1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/kidmap.h> 57 #endif /* _KERNEL */ 58 59 #include <sys/dmu.h> 60 #include <sys/refcount.h> 61 #include <sys/stat.h> 62 #include <sys/zap.h> 63 #include <sys/zfs_znode.h> 64 65 #include "zfs_prop.h" 66 67 /* 68 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 69 * turned on when DEBUG is also defined. 70 */ 71 #ifdef DEBUG 72 #define ZNODE_STATS 73 #endif /* DEBUG */ 74 75 #ifdef ZNODE_STATS 76 #define ZNODE_STAT_ADD(stat) ((stat)++) 77 #else 78 #define ZNODE_STAT_ADD(stat) /* nothing */ 79 #endif /* ZNODE_STATS */ 80 81 #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) 82 #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) 83 84 /* 85 * Functions needed for userland (ie: libzpool) are not put under 86 * #ifdef_KERNEL; the rest of the functions have dependencies 87 * (such as VFS logic) that will not compile easily in userland. 88 */ 89 #ifdef _KERNEL 90 static kmem_cache_t *znode_cache = NULL; 91 92 /*ARGSUSED*/ 93 static void 94 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 95 { 96 /* 97 * We should never drop all dbuf refs without first clearing 98 * the eviction callback. 99 */ 100 panic("evicting znode %p\n", user_ptr); 101 } 102 103 /*ARGSUSED*/ 104 static int 105 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 106 { 107 znode_t *zp = buf; 108 109 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 110 111 zp->z_vnode = vn_alloc(kmflags); 112 if (zp->z_vnode == NULL) { 113 return (-1); 114 } 115 ZTOV(zp)->v_data = zp; 116 117 list_link_init(&zp->z_link_node); 118 119 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 120 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 121 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 122 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 123 124 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 125 avl_create(&zp->z_range_avl, zfs_range_compare, 126 sizeof (rl_t), offsetof(rl_t, r_node)); 127 128 zp->z_dbuf = NULL; 129 zp->z_dirlocks = NULL; 130 return (0); 131 } 132 133 /*ARGSUSED*/ 134 static void 135 zfs_znode_cache_destructor(void *buf, void *arg) 136 { 137 znode_t *zp = buf; 138 139 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 140 ASSERT(ZTOV(zp)->v_data == zp); 141 vn_free(ZTOV(zp)); 142 ASSERT(!list_link_active(&zp->z_link_node)); 143 mutex_destroy(&zp->z_lock); 144 rw_destroy(&zp->z_parent_lock); 145 rw_destroy(&zp->z_name_lock); 146 mutex_destroy(&zp->z_acl_lock); 147 avl_destroy(&zp->z_range_avl); 148 mutex_destroy(&zp->z_range_lock); 149 150 ASSERT(zp->z_dbuf == NULL); 151 ASSERT(zp->z_dirlocks == NULL); 152 } 153 154 #ifdef ZNODE_STATS 155 static struct { 156 uint64_t zms_zfsvfs_invalid; 157 uint64_t zms_zfsvfs_unmounted; 158 uint64_t zms_zfsvfs_recheck_invalid; 159 uint64_t zms_obj_held; 160 uint64_t zms_vnode_locked; 161 uint64_t zms_not_only_dnlc; 162 } znode_move_stats; 163 #endif /* ZNODE_STATS */ 164 165 static void 166 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 167 { 168 vnode_t *vp; 169 170 /* Copy fields. */ 171 nzp->z_zfsvfs = ozp->z_zfsvfs; 172 173 /* Swap vnodes. */ 174 vp = nzp->z_vnode; 175 nzp->z_vnode = ozp->z_vnode; 176 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 177 ZTOV(ozp)->v_data = ozp; 178 ZTOV(nzp)->v_data = nzp; 179 180 nzp->z_id = ozp->z_id; 181 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 182 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 183 nzp->z_unlinked = ozp->z_unlinked; 184 nzp->z_atime_dirty = ozp->z_atime_dirty; 185 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 186 nzp->z_blksz = ozp->z_blksz; 187 nzp->z_seq = ozp->z_seq; 188 nzp->z_mapcnt = ozp->z_mapcnt; 189 nzp->z_last_itx = ozp->z_last_itx; 190 nzp->z_gen = ozp->z_gen; 191 nzp->z_sync_cnt = ozp->z_sync_cnt; 192 nzp->z_phys = ozp->z_phys; 193 nzp->z_dbuf = ozp->z_dbuf; 194 195 /* Update back pointers. */ 196 (void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys, 197 znode_evict_error); 198 199 /* 200 * Invalidate the original znode by clearing fields that provide a 201 * pointer back to the znode. Set the low bit of the vfs pointer to 202 * ensure that zfs_znode_move() recognizes the znode as invalid in any 203 * subsequent callback. 204 */ 205 ozp->z_dbuf = NULL; 206 POINTER_INVALIDATE(&ozp->z_zfsvfs); 207 } 208 209 /* 210 * Wrapper function for ZFS_ENTER that returns 0 if successful and otherwise 211 * returns a non-zero error code. 212 */ 213 static int 214 zfs_enter(zfsvfs_t *zfsvfs) 215 { 216 ZFS_ENTER(zfsvfs); 217 return (0); 218 } 219 220 /*ARGSUSED*/ 221 static kmem_cbrc_t 222 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 223 { 224 znode_t *ozp = buf, *nzp = newbuf; 225 zfsvfs_t *zfsvfs; 226 vnode_t *vp; 227 228 /* 229 * The znode is on the file system's list of known znodes if the vfs 230 * pointer is valid. We set the low bit of the vfs pointer when freeing 231 * the znode to invalidate it, and the memory patterns written by kmem 232 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 233 * created znode sets the vfs pointer last of all to indicate that the 234 * znode is known and in a valid state to be moved by this function. 235 */ 236 zfsvfs = ozp->z_zfsvfs; 237 if (!POINTER_IS_VALID(zfsvfs)) { 238 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 239 return (KMEM_CBRC_DONT_KNOW); 240 } 241 242 /* 243 * Ensure that the filesystem is not unmounted during the move. 244 */ 245 if (zfs_enter(zfsvfs) != 0) { /* ZFS_ENTER */ 246 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 247 return (KMEM_CBRC_DONT_KNOW); 248 } 249 250 mutex_enter(&zfsvfs->z_znodes_lock); 251 /* 252 * Recheck the vfs pointer in case the znode was removed just before 253 * acquiring the lock. 254 */ 255 if (zfsvfs != ozp->z_zfsvfs) { 256 mutex_exit(&zfsvfs->z_znodes_lock); 257 ZFS_EXIT(zfsvfs); 258 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck_invalid); 259 return (KMEM_CBRC_DONT_KNOW); 260 } 261 262 /* 263 * At this point we know that as long as we hold z_znodes_lock, the 264 * znode cannot be freed and fields within the znode can be safely 265 * accessed. Now, prevent a race with zfs_zget(). 266 */ 267 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 268 mutex_exit(&zfsvfs->z_znodes_lock); 269 ZFS_EXIT(zfsvfs); 270 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 271 return (KMEM_CBRC_LATER); 272 } 273 274 vp = ZTOV(ozp); 275 if (mutex_tryenter(&vp->v_lock) == 0) { 276 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 277 mutex_exit(&zfsvfs->z_znodes_lock); 278 ZFS_EXIT(zfsvfs); 279 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 280 return (KMEM_CBRC_LATER); 281 } 282 283 /* Only move znodes that are referenced _only_ by the DNLC. */ 284 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 285 mutex_exit(&vp->v_lock); 286 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 287 mutex_exit(&zfsvfs->z_znodes_lock); 288 ZFS_EXIT(zfsvfs); 289 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 290 return (KMEM_CBRC_LATER); 291 } 292 293 /* 294 * The znode is known and in a valid state to move. We're holding the 295 * locks needed to execute the critical section. 296 */ 297 zfs_znode_move_impl(ozp, nzp); 298 mutex_exit(&vp->v_lock); 299 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 300 301 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 302 mutex_exit(&zfsvfs->z_znodes_lock); 303 ZFS_EXIT(zfsvfs); 304 305 return (KMEM_CBRC_YES); 306 } 307 308 void 309 zfs_znode_init(void) 310 { 311 /* 312 * Initialize zcache 313 */ 314 ASSERT(znode_cache == NULL); 315 znode_cache = kmem_cache_create("zfs_znode_cache", 316 sizeof (znode_t), 0, zfs_znode_cache_constructor, 317 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 318 kmem_cache_set_move(znode_cache, zfs_znode_move); 319 } 320 321 void 322 zfs_znode_fini(void) 323 { 324 /* 325 * Cleanup vfs & vnode ops 326 */ 327 zfs_remove_op_tables(); 328 329 /* 330 * Cleanup zcache 331 */ 332 if (znode_cache) 333 kmem_cache_destroy(znode_cache); 334 znode_cache = NULL; 335 } 336 337 struct vnodeops *zfs_dvnodeops; 338 struct vnodeops *zfs_fvnodeops; 339 struct vnodeops *zfs_symvnodeops; 340 struct vnodeops *zfs_xdvnodeops; 341 struct vnodeops *zfs_evnodeops; 342 struct vnodeops *zfs_sharevnodeops; 343 344 void 345 zfs_remove_op_tables() 346 { 347 /* 348 * Remove vfs ops 349 */ 350 ASSERT(zfsfstype); 351 (void) vfs_freevfsops_by_type(zfsfstype); 352 zfsfstype = 0; 353 354 /* 355 * Remove vnode ops 356 */ 357 if (zfs_dvnodeops) 358 vn_freevnodeops(zfs_dvnodeops); 359 if (zfs_fvnodeops) 360 vn_freevnodeops(zfs_fvnodeops); 361 if (zfs_symvnodeops) 362 vn_freevnodeops(zfs_symvnodeops); 363 if (zfs_xdvnodeops) 364 vn_freevnodeops(zfs_xdvnodeops); 365 if (zfs_evnodeops) 366 vn_freevnodeops(zfs_evnodeops); 367 if (zfs_sharevnodeops) 368 vn_freevnodeops(zfs_sharevnodeops); 369 370 zfs_dvnodeops = NULL; 371 zfs_fvnodeops = NULL; 372 zfs_symvnodeops = NULL; 373 zfs_xdvnodeops = NULL; 374 zfs_evnodeops = NULL; 375 zfs_sharevnodeops = NULL; 376 } 377 378 extern const fs_operation_def_t zfs_dvnodeops_template[]; 379 extern const fs_operation_def_t zfs_fvnodeops_template[]; 380 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 381 extern const fs_operation_def_t zfs_symvnodeops_template[]; 382 extern const fs_operation_def_t zfs_evnodeops_template[]; 383 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 384 385 int 386 zfs_create_op_tables() 387 { 388 int error; 389 390 /* 391 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 392 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 393 * In this case we just return as the ops vectors are already set up. 394 */ 395 if (zfs_dvnodeops) 396 return (0); 397 398 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 399 &zfs_dvnodeops); 400 if (error) 401 return (error); 402 403 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 404 &zfs_fvnodeops); 405 if (error) 406 return (error); 407 408 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 409 &zfs_symvnodeops); 410 if (error) 411 return (error); 412 413 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 414 &zfs_xdvnodeops); 415 if (error) 416 return (error); 417 418 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 419 &zfs_evnodeops); 420 if (error) 421 return (error); 422 423 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 424 &zfs_sharevnodeops); 425 426 return (error); 427 } 428 429 int 430 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 431 { 432 zfs_acl_ids_t acl_ids; 433 vattr_t vattr; 434 znode_t *sharezp; 435 vnode_t *vp; 436 znode_t *zp; 437 int error; 438 439 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 440 vattr.va_type = VDIR; 441 vattr.va_mode = S_IFDIR|0555; 442 vattr.va_uid = crgetuid(kcred); 443 vattr.va_gid = crgetgid(kcred); 444 445 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 446 sharezp->z_unlinked = 0; 447 sharezp->z_atime_dirty = 0; 448 sharezp->z_zfsvfs = zfsvfs; 449 450 vp = ZTOV(sharezp); 451 vn_reinit(vp); 452 vp->v_type = VDIR; 453 454 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 455 kcred, NULL, &acl_ids)); 456 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, 457 &zp, 0, &acl_ids); 458 ASSERT3P(zp, ==, sharezp); 459 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 460 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 461 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 462 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 463 zfsvfs->z_shares_dir = sharezp->z_id; 464 465 zfs_acl_ids_free(&acl_ids); 466 ZTOV(sharezp)->v_count = 0; 467 dmu_buf_rele(sharezp->z_dbuf, NULL); 468 sharezp->z_dbuf = NULL; 469 kmem_cache_free(znode_cache, sharezp); 470 471 return (error); 472 } 473 474 /* 475 * zfs_init_fs - Initialize the zfsvfs struct and the file system 476 * incore "master" object. Verify version compatibility. 477 */ 478 int 479 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp) 480 { 481 extern int zfsfstype; 482 483 objset_t *os = zfsvfs->z_os; 484 int i, error; 485 uint64_t fsid_guid; 486 uint64_t zval; 487 488 *zpp = NULL; 489 490 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 491 if (error) { 492 return (error); 493 } else if (zfsvfs->z_version > ZPL_VERSION) { 494 (void) printf("Mismatched versions: File system " 495 "is version %llu on-disk format, which is " 496 "incompatible with this software version %lld!", 497 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 498 return (ENOTSUP); 499 } 500 501 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 502 return (error); 503 zfsvfs->z_norm = (int)zval; 504 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 505 return (error); 506 zfsvfs->z_utf8 = (zval != 0); 507 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 508 return (error); 509 zfsvfs->z_case = (uint_t)zval; 510 /* 511 * Fold case on file systems that are always or sometimes case 512 * insensitive. 513 */ 514 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 515 zfsvfs->z_case == ZFS_CASE_MIXED) 516 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 517 518 /* 519 * The fsid is 64 bits, composed of an 8-bit fs type, which 520 * separates our fsid from any other filesystem types, and a 521 * 56-bit objset unique ID. The objset unique ID is unique to 522 * all objsets open on this system, provided by unique_create(). 523 * The 8-bit fs type must be put in the low bits of fsid[1] 524 * because that's where other Solaris filesystems put it. 525 */ 526 fsid_guid = dmu_objset_fsid_guid(os); 527 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 528 zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid; 529 zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 530 zfsfstype & 0xFF; 531 532 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 533 &zfsvfs->z_root); 534 if (error) 535 return (error); 536 ASSERT(zfsvfs->z_root != 0); 537 538 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 539 &zfsvfs->z_unlinkedobj); 540 if (error) 541 return (error); 542 543 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 544 &zfsvfs->z_fuid_obj); 545 if (error == ENOENT) 546 error = 0; 547 548 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 549 &zfsvfs->z_shares_dir); 550 if (error && error != ENOENT) 551 return (error); 552 553 /* 554 * Initialize zget mutex's 555 */ 556 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 557 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 558 559 error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp); 560 if (error) { 561 /* 562 * On error, we destroy the mutexes here since it's not 563 * possible for the caller to determine if the mutexes were 564 * initialized properly. 565 */ 566 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 567 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 568 return (error); 569 } 570 ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root); 571 572 return (error); 573 } 574 575 /* 576 * define a couple of values we need available 577 * for both 64 and 32 bit environments. 578 */ 579 #ifndef NBITSMINOR64 580 #define NBITSMINOR64 32 581 #endif 582 #ifndef MAXMAJ64 583 #define MAXMAJ64 0xffffffffUL 584 #endif 585 #ifndef MAXMIN64 586 #define MAXMIN64 0xffffffffUL 587 #endif 588 589 /* 590 * Create special expldev for ZFS private use. 591 * Can't use standard expldev since it doesn't do 592 * what we want. The standard expldev() takes a 593 * dev32_t in LP64 and expands it to a long dev_t. 594 * We need an interface that takes a dev32_t in ILP32 595 * and expands it to a long dev_t. 596 */ 597 static uint64_t 598 zfs_expldev(dev_t dev) 599 { 600 #ifndef _LP64 601 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 602 return (((uint64_t)major << NBITSMINOR64) | 603 ((minor_t)dev & MAXMIN32)); 604 #else 605 return (dev); 606 #endif 607 } 608 609 /* 610 * Special cmpldev for ZFS private use. 611 * Can't use standard cmpldev since it takes 612 * a long dev_t and compresses it to dev32_t in 613 * LP64. We need to do a compaction of a long dev_t 614 * to a dev32_t in ILP32. 615 */ 616 dev_t 617 zfs_cmpldev(uint64_t dev) 618 { 619 #ifndef _LP64 620 minor_t minor = (minor_t)dev & MAXMIN64; 621 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 622 623 if (major > MAXMAJ32 || minor > MAXMIN32) 624 return (NODEV32); 625 626 return (((dev32_t)major << NBITSMINOR32) | minor); 627 #else 628 return (dev); 629 #endif 630 } 631 632 static void 633 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db) 634 { 635 znode_t *nzp; 636 637 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 638 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 639 640 mutex_enter(&zp->z_lock); 641 642 ASSERT(zp->z_dbuf == NULL); 643 zp->z_dbuf = db; 644 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error); 645 646 /* 647 * there should be no 648 * concurrent zgets on this object. 649 */ 650 if (nzp != NULL) 651 panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db); 652 653 /* 654 * Slap on VROOT if we are the root znode 655 */ 656 if (zp->z_id == zfsvfs->z_root) 657 ZTOV(zp)->v_flag |= VROOT; 658 659 mutex_exit(&zp->z_lock); 660 vn_exists(ZTOV(zp)); 661 } 662 663 void 664 zfs_znode_dmu_fini(znode_t *zp) 665 { 666 dmu_buf_t *db = zp->z_dbuf; 667 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 668 zp->z_unlinked || 669 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 670 ASSERT(zp->z_dbuf != NULL); 671 zp->z_dbuf = NULL; 672 VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL)); 673 dmu_buf_rele(db, NULL); 674 } 675 676 /* 677 * Construct a new znode/vnode and intialize. 678 * 679 * This does not do a call to dmu_set_user() that is 680 * up to the caller to do, in case you don't want to 681 * return the znode 682 */ 683 static znode_t * 684 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz) 685 { 686 znode_t *zp; 687 vnode_t *vp; 688 689 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 690 691 ASSERT(zp->z_dirlocks == NULL); 692 ASSERT(zp->z_dbuf == NULL); 693 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 694 695 /* 696 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 697 * the zfs_znode_move() callback. 698 */ 699 zp->z_phys = NULL; 700 zp->z_unlinked = 0; 701 zp->z_atime_dirty = 0; 702 zp->z_mapcnt = 0; 703 zp->z_last_itx = 0; 704 zp->z_id = db->db_object; 705 zp->z_blksz = blksz; 706 zp->z_seq = 0x7A4653; 707 zp->z_sync_cnt = 0; 708 709 vp = ZTOV(zp); 710 vn_reinit(vp); 711 712 zfs_znode_dmu_init(zfsvfs, zp, db); 713 714 zp->z_gen = zp->z_phys->zp_gen; 715 716 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 717 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 718 719 switch (vp->v_type) { 720 case VDIR: 721 if (zp->z_phys->zp_flags & ZFS_XATTR) { 722 vn_setops(vp, zfs_xdvnodeops); 723 vp->v_flag |= V_XATTRDIR; 724 } else { 725 vn_setops(vp, zfs_dvnodeops); 726 } 727 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 728 break; 729 case VBLK: 730 case VCHR: 731 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 732 /*FALLTHROUGH*/ 733 case VFIFO: 734 case VSOCK: 735 case VDOOR: 736 vn_setops(vp, zfs_fvnodeops); 737 break; 738 case VREG: 739 vp->v_flag |= VMODSORT; 740 if (zp->z_phys->zp_parent == zfsvfs->z_shares_dir) 741 vn_setops(vp, zfs_sharevnodeops); 742 else 743 vn_setops(vp, zfs_fvnodeops); 744 break; 745 case VLNK: 746 vn_setops(vp, zfs_symvnodeops); 747 break; 748 default: 749 vn_setops(vp, zfs_evnodeops); 750 break; 751 } 752 753 mutex_enter(&zfsvfs->z_znodes_lock); 754 list_insert_tail(&zfsvfs->z_all_znodes, zp); 755 membar_producer(); 756 /* 757 * Everything else must be valid before assigning z_zfsvfs makes the 758 * znode eligible for zfs_znode_move(). 759 */ 760 zp->z_zfsvfs = zfsvfs; 761 mutex_exit(&zfsvfs->z_znodes_lock); 762 763 VFS_HOLD(zfsvfs->z_vfs); 764 return (zp); 765 } 766 767 /* 768 * Create a new DMU object to hold a zfs znode. 769 * 770 * IN: dzp - parent directory for new znode 771 * vap - file attributes for new znode 772 * tx - dmu transaction id for zap operations 773 * cr - credentials of caller 774 * flag - flags: 775 * IS_ROOT_NODE - new object will be root 776 * IS_XATTR - new object is an attribute 777 * IS_REPLAY - intent log replay 778 * bonuslen - length of bonus buffer 779 * setaclp - File/Dir initial ACL 780 * fuidp - Tracks fuid allocation. 781 * 782 * OUT: zpp - allocated znode 783 * 784 */ 785 void 786 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 787 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_ids_t *acl_ids) 788 { 789 dmu_buf_t *db; 790 znode_phys_t *pzp; 791 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 792 timestruc_t now; 793 uint64_t gen, obj; 794 int err; 795 796 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 797 798 if (zfsvfs->z_replay) { 799 obj = vap->va_nodeid; 800 flag |= IS_REPLAY; 801 now = vap->va_ctime; /* see zfs_replay_create() */ 802 gen = vap->va_nblocks; /* ditto */ 803 } else { 804 obj = 0; 805 gethrestime(&now); 806 gen = dmu_tx_get_txg(tx); 807 } 808 809 /* 810 * Create a new DMU object. 811 */ 812 /* 813 * There's currently no mechanism for pre-reading the blocks that will 814 * be to needed allocate a new object, so we accept the small chance 815 * that there will be an i/o error and we will fail one of the 816 * assertions below. 817 */ 818 if (vap->va_type == VDIR) { 819 if (flag & IS_REPLAY) { 820 err = zap_create_claim_norm(zfsvfs->z_os, obj, 821 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 822 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 823 ASSERT3U(err, ==, 0); 824 } else { 825 obj = zap_create_norm(zfsvfs->z_os, 826 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 827 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 828 } 829 } else { 830 if (flag & IS_REPLAY) { 831 err = dmu_object_claim(zfsvfs->z_os, obj, 832 DMU_OT_PLAIN_FILE_CONTENTS, 0, 833 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 834 ASSERT3U(err, ==, 0); 835 } else { 836 obj = dmu_object_alloc(zfsvfs->z_os, 837 DMU_OT_PLAIN_FILE_CONTENTS, 0, 838 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 839 } 840 } 841 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db)); 842 dmu_buf_will_dirty(db, tx); 843 844 /* 845 * Initialize the znode physical data to zero. 846 */ 847 ASSERT(db->db_size >= sizeof (znode_phys_t)); 848 bzero(db->db_data, db->db_size); 849 pzp = db->db_data; 850 851 /* 852 * If this is the root, fix up the half-initialized parent pointer 853 * to reference the just-allocated physical data area. 854 */ 855 if (flag & IS_ROOT_NODE) { 856 dzp->z_dbuf = db; 857 dzp->z_phys = pzp; 858 dzp->z_id = obj; 859 } 860 861 /* 862 * If parent is an xattr, so am I. 863 */ 864 if (dzp->z_phys->zp_flags & ZFS_XATTR) 865 flag |= IS_XATTR; 866 867 if (vap->va_type == VBLK || vap->va_type == VCHR) { 868 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 869 } 870 871 if (zfsvfs->z_use_fuids) 872 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 873 874 if (vap->va_type == VDIR) { 875 pzp->zp_size = 2; /* contents ("." and "..") */ 876 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 877 } 878 879 pzp->zp_parent = dzp->z_id; 880 if (flag & IS_XATTR) 881 pzp->zp_flags |= ZFS_XATTR; 882 883 pzp->zp_gen = gen; 884 885 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 886 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 887 888 if (vap->va_mask & AT_ATIME) { 889 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 890 } else { 891 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 892 } 893 894 if (vap->va_mask & AT_MTIME) { 895 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 896 } else { 897 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 898 } 899 900 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 901 if (!(flag & IS_ROOT_NODE)) { 902 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 903 *zpp = zfs_znode_alloc(zfsvfs, db, 0); 904 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 905 } else { 906 /* 907 * If we are creating the root node, the "parent" we 908 * passed in is the znode for the root. 909 */ 910 *zpp = dzp; 911 } 912 pzp->zp_uid = acl_ids->z_fuid; 913 pzp->zp_gid = acl_ids->z_fgid; 914 pzp->zp_mode = acl_ids->z_mode; 915 VERIFY(0 == zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); 916 if (vap->va_mask & AT_XVATTR) 917 zfs_xvattr_set(*zpp, (xvattr_t *)vap); 918 } 919 920 void 921 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap) 922 { 923 xoptattr_t *xoap; 924 925 xoap = xva_getxoptattr(xvap); 926 ASSERT(xoap); 927 928 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 929 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime); 930 XVA_SET_RTN(xvap, XAT_CREATETIME); 931 } 932 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 933 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly); 934 XVA_SET_RTN(xvap, XAT_READONLY); 935 } 936 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 937 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden); 938 XVA_SET_RTN(xvap, XAT_HIDDEN); 939 } 940 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 941 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system); 942 XVA_SET_RTN(xvap, XAT_SYSTEM); 943 } 944 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 945 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive); 946 XVA_SET_RTN(xvap, XAT_ARCHIVE); 947 } 948 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 949 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable); 950 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 951 } 952 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 953 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink); 954 XVA_SET_RTN(xvap, XAT_NOUNLINK); 955 } 956 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 957 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly); 958 XVA_SET_RTN(xvap, XAT_APPENDONLY); 959 } 960 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 961 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump); 962 XVA_SET_RTN(xvap, XAT_NODUMP); 963 } 964 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 965 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque); 966 XVA_SET_RTN(xvap, XAT_OPAQUE); 967 } 968 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 969 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 970 xoap->xoa_av_quarantined); 971 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 972 } 973 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 974 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified); 975 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 976 } 977 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 978 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp, 979 sizeof (xoap->xoa_av_scanstamp)); 980 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP; 981 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 982 } 983 } 984 985 int 986 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 987 { 988 dmu_object_info_t doi; 989 dmu_buf_t *db; 990 znode_t *zp; 991 int err; 992 993 *zpp = NULL; 994 995 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 996 997 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 998 if (err) { 999 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1000 return (err); 1001 } 1002 1003 dmu_object_info_from_db(db, &doi); 1004 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1005 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1006 dmu_buf_rele(db, NULL); 1007 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1008 return (EINVAL); 1009 } 1010 1011 zp = dmu_buf_get_user(db); 1012 if (zp != NULL) { 1013 mutex_enter(&zp->z_lock); 1014 1015 /* 1016 * Since we do immediate eviction of the z_dbuf, we 1017 * should never find a dbuf with a znode that doesn't 1018 * know about the dbuf. 1019 */ 1020 ASSERT3P(zp->z_dbuf, ==, db); 1021 ASSERT3U(zp->z_id, ==, obj_num); 1022 if (zp->z_unlinked) { 1023 err = ENOENT; 1024 } else { 1025 VN_HOLD(ZTOV(zp)); 1026 *zpp = zp; 1027 err = 0; 1028 } 1029 dmu_buf_rele(db, NULL); 1030 mutex_exit(&zp->z_lock); 1031 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1032 return (err); 1033 } 1034 1035 /* 1036 * Not found create new znode/vnode 1037 */ 1038 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size); 1039 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1040 *zpp = zp; 1041 return (0); 1042 } 1043 1044 int 1045 zfs_rezget(znode_t *zp) 1046 { 1047 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1048 dmu_object_info_t doi; 1049 dmu_buf_t *db; 1050 uint64_t obj_num = zp->z_id; 1051 int err; 1052 1053 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1054 1055 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 1056 if (err) { 1057 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1058 return (err); 1059 } 1060 1061 dmu_object_info_from_db(db, &doi); 1062 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1063 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1064 dmu_buf_rele(db, NULL); 1065 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1066 return (EINVAL); 1067 } 1068 1069 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) { 1070 dmu_buf_rele(db, NULL); 1071 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1072 return (EIO); 1073 } 1074 1075 zfs_znode_dmu_init(zfsvfs, zp, db); 1076 zp->z_unlinked = (zp->z_phys->zp_links == 0); 1077 zp->z_blksz = doi.doi_data_block_size; 1078 1079 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1080 1081 return (0); 1082 } 1083 1084 void 1085 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1086 { 1087 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1088 objset_t *os = zfsvfs->z_os; 1089 uint64_t obj = zp->z_id; 1090 uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj; 1091 1092 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1093 if (acl_obj) 1094 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1095 VERIFY(0 == dmu_object_free(os, obj, tx)); 1096 zfs_znode_dmu_fini(zp); 1097 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1098 zfs_znode_free(zp); 1099 } 1100 1101 void 1102 zfs_zinactive(znode_t *zp) 1103 { 1104 vnode_t *vp = ZTOV(zp); 1105 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1106 uint64_t z_id = zp->z_id; 1107 1108 ASSERT(zp->z_dbuf && zp->z_phys); 1109 1110 /* 1111 * Don't allow a zfs_zget() while were trying to release this znode 1112 */ 1113 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1114 1115 mutex_enter(&zp->z_lock); 1116 mutex_enter(&vp->v_lock); 1117 vp->v_count--; 1118 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1119 /* 1120 * If the hold count is greater than zero, somebody has 1121 * obtained a new reference on this znode while we were 1122 * processing it here, so we are done. If we still have 1123 * mapped pages then we are also done, since we don't 1124 * want to inactivate the znode until the pages get pushed. 1125 * 1126 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1127 * this seems like it would leave the znode hanging with 1128 * no chance to go inactive... 1129 */ 1130 mutex_exit(&vp->v_lock); 1131 mutex_exit(&zp->z_lock); 1132 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1133 return; 1134 } 1135 mutex_exit(&vp->v_lock); 1136 1137 /* 1138 * If this was the last reference to a file with no links, 1139 * remove the file from the file system. 1140 */ 1141 if (zp->z_unlinked) { 1142 mutex_exit(&zp->z_lock); 1143 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1144 zfs_rmnode(zp); 1145 return; 1146 } 1147 mutex_exit(&zp->z_lock); 1148 zfs_znode_dmu_fini(zp); 1149 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1150 zfs_znode_free(zp); 1151 } 1152 1153 void 1154 zfs_znode_free(znode_t *zp) 1155 { 1156 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1157 1158 vn_invalid(ZTOV(zp)); 1159 1160 ASSERT(ZTOV(zp)->v_count == 0); 1161 1162 mutex_enter(&zfsvfs->z_znodes_lock); 1163 POINTER_INVALIDATE(&zp->z_zfsvfs); 1164 list_remove(&zfsvfs->z_all_znodes, zp); 1165 mutex_exit(&zfsvfs->z_znodes_lock); 1166 1167 kmem_cache_free(znode_cache, zp); 1168 1169 VFS_RELE(zfsvfs->z_vfs); 1170 } 1171 1172 void 1173 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1174 { 1175 timestruc_t now; 1176 1177 ASSERT(MUTEX_HELD(&zp->z_lock)); 1178 1179 gethrestime(&now); 1180 1181 if (tx) { 1182 dmu_buf_will_dirty(zp->z_dbuf, tx); 1183 zp->z_atime_dirty = 0; 1184 zp->z_seq++; 1185 } else { 1186 zp->z_atime_dirty = 1; 1187 } 1188 1189 if (flag & AT_ATIME) 1190 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 1191 1192 if (flag & AT_MTIME) { 1193 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 1194 if (zp->z_zfsvfs->z_use_fuids) 1195 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); 1196 } 1197 1198 if (flag & AT_CTIME) { 1199 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 1200 if (zp->z_zfsvfs->z_use_fuids) 1201 zp->z_phys->zp_flags |= ZFS_ARCHIVE; 1202 } 1203 } 1204 1205 /* 1206 * Update the requested znode timestamps with the current time. 1207 * If we are in a transaction, then go ahead and mark the znode 1208 * dirty in the transaction so the timestamps will go to disk. 1209 * Otherwise, we will get pushed next time the znode is updated 1210 * in a transaction, or when this znode eventually goes inactive. 1211 * 1212 * Why is this OK? 1213 * 1 - Only the ACCESS time is ever updated outside of a transaction. 1214 * 2 - Multiple consecutive updates will be collapsed into a single 1215 * znode update by the transaction grouping semantics of the DMU. 1216 */ 1217 void 1218 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 1219 { 1220 mutex_enter(&zp->z_lock); 1221 zfs_time_stamper_locked(zp, flag, tx); 1222 mutex_exit(&zp->z_lock); 1223 } 1224 1225 /* 1226 * Grow the block size for a file. 1227 * 1228 * IN: zp - znode of file to free data in. 1229 * size - requested block size 1230 * tx - open transaction. 1231 * 1232 * NOTE: this function assumes that the znode is write locked. 1233 */ 1234 void 1235 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1236 { 1237 int error; 1238 u_longlong_t dummy; 1239 1240 if (size <= zp->z_blksz) 1241 return; 1242 /* 1243 * If the file size is already greater than the current blocksize, 1244 * we will not grow. If there is more than one block in a file, 1245 * the blocksize cannot change. 1246 */ 1247 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 1248 return; 1249 1250 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1251 size, 0, tx); 1252 if (error == ENOTSUP) 1253 return; 1254 ASSERT3U(error, ==, 0); 1255 1256 /* What blocksize did we actually get? */ 1257 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 1258 } 1259 1260 /* 1261 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1262 * be calling back into the fs for a putpage(). E.g.: when truncating 1263 * a file, the pages being "thrown away* don't need to be written out. 1264 */ 1265 /* ARGSUSED */ 1266 static int 1267 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1268 int flags, cred_t *cr) 1269 { 1270 ASSERT(0); 1271 return (0); 1272 } 1273 1274 /* 1275 * Increase the file length 1276 * 1277 * IN: zp - znode of file to free data in. 1278 * end - new end-of-file 1279 * 1280 * RETURN: 0 if success 1281 * error code if failure 1282 */ 1283 static int 1284 zfs_extend(znode_t *zp, uint64_t end) 1285 { 1286 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1287 dmu_tx_t *tx; 1288 rl_t *rl; 1289 uint64_t newblksz; 1290 int error; 1291 1292 /* 1293 * We will change zp_size, lock the whole file. 1294 */ 1295 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1296 1297 /* 1298 * Nothing to do if file already at desired length. 1299 */ 1300 if (end <= zp->z_phys->zp_size) { 1301 zfs_range_unlock(rl); 1302 return (0); 1303 } 1304 top: 1305 tx = dmu_tx_create(zfsvfs->z_os); 1306 dmu_tx_hold_bonus(tx, zp->z_id); 1307 if (end > zp->z_blksz && 1308 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1309 /* 1310 * We are growing the file past the current block size. 1311 */ 1312 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1313 ASSERT(!ISP2(zp->z_blksz)); 1314 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1315 } else { 1316 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1317 } 1318 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1319 } else { 1320 newblksz = 0; 1321 } 1322 1323 error = dmu_tx_assign(tx, TXG_NOWAIT); 1324 if (error) { 1325 if (error == ERESTART) { 1326 dmu_tx_wait(tx); 1327 dmu_tx_abort(tx); 1328 goto top; 1329 } 1330 dmu_tx_abort(tx); 1331 zfs_range_unlock(rl); 1332 return (error); 1333 } 1334 dmu_buf_will_dirty(zp->z_dbuf, tx); 1335 1336 if (newblksz) 1337 zfs_grow_blocksize(zp, newblksz, tx); 1338 1339 zp->z_phys->zp_size = end; 1340 1341 zfs_range_unlock(rl); 1342 1343 dmu_tx_commit(tx); 1344 1345 return (0); 1346 } 1347 1348 /* 1349 * Free space in a file. 1350 * 1351 * IN: zp - znode of file to free data in. 1352 * off - start of section to free. 1353 * len - length of section to free. 1354 * 1355 * RETURN: 0 if success 1356 * error code if failure 1357 */ 1358 static int 1359 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1360 { 1361 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1362 rl_t *rl; 1363 int error; 1364 1365 /* 1366 * Lock the range being freed. 1367 */ 1368 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1369 1370 /* 1371 * Nothing to do if file already at desired length. 1372 */ 1373 if (off >= zp->z_phys->zp_size) { 1374 zfs_range_unlock(rl); 1375 return (0); 1376 } 1377 1378 if (off + len > zp->z_phys->zp_size) 1379 len = zp->z_phys->zp_size - off; 1380 1381 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1382 1383 zfs_range_unlock(rl); 1384 1385 return (error); 1386 } 1387 1388 /* 1389 * Truncate a file 1390 * 1391 * IN: zp - znode of file to free data in. 1392 * end - new end-of-file. 1393 * 1394 * RETURN: 0 if success 1395 * error code if failure 1396 */ 1397 static int 1398 zfs_trunc(znode_t *zp, uint64_t end) 1399 { 1400 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1401 vnode_t *vp = ZTOV(zp); 1402 dmu_tx_t *tx; 1403 rl_t *rl; 1404 int error; 1405 1406 /* 1407 * We will change zp_size, lock the whole file. 1408 */ 1409 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1410 1411 /* 1412 * Nothing to do if file already at desired length. 1413 */ 1414 if (end >= zp->z_phys->zp_size) { 1415 zfs_range_unlock(rl); 1416 return (0); 1417 } 1418 1419 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1420 if (error) { 1421 zfs_range_unlock(rl); 1422 return (error); 1423 } 1424 top: 1425 tx = dmu_tx_create(zfsvfs->z_os); 1426 dmu_tx_hold_bonus(tx, zp->z_id); 1427 error = dmu_tx_assign(tx, TXG_NOWAIT); 1428 if (error) { 1429 if (error == ERESTART) { 1430 dmu_tx_wait(tx); 1431 dmu_tx_abort(tx); 1432 goto top; 1433 } 1434 dmu_tx_abort(tx); 1435 zfs_range_unlock(rl); 1436 return (error); 1437 } 1438 dmu_buf_will_dirty(zp->z_dbuf, tx); 1439 1440 zp->z_phys->zp_size = end; 1441 1442 dmu_tx_commit(tx); 1443 1444 /* 1445 * Clear any mapped pages in the truncated region. This has to 1446 * happen outside of the transaction to avoid the possibility of 1447 * a deadlock with someone trying to push a page that we are 1448 * about to invalidate. 1449 */ 1450 if (vn_has_cached_data(vp)) { 1451 page_t *pp; 1452 uint64_t start = end & PAGEMASK; 1453 int poff = end & PAGEOFFSET; 1454 1455 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1456 /* 1457 * We need to zero a partial page. 1458 */ 1459 pagezero(pp, poff, PAGESIZE - poff); 1460 start += PAGESIZE; 1461 page_unlock(pp); 1462 } 1463 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1464 B_INVAL | B_TRUNC, NULL); 1465 ASSERT(error == 0); 1466 } 1467 1468 zfs_range_unlock(rl); 1469 1470 return (0); 1471 } 1472 1473 /* 1474 * Free space in a file 1475 * 1476 * IN: zp - znode of file to free data in. 1477 * off - start of range 1478 * len - end of range (0 => EOF) 1479 * flag - current file open mode flags. 1480 * log - TRUE if this action should be logged 1481 * 1482 * RETURN: 0 if success 1483 * error code if failure 1484 */ 1485 int 1486 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1487 { 1488 vnode_t *vp = ZTOV(zp); 1489 dmu_tx_t *tx; 1490 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1491 zilog_t *zilog = zfsvfs->z_log; 1492 int error; 1493 1494 if (off > zp->z_phys->zp_size) { 1495 error = zfs_extend(zp, off+len); 1496 if (error == 0 && log) 1497 goto log; 1498 else 1499 return (error); 1500 } 1501 1502 /* 1503 * Check for any locks in the region to be freed. 1504 */ 1505 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 1506 uint64_t length = (len ? len : zp->z_phys->zp_size - off); 1507 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1508 return (error); 1509 } 1510 1511 if (len == 0) { 1512 error = zfs_trunc(zp, off); 1513 } else { 1514 if ((error = zfs_free_range(zp, off, len)) == 0 && 1515 off + len > zp->z_phys->zp_size) 1516 error = zfs_extend(zp, off+len); 1517 } 1518 if (error || !log) 1519 return (error); 1520 log: 1521 tx = dmu_tx_create(zfsvfs->z_os); 1522 dmu_tx_hold_bonus(tx, zp->z_id); 1523 error = dmu_tx_assign(tx, TXG_NOWAIT); 1524 if (error) { 1525 if (error == ERESTART) { 1526 dmu_tx_wait(tx); 1527 dmu_tx_abort(tx); 1528 goto log; 1529 } 1530 dmu_tx_abort(tx); 1531 return (error); 1532 } 1533 1534 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1535 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1536 1537 dmu_tx_commit(tx); 1538 return (0); 1539 } 1540 1541 void 1542 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1543 { 1544 zfsvfs_t zfsvfs; 1545 uint64_t moid, doid, version; 1546 uint64_t sense = ZFS_CASE_SENSITIVE; 1547 uint64_t norm = 0; 1548 nvpair_t *elem; 1549 int error; 1550 znode_t *rootzp = NULL; 1551 vnode_t *vp; 1552 vattr_t vattr; 1553 znode_t *zp; 1554 zfs_acl_ids_t acl_ids; 1555 1556 /* 1557 * First attempt to create master node. 1558 */ 1559 /* 1560 * In an empty objset, there are no blocks to read and thus 1561 * there can be no i/o errors (which we assert below). 1562 */ 1563 moid = MASTER_NODE_OBJ; 1564 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1565 DMU_OT_NONE, 0, tx); 1566 ASSERT(error == 0); 1567 1568 /* 1569 * Set starting attributes. 1570 */ 1571 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) 1572 version = ZPL_VERSION; 1573 else 1574 version = ZPL_VERSION_FUID - 1; 1575 error = zap_update(os, moid, ZPL_VERSION_STR, 1576 8, 1, &version, tx); 1577 elem = NULL; 1578 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1579 /* For the moment we expect all zpl props to be uint64_ts */ 1580 uint64_t val; 1581 char *name; 1582 1583 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1584 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1585 name = nvpair_name(elem); 1586 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1587 version = val; 1588 error = zap_update(os, moid, ZPL_VERSION_STR, 1589 8, 1, &version, tx); 1590 } else { 1591 error = zap_update(os, moid, name, 8, 1, &val, tx); 1592 } 1593 ASSERT(error == 0); 1594 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1595 norm = val; 1596 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1597 sense = val; 1598 } 1599 ASSERT(version != 0); 1600 1601 /* 1602 * Create a delete queue. 1603 */ 1604 doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1605 1606 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx); 1607 ASSERT(error == 0); 1608 1609 /* 1610 * Create root znode. Create minimal znode/vnode/zfsvfs 1611 * to allow zfs_mknode to work. 1612 */ 1613 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1614 vattr.va_type = VDIR; 1615 vattr.va_mode = S_IFDIR|0755; 1616 vattr.va_uid = crgetuid(cr); 1617 vattr.va_gid = crgetgid(cr); 1618 1619 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1620 rootzp->z_unlinked = 0; 1621 rootzp->z_atime_dirty = 0; 1622 1623 vp = ZTOV(rootzp); 1624 vn_reinit(vp); 1625 vp->v_type = VDIR; 1626 1627 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1628 1629 zfsvfs.z_os = os; 1630 zfsvfs.z_parent = &zfsvfs; 1631 zfsvfs.z_version = version; 1632 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1633 zfsvfs.z_norm = norm; 1634 /* 1635 * Fold case on file systems that are always or sometimes case 1636 * insensitive. 1637 */ 1638 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1639 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1640 1641 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1642 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1643 offsetof(znode_t, z_link_node)); 1644 1645 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1646 rootzp->z_zfsvfs = &zfsvfs; 1647 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1648 cr, NULL, &acl_ids)); 1649 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, &acl_ids); 1650 ASSERT3P(zp, ==, rootzp); 1651 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1652 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1653 ASSERT(error == 0); 1654 zfs_acl_ids_free(&acl_ids); 1655 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1656 1657 ZTOV(rootzp)->v_count = 0; 1658 dmu_buf_rele(rootzp->z_dbuf, NULL); 1659 rootzp->z_dbuf = NULL; 1660 kmem_cache_free(znode_cache, rootzp); 1661 1662 /* 1663 * Create shares directory 1664 */ 1665 1666 error = zfs_create_share_dir(&zfsvfs, tx); 1667 1668 ASSERT(error == 0); 1669 } 1670 1671 #endif /* _KERNEL */ 1672 /* 1673 * Given an object number, return its parent object number and whether 1674 * or not the object is an extended attribute directory. 1675 */ 1676 static int 1677 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1678 { 1679 dmu_buf_t *db; 1680 dmu_object_info_t doi; 1681 znode_phys_t *zp; 1682 int error; 1683 1684 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1685 return (error); 1686 1687 dmu_object_info_from_db(db, &doi); 1688 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1689 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1690 dmu_buf_rele(db, FTAG); 1691 return (EINVAL); 1692 } 1693 1694 zp = db->db_data; 1695 *pobjp = zp->zp_parent; 1696 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1697 S_ISDIR(zp->zp_mode); 1698 dmu_buf_rele(db, FTAG); 1699 1700 return (0); 1701 } 1702 1703 int 1704 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1705 { 1706 char *path = buf + len - 1; 1707 int error; 1708 1709 *path = '\0'; 1710 1711 for (;;) { 1712 uint64_t pobj; 1713 char component[MAXNAMELEN + 2]; 1714 size_t complen; 1715 int is_xattrdir; 1716 1717 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1718 &is_xattrdir)) != 0) 1719 break; 1720 1721 if (pobj == obj) { 1722 if (path[0] != '/') 1723 *--path = '/'; 1724 break; 1725 } 1726 1727 component[0] = '/'; 1728 if (is_xattrdir) { 1729 (void) sprintf(component + 1, "<xattrdir>"); 1730 } else { 1731 error = zap_value_search(osp, pobj, obj, 1732 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1733 if (error != 0) 1734 break; 1735 } 1736 1737 complen = strlen(component); 1738 path -= complen; 1739 ASSERT(path >= buf); 1740 bcopy(component, path, complen); 1741 obj = pobj; 1742 } 1743 1744 if (error == 0) 1745 (void) memmove(buf, path, buf + len - path); 1746 return (error); 1747 } 1748