1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/mntent.h> 35 #include <sys/mkdev.h> 36 #include <sys/vfs.h> 37 #include <sys/vnode.h> 38 #include <sys/file.h> 39 #include <sys/kmem.h> 40 #include <sys/cmn_err.h> 41 #include <sys/errno.h> 42 #include <sys/unistd.h> 43 #include <sys/stat.h> 44 #include <sys/mode.h> 45 #include <sys/atomic.h> 46 #include <vm/pvn.h> 47 #include "fs/fs_subr.h" 48 #include <sys/zfs_dir.h> 49 #include <sys/zfs_acl.h> 50 #include <sys/zfs_ioctl.h> 51 #include <sys/zfs_znode.h> 52 #include <sys/zfs_rlock.h> 53 #include <sys/zap.h> 54 #include <sys/dmu.h> 55 #include <sys/fs/zfs.h> 56 57 struct kmem_cache *znode_cache = NULL; 58 59 /*ARGSUSED*/ 60 static void 61 znode_pageout_func(dmu_buf_t *dbuf, void *user_ptr) 62 { 63 znode_t *zp = user_ptr; 64 vnode_t *vp = ZTOV(zp); 65 66 mutex_enter(&zp->z_lock); 67 if (vp->v_count == 0) { 68 mutex_exit(&zp->z_lock); 69 vn_invalid(vp); 70 zfs_znode_free(zp); 71 } else { 72 /* signal force unmount that this znode can be freed */ 73 zp->z_dbuf = NULL; 74 mutex_exit(&zp->z_lock); 75 } 76 } 77 78 /*ARGSUSED*/ 79 static int 80 zfs_znode_cache_constructor(void *buf, void *cdrarg, int kmflags) 81 { 82 znode_t *zp = buf; 83 84 zp->z_vnode = vn_alloc(KM_SLEEP); 85 zp->z_vnode->v_data = (caddr_t)zp; 86 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 87 rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL); 88 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 89 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 90 91 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 92 avl_create(&zp->z_range_avl, zfs_range_compare, 93 sizeof (rl_t), offsetof(rl_t, r_node)); 94 95 zp->z_dbuf_held = 0; 96 zp->z_dirlocks = 0; 97 return (0); 98 } 99 100 /*ARGSUSED*/ 101 static void 102 zfs_znode_cache_destructor(void *buf, void *cdarg) 103 { 104 znode_t *zp = buf; 105 106 ASSERT(zp->z_dirlocks == 0); 107 mutex_destroy(&zp->z_lock); 108 rw_destroy(&zp->z_map_lock); 109 rw_destroy(&zp->z_parent_lock); 110 mutex_destroy(&zp->z_acl_lock); 111 avl_destroy(&zp->z_range_avl); 112 113 ASSERT(zp->z_dbuf_held == 0); 114 ASSERT(ZTOV(zp)->v_count == 0); 115 vn_free(ZTOV(zp)); 116 } 117 118 void 119 zfs_znode_init(void) 120 { 121 /* 122 * Initialize zcache 123 */ 124 ASSERT(znode_cache == NULL); 125 znode_cache = kmem_cache_create("zfs_znode_cache", 126 sizeof (znode_t), 0, zfs_znode_cache_constructor, 127 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 128 } 129 130 void 131 zfs_znode_fini(void) 132 { 133 /* 134 * Cleanup vfs & vnode ops 135 */ 136 zfs_remove_op_tables(); 137 138 /* 139 * Cleanup zcache 140 */ 141 if (znode_cache) 142 kmem_cache_destroy(znode_cache); 143 znode_cache = NULL; 144 } 145 146 struct vnodeops *zfs_dvnodeops; 147 struct vnodeops *zfs_fvnodeops; 148 struct vnodeops *zfs_symvnodeops; 149 struct vnodeops *zfs_xdvnodeops; 150 struct vnodeops *zfs_evnodeops; 151 152 void 153 zfs_remove_op_tables() 154 { 155 /* 156 * Remove vfs ops 157 */ 158 ASSERT(zfsfstype); 159 (void) vfs_freevfsops_by_type(zfsfstype); 160 zfsfstype = 0; 161 162 /* 163 * Remove vnode ops 164 */ 165 if (zfs_dvnodeops) 166 vn_freevnodeops(zfs_dvnodeops); 167 if (zfs_fvnodeops) 168 vn_freevnodeops(zfs_fvnodeops); 169 if (zfs_symvnodeops) 170 vn_freevnodeops(zfs_symvnodeops); 171 if (zfs_xdvnodeops) 172 vn_freevnodeops(zfs_xdvnodeops); 173 if (zfs_evnodeops) 174 vn_freevnodeops(zfs_evnodeops); 175 176 zfs_dvnodeops = NULL; 177 zfs_fvnodeops = NULL; 178 zfs_symvnodeops = NULL; 179 zfs_xdvnodeops = NULL; 180 zfs_evnodeops = NULL; 181 } 182 183 extern const fs_operation_def_t zfs_dvnodeops_template[]; 184 extern const fs_operation_def_t zfs_fvnodeops_template[]; 185 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 186 extern const fs_operation_def_t zfs_symvnodeops_template[]; 187 extern const fs_operation_def_t zfs_evnodeops_template[]; 188 189 int 190 zfs_create_op_tables() 191 { 192 int error; 193 194 /* 195 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 196 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 197 * In this case we just return as the ops vectors are already set up. 198 */ 199 if (zfs_dvnodeops) 200 return (0); 201 202 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 203 &zfs_dvnodeops); 204 if (error) 205 return (error); 206 207 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 208 &zfs_fvnodeops); 209 if (error) 210 return (error); 211 212 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 213 &zfs_symvnodeops); 214 if (error) 215 return (error); 216 217 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 218 &zfs_xdvnodeops); 219 if (error) 220 return (error); 221 222 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 223 &zfs_evnodeops); 224 225 return (error); 226 } 227 228 /* 229 * zfs_init_fs - Initialize the zfsvfs struct and the file system 230 * incore "master" object. Verify version compatibility. 231 */ 232 int 233 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr) 234 { 235 extern int zfsfstype; 236 237 objset_t *os = zfsvfs->z_os; 238 uint64_t zoid; 239 uint64_t version = ZPL_VERSION; 240 int i, error; 241 dmu_object_info_t doi; 242 dmu_objset_stats_t *stats; 243 244 *zpp = NULL; 245 246 /* 247 * XXX - hack to auto-create the pool root filesystem at 248 * the first attempted mount. 249 */ 250 if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) { 251 dmu_tx_t *tx = dmu_tx_create(os); 252 253 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* master */ 254 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* del queue */ 255 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */ 256 error = dmu_tx_assign(tx, TXG_WAIT); 257 ASSERT3U(error, ==, 0); 258 zfs_create_fs(os, cr, tx); 259 dmu_tx_commit(tx); 260 } 261 262 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_OBJ, 8, 1, 263 &version); 264 if (error) { 265 return (error); 266 } else if (version != ZPL_VERSION) { 267 (void) printf("Mismatched versions: File system " 268 "is version %lld on-disk format, which is " 269 "incompatible with this software version %lld!", 270 (u_longlong_t)version, ZPL_VERSION); 271 return (ENOTSUP); 272 } 273 274 /* 275 * The fsid is 64 bits, composed of an 8-bit fs type, which 276 * separates our fsid from any other filesystem types, and a 277 * 56-bit objset unique ID. The objset unique ID is unique to 278 * all objsets open on this system, provided by unique_create(). 279 * The 8-bit fs type must be put in the low bits of fsid[1] 280 * because that's where other Solaris filesystems put it. 281 */ 282 stats = kmem_alloc(sizeof (dmu_objset_stats_t), KM_SLEEP); 283 dmu_objset_stats(os, stats); 284 ASSERT((stats->dds_fsid_guid & ~((1ULL<<56)-1)) == 0); 285 zfsvfs->z_vfs->vfs_fsid.val[0] = stats->dds_fsid_guid; 286 zfsvfs->z_vfs->vfs_fsid.val[1] = ((stats->dds_fsid_guid>>32) << 8) | 287 zfsfstype & 0xFF; 288 kmem_free(stats, sizeof (dmu_objset_stats_t)); 289 stats = NULL; 290 291 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &zoid); 292 if (error) 293 return (error); 294 ASSERT(zoid != 0); 295 zfsvfs->z_root = zoid; 296 297 /* 298 * Create the per mount vop tables. 299 */ 300 301 /* 302 * Initialize zget mutex's 303 */ 304 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 305 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 306 307 error = zfs_zget(zfsvfs, zoid, zpp); 308 if (error) 309 return (error); 310 ASSERT3U((*zpp)->z_id, ==, zoid); 311 312 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_DELETE_QUEUE, 8, 1, &zoid); 313 if (error) 314 return (error); 315 316 zfsvfs->z_dqueue = zoid; 317 318 /* 319 * Initialize delete head structure 320 * Thread(s) will be started/stopped via 321 * readonly_changed_cb() depending 322 * on whether this is rw/ro mount. 323 */ 324 list_create(&zfsvfs->z_delete_head.z_znodes, 325 sizeof (znode_t), offsetof(znode_t, z_list_node)); 326 327 return (0); 328 } 329 330 /* 331 * define a couple of values we need available 332 * for both 64 and 32 bit environments. 333 */ 334 #ifndef NBITSMINOR64 335 #define NBITSMINOR64 32 336 #endif 337 #ifndef MAXMAJ64 338 #define MAXMAJ64 0xffffffffUL 339 #endif 340 #ifndef MAXMIN64 341 #define MAXMIN64 0xffffffffUL 342 #endif 343 344 /* 345 * Create special expldev for ZFS private use. 346 * Can't use standard expldev since it doesn't do 347 * what we want. The standard expldev() takes a 348 * dev32_t in LP64 and expands it to a long dev_t. 349 * We need an interface that takes a dev32_t in ILP32 350 * and expands it to a long dev_t. 351 */ 352 static uint64_t 353 zfs_expldev(dev_t dev) 354 { 355 #ifndef _LP64 356 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 357 return (((uint64_t)major << NBITSMINOR64) | 358 ((minor_t)dev & MAXMIN32)); 359 #else 360 return (dev); 361 #endif 362 } 363 364 /* 365 * Special cmpldev for ZFS private use. 366 * Can't use standard cmpldev since it takes 367 * a long dev_t and compresses it to dev32_t in 368 * LP64. We need to do a compaction of a long dev_t 369 * to a dev32_t in ILP32. 370 */ 371 dev_t 372 zfs_cmpldev(uint64_t dev) 373 { 374 #ifndef _LP64 375 minor_t minor = (minor_t)dev & MAXMIN64; 376 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 377 378 if (major > MAXMAJ32 || minor > MAXMIN32) 379 return (NODEV32); 380 381 return (((dev32_t)major << NBITSMINOR32) | minor); 382 #else 383 return (dev); 384 #endif 385 } 386 387 /* 388 * Construct a new znode/vnode and intialize. 389 * 390 * This does not do a call to dmu_set_user() that is 391 * up to the caller to do, in case you don't want to 392 * return the znode 393 */ 394 static znode_t * 395 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, uint64_t obj_num, int blksz) 396 { 397 znode_t *zp; 398 vnode_t *vp; 399 400 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 401 402 ASSERT(zp->z_dirlocks == NULL); 403 404 zp->z_phys = db->db_data; 405 zp->z_zfsvfs = zfsvfs; 406 zp->z_active = 1; 407 zp->z_reap = 0; 408 zp->z_atime_dirty = 0; 409 zp->z_dbuf_held = 0; 410 zp->z_mapcnt = 0; 411 zp->z_last_itx = 0; 412 zp->z_dbuf = db; 413 zp->z_id = obj_num; 414 zp->z_blksz = blksz; 415 zp->z_seq = 0x7A4653; 416 417 mutex_enter(&zfsvfs->z_znodes_lock); 418 list_insert_tail(&zfsvfs->z_all_znodes, zp); 419 mutex_exit(&zfsvfs->z_znodes_lock); 420 421 vp = ZTOV(zp); 422 vn_reinit(vp); 423 424 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 425 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 426 427 switch (vp->v_type) { 428 case VDIR: 429 if (zp->z_phys->zp_flags & ZFS_XATTR) { 430 vn_setops(vp, zfs_xdvnodeops); 431 vp->v_flag |= V_XATTRDIR; 432 } else 433 vn_setops(vp, zfs_dvnodeops); 434 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 435 break; 436 case VBLK: 437 case VCHR: 438 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 439 /*FALLTHROUGH*/ 440 case VFIFO: 441 case VSOCK: 442 case VDOOR: 443 vn_setops(vp, zfs_fvnodeops); 444 break; 445 case VREG: 446 vp->v_flag |= VMODSORT; 447 vn_setops(vp, zfs_fvnodeops); 448 break; 449 case VLNK: 450 vn_setops(vp, zfs_symvnodeops); 451 break; 452 default: 453 vn_setops(vp, zfs_evnodeops); 454 break; 455 } 456 457 return (zp); 458 } 459 460 static void 461 zfs_znode_dmu_init(znode_t *zp) 462 { 463 znode_t *nzp; 464 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 465 dmu_buf_t *db = zp->z_dbuf; 466 467 mutex_enter(&zp->z_lock); 468 469 nzp = dmu_buf_set_user(db, zp, &zp->z_phys, znode_pageout_func); 470 471 /* 472 * there should be no 473 * concurrent zgets on this object. 474 */ 475 ASSERT3P(nzp, ==, NULL); 476 477 /* 478 * Slap on VROOT if we are the root znode 479 */ 480 if (zp->z_id == zfsvfs->z_root) { 481 ZTOV(zp)->v_flag |= VROOT; 482 } 483 484 ASSERT(zp->z_dbuf_held == 0); 485 zp->z_dbuf_held = 1; 486 VFS_HOLD(zfsvfs->z_vfs); 487 mutex_exit(&zp->z_lock); 488 vn_exists(ZTOV(zp)); 489 } 490 491 /* 492 * Create a new DMU object to hold a zfs znode. 493 * 494 * IN: dzp - parent directory for new znode 495 * vap - file attributes for new znode 496 * tx - dmu transaction id for zap operations 497 * cr - credentials of caller 498 * flag - flags: 499 * IS_ROOT_NODE - new object will be root 500 * IS_XATTR - new object is an attribute 501 * IS_REPLAY - intent log replay 502 * 503 * OUT: oid - ID of created object 504 * 505 */ 506 void 507 zfs_mknode(znode_t *dzp, vattr_t *vap, uint64_t *oid, dmu_tx_t *tx, cred_t *cr, 508 uint_t flag, znode_t **zpp, int bonuslen) 509 { 510 dmu_buf_t *dbp; 511 znode_phys_t *pzp; 512 znode_t *zp; 513 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 514 timestruc_t now; 515 uint64_t gen; 516 int err; 517 518 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 519 520 if (zfsvfs->z_assign >= TXG_INITIAL) { /* ZIL replay */ 521 *oid = vap->va_nodeid; 522 flag |= IS_REPLAY; 523 now = vap->va_ctime; /* see zfs_replay_create() */ 524 gen = vap->va_nblocks; /* ditto */ 525 } else { 526 *oid = 0; 527 gethrestime(&now); 528 gen = dmu_tx_get_txg(tx); 529 } 530 531 /* 532 * Create a new DMU object. 533 */ 534 /* 535 * There's currently no mechanism for pre-reading the blocks that will 536 * be to needed allocate a new object, so we accept the small chance 537 * that there will be an i/o error and we will fail one of the 538 * assertions below. 539 */ 540 if (vap->va_type == VDIR) { 541 if (flag & IS_REPLAY) { 542 err = zap_create_claim(zfsvfs->z_os, *oid, 543 DMU_OT_DIRECTORY_CONTENTS, 544 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 545 ASSERT3U(err, ==, 0); 546 } else { 547 *oid = zap_create(zfsvfs->z_os, 548 DMU_OT_DIRECTORY_CONTENTS, 549 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 550 } 551 } else { 552 if (flag & IS_REPLAY) { 553 err = dmu_object_claim(zfsvfs->z_os, *oid, 554 DMU_OT_PLAIN_FILE_CONTENTS, 0, 555 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 556 ASSERT3U(err, ==, 0); 557 } else { 558 *oid = dmu_object_alloc(zfsvfs->z_os, 559 DMU_OT_PLAIN_FILE_CONTENTS, 0, 560 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 561 } 562 } 563 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, *oid, NULL, &dbp)); 564 dmu_buf_will_dirty(dbp, tx); 565 566 /* 567 * Initialize the znode physical data to zero. 568 */ 569 ASSERT(dbp->db_size >= sizeof (znode_phys_t)); 570 bzero(dbp->db_data, dbp->db_size); 571 pzp = dbp->db_data; 572 573 /* 574 * If this is the root, fix up the half-initialized parent pointer 575 * to reference the just-allocated physical data area. 576 */ 577 if (flag & IS_ROOT_NODE) { 578 dzp->z_phys = pzp; 579 dzp->z_id = *oid; 580 } 581 582 /* 583 * If parent is an xattr, so am I. 584 */ 585 if (dzp->z_phys->zp_flags & ZFS_XATTR) 586 flag |= IS_XATTR; 587 588 if (vap->va_type == VBLK || vap->va_type == VCHR) { 589 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 590 } 591 592 if (vap->va_type == VDIR) { 593 pzp->zp_size = 2; /* contents ("." and "..") */ 594 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 595 } 596 597 pzp->zp_parent = dzp->z_id; 598 if (flag & IS_XATTR) 599 pzp->zp_flags |= ZFS_XATTR; 600 601 pzp->zp_gen = gen; 602 603 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 604 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 605 606 if (vap->va_mask & AT_ATIME) { 607 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 608 } else { 609 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 610 } 611 612 if (vap->va_mask & AT_MTIME) { 613 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 614 } else { 615 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 616 } 617 618 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 619 zp = zfs_znode_alloc(zfsvfs, dbp, *oid, 0); 620 621 zfs_perm_init(zp, dzp, flag, vap, tx, cr); 622 623 if (zpp) { 624 kmutex_t *hash_mtx = ZFS_OBJ_MUTEX(zp); 625 626 mutex_enter(hash_mtx); 627 zfs_znode_dmu_init(zp); 628 mutex_exit(hash_mtx); 629 630 *zpp = zp; 631 } else { 632 ZTOV(zp)->v_count = 0; 633 dmu_buf_rele(dbp, NULL); 634 zfs_znode_free(zp); 635 } 636 } 637 638 int 639 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 640 { 641 dmu_object_info_t doi; 642 dmu_buf_t *db; 643 znode_t *zp; 644 int err; 645 646 *zpp = NULL; 647 648 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 649 650 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 651 if (err) { 652 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 653 return (err); 654 } 655 656 dmu_object_info_from_db(db, &doi); 657 if (doi.doi_bonus_type != DMU_OT_ZNODE || 658 doi.doi_bonus_size < sizeof (znode_phys_t)) { 659 dmu_buf_rele(db, NULL); 660 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 661 return (EINVAL); 662 } 663 664 ASSERT(db->db_object == obj_num); 665 ASSERT(db->db_offset == -1); 666 ASSERT(db->db_data != NULL); 667 668 zp = dmu_buf_get_user(db); 669 670 if (zp != NULL) { 671 mutex_enter(&zp->z_lock); 672 673 ASSERT3U(zp->z_id, ==, obj_num); 674 if (zp->z_reap) { 675 dmu_buf_rele(db, NULL); 676 mutex_exit(&zp->z_lock); 677 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 678 return (ENOENT); 679 } else if (zp->z_dbuf_held) { 680 dmu_buf_rele(db, NULL); 681 } else { 682 zp->z_dbuf_held = 1; 683 VFS_HOLD(zfsvfs->z_vfs); 684 } 685 686 if (zp->z_active == 0) 687 zp->z_active = 1; 688 689 VN_HOLD(ZTOV(zp)); 690 mutex_exit(&zp->z_lock); 691 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 692 *zpp = zp; 693 return (0); 694 } 695 696 /* 697 * Not found create new znode/vnode 698 */ 699 zp = zfs_znode_alloc(zfsvfs, db, obj_num, doi.doi_data_block_size); 700 ASSERT3U(zp->z_id, ==, obj_num); 701 zfs_znode_dmu_init(zp); 702 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 703 *zpp = zp; 704 return (0); 705 } 706 707 void 708 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 709 { 710 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 711 int error; 712 713 ZFS_OBJ_HOLD_ENTER(zfsvfs, zp->z_id); 714 if (zp->z_phys->zp_acl.z_acl_extern_obj) { 715 error = dmu_object_free(zfsvfs->z_os, 716 zp->z_phys->zp_acl.z_acl_extern_obj, tx); 717 ASSERT3U(error, ==, 0); 718 } 719 error = dmu_object_free(zfsvfs->z_os, zp->z_id, tx); 720 ASSERT3U(error, ==, 0); 721 zp->z_dbuf_held = 0; 722 ZFS_OBJ_HOLD_EXIT(zfsvfs, zp->z_id); 723 dmu_buf_rele(zp->z_dbuf, NULL); 724 } 725 726 void 727 zfs_zinactive(znode_t *zp) 728 { 729 vnode_t *vp = ZTOV(zp); 730 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 731 uint64_t z_id = zp->z_id; 732 733 ASSERT(zp->z_dbuf_held && zp->z_phys); 734 735 /* 736 * Don't allow a zfs_zget() while were trying to release this znode 737 */ 738 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 739 740 mutex_enter(&zp->z_lock); 741 mutex_enter(&vp->v_lock); 742 vp->v_count--; 743 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 744 /* 745 * If the hold count is greater than zero, somebody has 746 * obtained a new reference on this znode while we were 747 * processing it here, so we are done. If we still have 748 * mapped pages then we are also done, since we don't 749 * want to inactivate the znode until the pages get pushed. 750 * 751 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 752 * this seems like it would leave the znode hanging with 753 * no chance to go inactive... 754 */ 755 mutex_exit(&vp->v_lock); 756 mutex_exit(&zp->z_lock); 757 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 758 return; 759 } 760 mutex_exit(&vp->v_lock); 761 zp->z_active = 0; 762 763 /* 764 * If this was the last reference to a file with no links, 765 * remove the file from the file system. 766 */ 767 if (zp->z_reap) { 768 mutex_exit(&zp->z_lock); 769 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 770 /* XATTR files are not put on the delete queue */ 771 if (zp->z_phys->zp_flags & ZFS_XATTR) { 772 zfs_rmnode(zp); 773 } else { 774 mutex_enter(&zfsvfs->z_delete_head.z_mutex); 775 list_insert_tail(&zfsvfs->z_delete_head.z_znodes, zp); 776 zfsvfs->z_delete_head.z_znode_count++; 777 cv_broadcast(&zfsvfs->z_delete_head.z_cv); 778 mutex_exit(&zfsvfs->z_delete_head.z_mutex); 779 } 780 VFS_RELE(zfsvfs->z_vfs); 781 return; 782 } 783 ASSERT(zp->z_phys); 784 ASSERT(zp->z_dbuf_held); 785 786 zp->z_dbuf_held = 0; 787 mutex_exit(&zp->z_lock); 788 dmu_buf_rele(zp->z_dbuf, NULL); 789 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 790 VFS_RELE(zfsvfs->z_vfs); 791 } 792 793 void 794 zfs_znode_free(znode_t *zp) 795 { 796 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 797 798 mutex_enter(&zfsvfs->z_znodes_lock); 799 list_remove(&zfsvfs->z_all_znodes, zp); 800 mutex_exit(&zfsvfs->z_znodes_lock); 801 802 kmem_cache_free(znode_cache, zp); 803 } 804 805 void 806 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 807 { 808 timestruc_t now; 809 810 ASSERT(MUTEX_HELD(&zp->z_lock)); 811 812 gethrestime(&now); 813 814 if (tx) { 815 dmu_buf_will_dirty(zp->z_dbuf, tx); 816 zp->z_atime_dirty = 0; 817 zp->z_seq++; 818 } else { 819 zp->z_atime_dirty = 1; 820 } 821 822 if (flag & AT_ATIME) 823 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 824 825 if (flag & AT_MTIME) 826 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 827 828 if (flag & AT_CTIME) 829 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 830 } 831 832 /* 833 * Update the requested znode timestamps with the current time. 834 * If we are in a transaction, then go ahead and mark the znode 835 * dirty in the transaction so the timestamps will go to disk. 836 * Otherwise, we will get pushed next time the znode is updated 837 * in a transaction, or when this znode eventually goes inactive. 838 * 839 * Why is this OK? 840 * 1 - Only the ACCESS time is ever updated outside of a transaction. 841 * 2 - Multiple consecutive updates will be collapsed into a single 842 * znode update by the transaction grouping semantics of the DMU. 843 */ 844 void 845 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 846 { 847 mutex_enter(&zp->z_lock); 848 zfs_time_stamper_locked(zp, flag, tx); 849 mutex_exit(&zp->z_lock); 850 } 851 852 /* 853 * Grow the block size for a file. 854 * 855 * IN: zp - znode of file to free data in. 856 * size - requested block size 857 * tx - open transaction. 858 * 859 * NOTE: this function assumes that the znode is write locked. 860 */ 861 void 862 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 863 { 864 int error; 865 u_longlong_t dummy; 866 867 if (size <= zp->z_blksz) 868 return; 869 /* 870 * If the file size is already greater than the current blocksize, 871 * we will not grow. If there is more than one block in a file, 872 * the blocksize cannot change. 873 */ 874 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 875 return; 876 877 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 878 size, 0, tx); 879 if (error == ENOTSUP) 880 return; 881 ASSERT3U(error, ==, 0); 882 883 /* What blocksize did we actually get? */ 884 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 885 } 886 887 /* 888 * This is a dummy interface used when pvn_vplist_dirty() should *not* 889 * be calling back into the fs for a putpage(). E.g.: when truncating 890 * a file, the pages being "thrown away* don't need to be written out. 891 */ 892 /* ARGSUSED */ 893 static int 894 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 895 int flags, cred_t *cr) 896 { 897 ASSERT(0); 898 return (0); 899 } 900 901 /* 902 * Free space in a file. 903 * 904 * IN: zp - znode of file to free data in. 905 * off - start of section to free. 906 * len - length of section to free (0 => to EOF). 907 * flag - current file open mode flags. 908 * 909 * RETURN: 0 if success 910 * error code if failure 911 */ 912 int 913 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 914 { 915 vnode_t *vp = ZTOV(zp); 916 dmu_tx_t *tx; 917 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 918 zilog_t *zilog = zfsvfs->z_log; 919 rl_t *rl; 920 uint64_t seq = 0; 921 uint64_t end = off + len; 922 uint64_t size, new_blksz; 923 int error; 924 925 if (ZTOV(zp)->v_type == VFIFO) 926 return (0); 927 928 /* 929 * If we will change zp_size then lock the whole file, 930 * otherwise just lock the range being freed. 931 */ 932 if (len == 0 || off + len > zp->z_phys->zp_size) { 933 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 934 } else { 935 rl = zfs_range_lock(zp, off, len, RL_WRITER); 936 /* recheck, in case zp_size changed */ 937 if (off + len > zp->z_phys->zp_size) { 938 /* lost race: file size changed, lock whole file */ 939 zfs_range_unlock(zp, rl); 940 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 941 } 942 } 943 944 /* 945 * Nothing to do if file already at desired length. 946 */ 947 size = zp->z_phys->zp_size; 948 if (len == 0 && size == off) { 949 zfs_range_unlock(zp, rl); 950 return (0); 951 } 952 953 /* 954 * Check for any locks in the region to be freed. 955 */ 956 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 957 uint64_t start = off; 958 uint64_t extent = len; 959 960 if (off > size) { 961 start = size; 962 extent += off - size; 963 } else if (len == 0) { 964 extent = size - off; 965 } 966 if (error = chklock(vp, FWRITE, start, extent, flag, NULL)) { 967 zfs_range_unlock(zp, rl); 968 return (error); 969 } 970 } 971 972 tx = dmu_tx_create(zfsvfs->z_os); 973 dmu_tx_hold_bonus(tx, zp->z_id); 974 new_blksz = 0; 975 if (end > size && 976 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 977 /* 978 * We are growing the file past the current block size. 979 */ 980 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 981 ASSERT(!ISP2(zp->z_blksz)); 982 new_blksz = MIN(end, SPA_MAXBLOCKSIZE); 983 } else { 984 new_blksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 985 } 986 dmu_tx_hold_write(tx, zp->z_id, 0, MIN(end, new_blksz)); 987 } else if (off < size) { 988 /* 989 * If len == 0, we are truncating the file. 990 */ 991 dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END); 992 } 993 994 error = dmu_tx_assign(tx, zfsvfs->z_assign); 995 if (error) { 996 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) 997 dmu_tx_wait(tx); 998 dmu_tx_abort(tx); 999 zfs_range_unlock(zp, rl); 1000 return (error); 1001 } 1002 1003 if (new_blksz) 1004 zfs_grow_blocksize(zp, new_blksz, tx); 1005 1006 if (end > size || len == 0) 1007 zp->z_phys->zp_size = end; 1008 1009 if (off < size) { 1010 objset_t *os = zfsvfs->z_os; 1011 uint64_t rlen = len; 1012 1013 if (len == 0) 1014 rlen = -1; 1015 else if (end > size) 1016 rlen = size - off; 1017 VERIFY(0 == dmu_free_range(os, zp->z_id, off, rlen, tx)); 1018 } 1019 1020 if (log) { 1021 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1022 seq = zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1023 } 1024 1025 zfs_range_unlock(zp, rl); 1026 1027 dmu_tx_commit(tx); 1028 1029 if (log) 1030 zil_commit(zilog, seq, 0); 1031 1032 /* 1033 * Clear any mapped pages in the truncated region. This has to 1034 * happen outside of the transaction to avoid the possibility of 1035 * a deadlock with someone trying to push a page that we are 1036 * about to invalidate. 1037 */ 1038 rw_enter(&zp->z_map_lock, RW_WRITER); 1039 if (off < size && vn_has_cached_data(vp)) { 1040 page_t *pp; 1041 uint64_t start = off & PAGEMASK; 1042 int poff = off & PAGEOFFSET; 1043 1044 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1045 /* 1046 * We need to zero a partial page. 1047 */ 1048 pagezero(pp, poff, PAGESIZE - poff); 1049 start += PAGESIZE; 1050 page_unlock(pp); 1051 } 1052 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1053 B_INVAL | B_TRUNC, NULL); 1054 ASSERT(error == 0); 1055 } 1056 rw_exit(&zp->z_map_lock); 1057 1058 return (0); 1059 } 1060 1061 void 1062 zfs_create_fs(objset_t *os, cred_t *cr, dmu_tx_t *tx) 1063 { 1064 zfsvfs_t zfsvfs; 1065 uint64_t moid, doid, roid = 0; 1066 uint64_t version = ZPL_VERSION; 1067 int error; 1068 znode_t *rootzp = NULL; 1069 vnode_t *vp; 1070 vattr_t vattr; 1071 1072 /* 1073 * First attempt to create master node. 1074 */ 1075 /* 1076 * In an empty objset, there are no blocks to read and thus 1077 * there can be no i/o errors (which we assert below). 1078 */ 1079 moid = MASTER_NODE_OBJ; 1080 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1081 DMU_OT_NONE, 0, tx); 1082 ASSERT(error == 0); 1083 1084 /* 1085 * Set starting attributes. 1086 */ 1087 1088 error = zap_update(os, moid, ZPL_VERSION_OBJ, 8, 1, &version, tx); 1089 ASSERT(error == 0); 1090 1091 /* 1092 * Create a delete queue. 1093 */ 1094 doid = zap_create(os, DMU_OT_DELETE_QUEUE, DMU_OT_NONE, 0, tx); 1095 1096 error = zap_add(os, moid, ZFS_DELETE_QUEUE, 8, 1, &doid, tx); 1097 ASSERT(error == 0); 1098 1099 /* 1100 * Create root znode. Create minimal znode/vnode/zfsvfs 1101 * to allow zfs_mknode to work. 1102 */ 1103 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1104 vattr.va_type = VDIR; 1105 vattr.va_mode = S_IFDIR|0755; 1106 vattr.va_uid = 0; 1107 vattr.va_gid = 3; 1108 1109 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1110 rootzp->z_zfsvfs = &zfsvfs; 1111 rootzp->z_active = 1; 1112 rootzp->z_reap = 0; 1113 rootzp->z_atime_dirty = 0; 1114 rootzp->z_dbuf_held = 0; 1115 1116 vp = ZTOV(rootzp); 1117 vn_reinit(vp); 1118 vp->v_type = VDIR; 1119 1120 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1121 1122 zfsvfs.z_os = os; 1123 zfsvfs.z_assign = TXG_NOWAIT; 1124 zfsvfs.z_parent = &zfsvfs; 1125 1126 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1127 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1128 offsetof(znode_t, z_link_node)); 1129 1130 zfs_mknode(rootzp, &vattr, &roid, tx, cr, IS_ROOT_NODE, NULL, 0); 1131 ASSERT3U(rootzp->z_id, ==, roid); 1132 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &roid, tx); 1133 ASSERT(error == 0); 1134 1135 ZTOV(rootzp)->v_count = 0; 1136 kmem_cache_free(znode_cache, rootzp); 1137 } 1138