1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/mntent.h> 35 #include <sys/mkdev.h> 36 #include <sys/vfs.h> 37 #include <sys/vnode.h> 38 #include <sys/file.h> 39 #include <sys/kmem.h> 40 #include <sys/cmn_err.h> 41 #include <sys/errno.h> 42 #include <sys/unistd.h> 43 #include <sys/stat.h> 44 #include <sys/mode.h> 45 #include <sys/atomic.h> 46 #include <vm/pvn.h> 47 #include "fs/fs_subr.h" 48 #include <sys/zfs_dir.h> 49 #include <sys/zfs_acl.h> 50 #include <sys/zfs_ioctl.h> 51 #include <sys/zfs_znode.h> 52 #include <sys/zfs_rlock.h> 53 #include <sys/zap.h> 54 #include <sys/dmu.h> 55 #include <sys/fs/zfs.h> 56 57 struct kmem_cache *znode_cache = NULL; 58 59 /*ARGSUSED*/ 60 static void 61 znode_pageout_func(dmu_buf_t *dbuf, void *user_ptr) 62 { 63 znode_t *zp = user_ptr; 64 vnode_t *vp = ZTOV(zp); 65 66 mutex_enter(&zp->z_lock); 67 if (vp->v_count == 0) { 68 mutex_exit(&zp->z_lock); 69 vn_invalid(vp); 70 zfs_znode_free(zp); 71 } else { 72 /* signal force unmount that this znode can be freed */ 73 zp->z_dbuf = NULL; 74 mutex_exit(&zp->z_lock); 75 } 76 } 77 78 /*ARGSUSED*/ 79 static int 80 zfs_znode_cache_constructor(void *buf, void *cdrarg, int kmflags) 81 { 82 znode_t *zp = buf; 83 84 zp->z_vnode = vn_alloc(KM_SLEEP); 85 zp->z_vnode->v_data = (caddr_t)zp; 86 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 87 rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL); 88 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 89 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 90 91 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 92 avl_create(&zp->z_range_avl, zfs_range_compare, 93 sizeof (rl_t), offsetof(rl_t, r_node)); 94 95 zp->z_dbuf_held = 0; 96 zp->z_dirlocks = 0; 97 return (0); 98 } 99 100 /*ARGSUSED*/ 101 static void 102 zfs_znode_cache_destructor(void *buf, void *cdarg) 103 { 104 znode_t *zp = buf; 105 106 ASSERT(zp->z_dirlocks == 0); 107 mutex_destroy(&zp->z_lock); 108 rw_destroy(&zp->z_map_lock); 109 rw_destroy(&zp->z_parent_lock); 110 mutex_destroy(&zp->z_acl_lock); 111 avl_destroy(&zp->z_range_avl); 112 113 ASSERT(zp->z_dbuf_held == 0); 114 ASSERT(ZTOV(zp)->v_count == 0); 115 vn_free(ZTOV(zp)); 116 } 117 118 void 119 zfs_znode_init(void) 120 { 121 /* 122 * Initialize zcache 123 */ 124 ASSERT(znode_cache == NULL); 125 znode_cache = kmem_cache_create("zfs_znode_cache", 126 sizeof (znode_t), 0, zfs_znode_cache_constructor, 127 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 128 } 129 130 void 131 zfs_znode_fini(void) 132 { 133 /* 134 * Cleanup vfs & vnode ops 135 */ 136 zfs_remove_op_tables(); 137 138 /* 139 * Cleanup zcache 140 */ 141 if (znode_cache) 142 kmem_cache_destroy(znode_cache); 143 znode_cache = NULL; 144 } 145 146 struct vnodeops *zfs_dvnodeops; 147 struct vnodeops *zfs_fvnodeops; 148 struct vnodeops *zfs_symvnodeops; 149 struct vnodeops *zfs_xdvnodeops; 150 struct vnodeops *zfs_evnodeops; 151 152 void 153 zfs_remove_op_tables() 154 { 155 /* 156 * Remove vfs ops 157 */ 158 ASSERT(zfsfstype); 159 (void) vfs_freevfsops_by_type(zfsfstype); 160 zfsfstype = 0; 161 162 /* 163 * Remove vnode ops 164 */ 165 if (zfs_dvnodeops) 166 vn_freevnodeops(zfs_dvnodeops); 167 if (zfs_fvnodeops) 168 vn_freevnodeops(zfs_fvnodeops); 169 if (zfs_symvnodeops) 170 vn_freevnodeops(zfs_symvnodeops); 171 if (zfs_xdvnodeops) 172 vn_freevnodeops(zfs_xdvnodeops); 173 if (zfs_evnodeops) 174 vn_freevnodeops(zfs_evnodeops); 175 176 zfs_dvnodeops = NULL; 177 zfs_fvnodeops = NULL; 178 zfs_symvnodeops = NULL; 179 zfs_xdvnodeops = NULL; 180 zfs_evnodeops = NULL; 181 } 182 183 extern const fs_operation_def_t zfs_dvnodeops_template[]; 184 extern const fs_operation_def_t zfs_fvnodeops_template[]; 185 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 186 extern const fs_operation_def_t zfs_symvnodeops_template[]; 187 extern const fs_operation_def_t zfs_evnodeops_template[]; 188 189 int 190 zfs_create_op_tables() 191 { 192 int error; 193 194 /* 195 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 196 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 197 * In this case we just return as the ops vectors are already set up. 198 */ 199 if (zfs_dvnodeops) 200 return (0); 201 202 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 203 &zfs_dvnodeops); 204 if (error) 205 return (error); 206 207 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 208 &zfs_fvnodeops); 209 if (error) 210 return (error); 211 212 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 213 &zfs_symvnodeops); 214 if (error) 215 return (error); 216 217 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 218 &zfs_xdvnodeops); 219 if (error) 220 return (error); 221 222 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 223 &zfs_evnodeops); 224 225 return (error); 226 } 227 228 /* 229 * zfs_init_fs - Initialize the zfsvfs struct and the file system 230 * incore "master" object. Verify version compatibility. 231 */ 232 int 233 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr) 234 { 235 extern int zfsfstype; 236 237 objset_t *os = zfsvfs->z_os; 238 uint64_t zoid; 239 uint64_t version = ZPL_VERSION; 240 int i, error; 241 dmu_object_info_t doi; 242 uint64_t fsid_guid; 243 244 *zpp = NULL; 245 246 /* 247 * XXX - hack to auto-create the pool root filesystem at 248 * the first attempted mount. 249 */ 250 if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) { 251 dmu_tx_t *tx = dmu_tx_create(os); 252 253 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* master */ 254 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* del queue */ 255 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */ 256 error = dmu_tx_assign(tx, TXG_WAIT); 257 ASSERT3U(error, ==, 0); 258 zfs_create_fs(os, cr, tx); 259 dmu_tx_commit(tx); 260 } 261 262 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_OBJ, 8, 1, 263 &version); 264 if (error) { 265 return (error); 266 } else if (version != ZPL_VERSION) { 267 (void) printf("Mismatched versions: File system " 268 "is version %lld on-disk format, which is " 269 "incompatible with this software version %lld!", 270 (u_longlong_t)version, ZPL_VERSION); 271 return (ENOTSUP); 272 } 273 274 /* 275 * The fsid is 64 bits, composed of an 8-bit fs type, which 276 * separates our fsid from any other filesystem types, and a 277 * 56-bit objset unique ID. The objset unique ID is unique to 278 * all objsets open on this system, provided by unique_create(). 279 * The 8-bit fs type must be put in the low bits of fsid[1] 280 * because that's where other Solaris filesystems put it. 281 */ 282 fsid_guid = dmu_objset_fsid_guid(os); 283 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 284 zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid; 285 zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 286 zfsfstype & 0xFF; 287 288 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &zoid); 289 if (error) 290 return (error); 291 ASSERT(zoid != 0); 292 zfsvfs->z_root = zoid; 293 294 /* 295 * Create the per mount vop tables. 296 */ 297 298 /* 299 * Initialize zget mutex's 300 */ 301 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 302 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 303 304 error = zfs_zget(zfsvfs, zoid, zpp); 305 if (error) 306 return (error); 307 ASSERT3U((*zpp)->z_id, ==, zoid); 308 309 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_DELETE_QUEUE, 8, 1, &zoid); 310 if (error) 311 return (error); 312 313 zfsvfs->z_dqueue = zoid; 314 315 /* 316 * Initialize delete head structure 317 * Thread(s) will be started/stopped via 318 * readonly_changed_cb() depending 319 * on whether this is rw/ro mount. 320 */ 321 list_create(&zfsvfs->z_delete_head.z_znodes, 322 sizeof (znode_t), offsetof(znode_t, z_list_node)); 323 /* Mutex never destroyed. */ 324 mutex_init(&zfsvfs->z_delete_head.z_mutex, NULL, MUTEX_DEFAULT, NULL); 325 326 return (0); 327 } 328 329 /* 330 * define a couple of values we need available 331 * for both 64 and 32 bit environments. 332 */ 333 #ifndef NBITSMINOR64 334 #define NBITSMINOR64 32 335 #endif 336 #ifndef MAXMAJ64 337 #define MAXMAJ64 0xffffffffUL 338 #endif 339 #ifndef MAXMIN64 340 #define MAXMIN64 0xffffffffUL 341 #endif 342 343 /* 344 * Create special expldev for ZFS private use. 345 * Can't use standard expldev since it doesn't do 346 * what we want. The standard expldev() takes a 347 * dev32_t in LP64 and expands it to a long dev_t. 348 * We need an interface that takes a dev32_t in ILP32 349 * and expands it to a long dev_t. 350 */ 351 static uint64_t 352 zfs_expldev(dev_t dev) 353 { 354 #ifndef _LP64 355 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 356 return (((uint64_t)major << NBITSMINOR64) | 357 ((minor_t)dev & MAXMIN32)); 358 #else 359 return (dev); 360 #endif 361 } 362 363 /* 364 * Special cmpldev for ZFS private use. 365 * Can't use standard cmpldev since it takes 366 * a long dev_t and compresses it to dev32_t in 367 * LP64. We need to do a compaction of a long dev_t 368 * to a dev32_t in ILP32. 369 */ 370 dev_t 371 zfs_cmpldev(uint64_t dev) 372 { 373 #ifndef _LP64 374 minor_t minor = (minor_t)dev & MAXMIN64; 375 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 376 377 if (major > MAXMAJ32 || minor > MAXMIN32) 378 return (NODEV32); 379 380 return (((dev32_t)major << NBITSMINOR32) | minor); 381 #else 382 return (dev); 383 #endif 384 } 385 386 /* 387 * Construct a new znode/vnode and intialize. 388 * 389 * This does not do a call to dmu_set_user() that is 390 * up to the caller to do, in case you don't want to 391 * return the znode 392 */ 393 static znode_t * 394 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, uint64_t obj_num, int blksz) 395 { 396 znode_t *zp; 397 vnode_t *vp; 398 399 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 400 401 ASSERT(zp->z_dirlocks == NULL); 402 403 zp->z_phys = db->db_data; 404 zp->z_zfsvfs = zfsvfs; 405 zp->z_reap = 0; 406 zp->z_atime_dirty = 0; 407 zp->z_dbuf_held = 0; 408 zp->z_mapcnt = 0; 409 zp->z_last_itx = 0; 410 zp->z_dbuf = db; 411 zp->z_id = obj_num; 412 zp->z_blksz = blksz; 413 zp->z_seq = 0x7A4653; 414 415 mutex_enter(&zfsvfs->z_znodes_lock); 416 list_insert_tail(&zfsvfs->z_all_znodes, zp); 417 mutex_exit(&zfsvfs->z_znodes_lock); 418 419 vp = ZTOV(zp); 420 vn_reinit(vp); 421 422 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 423 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 424 425 switch (vp->v_type) { 426 case VDIR: 427 if (zp->z_phys->zp_flags & ZFS_XATTR) { 428 vn_setops(vp, zfs_xdvnodeops); 429 vp->v_flag |= V_XATTRDIR; 430 } else 431 vn_setops(vp, zfs_dvnodeops); 432 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 433 break; 434 case VBLK: 435 case VCHR: 436 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 437 /*FALLTHROUGH*/ 438 case VFIFO: 439 case VSOCK: 440 case VDOOR: 441 vn_setops(vp, zfs_fvnodeops); 442 break; 443 case VREG: 444 vp->v_flag |= VMODSORT; 445 vn_setops(vp, zfs_fvnodeops); 446 break; 447 case VLNK: 448 vn_setops(vp, zfs_symvnodeops); 449 break; 450 default: 451 vn_setops(vp, zfs_evnodeops); 452 break; 453 } 454 455 return (zp); 456 } 457 458 static void 459 zfs_znode_dmu_init(znode_t *zp) 460 { 461 znode_t *nzp; 462 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 463 dmu_buf_t *db = zp->z_dbuf; 464 465 mutex_enter(&zp->z_lock); 466 467 nzp = dmu_buf_set_user(db, zp, &zp->z_phys, znode_pageout_func); 468 469 /* 470 * there should be no 471 * concurrent zgets on this object. 472 */ 473 ASSERT3P(nzp, ==, NULL); 474 475 /* 476 * Slap on VROOT if we are the root znode 477 */ 478 if (zp->z_id == zfsvfs->z_root) { 479 ZTOV(zp)->v_flag |= VROOT; 480 } 481 482 ASSERT(zp->z_dbuf_held == 0); 483 zp->z_dbuf_held = 1; 484 VFS_HOLD(zfsvfs->z_vfs); 485 mutex_exit(&zp->z_lock); 486 vn_exists(ZTOV(zp)); 487 } 488 489 /* 490 * Create a new DMU object to hold a zfs znode. 491 * 492 * IN: dzp - parent directory for new znode 493 * vap - file attributes for new znode 494 * tx - dmu transaction id for zap operations 495 * cr - credentials of caller 496 * flag - flags: 497 * IS_ROOT_NODE - new object will be root 498 * IS_XATTR - new object is an attribute 499 * IS_REPLAY - intent log replay 500 * 501 * OUT: oid - ID of created object 502 * 503 */ 504 void 505 zfs_mknode(znode_t *dzp, vattr_t *vap, uint64_t *oid, dmu_tx_t *tx, cred_t *cr, 506 uint_t flag, znode_t **zpp, int bonuslen) 507 { 508 dmu_buf_t *dbp; 509 znode_phys_t *pzp; 510 znode_t *zp; 511 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 512 timestruc_t now; 513 uint64_t gen; 514 int err; 515 516 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 517 518 if (zfsvfs->z_assign >= TXG_INITIAL) { /* ZIL replay */ 519 *oid = vap->va_nodeid; 520 flag |= IS_REPLAY; 521 now = vap->va_ctime; /* see zfs_replay_create() */ 522 gen = vap->va_nblocks; /* ditto */ 523 } else { 524 *oid = 0; 525 gethrestime(&now); 526 gen = dmu_tx_get_txg(tx); 527 } 528 529 /* 530 * Create a new DMU object. 531 */ 532 /* 533 * There's currently no mechanism for pre-reading the blocks that will 534 * be to needed allocate a new object, so we accept the small chance 535 * that there will be an i/o error and we will fail one of the 536 * assertions below. 537 */ 538 if (vap->va_type == VDIR) { 539 if (flag & IS_REPLAY) { 540 err = zap_create_claim(zfsvfs->z_os, *oid, 541 DMU_OT_DIRECTORY_CONTENTS, 542 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 543 ASSERT3U(err, ==, 0); 544 } else { 545 *oid = zap_create(zfsvfs->z_os, 546 DMU_OT_DIRECTORY_CONTENTS, 547 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 548 } 549 } else { 550 if (flag & IS_REPLAY) { 551 err = dmu_object_claim(zfsvfs->z_os, *oid, 552 DMU_OT_PLAIN_FILE_CONTENTS, 0, 553 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 554 ASSERT3U(err, ==, 0); 555 } else { 556 *oid = dmu_object_alloc(zfsvfs->z_os, 557 DMU_OT_PLAIN_FILE_CONTENTS, 0, 558 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 559 } 560 } 561 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, *oid, NULL, &dbp)); 562 dmu_buf_will_dirty(dbp, tx); 563 564 /* 565 * Initialize the znode physical data to zero. 566 */ 567 ASSERT(dbp->db_size >= sizeof (znode_phys_t)); 568 bzero(dbp->db_data, dbp->db_size); 569 pzp = dbp->db_data; 570 571 /* 572 * If this is the root, fix up the half-initialized parent pointer 573 * to reference the just-allocated physical data area. 574 */ 575 if (flag & IS_ROOT_NODE) { 576 dzp->z_phys = pzp; 577 dzp->z_id = *oid; 578 } 579 580 /* 581 * If parent is an xattr, so am I. 582 */ 583 if (dzp->z_phys->zp_flags & ZFS_XATTR) 584 flag |= IS_XATTR; 585 586 if (vap->va_type == VBLK || vap->va_type == VCHR) { 587 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 588 } 589 590 if (vap->va_type == VDIR) { 591 pzp->zp_size = 2; /* contents ("." and "..") */ 592 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 593 } 594 595 pzp->zp_parent = dzp->z_id; 596 if (flag & IS_XATTR) 597 pzp->zp_flags |= ZFS_XATTR; 598 599 pzp->zp_gen = gen; 600 601 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 602 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 603 604 if (vap->va_mask & AT_ATIME) { 605 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 606 } else { 607 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 608 } 609 610 if (vap->va_mask & AT_MTIME) { 611 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 612 } else { 613 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 614 } 615 616 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 617 zp = zfs_znode_alloc(zfsvfs, dbp, *oid, 0); 618 619 zfs_perm_init(zp, dzp, flag, vap, tx, cr); 620 621 if (zpp) { 622 kmutex_t *hash_mtx = ZFS_OBJ_MUTEX(zp); 623 624 mutex_enter(hash_mtx); 625 zfs_znode_dmu_init(zp); 626 mutex_exit(hash_mtx); 627 628 *zpp = zp; 629 } else { 630 ZTOV(zp)->v_count = 0; 631 dmu_buf_rele(dbp, NULL); 632 zfs_znode_free(zp); 633 } 634 } 635 636 int 637 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 638 { 639 dmu_object_info_t doi; 640 dmu_buf_t *db; 641 znode_t *zp; 642 int err; 643 644 *zpp = NULL; 645 646 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 647 648 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 649 if (err) { 650 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 651 return (err); 652 } 653 654 dmu_object_info_from_db(db, &doi); 655 if (doi.doi_bonus_type != DMU_OT_ZNODE || 656 doi.doi_bonus_size < sizeof (znode_phys_t)) { 657 dmu_buf_rele(db, NULL); 658 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 659 return (EINVAL); 660 } 661 662 ASSERT(db->db_object == obj_num); 663 ASSERT(db->db_offset == -1); 664 ASSERT(db->db_data != NULL); 665 666 zp = dmu_buf_get_user(db); 667 668 if (zp != NULL) { 669 mutex_enter(&zp->z_lock); 670 671 ASSERT3U(zp->z_id, ==, obj_num); 672 if (zp->z_reap) { 673 dmu_buf_rele(db, NULL); 674 mutex_exit(&zp->z_lock); 675 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 676 return (ENOENT); 677 } else if (zp->z_dbuf_held) { 678 dmu_buf_rele(db, NULL); 679 } else { 680 zp->z_dbuf_held = 1; 681 VFS_HOLD(zfsvfs->z_vfs); 682 } 683 684 685 VN_HOLD(ZTOV(zp)); 686 mutex_exit(&zp->z_lock); 687 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 688 *zpp = zp; 689 return (0); 690 } 691 692 /* 693 * Not found create new znode/vnode 694 */ 695 zp = zfs_znode_alloc(zfsvfs, db, obj_num, doi.doi_data_block_size); 696 ASSERT3U(zp->z_id, ==, obj_num); 697 zfs_znode_dmu_init(zp); 698 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 699 *zpp = zp; 700 return (0); 701 } 702 703 void 704 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 705 { 706 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 707 int error; 708 709 ZFS_OBJ_HOLD_ENTER(zfsvfs, zp->z_id); 710 if (zp->z_phys->zp_acl.z_acl_extern_obj) { 711 error = dmu_object_free(zfsvfs->z_os, 712 zp->z_phys->zp_acl.z_acl_extern_obj, tx); 713 ASSERT3U(error, ==, 0); 714 } 715 error = dmu_object_free(zfsvfs->z_os, zp->z_id, tx); 716 ASSERT3U(error, ==, 0); 717 zp->z_dbuf_held = 0; 718 ZFS_OBJ_HOLD_EXIT(zfsvfs, zp->z_id); 719 dmu_buf_rele(zp->z_dbuf, NULL); 720 } 721 722 void 723 zfs_zinactive(znode_t *zp) 724 { 725 vnode_t *vp = ZTOV(zp); 726 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 727 uint64_t z_id = zp->z_id; 728 729 ASSERT(zp->z_dbuf_held && zp->z_phys); 730 731 /* 732 * Don't allow a zfs_zget() while were trying to release this znode 733 */ 734 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 735 736 mutex_enter(&zp->z_lock); 737 mutex_enter(&vp->v_lock); 738 vp->v_count--; 739 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 740 /* 741 * If the hold count is greater than zero, somebody has 742 * obtained a new reference on this znode while we were 743 * processing it here, so we are done. If we still have 744 * mapped pages then we are also done, since we don't 745 * want to inactivate the znode until the pages get pushed. 746 * 747 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 748 * this seems like it would leave the znode hanging with 749 * no chance to go inactive... 750 */ 751 mutex_exit(&vp->v_lock); 752 mutex_exit(&zp->z_lock); 753 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 754 return; 755 } 756 mutex_exit(&vp->v_lock); 757 758 /* 759 * If this was the last reference to a file with no links, 760 * remove the file from the file system. 761 */ 762 if (zp->z_reap) { 763 mutex_exit(&zp->z_lock); 764 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 765 /* XATTR files are not put on the delete queue */ 766 if (zp->z_phys->zp_flags & ZFS_XATTR) { 767 zfs_rmnode(zp); 768 } else { 769 mutex_enter(&zfsvfs->z_delete_head.z_mutex); 770 list_insert_tail(&zfsvfs->z_delete_head.z_znodes, zp); 771 zfsvfs->z_delete_head.z_znode_count++; 772 cv_broadcast(&zfsvfs->z_delete_head.z_cv); 773 mutex_exit(&zfsvfs->z_delete_head.z_mutex); 774 } 775 VFS_RELE(zfsvfs->z_vfs); 776 return; 777 } 778 ASSERT(zp->z_phys); 779 ASSERT(zp->z_dbuf_held); 780 781 zp->z_dbuf_held = 0; 782 mutex_exit(&zp->z_lock); 783 dmu_buf_rele(zp->z_dbuf, NULL); 784 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 785 VFS_RELE(zfsvfs->z_vfs); 786 } 787 788 void 789 zfs_znode_free(znode_t *zp) 790 { 791 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 792 793 mutex_enter(&zfsvfs->z_znodes_lock); 794 list_remove(&zfsvfs->z_all_znodes, zp); 795 mutex_exit(&zfsvfs->z_znodes_lock); 796 797 kmem_cache_free(znode_cache, zp); 798 } 799 800 void 801 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 802 { 803 timestruc_t now; 804 805 ASSERT(MUTEX_HELD(&zp->z_lock)); 806 807 gethrestime(&now); 808 809 if (tx) { 810 dmu_buf_will_dirty(zp->z_dbuf, tx); 811 zp->z_atime_dirty = 0; 812 zp->z_seq++; 813 } else { 814 zp->z_atime_dirty = 1; 815 } 816 817 if (flag & AT_ATIME) 818 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 819 820 if (flag & AT_MTIME) 821 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 822 823 if (flag & AT_CTIME) 824 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 825 } 826 827 /* 828 * Update the requested znode timestamps with the current time. 829 * If we are in a transaction, then go ahead and mark the znode 830 * dirty in the transaction so the timestamps will go to disk. 831 * Otherwise, we will get pushed next time the znode is updated 832 * in a transaction, or when this znode eventually goes inactive. 833 * 834 * Why is this OK? 835 * 1 - Only the ACCESS time is ever updated outside of a transaction. 836 * 2 - Multiple consecutive updates will be collapsed into a single 837 * znode update by the transaction grouping semantics of the DMU. 838 */ 839 void 840 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 841 { 842 mutex_enter(&zp->z_lock); 843 zfs_time_stamper_locked(zp, flag, tx); 844 mutex_exit(&zp->z_lock); 845 } 846 847 /* 848 * Grow the block size for a file. 849 * 850 * IN: zp - znode of file to free data in. 851 * size - requested block size 852 * tx - open transaction. 853 * 854 * NOTE: this function assumes that the znode is write locked. 855 */ 856 void 857 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 858 { 859 int error; 860 u_longlong_t dummy; 861 862 if (size <= zp->z_blksz) 863 return; 864 /* 865 * If the file size is already greater than the current blocksize, 866 * we will not grow. If there is more than one block in a file, 867 * the blocksize cannot change. 868 */ 869 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 870 return; 871 872 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 873 size, 0, tx); 874 if (error == ENOTSUP) 875 return; 876 ASSERT3U(error, ==, 0); 877 878 /* What blocksize did we actually get? */ 879 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 880 } 881 882 /* 883 * This is a dummy interface used when pvn_vplist_dirty() should *not* 884 * be calling back into the fs for a putpage(). E.g.: when truncating 885 * a file, the pages being "thrown away* don't need to be written out. 886 */ 887 /* ARGSUSED */ 888 static int 889 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 890 int flags, cred_t *cr) 891 { 892 ASSERT(0); 893 return (0); 894 } 895 896 /* 897 * Free space in a file. 898 * 899 * IN: zp - znode of file to free data in. 900 * off - start of section to free. 901 * len - length of section to free (0 => to EOF). 902 * flag - current file open mode flags. 903 * 904 * RETURN: 0 if success 905 * error code if failure 906 */ 907 int 908 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 909 { 910 vnode_t *vp = ZTOV(zp); 911 dmu_tx_t *tx; 912 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 913 zilog_t *zilog = zfsvfs->z_log; 914 rl_t *rl; 915 uint64_t end = off + len; 916 uint64_t size, new_blksz; 917 int error; 918 919 if (ZTOV(zp)->v_type == VFIFO) 920 return (0); 921 922 /* 923 * If we will change zp_size then lock the whole file, 924 * otherwise just lock the range being freed. 925 */ 926 if (len == 0 || off + len > zp->z_phys->zp_size) { 927 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 928 } else { 929 rl = zfs_range_lock(zp, off, len, RL_WRITER); 930 /* recheck, in case zp_size changed */ 931 if (off + len > zp->z_phys->zp_size) { 932 /* lost race: file size changed, lock whole file */ 933 zfs_range_unlock(rl); 934 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 935 } 936 } 937 938 /* 939 * Nothing to do if file already at desired length. 940 */ 941 size = zp->z_phys->zp_size; 942 if (len == 0 && size == off) { 943 zfs_range_unlock(rl); 944 return (0); 945 } 946 947 /* 948 * Check for any locks in the region to be freed. 949 */ 950 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 951 uint64_t start = off; 952 uint64_t extent = len; 953 954 if (off > size) { 955 start = size; 956 extent += off - size; 957 } else if (len == 0) { 958 extent = size - off; 959 } 960 if (error = chklock(vp, FWRITE, start, extent, flag, NULL)) { 961 zfs_range_unlock(rl); 962 return (error); 963 } 964 } 965 966 tx = dmu_tx_create(zfsvfs->z_os); 967 dmu_tx_hold_bonus(tx, zp->z_id); 968 new_blksz = 0; 969 if (end > size && 970 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 971 /* 972 * We are growing the file past the current block size. 973 */ 974 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 975 ASSERT(!ISP2(zp->z_blksz)); 976 new_blksz = MIN(end, SPA_MAXBLOCKSIZE); 977 } else { 978 new_blksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 979 } 980 dmu_tx_hold_write(tx, zp->z_id, 0, MIN(end, new_blksz)); 981 } else if (off < size) { 982 /* 983 * If len == 0, we are truncating the file. 984 */ 985 dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END); 986 } 987 988 error = dmu_tx_assign(tx, zfsvfs->z_assign); 989 if (error) { 990 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) 991 dmu_tx_wait(tx); 992 dmu_tx_abort(tx); 993 zfs_range_unlock(rl); 994 return (error); 995 } 996 997 if (new_blksz) 998 zfs_grow_blocksize(zp, new_blksz, tx); 999 1000 if (end > size || len == 0) 1001 zp->z_phys->zp_size = end; 1002 1003 if (off < size) { 1004 objset_t *os = zfsvfs->z_os; 1005 uint64_t rlen = len; 1006 1007 if (len == 0) 1008 rlen = -1; 1009 else if (end > size) 1010 rlen = size - off; 1011 VERIFY(0 == dmu_free_range(os, zp->z_id, off, rlen, tx)); 1012 } 1013 1014 if (log) { 1015 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1016 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1017 } 1018 1019 zfs_range_unlock(rl); 1020 1021 dmu_tx_commit(tx); 1022 1023 /* 1024 * Clear any mapped pages in the truncated region. This has to 1025 * happen outside of the transaction to avoid the possibility of 1026 * a deadlock with someone trying to push a page that we are 1027 * about to invalidate. 1028 */ 1029 rw_enter(&zp->z_map_lock, RW_WRITER); 1030 if (off < size && vn_has_cached_data(vp)) { 1031 page_t *pp; 1032 uint64_t start = off & PAGEMASK; 1033 int poff = off & PAGEOFFSET; 1034 1035 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1036 /* 1037 * We need to zero a partial page. 1038 */ 1039 pagezero(pp, poff, PAGESIZE - poff); 1040 start += PAGESIZE; 1041 page_unlock(pp); 1042 } 1043 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1044 B_INVAL | B_TRUNC, NULL); 1045 ASSERT(error == 0); 1046 } 1047 rw_exit(&zp->z_map_lock); 1048 1049 return (0); 1050 } 1051 1052 void 1053 zfs_create_fs(objset_t *os, cred_t *cr, dmu_tx_t *tx) 1054 { 1055 zfsvfs_t zfsvfs; 1056 uint64_t moid, doid, roid = 0; 1057 uint64_t version = ZPL_VERSION; 1058 int error; 1059 znode_t *rootzp = NULL; 1060 vnode_t *vp; 1061 vattr_t vattr; 1062 1063 /* 1064 * First attempt to create master node. 1065 */ 1066 /* 1067 * In an empty objset, there are no blocks to read and thus 1068 * there can be no i/o errors (which we assert below). 1069 */ 1070 moid = MASTER_NODE_OBJ; 1071 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1072 DMU_OT_NONE, 0, tx); 1073 ASSERT(error == 0); 1074 1075 /* 1076 * Set starting attributes. 1077 */ 1078 1079 error = zap_update(os, moid, ZPL_VERSION_OBJ, 8, 1, &version, tx); 1080 ASSERT(error == 0); 1081 1082 /* 1083 * Create a delete queue. 1084 */ 1085 doid = zap_create(os, DMU_OT_DELETE_QUEUE, DMU_OT_NONE, 0, tx); 1086 1087 error = zap_add(os, moid, ZFS_DELETE_QUEUE, 8, 1, &doid, tx); 1088 ASSERT(error == 0); 1089 1090 /* 1091 * Create root znode. Create minimal znode/vnode/zfsvfs 1092 * to allow zfs_mknode to work. 1093 */ 1094 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1095 vattr.va_type = VDIR; 1096 vattr.va_mode = S_IFDIR|0755; 1097 vattr.va_uid = 0; 1098 vattr.va_gid = 3; 1099 1100 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1101 rootzp->z_zfsvfs = &zfsvfs; 1102 rootzp->z_reap = 0; 1103 rootzp->z_atime_dirty = 0; 1104 rootzp->z_dbuf_held = 0; 1105 1106 vp = ZTOV(rootzp); 1107 vn_reinit(vp); 1108 vp->v_type = VDIR; 1109 1110 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1111 1112 zfsvfs.z_os = os; 1113 zfsvfs.z_assign = TXG_NOWAIT; 1114 zfsvfs.z_parent = &zfsvfs; 1115 1116 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1117 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1118 offsetof(znode_t, z_link_node)); 1119 1120 zfs_mknode(rootzp, &vattr, &roid, tx, cr, IS_ROOT_NODE, NULL, 0); 1121 ASSERT3U(rootzp->z_id, ==, roid); 1122 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &roid, tx); 1123 ASSERT(error == 0); 1124 1125 ZTOV(rootzp)->v_count = 0; 1126 kmem_cache_free(znode_cache, rootzp); 1127 } 1128