;
1376 	list_t *commit_list = &zilog->zl_itx_commit_list;
1377 	uint64_t push_sod = 0;
1378 
1379 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1380 		otxg = ZILTEST_TXG;
1381 	else
1382 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1383 
1384 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1385 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1386 
1387 		mutex_enter(&itxg->itxg_lock);
1388 		if (itxg->itxg_txg != txg) {
1389 			mutex_exit(&itxg->itxg_lock);
1390 			continue;
1391 		}
1392 
1393 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1394 		push_sod += itxg->itxg_sod;
1395 		itxg->itxg_sod = 0;
1396 
1397 		mutex_exit(&itxg->itxg_lock);
1398 	}
1399 	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1400 }
1401 
1402 /*
1403  * Move the async itxs for a specified object to commit into sync lists.
1404  */
1405 static void
1406 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1407 {
1408 	uint64_t otxg, txg;
1409 	itx_async_node_t *ian;
1410 	avl_tree_t *t;
1411 	avl_index_t where;
1412 
1413 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1414 		otxg = ZILTEST_TXG;
1415 	else
1416 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1417 
1418 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1419 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1420 
1421 		mutex_enter(&itxg->itxg_lock);
1422 		if (itxg->itxg_txg != txg) {
1423 			mutex_exit(&itxg->itxg_lock);
1424 			continue;
1425 		}
1426 
1427 		/*
1428 		 * If a foid is specified then find that node and append its
1429 		 * list. Otherwise walk the tree appending all the lists
1430 		 * to the sync list. We add to the end rather than the
1431 		 * beginning to ensure the create has happened.
1432 		 */
1433 		t = &itxg->itxg_itxs->i_async_tree;
1434 		if (foid != 0) {
1435 			ian = avl_find(t, &foid, &where);
1436 			if (ian != NULL) {
1437 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1438 				    &ian->ia_list);
1439 			}
1440 		} else {
1441 			void *cookie = NULL;
1442 
1443 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1444 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1445 				    &ian->ia_list);
1446 				list_destroy(&ian->ia_list);
1447 				kmem_free(ian, sizeof (itx_async_node_t));
1448 			}
1449 		}
1450 		mutex_exit(&itxg->itxg_lock);
1451 	}
1452 }
1453 
1454 static void
1455 zil_commit_writer(zilog_t *zilog)
1456 {
1457 	uint64_t txg;
1458 	itx_t *itx;
1459 	lwb_t *lwb;
1460 	spa_t *spa = zilog->zl_spa;
1461 	int error = 0;
1462 
1463 	ASSERT(zilog->zl_root_zio == NULL);
1464 
1465 	mutex_exit(&zilog->zl_lock);
1466 
1467 	zil_get_commit_list(zilog);
1468 
1469 	/*
1470 	 * Return if there's nothing to commit before we dirty the fs by
1471 	 * calling zil_create().
1472 	 */
1473 	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1474 		mutex_enter(&zilog->zl_lock);
1475 		return;
1476 	}
1477 
1478 	if (zilog->zl_suspend) {
1479 		lwb = NULL;
1480 	} else {
1481 		lwb = list_tail(&zilog->zl_lwb_list);
1482 		if (lwb == NULL)
1483 			lwb = zil_create(zilog);
1484 	}
1485 
1486 	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1487 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1488 		txg = itx->itx_lr.lrc_txg;
1489 		ASSERT(txg);
1490 
1491 		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1492 			lwb = zil_lwb_commit(zilog, itx, lwb);
1493 		list_remove(&zilog->zl_itx_commit_list, itx);
1494 		kmem_free(itx, offsetof(itx_t, itx_lr)
1495 		    + itx->itx_lr.lrc_reclen);
1496 	}
1497 	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1498 
1499 	/* write the last block out */
1500 	if (lwb != NULL && lwb->lwb_zio != NULL)
1501 		lwb = zil_lwb_write_start(zilog, lwb);
1502 
1503 	zilog->zl_cur_used = 0;
1504 
1505 	/*
1506 	 * Wait if necessary for the log blocks to be on stable storage.
1507 	 */
1508 	if (zilog->zl_root_zio) {
1509 		error = zio_wait(zilog->zl_root_zio);
1510 		zilog->zl_root_zio = NULL;
1511 		zil_flush_vdevs(zilog);
1512 	}
1513 
1514 	if (error || lwb == NULL)
1515 		txg_wait_synced(zilog->zl_dmu_pool, 0);
1516 
1517 	mutex_enter(&zilog->zl_lock);
1518 
1519 	/*
1520 	 * Remember the highest committed log sequence number for ztest.
1521 	 * We only update this value when all the log writes succeeded,
1522 	 * because ztest wants to ASSERT that it got the whole log chain.
1523 	 */
1524 	if (error == 0 && lwb != NULL)
1525 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1526 }
1527 
1528 /*
1529  * Commit zfs transactions to stable storage.
1530  * If foid is 0 push out all transactions, otherwise push only those
1531  * for that object or might reference that object.
1532  *
1533  * itxs are committed in batches. In a heavily stressed zil there will be
1534  * a commit writer thread who is writing out a bunch of itxs to the log
1535  * for a set of committing threads (cthreads) in the same batch as the writer.
1536  * Those cthreads are all waiting on the same cv for that batch.
1537  *
1538  * There will also be a different and growing batch of threads that are
1539  * waiting to commit (qthreads). When the committing batch completes
1540  * a transition occurs such that the cthreads exit and the qthreads become
1541  * cthreads. One of the new cthreads becomes the writer thread for the
1542  * batch. Any new threads arriving become new qthreads.
1543  *
1544  * Only 2 condition variables are needed and there's no transition
1545  * between the two cvs needed. They just flip-flop between qthreads
1546  * and cthreads.
1547  *
1548  * Using this scheme we can efficiently wakeup up only those threads
1549  * that have been committed.
1550  */
1551 void
1552 zil_commit(zilog_t *zilog, uint64_t foid)
1553 {
1554 	uint64_t mybatch;
1555 
1556 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1557 		return;
1558 
1559 	/* move the async itxs for the foid to the sync queues */
1560 	zil_async_to_sync(zilog, foid);
1561 
1562 	mutex_enter(&zilog->zl_lock);
1563 	mybatch = zilog->zl_next_batch;
1564 	while (zilog->zl_writer) {
1565 		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1566 		if (mybatch <= zilog->zl_com_batch) {
1567 			mutex_exit(&zilog->zl_lock);
1568 			return;
1569 		}
1570 	}
1571 
1572 	zilog->zl_next_batch++;
1573 	zilog->zl_writer = B_TRUE;
1574 	zil_commit_writer(zilog);
1575 	zilog->zl_com_batch = mybatch;
1576 	zilog->zl_writer = B_FALSE;
1577 	mutex_exit(&zilog->zl_lock);
1578 
1579 	/* wake up one thread to become the next writer */
1580 	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1581 
1582 	/* wake up all threads waiting for this batch to be committed */
1583 	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1584 }
1585 
1586 /*
1587  * Called in syncing context to free committed log blocks and update log header.
1588  */
1589 void
1590 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1591 {
1592 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1593 	uint64_t txg = dmu_tx_get_txg(tx);
1594 	spa_t *spa = zilog->zl_spa;
1595 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1596 	lwb_t *lwb;
1597 
1598 	/*
1599 	 * We don't zero out zl_destroy_txg, so make sure we don't try
1600 	 * to destroy it twice.
1601 	 */
1602 	if (spa_sync_pass(spa) != 1)
1603 		return;
1604 
1605 	mutex_enter(&zilog->zl_lock);
1606 
1607 	ASSERT(zilog->zl_stop_sync == 0);
1608 
1609 	if (*replayed_seq != 0) {
1610 		ASSERT(zh->zh_replay_seq < *replayed_seq);
1611 		zh->zh_replay_seq = *replayed_seq;
1612 		*replayed_seq = 0;
1613 	}
1614 
1615 	if (zilog->zl_destroy_txg == txg) {
1616 		blkptr_t blk = zh->zh_log;
1617 
1618 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1619 
1620 		bzero(zh, sizeof (zil_header_t));
1621 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1622 
1623 		if (zilog->zl_keep_first) {
1624 			/*
1625 			 * If this block was part of log chain that couldn't
1626 			 * be claimed because a device was missing during
1627 			 * zil_claim(), but that device later returns,
1628 			 * then this block could erroneously appear valid.
1629 			 * To guard against this, assign a new GUID to the new
1630 			 * log chain so it doesn't matter what blk points to.
1631 			 */
1632 			zil_init_log_chain(zilog, &blk);
1633 			zh->zh_log = blk;
1634 		}
1635 	}
1636 
1637 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1638 		zh->zh_log = lwb->lwb_blk;
1639 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1640 			break;
1641 		list_remove(&zilog->zl_lwb_list, lwb);
1642 		zio_free_zil(spa, txg, &lwb->lwb_blk);
1643 		kmem_cache_free(zil_lwb_cache, lwb);
1644 
1645 		/*
1646 		 * If we don't have anything left in the lwb list then
1647 		 * we've had an allocation failure and we need to zero
1648 		 * out the zil_header blkptr so that we don't end
1649 		 * up freeing the same block twice.
1650 		 */
1651 		if (list_head(&zilog->zl_lwb_list) == NULL)
1652 			BP_ZERO(&zh->zh_log);
1653 	}
1654 	mutex_exit(&zilog->zl_lock);
1655 }
1656 
1657 void
1658 zil_init(void)
1659 {
1660 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1661 	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1662 }
1663 
1664 void
1665 zil_fini(void)
1666 {
1667 	kmem_cache_destroy(zil_lwb_cache);
1668 }
1669 
1670 void
1671 zil_set_sync(zilog_t *zilog, uint64_t sync)
1672 {
1673 	zilog->zl_sync = sync;
1674 }
1675 
1676 void
1677 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1678 {
1679 	zilog->zl_logbias = logbias;
1680 }
1681 
1682 zilog_t *
1683 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1684 {
1685 	zilog_t *zilog;
1686 
1687 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1688 
1689 	zilog->zl_header = zh_phys;
1690 	zilog->zl_os = os;
1691 	zilog->zl_spa = dmu_objset_spa(os);
1692 	zilog->zl_dmu_pool = dmu_objset_pool(os);
1693 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1694 	zilog->zl_logbias = dmu_objset_logbias(os);
1695 	zilog->zl_sync = dmu_objset_syncprop(os);
1696 	zilog->zl_next_batch = 1;
1697 
1698 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1699 
1700 	for (int i = 0; i < TXG_SIZE; i++) {
1701 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1702 		    MUTEX_DEFAULT, NULL);
1703 	}
1704 
1705 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1706 	    offsetof(lwb_t, lwb_node));
1707 
1708 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1709 	    offsetof(itx_t, itx_node));
1710 
1711 	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1712 
1713 	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1714 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1715 
1716 	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1717 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1718 	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1719 	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1720 
1721 	return (zilog);
1722 }
1723 
1724 void
1725 zil_free(zilog_t *zilog)
1726 {
1727 	zilog->zl_stop_sync = 1;
1728 
1729 	ASSERT0(zilog->zl_suspend);
1730 	ASSERT0(zilog->zl_suspending);
1731 
1732 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1733 	list_destroy(&zilog->zl_lwb_list);
1734 
1735 	avl_destroy(&zilog->zl_vdev_tree);
1736 	mutex_destroy(&zilog->zl_vdev_lock);
1737 
1738 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1739 	list_destroy(&zilog->zl_itx_commit_list);
1740 
1741 	for (int i = 0; i < TXG_SIZE; i++) {
1742 		/*
1743 		 * It's possible for an itx to be generated that doesn't dirty
1744 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1745 		 * callback to remove the entry. We remove those here.
1746 		 *
1747 		 * Also free up the ziltest itxs.
1748 		 */
1749 		if (zilog->zl_itxg[i].itxg_itxs)
1750 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1751 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1752 	}
1753 
1754 	mutex_destroy(&zilog->zl_lock);
1755 
1756 	cv_destroy(&zilog->zl_cv_writer);
1757 	cv_destroy(&zilog->zl_cv_suspend);
1758 	cv_destroy(&zilog->zl_cv_batch[0]);
1759 	cv_destroy(&zilog->zl_cv_batch[1]);
1760 
1761 	kmem_free(zilog, sizeof (zilog_t));
1762 }
1763 
1764 /*
1765  * Open an intent log.
1766  */
1767 zilog_t *
1768 zil_open(objset_t *os, zil_get_data_t *get_data)
1769 {
1770 	zilog_t *zilog = dmu_objset_zil(os);
1771 
1772 	ASSERT(zilog->zl_clean_taskq == NULL);
1773 	ASSERT(zilog->zl_get_data == NULL);
1774 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1775 
1776 	zilog->zl_get_data = get_data;
1777 	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1778 	    2, 2, TASKQ_PREPOPULATE);
1779 
1780 	return (zilog);
1781 }
1782 
1783 /*
1784  * Close an intent log.
1785  */
1786 void
1787 zil_close(zilog_t *zilog)
1788 {
1789 	lwb_t *lwb;
1790 	uint64_t txg = 0;
1791 
1792 	zil_commit(zilog, 0); /* commit all itx */
1793 
1794 	/*
1795 	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1796 	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1797 	 * callbacks have occurred that may clean the zil.  Only then can we
1798 	 * destroy the zl_clean_taskq.
1799 	 */
1800 	mutex_enter(&zilog->zl_lock);
1801 	lwb = list_tail(&zilog->zl_lwb_list);
1802 	if (lwb != NULL)
1803 		txg = lwb->lwb_max_txg;
1804 	mutex_exit(&zilog->zl_lock);
1805 	if (txg)
1806 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1807 	ASSERT(!zilog_is_dirty(zilog));
1808 
1809 	taskq_destroy(zilog->zl_clean_taskq);
1810 	zilog->zl_clean_taskq = NULL;
1811 	zilog->zl_get_data = NULL;
1812 
1813 	/*
1814 	 * We should have only one LWB left on the list; remove it now.
1815 	 */
1816 	mutex_enter(&zilog->zl_lock);
1817 	lwb = list_head(&zilog->zl_lwb_list);
1818 	if (lwb != NULL) {
1819 		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1820 		list_remove(&zilog->zl_lwb_list, lwb);
1821 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1822 		kmem_cache_free(zil_lwb_cache, lwb);
1823 	}
1824 	mutex_exit(&zilog->zl_lock);
1825 }
1826 
1827 static char *suspend_tag = "zil suspending";
1828 
1829 /*
1830  * Suspend an intent log.  While in suspended mode, we still honor
1831  * synchronous semantics, but we rely on txg_wait_synced() to do it.
1832  * On old version pools, we suspend the log briefly when taking a
1833  * snapshot so that it will have an empty intent log.
1834  *
1835  * Long holds are not really intended to be used the way we do here --
1836  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1837  * could fail.  Therefore we take pains to only put a long hold if it is
1838  * actually necessary.  Fortunately, it will only be necessary if the
1839  * objset is currently mounted (or the ZVOL equivalent).  In that case it
1840  * will already have a long hold, so we are not really making things any worse.
1841  *
1842  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1843  * zvol_state_t), and use their mechanism to prevent their hold from being
1844  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1845  * very little gain.
1846  *
1847  * if cookiep == NULL, this does both the suspend & resume.
1848  * Otherwise, it returns with the dataset "long held", and the cookie
1849  * should be passed into zil_resume().
1850  */
1851 int
1852 zil_suspend(const char *osname, void **cookiep)
1853 {
1854 	objset_t *os;
1855 	zilog_t *zilog;
1856 	const zil_header_t *zh;
1857 	int error;
1858 
1859 	error = dmu_objset_hold(osname, suspend_tag, &os);
1860 	if (error != 0)
1861 		return (error);
1862 	zilog = dmu_objset_zil(os);
1863 
1864 	mutex_enter(&zilog->zl_lock);
1865 	zh = zilog->zl_header;
1866 
1867 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1868 		mutex_exit(&zilog->zl_lock);
1869 		dmu_objset_rele(os, suspend_tag);
1870 		return (SET_ERROR(EBUSY));
1871 	}
1872 
1873 	/*
1874 	 * Don't put a long hold in the cases where we can avoid it.  This
1875 	 * is when there is no cookie so we are doing a suspend & resume
1876 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1877 	 * for the suspend because it's already suspended, or there's no ZIL.
1878 	 */
1879 	if (cookiep == NULL && !zilog->zl_suspending &&
1880 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1881 		mutex_exit(&zilog->zl_lock);
1882 		dmu_objset_rele(os, suspend_tag);
1883 		return (0);
1884 	}
1885 
1886 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1887 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1888 
1889 	zilog->zl_suspend++;
1890 
1891 	if (zilog->zl_suspend > 1) {
1892 		/*
1893 		 * Someone else is already suspending it.
1894 		 * Just wait for them to finish.
1895 		 */
1896 
1897 		while (zilog->zl_suspending)
1898 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1899 		mutex_exit(&zilog->zl_lock);
1900 
1901 		if (cookiep == NULL)
1902 			zil_resume(os);
1903 		else
1904 			*cookiep = os;
1905 		return (0);
1906 	}
1907 
1908 	/*
1909 	 * If there is no pointer to an on-disk block, this ZIL must not
1910 	 * be active (e.g. filesystem not mounted), so there's nothing
1911 	 * to clean up.
1912 	 */
1913 	if (BP_IS_HOLE(&zh->zh_log)) {
1914 		ASSERT(cookiep != NULL); /* fast path already handled */
1915 
1916 		*cookiep = os;
1917 		mutex_exit(&zilog->zl_lock);
1918 		return (0);
1919 	}
1920 
1921 	zilog->zl_suspending = B_TRUE;
1922 	mutex_exit(&zilog->zl_lock);
1923 
1924 	zil_commit(zilog, 0);
1925 
1926 	zil_destroy(zilog, B_FALSE);
1927 
1928 	mutex_enter(&zilog->zl_lock);
1929 	zilog->zl_suspending = B_FALSE;
1930 	cv_broadcast(&zilog->zl_cv_suspend);
1931 	mutex_exit(&zilog->zl_lock);
1932 
1933 	if (cookiep == NULL)
1934 		zil_resume(os);
1935 	else
1936 		*cookiep = os;
1937 	return (0);
1938 }
1939 
1940 void
1941 zil_resume(void *cookie)
1942 {
1943 	objset_t *os = cookie;
1944 	zilog_t *zilog = dmu_objset_zil(os);
1945 
1946 	mutex_enter(&zilog->zl_lock);
1947 	ASSERT(zilog->zl_suspend != 0);
1948 	zilog->zl_suspend--;
1949 	mutex_exit(&zilog->zl_lock);
1950 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1951 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1952 }
1953 
1954 typedef struct zil_replay_arg {
1955 	zil_replay_func_t **zr_replay;
1956 	void		*zr_arg;
1957 	boolean_t	zr_byteswap;
1958 	char		*zr_lr;
1959 } zil_replay_arg_t;
1960 
1961 static int
1962 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1963 {
1964 	char name[ZFS_MAX_DATASET_NAME_LEN];
1965 
1966 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
1967 
1968 	dmu_objset_name(zilog->zl_os, name);
1969 
1970 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1971 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1972 	    (u_longlong_t)lr->lrc_seq,
1973 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1974 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1975 
1976 	return (error);
1977 }
1978 
1979 static int
1980 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1981 {
1982 	zil_replay_arg_t *zr = zra;
1983 	const zil_header_t *zh = zilog->zl_header;
1984 	uint64_t reclen = lr->lrc_reclen;
1985 	uint64_t txtype = lr->lrc_txtype;
1986 	int error = 0;
1987 
1988 	zilog->zl_replaying_seq = lr->lrc_seq;
1989 
1990 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1991 		return (0);
1992 
1993 	if (lr->lrc_txg < claim_txg)		/* already committed */
1994 		return (0);
1995 
1996 	/* Strip case-insensitive bit, still present in log record */
1997 	txtype &= ~TX_CI;
1998 
1999 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2000 		return (zil_replay_error(zilog, lr, EINVAL));
2001 
2002 	/*
2003 	 * If this record type can be logged out of order, the object
2004 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2005 	 */
2006 	if (TX_OOO(txtype)) {
2007 		error = dmu_object_info(zilog->zl_os,
2008 		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2009 		if (error == ENOENT || error == EEXIST)
2010 			return (0);
2011 	}
2012 
2013 	/*
2014 	 * Make a copy of the data so we can revise and extend it.
2015 	 */
2016 	bcopy(lr, zr->zr_lr, reclen);
2017 
2018 	/*
2019 	 * If this is a TX_WRITE with a blkptr, suck in the data.
2020 	 */
2021 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2022 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2023 		    zr->zr_lr + reclen);
2024 		if (error != 0)
2025 			return (zil_replay_error(zilog, lr, error));
2026 	}
2027 
2028 	/*
2029 	 * The log block containing this lr may have been byteswapped
2030 	 * so that we can easily examine common fields like lrc_txtype.
2031 	 * However, the log is a mix of different record types, and only the
2032 	 * replay vectors know how to byteswap their records.  Therefore, if
2033 	 * the lr was byteswapped, undo it before invoking the replay vector.
2034 	 */
2035 	if (zr->zr_byteswap)
2036 		byteswap_uint64_array(zr->zr_lr, reclen);
2037 
2038 	/*
2039 	 * We must now do two things atomically: replay this log record,
2040 	 * and update the log header sequence number to reflect the fact that
2041 	 * we did so. At the end of each replay function the sequence number
2042 	 * is updated if we are in replay mode.
2043 	 */
2044 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2045 	if (error != 0) {
2046 		/*
2047 		 * The DMU's dnode layer doesn't see removes until the txg
2048 		 * commits, so a subsequent claim can spuriously fail with
2049 		 * EEXIST. So if we receive any error we try syncing out
2050 		 * any removes then retry the transaction.  Note that we
2051 		 * specify B_FALSE for byteswap now, so we don't do it twice.
2052 		 */
2053 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2054 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2055 		if (error != 0)
2056 			return (zil_replay_error(zilog, lr, error));
2057 	}
2058 	return (0);
2059 }
2060 
2061 /* ARGSUSED */
2062 static int
2063 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2064 {
2065 	zilog->zl_replay_blks++;
2066 
2067 	return (0);
2068 }
2069 
2070 /*
2071  * If this dataset has a non-empty intent log, replay it and destroy it.
2072  */
2073 void
2074 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2075 {
2076 	zilog_t *zilog = dmu_objset_zil(os);
2077 	const zil_header_t *zh = zilog->zl_header;
2078 	zil_replay_arg_t zr;
2079 
2080 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2081 		zil_destroy(zilog, B_TRUE);
2082 		return;
2083 	}
2084 
2085 	zr.zr_replay = replay_func;
2086 	zr.zr_arg = arg;
2087 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2088 	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2089 
2090 	/*
2091 	 * Wait for in-progress removes to sync before starting replay.
2092 	 */
2093 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2094 
2095 	zilog->zl_replay = B_TRUE;
2096 	zilog->zl_replay_time = ddi_get_lbolt();
2097 	ASSERT(zilog->zl_replay_blks == 0);
2098 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2099 	    zh->zh_claim_txg);
2100 	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2101 
2102 	zil_destroy(zilog, B_FALSE);
2103 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2104 	zilog->zl_replay = B_FALSE;
2105 }
2106 
2107 boolean_t
2108 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2109 {
2110 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2111 		return (B_TRUE);
2112 
2113 	if (zilog->zl_replay) {
2114 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2115 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2116 		    zilog->zl_replaying_seq;
2117 		return (B_TRUE);
2118 	}
2119 
2120 	return (B_FALSE);
2121 }
2122 
2123 /* ARGSUSED */
2124 int
2125 zil_vdev_offline(const char *osname, void *arg)
2126 {
2127 	int error;
2128 
2129 	error = zil_suspend(osname, NULL);
2130 	if (error != 0)
2131 		return (SET_ERROR(EEXIST));
2132 	return (0);
2133 }
2134