1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* Portions Copyright 2007 Jeremy Teo */ 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <vm/kpm.h> 51 #include <vm/seg_kpm.h> 52 #include <sys/mman.h> 53 #include <sys/pathname.h> 54 #include <sys/cmn_err.h> 55 #include <sys/errno.h> 56 #include <sys/unistd.h> 57 #include <sys/zfs_dir.h> 58 #include <sys/zfs_acl.h> 59 #include <sys/zfs_ioctl.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/dmu.h> 62 #include <sys/dmu_objset.h> 63 #include <sys/spa.h> 64 #include <sys/txg.h> 65 #include <sys/dbuf.h> 66 #include <sys/zap.h> 67 #include <sys/sa.h> 68 #include <sys/dirent.h> 69 #include <sys/policy.h> 70 #include <sys/sunddi.h> 71 #include <sys/filio.h> 72 #include <sys/sid.h> 73 #include "fs/fs_subr.h" 74 #include <sys/zfs_ctldir.h> 75 #include <sys/zfs_fuid.h> 76 #include <sys/zfs_sa.h> 77 #include <sys/dnlc.h> 78 #include <sys/zfs_rlock.h> 79 #include <sys/extdirent.h> 80 #include <sys/kidmap.h> 81 #include <sys/cred.h> 82 #include <sys/attr.h> 83 84 /* 85 * Programming rules. 86 * 87 * Each vnode op performs some logical unit of work. To do this, the ZPL must 88 * properly lock its in-core state, create a DMU transaction, do the work, 89 * record this work in the intent log (ZIL), commit the DMU transaction, 90 * and wait for the intent log to commit if it is a synchronous operation. 91 * Moreover, the vnode ops must work in both normal and log replay context. 92 * The ordering of events is important to avoid deadlocks and references 93 * to freed memory. The example below illustrates the following Big Rules: 94 * 95 * (1) A check must be made in each zfs thread for a mounted file system. 96 * This is done avoiding races using ZFS_ENTER(zfsvfs). 97 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 98 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 99 * can return EIO from the calling function. 100 * 101 * (2) VN_RELE() should always be the last thing except for zil_commit() 102 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 103 * First, if it's the last reference, the vnode/znode 104 * can be freed, so the zp may point to freed memory. Second, the last 105 * reference will call zfs_zinactive(), which may induce a lot of work -- 106 * pushing cached pages (which acquires range locks) and syncing out 107 * cached atime changes. Third, zfs_zinactive() may require a new tx, 108 * which could deadlock the system if you were already holding one. 109 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 110 * 111 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 112 * as they can span dmu_tx_assign() calls. 113 * 114 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 115 * dmu_tx_assign(). This is critical because we don't want to block 116 * while holding locks. 117 * 118 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 119 * reduces lock contention and CPU usage when we must wait (note that if 120 * throughput is constrained by the storage, nearly every transaction 121 * must wait). 122 * 123 * Note, in particular, that if a lock is sometimes acquired before 124 * the tx assigns, and sometimes after (e.g. z_lock), then failing 125 * to use a non-blocking assign can deadlock the system. The scenario: 126 * 127 * Thread A has grabbed a lock before calling dmu_tx_assign(). 128 * Thread B is in an already-assigned tx, and blocks for this lock. 129 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 130 * forever, because the previous txg can't quiesce until B's tx commits. 131 * 132 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 133 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 134 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, 135 * to indicate that this operation has already called dmu_tx_wait(). 136 * This will ensure that we don't retry forever, waiting a short bit 137 * each time. 138 * 139 * (5) If the operation succeeded, generate the intent log entry for it 140 * before dropping locks. This ensures that the ordering of events 141 * in the intent log matches the order in which they actually occurred. 142 * During ZIL replay the zfs_log_* functions will update the sequence 143 * number to indicate the zil transaction has replayed. 144 * 145 * (6) At the end of each vnode op, the DMU tx must always commit, 146 * regardless of whether there were any errors. 147 * 148 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 149 * to ensure that synchronous semantics are provided when necessary. 150 * 151 * In general, this is how things should be ordered in each vnode op: 152 * 153 * ZFS_ENTER(zfsvfs); // exit if unmounted 154 * top: 155 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 156 * rw_enter(...); // grab any other locks you need 157 * tx = dmu_tx_create(...); // get DMU tx 158 * dmu_tx_hold_*(); // hold each object you might modify 159 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 160 * if (error) { 161 * rw_exit(...); // drop locks 162 * zfs_dirent_unlock(dl); // unlock directory entry 163 * VN_RELE(...); // release held vnodes 164 * if (error == ERESTART) { 165 * waited = B_TRUE; 166 * dmu_tx_wait(tx); 167 * dmu_tx_abort(tx); 168 * goto top; 169 * } 170 * dmu_tx_abort(tx); // abort DMU tx 171 * ZFS_EXIT(zfsvfs); // finished in zfs 172 * return (error); // really out of space 173 * } 174 * error = do_real_work(); // do whatever this VOP does 175 * if (error == 0) 176 * zfs_log_*(...); // on success, make ZIL entry 177 * dmu_tx_commit(tx); // commit DMU tx -- error or not 178 * rw_exit(...); // drop locks 179 * zfs_dirent_unlock(dl); // unlock directory entry 180 * VN_RELE(...); // release held vnodes 181 * zil_commit(zilog, foid); // synchronous when necessary 182 * ZFS_EXIT(zfsvfs); // finished in zfs 183 * return (error); // done, report error 184 */ 185 186 /* ARGSUSED */ 187 static int 188 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 189 { 190 znode_t *zp = VTOZ(*vpp); 191 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 192 193 ZFS_ENTER(zfsvfs); 194 ZFS_VERIFY_ZP(zp); 195 196 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 197 ((flag & FAPPEND) == 0)) { 198 ZFS_EXIT(zfsvfs); 199 return (SET_ERROR(EPERM)); 200 } 201 202 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 203 ZTOV(zp)->v_type == VREG && 204 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 205 if (fs_vscan(*vpp, cr, 0) != 0) { 206 ZFS_EXIT(zfsvfs); 207 return (SET_ERROR(EACCES)); 208 } 209 } 210 211 /* Keep a count of the synchronous opens in the znode */ 212 if (flag & (FSYNC | FDSYNC)) 213 atomic_inc_32(&zp->z_sync_cnt); 214 215 ZFS_EXIT(zfsvfs); 216 return (0); 217 } 218 219 /* ARGSUSED */ 220 static int 221 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 222 caller_context_t *ct) 223 { 224 znode_t *zp = VTOZ(vp); 225 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 226 227 /* 228 * Clean up any locks held by this process on the vp. 229 */ 230 cleanlocks(vp, ddi_get_pid(), 0); 231 cleanshares(vp, ddi_get_pid()); 232 233 ZFS_ENTER(zfsvfs); 234 ZFS_VERIFY_ZP(zp); 235 236 /* Decrement the synchronous opens in the znode */ 237 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 238 atomic_dec_32(&zp->z_sync_cnt); 239 240 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 241 ZTOV(zp)->v_type == VREG && 242 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 243 VERIFY(fs_vscan(vp, cr, 1) == 0); 244 245 ZFS_EXIT(zfsvfs); 246 return (0); 247 } 248 249 /* 250 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 251 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 252 */ 253 static int 254 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 255 { 256 znode_t *zp = VTOZ(vp); 257 uint64_t noff = (uint64_t)*off; /* new offset */ 258 uint64_t file_sz; 259 int error; 260 boolean_t hole; 261 262 file_sz = zp->z_size; 263 if (noff >= file_sz) { 264 return (SET_ERROR(ENXIO)); 265 } 266 267 if (cmd == _FIO_SEEK_HOLE) 268 hole = B_TRUE; 269 else 270 hole = B_FALSE; 271 272 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 273 274 if (error == ESRCH) 275 return (SET_ERROR(ENXIO)); 276 277 /* 278 * We could find a hole that begins after the logical end-of-file, 279 * because dmu_offset_next() only works on whole blocks. If the 280 * EOF falls mid-block, then indicate that the "virtual hole" 281 * at the end of the file begins at the logical EOF, rather than 282 * at the end of the last block. 283 */ 284 if (noff > file_sz) { 285 ASSERT(hole); 286 noff = file_sz; 287 } 288 289 if (noff < *off) 290 return (error); 291 *off = noff; 292 return (error); 293 } 294 295 /* ARGSUSED */ 296 static int 297 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 298 int *rvalp, caller_context_t *ct) 299 { 300 offset_t off; 301 offset_t ndata; 302 dmu_object_info_t doi; 303 int error; 304 zfsvfs_t *zfsvfs; 305 znode_t *zp; 306 307 switch (com) { 308 case _FIOFFS: 309 { 310 return (zfs_sync(vp->v_vfsp, 0, cred)); 311 312 /* 313 * The following two ioctls are used by bfu. Faking out, 314 * necessary to avoid bfu errors. 315 */ 316 } 317 case _FIOGDIO: 318 case _FIOSDIO: 319 { 320 return (0); 321 } 322 323 case _FIO_SEEK_DATA: 324 case _FIO_SEEK_HOLE: 325 { 326 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 327 return (SET_ERROR(EFAULT)); 328 329 zp = VTOZ(vp); 330 zfsvfs = zp->z_zfsvfs; 331 ZFS_ENTER(zfsvfs); 332 ZFS_VERIFY_ZP(zp); 333 334 /* offset parameter is in/out */ 335 error = zfs_holey(vp, com, &off); 336 ZFS_EXIT(zfsvfs); 337 if (error) 338 return (error); 339 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 340 return (SET_ERROR(EFAULT)); 341 return (0); 342 } 343 case _FIO_COUNT_FILLED: 344 { 345 /* 346 * _FIO_COUNT_FILLED adds a new ioctl command which 347 * exposes the number of filled blocks in a 348 * ZFS object. 349 */ 350 zp = VTOZ(vp); 351 zfsvfs = zp->z_zfsvfs; 352 ZFS_ENTER(zfsvfs); 353 ZFS_VERIFY_ZP(zp); 354 355 /* 356 * Wait for all dirty blocks for this object 357 * to get synced out to disk, and the DMU info 358 * updated. 359 */ 360 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 361 if (error) { 362 ZFS_EXIT(zfsvfs); 363 return (error); 364 } 365 366 /* 367 * Retrieve fill count from DMU object. 368 */ 369 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 370 if (error) { 371 ZFS_EXIT(zfsvfs); 372 return (error); 373 } 374 375 ndata = doi.doi_fill_count; 376 377 ZFS_EXIT(zfsvfs); 378 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 379 return (SET_ERROR(EFAULT)); 380 return (0); 381 } 382 } 383 return (SET_ERROR(ENOTTY)); 384 } 385 386 /* 387 * Utility functions to map and unmap a single physical page. These 388 * are used to manage the mappable copies of ZFS file data, and therefore 389 * do not update ref/mod bits. 390 */ 391 caddr_t 392 zfs_map_page(page_t *pp, enum seg_rw rw) 393 { 394 if (kpm_enable) 395 return (hat_kpm_mapin(pp, 0)); 396 ASSERT(rw == S_READ || rw == S_WRITE); 397 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 398 (caddr_t)-1)); 399 } 400 401 void 402 zfs_unmap_page(page_t *pp, caddr_t addr) 403 { 404 if (kpm_enable) { 405 hat_kpm_mapout(pp, 0, addr); 406 } else { 407 ppmapout(addr); 408 } 409 } 410 411 /* 412 * When a file is memory mapped, we must keep the IO data synchronized 413 * between the DMU cache and the memory mapped pages. What this means: 414 * 415 * On Write: If we find a memory mapped page, we write to *both* 416 * the page and the dmu buffer. 417 */ 418 static void 419 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 420 { 421 int64_t off; 422 423 off = start & PAGEOFFSET; 424 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 425 page_t *pp; 426 uint64_t nbytes = MIN(PAGESIZE - off, len); 427 428 if (pp = page_lookup(vp, start, SE_SHARED)) { 429 caddr_t va; 430 431 va = zfs_map_page(pp, S_WRITE); 432 (void) dmu_read(os, oid, start+off, nbytes, va+off, 433 DMU_READ_PREFETCH); 434 zfs_unmap_page(pp, va); 435 page_unlock(pp); 436 } 437 len -= nbytes; 438 off = 0; 439 } 440 } 441 442 /* 443 * When a file is memory mapped, we must keep the IO data synchronized 444 * between the DMU cache and the memory mapped pages. What this means: 445 * 446 * On Read: We "read" preferentially from memory mapped pages, 447 * else we default from the dmu buffer. 448 * 449 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 450 * the file is memory mapped. 451 */ 452 static int 453 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 454 { 455 znode_t *zp = VTOZ(vp); 456 int64_t start, off; 457 int len = nbytes; 458 int error = 0; 459 460 start = uio->uio_loffset; 461 off = start & PAGEOFFSET; 462 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 463 page_t *pp; 464 uint64_t bytes = MIN(PAGESIZE - off, len); 465 466 if (pp = page_lookup(vp, start, SE_SHARED)) { 467 caddr_t va; 468 469 va = zfs_map_page(pp, S_READ); 470 error = uiomove(va + off, bytes, UIO_READ, uio); 471 zfs_unmap_page(pp, va); 472 page_unlock(pp); 473 } else { 474 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 475 uio, bytes); 476 } 477 len -= bytes; 478 off = 0; 479 if (error) 480 break; 481 } 482 return (error); 483 } 484 485 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 486 487 /* 488 * Read bytes from specified file into supplied buffer. 489 * 490 * IN: vp - vnode of file to be read from. 491 * uio - structure supplying read location, range info, 492 * and return buffer. 493 * ioflag - SYNC flags; used to provide FRSYNC semantics. 494 * cr - credentials of caller. 495 * ct - caller context 496 * 497 * OUT: uio - updated offset and range, buffer filled. 498 * 499 * RETURN: 0 on success, error code on failure. 500 * 501 * Side Effects: 502 * vp - atime updated if byte count > 0 503 */ 504 /* ARGSUSED */ 505 static int 506 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 507 { 508 znode_t *zp = VTOZ(vp); 509 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 510 ssize_t n, nbytes; 511 int error = 0; 512 rl_t *rl; 513 xuio_t *xuio = NULL; 514 515 ZFS_ENTER(zfsvfs); 516 ZFS_VERIFY_ZP(zp); 517 518 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 519 ZFS_EXIT(zfsvfs); 520 return (SET_ERROR(EACCES)); 521 } 522 523 /* 524 * Validate file offset 525 */ 526 if (uio->uio_loffset < (offset_t)0) { 527 ZFS_EXIT(zfsvfs); 528 return (SET_ERROR(EINVAL)); 529 } 530 531 /* 532 * Fasttrack empty reads 533 */ 534 if (uio->uio_resid == 0) { 535 ZFS_EXIT(zfsvfs); 536 return (0); 537 } 538 539 /* 540 * Check for mandatory locks 541 */ 542 if (MANDMODE(zp->z_mode)) { 543 if (error = chklock(vp, FREAD, 544 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 545 ZFS_EXIT(zfsvfs); 546 return (error); 547 } 548 } 549 550 /* 551 * If we're in FRSYNC mode, sync out this znode before reading it. 552 */ 553 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 554 zil_commit(zfsvfs->z_log, zp->z_id); 555 556 /* 557 * Lock the range against changes. 558 */ 559 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 560 561 /* 562 * If we are reading past end-of-file we can skip 563 * to the end; but we might still need to set atime. 564 */ 565 if (uio->uio_loffset >= zp->z_size) { 566 error = 0; 567 goto out; 568 } 569 570 ASSERT(uio->uio_loffset < zp->z_size); 571 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 572 573 if ((uio->uio_extflg == UIO_XUIO) && 574 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 575 int nblk; 576 int blksz = zp->z_blksz; 577 uint64_t offset = uio->uio_loffset; 578 579 xuio = (xuio_t *)uio; 580 if ((ISP2(blksz))) { 581 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 582 blksz)) / blksz; 583 } else { 584 ASSERT(offset + n <= blksz); 585 nblk = 1; 586 } 587 (void) dmu_xuio_init(xuio, nblk); 588 589 if (vn_has_cached_data(vp)) { 590 /* 591 * For simplicity, we always allocate a full buffer 592 * even if we only expect to read a portion of a block. 593 */ 594 while (--nblk >= 0) { 595 (void) dmu_xuio_add(xuio, 596 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 597 blksz), 0, blksz); 598 } 599 } 600 } 601 602 while (n > 0) { 603 nbytes = MIN(n, zfs_read_chunk_size - 604 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 605 606 if (vn_has_cached_data(vp)) { 607 error = mappedread(vp, nbytes, uio); 608 } else { 609 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 610 uio, nbytes); 611 } 612 if (error) { 613 /* convert checksum errors into IO errors */ 614 if (error == ECKSUM) 615 error = SET_ERROR(EIO); 616 break; 617 } 618 619 n -= nbytes; 620 } 621 out: 622 zfs_range_unlock(rl); 623 624 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 625 ZFS_EXIT(zfsvfs); 626 return (error); 627 } 628 629 /* 630 * Write the bytes to a file. 631 * 632 * IN: vp - vnode of file to be written to. 633 * uio - structure supplying write location, range info, 634 * and data buffer. 635 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 636 * set if in append mode. 637 * cr - credentials of caller. 638 * ct - caller context (NFS/CIFS fem monitor only) 639 * 640 * OUT: uio - updated offset and range. 641 * 642 * RETURN: 0 on success, error code on failure. 643 * 644 * Timestamps: 645 * vp - ctime|mtime updated if byte count > 0 646 */ 647 648 /* ARGSUSED */ 649 static int 650 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 651 { 652 znode_t *zp = VTOZ(vp); 653 rlim64_t limit = uio->uio_llimit; 654 ssize_t start_resid = uio->uio_resid; 655 ssize_t tx_bytes; 656 uint64_t end_size; 657 dmu_tx_t *tx; 658 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 659 zilog_t *zilog; 660 offset_t woff; 661 ssize_t n, nbytes; 662 rl_t *rl; 663 int max_blksz = zfsvfs->z_max_blksz; 664 int error = 0; 665 arc_buf_t *abuf; 666 iovec_t *aiov = NULL; 667 xuio_t *xuio = NULL; 668 int i_iov = 0; 669 int iovcnt = uio->uio_iovcnt; 670 iovec_t *iovp = uio->uio_iov; 671 int write_eof; 672 int count = 0; 673 sa_bulk_attr_t bulk[4]; 674 uint64_t mtime[2], ctime[2]; 675 676 /* 677 * Fasttrack empty write 678 */ 679 n = start_resid; 680 if (n == 0) 681 return (0); 682 683 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 684 limit = MAXOFFSET_T; 685 686 ZFS_ENTER(zfsvfs); 687 ZFS_VERIFY_ZP(zp); 688 689 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 690 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 691 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 692 &zp->z_size, 8); 693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 694 &zp->z_pflags, 8); 695 696 /* 697 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 698 * callers might not be able to detect properly that we are read-only, 699 * so check it explicitly here. 700 */ 701 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 702 ZFS_EXIT(zfsvfs); 703 return (SET_ERROR(EROFS)); 704 } 705 706 /* 707 * If immutable or not appending then return EPERM 708 */ 709 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 710 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 711 (uio->uio_loffset < zp->z_size))) { 712 ZFS_EXIT(zfsvfs); 713 return (SET_ERROR(EPERM)); 714 } 715 716 zilog = zfsvfs->z_log; 717 718 /* 719 * Validate file offset 720 */ 721 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 722 if (woff < 0) { 723 ZFS_EXIT(zfsvfs); 724 return (SET_ERROR(EINVAL)); 725 } 726 727 /* 728 * Check for mandatory locks before calling zfs_range_lock() 729 * in order to prevent a deadlock with locks set via fcntl(). 730 */ 731 if (MANDMODE((mode_t)zp->z_mode) && 732 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 733 ZFS_EXIT(zfsvfs); 734 return (error); 735 } 736 737 /* 738 * Pre-fault the pages to ensure slow (eg NFS) pages 739 * don't hold up txg. 740 * Skip this if uio contains loaned arc_buf. 741 */ 742 if ((uio->uio_extflg == UIO_XUIO) && 743 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 744 xuio = (xuio_t *)uio; 745 else 746 uio_prefaultpages(MIN(n, max_blksz), uio); 747 748 /* 749 * If in append mode, set the io offset pointer to eof. 750 */ 751 if (ioflag & FAPPEND) { 752 /* 753 * Obtain an appending range lock to guarantee file append 754 * semantics. We reset the write offset once we have the lock. 755 */ 756 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 757 woff = rl->r_off; 758 if (rl->r_len == UINT64_MAX) { 759 /* 760 * We overlocked the file because this write will cause 761 * the file block size to increase. 762 * Note that zp_size cannot change with this lock held. 763 */ 764 woff = zp->z_size; 765 } 766 uio->uio_loffset = woff; 767 } else { 768 /* 769 * Note that if the file block size will change as a result of 770 * this write, then this range lock will lock the entire file 771 * so that we can re-write the block safely. 772 */ 773 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 774 } 775 776 if (woff >= limit) { 777 zfs_range_unlock(rl); 778 ZFS_EXIT(zfsvfs); 779 return (SET_ERROR(EFBIG)); 780 } 781 782 if ((woff + n) > limit || woff > (limit - n)) 783 n = limit - woff; 784 785 /* Will this write extend the file length? */ 786 write_eof = (woff + n > zp->z_size); 787 788 end_size = MAX(zp->z_size, woff + n); 789 790 /* 791 * Write the file in reasonable size chunks. Each chunk is written 792 * in a separate transaction; this keeps the intent log records small 793 * and allows us to do more fine-grained space accounting. 794 */ 795 while (n > 0) { 796 abuf = NULL; 797 woff = uio->uio_loffset; 798 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 799 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 800 if (abuf != NULL) 801 dmu_return_arcbuf(abuf); 802 error = SET_ERROR(EDQUOT); 803 break; 804 } 805 806 if (xuio && abuf == NULL) { 807 ASSERT(i_iov < iovcnt); 808 aiov = &iovp[i_iov]; 809 abuf = dmu_xuio_arcbuf(xuio, i_iov); 810 dmu_xuio_clear(xuio, i_iov); 811 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 812 iovec_t *, aiov, arc_buf_t *, abuf); 813 ASSERT((aiov->iov_base == abuf->b_data) || 814 ((char *)aiov->iov_base - (char *)abuf->b_data + 815 aiov->iov_len == arc_buf_size(abuf))); 816 i_iov++; 817 } else if (abuf == NULL && n >= max_blksz && 818 woff >= zp->z_size && 819 P2PHASE(woff, max_blksz) == 0 && 820 zp->z_blksz == max_blksz) { 821 /* 822 * This write covers a full block. "Borrow" a buffer 823 * from the dmu so that we can fill it before we enter 824 * a transaction. This avoids the possibility of 825 * holding up the transaction if the data copy hangs 826 * up on a pagefault (e.g., from an NFS server mapping). 827 */ 828 size_t cbytes; 829 830 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 831 max_blksz); 832 ASSERT(abuf != NULL); 833 ASSERT(arc_buf_size(abuf) == max_blksz); 834 if (error = uiocopy(abuf->b_data, max_blksz, 835 UIO_WRITE, uio, &cbytes)) { 836 dmu_return_arcbuf(abuf); 837 break; 838 } 839 ASSERT(cbytes == max_blksz); 840 } 841 842 /* 843 * Start a transaction. 844 */ 845 tx = dmu_tx_create(zfsvfs->z_os); 846 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 847 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 848 zfs_sa_upgrade_txholds(tx, zp); 849 error = dmu_tx_assign(tx, TXG_WAIT); 850 if (error) { 851 dmu_tx_abort(tx); 852 if (abuf != NULL) 853 dmu_return_arcbuf(abuf); 854 break; 855 } 856 857 /* 858 * If zfs_range_lock() over-locked we grow the blocksize 859 * and then reduce the lock range. This will only happen 860 * on the first iteration since zfs_range_reduce() will 861 * shrink down r_len to the appropriate size. 862 */ 863 if (rl->r_len == UINT64_MAX) { 864 uint64_t new_blksz; 865 866 if (zp->z_blksz > max_blksz) { 867 /* 868 * File's blocksize is already larger than the 869 * "recordsize" property. Only let it grow to 870 * the next power of 2. 871 */ 872 ASSERT(!ISP2(zp->z_blksz)); 873 new_blksz = MIN(end_size, 874 1 << highbit64(zp->z_blksz)); 875 } else { 876 new_blksz = MIN(end_size, max_blksz); 877 } 878 zfs_grow_blocksize(zp, new_blksz, tx); 879 zfs_range_reduce(rl, woff, n); 880 } 881 882 /* 883 * XXX - should we really limit each write to z_max_blksz? 884 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 885 */ 886 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 887 888 if (abuf == NULL) { 889 tx_bytes = uio->uio_resid; 890 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 891 uio, nbytes, tx); 892 tx_bytes -= uio->uio_resid; 893 } else { 894 tx_bytes = nbytes; 895 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 896 /* 897 * If this is not a full block write, but we are 898 * extending the file past EOF and this data starts 899 * block-aligned, use assign_arcbuf(). Otherwise, 900 * write via dmu_write(). 901 */ 902 if (tx_bytes < max_blksz && (!write_eof || 903 aiov->iov_base != abuf->b_data)) { 904 ASSERT(xuio); 905 dmu_write(zfsvfs->z_os, zp->z_id, woff, 906 aiov->iov_len, aiov->iov_base, tx); 907 dmu_return_arcbuf(abuf); 908 xuio_stat_wbuf_copied(); 909 } else { 910 ASSERT(xuio || tx_bytes == max_blksz); 911 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 912 woff, abuf, tx); 913 } 914 ASSERT(tx_bytes <= uio->uio_resid); 915 uioskip(uio, tx_bytes); 916 } 917 if (tx_bytes && vn_has_cached_data(vp)) { 918 update_pages(vp, woff, 919 tx_bytes, zfsvfs->z_os, zp->z_id); 920 } 921 922 /* 923 * If we made no progress, we're done. If we made even 924 * partial progress, update the znode and ZIL accordingly. 925 */ 926 if (tx_bytes == 0) { 927 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 928 (void *)&zp->z_size, sizeof (uint64_t), tx); 929 dmu_tx_commit(tx); 930 ASSERT(error != 0); 931 break; 932 } 933 934 /* 935 * Clear Set-UID/Set-GID bits on successful write if not 936 * privileged and at least one of the excute bits is set. 937 * 938 * It would be nice to to this after all writes have 939 * been done, but that would still expose the ISUID/ISGID 940 * to another app after the partial write is committed. 941 * 942 * Note: we don't call zfs_fuid_map_id() here because 943 * user 0 is not an ephemeral uid. 944 */ 945 mutex_enter(&zp->z_acl_lock); 946 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 947 (S_IXUSR >> 6))) != 0 && 948 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 949 secpolicy_vnode_setid_retain(cr, 950 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 951 uint64_t newmode; 952 zp->z_mode &= ~(S_ISUID | S_ISGID); 953 newmode = zp->z_mode; 954 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 955 (void *)&newmode, sizeof (uint64_t), tx); 956 } 957 mutex_exit(&zp->z_acl_lock); 958 959 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 960 B_TRUE); 961 962 /* 963 * Update the file size (zp_size) if it has changed; 964 * account for possible concurrent updates. 965 */ 966 while ((end_size = zp->z_size) < uio->uio_loffset) { 967 (void) atomic_cas_64(&zp->z_size, end_size, 968 uio->uio_loffset); 969 ASSERT(error == 0); 970 } 971 /* 972 * If we are replaying and eof is non zero then force 973 * the file size to the specified eof. Note, there's no 974 * concurrency during replay. 975 */ 976 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 977 zp->z_size = zfsvfs->z_replay_eof; 978 979 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 980 981 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 982 dmu_tx_commit(tx); 983 984 if (error != 0) 985 break; 986 ASSERT(tx_bytes == nbytes); 987 n -= nbytes; 988 989 if (!xuio && n > 0) 990 uio_prefaultpages(MIN(n, max_blksz), uio); 991 } 992 993 zfs_range_unlock(rl); 994 995 /* 996 * If we're in replay mode, or we made no progress, return error. 997 * Otherwise, it's at least a partial write, so it's successful. 998 */ 999 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1000 ZFS_EXIT(zfsvfs); 1001 return (error); 1002 } 1003 1004 if (ioflag & (FSYNC | FDSYNC) || 1005 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1006 zil_commit(zilog, zp->z_id); 1007 1008 ZFS_EXIT(zfsvfs); 1009 return (0); 1010 } 1011 1012 void 1013 zfs_get_done(zgd_t *zgd, int error) 1014 { 1015 znode_t *zp = zgd->zgd_private; 1016 objset_t *os = zp->z_zfsvfs->z_os; 1017 1018 if (zgd->zgd_db) 1019 dmu_buf_rele(zgd->zgd_db, zgd); 1020 1021 zfs_range_unlock(zgd->zgd_rl); 1022 1023 /* 1024 * Release the vnode asynchronously as we currently have the 1025 * txg stopped from syncing. 1026 */ 1027 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1028 1029 if (error == 0 && zgd->zgd_bp) 1030 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1031 1032 kmem_free(zgd, sizeof (zgd_t)); 1033 } 1034 1035 #ifdef DEBUG 1036 static int zil_fault_io = 0; 1037 #endif 1038 1039 /* 1040 * Get data to generate a TX_WRITE intent log record. 1041 */ 1042 int 1043 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1044 { 1045 zfsvfs_t *zfsvfs = arg; 1046 objset_t *os = zfsvfs->z_os; 1047 znode_t *zp; 1048 uint64_t object = lr->lr_foid; 1049 uint64_t offset = lr->lr_offset; 1050 uint64_t size = lr->lr_length; 1051 blkptr_t *bp = &lr->lr_blkptr; 1052 dmu_buf_t *db; 1053 zgd_t *zgd; 1054 int error = 0; 1055 1056 ASSERT(zio != NULL); 1057 ASSERT(size != 0); 1058 1059 /* 1060 * Nothing to do if the file has been removed 1061 */ 1062 if (zfs_zget(zfsvfs, object, &zp) != 0) 1063 return (SET_ERROR(ENOENT)); 1064 if (zp->z_unlinked) { 1065 /* 1066 * Release the vnode asynchronously as we currently have the 1067 * txg stopped from syncing. 1068 */ 1069 VN_RELE_ASYNC(ZTOV(zp), 1070 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1071 return (SET_ERROR(ENOENT)); 1072 } 1073 1074 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1075 zgd->zgd_zilog = zfsvfs->z_log; 1076 zgd->zgd_private = zp; 1077 1078 /* 1079 * Write records come in two flavors: immediate and indirect. 1080 * For small writes it's cheaper to store the data with the 1081 * log record (immediate); for large writes it's cheaper to 1082 * sync the data and get a pointer to it (indirect) so that 1083 * we don't have to write the data twice. 1084 */ 1085 if (buf != NULL) { /* immediate write */ 1086 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1087 /* test for truncation needs to be done while range locked */ 1088 if (offset >= zp->z_size) { 1089 error = SET_ERROR(ENOENT); 1090 } else { 1091 error = dmu_read(os, object, offset, size, buf, 1092 DMU_READ_NO_PREFETCH); 1093 } 1094 ASSERT(error == 0 || error == ENOENT); 1095 } else { /* indirect write */ 1096 /* 1097 * Have to lock the whole block to ensure when it's 1098 * written out and it's checksum is being calculated 1099 * that no one can change the data. We need to re-check 1100 * blocksize after we get the lock in case it's changed! 1101 */ 1102 for (;;) { 1103 uint64_t blkoff; 1104 size = zp->z_blksz; 1105 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1106 offset -= blkoff; 1107 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1108 RL_READER); 1109 if (zp->z_blksz == size) 1110 break; 1111 offset += blkoff; 1112 zfs_range_unlock(zgd->zgd_rl); 1113 } 1114 /* test for truncation needs to be done while range locked */ 1115 if (lr->lr_offset >= zp->z_size) 1116 error = SET_ERROR(ENOENT); 1117 #ifdef DEBUG 1118 if (zil_fault_io) { 1119 error = SET_ERROR(EIO); 1120 zil_fault_io = 0; 1121 } 1122 #endif 1123 if (error == 0) 1124 error = dmu_buf_hold(os, object, offset, zgd, &db, 1125 DMU_READ_NO_PREFETCH); 1126 1127 if (error == 0) { 1128 blkptr_t *obp = dmu_buf_get_blkptr(db); 1129 if (obp) { 1130 ASSERT(BP_IS_HOLE(bp)); 1131 *bp = *obp; 1132 } 1133 1134 zgd->zgd_db = db; 1135 zgd->zgd_bp = bp; 1136 1137 ASSERT(db->db_offset == offset); 1138 ASSERT(db->db_size == size); 1139 1140 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1141 zfs_get_done, zgd); 1142 ASSERT(error || lr->lr_length <= zp->z_blksz); 1143 1144 /* 1145 * On success, we need to wait for the write I/O 1146 * initiated by dmu_sync() to complete before we can 1147 * release this dbuf. We will finish everything up 1148 * in the zfs_get_done() callback. 1149 */ 1150 if (error == 0) 1151 return (0); 1152 1153 if (error == EALREADY) { 1154 lr->lr_common.lrc_txtype = TX_WRITE2; 1155 error = 0; 1156 } 1157 } 1158 } 1159 1160 zfs_get_done(zgd, error); 1161 1162 return (error); 1163 } 1164 1165 /*ARGSUSED*/ 1166 static int 1167 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1168 caller_context_t *ct) 1169 { 1170 znode_t *zp = VTOZ(vp); 1171 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1172 int error; 1173 1174 ZFS_ENTER(zfsvfs); 1175 ZFS_VERIFY_ZP(zp); 1176 1177 if (flag & V_ACE_MASK) 1178 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1179 else 1180 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1181 1182 ZFS_EXIT(zfsvfs); 1183 return (error); 1184 } 1185 1186 /* 1187 * If vnode is for a device return a specfs vnode instead. 1188 */ 1189 static int 1190 specvp_check(vnode_t **vpp, cred_t *cr) 1191 { 1192 int error = 0; 1193 1194 if (IS_DEVVP(*vpp)) { 1195 struct vnode *svp; 1196 1197 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1198 VN_RELE(*vpp); 1199 if (svp == NULL) 1200 error = SET_ERROR(ENOSYS); 1201 *vpp = svp; 1202 } 1203 return (error); 1204 } 1205 1206 1207 /* 1208 * Lookup an entry in a directory, or an extended attribute directory. 1209 * If it exists, return a held vnode reference for it. 1210 * 1211 * IN: dvp - vnode of directory to search. 1212 * nm - name of entry to lookup. 1213 * pnp - full pathname to lookup [UNUSED]. 1214 * flags - LOOKUP_XATTR set if looking for an attribute. 1215 * rdir - root directory vnode [UNUSED]. 1216 * cr - credentials of caller. 1217 * ct - caller context 1218 * direntflags - directory lookup flags 1219 * realpnp - returned pathname. 1220 * 1221 * OUT: vpp - vnode of located entry, NULL if not found. 1222 * 1223 * RETURN: 0 on success, error code on failure. 1224 * 1225 * Timestamps: 1226 * NA 1227 */ 1228 /* ARGSUSED */ 1229 static int 1230 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1231 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1232 int *direntflags, pathname_t *realpnp) 1233 { 1234 znode_t *zdp = VTOZ(dvp); 1235 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1236 int error = 0; 1237 1238 /* fast path */ 1239 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1240 1241 if (dvp->v_type != VDIR) { 1242 return (SET_ERROR(ENOTDIR)); 1243 } else if (zdp->z_sa_hdl == NULL) { 1244 return (SET_ERROR(EIO)); 1245 } 1246 1247 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1248 error = zfs_fastaccesschk_execute(zdp, cr); 1249 if (!error) { 1250 *vpp = dvp; 1251 VN_HOLD(*vpp); 1252 return (0); 1253 } 1254 return (error); 1255 } else { 1256 vnode_t *tvp = dnlc_lookup(dvp, nm); 1257 1258 if (tvp) { 1259 error = zfs_fastaccesschk_execute(zdp, cr); 1260 if (error) { 1261 VN_RELE(tvp); 1262 return (error); 1263 } 1264 if (tvp == DNLC_NO_VNODE) { 1265 VN_RELE(tvp); 1266 return (SET_ERROR(ENOENT)); 1267 } else { 1268 *vpp = tvp; 1269 return (specvp_check(vpp, cr)); 1270 } 1271 } 1272 } 1273 } 1274 1275 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1276 1277 ZFS_ENTER(zfsvfs); 1278 ZFS_VERIFY_ZP(zdp); 1279 1280 *vpp = NULL; 1281 1282 if (flags & LOOKUP_XATTR) { 1283 /* 1284 * If the xattr property is off, refuse the lookup request. 1285 */ 1286 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1287 ZFS_EXIT(zfsvfs); 1288 return (SET_ERROR(EINVAL)); 1289 } 1290 1291 /* 1292 * We don't allow recursive attributes.. 1293 * Maybe someday we will. 1294 */ 1295 if (zdp->z_pflags & ZFS_XATTR) { 1296 ZFS_EXIT(zfsvfs); 1297 return (SET_ERROR(EINVAL)); 1298 } 1299 1300 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1301 ZFS_EXIT(zfsvfs); 1302 return (error); 1303 } 1304 1305 /* 1306 * Do we have permission to get into attribute directory? 1307 */ 1308 1309 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1310 B_FALSE, cr)) { 1311 VN_RELE(*vpp); 1312 *vpp = NULL; 1313 } 1314 1315 ZFS_EXIT(zfsvfs); 1316 return (error); 1317 } 1318 1319 if (dvp->v_type != VDIR) { 1320 ZFS_EXIT(zfsvfs); 1321 return (SET_ERROR(ENOTDIR)); 1322 } 1323 1324 /* 1325 * Check accessibility of directory. 1326 */ 1327 1328 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1329 ZFS_EXIT(zfsvfs); 1330 return (error); 1331 } 1332 1333 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1334 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1335 ZFS_EXIT(zfsvfs); 1336 return (SET_ERROR(EILSEQ)); 1337 } 1338 1339 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1340 if (error == 0) 1341 error = specvp_check(vpp, cr); 1342 1343 ZFS_EXIT(zfsvfs); 1344 return (error); 1345 } 1346 1347 /* 1348 * Attempt to create a new entry in a directory. If the entry 1349 * already exists, truncate the file if permissible, else return 1350 * an error. Return the vp of the created or trunc'd file. 1351 * 1352 * IN: dvp - vnode of directory to put new file entry in. 1353 * name - name of new file entry. 1354 * vap - attributes of new file. 1355 * excl - flag indicating exclusive or non-exclusive mode. 1356 * mode - mode to open file with. 1357 * cr - credentials of caller. 1358 * flag - large file flag [UNUSED]. 1359 * ct - caller context 1360 * vsecp - ACL to be set 1361 * 1362 * OUT: vpp - vnode of created or trunc'd entry. 1363 * 1364 * RETURN: 0 on success, error code on failure. 1365 * 1366 * Timestamps: 1367 * dvp - ctime|mtime updated if new entry created 1368 * vp - ctime|mtime always, atime if new 1369 */ 1370 1371 /* ARGSUSED */ 1372 static int 1373 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1374 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1375 vsecattr_t *vsecp) 1376 { 1377 znode_t *zp, *dzp = VTOZ(dvp); 1378 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1379 zilog_t *zilog; 1380 objset_t *os; 1381 zfs_dirlock_t *dl; 1382 dmu_tx_t *tx; 1383 int error; 1384 ksid_t *ksid; 1385 uid_t uid; 1386 gid_t gid = crgetgid(cr); 1387 zfs_acl_ids_t acl_ids; 1388 boolean_t fuid_dirtied; 1389 boolean_t have_acl = B_FALSE; 1390 boolean_t waited = B_FALSE; 1391 1392 /* 1393 * If we have an ephemeral id, ACL, or XVATTR then 1394 * make sure file system is at proper version 1395 */ 1396 1397 ksid = crgetsid(cr, KSID_OWNER); 1398 if (ksid) 1399 uid = ksid_getid(ksid); 1400 else 1401 uid = crgetuid(cr); 1402 1403 if (zfsvfs->z_use_fuids == B_FALSE && 1404 (vsecp || (vap->va_mask & AT_XVATTR) || 1405 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1406 return (SET_ERROR(EINVAL)); 1407 1408 ZFS_ENTER(zfsvfs); 1409 ZFS_VERIFY_ZP(dzp); 1410 os = zfsvfs->z_os; 1411 zilog = zfsvfs->z_log; 1412 1413 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1414 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1415 ZFS_EXIT(zfsvfs); 1416 return (SET_ERROR(EILSEQ)); 1417 } 1418 1419 if (vap->va_mask & AT_XVATTR) { 1420 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1421 crgetuid(cr), cr, vap->va_type)) != 0) { 1422 ZFS_EXIT(zfsvfs); 1423 return (error); 1424 } 1425 } 1426 top: 1427 *vpp = NULL; 1428 1429 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1430 vap->va_mode &= ~VSVTX; 1431 1432 if (*name == '\0') { 1433 /* 1434 * Null component name refers to the directory itself. 1435 */ 1436 VN_HOLD(dvp); 1437 zp = dzp; 1438 dl = NULL; 1439 error = 0; 1440 } else { 1441 /* possible VN_HOLD(zp) */ 1442 int zflg = 0; 1443 1444 if (flag & FIGNORECASE) 1445 zflg |= ZCILOOK; 1446 1447 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1448 NULL, NULL); 1449 if (error) { 1450 if (have_acl) 1451 zfs_acl_ids_free(&acl_ids); 1452 if (strcmp(name, "..") == 0) 1453 error = SET_ERROR(EISDIR); 1454 ZFS_EXIT(zfsvfs); 1455 return (error); 1456 } 1457 } 1458 1459 if (zp == NULL) { 1460 uint64_t txtype; 1461 1462 /* 1463 * Create a new file object and update the directory 1464 * to reference it. 1465 */ 1466 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1467 if (have_acl) 1468 zfs_acl_ids_free(&acl_ids); 1469 goto out; 1470 } 1471 1472 /* 1473 * We only support the creation of regular files in 1474 * extended attribute directories. 1475 */ 1476 1477 if ((dzp->z_pflags & ZFS_XATTR) && 1478 (vap->va_type != VREG)) { 1479 if (have_acl) 1480 zfs_acl_ids_free(&acl_ids); 1481 error = SET_ERROR(EINVAL); 1482 goto out; 1483 } 1484 1485 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1486 cr, vsecp, &acl_ids)) != 0) 1487 goto out; 1488 have_acl = B_TRUE; 1489 1490 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1491 zfs_acl_ids_free(&acl_ids); 1492 error = SET_ERROR(EDQUOT); 1493 goto out; 1494 } 1495 1496 tx = dmu_tx_create(os); 1497 1498 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1499 ZFS_SA_BASE_ATTR_SIZE); 1500 1501 fuid_dirtied = zfsvfs->z_fuid_dirty; 1502 if (fuid_dirtied) 1503 zfs_fuid_txhold(zfsvfs, tx); 1504 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1505 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1506 if (!zfsvfs->z_use_sa && 1507 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1508 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1509 0, acl_ids.z_aclp->z_acl_bytes); 1510 } 1511 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1512 if (error) { 1513 zfs_dirent_unlock(dl); 1514 if (error == ERESTART) { 1515 waited = B_TRUE; 1516 dmu_tx_wait(tx); 1517 dmu_tx_abort(tx); 1518 goto top; 1519 } 1520 zfs_acl_ids_free(&acl_ids); 1521 dmu_tx_abort(tx); 1522 ZFS_EXIT(zfsvfs); 1523 return (error); 1524 } 1525 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1526 1527 if (fuid_dirtied) 1528 zfs_fuid_sync(zfsvfs, tx); 1529 1530 (void) zfs_link_create(dl, zp, tx, ZNEW); 1531 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1532 if (flag & FIGNORECASE) 1533 txtype |= TX_CI; 1534 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1535 vsecp, acl_ids.z_fuidp, vap); 1536 zfs_acl_ids_free(&acl_ids); 1537 dmu_tx_commit(tx); 1538 } else { 1539 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1540 1541 if (have_acl) 1542 zfs_acl_ids_free(&acl_ids); 1543 have_acl = B_FALSE; 1544 1545 /* 1546 * A directory entry already exists for this name. 1547 */ 1548 /* 1549 * Can't truncate an existing file if in exclusive mode. 1550 */ 1551 if (excl == EXCL) { 1552 error = SET_ERROR(EEXIST); 1553 goto out; 1554 } 1555 /* 1556 * Can't open a directory for writing. 1557 */ 1558 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1559 error = SET_ERROR(EISDIR); 1560 goto out; 1561 } 1562 /* 1563 * Verify requested access to file. 1564 */ 1565 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1566 goto out; 1567 } 1568 1569 mutex_enter(&dzp->z_lock); 1570 dzp->z_seq++; 1571 mutex_exit(&dzp->z_lock); 1572 1573 /* 1574 * Truncate regular files if requested. 1575 */ 1576 if ((ZTOV(zp)->v_type == VREG) && 1577 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1578 /* we can't hold any locks when calling zfs_freesp() */ 1579 zfs_dirent_unlock(dl); 1580 dl = NULL; 1581 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1582 if (error == 0) { 1583 vnevent_create(ZTOV(zp), ct); 1584 } 1585 } 1586 } 1587 out: 1588 1589 if (dl) 1590 zfs_dirent_unlock(dl); 1591 1592 if (error) { 1593 if (zp) 1594 VN_RELE(ZTOV(zp)); 1595 } else { 1596 *vpp = ZTOV(zp); 1597 error = specvp_check(vpp, cr); 1598 } 1599 1600 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1601 zil_commit(zilog, 0); 1602 1603 ZFS_EXIT(zfsvfs); 1604 return (error); 1605 } 1606 1607 /* 1608 * Remove an entry from a directory. 1609 * 1610 * IN: dvp - vnode of directory to remove entry from. 1611 * name - name of entry to remove. 1612 * cr - credentials of caller. 1613 * ct - caller context 1614 * flags - case flags 1615 * 1616 * RETURN: 0 on success, error code on failure. 1617 * 1618 * Timestamps: 1619 * dvp - ctime|mtime 1620 * vp - ctime (if nlink > 0) 1621 */ 1622 1623 uint64_t null_xattr = 0; 1624 1625 /*ARGSUSED*/ 1626 static int 1627 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1628 int flags) 1629 { 1630 znode_t *zp, *dzp = VTOZ(dvp); 1631 znode_t *xzp; 1632 vnode_t *vp; 1633 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1634 zilog_t *zilog; 1635 uint64_t acl_obj, xattr_obj; 1636 uint64_t xattr_obj_unlinked = 0; 1637 uint64_t obj = 0; 1638 zfs_dirlock_t *dl; 1639 dmu_tx_t *tx; 1640 boolean_t may_delete_now, delete_now = FALSE; 1641 boolean_t unlinked, toobig = FALSE; 1642 uint64_t txtype; 1643 pathname_t *realnmp = NULL; 1644 pathname_t realnm; 1645 int error; 1646 int zflg = ZEXISTS; 1647 boolean_t waited = B_FALSE; 1648 1649 ZFS_ENTER(zfsvfs); 1650 ZFS_VERIFY_ZP(dzp); 1651 zilog = zfsvfs->z_log; 1652 1653 if (flags & FIGNORECASE) { 1654 zflg |= ZCILOOK; 1655 pn_alloc(&realnm); 1656 realnmp = &realnm; 1657 } 1658 1659 top: 1660 xattr_obj = 0; 1661 xzp = NULL; 1662 /* 1663 * Attempt to lock directory; fail if entry doesn't exist. 1664 */ 1665 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1666 NULL, realnmp)) { 1667 if (realnmp) 1668 pn_free(realnmp); 1669 ZFS_EXIT(zfsvfs); 1670 return (error); 1671 } 1672 1673 vp = ZTOV(zp); 1674 1675 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1676 goto out; 1677 } 1678 1679 /* 1680 * Need to use rmdir for removing directories. 1681 */ 1682 if (vp->v_type == VDIR) { 1683 error = SET_ERROR(EPERM); 1684 goto out; 1685 } 1686 1687 vnevent_remove(vp, dvp, name, ct); 1688 1689 if (realnmp) 1690 dnlc_remove(dvp, realnmp->pn_buf); 1691 else 1692 dnlc_remove(dvp, name); 1693 1694 mutex_enter(&vp->v_lock); 1695 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1696 mutex_exit(&vp->v_lock); 1697 1698 /* 1699 * We may delete the znode now, or we may put it in the unlinked set; 1700 * it depends on whether we're the last link, and on whether there are 1701 * other holds on the vnode. So we dmu_tx_hold() the right things to 1702 * allow for either case. 1703 */ 1704 obj = zp->z_id; 1705 tx = dmu_tx_create(zfsvfs->z_os); 1706 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1707 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1708 zfs_sa_upgrade_txholds(tx, zp); 1709 zfs_sa_upgrade_txholds(tx, dzp); 1710 if (may_delete_now) { 1711 toobig = 1712 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1713 /* if the file is too big, only hold_free a token amount */ 1714 dmu_tx_hold_free(tx, zp->z_id, 0, 1715 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1716 } 1717 1718 /* are there any extended attributes? */ 1719 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1720 &xattr_obj, sizeof (xattr_obj)); 1721 if (error == 0 && xattr_obj) { 1722 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1723 ASSERT0(error); 1724 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1725 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1726 } 1727 1728 mutex_enter(&zp->z_lock); 1729 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1730 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1731 mutex_exit(&zp->z_lock); 1732 1733 /* charge as an update -- would be nice not to charge at all */ 1734 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1735 1736 /* 1737 * Mark this transaction as typically resulting in a net free of 1738 * space, unless object removal will be delayed indefinitely 1739 * (due to active holds on the vnode due to the file being open). 1740 */ 1741 if (may_delete_now) 1742 dmu_tx_mark_netfree(tx); 1743 1744 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1745 if (error) { 1746 zfs_dirent_unlock(dl); 1747 VN_RELE(vp); 1748 if (xzp) 1749 VN_RELE(ZTOV(xzp)); 1750 if (error == ERESTART) { 1751 waited = B_TRUE; 1752 dmu_tx_wait(tx); 1753 dmu_tx_abort(tx); 1754 goto top; 1755 } 1756 if (realnmp) 1757 pn_free(realnmp); 1758 dmu_tx_abort(tx); 1759 ZFS_EXIT(zfsvfs); 1760 return (error); 1761 } 1762 1763 /* 1764 * Remove the directory entry. 1765 */ 1766 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1767 1768 if (error) { 1769 dmu_tx_commit(tx); 1770 goto out; 1771 } 1772 1773 if (unlinked) { 1774 /* 1775 * Hold z_lock so that we can make sure that the ACL obj 1776 * hasn't changed. Could have been deleted due to 1777 * zfs_sa_upgrade(). 1778 */ 1779 mutex_enter(&zp->z_lock); 1780 mutex_enter(&vp->v_lock); 1781 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1782 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1783 delete_now = may_delete_now && !toobig && 1784 vp->v_count == 1 && !vn_has_cached_data(vp) && 1785 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1786 acl_obj; 1787 mutex_exit(&vp->v_lock); 1788 } 1789 1790 if (delete_now) { 1791 if (xattr_obj_unlinked) { 1792 ASSERT3U(xzp->z_links, ==, 2); 1793 mutex_enter(&xzp->z_lock); 1794 xzp->z_unlinked = 1; 1795 xzp->z_links = 0; 1796 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1797 &xzp->z_links, sizeof (xzp->z_links), tx); 1798 ASSERT3U(error, ==, 0); 1799 mutex_exit(&xzp->z_lock); 1800 zfs_unlinked_add(xzp, tx); 1801 1802 if (zp->z_is_sa) 1803 error = sa_remove(zp->z_sa_hdl, 1804 SA_ZPL_XATTR(zfsvfs), tx); 1805 else 1806 error = sa_update(zp->z_sa_hdl, 1807 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1808 sizeof (uint64_t), tx); 1809 ASSERT0(error); 1810 } 1811 mutex_enter(&vp->v_lock); 1812 vp->v_count--; 1813 ASSERT0(vp->v_count); 1814 mutex_exit(&vp->v_lock); 1815 mutex_exit(&zp->z_lock); 1816 zfs_znode_delete(zp, tx); 1817 } else if (unlinked) { 1818 mutex_exit(&zp->z_lock); 1819 zfs_unlinked_add(zp, tx); 1820 } 1821 1822 txtype = TX_REMOVE; 1823 if (flags & FIGNORECASE) 1824 txtype |= TX_CI; 1825 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1826 1827 dmu_tx_commit(tx); 1828 out: 1829 if (realnmp) 1830 pn_free(realnmp); 1831 1832 zfs_dirent_unlock(dl); 1833 1834 if (!delete_now) 1835 VN_RELE(vp); 1836 if (xzp) 1837 VN_RELE(ZTOV(xzp)); 1838 1839 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1840 zil_commit(zilog, 0); 1841 1842 ZFS_EXIT(zfsvfs); 1843 return (error); 1844 } 1845 1846 /* 1847 * Create a new directory and insert it into dvp using the name 1848 * provided. Return a pointer to the inserted directory. 1849 * 1850 * IN: dvp - vnode of directory to add subdir to. 1851 * dirname - name of new directory. 1852 * vap - attributes of new directory. 1853 * cr - credentials of caller. 1854 * ct - caller context 1855 * flags - case flags 1856 * vsecp - ACL to be set 1857 * 1858 * OUT: vpp - vnode of created directory. 1859 * 1860 * RETURN: 0 on success, error code on failure. 1861 * 1862 * Timestamps: 1863 * dvp - ctime|mtime updated 1864 * vp - ctime|mtime|atime updated 1865 */ 1866 /*ARGSUSED*/ 1867 static int 1868 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1869 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1870 { 1871 znode_t *zp, *dzp = VTOZ(dvp); 1872 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1873 zilog_t *zilog; 1874 zfs_dirlock_t *dl; 1875 uint64_t txtype; 1876 dmu_tx_t *tx; 1877 int error; 1878 int zf = ZNEW; 1879 ksid_t *ksid; 1880 uid_t uid; 1881 gid_t gid = crgetgid(cr); 1882 zfs_acl_ids_t acl_ids; 1883 boolean_t fuid_dirtied; 1884 boolean_t waited = B_FALSE; 1885 1886 ASSERT(vap->va_type == VDIR); 1887 1888 /* 1889 * If we have an ephemeral id, ACL, or XVATTR then 1890 * make sure file system is at proper version 1891 */ 1892 1893 ksid = crgetsid(cr, KSID_OWNER); 1894 if (ksid) 1895 uid = ksid_getid(ksid); 1896 else 1897 uid = crgetuid(cr); 1898 if (zfsvfs->z_use_fuids == B_FALSE && 1899 (vsecp || (vap->va_mask & AT_XVATTR) || 1900 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1901 return (SET_ERROR(EINVAL)); 1902 1903 ZFS_ENTER(zfsvfs); 1904 ZFS_VERIFY_ZP(dzp); 1905 zilog = zfsvfs->z_log; 1906 1907 if (dzp->z_pflags & ZFS_XATTR) { 1908 ZFS_EXIT(zfsvfs); 1909 return (SET_ERROR(EINVAL)); 1910 } 1911 1912 if (zfsvfs->z_utf8 && u8_validate(dirname, 1913 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1914 ZFS_EXIT(zfsvfs); 1915 return (SET_ERROR(EILSEQ)); 1916 } 1917 if (flags & FIGNORECASE) 1918 zf |= ZCILOOK; 1919 1920 if (vap->va_mask & AT_XVATTR) { 1921 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1922 crgetuid(cr), cr, vap->va_type)) != 0) { 1923 ZFS_EXIT(zfsvfs); 1924 return (error); 1925 } 1926 } 1927 1928 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1929 vsecp, &acl_ids)) != 0) { 1930 ZFS_EXIT(zfsvfs); 1931 return (error); 1932 } 1933 /* 1934 * First make sure the new directory doesn't exist. 1935 * 1936 * Existence is checked first to make sure we don't return 1937 * EACCES instead of EEXIST which can cause some applications 1938 * to fail. 1939 */ 1940 top: 1941 *vpp = NULL; 1942 1943 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1944 NULL, NULL)) { 1945 zfs_acl_ids_free(&acl_ids); 1946 ZFS_EXIT(zfsvfs); 1947 return (error); 1948 } 1949 1950 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1951 zfs_acl_ids_free(&acl_ids); 1952 zfs_dirent_unlock(dl); 1953 ZFS_EXIT(zfsvfs); 1954 return (error); 1955 } 1956 1957 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1958 zfs_acl_ids_free(&acl_ids); 1959 zfs_dirent_unlock(dl); 1960 ZFS_EXIT(zfsvfs); 1961 return (SET_ERROR(EDQUOT)); 1962 } 1963 1964 /* 1965 * Add a new entry to the directory. 1966 */ 1967 tx = dmu_tx_create(zfsvfs->z_os); 1968 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1969 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1970 fuid_dirtied = zfsvfs->z_fuid_dirty; 1971 if (fuid_dirtied) 1972 zfs_fuid_txhold(zfsvfs, tx); 1973 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1974 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1975 acl_ids.z_aclp->z_acl_bytes); 1976 } 1977 1978 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1979 ZFS_SA_BASE_ATTR_SIZE); 1980 1981 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1982 if (error) { 1983 zfs_dirent_unlock(dl); 1984 if (error == ERESTART) { 1985 waited = B_TRUE; 1986 dmu_tx_wait(tx); 1987 dmu_tx_abort(tx); 1988 goto top; 1989 } 1990 zfs_acl_ids_free(&acl_ids); 1991 dmu_tx_abort(tx); 1992 ZFS_EXIT(zfsvfs); 1993 return (error); 1994 } 1995 1996 /* 1997 * Create new node. 1998 */ 1999 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 2000 2001 if (fuid_dirtied) 2002 zfs_fuid_sync(zfsvfs, tx); 2003 2004 /* 2005 * Now put new name in parent dir. 2006 */ 2007 (void) zfs_link_create(dl, zp, tx, ZNEW); 2008 2009 *vpp = ZTOV(zp); 2010 2011 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2012 if (flags & FIGNORECASE) 2013 txtype |= TX_CI; 2014 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2015 acl_ids.z_fuidp, vap); 2016 2017 zfs_acl_ids_free(&acl_ids); 2018 2019 dmu_tx_commit(tx); 2020 2021 zfs_dirent_unlock(dl); 2022 2023 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2024 zil_commit(zilog, 0); 2025 2026 ZFS_EXIT(zfsvfs); 2027 return (0); 2028 } 2029 2030 /* 2031 * Remove a directory subdir entry. If the current working 2032 * directory is the same as the subdir to be removed, the 2033 * remove will fail. 2034 * 2035 * IN: dvp - vnode of directory to remove from. 2036 * name - name of directory to be removed. 2037 * cwd - vnode of current working directory. 2038 * cr - credentials of caller. 2039 * ct - caller context 2040 * flags - case flags 2041 * 2042 * RETURN: 0 on success, error code on failure. 2043 * 2044 * Timestamps: 2045 * dvp - ctime|mtime updated 2046 */ 2047 /*ARGSUSED*/ 2048 static int 2049 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2050 caller_context_t *ct, int flags) 2051 { 2052 znode_t *dzp = VTOZ(dvp); 2053 znode_t *zp; 2054 vnode_t *vp; 2055 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2056 zilog_t *zilog; 2057 zfs_dirlock_t *dl; 2058 dmu_tx_t *tx; 2059 int error; 2060 int zflg = ZEXISTS; 2061 boolean_t waited = B_FALSE; 2062 2063 ZFS_ENTER(zfsvfs); 2064 ZFS_VERIFY_ZP(dzp); 2065 zilog = zfsvfs->z_log; 2066 2067 if (flags & FIGNORECASE) 2068 zflg |= ZCILOOK; 2069 top: 2070 zp = NULL; 2071 2072 /* 2073 * Attempt to lock directory; fail if entry doesn't exist. 2074 */ 2075 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2076 NULL, NULL)) { 2077 ZFS_EXIT(zfsvfs); 2078 return (error); 2079 } 2080 2081 vp = ZTOV(zp); 2082 2083 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2084 goto out; 2085 } 2086 2087 if (vp->v_type != VDIR) { 2088 error = SET_ERROR(ENOTDIR); 2089 goto out; 2090 } 2091 2092 if (vp == cwd) { 2093 error = SET_ERROR(EINVAL); 2094 goto out; 2095 } 2096 2097 vnevent_rmdir(vp, dvp, name, ct); 2098 2099 /* 2100 * Grab a lock on the directory to make sure that noone is 2101 * trying to add (or lookup) entries while we are removing it. 2102 */ 2103 rw_enter(&zp->z_name_lock, RW_WRITER); 2104 2105 /* 2106 * Grab a lock on the parent pointer to make sure we play well 2107 * with the treewalk and directory rename code. 2108 */ 2109 rw_enter(&zp->z_parent_lock, RW_WRITER); 2110 2111 tx = dmu_tx_create(zfsvfs->z_os); 2112 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2113 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2114 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2115 zfs_sa_upgrade_txholds(tx, zp); 2116 zfs_sa_upgrade_txholds(tx, dzp); 2117 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2118 if (error) { 2119 rw_exit(&zp->z_parent_lock); 2120 rw_exit(&zp->z_name_lock); 2121 zfs_dirent_unlock(dl); 2122 VN_RELE(vp); 2123 if (error == ERESTART) { 2124 waited = B_TRUE; 2125 dmu_tx_wait(tx); 2126 dmu_tx_abort(tx); 2127 goto top; 2128 } 2129 dmu_tx_abort(tx); 2130 ZFS_EXIT(zfsvfs); 2131 return (error); 2132 } 2133 2134 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2135 2136 if (error == 0) { 2137 uint64_t txtype = TX_RMDIR; 2138 if (flags & FIGNORECASE) 2139 txtype |= TX_CI; 2140 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2141 } 2142 2143 dmu_tx_commit(tx); 2144 2145 rw_exit(&zp->z_parent_lock); 2146 rw_exit(&zp->z_name_lock); 2147 out: 2148 zfs_dirent_unlock(dl); 2149 2150 VN_RELE(vp); 2151 2152 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2153 zil_commit(zilog, 0); 2154 2155 ZFS_EXIT(zfsvfs); 2156 return (error); 2157 } 2158 2159 /* 2160 * Read as many directory entries as will fit into the provided 2161 * buffer from the given directory cursor position (specified in 2162 * the uio structure). 2163 * 2164 * IN: vp - vnode of directory to read. 2165 * uio - structure supplying read location, range info, 2166 * and return buffer. 2167 * cr - credentials of caller. 2168 * ct - caller context 2169 * flags - case flags 2170 * 2171 * OUT: uio - updated offset and range, buffer filled. 2172 * eofp - set to true if end-of-file detected. 2173 * 2174 * RETURN: 0 on success, error code on failure. 2175 * 2176 * Timestamps: 2177 * vp - atime updated 2178 * 2179 * Note that the low 4 bits of the cookie returned by zap is always zero. 2180 * This allows us to use the low range for "special" directory entries: 2181 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2182 * we use the offset 2 for the '.zfs' directory. 2183 */ 2184 /* ARGSUSED */ 2185 static int 2186 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2187 caller_context_t *ct, int flags) 2188 { 2189 znode_t *zp = VTOZ(vp); 2190 iovec_t *iovp; 2191 edirent_t *eodp; 2192 dirent64_t *odp; 2193 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2194 objset_t *os; 2195 caddr_t outbuf; 2196 size_t bufsize; 2197 zap_cursor_t zc; 2198 zap_attribute_t zap; 2199 uint_t bytes_wanted; 2200 uint64_t offset; /* must be unsigned; checks for < 1 */ 2201 uint64_t parent; 2202 int local_eof; 2203 int outcount; 2204 int error; 2205 uint8_t prefetch; 2206 boolean_t check_sysattrs; 2207 2208 ZFS_ENTER(zfsvfs); 2209 ZFS_VERIFY_ZP(zp); 2210 2211 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2212 &parent, sizeof (parent))) != 0) { 2213 ZFS_EXIT(zfsvfs); 2214 return (error); 2215 } 2216 2217 /* 2218 * If we are not given an eof variable, 2219 * use a local one. 2220 */ 2221 if (eofp == NULL) 2222 eofp = &local_eof; 2223 2224 /* 2225 * Check for valid iov_len. 2226 */ 2227 if (uio->uio_iov->iov_len <= 0) { 2228 ZFS_EXIT(zfsvfs); 2229 return (SET_ERROR(EINVAL)); 2230 } 2231 2232 /* 2233 * Quit if directory has been removed (posix) 2234 */ 2235 if ((*eofp = zp->z_unlinked) != 0) { 2236 ZFS_EXIT(zfsvfs); 2237 return (0); 2238 } 2239 2240 error = 0; 2241 os = zfsvfs->z_os; 2242 offset = uio->uio_loffset; 2243 prefetch = zp->z_zn_prefetch; 2244 2245 /* 2246 * Initialize the iterator cursor. 2247 */ 2248 if (offset <= 3) { 2249 /* 2250 * Start iteration from the beginning of the directory. 2251 */ 2252 zap_cursor_init(&zc, os, zp->z_id); 2253 } else { 2254 /* 2255 * The offset is a serialized cursor. 2256 */ 2257 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2258 } 2259 2260 /* 2261 * Get space to change directory entries into fs independent format. 2262 */ 2263 iovp = uio->uio_iov; 2264 bytes_wanted = iovp->iov_len; 2265 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2266 bufsize = bytes_wanted; 2267 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2268 odp = (struct dirent64 *)outbuf; 2269 } else { 2270 bufsize = bytes_wanted; 2271 outbuf = NULL; 2272 odp = (struct dirent64 *)iovp->iov_base; 2273 } 2274 eodp = (struct edirent *)odp; 2275 2276 /* 2277 * If this VFS supports the system attribute view interface; and 2278 * we're looking at an extended attribute directory; and we care 2279 * about normalization conflicts on this vfs; then we must check 2280 * for normalization conflicts with the sysattr name space. 2281 */ 2282 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2283 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2284 (flags & V_RDDIR_ENTFLAGS); 2285 2286 /* 2287 * Transform to file-system independent format 2288 */ 2289 outcount = 0; 2290 while (outcount < bytes_wanted) { 2291 ino64_t objnum; 2292 ushort_t reclen; 2293 off64_t *next = NULL; 2294 2295 /* 2296 * Special case `.', `..', and `.zfs'. 2297 */ 2298 if (offset == 0) { 2299 (void) strcpy(zap.za_name, "."); 2300 zap.za_normalization_conflict = 0; 2301 objnum = zp->z_id; 2302 } else if (offset == 1) { 2303 (void) strcpy(zap.za_name, ".."); 2304 zap.za_normalization_conflict = 0; 2305 objnum = parent; 2306 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2307 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2308 zap.za_normalization_conflict = 0; 2309 objnum = ZFSCTL_INO_ROOT; 2310 } else { 2311 /* 2312 * Grab next entry. 2313 */ 2314 if (error = zap_cursor_retrieve(&zc, &zap)) { 2315 if ((*eofp = (error == ENOENT)) != 0) 2316 break; 2317 else 2318 goto update; 2319 } 2320 2321 if (zap.za_integer_length != 8 || 2322 zap.za_num_integers != 1) { 2323 cmn_err(CE_WARN, "zap_readdir: bad directory " 2324 "entry, obj = %lld, offset = %lld\n", 2325 (u_longlong_t)zp->z_id, 2326 (u_longlong_t)offset); 2327 error = SET_ERROR(ENXIO); 2328 goto update; 2329 } 2330 2331 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2332 /* 2333 * MacOS X can extract the object type here such as: 2334 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2335 */ 2336 2337 if (check_sysattrs && !zap.za_normalization_conflict) { 2338 zap.za_normalization_conflict = 2339 xattr_sysattr_casechk(zap.za_name); 2340 } 2341 } 2342 2343 if (flags & V_RDDIR_ACCFILTER) { 2344 /* 2345 * If we have no access at all, don't include 2346 * this entry in the returned information 2347 */ 2348 znode_t *ezp; 2349 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2350 goto skip_entry; 2351 if (!zfs_has_access(ezp, cr)) { 2352 VN_RELE(ZTOV(ezp)); 2353 goto skip_entry; 2354 } 2355 VN_RELE(ZTOV(ezp)); 2356 } 2357 2358 if (flags & V_RDDIR_ENTFLAGS) 2359 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2360 else 2361 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2362 2363 /* 2364 * Will this entry fit in the buffer? 2365 */ 2366 if (outcount + reclen > bufsize) { 2367 /* 2368 * Did we manage to fit anything in the buffer? 2369 */ 2370 if (!outcount) { 2371 error = SET_ERROR(EINVAL); 2372 goto update; 2373 } 2374 break; 2375 } 2376 if (flags & V_RDDIR_ENTFLAGS) { 2377 /* 2378 * Add extended flag entry: 2379 */ 2380 eodp->ed_ino = objnum; 2381 eodp->ed_reclen = reclen; 2382 /* NOTE: ed_off is the offset for the *next* entry */ 2383 next = &(eodp->ed_off); 2384 eodp->ed_eflags = zap.za_normalization_conflict ? 2385 ED_CASE_CONFLICT : 0; 2386 (void) strncpy(eodp->ed_name, zap.za_name, 2387 EDIRENT_NAMELEN(reclen)); 2388 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2389 } else { 2390 /* 2391 * Add normal entry: 2392 */ 2393 odp->d_ino = objnum; 2394 odp->d_reclen = reclen; 2395 /* NOTE: d_off is the offset for the *next* entry */ 2396 next = &(odp->d_off); 2397 (void) strncpy(odp->d_name, zap.za_name, 2398 DIRENT64_NAMELEN(reclen)); 2399 odp = (dirent64_t *)((intptr_t)odp + reclen); 2400 } 2401 outcount += reclen; 2402 2403 ASSERT(outcount <= bufsize); 2404 2405 /* Prefetch znode */ 2406 if (prefetch) 2407 dmu_prefetch(os, objnum, 0, 0); 2408 2409 skip_entry: 2410 /* 2411 * Move to the next entry, fill in the previous offset. 2412 */ 2413 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2414 zap_cursor_advance(&zc); 2415 offset = zap_cursor_serialize(&zc); 2416 } else { 2417 offset += 1; 2418 } 2419 if (next) 2420 *next = offset; 2421 } 2422 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2423 2424 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2425 iovp->iov_base += outcount; 2426 iovp->iov_len -= outcount; 2427 uio->uio_resid -= outcount; 2428 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2429 /* 2430 * Reset the pointer. 2431 */ 2432 offset = uio->uio_loffset; 2433 } 2434 2435 update: 2436 zap_cursor_fini(&zc); 2437 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2438 kmem_free(outbuf, bufsize); 2439 2440 if (error == ENOENT) 2441 error = 0; 2442 2443 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2444 2445 uio->uio_loffset = offset; 2446 ZFS_EXIT(zfsvfs); 2447 return (error); 2448 } 2449 2450 ulong_t zfs_fsync_sync_cnt = 4; 2451 2452 static int 2453 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2454 { 2455 znode_t *zp = VTOZ(vp); 2456 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2457 2458 /* 2459 * Regardless of whether this is required for standards conformance, 2460 * this is the logical behavior when fsync() is called on a file with 2461 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2462 * going to be pushed out as part of the zil_commit(). 2463 */ 2464 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2465 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2466 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2467 2468 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2469 2470 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2471 ZFS_ENTER(zfsvfs); 2472 ZFS_VERIFY_ZP(zp); 2473 zil_commit(zfsvfs->z_log, zp->z_id); 2474 ZFS_EXIT(zfsvfs); 2475 } 2476 return (0); 2477 } 2478 2479 2480 /* 2481 * Get the requested file attributes and place them in the provided 2482 * vattr structure. 2483 * 2484 * IN: vp - vnode of file. 2485 * vap - va_mask identifies requested attributes. 2486 * If AT_XVATTR set, then optional attrs are requested 2487 * flags - ATTR_NOACLCHECK (CIFS server context) 2488 * cr - credentials of caller. 2489 * ct - caller context 2490 * 2491 * OUT: vap - attribute values. 2492 * 2493 * RETURN: 0 (always succeeds). 2494 */ 2495 /* ARGSUSED */ 2496 static int 2497 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2498 caller_context_t *ct) 2499 { 2500 znode_t *zp = VTOZ(vp); 2501 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2502 int error = 0; 2503 uint64_t links; 2504 uint64_t mtime[2], ctime[2]; 2505 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2506 xoptattr_t *xoap = NULL; 2507 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2508 sa_bulk_attr_t bulk[2]; 2509 int count = 0; 2510 2511 ZFS_ENTER(zfsvfs); 2512 ZFS_VERIFY_ZP(zp); 2513 2514 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2515 2516 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2517 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2518 2519 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2520 ZFS_EXIT(zfsvfs); 2521 return (error); 2522 } 2523 2524 /* 2525 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2526 * Also, if we are the owner don't bother, since owner should 2527 * always be allowed to read basic attributes of file. 2528 */ 2529 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2530 (vap->va_uid != crgetuid(cr))) { 2531 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2532 skipaclchk, cr)) { 2533 ZFS_EXIT(zfsvfs); 2534 return (error); 2535 } 2536 } 2537 2538 /* 2539 * Return all attributes. It's cheaper to provide the answer 2540 * than to determine whether we were asked the question. 2541 */ 2542 2543 mutex_enter(&zp->z_lock); 2544 vap->va_type = vp->v_type; 2545 vap->va_mode = zp->z_mode & MODEMASK; 2546 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2547 vap->va_nodeid = zp->z_id; 2548 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2549 links = zp->z_links + 1; 2550 else 2551 links = zp->z_links; 2552 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2553 vap->va_size = zp->z_size; 2554 vap->va_rdev = vp->v_rdev; 2555 vap->va_seq = zp->z_seq; 2556 2557 /* 2558 * Add in any requested optional attributes and the create time. 2559 * Also set the corresponding bits in the returned attribute bitmap. 2560 */ 2561 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2562 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2563 xoap->xoa_archive = 2564 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2565 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2566 } 2567 2568 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2569 xoap->xoa_readonly = 2570 ((zp->z_pflags & ZFS_READONLY) != 0); 2571 XVA_SET_RTN(xvap, XAT_READONLY); 2572 } 2573 2574 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2575 xoap->xoa_system = 2576 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2577 XVA_SET_RTN(xvap, XAT_SYSTEM); 2578 } 2579 2580 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2581 xoap->xoa_hidden = 2582 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2583 XVA_SET_RTN(xvap, XAT_HIDDEN); 2584 } 2585 2586 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2587 xoap->xoa_nounlink = 2588 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2589 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2590 } 2591 2592 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2593 xoap->xoa_immutable = 2594 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2595 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2596 } 2597 2598 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2599 xoap->xoa_appendonly = 2600 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2601 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2602 } 2603 2604 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2605 xoap->xoa_nodump = 2606 ((zp->z_pflags & ZFS_NODUMP) != 0); 2607 XVA_SET_RTN(xvap, XAT_NODUMP); 2608 } 2609 2610 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2611 xoap->xoa_opaque = 2612 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2613 XVA_SET_RTN(xvap, XAT_OPAQUE); 2614 } 2615 2616 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2617 xoap->xoa_av_quarantined = 2618 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2619 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2620 } 2621 2622 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2623 xoap->xoa_av_modified = 2624 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2625 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2626 } 2627 2628 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2629 vp->v_type == VREG) { 2630 zfs_sa_get_scanstamp(zp, xvap); 2631 } 2632 2633 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2634 uint64_t times[2]; 2635 2636 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2637 times, sizeof (times)); 2638 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2639 XVA_SET_RTN(xvap, XAT_CREATETIME); 2640 } 2641 2642 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2643 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2644 XVA_SET_RTN(xvap, XAT_REPARSE); 2645 } 2646 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2647 xoap->xoa_generation = zp->z_gen; 2648 XVA_SET_RTN(xvap, XAT_GEN); 2649 } 2650 2651 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2652 xoap->xoa_offline = 2653 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2654 XVA_SET_RTN(xvap, XAT_OFFLINE); 2655 } 2656 2657 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2658 xoap->xoa_sparse = 2659 ((zp->z_pflags & ZFS_SPARSE) != 0); 2660 XVA_SET_RTN(xvap, XAT_SPARSE); 2661 } 2662 } 2663 2664 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2665 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2666 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2667 2668 mutex_exit(&zp->z_lock); 2669 2670 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2671 2672 if (zp->z_blksz == 0) { 2673 /* 2674 * Block size hasn't been set; suggest maximal I/O transfers. 2675 */ 2676 vap->va_blksize = zfsvfs->z_max_blksz; 2677 } 2678 2679 ZFS_EXIT(zfsvfs); 2680 return (0); 2681 } 2682 2683 /* 2684 * Set the file attributes to the values contained in the 2685 * vattr structure. 2686 * 2687 * IN: vp - vnode of file to be modified. 2688 * vap - new attribute values. 2689 * If AT_XVATTR set, then optional attrs are being set 2690 * flags - ATTR_UTIME set if non-default time values provided. 2691 * - ATTR_NOACLCHECK (CIFS context only). 2692 * cr - credentials of caller. 2693 * ct - caller context 2694 * 2695 * RETURN: 0 on success, error code on failure. 2696 * 2697 * Timestamps: 2698 * vp - ctime updated, mtime updated if size changed. 2699 */ 2700 /* ARGSUSED */ 2701 static int 2702 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2703 caller_context_t *ct) 2704 { 2705 znode_t *zp = VTOZ(vp); 2706 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2707 zilog_t *zilog; 2708 dmu_tx_t *tx; 2709 vattr_t oldva; 2710 xvattr_t tmpxvattr; 2711 uint_t mask = vap->va_mask; 2712 uint_t saved_mask = 0; 2713 int trim_mask = 0; 2714 uint64_t new_mode; 2715 uint64_t new_uid, new_gid; 2716 uint64_t xattr_obj; 2717 uint64_t mtime[2], ctime[2]; 2718 znode_t *attrzp; 2719 int need_policy = FALSE; 2720 int err, err2; 2721 zfs_fuid_info_t *fuidp = NULL; 2722 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2723 xoptattr_t *xoap; 2724 zfs_acl_t *aclp; 2725 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2726 boolean_t fuid_dirtied = B_FALSE; 2727 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2728 int count = 0, xattr_count = 0; 2729 2730 if (mask == 0) 2731 return (0); 2732 2733 if (mask & AT_NOSET) 2734 return (SET_ERROR(EINVAL)); 2735 2736 ZFS_ENTER(zfsvfs); 2737 ZFS_VERIFY_ZP(zp); 2738 2739 zilog = zfsvfs->z_log; 2740 2741 /* 2742 * Make sure that if we have ephemeral uid/gid or xvattr specified 2743 * that file system is at proper version level 2744 */ 2745 2746 if (zfsvfs->z_use_fuids == B_FALSE && 2747 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2748 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2749 (mask & AT_XVATTR))) { 2750 ZFS_EXIT(zfsvfs); 2751 return (SET_ERROR(EINVAL)); 2752 } 2753 2754 if (mask & AT_SIZE && vp->v_type == VDIR) { 2755 ZFS_EXIT(zfsvfs); 2756 return (SET_ERROR(EISDIR)); 2757 } 2758 2759 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2760 ZFS_EXIT(zfsvfs); 2761 return (SET_ERROR(EINVAL)); 2762 } 2763 2764 /* 2765 * If this is an xvattr_t, then get a pointer to the structure of 2766 * optional attributes. If this is NULL, then we have a vattr_t. 2767 */ 2768 xoap = xva_getxoptattr(xvap); 2769 2770 xva_init(&tmpxvattr); 2771 2772 /* 2773 * Immutable files can only alter immutable bit and atime 2774 */ 2775 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2776 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2777 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2778 ZFS_EXIT(zfsvfs); 2779 return (SET_ERROR(EPERM)); 2780 } 2781 2782 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2783 ZFS_EXIT(zfsvfs); 2784 return (SET_ERROR(EPERM)); 2785 } 2786 2787 /* 2788 * Verify timestamps doesn't overflow 32 bits. 2789 * ZFS can handle large timestamps, but 32bit syscalls can't 2790 * handle times greater than 2039. This check should be removed 2791 * once large timestamps are fully supported. 2792 */ 2793 if (mask & (AT_ATIME | AT_MTIME)) { 2794 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2795 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2796 ZFS_EXIT(zfsvfs); 2797 return (SET_ERROR(EOVERFLOW)); 2798 } 2799 } 2800 2801 top: 2802 attrzp = NULL; 2803 aclp = NULL; 2804 2805 /* Can this be moved to before the top label? */ 2806 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2807 ZFS_EXIT(zfsvfs); 2808 return (SET_ERROR(EROFS)); 2809 } 2810 2811 /* 2812 * First validate permissions 2813 */ 2814 2815 if (mask & AT_SIZE) { 2816 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2817 if (err) { 2818 ZFS_EXIT(zfsvfs); 2819 return (err); 2820 } 2821 /* 2822 * XXX - Note, we are not providing any open 2823 * mode flags here (like FNDELAY), so we may 2824 * block if there are locks present... this 2825 * should be addressed in openat(). 2826 */ 2827 /* XXX - would it be OK to generate a log record here? */ 2828 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2829 if (err) { 2830 ZFS_EXIT(zfsvfs); 2831 return (err); 2832 } 2833 2834 if (vap->va_size == 0) 2835 vnevent_truncate(ZTOV(zp), ct); 2836 } 2837 2838 if (mask & (AT_ATIME|AT_MTIME) || 2839 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2840 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2841 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2842 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2843 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2844 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2845 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2846 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2847 skipaclchk, cr); 2848 } 2849 2850 if (mask & (AT_UID|AT_GID)) { 2851 int idmask = (mask & (AT_UID|AT_GID)); 2852 int take_owner; 2853 int take_group; 2854 2855 /* 2856 * NOTE: even if a new mode is being set, 2857 * we may clear S_ISUID/S_ISGID bits. 2858 */ 2859 2860 if (!(mask & AT_MODE)) 2861 vap->va_mode = zp->z_mode; 2862 2863 /* 2864 * Take ownership or chgrp to group we are a member of 2865 */ 2866 2867 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2868 take_group = (mask & AT_GID) && 2869 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2870 2871 /* 2872 * If both AT_UID and AT_GID are set then take_owner and 2873 * take_group must both be set in order to allow taking 2874 * ownership. 2875 * 2876 * Otherwise, send the check through secpolicy_vnode_setattr() 2877 * 2878 */ 2879 2880 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2881 ((idmask == AT_UID) && take_owner) || 2882 ((idmask == AT_GID) && take_group)) { 2883 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2884 skipaclchk, cr) == 0) { 2885 /* 2886 * Remove setuid/setgid for non-privileged users 2887 */ 2888 secpolicy_setid_clear(vap, cr); 2889 trim_mask = (mask & (AT_UID|AT_GID)); 2890 } else { 2891 need_policy = TRUE; 2892 } 2893 } else { 2894 need_policy = TRUE; 2895 } 2896 } 2897 2898 mutex_enter(&zp->z_lock); 2899 oldva.va_mode = zp->z_mode; 2900 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2901 if (mask & AT_XVATTR) { 2902 /* 2903 * Update xvattr mask to include only those attributes 2904 * that are actually changing. 2905 * 2906 * the bits will be restored prior to actually setting 2907 * the attributes so the caller thinks they were set. 2908 */ 2909 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2910 if (xoap->xoa_appendonly != 2911 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2912 need_policy = TRUE; 2913 } else { 2914 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2915 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2916 } 2917 } 2918 2919 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2920 if (xoap->xoa_nounlink != 2921 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2922 need_policy = TRUE; 2923 } else { 2924 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2925 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2926 } 2927 } 2928 2929 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2930 if (xoap->xoa_immutable != 2931 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2932 need_policy = TRUE; 2933 } else { 2934 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2935 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2936 } 2937 } 2938 2939 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2940 if (xoap->xoa_nodump != 2941 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2942 need_policy = TRUE; 2943 } else { 2944 XVA_CLR_REQ(xvap, XAT_NODUMP); 2945 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2946 } 2947 } 2948 2949 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2950 if (xoap->xoa_av_modified != 2951 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2952 need_policy = TRUE; 2953 } else { 2954 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2955 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2956 } 2957 } 2958 2959 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2960 if ((vp->v_type != VREG && 2961 xoap->xoa_av_quarantined) || 2962 xoap->xoa_av_quarantined != 2963 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2964 need_policy = TRUE; 2965 } else { 2966 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2967 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2968 } 2969 } 2970 2971 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2972 mutex_exit(&zp->z_lock); 2973 ZFS_EXIT(zfsvfs); 2974 return (SET_ERROR(EPERM)); 2975 } 2976 2977 if (need_policy == FALSE && 2978 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2979 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2980 need_policy = TRUE; 2981 } 2982 } 2983 2984 mutex_exit(&zp->z_lock); 2985 2986 if (mask & AT_MODE) { 2987 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2988 err = secpolicy_setid_setsticky_clear(vp, vap, 2989 &oldva, cr); 2990 if (err) { 2991 ZFS_EXIT(zfsvfs); 2992 return (err); 2993 } 2994 trim_mask |= AT_MODE; 2995 } else { 2996 need_policy = TRUE; 2997 } 2998 } 2999 3000 if (need_policy) { 3001 /* 3002 * If trim_mask is set then take ownership 3003 * has been granted or write_acl is present and user 3004 * has the ability to modify mode. In that case remove 3005 * UID|GID and or MODE from mask so that 3006 * secpolicy_vnode_setattr() doesn't revoke it. 3007 */ 3008 3009 if (trim_mask) { 3010 saved_mask = vap->va_mask; 3011 vap->va_mask &= ~trim_mask; 3012 } 3013 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3014 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3015 if (err) { 3016 ZFS_EXIT(zfsvfs); 3017 return (err); 3018 } 3019 3020 if (trim_mask) 3021 vap->va_mask |= saved_mask; 3022 } 3023 3024 /* 3025 * secpolicy_vnode_setattr, or take ownership may have 3026 * changed va_mask 3027 */ 3028 mask = vap->va_mask; 3029 3030 if ((mask & (AT_UID | AT_GID))) { 3031 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3032 &xattr_obj, sizeof (xattr_obj)); 3033 3034 if (err == 0 && xattr_obj) { 3035 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3036 if (err) 3037 goto out2; 3038 } 3039 if (mask & AT_UID) { 3040 new_uid = zfs_fuid_create(zfsvfs, 3041 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3042 if (new_uid != zp->z_uid && 3043 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 3044 if (attrzp) 3045 VN_RELE(ZTOV(attrzp)); 3046 err = SET_ERROR(EDQUOT); 3047 goto out2; 3048 } 3049 } 3050 3051 if (mask & AT_GID) { 3052 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3053 cr, ZFS_GROUP, &fuidp); 3054 if (new_gid != zp->z_gid && 3055 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 3056 if (attrzp) 3057 VN_RELE(ZTOV(attrzp)); 3058 err = SET_ERROR(EDQUOT); 3059 goto out2; 3060 } 3061 } 3062 } 3063 tx = dmu_tx_create(zfsvfs->z_os); 3064 3065 if (mask & AT_MODE) { 3066 uint64_t pmode = zp->z_mode; 3067 uint64_t acl_obj; 3068 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3069 3070 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3071 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3072 err = SET_ERROR(EPERM); 3073 goto out; 3074 } 3075 3076 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3077 goto out; 3078 3079 mutex_enter(&zp->z_lock); 3080 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3081 /* 3082 * Are we upgrading ACL from old V0 format 3083 * to V1 format? 3084 */ 3085 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3086 zfs_znode_acl_version(zp) == 3087 ZFS_ACL_VERSION_INITIAL) { 3088 dmu_tx_hold_free(tx, acl_obj, 0, 3089 DMU_OBJECT_END); 3090 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3091 0, aclp->z_acl_bytes); 3092 } else { 3093 dmu_tx_hold_write(tx, acl_obj, 0, 3094 aclp->z_acl_bytes); 3095 } 3096 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3097 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3098 0, aclp->z_acl_bytes); 3099 } 3100 mutex_exit(&zp->z_lock); 3101 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3102 } else { 3103 if ((mask & AT_XVATTR) && 3104 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3105 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3106 else 3107 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3108 } 3109 3110 if (attrzp) { 3111 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3112 } 3113 3114 fuid_dirtied = zfsvfs->z_fuid_dirty; 3115 if (fuid_dirtied) 3116 zfs_fuid_txhold(zfsvfs, tx); 3117 3118 zfs_sa_upgrade_txholds(tx, zp); 3119 3120 err = dmu_tx_assign(tx, TXG_WAIT); 3121 if (err) 3122 goto out; 3123 3124 count = 0; 3125 /* 3126 * Set each attribute requested. 3127 * We group settings according to the locks they need to acquire. 3128 * 3129 * Note: you cannot set ctime directly, although it will be 3130 * updated as a side-effect of calling this function. 3131 */ 3132 3133 3134 if (mask & (AT_UID|AT_GID|AT_MODE)) 3135 mutex_enter(&zp->z_acl_lock); 3136 mutex_enter(&zp->z_lock); 3137 3138 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3139 &zp->z_pflags, sizeof (zp->z_pflags)); 3140 3141 if (attrzp) { 3142 if (mask & (AT_UID|AT_GID|AT_MODE)) 3143 mutex_enter(&attrzp->z_acl_lock); 3144 mutex_enter(&attrzp->z_lock); 3145 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3146 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3147 sizeof (attrzp->z_pflags)); 3148 } 3149 3150 if (mask & (AT_UID|AT_GID)) { 3151 3152 if (mask & AT_UID) { 3153 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3154 &new_uid, sizeof (new_uid)); 3155 zp->z_uid = new_uid; 3156 if (attrzp) { 3157 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3158 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3159 sizeof (new_uid)); 3160 attrzp->z_uid = new_uid; 3161 } 3162 } 3163 3164 if (mask & AT_GID) { 3165 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3166 NULL, &new_gid, sizeof (new_gid)); 3167 zp->z_gid = new_gid; 3168 if (attrzp) { 3169 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3170 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3171 sizeof (new_gid)); 3172 attrzp->z_gid = new_gid; 3173 } 3174 } 3175 if (!(mask & AT_MODE)) { 3176 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3177 NULL, &new_mode, sizeof (new_mode)); 3178 new_mode = zp->z_mode; 3179 } 3180 err = zfs_acl_chown_setattr(zp); 3181 ASSERT(err == 0); 3182 if (attrzp) { 3183 err = zfs_acl_chown_setattr(attrzp); 3184 ASSERT(err == 0); 3185 } 3186 } 3187 3188 if (mask & AT_MODE) { 3189 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3190 &new_mode, sizeof (new_mode)); 3191 zp->z_mode = new_mode; 3192 ASSERT3U((uintptr_t)aclp, !=, NULL); 3193 err = zfs_aclset_common(zp, aclp, cr, tx); 3194 ASSERT0(err); 3195 if (zp->z_acl_cached) 3196 zfs_acl_free(zp->z_acl_cached); 3197 zp->z_acl_cached = aclp; 3198 aclp = NULL; 3199 } 3200 3201 3202 if (mask & AT_ATIME) { 3203 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3204 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3205 &zp->z_atime, sizeof (zp->z_atime)); 3206 } 3207 3208 if (mask & AT_MTIME) { 3209 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3210 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3211 mtime, sizeof (mtime)); 3212 } 3213 3214 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3215 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3216 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3217 NULL, mtime, sizeof (mtime)); 3218 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3219 &ctime, sizeof (ctime)); 3220 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3221 B_TRUE); 3222 } else if (mask != 0) { 3223 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3224 &ctime, sizeof (ctime)); 3225 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3226 B_TRUE); 3227 if (attrzp) { 3228 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3229 SA_ZPL_CTIME(zfsvfs), NULL, 3230 &ctime, sizeof (ctime)); 3231 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3232 mtime, ctime, B_TRUE); 3233 } 3234 } 3235 /* 3236 * Do this after setting timestamps to prevent timestamp 3237 * update from toggling bit 3238 */ 3239 3240 if (xoap && (mask & AT_XVATTR)) { 3241 3242 /* 3243 * restore trimmed off masks 3244 * so that return masks can be set for caller. 3245 */ 3246 3247 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3248 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3249 } 3250 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3251 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3252 } 3253 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3254 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3255 } 3256 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3257 XVA_SET_REQ(xvap, XAT_NODUMP); 3258 } 3259 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3260 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3261 } 3262 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3263 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3264 } 3265 3266 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3267 ASSERT(vp->v_type == VREG); 3268 3269 zfs_xvattr_set(zp, xvap, tx); 3270 } 3271 3272 if (fuid_dirtied) 3273 zfs_fuid_sync(zfsvfs, tx); 3274 3275 if (mask != 0) 3276 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3277 3278 mutex_exit(&zp->z_lock); 3279 if (mask & (AT_UID|AT_GID|AT_MODE)) 3280 mutex_exit(&zp->z_acl_lock); 3281 3282 if (attrzp) { 3283 if (mask & (AT_UID|AT_GID|AT_MODE)) 3284 mutex_exit(&attrzp->z_acl_lock); 3285 mutex_exit(&attrzp->z_lock); 3286 } 3287 out: 3288 if (err == 0 && attrzp) { 3289 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3290 xattr_count, tx); 3291 ASSERT(err2 == 0); 3292 } 3293 3294 if (attrzp) 3295 VN_RELE(ZTOV(attrzp)); 3296 3297 if (aclp) 3298 zfs_acl_free(aclp); 3299 3300 if (fuidp) { 3301 zfs_fuid_info_free(fuidp); 3302 fuidp = NULL; 3303 } 3304 3305 if (err) { 3306 dmu_tx_abort(tx); 3307 if (err == ERESTART) 3308 goto top; 3309 } else { 3310 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3311 dmu_tx_commit(tx); 3312 } 3313 3314 out2: 3315 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3316 zil_commit(zilog, 0); 3317 3318 ZFS_EXIT(zfsvfs); 3319 return (err); 3320 } 3321 3322 typedef struct zfs_zlock { 3323 krwlock_t *zl_rwlock; /* lock we acquired */ 3324 znode_t *zl_znode; /* znode we held */ 3325 struct zfs_zlock *zl_next; /* next in list */ 3326 } zfs_zlock_t; 3327 3328 /* 3329 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3330 */ 3331 static void 3332 zfs_rename_unlock(zfs_zlock_t **zlpp) 3333 { 3334 zfs_zlock_t *zl; 3335 3336 while ((zl = *zlpp) != NULL) { 3337 if (zl->zl_znode != NULL) 3338 VN_RELE(ZTOV(zl->zl_znode)); 3339 rw_exit(zl->zl_rwlock); 3340 *zlpp = zl->zl_next; 3341 kmem_free(zl, sizeof (*zl)); 3342 } 3343 } 3344 3345 /* 3346 * Search back through the directory tree, using the ".." entries. 3347 * Lock each directory in the chain to prevent concurrent renames. 3348 * Fail any attempt to move a directory into one of its own descendants. 3349 * XXX - z_parent_lock can overlap with map or grow locks 3350 */ 3351 static int 3352 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3353 { 3354 zfs_zlock_t *zl; 3355 znode_t *zp = tdzp; 3356 uint64_t rootid = zp->z_zfsvfs->z_root; 3357 uint64_t oidp = zp->z_id; 3358 krwlock_t *rwlp = &szp->z_parent_lock; 3359 krw_t rw = RW_WRITER; 3360 3361 /* 3362 * First pass write-locks szp and compares to zp->z_id. 3363 * Later passes read-lock zp and compare to zp->z_parent. 3364 */ 3365 do { 3366 if (!rw_tryenter(rwlp, rw)) { 3367 /* 3368 * Another thread is renaming in this path. 3369 * Note that if we are a WRITER, we don't have any 3370 * parent_locks held yet. 3371 */ 3372 if (rw == RW_READER && zp->z_id > szp->z_id) { 3373 /* 3374 * Drop our locks and restart 3375 */ 3376 zfs_rename_unlock(&zl); 3377 *zlpp = NULL; 3378 zp = tdzp; 3379 oidp = zp->z_id; 3380 rwlp = &szp->z_parent_lock; 3381 rw = RW_WRITER; 3382 continue; 3383 } else { 3384 /* 3385 * Wait for other thread to drop its locks 3386 */ 3387 rw_enter(rwlp, rw); 3388 } 3389 } 3390 3391 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3392 zl->zl_rwlock = rwlp; 3393 zl->zl_znode = NULL; 3394 zl->zl_next = *zlpp; 3395 *zlpp = zl; 3396 3397 if (oidp == szp->z_id) /* We're a descendant of szp */ 3398 return (SET_ERROR(EINVAL)); 3399 3400 if (oidp == rootid) /* We've hit the top */ 3401 return (0); 3402 3403 if (rw == RW_READER) { /* i.e. not the first pass */ 3404 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3405 if (error) 3406 return (error); 3407 zl->zl_znode = zp; 3408 } 3409 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3410 &oidp, sizeof (oidp)); 3411 rwlp = &zp->z_parent_lock; 3412 rw = RW_READER; 3413 3414 } while (zp->z_id != sdzp->z_id); 3415 3416 return (0); 3417 } 3418 3419 /* 3420 * Move an entry from the provided source directory to the target 3421 * directory. Change the entry name as indicated. 3422 * 3423 * IN: sdvp - Source directory containing the "old entry". 3424 * snm - Old entry name. 3425 * tdvp - Target directory to contain the "new entry". 3426 * tnm - New entry name. 3427 * cr - credentials of caller. 3428 * ct - caller context 3429 * flags - case flags 3430 * 3431 * RETURN: 0 on success, error code on failure. 3432 * 3433 * Timestamps: 3434 * sdvp,tdvp - ctime|mtime updated 3435 */ 3436 /*ARGSUSED*/ 3437 static int 3438 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3439 caller_context_t *ct, int flags) 3440 { 3441 znode_t *tdzp, *szp, *tzp; 3442 znode_t *sdzp = VTOZ(sdvp); 3443 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3444 zilog_t *zilog; 3445 vnode_t *realvp; 3446 zfs_dirlock_t *sdl, *tdl; 3447 dmu_tx_t *tx; 3448 zfs_zlock_t *zl; 3449 int cmp, serr, terr; 3450 int error = 0; 3451 int zflg = 0; 3452 boolean_t waited = B_FALSE; 3453 3454 ZFS_ENTER(zfsvfs); 3455 ZFS_VERIFY_ZP(sdzp); 3456 zilog = zfsvfs->z_log; 3457 3458 /* 3459 * Make sure we have the real vp for the target directory. 3460 */ 3461 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3462 tdvp = realvp; 3463 3464 tdzp = VTOZ(tdvp); 3465 ZFS_VERIFY_ZP(tdzp); 3466 3467 /* 3468 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3469 * ctldir appear to have the same v_vfsp. 3470 */ 3471 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3472 ZFS_EXIT(zfsvfs); 3473 return (SET_ERROR(EXDEV)); 3474 } 3475 3476 if (zfsvfs->z_utf8 && u8_validate(tnm, 3477 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3478 ZFS_EXIT(zfsvfs); 3479 return (SET_ERROR(EILSEQ)); 3480 } 3481 3482 if (flags & FIGNORECASE) 3483 zflg |= ZCILOOK; 3484 3485 top: 3486 szp = NULL; 3487 tzp = NULL; 3488 zl = NULL; 3489 3490 /* 3491 * This is to prevent the creation of links into attribute space 3492 * by renaming a linked file into/outof an attribute directory. 3493 * See the comment in zfs_link() for why this is considered bad. 3494 */ 3495 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3496 ZFS_EXIT(zfsvfs); 3497 return (SET_ERROR(EINVAL)); 3498 } 3499 3500 /* 3501 * Lock source and target directory entries. To prevent deadlock, 3502 * a lock ordering must be defined. We lock the directory with 3503 * the smallest object id first, or if it's a tie, the one with 3504 * the lexically first name. 3505 */ 3506 if (sdzp->z_id < tdzp->z_id) { 3507 cmp = -1; 3508 } else if (sdzp->z_id > tdzp->z_id) { 3509 cmp = 1; 3510 } else { 3511 /* 3512 * First compare the two name arguments without 3513 * considering any case folding. 3514 */ 3515 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3516 3517 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3518 ASSERT(error == 0 || !zfsvfs->z_utf8); 3519 if (cmp == 0) { 3520 /* 3521 * POSIX: "If the old argument and the new argument 3522 * both refer to links to the same existing file, 3523 * the rename() function shall return successfully 3524 * and perform no other action." 3525 */ 3526 ZFS_EXIT(zfsvfs); 3527 return (0); 3528 } 3529 /* 3530 * If the file system is case-folding, then we may 3531 * have some more checking to do. A case-folding file 3532 * system is either supporting mixed case sensitivity 3533 * access or is completely case-insensitive. Note 3534 * that the file system is always case preserving. 3535 * 3536 * In mixed sensitivity mode case sensitive behavior 3537 * is the default. FIGNORECASE must be used to 3538 * explicitly request case insensitive behavior. 3539 * 3540 * If the source and target names provided differ only 3541 * by case (e.g., a request to rename 'tim' to 'Tim'), 3542 * we will treat this as a special case in the 3543 * case-insensitive mode: as long as the source name 3544 * is an exact match, we will allow this to proceed as 3545 * a name-change request. 3546 */ 3547 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3548 (zfsvfs->z_case == ZFS_CASE_MIXED && 3549 flags & FIGNORECASE)) && 3550 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3551 &error) == 0) { 3552 /* 3553 * case preserving rename request, require exact 3554 * name matches 3555 */ 3556 zflg |= ZCIEXACT; 3557 zflg &= ~ZCILOOK; 3558 } 3559 } 3560 3561 /* 3562 * If the source and destination directories are the same, we should 3563 * grab the z_name_lock of that directory only once. 3564 */ 3565 if (sdzp == tdzp) { 3566 zflg |= ZHAVELOCK; 3567 rw_enter(&sdzp->z_name_lock, RW_READER); 3568 } 3569 3570 if (cmp < 0) { 3571 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3572 ZEXISTS | zflg, NULL, NULL); 3573 terr = zfs_dirent_lock(&tdl, 3574 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3575 } else { 3576 terr = zfs_dirent_lock(&tdl, 3577 tdzp, tnm, &tzp, zflg, NULL, NULL); 3578 serr = zfs_dirent_lock(&sdl, 3579 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3580 NULL, NULL); 3581 } 3582 3583 if (serr) { 3584 /* 3585 * Source entry invalid or not there. 3586 */ 3587 if (!terr) { 3588 zfs_dirent_unlock(tdl); 3589 if (tzp) 3590 VN_RELE(ZTOV(tzp)); 3591 } 3592 3593 if (sdzp == tdzp) 3594 rw_exit(&sdzp->z_name_lock); 3595 3596 if (strcmp(snm, "..") == 0) 3597 serr = SET_ERROR(EINVAL); 3598 ZFS_EXIT(zfsvfs); 3599 return (serr); 3600 } 3601 if (terr) { 3602 zfs_dirent_unlock(sdl); 3603 VN_RELE(ZTOV(szp)); 3604 3605 if (sdzp == tdzp) 3606 rw_exit(&sdzp->z_name_lock); 3607 3608 if (strcmp(tnm, "..") == 0) 3609 terr = SET_ERROR(EINVAL); 3610 ZFS_EXIT(zfsvfs); 3611 return (terr); 3612 } 3613 3614 /* 3615 * Must have write access at the source to remove the old entry 3616 * and write access at the target to create the new entry. 3617 * Note that if target and source are the same, this can be 3618 * done in a single check. 3619 */ 3620 3621 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3622 goto out; 3623 3624 if (ZTOV(szp)->v_type == VDIR) { 3625 /* 3626 * Check to make sure rename is valid. 3627 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3628 */ 3629 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3630 goto out; 3631 } 3632 3633 /* 3634 * Does target exist? 3635 */ 3636 if (tzp) { 3637 /* 3638 * Source and target must be the same type. 3639 */ 3640 if (ZTOV(szp)->v_type == VDIR) { 3641 if (ZTOV(tzp)->v_type != VDIR) { 3642 error = SET_ERROR(ENOTDIR); 3643 goto out; 3644 } 3645 } else { 3646 if (ZTOV(tzp)->v_type == VDIR) { 3647 error = SET_ERROR(EISDIR); 3648 goto out; 3649 } 3650 } 3651 /* 3652 * POSIX dictates that when the source and target 3653 * entries refer to the same file object, rename 3654 * must do nothing and exit without error. 3655 */ 3656 if (szp->z_id == tzp->z_id) { 3657 error = 0; 3658 goto out; 3659 } 3660 } 3661 3662 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3663 if (tzp) 3664 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3665 3666 /* 3667 * notify the target directory if it is not the same 3668 * as source directory. 3669 */ 3670 if (tdvp != sdvp) { 3671 vnevent_rename_dest_dir(tdvp, ct); 3672 } 3673 3674 tx = dmu_tx_create(zfsvfs->z_os); 3675 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3676 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3677 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3678 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3679 if (sdzp != tdzp) { 3680 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3681 zfs_sa_upgrade_txholds(tx, tdzp); 3682 } 3683 if (tzp) { 3684 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3685 zfs_sa_upgrade_txholds(tx, tzp); 3686 } 3687 3688 zfs_sa_upgrade_txholds(tx, szp); 3689 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3690 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3691 if (error) { 3692 if (zl != NULL) 3693 zfs_rename_unlock(&zl); 3694 zfs_dirent_unlock(sdl); 3695 zfs_dirent_unlock(tdl); 3696 3697 if (sdzp == tdzp) 3698 rw_exit(&sdzp->z_name_lock); 3699 3700 VN_RELE(ZTOV(szp)); 3701 if (tzp) 3702 VN_RELE(ZTOV(tzp)); 3703 if (error == ERESTART) { 3704 waited = B_TRUE; 3705 dmu_tx_wait(tx); 3706 dmu_tx_abort(tx); 3707 goto top; 3708 } 3709 dmu_tx_abort(tx); 3710 ZFS_EXIT(zfsvfs); 3711 return (error); 3712 } 3713 3714 if (tzp) /* Attempt to remove the existing target */ 3715 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3716 3717 if (error == 0) { 3718 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3719 if (error == 0) { 3720 szp->z_pflags |= ZFS_AV_MODIFIED; 3721 3722 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3723 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3724 ASSERT0(error); 3725 3726 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3727 if (error == 0) { 3728 zfs_log_rename(zilog, tx, TX_RENAME | 3729 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3730 sdl->dl_name, tdzp, tdl->dl_name, szp); 3731 3732 /* 3733 * Update path information for the target vnode 3734 */ 3735 vn_renamepath(tdvp, ZTOV(szp), tnm, 3736 strlen(tnm)); 3737 } else { 3738 /* 3739 * At this point, we have successfully created 3740 * the target name, but have failed to remove 3741 * the source name. Since the create was done 3742 * with the ZRENAMING flag, there are 3743 * complications; for one, the link count is 3744 * wrong. The easiest way to deal with this 3745 * is to remove the newly created target, and 3746 * return the original error. This must 3747 * succeed; fortunately, it is very unlikely to 3748 * fail, since we just created it. 3749 */ 3750 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3751 ZRENAMING, NULL), ==, 0); 3752 } 3753 } 3754 } 3755 3756 dmu_tx_commit(tx); 3757 out: 3758 if (zl != NULL) 3759 zfs_rename_unlock(&zl); 3760 3761 zfs_dirent_unlock(sdl); 3762 zfs_dirent_unlock(tdl); 3763 3764 if (sdzp == tdzp) 3765 rw_exit(&sdzp->z_name_lock); 3766 3767 3768 VN_RELE(ZTOV(szp)); 3769 if (tzp) 3770 VN_RELE(ZTOV(tzp)); 3771 3772 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3773 zil_commit(zilog, 0); 3774 3775 ZFS_EXIT(zfsvfs); 3776 return (error); 3777 } 3778 3779 /* 3780 * Insert the indicated symbolic reference entry into the directory. 3781 * 3782 * IN: dvp - Directory to contain new symbolic link. 3783 * link - Name for new symlink entry. 3784 * vap - Attributes of new entry. 3785 * cr - credentials of caller. 3786 * ct - caller context 3787 * flags - case flags 3788 * 3789 * RETURN: 0 on success, error code on failure. 3790 * 3791 * Timestamps: 3792 * dvp - ctime|mtime updated 3793 */ 3794 /*ARGSUSED*/ 3795 static int 3796 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3797 caller_context_t *ct, int flags) 3798 { 3799 znode_t *zp, *dzp = VTOZ(dvp); 3800 zfs_dirlock_t *dl; 3801 dmu_tx_t *tx; 3802 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3803 zilog_t *zilog; 3804 uint64_t len = strlen(link); 3805 int error; 3806 int zflg = ZNEW; 3807 zfs_acl_ids_t acl_ids; 3808 boolean_t fuid_dirtied; 3809 uint64_t txtype = TX_SYMLINK; 3810 boolean_t waited = B_FALSE; 3811 3812 ASSERT(vap->va_type == VLNK); 3813 3814 ZFS_ENTER(zfsvfs); 3815 ZFS_VERIFY_ZP(dzp); 3816 zilog = zfsvfs->z_log; 3817 3818 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3819 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3820 ZFS_EXIT(zfsvfs); 3821 return (SET_ERROR(EILSEQ)); 3822 } 3823 if (flags & FIGNORECASE) 3824 zflg |= ZCILOOK; 3825 3826 if (len > MAXPATHLEN) { 3827 ZFS_EXIT(zfsvfs); 3828 return (SET_ERROR(ENAMETOOLONG)); 3829 } 3830 3831 if ((error = zfs_acl_ids_create(dzp, 0, 3832 vap, cr, NULL, &acl_ids)) != 0) { 3833 ZFS_EXIT(zfsvfs); 3834 return (error); 3835 } 3836 top: 3837 /* 3838 * Attempt to lock directory; fail if entry already exists. 3839 */ 3840 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3841 if (error) { 3842 zfs_acl_ids_free(&acl_ids); 3843 ZFS_EXIT(zfsvfs); 3844 return (error); 3845 } 3846 3847 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3848 zfs_acl_ids_free(&acl_ids); 3849 zfs_dirent_unlock(dl); 3850 ZFS_EXIT(zfsvfs); 3851 return (error); 3852 } 3853 3854 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3855 zfs_acl_ids_free(&acl_ids); 3856 zfs_dirent_unlock(dl); 3857 ZFS_EXIT(zfsvfs); 3858 return (SET_ERROR(EDQUOT)); 3859 } 3860 tx = dmu_tx_create(zfsvfs->z_os); 3861 fuid_dirtied = zfsvfs->z_fuid_dirty; 3862 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3863 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3864 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3865 ZFS_SA_BASE_ATTR_SIZE + len); 3866 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3867 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3868 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3869 acl_ids.z_aclp->z_acl_bytes); 3870 } 3871 if (fuid_dirtied) 3872 zfs_fuid_txhold(zfsvfs, tx); 3873 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3874 if (error) { 3875 zfs_dirent_unlock(dl); 3876 if (error == ERESTART) { 3877 waited = B_TRUE; 3878 dmu_tx_wait(tx); 3879 dmu_tx_abort(tx); 3880 goto top; 3881 } 3882 zfs_acl_ids_free(&acl_ids); 3883 dmu_tx_abort(tx); 3884 ZFS_EXIT(zfsvfs); 3885 return (error); 3886 } 3887 3888 /* 3889 * Create a new object for the symlink. 3890 * for version 4 ZPL datsets the symlink will be an SA attribute 3891 */ 3892 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3893 3894 if (fuid_dirtied) 3895 zfs_fuid_sync(zfsvfs, tx); 3896 3897 mutex_enter(&zp->z_lock); 3898 if (zp->z_is_sa) 3899 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3900 link, len, tx); 3901 else 3902 zfs_sa_symlink(zp, link, len, tx); 3903 mutex_exit(&zp->z_lock); 3904 3905 zp->z_size = len; 3906 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3907 &zp->z_size, sizeof (zp->z_size), tx); 3908 /* 3909 * Insert the new object into the directory. 3910 */ 3911 (void) zfs_link_create(dl, zp, tx, ZNEW); 3912 3913 if (flags & FIGNORECASE) 3914 txtype |= TX_CI; 3915 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3916 3917 zfs_acl_ids_free(&acl_ids); 3918 3919 dmu_tx_commit(tx); 3920 3921 zfs_dirent_unlock(dl); 3922 3923 VN_RELE(ZTOV(zp)); 3924 3925 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3926 zil_commit(zilog, 0); 3927 3928 ZFS_EXIT(zfsvfs); 3929 return (error); 3930 } 3931 3932 /* 3933 * Return, in the buffer contained in the provided uio structure, 3934 * the symbolic path referred to by vp. 3935 * 3936 * IN: vp - vnode of symbolic link. 3937 * uio - structure to contain the link path. 3938 * cr - credentials of caller. 3939 * ct - caller context 3940 * 3941 * OUT: uio - structure containing the link path. 3942 * 3943 * RETURN: 0 on success, error code on failure. 3944 * 3945 * Timestamps: 3946 * vp - atime updated 3947 */ 3948 /* ARGSUSED */ 3949 static int 3950 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3951 { 3952 znode_t *zp = VTOZ(vp); 3953 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3954 int error; 3955 3956 ZFS_ENTER(zfsvfs); 3957 ZFS_VERIFY_ZP(zp); 3958 3959 mutex_enter(&zp->z_lock); 3960 if (zp->z_is_sa) 3961 error = sa_lookup_uio(zp->z_sa_hdl, 3962 SA_ZPL_SYMLINK(zfsvfs), uio); 3963 else 3964 error = zfs_sa_readlink(zp, uio); 3965 mutex_exit(&zp->z_lock); 3966 3967 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3968 3969 ZFS_EXIT(zfsvfs); 3970 return (error); 3971 } 3972 3973 /* 3974 * Insert a new entry into directory tdvp referencing svp. 3975 * 3976 * IN: tdvp - Directory to contain new entry. 3977 * svp - vnode of new entry. 3978 * name - name of new entry. 3979 * cr - credentials of caller. 3980 * ct - caller context 3981 * 3982 * RETURN: 0 on success, error code on failure. 3983 * 3984 * Timestamps: 3985 * tdvp - ctime|mtime updated 3986 * svp - ctime updated 3987 */ 3988 /* ARGSUSED */ 3989 static int 3990 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3991 caller_context_t *ct, int flags) 3992 { 3993 znode_t *dzp = VTOZ(tdvp); 3994 znode_t *tzp, *szp; 3995 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3996 zilog_t *zilog; 3997 zfs_dirlock_t *dl; 3998 dmu_tx_t *tx; 3999 vnode_t *realvp; 4000 int error; 4001 int zf = ZNEW; 4002 uint64_t parent; 4003 uid_t owner; 4004 boolean_t waited = B_FALSE; 4005 4006 ASSERT(tdvp->v_type == VDIR); 4007 4008 ZFS_ENTER(zfsvfs); 4009 ZFS_VERIFY_ZP(dzp); 4010 zilog = zfsvfs->z_log; 4011 4012 if (VOP_REALVP(svp, &realvp, ct) == 0) 4013 svp = realvp; 4014 4015 /* 4016 * POSIX dictates that we return EPERM here. 4017 * Better choices include ENOTSUP or EISDIR. 4018 */ 4019 if (svp->v_type == VDIR) { 4020 ZFS_EXIT(zfsvfs); 4021 return (SET_ERROR(EPERM)); 4022 } 4023 4024 szp = VTOZ(svp); 4025 ZFS_VERIFY_ZP(szp); 4026 4027 /* 4028 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4029 * ctldir appear to have the same v_vfsp. 4030 */ 4031 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4032 ZFS_EXIT(zfsvfs); 4033 return (SET_ERROR(EXDEV)); 4034 } 4035 4036 /* Prevent links to .zfs/shares files */ 4037 4038 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4039 &parent, sizeof (uint64_t))) != 0) { 4040 ZFS_EXIT(zfsvfs); 4041 return (error); 4042 } 4043 if (parent == zfsvfs->z_shares_dir) { 4044 ZFS_EXIT(zfsvfs); 4045 return (SET_ERROR(EPERM)); 4046 } 4047 4048 if (zfsvfs->z_utf8 && u8_validate(name, 4049 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4050 ZFS_EXIT(zfsvfs); 4051 return (SET_ERROR(EILSEQ)); 4052 } 4053 if (flags & FIGNORECASE) 4054 zf |= ZCILOOK; 4055 4056 /* 4057 * We do not support links between attributes and non-attributes 4058 * because of the potential security risk of creating links 4059 * into "normal" file space in order to circumvent restrictions 4060 * imposed in attribute space. 4061 */ 4062 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4063 ZFS_EXIT(zfsvfs); 4064 return (SET_ERROR(EINVAL)); 4065 } 4066 4067 4068 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4069 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4070 ZFS_EXIT(zfsvfs); 4071 return (SET_ERROR(EPERM)); 4072 } 4073 4074 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4075 ZFS_EXIT(zfsvfs); 4076 return (error); 4077 } 4078 4079 top: 4080 /* 4081 * Attempt to lock directory; fail if entry already exists. 4082 */ 4083 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4084 if (error) { 4085 ZFS_EXIT(zfsvfs); 4086 return (error); 4087 } 4088 4089 tx = dmu_tx_create(zfsvfs->z_os); 4090 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4091 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4092 zfs_sa_upgrade_txholds(tx, szp); 4093 zfs_sa_upgrade_txholds(tx, dzp); 4094 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 4095 if (error) { 4096 zfs_dirent_unlock(dl); 4097 if (error == ERESTART) { 4098 waited = B_TRUE; 4099 dmu_tx_wait(tx); 4100 dmu_tx_abort(tx); 4101 goto top; 4102 } 4103 dmu_tx_abort(tx); 4104 ZFS_EXIT(zfsvfs); 4105 return (error); 4106 } 4107 4108 error = zfs_link_create(dl, szp, tx, 0); 4109 4110 if (error == 0) { 4111 uint64_t txtype = TX_LINK; 4112 if (flags & FIGNORECASE) 4113 txtype |= TX_CI; 4114 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4115 } 4116 4117 dmu_tx_commit(tx); 4118 4119 zfs_dirent_unlock(dl); 4120 4121 if (error == 0) { 4122 vnevent_link(svp, ct); 4123 } 4124 4125 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4126 zil_commit(zilog, 0); 4127 4128 ZFS_EXIT(zfsvfs); 4129 return (error); 4130 } 4131 4132 /* 4133 * zfs_null_putapage() is used when the file system has been force 4134 * unmounted. It just drops the pages. 4135 */ 4136 /* ARGSUSED */ 4137 static int 4138 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4139 size_t *lenp, int flags, cred_t *cr) 4140 { 4141 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4142 return (0); 4143 } 4144 4145 /* 4146 * Push a page out to disk, klustering if possible. 4147 * 4148 * IN: vp - file to push page to. 4149 * pp - page to push. 4150 * flags - additional flags. 4151 * cr - credentials of caller. 4152 * 4153 * OUT: offp - start of range pushed. 4154 * lenp - len of range pushed. 4155 * 4156 * RETURN: 0 on success, error code on failure. 4157 * 4158 * NOTE: callers must have locked the page to be pushed. On 4159 * exit, the page (and all other pages in the kluster) must be 4160 * unlocked. 4161 */ 4162 /* ARGSUSED */ 4163 static int 4164 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4165 size_t *lenp, int flags, cred_t *cr) 4166 { 4167 znode_t *zp = VTOZ(vp); 4168 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4169 dmu_tx_t *tx; 4170 u_offset_t off, koff; 4171 size_t len, klen; 4172 int err; 4173 4174 off = pp->p_offset; 4175 len = PAGESIZE; 4176 /* 4177 * If our blocksize is bigger than the page size, try to kluster 4178 * multiple pages so that we write a full block (thus avoiding 4179 * a read-modify-write). 4180 */ 4181 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4182 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4183 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4184 ASSERT(koff <= zp->z_size); 4185 if (koff + klen > zp->z_size) 4186 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4187 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4188 } 4189 ASSERT3U(btop(len), ==, btopr(len)); 4190 4191 /* 4192 * Can't push pages past end-of-file. 4193 */ 4194 if (off >= zp->z_size) { 4195 /* ignore all pages */ 4196 err = 0; 4197 goto out; 4198 } else if (off + len > zp->z_size) { 4199 int npages = btopr(zp->z_size - off); 4200 page_t *trunc; 4201 4202 page_list_break(&pp, &trunc, npages); 4203 /* ignore pages past end of file */ 4204 if (trunc) 4205 pvn_write_done(trunc, flags); 4206 len = zp->z_size - off; 4207 } 4208 4209 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4210 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4211 err = SET_ERROR(EDQUOT); 4212 goto out; 4213 } 4214 tx = dmu_tx_create(zfsvfs->z_os); 4215 dmu_tx_hold_write(tx, zp->z_id, off, len); 4216 4217 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4218 zfs_sa_upgrade_txholds(tx, zp); 4219 err = dmu_tx_assign(tx, TXG_WAIT); 4220 if (err != 0) { 4221 dmu_tx_abort(tx); 4222 goto out; 4223 } 4224 4225 if (zp->z_blksz <= PAGESIZE) { 4226 caddr_t va = zfs_map_page(pp, S_READ); 4227 ASSERT3U(len, <=, PAGESIZE); 4228 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4229 zfs_unmap_page(pp, va); 4230 } else { 4231 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4232 } 4233 4234 if (err == 0) { 4235 uint64_t mtime[2], ctime[2]; 4236 sa_bulk_attr_t bulk[3]; 4237 int count = 0; 4238 4239 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4240 &mtime, 16); 4241 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4242 &ctime, 16); 4243 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4244 &zp->z_pflags, 8); 4245 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4246 B_TRUE); 4247 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4248 } 4249 dmu_tx_commit(tx); 4250 4251 out: 4252 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4253 if (offp) 4254 *offp = off; 4255 if (lenp) 4256 *lenp = len; 4257 4258 return (err); 4259 } 4260 4261 /* 4262 * Copy the portion of the file indicated from pages into the file. 4263 * The pages are stored in a page list attached to the files vnode. 4264 * 4265 * IN: vp - vnode of file to push page data to. 4266 * off - position in file to put data. 4267 * len - amount of data to write. 4268 * flags - flags to control the operation. 4269 * cr - credentials of caller. 4270 * ct - caller context. 4271 * 4272 * RETURN: 0 on success, error code on failure. 4273 * 4274 * Timestamps: 4275 * vp - ctime|mtime updated 4276 */ 4277 /*ARGSUSED*/ 4278 static int 4279 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4280 caller_context_t *ct) 4281 { 4282 znode_t *zp = VTOZ(vp); 4283 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4284 page_t *pp; 4285 size_t io_len; 4286 u_offset_t io_off; 4287 uint_t blksz; 4288 rl_t *rl; 4289 int error = 0; 4290 4291 ZFS_ENTER(zfsvfs); 4292 ZFS_VERIFY_ZP(zp); 4293 4294 /* 4295 * There's nothing to do if no data is cached. 4296 */ 4297 if (!vn_has_cached_data(vp)) { 4298 ZFS_EXIT(zfsvfs); 4299 return (0); 4300 } 4301 4302 /* 4303 * Align this request to the file block size in case we kluster. 4304 * XXX - this can result in pretty aggresive locking, which can 4305 * impact simultanious read/write access. One option might be 4306 * to break up long requests (len == 0) into block-by-block 4307 * operations to get narrower locking. 4308 */ 4309 blksz = zp->z_blksz; 4310 if (ISP2(blksz)) 4311 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4312 else 4313 io_off = 0; 4314 if (len > 0 && ISP2(blksz)) 4315 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4316 else 4317 io_len = 0; 4318 4319 if (io_len == 0) { 4320 /* 4321 * Search the entire vp list for pages >= io_off. 4322 */ 4323 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4324 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4325 goto out; 4326 } 4327 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4328 4329 if (off > zp->z_size) { 4330 /* past end of file */ 4331 zfs_range_unlock(rl); 4332 ZFS_EXIT(zfsvfs); 4333 return (0); 4334 } 4335 4336 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4337 4338 for (off = io_off; io_off < off + len; io_off += io_len) { 4339 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4340 pp = page_lookup(vp, io_off, 4341 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4342 } else { 4343 pp = page_lookup_nowait(vp, io_off, 4344 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4345 } 4346 4347 if (pp != NULL && pvn_getdirty(pp, flags)) { 4348 int err; 4349 4350 /* 4351 * Found a dirty page to push 4352 */ 4353 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4354 if (err) 4355 error = err; 4356 } else { 4357 io_len = PAGESIZE; 4358 } 4359 } 4360 out: 4361 zfs_range_unlock(rl); 4362 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4363 zil_commit(zfsvfs->z_log, zp->z_id); 4364 ZFS_EXIT(zfsvfs); 4365 return (error); 4366 } 4367 4368 /*ARGSUSED*/ 4369 void 4370 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4371 { 4372 znode_t *zp = VTOZ(vp); 4373 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4374 int error; 4375 4376 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4377 if (zp->z_sa_hdl == NULL) { 4378 /* 4379 * The fs has been unmounted, or we did a 4380 * suspend/resume and this file no longer exists. 4381 */ 4382 if (vn_has_cached_data(vp)) { 4383 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4384 B_INVAL, cr); 4385 } 4386 4387 mutex_enter(&zp->z_lock); 4388 mutex_enter(&vp->v_lock); 4389 ASSERT(vp->v_count == 1); 4390 vp->v_count = 0; 4391 mutex_exit(&vp->v_lock); 4392 mutex_exit(&zp->z_lock); 4393 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4394 zfs_znode_free(zp); 4395 return; 4396 } 4397 4398 /* 4399 * Attempt to push any data in the page cache. If this fails 4400 * we will get kicked out later in zfs_zinactive(). 4401 */ 4402 if (vn_has_cached_data(vp)) { 4403 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4404 cr); 4405 } 4406 4407 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4408 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4409 4410 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4411 zfs_sa_upgrade_txholds(tx, zp); 4412 error = dmu_tx_assign(tx, TXG_WAIT); 4413 if (error) { 4414 dmu_tx_abort(tx); 4415 } else { 4416 mutex_enter(&zp->z_lock); 4417 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4418 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4419 zp->z_atime_dirty = 0; 4420 mutex_exit(&zp->z_lock); 4421 dmu_tx_commit(tx); 4422 } 4423 } 4424 4425 zfs_zinactive(zp); 4426 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4427 } 4428 4429 /* 4430 * Bounds-check the seek operation. 4431 * 4432 * IN: vp - vnode seeking within 4433 * ooff - old file offset 4434 * noffp - pointer to new file offset 4435 * ct - caller context 4436 * 4437 * RETURN: 0 on success, EINVAL if new offset invalid. 4438 */ 4439 /* ARGSUSED */ 4440 static int 4441 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4442 caller_context_t *ct) 4443 { 4444 if (vp->v_type == VDIR) 4445 return (0); 4446 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4447 } 4448 4449 /* 4450 * Pre-filter the generic locking function to trap attempts to place 4451 * a mandatory lock on a memory mapped file. 4452 */ 4453 static int 4454 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4455 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4456 { 4457 znode_t *zp = VTOZ(vp); 4458 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4459 4460 ZFS_ENTER(zfsvfs); 4461 ZFS_VERIFY_ZP(zp); 4462 4463 /* 4464 * We are following the UFS semantics with respect to mapcnt 4465 * here: If we see that the file is mapped already, then we will 4466 * return an error, but we don't worry about races between this 4467 * function and zfs_map(). 4468 */ 4469 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4470 ZFS_EXIT(zfsvfs); 4471 return (SET_ERROR(EAGAIN)); 4472 } 4473 ZFS_EXIT(zfsvfs); 4474 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4475 } 4476 4477 /* 4478 * If we can't find a page in the cache, we will create a new page 4479 * and fill it with file data. For efficiency, we may try to fill 4480 * multiple pages at once (klustering) to fill up the supplied page 4481 * list. Note that the pages to be filled are held with an exclusive 4482 * lock to prevent access by other threads while they are being filled. 4483 */ 4484 static int 4485 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4486 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4487 { 4488 znode_t *zp = VTOZ(vp); 4489 page_t *pp, *cur_pp; 4490 objset_t *os = zp->z_zfsvfs->z_os; 4491 u_offset_t io_off, total; 4492 size_t io_len; 4493 int err; 4494 4495 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4496 /* 4497 * We only have a single page, don't bother klustering 4498 */ 4499 io_off = off; 4500 io_len = PAGESIZE; 4501 pp = page_create_va(vp, io_off, io_len, 4502 PG_EXCL | PG_WAIT, seg, addr); 4503 } else { 4504 /* 4505 * Try to find enough pages to fill the page list 4506 */ 4507 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4508 &io_len, off, plsz, 0); 4509 } 4510 if (pp == NULL) { 4511 /* 4512 * The page already exists, nothing to do here. 4513 */ 4514 *pl = NULL; 4515 return (0); 4516 } 4517 4518 /* 4519 * Fill the pages in the kluster. 4520 */ 4521 cur_pp = pp; 4522 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4523 caddr_t va; 4524 4525 ASSERT3U(io_off, ==, cur_pp->p_offset); 4526 va = zfs_map_page(cur_pp, S_WRITE); 4527 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4528 DMU_READ_PREFETCH); 4529 zfs_unmap_page(cur_pp, va); 4530 if (err) { 4531 /* On error, toss the entire kluster */ 4532 pvn_read_done(pp, B_ERROR); 4533 /* convert checksum errors into IO errors */ 4534 if (err == ECKSUM) 4535 err = SET_ERROR(EIO); 4536 return (err); 4537 } 4538 cur_pp = cur_pp->p_next; 4539 } 4540 4541 /* 4542 * Fill in the page list array from the kluster starting 4543 * from the desired offset `off'. 4544 * NOTE: the page list will always be null terminated. 4545 */ 4546 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4547 ASSERT(pl == NULL || (*pl)->p_offset == off); 4548 4549 return (0); 4550 } 4551 4552 /* 4553 * Return pointers to the pages for the file region [off, off + len] 4554 * in the pl array. If plsz is greater than len, this function may 4555 * also return page pointers from after the specified region 4556 * (i.e. the region [off, off + plsz]). These additional pages are 4557 * only returned if they are already in the cache, or were created as 4558 * part of a klustered read. 4559 * 4560 * IN: vp - vnode of file to get data from. 4561 * off - position in file to get data from. 4562 * len - amount of data to retrieve. 4563 * plsz - length of provided page list. 4564 * seg - segment to obtain pages for. 4565 * addr - virtual address of fault. 4566 * rw - mode of created pages. 4567 * cr - credentials of caller. 4568 * ct - caller context. 4569 * 4570 * OUT: protp - protection mode of created pages. 4571 * pl - list of pages created. 4572 * 4573 * RETURN: 0 on success, error code on failure. 4574 * 4575 * Timestamps: 4576 * vp - atime updated 4577 */ 4578 /* ARGSUSED */ 4579 static int 4580 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4581 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4582 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4583 { 4584 znode_t *zp = VTOZ(vp); 4585 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4586 page_t **pl0 = pl; 4587 int err = 0; 4588 4589 /* we do our own caching, faultahead is unnecessary */ 4590 if (pl == NULL) 4591 return (0); 4592 else if (len > plsz) 4593 len = plsz; 4594 else 4595 len = P2ROUNDUP(len, PAGESIZE); 4596 ASSERT(plsz >= len); 4597 4598 ZFS_ENTER(zfsvfs); 4599 ZFS_VERIFY_ZP(zp); 4600 4601 if (protp) 4602 *protp = PROT_ALL; 4603 4604 /* 4605 * Loop through the requested range [off, off + len) looking 4606 * for pages. If we don't find a page, we will need to create 4607 * a new page and fill it with data from the file. 4608 */ 4609 while (len > 0) { 4610 if (*pl = page_lookup(vp, off, SE_SHARED)) 4611 *(pl+1) = NULL; 4612 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4613 goto out; 4614 while (*pl) { 4615 ASSERT3U((*pl)->p_offset, ==, off); 4616 off += PAGESIZE; 4617 addr += PAGESIZE; 4618 if (len > 0) { 4619 ASSERT3U(len, >=, PAGESIZE); 4620 len -= PAGESIZE; 4621 } 4622 ASSERT3U(plsz, >=, PAGESIZE); 4623 plsz -= PAGESIZE; 4624 pl++; 4625 } 4626 } 4627 4628 /* 4629 * Fill out the page array with any pages already in the cache. 4630 */ 4631 while (plsz > 0 && 4632 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4633 off += PAGESIZE; 4634 plsz -= PAGESIZE; 4635 } 4636 out: 4637 if (err) { 4638 /* 4639 * Release any pages we have previously locked. 4640 */ 4641 while (pl > pl0) 4642 page_unlock(*--pl); 4643 } else { 4644 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4645 } 4646 4647 *pl = NULL; 4648 4649 ZFS_EXIT(zfsvfs); 4650 return (err); 4651 } 4652 4653 /* 4654 * Request a memory map for a section of a file. This code interacts 4655 * with common code and the VM system as follows: 4656 * 4657 * - common code calls mmap(), which ends up in smmap_common() 4658 * - this calls VOP_MAP(), which takes you into (say) zfs 4659 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4660 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4661 * - zfs_addmap() updates z_mapcnt 4662 */ 4663 /*ARGSUSED*/ 4664 static int 4665 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4666 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4667 caller_context_t *ct) 4668 { 4669 znode_t *zp = VTOZ(vp); 4670 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4671 segvn_crargs_t vn_a; 4672 int error; 4673 4674 ZFS_ENTER(zfsvfs); 4675 ZFS_VERIFY_ZP(zp); 4676 4677 if ((prot & PROT_WRITE) && (zp->z_pflags & 4678 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4679 ZFS_EXIT(zfsvfs); 4680 return (SET_ERROR(EPERM)); 4681 } 4682 4683 if ((prot & (PROT_READ | PROT_EXEC)) && 4684 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4685 ZFS_EXIT(zfsvfs); 4686 return (SET_ERROR(EACCES)); 4687 } 4688 4689 if (vp->v_flag & VNOMAP) { 4690 ZFS_EXIT(zfsvfs); 4691 return (SET_ERROR(ENOSYS)); 4692 } 4693 4694 if (off < 0 || len > MAXOFFSET_T - off) { 4695 ZFS_EXIT(zfsvfs); 4696 return (SET_ERROR(ENXIO)); 4697 } 4698 4699 if (vp->v_type != VREG) { 4700 ZFS_EXIT(zfsvfs); 4701 return (SET_ERROR(ENODEV)); 4702 } 4703 4704 /* 4705 * If file is locked, disallow mapping. 4706 */ 4707 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4708 ZFS_EXIT(zfsvfs); 4709 return (SET_ERROR(EAGAIN)); 4710 } 4711 4712 as_rangelock(as); 4713 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4714 if (error != 0) { 4715 as_rangeunlock(as); 4716 ZFS_EXIT(zfsvfs); 4717 return (error); 4718 } 4719 4720 vn_a.vp = vp; 4721 vn_a.offset = (u_offset_t)off; 4722 vn_a.type = flags & MAP_TYPE; 4723 vn_a.prot = prot; 4724 vn_a.maxprot = maxprot; 4725 vn_a.cred = cr; 4726 vn_a.amp = NULL; 4727 vn_a.flags = flags & ~MAP_TYPE; 4728 vn_a.szc = 0; 4729 vn_a.lgrp_mem_policy_flags = 0; 4730 4731 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4732 4733 as_rangeunlock(as); 4734 ZFS_EXIT(zfsvfs); 4735 return (error); 4736 } 4737 4738 /* ARGSUSED */ 4739 static int 4740 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4741 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4742 caller_context_t *ct) 4743 { 4744 uint64_t pages = btopr(len); 4745 4746 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4747 return (0); 4748 } 4749 4750 /* 4751 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4752 * more accurate mtime for the associated file. Since we don't have a way of 4753 * detecting when the data was actually modified, we have to resort to 4754 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4755 * last page is pushed. The problem occurs when the msync() call is omitted, 4756 * which by far the most common case: 4757 * 4758 * open() 4759 * mmap() 4760 * <modify memory> 4761 * munmap() 4762 * close() 4763 * <time lapse> 4764 * putpage() via fsflush 4765 * 4766 * If we wait until fsflush to come along, we can have a modification time that 4767 * is some arbitrary point in the future. In order to prevent this in the 4768 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4769 * torn down. 4770 */ 4771 /* ARGSUSED */ 4772 static int 4773 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4774 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4775 caller_context_t *ct) 4776 { 4777 uint64_t pages = btopr(len); 4778 4779 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4780 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4781 4782 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4783 vn_has_cached_data(vp)) 4784 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4785 4786 return (0); 4787 } 4788 4789 /* 4790 * Free or allocate space in a file. Currently, this function only 4791 * supports the `F_FREESP' command. However, this command is somewhat 4792 * misnamed, as its functionality includes the ability to allocate as 4793 * well as free space. 4794 * 4795 * IN: vp - vnode of file to free data in. 4796 * cmd - action to take (only F_FREESP supported). 4797 * bfp - section of file to free/alloc. 4798 * flag - current file open mode flags. 4799 * offset - current file offset. 4800 * cr - credentials of caller [UNUSED]. 4801 * ct - caller context. 4802 * 4803 * RETURN: 0 on success, error code on failure. 4804 * 4805 * Timestamps: 4806 * vp - ctime|mtime updated 4807 */ 4808 /* ARGSUSED */ 4809 static int 4810 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4811 offset_t offset, cred_t *cr, caller_context_t *ct) 4812 { 4813 znode_t *zp = VTOZ(vp); 4814 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4815 uint64_t off, len; 4816 int error; 4817 4818 ZFS_ENTER(zfsvfs); 4819 ZFS_VERIFY_ZP(zp); 4820 4821 if (cmd != F_FREESP) { 4822 ZFS_EXIT(zfsvfs); 4823 return (SET_ERROR(EINVAL)); 4824 } 4825 4826 /* 4827 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 4828 * callers might not be able to detect properly that we are read-only, 4829 * so check it explicitly here. 4830 */ 4831 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 4832 ZFS_EXIT(zfsvfs); 4833 return (SET_ERROR(EROFS)); 4834 } 4835 4836 if (error = convoff(vp, bfp, 0, offset)) { 4837 ZFS_EXIT(zfsvfs); 4838 return (error); 4839 } 4840 4841 if (bfp->l_len < 0) { 4842 ZFS_EXIT(zfsvfs); 4843 return (SET_ERROR(EINVAL)); 4844 } 4845 4846 off = bfp->l_start; 4847 len = bfp->l_len; /* 0 means from off to end of file */ 4848 4849 error = zfs_freesp(zp, off, len, flag, TRUE); 4850 4851 if (error == 0 && off == 0 && len == 0) 4852 vnevent_truncate(ZTOV(zp), ct); 4853 4854 ZFS_EXIT(zfsvfs); 4855 return (error); 4856 } 4857 4858 /*ARGSUSED*/ 4859 static int 4860 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4861 { 4862 znode_t *zp = VTOZ(vp); 4863 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4864 uint32_t gen; 4865 uint64_t gen64; 4866 uint64_t object = zp->z_id; 4867 zfid_short_t *zfid; 4868 int size, i, error; 4869 4870 ZFS_ENTER(zfsvfs); 4871 ZFS_VERIFY_ZP(zp); 4872 4873 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4874 &gen64, sizeof (uint64_t))) != 0) { 4875 ZFS_EXIT(zfsvfs); 4876 return (error); 4877 } 4878 4879 gen = (uint32_t)gen64; 4880 4881 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4882 if (fidp->fid_len < size) { 4883 fidp->fid_len = size; 4884 ZFS_EXIT(zfsvfs); 4885 return (SET_ERROR(ENOSPC)); 4886 } 4887 4888 zfid = (zfid_short_t *)fidp; 4889 4890 zfid->zf_len = size; 4891 4892 for (i = 0; i < sizeof (zfid->zf_object); i++) 4893 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4894 4895 /* Must have a non-zero generation number to distinguish from .zfs */ 4896 if (gen == 0) 4897 gen = 1; 4898 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4899 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4900 4901 if (size == LONG_FID_LEN) { 4902 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4903 zfid_long_t *zlfid; 4904 4905 zlfid = (zfid_long_t *)fidp; 4906 4907 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4908 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4909 4910 /* XXX - this should be the generation number for the objset */ 4911 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4912 zlfid->zf_setgen[i] = 0; 4913 } 4914 4915 ZFS_EXIT(zfsvfs); 4916 return (0); 4917 } 4918 4919 static int 4920 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4921 caller_context_t *ct) 4922 { 4923 znode_t *zp, *xzp; 4924 zfsvfs_t *zfsvfs; 4925 zfs_dirlock_t *dl; 4926 int error; 4927 4928 switch (cmd) { 4929 case _PC_LINK_MAX: 4930 *valp = ULONG_MAX; 4931 return (0); 4932 4933 case _PC_FILESIZEBITS: 4934 *valp = 64; 4935 return (0); 4936 4937 case _PC_XATTR_EXISTS: 4938 zp = VTOZ(vp); 4939 zfsvfs = zp->z_zfsvfs; 4940 ZFS_ENTER(zfsvfs); 4941 ZFS_VERIFY_ZP(zp); 4942 *valp = 0; 4943 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4944 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4945 if (error == 0) { 4946 zfs_dirent_unlock(dl); 4947 if (!zfs_dirempty(xzp)) 4948 *valp = 1; 4949 VN_RELE(ZTOV(xzp)); 4950 } else if (error == ENOENT) { 4951 /* 4952 * If there aren't extended attributes, it's the 4953 * same as having zero of them. 4954 */ 4955 error = 0; 4956 } 4957 ZFS_EXIT(zfsvfs); 4958 return (error); 4959 4960 case _PC_SATTR_ENABLED: 4961 case _PC_SATTR_EXISTS: 4962 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4963 (vp->v_type == VREG || vp->v_type == VDIR); 4964 return (0); 4965 4966 case _PC_ACCESS_FILTERING: 4967 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4968 vp->v_type == VDIR; 4969 return (0); 4970 4971 case _PC_ACL_ENABLED: 4972 *valp = _ACL_ACE_ENABLED; 4973 return (0); 4974 4975 case _PC_MIN_HOLE_SIZE: 4976 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4977 return (0); 4978 4979 case _PC_TIMESTAMP_RESOLUTION: 4980 /* nanosecond timestamp resolution */ 4981 *valp = 1L; 4982 return (0); 4983 4984 default: 4985 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4986 } 4987 } 4988 4989 /*ARGSUSED*/ 4990 static int 4991 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4992 caller_context_t *ct) 4993 { 4994 znode_t *zp = VTOZ(vp); 4995 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4996 int error; 4997 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4998 4999 ZFS_ENTER(zfsvfs); 5000 ZFS_VERIFY_ZP(zp); 5001 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5002 ZFS_EXIT(zfsvfs); 5003 5004 return (error); 5005 } 5006 5007 /*ARGSUSED*/ 5008 static int 5009 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5010 caller_context_t *ct) 5011 { 5012 znode_t *zp = VTOZ(vp); 5013 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5014 int error; 5015 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5016 zilog_t *zilog = zfsvfs->z_log; 5017 5018 ZFS_ENTER(zfsvfs); 5019 ZFS_VERIFY_ZP(zp); 5020 5021 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5022 5023 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5024 zil_commit(zilog, 0); 5025 5026 ZFS_EXIT(zfsvfs); 5027 return (error); 5028 } 5029 5030 /* 5031 * The smallest read we may consider to loan out an arcbuf. 5032 * This must be a power of 2. 5033 */ 5034 int zcr_blksz_min = (1 << 10); /* 1K */ 5035 /* 5036 * If set to less than the file block size, allow loaning out of an 5037 * arcbuf for a partial block read. This must be a power of 2. 5038 */ 5039 int zcr_blksz_max = (1 << 17); /* 128K */ 5040 5041 /*ARGSUSED*/ 5042 static int 5043 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5044 caller_context_t *ct) 5045 { 5046 znode_t *zp = VTOZ(vp); 5047 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5048 int max_blksz = zfsvfs->z_max_blksz; 5049 uio_t *uio = &xuio->xu_uio; 5050 ssize_t size = uio->uio_resid; 5051 offset_t offset = uio->uio_loffset; 5052 int blksz; 5053 int fullblk, i; 5054 arc_buf_t *abuf; 5055 ssize_t maxsize; 5056 int preamble, postamble; 5057 5058 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5059 return (SET_ERROR(EINVAL)); 5060 5061 ZFS_ENTER(zfsvfs); 5062 ZFS_VERIFY_ZP(zp); 5063 switch (ioflag) { 5064 case UIO_WRITE: 5065 /* 5066 * Loan out an arc_buf for write if write size is bigger than 5067 * max_blksz, and the file's block size is also max_blksz. 5068 */ 5069 blksz = max_blksz; 5070 if (size < blksz || zp->z_blksz != blksz) { 5071 ZFS_EXIT(zfsvfs); 5072 return (SET_ERROR(EINVAL)); 5073 } 5074 /* 5075 * Caller requests buffers for write before knowing where the 5076 * write offset might be (e.g. NFS TCP write). 5077 */ 5078 if (offset == -1) { 5079 preamble = 0; 5080 } else { 5081 preamble = P2PHASE(offset, blksz); 5082 if (preamble) { 5083 preamble = blksz - preamble; 5084 size -= preamble; 5085 } 5086 } 5087 5088 postamble = P2PHASE(size, blksz); 5089 size -= postamble; 5090 5091 fullblk = size / blksz; 5092 (void) dmu_xuio_init(xuio, 5093 (preamble != 0) + fullblk + (postamble != 0)); 5094 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5095 int, postamble, int, 5096 (preamble != 0) + fullblk + (postamble != 0)); 5097 5098 /* 5099 * Have to fix iov base/len for partial buffers. They 5100 * currently represent full arc_buf's. 5101 */ 5102 if (preamble) { 5103 /* data begins in the middle of the arc_buf */ 5104 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5105 blksz); 5106 ASSERT(abuf); 5107 (void) dmu_xuio_add(xuio, abuf, 5108 blksz - preamble, preamble); 5109 } 5110 5111 for (i = 0; i < fullblk; i++) { 5112 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5113 blksz); 5114 ASSERT(abuf); 5115 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5116 } 5117 5118 if (postamble) { 5119 /* data ends in the middle of the arc_buf */ 5120 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5121 blksz); 5122 ASSERT(abuf); 5123 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5124 } 5125 break; 5126 case UIO_READ: 5127 /* 5128 * Loan out an arc_buf for read if the read size is larger than 5129 * the current file block size. Block alignment is not 5130 * considered. Partial arc_buf will be loaned out for read. 5131 */ 5132 blksz = zp->z_blksz; 5133 if (blksz < zcr_blksz_min) 5134 blksz = zcr_blksz_min; 5135 if (blksz > zcr_blksz_max) 5136 blksz = zcr_blksz_max; 5137 /* avoid potential complexity of dealing with it */ 5138 if (blksz > max_blksz) { 5139 ZFS_EXIT(zfsvfs); 5140 return (SET_ERROR(EINVAL)); 5141 } 5142 5143 maxsize = zp->z_size - uio->uio_loffset; 5144 if (size > maxsize) 5145 size = maxsize; 5146 5147 if (size < blksz || vn_has_cached_data(vp)) { 5148 ZFS_EXIT(zfsvfs); 5149 return (SET_ERROR(EINVAL)); 5150 } 5151 break; 5152 default: 5153 ZFS_EXIT(zfsvfs); 5154 return (SET_ERROR(EINVAL)); 5155 } 5156 5157 uio->uio_extflg = UIO_XUIO; 5158 XUIO_XUZC_RW(xuio) = ioflag; 5159 ZFS_EXIT(zfsvfs); 5160 return (0); 5161 } 5162 5163 /*ARGSUSED*/ 5164 static int 5165 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5166 { 5167 int i; 5168 arc_buf_t *abuf; 5169 int ioflag = XUIO_XUZC_RW(xuio); 5170 5171 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5172 5173 i = dmu_xuio_cnt(xuio); 5174 while (i-- > 0) { 5175 abuf = dmu_xuio_arcbuf(xuio, i); 5176 /* 5177 * if abuf == NULL, it must be a write buffer 5178 * that has been returned in zfs_write(). 5179 */ 5180 if (abuf) 5181 dmu_return_arcbuf(abuf); 5182 ASSERT(abuf || ioflag == UIO_WRITE); 5183 } 5184 5185 dmu_xuio_fini(xuio); 5186 return (0); 5187 } 5188 5189 /* 5190 * Predeclare these here so that the compiler assumes that 5191 * this is an "old style" function declaration that does 5192 * not include arguments => we won't get type mismatch errors 5193 * in the initializations that follow. 5194 */ 5195 static int zfs_inval(); 5196 static int zfs_isdir(); 5197 5198 static int 5199 zfs_inval() 5200 { 5201 return (SET_ERROR(EINVAL)); 5202 } 5203 5204 static int 5205 zfs_isdir() 5206 { 5207 return (SET_ERROR(EISDIR)); 5208 } 5209 /* 5210 * Directory vnode operations template 5211 */ 5212 vnodeops_t *zfs_dvnodeops; 5213 const fs_operation_def_t zfs_dvnodeops_template[] = { 5214 VOPNAME_OPEN, { .vop_open = zfs_open }, 5215 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5216 VOPNAME_READ, { .error = zfs_isdir }, 5217 VOPNAME_WRITE, { .error = zfs_isdir }, 5218 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5219 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5220 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5221 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5222 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5223 VOPNAME_CREATE, { .vop_create = zfs_create }, 5224 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5225 VOPNAME_LINK, { .vop_link = zfs_link }, 5226 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5227 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5228 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5229 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5230 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5231 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5232 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5233 VOPNAME_FID, { .vop_fid = zfs_fid }, 5234 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5235 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5236 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5237 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5238 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5239 NULL, NULL 5240 }; 5241 5242 /* 5243 * Regular file vnode operations template 5244 */ 5245 vnodeops_t *zfs_fvnodeops; 5246 const fs_operation_def_t zfs_fvnodeops_template[] = { 5247 VOPNAME_OPEN, { .vop_open = zfs_open }, 5248 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5249 VOPNAME_READ, { .vop_read = zfs_read }, 5250 VOPNAME_WRITE, { .vop_write = zfs_write }, 5251 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5252 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5253 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5254 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5255 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5256 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5257 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5258 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5259 VOPNAME_FID, { .vop_fid = zfs_fid }, 5260 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5261 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5262 VOPNAME_SPACE, { .vop_space = zfs_space }, 5263 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5264 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5265 VOPNAME_MAP, { .vop_map = zfs_map }, 5266 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5267 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5268 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5269 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5270 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5271 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5272 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5273 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5274 NULL, NULL 5275 }; 5276 5277 /* 5278 * Symbolic link vnode operations template 5279 */ 5280 vnodeops_t *zfs_symvnodeops; 5281 const fs_operation_def_t zfs_symvnodeops_template[] = { 5282 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5283 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5284 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5285 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5286 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5287 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5288 VOPNAME_FID, { .vop_fid = zfs_fid }, 5289 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5290 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5291 NULL, NULL 5292 }; 5293 5294 /* 5295 * special share hidden files vnode operations template 5296 */ 5297 vnodeops_t *zfs_sharevnodeops; 5298 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5299 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5300 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5301 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5302 VOPNAME_FID, { .vop_fid = zfs_fid }, 5303 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5304 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5305 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5306 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5307 NULL, NULL 5308 }; 5309 5310 /* 5311 * Extended attribute directory vnode operations template 5312 * 5313 * This template is identical to the directory vnodes 5314 * operation template except for restricted operations: 5315 * VOP_MKDIR() 5316 * VOP_SYMLINK() 5317 * 5318 * Note that there are other restrictions embedded in: 5319 * zfs_create() - restrict type to VREG 5320 * zfs_link() - no links into/out of attribute space 5321 * zfs_rename() - no moves into/out of attribute space 5322 */ 5323 vnodeops_t *zfs_xdvnodeops; 5324 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5325 VOPNAME_OPEN, { .vop_open = zfs_open }, 5326 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5327 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5328 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5329 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5330 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5331 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5332 VOPNAME_CREATE, { .vop_create = zfs_create }, 5333 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5334 VOPNAME_LINK, { .vop_link = zfs_link }, 5335 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5336 VOPNAME_MKDIR, { .error = zfs_inval }, 5337 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5338 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5339 VOPNAME_SYMLINK, { .error = zfs_inval }, 5340 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5341 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5342 VOPNAME_FID, { .vop_fid = zfs_fid }, 5343 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5344 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5345 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5346 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5347 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5348 NULL, NULL 5349 }; 5350 5351 /* 5352 * Error vnode operations template 5353 */ 5354 vnodeops_t *zfs_evnodeops; 5355 const fs_operation_def_t zfs_evnodeops_template[] = { 5356 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5357 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5358 NULL, NULL 5359 }; 5360