1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2007 Jeremy Teo */ 26 27 #ifdef _KERNEL 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/mntent.h> 35 #include <sys/mkdev.h> 36 #include <sys/u8_textprep.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vfs.h> 39 #include <sys/vfs_opreg.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/kmem.h> 43 #include <sys/errno.h> 44 #include <sys/unistd.h> 45 #include <sys/mode.h> 46 #include <sys/atomic.h> 47 #include <vm/pvn.h> 48 #include "fs/fs_subr.h" 49 #include <sys/zfs_dir.h> 50 #include <sys/zfs_acl.h> 51 #include <sys/zfs_ioctl.h> 52 #include <sys/zfs_rlock.h> 53 #include <sys/zfs_fuid.h> 54 #include <sys/dnode.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/kidmap.h> 57 #endif /* _KERNEL */ 58 59 #include <sys/dmu.h> 60 #include <sys/refcount.h> 61 #include <sys/stat.h> 62 #include <sys/zap.h> 63 #include <sys/zfs_znode.h> 64 #include <sys/sa.h> 65 #include <sys/zfs_sa.h> 66 #include <sys/zfs_stat.h> 67 68 #include "zfs_prop.h" 69 #include "zfs_comutil.h" 70 71 /* 72 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 73 * turned on when DEBUG is also defined. 74 */ 75 #ifdef DEBUG 76 #define ZNODE_STATS 77 #endif /* DEBUG */ 78 79 #ifdef ZNODE_STATS 80 #define ZNODE_STAT_ADD(stat) ((stat)++) 81 #else 82 #define ZNODE_STAT_ADD(stat) /* nothing */ 83 #endif /* ZNODE_STATS */ 84 85 /* 86 * Functions needed for userland (ie: libzpool) are not put under 87 * #ifdef_KERNEL; the rest of the functions have dependencies 88 * (such as VFS logic) that will not compile easily in userland. 89 */ 90 #ifdef _KERNEL 91 /* 92 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 93 * be freed before it can be safely accessed. 94 */ 95 krwlock_t zfsvfs_lock; 96 97 static kmem_cache_t *znode_cache = NULL; 98 99 /*ARGSUSED*/ 100 static void 101 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 102 { 103 /* 104 * We should never drop all dbuf refs without first clearing 105 * the eviction callback. 106 */ 107 panic("evicting znode %p\n", user_ptr); 108 } 109 110 /*ARGSUSED*/ 111 static int 112 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 113 { 114 znode_t *zp = buf; 115 116 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 117 118 zp->z_vnode = vn_alloc(kmflags); 119 if (zp->z_vnode == NULL) { 120 return (-1); 121 } 122 ZTOV(zp)->v_data = zp; 123 124 list_link_init(&zp->z_link_node); 125 126 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 127 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 128 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 129 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 130 131 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 132 avl_create(&zp->z_range_avl, zfs_range_compare, 133 sizeof (rl_t), offsetof(rl_t, r_node)); 134 135 zp->z_dirlocks = NULL; 136 zp->z_acl_cached = NULL; 137 zp->z_moved = 0; 138 return (0); 139 } 140 141 /*ARGSUSED*/ 142 static void 143 zfs_znode_cache_destructor(void *buf, void *arg) 144 { 145 znode_t *zp = buf; 146 147 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 148 ASSERT(ZTOV(zp)->v_data == zp); 149 vn_free(ZTOV(zp)); 150 ASSERT(!list_link_active(&zp->z_link_node)); 151 mutex_destroy(&zp->z_lock); 152 rw_destroy(&zp->z_parent_lock); 153 rw_destroy(&zp->z_name_lock); 154 mutex_destroy(&zp->z_acl_lock); 155 avl_destroy(&zp->z_range_avl); 156 mutex_destroy(&zp->z_range_lock); 157 158 ASSERT(zp->z_dirlocks == NULL); 159 ASSERT(zp->z_acl_cached == NULL); 160 } 161 162 #ifdef ZNODE_STATS 163 static struct { 164 uint64_t zms_zfsvfs_invalid; 165 uint64_t zms_zfsvfs_recheck1; 166 uint64_t zms_zfsvfs_unmounted; 167 uint64_t zms_zfsvfs_recheck2; 168 uint64_t zms_obj_held; 169 uint64_t zms_vnode_locked; 170 uint64_t zms_not_only_dnlc; 171 } znode_move_stats; 172 #endif /* ZNODE_STATS */ 173 174 static void 175 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 176 { 177 vnode_t *vp; 178 179 /* Copy fields. */ 180 nzp->z_zfsvfs = ozp->z_zfsvfs; 181 182 /* Swap vnodes. */ 183 vp = nzp->z_vnode; 184 nzp->z_vnode = ozp->z_vnode; 185 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 186 ZTOV(ozp)->v_data = ozp; 187 ZTOV(nzp)->v_data = nzp; 188 189 nzp->z_id = ozp->z_id; 190 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 191 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 192 nzp->z_unlinked = ozp->z_unlinked; 193 nzp->z_atime_dirty = ozp->z_atime_dirty; 194 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 195 nzp->z_blksz = ozp->z_blksz; 196 nzp->z_seq = ozp->z_seq; 197 nzp->z_mapcnt = ozp->z_mapcnt; 198 nzp->z_gen = ozp->z_gen; 199 nzp->z_sync_cnt = ozp->z_sync_cnt; 200 nzp->z_is_sa = ozp->z_is_sa; 201 nzp->z_sa_hdl = ozp->z_sa_hdl; 202 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); 203 nzp->z_links = ozp->z_links; 204 nzp->z_size = ozp->z_size; 205 nzp->z_pflags = ozp->z_pflags; 206 nzp->z_uid = ozp->z_uid; 207 nzp->z_gid = ozp->z_gid; 208 nzp->z_mode = ozp->z_mode; 209 210 /* 211 * Since this is just an idle znode and kmem is already dealing with 212 * memory pressure, release any cached ACL. 213 */ 214 if (ozp->z_acl_cached) { 215 zfs_acl_free(ozp->z_acl_cached); 216 ozp->z_acl_cached = NULL; 217 } 218 219 sa_set_userp(nzp->z_sa_hdl, nzp); 220 221 /* 222 * Invalidate the original znode by clearing fields that provide a 223 * pointer back to the znode. Set the low bit of the vfs pointer to 224 * ensure that zfs_znode_move() recognizes the znode as invalid in any 225 * subsequent callback. 226 */ 227 ozp->z_sa_hdl = NULL; 228 POINTER_INVALIDATE(&ozp->z_zfsvfs); 229 230 /* 231 * Mark the znode. 232 */ 233 nzp->z_moved = 1; 234 ozp->z_moved = (uint8_t)-1; 235 } 236 237 /*ARGSUSED*/ 238 static kmem_cbrc_t 239 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 240 { 241 znode_t *ozp = buf, *nzp = newbuf; 242 zfsvfs_t *zfsvfs; 243 vnode_t *vp; 244 245 /* 246 * The znode is on the file system's list of known znodes if the vfs 247 * pointer is valid. We set the low bit of the vfs pointer when freeing 248 * the znode to invalidate it, and the memory patterns written by kmem 249 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 250 * created znode sets the vfs pointer last of all to indicate that the 251 * znode is known and in a valid state to be moved by this function. 252 */ 253 zfsvfs = ozp->z_zfsvfs; 254 if (!POINTER_IS_VALID(zfsvfs)) { 255 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 256 return (KMEM_CBRC_DONT_KNOW); 257 } 258 259 /* 260 * Close a small window in which it's possible that the filesystem could 261 * be unmounted and freed, and zfsvfs, though valid in the previous 262 * statement, could point to unrelated memory by the time we try to 263 * prevent the filesystem from being unmounted. 264 */ 265 rw_enter(&zfsvfs_lock, RW_WRITER); 266 if (zfsvfs != ozp->z_zfsvfs) { 267 rw_exit(&zfsvfs_lock); 268 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 269 return (KMEM_CBRC_DONT_KNOW); 270 } 271 272 /* 273 * If the znode is still valid, then so is the file system. We know that 274 * no valid file system can be freed while we hold zfsvfs_lock, so we 275 * can safely ensure that the filesystem is not and will not be 276 * unmounted. The next statement is equivalent to ZFS_ENTER(). 277 */ 278 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 279 if (zfsvfs->z_unmounted) { 280 ZFS_EXIT(zfsvfs); 281 rw_exit(&zfsvfs_lock); 282 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 283 return (KMEM_CBRC_DONT_KNOW); 284 } 285 rw_exit(&zfsvfs_lock); 286 287 mutex_enter(&zfsvfs->z_znodes_lock); 288 /* 289 * Recheck the vfs pointer in case the znode was removed just before 290 * acquiring the lock. 291 */ 292 if (zfsvfs != ozp->z_zfsvfs) { 293 mutex_exit(&zfsvfs->z_znodes_lock); 294 ZFS_EXIT(zfsvfs); 295 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 296 return (KMEM_CBRC_DONT_KNOW); 297 } 298 299 /* 300 * At this point we know that as long as we hold z_znodes_lock, the 301 * znode cannot be freed and fields within the znode can be safely 302 * accessed. Now, prevent a race with zfs_zget(). 303 */ 304 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 305 mutex_exit(&zfsvfs->z_znodes_lock); 306 ZFS_EXIT(zfsvfs); 307 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 308 return (KMEM_CBRC_LATER); 309 } 310 311 vp = ZTOV(ozp); 312 if (mutex_tryenter(&vp->v_lock) == 0) { 313 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 314 mutex_exit(&zfsvfs->z_znodes_lock); 315 ZFS_EXIT(zfsvfs); 316 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 317 return (KMEM_CBRC_LATER); 318 } 319 320 /* Only move znodes that are referenced _only_ by the DNLC. */ 321 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 322 mutex_exit(&vp->v_lock); 323 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 324 mutex_exit(&zfsvfs->z_znodes_lock); 325 ZFS_EXIT(zfsvfs); 326 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 327 return (KMEM_CBRC_LATER); 328 } 329 330 /* 331 * The znode is known and in a valid state to move. We're holding the 332 * locks needed to execute the critical section. 333 */ 334 zfs_znode_move_impl(ozp, nzp); 335 mutex_exit(&vp->v_lock); 336 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 337 338 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 339 mutex_exit(&zfsvfs->z_znodes_lock); 340 ZFS_EXIT(zfsvfs); 341 342 return (KMEM_CBRC_YES); 343 } 344 345 void 346 zfs_znode_init(void) 347 { 348 /* 349 * Initialize zcache 350 */ 351 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 352 ASSERT(znode_cache == NULL); 353 znode_cache = kmem_cache_create("zfs_znode_cache", 354 sizeof (znode_t), 0, zfs_znode_cache_constructor, 355 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 356 kmem_cache_set_move(znode_cache, zfs_znode_move); 357 } 358 359 void 360 zfs_znode_fini(void) 361 { 362 /* 363 * Cleanup vfs & vnode ops 364 */ 365 zfs_remove_op_tables(); 366 367 /* 368 * Cleanup zcache 369 */ 370 if (znode_cache) 371 kmem_cache_destroy(znode_cache); 372 znode_cache = NULL; 373 rw_destroy(&zfsvfs_lock); 374 } 375 376 struct vnodeops *zfs_dvnodeops; 377 struct vnodeops *zfs_fvnodeops; 378 struct vnodeops *zfs_symvnodeops; 379 struct vnodeops *zfs_xdvnodeops; 380 struct vnodeops *zfs_evnodeops; 381 struct vnodeops *zfs_sharevnodeops; 382 383 void 384 zfs_remove_op_tables() 385 { 386 /* 387 * Remove vfs ops 388 */ 389 ASSERT(zfsfstype); 390 (void) vfs_freevfsops_by_type(zfsfstype); 391 zfsfstype = 0; 392 393 /* 394 * Remove vnode ops 395 */ 396 if (zfs_dvnodeops) 397 vn_freevnodeops(zfs_dvnodeops); 398 if (zfs_fvnodeops) 399 vn_freevnodeops(zfs_fvnodeops); 400 if (zfs_symvnodeops) 401 vn_freevnodeops(zfs_symvnodeops); 402 if (zfs_xdvnodeops) 403 vn_freevnodeops(zfs_xdvnodeops); 404 if (zfs_evnodeops) 405 vn_freevnodeops(zfs_evnodeops); 406 if (zfs_sharevnodeops) 407 vn_freevnodeops(zfs_sharevnodeops); 408 409 zfs_dvnodeops = NULL; 410 zfs_fvnodeops = NULL; 411 zfs_symvnodeops = NULL; 412 zfs_xdvnodeops = NULL; 413 zfs_evnodeops = NULL; 414 zfs_sharevnodeops = NULL; 415 } 416 417 extern const fs_operation_def_t zfs_dvnodeops_template[]; 418 extern const fs_operation_def_t zfs_fvnodeops_template[]; 419 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 420 extern const fs_operation_def_t zfs_symvnodeops_template[]; 421 extern const fs_operation_def_t zfs_evnodeops_template[]; 422 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 423 424 int 425 zfs_create_op_tables() 426 { 427 int error; 428 429 /* 430 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 431 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 432 * In this case we just return as the ops vectors are already set up. 433 */ 434 if (zfs_dvnodeops) 435 return (0); 436 437 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 438 &zfs_dvnodeops); 439 if (error) 440 return (error); 441 442 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 443 &zfs_fvnodeops); 444 if (error) 445 return (error); 446 447 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 448 &zfs_symvnodeops); 449 if (error) 450 return (error); 451 452 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 453 &zfs_xdvnodeops); 454 if (error) 455 return (error); 456 457 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 458 &zfs_evnodeops); 459 if (error) 460 return (error); 461 462 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 463 &zfs_sharevnodeops); 464 465 return (error); 466 } 467 468 int 469 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 470 { 471 zfs_acl_ids_t acl_ids; 472 vattr_t vattr; 473 znode_t *sharezp; 474 vnode_t *vp; 475 znode_t *zp; 476 int error; 477 478 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 479 vattr.va_type = VDIR; 480 vattr.va_mode = S_IFDIR|0555; 481 vattr.va_uid = crgetuid(kcred); 482 vattr.va_gid = crgetgid(kcred); 483 484 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 485 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs)); 486 sharezp->z_moved = 0; 487 sharezp->z_unlinked = 0; 488 sharezp->z_atime_dirty = 0; 489 sharezp->z_zfsvfs = zfsvfs; 490 sharezp->z_is_sa = zfsvfs->z_use_sa; 491 492 vp = ZTOV(sharezp); 493 vn_reinit(vp); 494 vp->v_type = VDIR; 495 496 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 497 kcred, NULL, &acl_ids)); 498 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); 499 ASSERT3P(zp, ==, sharezp); 500 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 501 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 502 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 503 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 504 zfsvfs->z_shares_dir = sharezp->z_id; 505 506 zfs_acl_ids_free(&acl_ids); 507 ZTOV(sharezp)->v_count = 0; 508 sa_handle_destroy(sharezp->z_sa_hdl); 509 kmem_cache_free(znode_cache, sharezp); 510 511 return (error); 512 } 513 514 /* 515 * define a couple of values we need available 516 * for both 64 and 32 bit environments. 517 */ 518 #ifndef NBITSMINOR64 519 #define NBITSMINOR64 32 520 #endif 521 #ifndef MAXMAJ64 522 #define MAXMAJ64 0xffffffffUL 523 #endif 524 #ifndef MAXMIN64 525 #define MAXMIN64 0xffffffffUL 526 #endif 527 528 /* 529 * Create special expldev for ZFS private use. 530 * Can't use standard expldev since it doesn't do 531 * what we want. The standard expldev() takes a 532 * dev32_t in LP64 and expands it to a long dev_t. 533 * We need an interface that takes a dev32_t in ILP32 534 * and expands it to a long dev_t. 535 */ 536 static uint64_t 537 zfs_expldev(dev_t dev) 538 { 539 #ifndef _LP64 540 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 541 return (((uint64_t)major << NBITSMINOR64) | 542 ((minor_t)dev & MAXMIN32)); 543 #else 544 return (dev); 545 #endif 546 } 547 548 /* 549 * Special cmpldev for ZFS private use. 550 * Can't use standard cmpldev since it takes 551 * a long dev_t and compresses it to dev32_t in 552 * LP64. We need to do a compaction of a long dev_t 553 * to a dev32_t in ILP32. 554 */ 555 dev_t 556 zfs_cmpldev(uint64_t dev) 557 { 558 #ifndef _LP64 559 minor_t minor = (minor_t)dev & MAXMIN64; 560 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 561 562 if (major > MAXMAJ32 || minor > MAXMIN32) 563 return (NODEV32); 564 565 return (((dev32_t)major << NBITSMINOR32) | minor); 566 #else 567 return (dev); 568 #endif 569 } 570 571 static void 572 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, 573 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) 574 { 575 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 576 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 577 578 mutex_enter(&zp->z_lock); 579 580 ASSERT(zp->z_sa_hdl == NULL); 581 ASSERT(zp->z_acl_cached == NULL); 582 if (sa_hdl == NULL) { 583 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, 584 SA_HDL_SHARED, &zp->z_sa_hdl)); 585 } else { 586 zp->z_sa_hdl = sa_hdl; 587 sa_set_userp(sa_hdl, zp); 588 } 589 590 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; 591 592 /* 593 * Slap on VROOT if we are the root znode 594 */ 595 if (zp->z_id == zfsvfs->z_root) 596 ZTOV(zp)->v_flag |= VROOT; 597 598 mutex_exit(&zp->z_lock); 599 vn_exists(ZTOV(zp)); 600 } 601 602 void 603 zfs_znode_dmu_fini(znode_t *zp) 604 { 605 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 606 zp->z_unlinked || 607 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 608 609 sa_handle_destroy(zp->z_sa_hdl); 610 zp->z_sa_hdl = NULL; 611 } 612 613 /* 614 * Construct a new znode/vnode and intialize. 615 * 616 * This does not do a call to dmu_set_user() that is 617 * up to the caller to do, in case you don't want to 618 * return the znode 619 */ 620 static znode_t * 621 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, 622 dmu_object_type_t obj_type, sa_handle_t *hdl) 623 { 624 znode_t *zp; 625 vnode_t *vp; 626 uint64_t mode; 627 uint64_t parent; 628 sa_bulk_attr_t bulk[9]; 629 int count = 0; 630 631 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 632 633 ASSERT(zp->z_dirlocks == NULL); 634 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 635 zp->z_moved = 0; 636 637 /* 638 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 639 * the zfs_znode_move() callback. 640 */ 641 zp->z_sa_hdl = NULL; 642 zp->z_unlinked = 0; 643 zp->z_atime_dirty = 0; 644 zp->z_mapcnt = 0; 645 zp->z_id = db->db_object; 646 zp->z_blksz = blksz; 647 zp->z_seq = 0x7A4653; 648 zp->z_sync_cnt = 0; 649 650 vp = ZTOV(zp); 651 vn_reinit(vp); 652 653 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); 654 655 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 656 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); 657 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 658 &zp->z_size, 8); 659 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 660 &zp->z_links, 8); 661 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 662 &zp->z_pflags, 8); 663 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); 664 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 665 &zp->z_atime, 16); 666 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 667 &zp->z_uid, 8); 668 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 669 &zp->z_gid, 8); 670 671 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { 672 if (hdl == NULL) 673 sa_handle_destroy(zp->z_sa_hdl); 674 kmem_cache_free(znode_cache, zp); 675 return (NULL); 676 } 677 678 zp->z_mode = mode; 679 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 680 681 vp->v_type = IFTOVT((mode_t)mode); 682 683 switch (vp->v_type) { 684 case VDIR: 685 if (zp->z_pflags & ZFS_XATTR) { 686 vn_setops(vp, zfs_xdvnodeops); 687 vp->v_flag |= V_XATTRDIR; 688 } else { 689 vn_setops(vp, zfs_dvnodeops); 690 } 691 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 692 break; 693 case VBLK: 694 case VCHR: 695 { 696 uint64_t rdev; 697 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), 698 &rdev, sizeof (rdev)) == 0); 699 700 vp->v_rdev = zfs_cmpldev(rdev); 701 } 702 /*FALLTHROUGH*/ 703 case VFIFO: 704 case VSOCK: 705 case VDOOR: 706 vn_setops(vp, zfs_fvnodeops); 707 break; 708 case VREG: 709 vp->v_flag |= VMODSORT; 710 if (parent == zfsvfs->z_shares_dir) { 711 ASSERT(zp->z_uid == 0 && zp->z_gid == 0); 712 vn_setops(vp, zfs_sharevnodeops); 713 } else { 714 vn_setops(vp, zfs_fvnodeops); 715 } 716 break; 717 case VLNK: 718 vn_setops(vp, zfs_symvnodeops); 719 break; 720 default: 721 vn_setops(vp, zfs_evnodeops); 722 break; 723 } 724 725 mutex_enter(&zfsvfs->z_znodes_lock); 726 list_insert_tail(&zfsvfs->z_all_znodes, zp); 727 membar_producer(); 728 /* 729 * Everything else must be valid before assigning z_zfsvfs makes the 730 * znode eligible for zfs_znode_move(). 731 */ 732 zp->z_zfsvfs = zfsvfs; 733 mutex_exit(&zfsvfs->z_znodes_lock); 734 735 VFS_HOLD(zfsvfs->z_vfs); 736 return (zp); 737 } 738 739 static uint64_t empty_xattr; 740 static uint64_t pad[4]; 741 static zfs_acl_phys_t acl_phys; 742 /* 743 * Create a new DMU object to hold a zfs znode. 744 * 745 * IN: dzp - parent directory for new znode 746 * vap - file attributes for new znode 747 * tx - dmu transaction id for zap operations 748 * cr - credentials of caller 749 * flag - flags: 750 * IS_ROOT_NODE - new object will be root 751 * IS_XATTR - new object is an attribute 752 * bonuslen - length of bonus buffer 753 * setaclp - File/Dir initial ACL 754 * fuidp - Tracks fuid allocation. 755 * 756 * OUT: zpp - allocated znode 757 * 758 */ 759 void 760 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 761 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) 762 { 763 uint64_t crtime[2], atime[2], mtime[2], ctime[2]; 764 uint64_t mode, size, links, parent, pflags; 765 uint64_t dzp_pflags = 0; 766 uint64_t rdev = 0; 767 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 768 dmu_buf_t *db; 769 timestruc_t now; 770 uint64_t gen, obj; 771 int err; 772 int bonuslen; 773 sa_handle_t *sa_hdl; 774 dmu_object_type_t obj_type; 775 sa_bulk_attr_t sa_attrs[ZPL_END]; 776 int cnt = 0; 777 zfs_acl_locator_cb_t locate = { 0 }; 778 779 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 780 781 if (zfsvfs->z_replay) { 782 obj = vap->va_nodeid; 783 now = vap->va_ctime; /* see zfs_replay_create() */ 784 gen = vap->va_nblocks; /* ditto */ 785 } else { 786 obj = 0; 787 gethrestime(&now); 788 gen = dmu_tx_get_txg(tx); 789 } 790 791 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; 792 bonuslen = (obj_type == DMU_OT_SA) ? 793 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; 794 795 /* 796 * Create a new DMU object. 797 */ 798 /* 799 * There's currently no mechanism for pre-reading the blocks that will 800 * be needed to allocate a new object, so we accept the small chance 801 * that there will be an i/o error and we will fail one of the 802 * assertions below. 803 */ 804 if (vap->va_type == VDIR) { 805 if (zfsvfs->z_replay) { 806 err = zap_create_claim_norm(zfsvfs->z_os, obj, 807 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 808 obj_type, bonuslen, tx); 809 ASSERT3U(err, ==, 0); 810 } else { 811 obj = zap_create_norm(zfsvfs->z_os, 812 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 813 obj_type, bonuslen, tx); 814 } 815 } else { 816 if (zfsvfs->z_replay) { 817 err = dmu_object_claim(zfsvfs->z_os, obj, 818 DMU_OT_PLAIN_FILE_CONTENTS, 0, 819 obj_type, bonuslen, tx); 820 ASSERT3U(err, ==, 0); 821 } else { 822 obj = dmu_object_alloc(zfsvfs->z_os, 823 DMU_OT_PLAIN_FILE_CONTENTS, 0, 824 obj_type, bonuslen, tx); 825 } 826 } 827 828 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 829 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); 830 831 /* 832 * If this is the root, fix up the half-initialized parent pointer 833 * to reference the just-allocated physical data area. 834 */ 835 if (flag & IS_ROOT_NODE) { 836 dzp->z_id = obj; 837 } else { 838 dzp_pflags = dzp->z_pflags; 839 } 840 841 /* 842 * If parent is an xattr, so am I. 843 */ 844 if (dzp_pflags & ZFS_XATTR) { 845 flag |= IS_XATTR; 846 } 847 848 if (zfsvfs->z_use_fuids) 849 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 850 else 851 pflags = 0; 852 853 if (vap->va_type == VDIR) { 854 size = 2; /* contents ("." and "..") */ 855 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 856 } else { 857 size = links = 0; 858 } 859 860 if (vap->va_type == VBLK || vap->va_type == VCHR) { 861 rdev = zfs_expldev(vap->va_rdev); 862 } 863 864 parent = dzp->z_id; 865 mode = acl_ids->z_mode; 866 if (flag & IS_XATTR) 867 pflags |= ZFS_XATTR; 868 869 /* 870 * No execs denied will be deterimed when zfs_mode_compute() is called. 871 */ 872 pflags |= acl_ids->z_aclp->z_hints & 873 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| 874 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); 875 876 ZFS_TIME_ENCODE(&now, crtime); 877 ZFS_TIME_ENCODE(&now, ctime); 878 879 if (vap->va_mask & AT_ATIME) { 880 ZFS_TIME_ENCODE(&vap->va_atime, atime); 881 } else { 882 ZFS_TIME_ENCODE(&now, atime); 883 } 884 885 if (vap->va_mask & AT_MTIME) { 886 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 887 } else { 888 ZFS_TIME_ENCODE(&now, mtime); 889 } 890 891 /* Now add in all of the "SA" attributes */ 892 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, 893 &sa_hdl)); 894 895 /* 896 * Setup the array of attributes to be replaced/set on the new file 897 * 898 * order for DMU_OT_ZNODE is critical since it needs to be constructed 899 * in the old znode_phys_t format. Don't change this ordering 900 */ 901 902 if (obj_type == DMU_OT_ZNODE) { 903 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 904 NULL, &atime, 16); 905 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 906 NULL, &mtime, 16); 907 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 908 NULL, &ctime, 16); 909 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 910 NULL, &crtime, 16); 911 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 912 NULL, &gen, 8); 913 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 914 NULL, &mode, 8); 915 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 916 NULL, &size, 8); 917 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 918 NULL, &parent, 8); 919 } else { 920 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 921 NULL, &mode, 8); 922 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 923 NULL, &size, 8); 924 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 925 NULL, &gen, 8); 926 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 927 &acl_ids->z_fuid, 8); 928 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 929 &acl_ids->z_fgid, 8); 930 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 931 NULL, &parent, 8); 932 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 933 NULL, &pflags, 8); 934 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 935 NULL, &atime, 16); 936 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 937 NULL, &mtime, 16); 938 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 939 NULL, &ctime, 16); 940 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 941 NULL, &crtime, 16); 942 } 943 944 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); 945 946 if (obj_type == DMU_OT_ZNODE) { 947 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, 948 &empty_xattr, 8); 949 } 950 if (obj_type == DMU_OT_ZNODE || 951 (vap->va_type == VBLK || vap->va_type == VCHR)) { 952 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), 953 NULL, &rdev, 8); 954 955 } 956 if (obj_type == DMU_OT_ZNODE) { 957 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 958 NULL, &pflags, 8); 959 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 960 &acl_ids->z_fuid, 8); 961 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 962 &acl_ids->z_fgid, 8); 963 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, 964 sizeof (uint64_t) * 4); 965 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 966 &acl_phys, sizeof (zfs_acl_phys_t)); 967 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { 968 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, 969 &acl_ids->z_aclp->z_acl_count, 8); 970 locate.cb_aclp = acl_ids->z_aclp; 971 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), 972 zfs_acl_data_locator, &locate, 973 acl_ids->z_aclp->z_acl_bytes); 974 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, 975 acl_ids->z_fuid, acl_ids->z_fgid); 976 } 977 978 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); 979 980 if (!(flag & IS_ROOT_NODE)) { 981 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); 982 ASSERT(*zpp != NULL); 983 } else { 984 /* 985 * If we are creating the root node, the "parent" we 986 * passed in is the znode for the root. 987 */ 988 *zpp = dzp; 989 990 (*zpp)->z_sa_hdl = sa_hdl; 991 } 992 993 (*zpp)->z_pflags = pflags; 994 (*zpp)->z_mode = mode; 995 996 if (vap->va_mask & AT_XVATTR) 997 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); 998 999 if (obj_type == DMU_OT_ZNODE || 1000 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { 1001 err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx); 1002 ASSERT3P(err, ==, 0); 1003 } 1004 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1005 } 1006 1007 /* 1008 * zfs_xvattr_set only updates the in-core attributes 1009 * it is assumed the caller will be doing an sa_bulk_update 1010 * to push the changes out 1011 */ 1012 void 1013 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) 1014 { 1015 xoptattr_t *xoap; 1016 1017 xoap = xva_getxoptattr(xvap); 1018 ASSERT(xoap); 1019 1020 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 1021 uint64_t times[2]; 1022 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); 1023 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), 1024 ×, sizeof (times), tx); 1025 XVA_SET_RTN(xvap, XAT_CREATETIME); 1026 } 1027 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1028 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, 1029 zp->z_pflags, tx); 1030 XVA_SET_RTN(xvap, XAT_READONLY); 1031 } 1032 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1033 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, 1034 zp->z_pflags, tx); 1035 XVA_SET_RTN(xvap, XAT_HIDDEN); 1036 } 1037 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1038 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, 1039 zp->z_pflags, tx); 1040 XVA_SET_RTN(xvap, XAT_SYSTEM); 1041 } 1042 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1043 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, 1044 zp->z_pflags, tx); 1045 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1046 } 1047 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1048 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, 1049 zp->z_pflags, tx); 1050 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1051 } 1052 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1053 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, 1054 zp->z_pflags, tx); 1055 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1056 } 1057 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1058 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, 1059 zp->z_pflags, tx); 1060 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1061 } 1062 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1063 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, 1064 zp->z_pflags, tx); 1065 XVA_SET_RTN(xvap, XAT_NODUMP); 1066 } 1067 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1068 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, 1069 zp->z_pflags, tx); 1070 XVA_SET_RTN(xvap, XAT_OPAQUE); 1071 } 1072 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1073 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 1074 xoap->xoa_av_quarantined, zp->z_pflags, tx); 1075 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1076 } 1077 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1078 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, 1079 zp->z_pflags, tx); 1080 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1081 } 1082 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 1083 zfs_sa_set_scanstamp(zp, xvap, tx); 1084 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 1085 } 1086 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1087 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, 1088 zp->z_pflags, tx); 1089 XVA_SET_RTN(xvap, XAT_REPARSE); 1090 } 1091 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 1092 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline, 1093 zp->z_pflags, tx); 1094 XVA_SET_RTN(xvap, XAT_OFFLINE); 1095 } 1096 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 1097 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse, 1098 zp->z_pflags, tx); 1099 XVA_SET_RTN(xvap, XAT_SPARSE); 1100 } 1101 } 1102 1103 int 1104 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 1105 { 1106 dmu_object_info_t doi; 1107 dmu_buf_t *db; 1108 znode_t *zp; 1109 int err; 1110 sa_handle_t *hdl; 1111 1112 *zpp = NULL; 1113 1114 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1115 1116 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1117 if (err) { 1118 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1119 return (err); 1120 } 1121 1122 dmu_object_info_from_db(db, &doi); 1123 if (doi.doi_bonus_type != DMU_OT_SA && 1124 (doi.doi_bonus_type != DMU_OT_ZNODE || 1125 (doi.doi_bonus_type == DMU_OT_ZNODE && 1126 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1127 sa_buf_rele(db, NULL); 1128 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1129 return (EINVAL); 1130 } 1131 1132 hdl = dmu_buf_get_user(db); 1133 if (hdl != NULL) { 1134 zp = sa_get_userdata(hdl); 1135 1136 1137 /* 1138 * Since "SA" does immediate eviction we 1139 * should never find a sa handle that doesn't 1140 * know about the znode. 1141 */ 1142 1143 ASSERT3P(zp, !=, NULL); 1144 1145 mutex_enter(&zp->z_lock); 1146 ASSERT3U(zp->z_id, ==, obj_num); 1147 if (zp->z_unlinked) { 1148 err = ENOENT; 1149 } else { 1150 VN_HOLD(ZTOV(zp)); 1151 *zpp = zp; 1152 err = 0; 1153 } 1154 sa_buf_rele(db, NULL); 1155 mutex_exit(&zp->z_lock); 1156 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1157 return (err); 1158 } 1159 1160 /* 1161 * Not found create new znode/vnode 1162 * but only if file exists. 1163 * 1164 * There is a small window where zfs_vget() could 1165 * find this object while a file create is still in 1166 * progress. This is checked for in zfs_znode_alloc() 1167 * 1168 * if zfs_znode_alloc() fails it will drop the hold on the 1169 * bonus buffer. 1170 */ 1171 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, 1172 doi.doi_bonus_type, NULL); 1173 if (zp == NULL) { 1174 err = ENOENT; 1175 } else { 1176 *zpp = zp; 1177 } 1178 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1179 return (err); 1180 } 1181 1182 int 1183 zfs_rezget(znode_t *zp) 1184 { 1185 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1186 dmu_object_info_t doi; 1187 dmu_buf_t *db; 1188 uint64_t obj_num = zp->z_id; 1189 uint64_t mode; 1190 sa_bulk_attr_t bulk[8]; 1191 int err; 1192 int count = 0; 1193 uint64_t gen; 1194 1195 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1196 1197 mutex_enter(&zp->z_acl_lock); 1198 if (zp->z_acl_cached) { 1199 zfs_acl_free(zp->z_acl_cached); 1200 zp->z_acl_cached = NULL; 1201 } 1202 1203 mutex_exit(&zp->z_acl_lock); 1204 ASSERT(zp->z_sa_hdl == NULL); 1205 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1206 if (err) { 1207 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1208 return (err); 1209 } 1210 1211 dmu_object_info_from_db(db, &doi); 1212 if (doi.doi_bonus_type != DMU_OT_SA && 1213 (doi.doi_bonus_type != DMU_OT_ZNODE || 1214 (doi.doi_bonus_type == DMU_OT_ZNODE && 1215 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1216 sa_buf_rele(db, NULL); 1217 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1218 return (EINVAL); 1219 } 1220 1221 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); 1222 1223 /* reload cached values */ 1224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, 1225 &gen, sizeof (gen)); 1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1227 &zp->z_size, sizeof (zp->z_size)); 1228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 1229 &zp->z_links, sizeof (zp->z_links)); 1230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1231 &zp->z_pflags, sizeof (zp->z_pflags)); 1232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 1233 &zp->z_atime, sizeof (zp->z_atime)); 1234 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1235 &zp->z_uid, sizeof (zp->z_uid)); 1236 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1237 &zp->z_gid, sizeof (zp->z_gid)); 1238 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1239 &mode, sizeof (mode)); 1240 1241 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { 1242 zfs_znode_dmu_fini(zp); 1243 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1244 return (EIO); 1245 } 1246 1247 zp->z_mode = mode; 1248 1249 if (gen != zp->z_gen) { 1250 zfs_znode_dmu_fini(zp); 1251 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1252 return (EIO); 1253 } 1254 1255 zp->z_unlinked = (zp->z_links == 0); 1256 zp->z_blksz = doi.doi_data_block_size; 1257 1258 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1259 1260 return (0); 1261 } 1262 1263 void 1264 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1265 { 1266 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1267 objset_t *os = zfsvfs->z_os; 1268 uint64_t obj = zp->z_id; 1269 uint64_t acl_obj = zfs_external_acl(zp); 1270 1271 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1272 if (acl_obj) { 1273 VERIFY(!zp->z_is_sa); 1274 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1275 } 1276 VERIFY(0 == dmu_object_free(os, obj, tx)); 1277 zfs_znode_dmu_fini(zp); 1278 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1279 zfs_znode_free(zp); 1280 } 1281 1282 void 1283 zfs_zinactive(znode_t *zp) 1284 { 1285 vnode_t *vp = ZTOV(zp); 1286 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1287 uint64_t z_id = zp->z_id; 1288 1289 ASSERT(zp->z_sa_hdl); 1290 1291 /* 1292 * Don't allow a zfs_zget() while were trying to release this znode 1293 */ 1294 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1295 1296 mutex_enter(&zp->z_lock); 1297 mutex_enter(&vp->v_lock); 1298 vp->v_count--; 1299 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1300 /* 1301 * If the hold count is greater than zero, somebody has 1302 * obtained a new reference on this znode while we were 1303 * processing it here, so we are done. If we still have 1304 * mapped pages then we are also done, since we don't 1305 * want to inactivate the znode until the pages get pushed. 1306 * 1307 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1308 * this seems like it would leave the znode hanging with 1309 * no chance to go inactive... 1310 */ 1311 mutex_exit(&vp->v_lock); 1312 mutex_exit(&zp->z_lock); 1313 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1314 return; 1315 } 1316 mutex_exit(&vp->v_lock); 1317 1318 /* 1319 * If this was the last reference to a file with no links, 1320 * remove the file from the file system. 1321 */ 1322 if (zp->z_unlinked) { 1323 mutex_exit(&zp->z_lock); 1324 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1325 zfs_rmnode(zp); 1326 return; 1327 } 1328 1329 mutex_exit(&zp->z_lock); 1330 zfs_znode_dmu_fini(zp); 1331 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1332 zfs_znode_free(zp); 1333 } 1334 1335 void 1336 zfs_znode_free(znode_t *zp) 1337 { 1338 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1339 1340 vn_invalid(ZTOV(zp)); 1341 1342 ASSERT(ZTOV(zp)->v_count == 0); 1343 1344 mutex_enter(&zfsvfs->z_znodes_lock); 1345 POINTER_INVALIDATE(&zp->z_zfsvfs); 1346 list_remove(&zfsvfs->z_all_znodes, zp); 1347 mutex_exit(&zfsvfs->z_znodes_lock); 1348 1349 if (zp->z_acl_cached) { 1350 zfs_acl_free(zp->z_acl_cached); 1351 zp->z_acl_cached = NULL; 1352 } 1353 1354 kmem_cache_free(znode_cache, zp); 1355 1356 VFS_RELE(zfsvfs->z_vfs); 1357 } 1358 1359 void 1360 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], 1361 uint64_t ctime[2], boolean_t have_tx) 1362 { 1363 timestruc_t now; 1364 1365 gethrestime(&now); 1366 1367 if (have_tx) { /* will sa_bulk_update happen really soon? */ 1368 zp->z_atime_dirty = 0; 1369 zp->z_seq++; 1370 } else { 1371 zp->z_atime_dirty = 1; 1372 } 1373 1374 if (flag & AT_ATIME) { 1375 ZFS_TIME_ENCODE(&now, zp->z_atime); 1376 } 1377 1378 if (flag & AT_MTIME) { 1379 ZFS_TIME_ENCODE(&now, mtime); 1380 if (zp->z_zfsvfs->z_use_fuids) { 1381 zp->z_pflags |= (ZFS_ARCHIVE | 1382 ZFS_AV_MODIFIED); 1383 } 1384 } 1385 1386 if (flag & AT_CTIME) { 1387 ZFS_TIME_ENCODE(&now, ctime); 1388 if (zp->z_zfsvfs->z_use_fuids) 1389 zp->z_pflags |= ZFS_ARCHIVE; 1390 } 1391 } 1392 1393 /* 1394 * Grow the block size for a file. 1395 * 1396 * IN: zp - znode of file to free data in. 1397 * size - requested block size 1398 * tx - open transaction. 1399 * 1400 * NOTE: this function assumes that the znode is write locked. 1401 */ 1402 void 1403 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1404 { 1405 int error; 1406 u_longlong_t dummy; 1407 1408 if (size <= zp->z_blksz) 1409 return; 1410 /* 1411 * If the file size is already greater than the current blocksize, 1412 * we will not grow. If there is more than one block in a file, 1413 * the blocksize cannot change. 1414 */ 1415 if (zp->z_blksz && zp->z_size > zp->z_blksz) 1416 return; 1417 1418 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1419 size, 0, tx); 1420 1421 if (error == ENOTSUP) 1422 return; 1423 ASSERT3U(error, ==, 0); 1424 1425 /* What blocksize did we actually get? */ 1426 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); 1427 } 1428 1429 /* 1430 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1431 * be calling back into the fs for a putpage(). E.g.: when truncating 1432 * a file, the pages being "thrown away* don't need to be written out. 1433 */ 1434 /* ARGSUSED */ 1435 static int 1436 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1437 int flags, cred_t *cr) 1438 { 1439 ASSERT(0); 1440 return (0); 1441 } 1442 1443 /* 1444 * Increase the file length 1445 * 1446 * IN: zp - znode of file to free data in. 1447 * end - new end-of-file 1448 * 1449 * RETURN: 0 if success 1450 * error code if failure 1451 */ 1452 static int 1453 zfs_extend(znode_t *zp, uint64_t end) 1454 { 1455 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1456 dmu_tx_t *tx; 1457 rl_t *rl; 1458 uint64_t newblksz; 1459 int error; 1460 1461 /* 1462 * We will change zp_size, lock the whole file. 1463 */ 1464 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1465 1466 /* 1467 * Nothing to do if file already at desired length. 1468 */ 1469 if (end <= zp->z_size) { 1470 zfs_range_unlock(rl); 1471 return (0); 1472 } 1473 top: 1474 tx = dmu_tx_create(zfsvfs->z_os); 1475 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1476 zfs_sa_upgrade_txholds(tx, zp); 1477 if (end > zp->z_blksz && 1478 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1479 /* 1480 * We are growing the file past the current block size. 1481 */ 1482 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1483 ASSERT(!ISP2(zp->z_blksz)); 1484 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1485 } else { 1486 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1487 } 1488 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1489 } else { 1490 newblksz = 0; 1491 } 1492 1493 error = dmu_tx_assign(tx, TXG_NOWAIT); 1494 if (error) { 1495 if (error == ERESTART) { 1496 dmu_tx_wait(tx); 1497 dmu_tx_abort(tx); 1498 goto top; 1499 } 1500 dmu_tx_abort(tx); 1501 zfs_range_unlock(rl); 1502 return (error); 1503 } 1504 1505 if (newblksz) 1506 zfs_grow_blocksize(zp, newblksz, tx); 1507 1508 zp->z_size = end; 1509 1510 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1511 &zp->z_size, sizeof (zp->z_size), tx)); 1512 1513 zfs_range_unlock(rl); 1514 1515 dmu_tx_commit(tx); 1516 1517 return (0); 1518 } 1519 1520 /* 1521 * Free space in a file. 1522 * 1523 * IN: zp - znode of file to free data in. 1524 * off - start of section to free. 1525 * len - length of section to free. 1526 * 1527 * RETURN: 0 if success 1528 * error code if failure 1529 */ 1530 static int 1531 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1532 { 1533 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1534 rl_t *rl; 1535 int error; 1536 1537 /* 1538 * Lock the range being freed. 1539 */ 1540 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1541 1542 /* 1543 * Nothing to do if file already at desired length. 1544 */ 1545 if (off >= zp->z_size) { 1546 zfs_range_unlock(rl); 1547 return (0); 1548 } 1549 1550 if (off + len > zp->z_size) 1551 len = zp->z_size - off; 1552 1553 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1554 1555 zfs_range_unlock(rl); 1556 1557 return (error); 1558 } 1559 1560 /* 1561 * Truncate a file 1562 * 1563 * IN: zp - znode of file to free data in. 1564 * end - new end-of-file. 1565 * 1566 * RETURN: 0 if success 1567 * error code if failure 1568 */ 1569 static int 1570 zfs_trunc(znode_t *zp, uint64_t end) 1571 { 1572 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1573 vnode_t *vp = ZTOV(zp); 1574 dmu_tx_t *tx; 1575 rl_t *rl; 1576 int error; 1577 sa_bulk_attr_t bulk[2]; 1578 int count = 0; 1579 1580 /* 1581 * We will change zp_size, lock the whole file. 1582 */ 1583 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1584 1585 /* 1586 * Nothing to do if file already at desired length. 1587 */ 1588 if (end >= zp->z_size) { 1589 zfs_range_unlock(rl); 1590 return (0); 1591 } 1592 1593 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1594 if (error) { 1595 zfs_range_unlock(rl); 1596 return (error); 1597 } 1598 top: 1599 tx = dmu_tx_create(zfsvfs->z_os); 1600 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1601 zfs_sa_upgrade_txholds(tx, zp); 1602 error = dmu_tx_assign(tx, TXG_NOWAIT); 1603 if (error) { 1604 if (error == ERESTART) { 1605 dmu_tx_wait(tx); 1606 dmu_tx_abort(tx); 1607 goto top; 1608 } 1609 dmu_tx_abort(tx); 1610 zfs_range_unlock(rl); 1611 return (error); 1612 } 1613 1614 zp->z_size = end; 1615 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), 1616 NULL, &zp->z_size, sizeof (zp->z_size)); 1617 1618 if (end == 0) { 1619 zp->z_pflags &= ~ZFS_SPARSE; 1620 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1621 NULL, &zp->z_pflags, 8); 1622 } 1623 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0); 1624 1625 dmu_tx_commit(tx); 1626 1627 /* 1628 * Clear any mapped pages in the truncated region. This has to 1629 * happen outside of the transaction to avoid the possibility of 1630 * a deadlock with someone trying to push a page that we are 1631 * about to invalidate. 1632 */ 1633 if (vn_has_cached_data(vp)) { 1634 page_t *pp; 1635 uint64_t start = end & PAGEMASK; 1636 int poff = end & PAGEOFFSET; 1637 1638 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1639 /* 1640 * We need to zero a partial page. 1641 */ 1642 pagezero(pp, poff, PAGESIZE - poff); 1643 start += PAGESIZE; 1644 page_unlock(pp); 1645 } 1646 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1647 B_INVAL | B_TRUNC, NULL); 1648 ASSERT(error == 0); 1649 } 1650 1651 zfs_range_unlock(rl); 1652 1653 return (0); 1654 } 1655 1656 /* 1657 * Free space in a file 1658 * 1659 * IN: zp - znode of file to free data in. 1660 * off - start of range 1661 * len - end of range (0 => EOF) 1662 * flag - current file open mode flags. 1663 * log - TRUE if this action should be logged 1664 * 1665 * RETURN: 0 if success 1666 * error code if failure 1667 */ 1668 int 1669 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1670 { 1671 vnode_t *vp = ZTOV(zp); 1672 dmu_tx_t *tx; 1673 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1674 zilog_t *zilog = zfsvfs->z_log; 1675 uint64_t mode; 1676 uint64_t mtime[2], ctime[2]; 1677 sa_bulk_attr_t bulk[3]; 1678 int count = 0; 1679 int error; 1680 1681 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, 1682 sizeof (mode))) != 0) 1683 return (error); 1684 1685 if (off > zp->z_size) { 1686 error = zfs_extend(zp, off+len); 1687 if (error == 0 && log) 1688 goto log; 1689 else 1690 return (error); 1691 } 1692 1693 /* 1694 * Check for any locks in the region to be freed. 1695 */ 1696 1697 if (MANDLOCK(vp, (mode_t)mode)) { 1698 uint64_t length = (len ? len : zp->z_size - off); 1699 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1700 return (error); 1701 } 1702 1703 if (len == 0) { 1704 error = zfs_trunc(zp, off); 1705 } else { 1706 if ((error = zfs_free_range(zp, off, len)) == 0 && 1707 off + len > zp->z_size) 1708 error = zfs_extend(zp, off+len); 1709 } 1710 if (error || !log) 1711 return (error); 1712 log: 1713 tx = dmu_tx_create(zfsvfs->z_os); 1714 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1715 zfs_sa_upgrade_txholds(tx, zp); 1716 error = dmu_tx_assign(tx, TXG_NOWAIT); 1717 if (error) { 1718 if (error == ERESTART) { 1719 dmu_tx_wait(tx); 1720 dmu_tx_abort(tx); 1721 goto log; 1722 } 1723 dmu_tx_abort(tx); 1724 return (error); 1725 } 1726 1727 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); 1728 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); 1729 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1730 NULL, &zp->z_pflags, 8); 1731 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1732 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1733 ASSERT(error == 0); 1734 1735 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1736 1737 dmu_tx_commit(tx); 1738 return (0); 1739 } 1740 1741 void 1742 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1743 { 1744 zfsvfs_t zfsvfs; 1745 uint64_t moid, obj, sa_obj, version; 1746 uint64_t sense = ZFS_CASE_SENSITIVE; 1747 uint64_t norm = 0; 1748 nvpair_t *elem; 1749 int error; 1750 int i; 1751 znode_t *rootzp = NULL; 1752 vnode_t *vp; 1753 vattr_t vattr; 1754 znode_t *zp; 1755 zfs_acl_ids_t acl_ids; 1756 1757 /* 1758 * First attempt to create master node. 1759 */ 1760 /* 1761 * In an empty objset, there are no blocks to read and thus 1762 * there can be no i/o errors (which we assert below). 1763 */ 1764 moid = MASTER_NODE_OBJ; 1765 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1766 DMU_OT_NONE, 0, tx); 1767 ASSERT(error == 0); 1768 1769 /* 1770 * Set starting attributes. 1771 */ 1772 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); 1773 elem = NULL; 1774 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1775 /* For the moment we expect all zpl props to be uint64_ts */ 1776 uint64_t val; 1777 char *name; 1778 1779 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1780 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1781 name = nvpair_name(elem); 1782 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1783 if (val < version) 1784 version = val; 1785 } else { 1786 error = zap_update(os, moid, name, 8, 1, &val, tx); 1787 } 1788 ASSERT(error == 0); 1789 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1790 norm = val; 1791 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1792 sense = val; 1793 } 1794 ASSERT(version != 0); 1795 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1796 1797 /* 1798 * Create zap object used for SA attribute registration 1799 */ 1800 1801 if (version >= ZPL_VERSION_SA) { 1802 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1803 DMU_OT_NONE, 0, tx); 1804 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 1805 ASSERT(error == 0); 1806 } else { 1807 sa_obj = 0; 1808 } 1809 /* 1810 * Create a delete queue. 1811 */ 1812 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1813 1814 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1815 ASSERT(error == 0); 1816 1817 /* 1818 * Create root znode. Create minimal znode/vnode/zfsvfs 1819 * to allow zfs_mknode to work. 1820 */ 1821 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1822 vattr.va_type = VDIR; 1823 vattr.va_mode = S_IFDIR|0755; 1824 vattr.va_uid = crgetuid(cr); 1825 vattr.va_gid = crgetgid(cr); 1826 1827 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1828 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1829 rootzp->z_moved = 0; 1830 rootzp->z_unlinked = 0; 1831 rootzp->z_atime_dirty = 0; 1832 rootzp->z_is_sa = USE_SA(version, os); 1833 1834 vp = ZTOV(rootzp); 1835 vn_reinit(vp); 1836 vp->v_type = VDIR; 1837 1838 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1839 1840 zfsvfs.z_os = os; 1841 zfsvfs.z_parent = &zfsvfs; 1842 zfsvfs.z_version = version; 1843 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1844 zfsvfs.z_use_sa = USE_SA(version, os); 1845 zfsvfs.z_norm = norm; 1846 1847 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 1848 &zfsvfs.z_attr_table); 1849 1850 ASSERT(error == 0); 1851 1852 /* 1853 * Fold case on file systems that are always or sometimes case 1854 * insensitive. 1855 */ 1856 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1857 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1858 1859 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1860 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1861 offsetof(znode_t, z_link_node)); 1862 1863 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1864 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1865 1866 rootzp->z_zfsvfs = &zfsvfs; 1867 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1868 cr, NULL, &acl_ids)); 1869 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); 1870 ASSERT3P(zp, ==, rootzp); 1871 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1872 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1873 ASSERT(error == 0); 1874 zfs_acl_ids_free(&acl_ids); 1875 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1876 1877 ZTOV(rootzp)->v_count = 0; 1878 sa_handle_destroy(rootzp->z_sa_hdl); 1879 kmem_cache_free(znode_cache, rootzp); 1880 1881 /* 1882 * Create shares directory 1883 */ 1884 1885 error = zfs_create_share_dir(&zfsvfs, tx); 1886 1887 ASSERT(error == 0); 1888 1889 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1890 mutex_destroy(&zfsvfs.z_hold_mtx[i]); 1891 } 1892 1893 #endif /* _KERNEL */ 1894 1895 static int 1896 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table) 1897 { 1898 uint64_t sa_obj = 0; 1899 int error; 1900 1901 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); 1902 if (error != 0 && error != ENOENT) 1903 return (error); 1904 1905 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table); 1906 return (error); 1907 } 1908 1909 static int 1910 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp, 1911 dmu_buf_t **db) 1912 { 1913 dmu_object_info_t doi; 1914 int error; 1915 1916 if ((error = sa_buf_hold(osp, obj, FTAG, db)) != 0) 1917 return (error); 1918 1919 dmu_object_info_from_db(*db, &doi); 1920 if ((doi.doi_bonus_type != DMU_OT_SA && 1921 doi.doi_bonus_type != DMU_OT_ZNODE) || 1922 doi.doi_bonus_type == DMU_OT_ZNODE && 1923 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1924 sa_buf_rele(*db, FTAG); 1925 return (ENOTSUP); 1926 } 1927 1928 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp); 1929 if (error != 0) { 1930 sa_buf_rele(*db, FTAG); 1931 return (error); 1932 } 1933 1934 return (0); 1935 } 1936 1937 void 1938 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db) 1939 { 1940 sa_handle_destroy(hdl); 1941 sa_buf_rele(db, FTAG); 1942 } 1943 1944 /* 1945 * Given an object number, return its parent object number and whether 1946 * or not the object is an extended attribute directory. 1947 */ 1948 static int 1949 zfs_obj_to_pobj(sa_handle_t *hdl, sa_attr_type_t *sa_table, uint64_t *pobjp, 1950 int *is_xattrdir) 1951 { 1952 uint64_t parent; 1953 uint64_t pflags; 1954 uint64_t mode; 1955 sa_bulk_attr_t bulk[3]; 1956 int count = 0; 1957 int error; 1958 1959 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL, 1960 &parent, sizeof (parent)); 1961 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, 1962 &pflags, sizeof (pflags)); 1963 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1964 &mode, sizeof (mode)); 1965 1966 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) 1967 return (error); 1968 1969 *pobjp = parent; 1970 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); 1971 1972 return (0); 1973 } 1974 1975 /* 1976 * Given an object number, return some zpl level statistics 1977 */ 1978 static int 1979 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table, 1980 zfs_stat_t *sb) 1981 { 1982 sa_bulk_attr_t bulk[4]; 1983 int count = 0; 1984 1985 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1986 &sb->zs_mode, sizeof (sb->zs_mode)); 1987 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL, 1988 &sb->zs_gen, sizeof (sb->zs_gen)); 1989 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL, 1990 &sb->zs_links, sizeof (sb->zs_links)); 1991 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL, 1992 &sb->zs_ctime, sizeof (sb->zs_ctime)); 1993 1994 return (sa_bulk_lookup(hdl, bulk, count)); 1995 } 1996 1997 static int 1998 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl, 1999 sa_attr_type_t *sa_table, char *buf, int len) 2000 { 2001 sa_handle_t *sa_hdl; 2002 sa_handle_t *prevhdl = NULL; 2003 dmu_buf_t *prevdb = NULL; 2004 dmu_buf_t *sa_db = NULL; 2005 char *path = buf + len - 1; 2006 int error; 2007 2008 *path = '\0'; 2009 sa_hdl = hdl; 2010 2011 for (;;) { 2012 uint64_t pobj; 2013 char component[MAXNAMELEN + 2]; 2014 size_t complen; 2015 int is_xattrdir; 2016 2017 if (prevdb) 2018 zfs_release_sa_handle(prevhdl, prevdb); 2019 2020 if ((error = zfs_obj_to_pobj(sa_hdl, sa_table, &pobj, 2021 &is_xattrdir)) != 0) 2022 break; 2023 2024 if (pobj == obj) { 2025 if (path[0] != '/') 2026 *--path = '/'; 2027 break; 2028 } 2029 2030 component[0] = '/'; 2031 if (is_xattrdir) { 2032 (void) sprintf(component + 1, "<xattrdir>"); 2033 } else { 2034 error = zap_value_search(osp, pobj, obj, 2035 ZFS_DIRENT_OBJ(-1ULL), component + 1); 2036 if (error != 0) 2037 break; 2038 } 2039 2040 complen = strlen(component); 2041 path -= complen; 2042 ASSERT(path >= buf); 2043 bcopy(component, path, complen); 2044 obj = pobj; 2045 2046 if (sa_hdl != hdl) { 2047 prevhdl = sa_hdl; 2048 prevdb = sa_db; 2049 } 2050 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db); 2051 if (error != 0) { 2052 sa_hdl = prevhdl; 2053 sa_db = prevdb; 2054 break; 2055 } 2056 } 2057 2058 if (sa_hdl != NULL && sa_hdl != hdl) { 2059 ASSERT(sa_db != NULL); 2060 zfs_release_sa_handle(sa_hdl, sa_db); 2061 } 2062 2063 if (error == 0) 2064 (void) memmove(buf, path, buf + len - path); 2065 2066 return (error); 2067 } 2068 2069 int 2070 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 2071 { 2072 sa_attr_type_t *sa_table; 2073 sa_handle_t *hdl; 2074 dmu_buf_t *db; 2075 int error; 2076 2077 error = zfs_sa_setup(osp, &sa_table); 2078 if (error != 0) 2079 return (error); 2080 2081 error = zfs_grab_sa_handle(osp, obj, &hdl, &db); 2082 if (error != 0) 2083 return (error); 2084 2085 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2086 2087 zfs_release_sa_handle(hdl, db); 2088 return (error); 2089 } 2090 2091 int 2092 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb, 2093 char *buf, int len) 2094 { 2095 char *path = buf + len - 1; 2096 sa_attr_type_t *sa_table; 2097 sa_handle_t *hdl; 2098 dmu_buf_t *db; 2099 int error; 2100 2101 *path = '\0'; 2102 2103 error = zfs_sa_setup(osp, &sa_table); 2104 if (error != 0) 2105 return (error); 2106 2107 error = zfs_grab_sa_handle(osp, obj, &hdl, &db); 2108 if (error != 0) 2109 return (error); 2110 2111 error = zfs_obj_to_stats_impl(hdl, sa_table, sb); 2112 if (error != 0) { 2113 zfs_release_sa_handle(hdl, db); 2114 return (error); 2115 } 2116 2117 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2118 2119 zfs_release_sa_handle(hdl, db); 2120 return (error); 2121 } 2122