1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2007 Jeremy Teo */ 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/vm.h> 45 #include <vm/seg_vn.h> 46 #include <vm/pvn.h> 47 #include <vm/as.h> 48 #include <vm/kpm.h> 49 #include <vm/seg_kpm.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/dmu_objset.h> 61 #include <sys/spa.h> 62 #include <sys/txg.h> 63 #include <sys/dbuf.h> 64 #include <sys/zap.h> 65 #include <sys/sa.h> 66 #include <sys/dirent.h> 67 #include <sys/policy.h> 68 #include <sys/sunddi.h> 69 #include <sys/filio.h> 70 #include <sys/sid.h> 71 #include "fs/fs_subr.h" 72 #include <sys/zfs_ctldir.h> 73 #include <sys/zfs_fuid.h> 74 #include <sys/zfs_sa.h> 75 #include <sys/dnlc.h> 76 #include <sys/zfs_rlock.h> 77 #include <sys/extdirent.h> 78 #include <sys/kidmap.h> 79 #include <sys/cred.h> 80 #include <sys/attr.h> 81 82 /* 83 * Programming rules. 84 * 85 * Each vnode op performs some logical unit of work. To do this, the ZPL must 86 * properly lock its in-core state, create a DMU transaction, do the work, 87 * record this work in the intent log (ZIL), commit the DMU transaction, 88 * and wait for the intent log to commit if it is a synchronous operation. 89 * Moreover, the vnode ops must work in both normal and log replay context. 90 * The ordering of events is important to avoid deadlocks and references 91 * to freed memory. The example below illustrates the following Big Rules: 92 * 93 * (1) A check must be made in each zfs thread for a mounted file system. 94 * This is done avoiding races using ZFS_ENTER(zfsvfs). 95 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 96 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 97 * can return EIO from the calling function. 98 * 99 * (2) VN_RELE() should always be the last thing except for zil_commit() 100 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 101 * First, if it's the last reference, the vnode/znode 102 * can be freed, so the zp may point to freed memory. Second, the last 103 * reference will call zfs_zinactive(), which may induce a lot of work -- 104 * pushing cached pages (which acquires range locks) and syncing out 105 * cached atime changes. Third, zfs_zinactive() may require a new tx, 106 * which could deadlock the system if you were already holding one. 107 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 108 * 109 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 110 * as they can span dmu_tx_assign() calls. 111 * 112 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 113 * This is critical because we don't want to block while holding locks. 114 * Note, in particular, that if a lock is sometimes acquired before 115 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 116 * use a non-blocking assign can deadlock the system. The scenario: 117 * 118 * Thread A has grabbed a lock before calling dmu_tx_assign(). 119 * Thread B is in an already-assigned tx, and blocks for this lock. 120 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 121 * forever, because the previous txg can't quiesce until B's tx commits. 122 * 123 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 124 * then drop all locks, call dmu_tx_wait(), and try again. 125 * 126 * (5) If the operation succeeded, generate the intent log entry for it 127 * before dropping locks. This ensures that the ordering of events 128 * in the intent log matches the order in which they actually occurred. 129 * During ZIL replay the zfs_log_* functions will update the sequence 130 * number to indicate the zil transaction has replayed. 131 * 132 * (6) At the end of each vnode op, the DMU tx must always commit, 133 * regardless of whether there were any errors. 134 * 135 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 136 * to ensure that synchronous semantics are provided when necessary. 137 * 138 * In general, this is how things should be ordered in each vnode op: 139 * 140 * ZFS_ENTER(zfsvfs); // exit if unmounted 141 * top: 142 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 143 * rw_enter(...); // grab any other locks you need 144 * tx = dmu_tx_create(...); // get DMU tx 145 * dmu_tx_hold_*(); // hold each object you might modify 146 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 147 * if (error) { 148 * rw_exit(...); // drop locks 149 * zfs_dirent_unlock(dl); // unlock directory entry 150 * VN_RELE(...); // release held vnodes 151 * if (error == ERESTART) { 152 * dmu_tx_wait(tx); 153 * dmu_tx_abort(tx); 154 * goto top; 155 * } 156 * dmu_tx_abort(tx); // abort DMU tx 157 * ZFS_EXIT(zfsvfs); // finished in zfs 158 * return (error); // really out of space 159 * } 160 * error = do_real_work(); // do whatever this VOP does 161 * if (error == 0) 162 * zfs_log_*(...); // on success, make ZIL entry 163 * dmu_tx_commit(tx); // commit DMU tx -- error or not 164 * rw_exit(...); // drop locks 165 * zfs_dirent_unlock(dl); // unlock directory entry 166 * VN_RELE(...); // release held vnodes 167 * zil_commit(zilog, seq, foid); // synchronous when necessary 168 * ZFS_EXIT(zfsvfs); // finished in zfs 169 * return (error); // done, report error 170 */ 171 172 /* ARGSUSED */ 173 static int 174 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 175 { 176 znode_t *zp = VTOZ(*vpp); 177 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 178 179 ZFS_ENTER(zfsvfs); 180 ZFS_VERIFY_ZP(zp); 181 182 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 183 ((flag & FAPPEND) == 0)) { 184 ZFS_EXIT(zfsvfs); 185 return (EPERM); 186 } 187 188 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 189 ZTOV(zp)->v_type == VREG && 190 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 191 if (fs_vscan(*vpp, cr, 0) != 0) { 192 ZFS_EXIT(zfsvfs); 193 return (EACCES); 194 } 195 } 196 197 /* Keep a count of the synchronous opens in the znode */ 198 if (flag & (FSYNC | FDSYNC)) 199 atomic_inc_32(&zp->z_sync_cnt); 200 201 ZFS_EXIT(zfsvfs); 202 return (0); 203 } 204 205 /* ARGSUSED */ 206 static int 207 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 208 caller_context_t *ct) 209 { 210 znode_t *zp = VTOZ(vp); 211 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 212 213 /* 214 * Clean up any locks held by this process on the vp. 215 */ 216 cleanlocks(vp, ddi_get_pid(), 0); 217 cleanshares(vp, ddi_get_pid()); 218 219 ZFS_ENTER(zfsvfs); 220 ZFS_VERIFY_ZP(zp); 221 222 /* Decrement the synchronous opens in the znode */ 223 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 224 atomic_dec_32(&zp->z_sync_cnt); 225 226 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 227 ZTOV(zp)->v_type == VREG && 228 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 229 VERIFY(fs_vscan(vp, cr, 1) == 0); 230 231 ZFS_EXIT(zfsvfs); 232 return (0); 233 } 234 235 /* 236 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 237 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 238 */ 239 static int 240 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 241 { 242 znode_t *zp = VTOZ(vp); 243 uint64_t noff = (uint64_t)*off; /* new offset */ 244 uint64_t file_sz; 245 int error; 246 boolean_t hole; 247 248 file_sz = zp->z_size; 249 if (noff >= file_sz) { 250 return (ENXIO); 251 } 252 253 if (cmd == _FIO_SEEK_HOLE) 254 hole = B_TRUE; 255 else 256 hole = B_FALSE; 257 258 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 259 260 /* end of file? */ 261 if ((error == ESRCH) || (noff > file_sz)) { 262 /* 263 * Handle the virtual hole at the end of file. 264 */ 265 if (hole) { 266 *off = file_sz; 267 return (0); 268 } 269 return (ENXIO); 270 } 271 272 if (noff < *off) 273 return (error); 274 *off = noff; 275 return (error); 276 } 277 278 /* ARGSUSED */ 279 static int 280 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 281 int *rvalp, caller_context_t *ct) 282 { 283 offset_t off; 284 int error; 285 zfsvfs_t *zfsvfs; 286 znode_t *zp; 287 288 switch (com) { 289 case _FIOFFS: 290 return (zfs_sync(vp->v_vfsp, 0, cred)); 291 292 /* 293 * The following two ioctls are used by bfu. Faking out, 294 * necessary to avoid bfu errors. 295 */ 296 case _FIOGDIO: 297 case _FIOSDIO: 298 return (0); 299 300 case _FIO_SEEK_DATA: 301 case _FIO_SEEK_HOLE: 302 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 303 return (EFAULT); 304 305 zp = VTOZ(vp); 306 zfsvfs = zp->z_zfsvfs; 307 ZFS_ENTER(zfsvfs); 308 ZFS_VERIFY_ZP(zp); 309 310 /* offset parameter is in/out */ 311 error = zfs_holey(vp, com, &off); 312 ZFS_EXIT(zfsvfs); 313 if (error) 314 return (error); 315 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 316 return (EFAULT); 317 return (0); 318 } 319 return (ENOTTY); 320 } 321 322 /* 323 * Utility functions to map and unmap a single physical page. These 324 * are used to manage the mappable copies of ZFS file data, and therefore 325 * do not update ref/mod bits. 326 */ 327 caddr_t 328 zfs_map_page(page_t *pp, enum seg_rw rw) 329 { 330 if (kpm_enable) 331 return (hat_kpm_mapin(pp, 0)); 332 ASSERT(rw == S_READ || rw == S_WRITE); 333 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 334 (caddr_t)-1)); 335 } 336 337 void 338 zfs_unmap_page(page_t *pp, caddr_t addr) 339 { 340 if (kpm_enable) { 341 hat_kpm_mapout(pp, 0, addr); 342 } else { 343 ppmapout(addr); 344 } 345 } 346 347 /* 348 * When a file is memory mapped, we must keep the IO data synchronized 349 * between the DMU cache and the memory mapped pages. What this means: 350 * 351 * On Write: If we find a memory mapped page, we write to *both* 352 * the page and the dmu buffer. 353 */ 354 static void 355 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 356 { 357 int64_t off; 358 359 off = start & PAGEOFFSET; 360 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 361 page_t *pp; 362 uint64_t nbytes = MIN(PAGESIZE - off, len); 363 364 if (pp = page_lookup(vp, start, SE_SHARED)) { 365 caddr_t va; 366 367 va = zfs_map_page(pp, S_WRITE); 368 (void) dmu_read(os, oid, start+off, nbytes, va+off, 369 DMU_READ_PREFETCH); 370 zfs_unmap_page(pp, va); 371 page_unlock(pp); 372 } 373 len -= nbytes; 374 off = 0; 375 } 376 } 377 378 /* 379 * When a file is memory mapped, we must keep the IO data synchronized 380 * between the DMU cache and the memory mapped pages. What this means: 381 * 382 * On Read: We "read" preferentially from memory mapped pages, 383 * else we default from the dmu buffer. 384 * 385 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 386 * the file is memory mapped. 387 */ 388 static int 389 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 390 { 391 znode_t *zp = VTOZ(vp); 392 objset_t *os = zp->z_zfsvfs->z_os; 393 int64_t start, off; 394 int len = nbytes; 395 int error = 0; 396 397 start = uio->uio_loffset; 398 off = start & PAGEOFFSET; 399 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 400 page_t *pp; 401 uint64_t bytes = MIN(PAGESIZE - off, len); 402 403 if (pp = page_lookup(vp, start, SE_SHARED)) { 404 caddr_t va; 405 406 va = zfs_map_page(pp, S_READ); 407 error = uiomove(va + off, bytes, UIO_READ, uio); 408 zfs_unmap_page(pp, va); 409 page_unlock(pp); 410 } else { 411 error = dmu_read_uio(os, zp->z_id, uio, bytes); 412 } 413 len -= bytes; 414 off = 0; 415 if (error) 416 break; 417 } 418 return (error); 419 } 420 421 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 422 423 /* 424 * Read bytes from specified file into supplied buffer. 425 * 426 * IN: vp - vnode of file to be read from. 427 * uio - structure supplying read location, range info, 428 * and return buffer. 429 * ioflag - SYNC flags; used to provide FRSYNC semantics. 430 * cr - credentials of caller. 431 * ct - caller context 432 * 433 * OUT: uio - updated offset and range, buffer filled. 434 * 435 * RETURN: 0 if success 436 * error code if failure 437 * 438 * Side Effects: 439 * vp - atime updated if byte count > 0 440 */ 441 /* ARGSUSED */ 442 static int 443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 444 { 445 znode_t *zp = VTOZ(vp); 446 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 447 objset_t *os; 448 ssize_t n, nbytes; 449 int error; 450 rl_t *rl; 451 xuio_t *xuio = NULL; 452 453 ZFS_ENTER(zfsvfs); 454 ZFS_VERIFY_ZP(zp); 455 os = zfsvfs->z_os; 456 457 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 458 ZFS_EXIT(zfsvfs); 459 return (EACCES); 460 } 461 462 /* 463 * Validate file offset 464 */ 465 if (uio->uio_loffset < (offset_t)0) { 466 ZFS_EXIT(zfsvfs); 467 return (EINVAL); 468 } 469 470 /* 471 * Fasttrack empty reads 472 */ 473 if (uio->uio_resid == 0) { 474 ZFS_EXIT(zfsvfs); 475 return (0); 476 } 477 478 /* 479 * Check for mandatory locks 480 */ 481 if (MANDMODE(zp->z_mode)) { 482 if (error = chklock(vp, FREAD, 483 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 484 ZFS_EXIT(zfsvfs); 485 return (error); 486 } 487 } 488 489 /* 490 * If we're in FRSYNC mode, sync out this znode before reading it. 491 */ 492 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 493 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 494 495 /* 496 * Lock the range against changes. 497 */ 498 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 499 500 /* 501 * If we are reading past end-of-file we can skip 502 * to the end; but we might still need to set atime. 503 */ 504 if (uio->uio_loffset >= zp->z_size) { 505 error = 0; 506 goto out; 507 } 508 509 ASSERT(uio->uio_loffset < zp->z_size); 510 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 511 512 if ((uio->uio_extflg == UIO_XUIO) && 513 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 514 int nblk; 515 int blksz = zp->z_blksz; 516 uint64_t offset = uio->uio_loffset; 517 518 xuio = (xuio_t *)uio; 519 if ((ISP2(blksz))) { 520 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 521 blksz)) / blksz; 522 } else { 523 ASSERT(offset + n <= blksz); 524 nblk = 1; 525 } 526 (void) dmu_xuio_init(xuio, nblk); 527 528 if (vn_has_cached_data(vp)) { 529 /* 530 * For simplicity, we always allocate a full buffer 531 * even if we only expect to read a portion of a block. 532 */ 533 while (--nblk >= 0) { 534 (void) dmu_xuio_add(xuio, 535 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 536 blksz), 0, blksz); 537 } 538 } 539 } 540 541 while (n > 0) { 542 nbytes = MIN(n, zfs_read_chunk_size - 543 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 544 545 if (vn_has_cached_data(vp)) 546 error = mappedread(vp, nbytes, uio); 547 else 548 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 549 if (error) { 550 /* convert checksum errors into IO errors */ 551 if (error == ECKSUM) 552 error = EIO; 553 break; 554 } 555 556 n -= nbytes; 557 } 558 out: 559 zfs_range_unlock(rl); 560 561 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 562 ZFS_EXIT(zfsvfs); 563 return (error); 564 } 565 566 /* 567 * Write the bytes to a file. 568 * 569 * IN: vp - vnode of file to be written to. 570 * uio - structure supplying write location, range info, 571 * and data buffer. 572 * ioflag - FAPPEND flag set if in append mode. 573 * cr - credentials of caller. 574 * ct - caller context (NFS/CIFS fem monitor only) 575 * 576 * OUT: uio - updated offset and range. 577 * 578 * RETURN: 0 if success 579 * error code if failure 580 * 581 * Timestamps: 582 * vp - ctime|mtime updated if byte count > 0 583 */ 584 585 /* ARGSUSED */ 586 static int 587 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 588 { 589 znode_t *zp = VTOZ(vp); 590 rlim64_t limit = uio->uio_llimit; 591 ssize_t start_resid = uio->uio_resid; 592 ssize_t tx_bytes; 593 uint64_t end_size; 594 dmu_tx_t *tx; 595 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 596 zilog_t *zilog; 597 offset_t woff; 598 ssize_t n, nbytes; 599 rl_t *rl; 600 int max_blksz = zfsvfs->z_max_blksz; 601 int error; 602 arc_buf_t *abuf; 603 iovec_t *aiov; 604 xuio_t *xuio = NULL; 605 int i_iov = 0; 606 int iovcnt = uio->uio_iovcnt; 607 iovec_t *iovp = uio->uio_iov; 608 int write_eof; 609 int count = 0; 610 sa_bulk_attr_t bulk[4]; 611 uint64_t mtime[2], ctime[2]; 612 613 /* 614 * Fasttrack empty write 615 */ 616 n = start_resid; 617 if (n == 0) 618 return (0); 619 620 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 621 limit = MAXOFFSET_T; 622 623 ZFS_ENTER(zfsvfs); 624 ZFS_VERIFY_ZP(zp); 625 626 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 627 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 628 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 629 &zp->z_size, 8); 630 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 631 &zp->z_pflags, 8); 632 633 /* 634 * If immutable or not appending then return EPERM 635 */ 636 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 637 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 638 (uio->uio_loffset < zp->z_size))) { 639 ZFS_EXIT(zfsvfs); 640 return (EPERM); 641 } 642 643 zilog = zfsvfs->z_log; 644 645 /* 646 * Validate file offset 647 */ 648 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 649 if (woff < 0) { 650 ZFS_EXIT(zfsvfs); 651 return (EINVAL); 652 } 653 654 /* 655 * Check for mandatory locks before calling zfs_range_lock() 656 * in order to prevent a deadlock with locks set via fcntl(). 657 */ 658 if (MANDMODE((mode_t)zp->z_mode) && 659 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 660 ZFS_EXIT(zfsvfs); 661 return (error); 662 } 663 664 /* 665 * Pre-fault the pages to ensure slow (eg NFS) pages 666 * don't hold up txg. 667 * Skip this if uio contains loaned arc_buf. 668 */ 669 if ((uio->uio_extflg == UIO_XUIO) && 670 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 671 xuio = (xuio_t *)uio; 672 else 673 uio_prefaultpages(n, uio); 674 675 /* 676 * If in append mode, set the io offset pointer to eof. 677 */ 678 if (ioflag & FAPPEND) { 679 /* 680 * Obtain an appending range lock to guarantee file append 681 * semantics. We reset the write offset once we have the lock. 682 */ 683 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 684 woff = rl->r_off; 685 if (rl->r_len == UINT64_MAX) { 686 /* 687 * We overlocked the file because this write will cause 688 * the file block size to increase. 689 * Note that zp_size cannot change with this lock held. 690 */ 691 woff = zp->z_size; 692 } 693 uio->uio_loffset = woff; 694 } else { 695 /* 696 * Note that if the file block size will change as a result of 697 * this write, then this range lock will lock the entire file 698 * so that we can re-write the block safely. 699 */ 700 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 701 } 702 703 if (woff >= limit) { 704 zfs_range_unlock(rl); 705 ZFS_EXIT(zfsvfs); 706 return (EFBIG); 707 } 708 709 if ((woff + n) > limit || woff > (limit - n)) 710 n = limit - woff; 711 712 /* Will this write extend the file length? */ 713 write_eof = (woff + n > zp->z_size); 714 715 end_size = MAX(zp->z_size, woff + n); 716 717 /* 718 * Write the file in reasonable size chunks. Each chunk is written 719 * in a separate transaction; this keeps the intent log records small 720 * and allows us to do more fine-grained space accounting. 721 */ 722 while (n > 0) { 723 abuf = NULL; 724 woff = uio->uio_loffset; 725 again: 726 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 727 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 728 if (abuf != NULL) 729 dmu_return_arcbuf(abuf); 730 error = EDQUOT; 731 break; 732 } 733 734 if (xuio && abuf == NULL) { 735 ASSERT(i_iov < iovcnt); 736 aiov = &iovp[i_iov]; 737 abuf = dmu_xuio_arcbuf(xuio, i_iov); 738 dmu_xuio_clear(xuio, i_iov); 739 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 740 iovec_t *, aiov, arc_buf_t *, abuf); 741 ASSERT((aiov->iov_base == abuf->b_data) || 742 ((char *)aiov->iov_base - (char *)abuf->b_data + 743 aiov->iov_len == arc_buf_size(abuf))); 744 i_iov++; 745 } else if (abuf == NULL && n >= max_blksz && 746 woff >= zp->z_size && 747 P2PHASE(woff, max_blksz) == 0 && 748 zp->z_blksz == max_blksz) { 749 /* 750 * This write covers a full block. "Borrow" a buffer 751 * from the dmu so that we can fill it before we enter 752 * a transaction. This avoids the possibility of 753 * holding up the transaction if the data copy hangs 754 * up on a pagefault (e.g., from an NFS server mapping). 755 */ 756 size_t cbytes; 757 758 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 759 max_blksz); 760 ASSERT(abuf != NULL); 761 ASSERT(arc_buf_size(abuf) == max_blksz); 762 if (error = uiocopy(abuf->b_data, max_blksz, 763 UIO_WRITE, uio, &cbytes)) { 764 dmu_return_arcbuf(abuf); 765 break; 766 } 767 ASSERT(cbytes == max_blksz); 768 } 769 770 /* 771 * Start a transaction. 772 */ 773 tx = dmu_tx_create(zfsvfs->z_os); 774 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 775 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 776 zfs_sa_upgrade_txholds(tx, zp); 777 error = dmu_tx_assign(tx, TXG_NOWAIT); 778 if (error) { 779 if (error == ERESTART) { 780 dmu_tx_wait(tx); 781 dmu_tx_abort(tx); 782 goto again; 783 } 784 dmu_tx_abort(tx); 785 if (abuf != NULL) 786 dmu_return_arcbuf(abuf); 787 break; 788 } 789 790 /* 791 * If zfs_range_lock() over-locked we grow the blocksize 792 * and then reduce the lock range. This will only happen 793 * on the first iteration since zfs_range_reduce() will 794 * shrink down r_len to the appropriate size. 795 */ 796 if (rl->r_len == UINT64_MAX) { 797 uint64_t new_blksz; 798 799 if (zp->z_blksz > max_blksz) { 800 ASSERT(!ISP2(zp->z_blksz)); 801 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 802 } else { 803 new_blksz = MIN(end_size, max_blksz); 804 } 805 zfs_grow_blocksize(zp, new_blksz, tx); 806 zfs_range_reduce(rl, woff, n); 807 } 808 809 /* 810 * XXX - should we really limit each write to z_max_blksz? 811 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 812 */ 813 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 814 815 if (abuf == NULL) { 816 tx_bytes = uio->uio_resid; 817 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 818 uio, nbytes, tx); 819 tx_bytes -= uio->uio_resid; 820 } else { 821 tx_bytes = nbytes; 822 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 823 /* 824 * If this is not a full block write, but we are 825 * extending the file past EOF and this data starts 826 * block-aligned, use assign_arcbuf(). Otherwise, 827 * write via dmu_write(). 828 */ 829 if (tx_bytes < max_blksz && (!write_eof || 830 aiov->iov_base != abuf->b_data)) { 831 ASSERT(xuio); 832 dmu_write(zfsvfs->z_os, zp->z_id, woff, 833 aiov->iov_len, aiov->iov_base, tx); 834 dmu_return_arcbuf(abuf); 835 xuio_stat_wbuf_copied(); 836 } else { 837 ASSERT(xuio || tx_bytes == max_blksz); 838 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 839 woff, abuf, tx); 840 } 841 ASSERT(tx_bytes <= uio->uio_resid); 842 uioskip(uio, tx_bytes); 843 } 844 if (tx_bytes && vn_has_cached_data(vp)) { 845 update_pages(vp, woff, 846 tx_bytes, zfsvfs->z_os, zp->z_id); 847 } 848 849 /* 850 * If we made no progress, we're done. If we made even 851 * partial progress, update the znode and ZIL accordingly. 852 */ 853 if (tx_bytes == 0) { 854 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 855 (void *)&zp->z_size, sizeof (uint64_t), tx); 856 dmu_tx_commit(tx); 857 ASSERT(error != 0); 858 break; 859 } 860 861 /* 862 * Clear Set-UID/Set-GID bits on successful write if not 863 * privileged and at least one of the excute bits is set. 864 * 865 * It would be nice to to this after all writes have 866 * been done, but that would still expose the ISUID/ISGID 867 * to another app after the partial write is committed. 868 * 869 */ 870 mutex_enter(&zp->z_acl_lock); 871 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 872 (S_IXUSR >> 6))) != 0 && 873 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 874 secpolicy_vnode_setid_retain(cr, 875 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 876 uint64_t newmode; 877 zp->z_mode &= ~(S_ISUID | S_ISGID); 878 newmode = zp->z_mode; 879 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 880 (void *)&newmode, sizeof (uint64_t), tx); 881 } 882 mutex_exit(&zp->z_acl_lock); 883 884 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 885 B_TRUE); 886 887 /* 888 * Update the file size (zp_size) if it has changed; 889 * account for possible concurrent updates. 890 */ 891 while ((end_size = zp->z_size) < uio->uio_loffset) { 892 (void) atomic_cas_64(&zp->z_size, end_size, 893 uio->uio_loffset); 894 ASSERT(error == 0); 895 } 896 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 897 898 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 899 dmu_tx_commit(tx); 900 901 if (error != 0) 902 break; 903 ASSERT(tx_bytes == nbytes); 904 n -= nbytes; 905 } 906 907 zfs_range_unlock(rl); 908 909 /* 910 * If we're in replay mode, or we made no progress, return error. 911 * Otherwise, it's at least a partial write, so it's successful. 912 */ 913 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 914 ZFS_EXIT(zfsvfs); 915 return (error); 916 } 917 918 if (ioflag & (FSYNC | FDSYNC) || 919 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 920 zil_commit(zilog, zp->z_last_itx, zp->z_id); 921 922 ZFS_EXIT(zfsvfs); 923 return (0); 924 } 925 926 void 927 zfs_get_done(zgd_t *zgd, int error) 928 { 929 znode_t *zp = zgd->zgd_private; 930 objset_t *os = zp->z_zfsvfs->z_os; 931 932 if (zgd->zgd_db) 933 dmu_buf_rele(zgd->zgd_db, zgd); 934 935 zfs_range_unlock(zgd->zgd_rl); 936 937 /* 938 * Release the vnode asynchronously as we currently have the 939 * txg stopped from syncing. 940 */ 941 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 942 943 if (error == 0 && zgd->zgd_bp) 944 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 945 946 kmem_free(zgd, sizeof (zgd_t)); 947 } 948 949 #ifdef DEBUG 950 static int zil_fault_io = 0; 951 #endif 952 953 /* 954 * Get data to generate a TX_WRITE intent log record. 955 */ 956 int 957 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 958 { 959 zfsvfs_t *zfsvfs = arg; 960 objset_t *os = zfsvfs->z_os; 961 znode_t *zp; 962 uint64_t object = lr->lr_foid; 963 uint64_t offset = lr->lr_offset; 964 uint64_t size = lr->lr_length; 965 blkptr_t *bp = &lr->lr_blkptr; 966 dmu_buf_t *db; 967 zgd_t *zgd; 968 int error = 0; 969 970 ASSERT(zio != NULL); 971 ASSERT(size != 0); 972 973 /* 974 * Nothing to do if the file has been removed 975 */ 976 if (zfs_zget(zfsvfs, object, &zp) != 0) 977 return (ENOENT); 978 if (zp->z_unlinked) { 979 /* 980 * Release the vnode asynchronously as we currently have the 981 * txg stopped from syncing. 982 */ 983 VN_RELE_ASYNC(ZTOV(zp), 984 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 985 return (ENOENT); 986 } 987 988 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 989 zgd->zgd_zilog = zfsvfs->z_log; 990 zgd->zgd_private = zp; 991 992 /* 993 * Write records come in two flavors: immediate and indirect. 994 * For small writes it's cheaper to store the data with the 995 * log record (immediate); for large writes it's cheaper to 996 * sync the data and get a pointer to it (indirect) so that 997 * we don't have to write the data twice. 998 */ 999 if (buf != NULL) { /* immediate write */ 1000 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1001 /* test for truncation needs to be done while range locked */ 1002 if (offset >= zp->z_size) { 1003 error = ENOENT; 1004 } else { 1005 error = dmu_read(os, object, offset, size, buf, 1006 DMU_READ_NO_PREFETCH); 1007 } 1008 ASSERT(error == 0 || error == ENOENT); 1009 } else { /* indirect write */ 1010 /* 1011 * Have to lock the whole block to ensure when it's 1012 * written out and it's checksum is being calculated 1013 * that no one can change the data. We need to re-check 1014 * blocksize after we get the lock in case it's changed! 1015 */ 1016 for (;;) { 1017 uint64_t blkoff; 1018 size = zp->z_blksz; 1019 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1020 offset -= blkoff; 1021 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1022 RL_READER); 1023 if (zp->z_blksz == size) 1024 break; 1025 offset += blkoff; 1026 zfs_range_unlock(zgd->zgd_rl); 1027 } 1028 /* test for truncation needs to be done while range locked */ 1029 if (lr->lr_offset >= zp->z_size) 1030 error = ENOENT; 1031 #ifdef DEBUG 1032 if (zil_fault_io) { 1033 error = EIO; 1034 zil_fault_io = 0; 1035 } 1036 #endif 1037 if (error == 0) 1038 error = dmu_buf_hold(os, object, offset, zgd, &db, 1039 DMU_READ_NO_PREFETCH); 1040 1041 if (error == 0) { 1042 zgd->zgd_db = db; 1043 zgd->zgd_bp = bp; 1044 1045 ASSERT(db->db_offset == offset); 1046 ASSERT(db->db_size == size); 1047 1048 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1049 zfs_get_done, zgd); 1050 ASSERT(error || lr->lr_length <= zp->z_blksz); 1051 1052 /* 1053 * On success, we need to wait for the write I/O 1054 * initiated by dmu_sync() to complete before we can 1055 * release this dbuf. We will finish everything up 1056 * in the zfs_get_done() callback. 1057 */ 1058 if (error == 0) 1059 return (0); 1060 1061 if (error == EALREADY) { 1062 lr->lr_common.lrc_txtype = TX_WRITE2; 1063 error = 0; 1064 } 1065 } 1066 } 1067 1068 zfs_get_done(zgd, error); 1069 1070 return (error); 1071 } 1072 1073 /*ARGSUSED*/ 1074 static int 1075 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1076 caller_context_t *ct) 1077 { 1078 znode_t *zp = VTOZ(vp); 1079 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1080 int error; 1081 1082 ZFS_ENTER(zfsvfs); 1083 ZFS_VERIFY_ZP(zp); 1084 1085 if (flag & V_ACE_MASK) 1086 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1087 else 1088 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1089 1090 ZFS_EXIT(zfsvfs); 1091 return (error); 1092 } 1093 1094 /* 1095 * If vnode is for a device return a specfs vnode instead. 1096 */ 1097 static int 1098 specvp_check(vnode_t **vpp, cred_t *cr) 1099 { 1100 int error = 0; 1101 1102 if (IS_DEVVP(*vpp)) { 1103 struct vnode *svp; 1104 1105 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1106 VN_RELE(*vpp); 1107 if (svp == NULL) 1108 error = ENOSYS; 1109 *vpp = svp; 1110 } 1111 return (error); 1112 } 1113 1114 1115 /* 1116 * Lookup an entry in a directory, or an extended attribute directory. 1117 * If it exists, return a held vnode reference for it. 1118 * 1119 * IN: dvp - vnode of directory to search. 1120 * nm - name of entry to lookup. 1121 * pnp - full pathname to lookup [UNUSED]. 1122 * flags - LOOKUP_XATTR set if looking for an attribute. 1123 * rdir - root directory vnode [UNUSED]. 1124 * cr - credentials of caller. 1125 * ct - caller context 1126 * direntflags - directory lookup flags 1127 * realpnp - returned pathname. 1128 * 1129 * OUT: vpp - vnode of located entry, NULL if not found. 1130 * 1131 * RETURN: 0 if success 1132 * error code if failure 1133 * 1134 * Timestamps: 1135 * NA 1136 */ 1137 /* ARGSUSED */ 1138 static int 1139 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1140 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1141 int *direntflags, pathname_t *realpnp) 1142 { 1143 znode_t *zdp = VTOZ(dvp); 1144 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1145 int error = 0; 1146 1147 /* fast path */ 1148 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1149 1150 if (dvp->v_type != VDIR) { 1151 return (ENOTDIR); 1152 } else if (zdp->z_sa_hdl == NULL) { 1153 return (EIO); 1154 } 1155 1156 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1157 error = zfs_fastaccesschk_execute(zdp, cr); 1158 if (!error) { 1159 *vpp = dvp; 1160 VN_HOLD(*vpp); 1161 return (0); 1162 } 1163 return (error); 1164 } else { 1165 vnode_t *tvp = dnlc_lookup(dvp, nm); 1166 1167 if (tvp) { 1168 error = zfs_fastaccesschk_execute(zdp, cr); 1169 if (error) { 1170 VN_RELE(tvp); 1171 return (error); 1172 } 1173 if (tvp == DNLC_NO_VNODE) { 1174 VN_RELE(tvp); 1175 return (ENOENT); 1176 } else { 1177 *vpp = tvp; 1178 return (specvp_check(vpp, cr)); 1179 } 1180 } 1181 } 1182 } 1183 1184 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1185 1186 ZFS_ENTER(zfsvfs); 1187 ZFS_VERIFY_ZP(zdp); 1188 1189 *vpp = NULL; 1190 1191 if (flags & LOOKUP_XATTR) { 1192 /* 1193 * If the xattr property is off, refuse the lookup request. 1194 */ 1195 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1196 ZFS_EXIT(zfsvfs); 1197 return (EINVAL); 1198 } 1199 1200 /* 1201 * We don't allow recursive attributes.. 1202 * Maybe someday we will. 1203 */ 1204 if (zdp->z_pflags & ZFS_XATTR) { 1205 ZFS_EXIT(zfsvfs); 1206 return (EINVAL); 1207 } 1208 1209 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1210 ZFS_EXIT(zfsvfs); 1211 return (error); 1212 } 1213 1214 /* 1215 * Do we have permission to get into attribute directory? 1216 */ 1217 1218 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1219 B_FALSE, cr)) { 1220 VN_RELE(*vpp); 1221 *vpp = NULL; 1222 } 1223 1224 ZFS_EXIT(zfsvfs); 1225 return (error); 1226 } 1227 1228 if (dvp->v_type != VDIR) { 1229 ZFS_EXIT(zfsvfs); 1230 return (ENOTDIR); 1231 } 1232 1233 /* 1234 * Check accessibility of directory. 1235 */ 1236 1237 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1238 ZFS_EXIT(zfsvfs); 1239 return (error); 1240 } 1241 1242 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1243 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1244 ZFS_EXIT(zfsvfs); 1245 return (EILSEQ); 1246 } 1247 1248 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1249 if (error == 0) 1250 error = specvp_check(vpp, cr); 1251 1252 ZFS_EXIT(zfsvfs); 1253 return (error); 1254 } 1255 1256 /* 1257 * Attempt to create a new entry in a directory. If the entry 1258 * already exists, truncate the file if permissible, else return 1259 * an error. Return the vp of the created or trunc'd file. 1260 * 1261 * IN: dvp - vnode of directory to put new file entry in. 1262 * name - name of new file entry. 1263 * vap - attributes of new file. 1264 * excl - flag indicating exclusive or non-exclusive mode. 1265 * mode - mode to open file with. 1266 * cr - credentials of caller. 1267 * flag - large file flag [UNUSED]. 1268 * ct - caller context 1269 * vsecp - ACL to be set 1270 * 1271 * OUT: vpp - vnode of created or trunc'd entry. 1272 * 1273 * RETURN: 0 if success 1274 * error code if failure 1275 * 1276 * Timestamps: 1277 * dvp - ctime|mtime updated if new entry created 1278 * vp - ctime|mtime always, atime if new 1279 */ 1280 1281 /* ARGSUSED */ 1282 static int 1283 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1284 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1285 vsecattr_t *vsecp) 1286 { 1287 znode_t *zp, *dzp = VTOZ(dvp); 1288 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1289 zilog_t *zilog; 1290 objset_t *os; 1291 zfs_dirlock_t *dl; 1292 dmu_tx_t *tx; 1293 int error; 1294 ksid_t *ksid; 1295 uid_t uid; 1296 gid_t gid = crgetgid(cr); 1297 zfs_acl_ids_t acl_ids; 1298 boolean_t fuid_dirtied; 1299 boolean_t have_acl = B_FALSE; 1300 1301 /* 1302 * If we have an ephemeral id, ACL, or XVATTR then 1303 * make sure file system is at proper version 1304 */ 1305 1306 ksid = crgetsid(cr, KSID_OWNER); 1307 if (ksid) 1308 uid = ksid_getid(ksid); 1309 else 1310 uid = crgetuid(cr); 1311 1312 if (zfsvfs->z_use_fuids == B_FALSE && 1313 (vsecp || (vap->va_mask & AT_XVATTR) || 1314 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1315 return (EINVAL); 1316 1317 ZFS_ENTER(zfsvfs); 1318 ZFS_VERIFY_ZP(dzp); 1319 os = zfsvfs->z_os; 1320 zilog = zfsvfs->z_log; 1321 1322 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1323 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1324 ZFS_EXIT(zfsvfs); 1325 return (EILSEQ); 1326 } 1327 1328 if (vap->va_mask & AT_XVATTR) { 1329 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1330 crgetuid(cr), cr, vap->va_type)) != 0) { 1331 ZFS_EXIT(zfsvfs); 1332 return (error); 1333 } 1334 } 1335 top: 1336 *vpp = NULL; 1337 1338 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1339 vap->va_mode &= ~VSVTX; 1340 1341 if (*name == '\0') { 1342 /* 1343 * Null component name refers to the directory itself. 1344 */ 1345 VN_HOLD(dvp); 1346 zp = dzp; 1347 dl = NULL; 1348 error = 0; 1349 } else { 1350 /* possible VN_HOLD(zp) */ 1351 int zflg = 0; 1352 1353 if (flag & FIGNORECASE) 1354 zflg |= ZCILOOK; 1355 1356 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1357 NULL, NULL); 1358 if (error) { 1359 if (strcmp(name, "..") == 0) 1360 error = EISDIR; 1361 ZFS_EXIT(zfsvfs); 1362 return (error); 1363 } 1364 } 1365 1366 if (zp == NULL) { 1367 uint64_t txtype; 1368 1369 /* 1370 * Create a new file object and update the directory 1371 * to reference it. 1372 */ 1373 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1374 goto out; 1375 } 1376 1377 /* 1378 * We only support the creation of regular files in 1379 * extended attribute directories. 1380 */ 1381 1382 if ((dzp->z_pflags & ZFS_XATTR) && 1383 (vap->va_type != VREG)) { 1384 error = EINVAL; 1385 goto out; 1386 } 1387 1388 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1389 cr, vsecp, &acl_ids)) != 0) 1390 goto out; 1391 have_acl = B_TRUE; 1392 1393 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1394 zfs_acl_ids_free(&acl_ids); 1395 error = EDQUOT; 1396 goto out; 1397 } 1398 1399 tx = dmu_tx_create(os); 1400 1401 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1402 ZFS_SA_BASE_ATTR_SIZE); 1403 1404 fuid_dirtied = zfsvfs->z_fuid_dirty; 1405 if (fuid_dirtied) 1406 zfs_fuid_txhold(zfsvfs, tx); 1407 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1408 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1409 if (!zfsvfs->z_use_sa && 1410 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1411 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1412 0, acl_ids.z_aclp->z_acl_bytes); 1413 } 1414 error = dmu_tx_assign(tx, TXG_NOWAIT); 1415 if (error) { 1416 zfs_dirent_unlock(dl); 1417 if (error == ERESTART) { 1418 dmu_tx_wait(tx); 1419 dmu_tx_abort(tx); 1420 goto top; 1421 } 1422 zfs_acl_ids_free(&acl_ids); 1423 dmu_tx_abort(tx); 1424 ZFS_EXIT(zfsvfs); 1425 return (error); 1426 } 1427 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1428 1429 if (fuid_dirtied) 1430 zfs_fuid_sync(zfsvfs, tx); 1431 1432 (void) zfs_link_create(dl, zp, tx, ZNEW); 1433 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1434 if (flag & FIGNORECASE) 1435 txtype |= TX_CI; 1436 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1437 vsecp, acl_ids.z_fuidp, vap); 1438 zfs_acl_ids_free(&acl_ids); 1439 dmu_tx_commit(tx); 1440 } else { 1441 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1442 1443 /* 1444 * A directory entry already exists for this name. 1445 */ 1446 /* 1447 * Can't truncate an existing file if in exclusive mode. 1448 */ 1449 if (excl == EXCL) { 1450 error = EEXIST; 1451 goto out; 1452 } 1453 /* 1454 * Can't open a directory for writing. 1455 */ 1456 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1457 error = EISDIR; 1458 goto out; 1459 } 1460 /* 1461 * Verify requested access to file. 1462 */ 1463 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1464 goto out; 1465 } 1466 1467 mutex_enter(&dzp->z_lock); 1468 dzp->z_seq++; 1469 mutex_exit(&dzp->z_lock); 1470 1471 /* 1472 * Truncate regular files if requested. 1473 */ 1474 if ((ZTOV(zp)->v_type == VREG) && 1475 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1476 /* we can't hold any locks when calling zfs_freesp() */ 1477 zfs_dirent_unlock(dl); 1478 dl = NULL; 1479 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1480 if (error == 0) { 1481 vnevent_create(ZTOV(zp), ct); 1482 } 1483 } 1484 } 1485 out: 1486 1487 if (dl) 1488 zfs_dirent_unlock(dl); 1489 1490 if (error) { 1491 if (zp) 1492 VN_RELE(ZTOV(zp)); 1493 } else { 1494 *vpp = ZTOV(zp); 1495 error = specvp_check(vpp, cr); 1496 } 1497 1498 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1499 zil_commit(zilog, UINT64_MAX, 0); 1500 1501 ZFS_EXIT(zfsvfs); 1502 return (error); 1503 } 1504 1505 /* 1506 * Remove an entry from a directory. 1507 * 1508 * IN: dvp - vnode of directory to remove entry from. 1509 * name - name of entry to remove. 1510 * cr - credentials of caller. 1511 * ct - caller context 1512 * flags - case flags 1513 * 1514 * RETURN: 0 if success 1515 * error code if failure 1516 * 1517 * Timestamps: 1518 * dvp - ctime|mtime 1519 * vp - ctime (if nlink > 0) 1520 */ 1521 1522 uint64_t null_xattr = 0; 1523 1524 /*ARGSUSED*/ 1525 static int 1526 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1527 int flags) 1528 { 1529 znode_t *zp, *dzp = VTOZ(dvp); 1530 znode_t *xzp = NULL; 1531 vnode_t *vp; 1532 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1533 zilog_t *zilog; 1534 uint64_t acl_obj, xattr_obj = 0; 1535 uint64_t xattr_obj_unlinked = 0; 1536 zfs_dirlock_t *dl; 1537 dmu_tx_t *tx; 1538 boolean_t may_delete_now, delete_now = FALSE; 1539 boolean_t unlinked, toobig = FALSE; 1540 uint64_t txtype; 1541 pathname_t *realnmp = NULL; 1542 pathname_t realnm; 1543 int error; 1544 int zflg = ZEXISTS; 1545 1546 ZFS_ENTER(zfsvfs); 1547 ZFS_VERIFY_ZP(dzp); 1548 zilog = zfsvfs->z_log; 1549 1550 if (flags & FIGNORECASE) { 1551 zflg |= ZCILOOK; 1552 pn_alloc(&realnm); 1553 realnmp = &realnm; 1554 } 1555 1556 top: 1557 /* 1558 * Attempt to lock directory; fail if entry doesn't exist. 1559 */ 1560 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1561 NULL, realnmp)) { 1562 if (realnmp) 1563 pn_free(realnmp); 1564 ZFS_EXIT(zfsvfs); 1565 return (error); 1566 } 1567 1568 vp = ZTOV(zp); 1569 1570 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1571 goto out; 1572 } 1573 1574 /* 1575 * Need to use rmdir for removing directories. 1576 */ 1577 if (vp->v_type == VDIR) { 1578 error = EPERM; 1579 goto out; 1580 } 1581 1582 vnevent_remove(vp, dvp, name, ct); 1583 1584 if (realnmp) 1585 dnlc_remove(dvp, realnmp->pn_buf); 1586 else 1587 dnlc_remove(dvp, name); 1588 1589 mutex_enter(&vp->v_lock); 1590 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1591 mutex_exit(&vp->v_lock); 1592 1593 /* 1594 * We may delete the znode now, or we may put it in the unlinked set; 1595 * it depends on whether we're the last link, and on whether there are 1596 * other holds on the vnode. So we dmu_tx_hold() the right things to 1597 * allow for either case. 1598 */ 1599 tx = dmu_tx_create(zfsvfs->z_os); 1600 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1601 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1602 zfs_sa_upgrade_txholds(tx, zp); 1603 zfs_sa_upgrade_txholds(tx, dzp); 1604 if (may_delete_now) { 1605 toobig = 1606 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1607 /* if the file is too big, only hold_free a token amount */ 1608 dmu_tx_hold_free(tx, zp->z_id, 0, 1609 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1610 } 1611 1612 /* are there any extended attributes? */ 1613 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1614 &xattr_obj, sizeof (xattr_obj)); 1615 if (xattr_obj) { 1616 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1617 ASSERT3U(error, ==, 0); 1618 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1619 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1620 } 1621 1622 /* are there any additional acls */ 1623 if ((acl_obj = ZFS_EXTERNAL_ACL(zp)) != 0 && may_delete_now) 1624 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1625 1626 /* charge as an update -- would be nice not to charge at all */ 1627 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1628 1629 error = dmu_tx_assign(tx, TXG_NOWAIT); 1630 if (error) { 1631 zfs_dirent_unlock(dl); 1632 VN_RELE(vp); 1633 if (error == ERESTART) { 1634 dmu_tx_wait(tx); 1635 dmu_tx_abort(tx); 1636 goto top; 1637 } 1638 if (realnmp) 1639 pn_free(realnmp); 1640 dmu_tx_abort(tx); 1641 ZFS_EXIT(zfsvfs); 1642 return (error); 1643 } 1644 1645 /* 1646 * Remove the directory entry. 1647 */ 1648 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1649 1650 if (error) { 1651 dmu_tx_commit(tx); 1652 goto out; 1653 } 1654 1655 if (unlinked) { 1656 1657 mutex_enter(&vp->v_lock); 1658 1659 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1660 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1661 delete_now = may_delete_now && !toobig && 1662 vp->v_count == 1 && !vn_has_cached_data(vp) && 1663 xattr_obj == xattr_obj_unlinked && ZFS_EXTERNAL_ACL(zp) == 1664 acl_obj; 1665 mutex_exit(&vp->v_lock); 1666 } 1667 1668 if (delete_now) { 1669 if (xattr_obj_unlinked) { 1670 ASSERT3U(xzp->z_links, ==, 2); 1671 mutex_enter(&xzp->z_lock); 1672 xzp->z_unlinked = 1; 1673 xzp->z_links = 0; 1674 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1675 &xzp->z_links, sizeof (xzp->z_links), tx); 1676 ASSERT3U(error, ==, 0); 1677 mutex_exit(&xzp->z_lock); 1678 zfs_unlinked_add(xzp, tx); 1679 if (zp->z_is_sa) 1680 error = sa_remove(zp->z_sa_hdl, 1681 SA_ZPL_XATTR(zfsvfs), tx); 1682 else 1683 error = sa_update(zp->z_sa_hdl, 1684 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1685 sizeof (uint64_t), tx); 1686 ASSERT3U(error, ==, 0); 1687 } 1688 mutex_enter(&zp->z_lock); 1689 mutex_enter(&vp->v_lock); 1690 vp->v_count--; 1691 ASSERT3U(vp->v_count, ==, 0); 1692 mutex_exit(&vp->v_lock); 1693 mutex_exit(&zp->z_lock); 1694 zfs_znode_delete(zp, tx); 1695 } else if (unlinked) { 1696 zfs_unlinked_add(zp, tx); 1697 } 1698 1699 txtype = TX_REMOVE; 1700 if (flags & FIGNORECASE) 1701 txtype |= TX_CI; 1702 zfs_log_remove(zilog, tx, txtype, dzp, name); 1703 1704 dmu_tx_commit(tx); 1705 out: 1706 if (realnmp) 1707 pn_free(realnmp); 1708 1709 zfs_dirent_unlock(dl); 1710 1711 if (!delete_now) 1712 VN_RELE(vp); 1713 if (xzp) 1714 VN_RELE(ZTOV(xzp)); 1715 1716 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1717 zil_commit(zilog, UINT64_MAX, 0); 1718 1719 ZFS_EXIT(zfsvfs); 1720 return (error); 1721 } 1722 1723 /* 1724 * Create a new directory and insert it into dvp using the name 1725 * provided. Return a pointer to the inserted directory. 1726 * 1727 * IN: dvp - vnode of directory to add subdir to. 1728 * dirname - name of new directory. 1729 * vap - attributes of new directory. 1730 * cr - credentials of caller. 1731 * ct - caller context 1732 * vsecp - ACL to be set 1733 * 1734 * OUT: vpp - vnode of created directory. 1735 * 1736 * RETURN: 0 if success 1737 * error code if failure 1738 * 1739 * Timestamps: 1740 * dvp - ctime|mtime updated 1741 * vp - ctime|mtime|atime updated 1742 */ 1743 /*ARGSUSED*/ 1744 static int 1745 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1746 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1747 { 1748 znode_t *zp, *dzp = VTOZ(dvp); 1749 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1750 zilog_t *zilog; 1751 zfs_dirlock_t *dl; 1752 uint64_t txtype; 1753 dmu_tx_t *tx; 1754 int error; 1755 int zf = ZNEW; 1756 ksid_t *ksid; 1757 uid_t uid; 1758 gid_t gid = crgetgid(cr); 1759 zfs_acl_ids_t acl_ids; 1760 boolean_t fuid_dirtied; 1761 1762 ASSERT(vap->va_type == VDIR); 1763 1764 /* 1765 * If we have an ephemeral id, ACL, or XVATTR then 1766 * make sure file system is at proper version 1767 */ 1768 1769 ksid = crgetsid(cr, KSID_OWNER); 1770 if (ksid) 1771 uid = ksid_getid(ksid); 1772 else 1773 uid = crgetuid(cr); 1774 if (zfsvfs->z_use_fuids == B_FALSE && 1775 (vsecp || (vap->va_mask & AT_XVATTR) || 1776 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1777 return (EINVAL); 1778 1779 ZFS_ENTER(zfsvfs); 1780 ZFS_VERIFY_ZP(dzp); 1781 zilog = zfsvfs->z_log; 1782 1783 if (dzp->z_pflags & ZFS_XATTR) { 1784 ZFS_EXIT(zfsvfs); 1785 return (EINVAL); 1786 } 1787 1788 if (zfsvfs->z_utf8 && u8_validate(dirname, 1789 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1790 ZFS_EXIT(zfsvfs); 1791 return (EILSEQ); 1792 } 1793 if (flags & FIGNORECASE) 1794 zf |= ZCILOOK; 1795 1796 if (vap->va_mask & AT_XVATTR) { 1797 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1798 crgetuid(cr), cr, vap->va_type)) != 0) { 1799 ZFS_EXIT(zfsvfs); 1800 return (error); 1801 } 1802 } 1803 1804 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1805 vsecp, &acl_ids)) != 0) { 1806 ZFS_EXIT(zfsvfs); 1807 return (error); 1808 } 1809 /* 1810 * First make sure the new directory doesn't exist. 1811 * 1812 * Existence is checked first to make sure we don't return 1813 * EACCES instead of EEXIST which can cause some applications 1814 * to fail. 1815 */ 1816 top: 1817 *vpp = NULL; 1818 1819 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1820 NULL, NULL)) { 1821 zfs_acl_ids_free(&acl_ids); 1822 ZFS_EXIT(zfsvfs); 1823 return (error); 1824 } 1825 1826 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1827 zfs_acl_ids_free(&acl_ids); 1828 zfs_dirent_unlock(dl); 1829 ZFS_EXIT(zfsvfs); 1830 return (error); 1831 } 1832 1833 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1834 zfs_acl_ids_free(&acl_ids); 1835 zfs_dirent_unlock(dl); 1836 ZFS_EXIT(zfsvfs); 1837 return (EDQUOT); 1838 } 1839 1840 /* 1841 * Add a new entry to the directory. 1842 */ 1843 tx = dmu_tx_create(zfsvfs->z_os); 1844 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1845 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1846 fuid_dirtied = zfsvfs->z_fuid_dirty; 1847 if (fuid_dirtied) 1848 zfs_fuid_txhold(zfsvfs, tx); 1849 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1850 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1851 acl_ids.z_aclp->z_acl_bytes); 1852 } 1853 1854 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1855 ZFS_SA_BASE_ATTR_SIZE); 1856 1857 error = dmu_tx_assign(tx, TXG_NOWAIT); 1858 if (error) { 1859 zfs_dirent_unlock(dl); 1860 if (error == ERESTART) { 1861 dmu_tx_wait(tx); 1862 dmu_tx_abort(tx); 1863 goto top; 1864 } 1865 zfs_acl_ids_free(&acl_ids); 1866 dmu_tx_abort(tx); 1867 ZFS_EXIT(zfsvfs); 1868 return (error); 1869 } 1870 1871 /* 1872 * Create new node. 1873 */ 1874 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1875 1876 if (fuid_dirtied) 1877 zfs_fuid_sync(zfsvfs, tx); 1878 1879 /* 1880 * Now put new name in parent dir. 1881 */ 1882 (void) zfs_link_create(dl, zp, tx, ZNEW); 1883 1884 *vpp = ZTOV(zp); 1885 1886 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1887 if (flags & FIGNORECASE) 1888 txtype |= TX_CI; 1889 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1890 acl_ids.z_fuidp, vap); 1891 1892 zfs_acl_ids_free(&acl_ids); 1893 1894 dmu_tx_commit(tx); 1895 1896 zfs_dirent_unlock(dl); 1897 1898 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1899 zil_commit(zilog, UINT64_MAX, 0); 1900 1901 ZFS_EXIT(zfsvfs); 1902 return (0); 1903 } 1904 1905 /* 1906 * Remove a directory subdir entry. If the current working 1907 * directory is the same as the subdir to be removed, the 1908 * remove will fail. 1909 * 1910 * IN: dvp - vnode of directory to remove from. 1911 * name - name of directory to be removed. 1912 * cwd - vnode of current working directory. 1913 * cr - credentials of caller. 1914 * ct - caller context 1915 * flags - case flags 1916 * 1917 * RETURN: 0 if success 1918 * error code if failure 1919 * 1920 * Timestamps: 1921 * dvp - ctime|mtime updated 1922 */ 1923 /*ARGSUSED*/ 1924 static int 1925 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1926 caller_context_t *ct, int flags) 1927 { 1928 znode_t *dzp = VTOZ(dvp); 1929 znode_t *zp; 1930 vnode_t *vp; 1931 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1932 zilog_t *zilog; 1933 zfs_dirlock_t *dl; 1934 dmu_tx_t *tx; 1935 int error; 1936 int zflg = ZEXISTS; 1937 1938 ZFS_ENTER(zfsvfs); 1939 ZFS_VERIFY_ZP(dzp); 1940 zilog = zfsvfs->z_log; 1941 1942 if (flags & FIGNORECASE) 1943 zflg |= ZCILOOK; 1944 top: 1945 zp = NULL; 1946 1947 /* 1948 * Attempt to lock directory; fail if entry doesn't exist. 1949 */ 1950 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1951 NULL, NULL)) { 1952 ZFS_EXIT(zfsvfs); 1953 return (error); 1954 } 1955 1956 vp = ZTOV(zp); 1957 1958 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1959 goto out; 1960 } 1961 1962 if (vp->v_type != VDIR) { 1963 error = ENOTDIR; 1964 goto out; 1965 } 1966 1967 if (vp == cwd) { 1968 error = EINVAL; 1969 goto out; 1970 } 1971 1972 vnevent_rmdir(vp, dvp, name, ct); 1973 1974 /* 1975 * Grab a lock on the directory to make sure that noone is 1976 * trying to add (or lookup) entries while we are removing it. 1977 */ 1978 rw_enter(&zp->z_name_lock, RW_WRITER); 1979 1980 /* 1981 * Grab a lock on the parent pointer to make sure we play well 1982 * with the treewalk and directory rename code. 1983 */ 1984 rw_enter(&zp->z_parent_lock, RW_WRITER); 1985 1986 tx = dmu_tx_create(zfsvfs->z_os); 1987 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1988 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1989 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1990 zfs_sa_upgrade_txholds(tx, zp); 1991 zfs_sa_upgrade_txholds(tx, dzp); 1992 error = dmu_tx_assign(tx, TXG_NOWAIT); 1993 if (error) { 1994 rw_exit(&zp->z_parent_lock); 1995 rw_exit(&zp->z_name_lock); 1996 zfs_dirent_unlock(dl); 1997 VN_RELE(vp); 1998 if (error == ERESTART) { 1999 dmu_tx_wait(tx); 2000 dmu_tx_abort(tx); 2001 goto top; 2002 } 2003 dmu_tx_abort(tx); 2004 ZFS_EXIT(zfsvfs); 2005 return (error); 2006 } 2007 2008 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2009 2010 if (error == 0) { 2011 uint64_t txtype = TX_RMDIR; 2012 if (flags & FIGNORECASE) 2013 txtype |= TX_CI; 2014 zfs_log_remove(zilog, tx, txtype, dzp, name); 2015 } 2016 2017 dmu_tx_commit(tx); 2018 2019 rw_exit(&zp->z_parent_lock); 2020 rw_exit(&zp->z_name_lock); 2021 out: 2022 zfs_dirent_unlock(dl); 2023 2024 VN_RELE(vp); 2025 2026 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2027 zil_commit(zilog, UINT64_MAX, 0); 2028 2029 ZFS_EXIT(zfsvfs); 2030 return (error); 2031 } 2032 2033 /* 2034 * Read as many directory entries as will fit into the provided 2035 * buffer from the given directory cursor position (specified in 2036 * the uio structure. 2037 * 2038 * IN: vp - vnode of directory to read. 2039 * uio - structure supplying read location, range info, 2040 * and return buffer. 2041 * cr - credentials of caller. 2042 * ct - caller context 2043 * flags - case flags 2044 * 2045 * OUT: uio - updated offset and range, buffer filled. 2046 * eofp - set to true if end-of-file detected. 2047 * 2048 * RETURN: 0 if success 2049 * error code if failure 2050 * 2051 * Timestamps: 2052 * vp - atime updated 2053 * 2054 * Note that the low 4 bits of the cookie returned by zap is always zero. 2055 * This allows us to use the low range for "special" directory entries: 2056 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2057 * we use the offset 2 for the '.zfs' directory. 2058 */ 2059 /* ARGSUSED */ 2060 static int 2061 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2062 caller_context_t *ct, int flags) 2063 { 2064 znode_t *zp = VTOZ(vp); 2065 iovec_t *iovp; 2066 edirent_t *eodp; 2067 dirent64_t *odp; 2068 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2069 objset_t *os; 2070 caddr_t outbuf; 2071 size_t bufsize; 2072 zap_cursor_t zc; 2073 zap_attribute_t zap; 2074 uint_t bytes_wanted; 2075 uint64_t offset; /* must be unsigned; checks for < 1 */ 2076 uint64_t parent; 2077 int local_eof; 2078 int outcount; 2079 int error; 2080 uint8_t prefetch; 2081 boolean_t check_sysattrs; 2082 2083 ZFS_ENTER(zfsvfs); 2084 ZFS_VERIFY_ZP(zp); 2085 2086 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2087 &parent, sizeof (parent))) != 0) { 2088 ZFS_EXIT(zfsvfs); 2089 return (error); 2090 } 2091 2092 /* 2093 * If we are not given an eof variable, 2094 * use a local one. 2095 */ 2096 if (eofp == NULL) 2097 eofp = &local_eof; 2098 2099 /* 2100 * Check for valid iov_len. 2101 */ 2102 if (uio->uio_iov->iov_len <= 0) { 2103 ZFS_EXIT(zfsvfs); 2104 return (EINVAL); 2105 } 2106 2107 /* 2108 * Quit if directory has been removed (posix) 2109 */ 2110 if ((*eofp = zp->z_unlinked) != 0) { 2111 ZFS_EXIT(zfsvfs); 2112 return (0); 2113 } 2114 2115 error = 0; 2116 os = zfsvfs->z_os; 2117 offset = uio->uio_loffset; 2118 prefetch = zp->z_zn_prefetch; 2119 2120 /* 2121 * Initialize the iterator cursor. 2122 */ 2123 if (offset <= 3) { 2124 /* 2125 * Start iteration from the beginning of the directory. 2126 */ 2127 zap_cursor_init(&zc, os, zp->z_id); 2128 } else { 2129 /* 2130 * The offset is a serialized cursor. 2131 */ 2132 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2133 } 2134 2135 /* 2136 * Get space to change directory entries into fs independent format. 2137 */ 2138 iovp = uio->uio_iov; 2139 bytes_wanted = iovp->iov_len; 2140 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2141 bufsize = bytes_wanted; 2142 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2143 odp = (struct dirent64 *)outbuf; 2144 } else { 2145 bufsize = bytes_wanted; 2146 odp = (struct dirent64 *)iovp->iov_base; 2147 } 2148 eodp = (struct edirent *)odp; 2149 2150 /* 2151 * If this VFS supports the system attribute view interface; and 2152 * we're looking at an extended attribute directory; and we care 2153 * about normalization conflicts on this vfs; then we must check 2154 * for normalization conflicts with the sysattr name space. 2155 */ 2156 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2157 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2158 (flags & V_RDDIR_ENTFLAGS); 2159 2160 /* 2161 * Transform to file-system independent format 2162 */ 2163 outcount = 0; 2164 while (outcount < bytes_wanted) { 2165 ino64_t objnum; 2166 ushort_t reclen; 2167 off64_t *next; 2168 2169 /* 2170 * Special case `.', `..', and `.zfs'. 2171 */ 2172 if (offset == 0) { 2173 (void) strcpy(zap.za_name, "."); 2174 zap.za_normalization_conflict = 0; 2175 objnum = zp->z_id; 2176 } else if (offset == 1) { 2177 (void) strcpy(zap.za_name, ".."); 2178 zap.za_normalization_conflict = 0; 2179 objnum = parent; 2180 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2181 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2182 zap.za_normalization_conflict = 0; 2183 objnum = ZFSCTL_INO_ROOT; 2184 } else { 2185 /* 2186 * Grab next entry. 2187 */ 2188 if (error = zap_cursor_retrieve(&zc, &zap)) { 2189 if ((*eofp = (error == ENOENT)) != 0) 2190 break; 2191 else 2192 goto update; 2193 } 2194 2195 if (zap.za_integer_length != 8 || 2196 zap.za_num_integers != 1) { 2197 cmn_err(CE_WARN, "zap_readdir: bad directory " 2198 "entry, obj = %lld, offset = %lld\n", 2199 (u_longlong_t)zp->z_id, 2200 (u_longlong_t)offset); 2201 error = ENXIO; 2202 goto update; 2203 } 2204 2205 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2206 /* 2207 * MacOS X can extract the object type here such as: 2208 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2209 */ 2210 2211 if (check_sysattrs && !zap.za_normalization_conflict) { 2212 zap.za_normalization_conflict = 2213 xattr_sysattr_casechk(zap.za_name); 2214 } 2215 } 2216 2217 if (flags & V_RDDIR_ACCFILTER) { 2218 /* 2219 * If we have no access at all, don't include 2220 * this entry in the returned information 2221 */ 2222 znode_t *ezp; 2223 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2224 goto skip_entry; 2225 if (!zfs_has_access(ezp, cr)) { 2226 VN_RELE(ZTOV(ezp)); 2227 goto skip_entry; 2228 } 2229 VN_RELE(ZTOV(ezp)); 2230 } 2231 2232 if (flags & V_RDDIR_ENTFLAGS) 2233 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2234 else 2235 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2236 2237 /* 2238 * Will this entry fit in the buffer? 2239 */ 2240 if (outcount + reclen > bufsize) { 2241 /* 2242 * Did we manage to fit anything in the buffer? 2243 */ 2244 if (!outcount) { 2245 error = EINVAL; 2246 goto update; 2247 } 2248 break; 2249 } 2250 if (flags & V_RDDIR_ENTFLAGS) { 2251 /* 2252 * Add extended flag entry: 2253 */ 2254 eodp->ed_ino = objnum; 2255 eodp->ed_reclen = reclen; 2256 /* NOTE: ed_off is the offset for the *next* entry */ 2257 next = &(eodp->ed_off); 2258 eodp->ed_eflags = zap.za_normalization_conflict ? 2259 ED_CASE_CONFLICT : 0; 2260 (void) strncpy(eodp->ed_name, zap.za_name, 2261 EDIRENT_NAMELEN(reclen)); 2262 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2263 } else { 2264 /* 2265 * Add normal entry: 2266 */ 2267 odp->d_ino = objnum; 2268 odp->d_reclen = reclen; 2269 /* NOTE: d_off is the offset for the *next* entry */ 2270 next = &(odp->d_off); 2271 (void) strncpy(odp->d_name, zap.za_name, 2272 DIRENT64_NAMELEN(reclen)); 2273 odp = (dirent64_t *)((intptr_t)odp + reclen); 2274 } 2275 outcount += reclen; 2276 2277 ASSERT(outcount <= bufsize); 2278 2279 /* Prefetch znode */ 2280 if (prefetch) 2281 dmu_prefetch(os, objnum, 0, 0); 2282 2283 skip_entry: 2284 /* 2285 * Move to the next entry, fill in the previous offset. 2286 */ 2287 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2288 zap_cursor_advance(&zc); 2289 offset = zap_cursor_serialize(&zc); 2290 } else { 2291 offset += 1; 2292 } 2293 *next = offset; 2294 } 2295 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2296 2297 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2298 iovp->iov_base += outcount; 2299 iovp->iov_len -= outcount; 2300 uio->uio_resid -= outcount; 2301 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2302 /* 2303 * Reset the pointer. 2304 */ 2305 offset = uio->uio_loffset; 2306 } 2307 2308 update: 2309 zap_cursor_fini(&zc); 2310 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2311 kmem_free(outbuf, bufsize); 2312 2313 if (error == ENOENT) 2314 error = 0; 2315 2316 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2317 2318 uio->uio_loffset = offset; 2319 ZFS_EXIT(zfsvfs); 2320 return (error); 2321 } 2322 2323 ulong_t zfs_fsync_sync_cnt = 4; 2324 2325 static int 2326 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2327 { 2328 znode_t *zp = VTOZ(vp); 2329 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2330 2331 /* 2332 * Regardless of whether this is required for standards conformance, 2333 * this is the logical behavior when fsync() is called on a file with 2334 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2335 * going to be pushed out as part of the zil_commit(). 2336 */ 2337 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2338 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2339 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2340 2341 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2342 2343 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2344 ZFS_ENTER(zfsvfs); 2345 ZFS_VERIFY_ZP(zp); 2346 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2347 ZFS_EXIT(zfsvfs); 2348 } 2349 return (0); 2350 } 2351 2352 2353 /* 2354 * Get the requested file attributes and place them in the provided 2355 * vattr structure. 2356 * 2357 * IN: vp - vnode of file. 2358 * vap - va_mask identifies requested attributes. 2359 * If AT_XVATTR set, then optional attrs are requested 2360 * flags - ATTR_NOACLCHECK (CIFS server context) 2361 * cr - credentials of caller. 2362 * ct - caller context 2363 * 2364 * OUT: vap - attribute values. 2365 * 2366 * RETURN: 0 (always succeeds) 2367 */ 2368 /* ARGSUSED */ 2369 static int 2370 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2371 caller_context_t *ct) 2372 { 2373 znode_t *zp = VTOZ(vp); 2374 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2375 int error = 0; 2376 uint64_t links; 2377 uint64_t mtime[2], ctime[2]; 2378 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2379 xoptattr_t *xoap = NULL; 2380 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2381 sa_bulk_attr_t bulk[2]; 2382 int count = 0; 2383 2384 ZFS_ENTER(zfsvfs); 2385 ZFS_VERIFY_ZP(zp); 2386 2387 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2388 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2389 2390 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2391 ZFS_EXIT(zfsvfs); 2392 return (error); 2393 } 2394 2395 /* 2396 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2397 * Also, if we are the owner don't bother, since owner should 2398 * always be allowed to read basic attributes of file. 2399 */ 2400 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (zp->z_uid != crgetuid(cr))) { 2401 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2402 skipaclchk, cr)) { 2403 ZFS_EXIT(zfsvfs); 2404 return (error); 2405 } 2406 } 2407 2408 /* 2409 * Return all attributes. It's cheaper to provide the answer 2410 * than to determine whether we were asked the question. 2411 */ 2412 2413 mutex_enter(&zp->z_lock); 2414 vap->va_type = vp->v_type; 2415 vap->va_mode = zp->z_mode & MODEMASK; 2416 vap->va_uid = zp->z_uid; 2417 vap->va_gid = zp->z_gid; 2418 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2419 vap->va_nodeid = zp->z_id; 2420 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2421 links = zp->z_links + 1; 2422 else 2423 links = zp->z_links; 2424 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2425 vap->va_size = zp->z_size; 2426 vap->va_rdev = vp->v_rdev; 2427 vap->va_seq = zp->z_seq; 2428 2429 /* 2430 * Add in any requested optional attributes and the create time. 2431 * Also set the corresponding bits in the returned attribute bitmap. 2432 */ 2433 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2434 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2435 xoap->xoa_archive = 2436 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2437 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2438 } 2439 2440 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2441 xoap->xoa_readonly = 2442 ((zp->z_pflags & ZFS_READONLY) != 0); 2443 XVA_SET_RTN(xvap, XAT_READONLY); 2444 } 2445 2446 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2447 xoap->xoa_system = 2448 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2449 XVA_SET_RTN(xvap, XAT_SYSTEM); 2450 } 2451 2452 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2453 xoap->xoa_hidden = 2454 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2455 XVA_SET_RTN(xvap, XAT_HIDDEN); 2456 } 2457 2458 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2459 xoap->xoa_nounlink = 2460 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2461 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2462 } 2463 2464 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2465 xoap->xoa_immutable = 2466 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2467 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2468 } 2469 2470 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2471 xoap->xoa_appendonly = 2472 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2473 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2474 } 2475 2476 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2477 xoap->xoa_nodump = 2478 ((zp->z_pflags & ZFS_NODUMP) != 0); 2479 XVA_SET_RTN(xvap, XAT_NODUMP); 2480 } 2481 2482 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2483 xoap->xoa_opaque = 2484 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2485 XVA_SET_RTN(xvap, XAT_OPAQUE); 2486 } 2487 2488 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2489 xoap->xoa_av_quarantined = 2490 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2491 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2492 } 2493 2494 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2495 xoap->xoa_av_modified = 2496 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2497 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2498 } 2499 2500 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2501 vp->v_type == VREG) { 2502 zfs_sa_get_scanstamp(zp, xvap); 2503 } 2504 2505 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2506 uint64_t times[2]; 2507 2508 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2509 times, sizeof (times)); 2510 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2511 XVA_SET_RTN(xvap, XAT_CREATETIME); 2512 } 2513 2514 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2515 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2516 XVA_SET_RTN(xvap, XAT_REPARSE); 2517 } 2518 } 2519 2520 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2521 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2522 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2523 2524 mutex_exit(&zp->z_lock); 2525 2526 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2527 2528 if (zp->z_blksz == 0) { 2529 /* 2530 * Block size hasn't been set; suggest maximal I/O transfers. 2531 */ 2532 vap->va_blksize = zfsvfs->z_max_blksz; 2533 } 2534 2535 ZFS_EXIT(zfsvfs); 2536 return (0); 2537 } 2538 2539 /* 2540 * Set the file attributes to the values contained in the 2541 * vattr structure. 2542 * 2543 * IN: vp - vnode of file to be modified. 2544 * vap - new attribute values. 2545 * If AT_XVATTR set, then optional attrs are being set 2546 * flags - ATTR_UTIME set if non-default time values provided. 2547 * - ATTR_NOACLCHECK (CIFS context only). 2548 * cr - credentials of caller. 2549 * ct - caller context 2550 * 2551 * RETURN: 0 if success 2552 * error code if failure 2553 * 2554 * Timestamps: 2555 * vp - ctime updated, mtime updated if size changed. 2556 */ 2557 /* ARGSUSED */ 2558 static int 2559 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2560 caller_context_t *ct) 2561 { 2562 znode_t *zp = VTOZ(vp); 2563 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2564 zilog_t *zilog; 2565 dmu_tx_t *tx; 2566 vattr_t oldva; 2567 xvattr_t tmpxvattr; 2568 uint_t mask = vap->va_mask; 2569 uint_t saved_mask; 2570 int trim_mask = 0; 2571 uint64_t new_mode; 2572 uint64_t new_uid, new_gid; 2573 uint64_t xattr_obj = 0; 2574 uint64_t mtime[2], ctime[2]; 2575 znode_t *attrzp; 2576 int need_policy = FALSE; 2577 int err, err2; 2578 zfs_fuid_info_t *fuidp = NULL; 2579 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2580 xoptattr_t *xoap; 2581 zfs_acl_t *aclp = NULL; 2582 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2583 boolean_t fuid_dirtied = B_FALSE; 2584 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2585 int count = 0, xattr_count = 0; 2586 2587 if (mask == 0) 2588 return (0); 2589 2590 if (mask & AT_NOSET) 2591 return (EINVAL); 2592 2593 ZFS_ENTER(zfsvfs); 2594 ZFS_VERIFY_ZP(zp); 2595 2596 zilog = zfsvfs->z_log; 2597 2598 /* 2599 * Make sure that if we have ephemeral uid/gid or xvattr specified 2600 * that file system is at proper version level 2601 */ 2602 2603 if (zfsvfs->z_use_fuids == B_FALSE && 2604 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2605 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2606 (mask & AT_XVATTR))) { 2607 ZFS_EXIT(zfsvfs); 2608 return (EINVAL); 2609 } 2610 2611 if (mask & AT_SIZE && vp->v_type == VDIR) { 2612 ZFS_EXIT(zfsvfs); 2613 return (EISDIR); 2614 } 2615 2616 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2617 ZFS_EXIT(zfsvfs); 2618 return (EINVAL); 2619 } 2620 2621 /* 2622 * If this is an xvattr_t, then get a pointer to the structure of 2623 * optional attributes. If this is NULL, then we have a vattr_t. 2624 */ 2625 xoap = xva_getxoptattr(xvap); 2626 2627 xva_init(&tmpxvattr); 2628 2629 /* 2630 * Immutable files can only alter immutable bit and atime 2631 */ 2632 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2633 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2634 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2635 ZFS_EXIT(zfsvfs); 2636 return (EPERM); 2637 } 2638 2639 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2640 ZFS_EXIT(zfsvfs); 2641 return (EPERM); 2642 } 2643 2644 /* 2645 * Verify timestamps doesn't overflow 32 bits. 2646 * ZFS can handle large timestamps, but 32bit syscalls can't 2647 * handle times greater than 2039. This check should be removed 2648 * once large timestamps are fully supported. 2649 */ 2650 if (mask & (AT_ATIME | AT_MTIME)) { 2651 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2652 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2653 ZFS_EXIT(zfsvfs); 2654 return (EOVERFLOW); 2655 } 2656 } 2657 2658 top: 2659 attrzp = NULL; 2660 2661 /* Can this be moved to before the top label? */ 2662 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2663 ZFS_EXIT(zfsvfs); 2664 return (EROFS); 2665 } 2666 2667 /* 2668 * First validate permissions 2669 */ 2670 2671 if (mask & AT_SIZE) { 2672 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2673 if (err) { 2674 ZFS_EXIT(zfsvfs); 2675 return (err); 2676 } 2677 /* 2678 * XXX - Note, we are not providing any open 2679 * mode flags here (like FNDELAY), so we may 2680 * block if there are locks present... this 2681 * should be addressed in openat(). 2682 */ 2683 /* XXX - would it be OK to generate a log record here? */ 2684 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2685 if (err) { 2686 ZFS_EXIT(zfsvfs); 2687 return (err); 2688 } 2689 } 2690 2691 if (mask & (AT_ATIME|AT_MTIME) || 2692 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2693 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2694 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2695 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2696 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2697 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2698 skipaclchk, cr); 2699 } 2700 2701 if (mask & (AT_UID|AT_GID)) { 2702 int idmask = (mask & (AT_UID|AT_GID)); 2703 int take_owner; 2704 int take_group; 2705 2706 /* 2707 * NOTE: even if a new mode is being set, 2708 * we may clear S_ISUID/S_ISGID bits. 2709 */ 2710 2711 if (!(mask & AT_MODE)) 2712 vap->va_mode = zp->z_mode; 2713 2714 /* 2715 * Take ownership or chgrp to group we are a member of 2716 */ 2717 2718 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2719 take_group = (mask & AT_GID) && 2720 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2721 2722 /* 2723 * If both AT_UID and AT_GID are set then take_owner and 2724 * take_group must both be set in order to allow taking 2725 * ownership. 2726 * 2727 * Otherwise, send the check through secpolicy_vnode_setattr() 2728 * 2729 */ 2730 2731 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2732 ((idmask == AT_UID) && take_owner) || 2733 ((idmask == AT_GID) && take_group)) { 2734 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2735 skipaclchk, cr) == 0) { 2736 /* 2737 * Remove setuid/setgid for non-privileged users 2738 */ 2739 secpolicy_setid_clear(vap, cr); 2740 trim_mask = (mask & (AT_UID|AT_GID)); 2741 } else { 2742 need_policy = TRUE; 2743 } 2744 } else { 2745 need_policy = TRUE; 2746 } 2747 } 2748 2749 mutex_enter(&zp->z_lock); 2750 oldva.va_mode = zp->z_mode; 2751 oldva.va_uid = zp->z_uid; 2752 oldva.va_gid = zp->z_gid; 2753 if (mask & AT_XVATTR) { 2754 /* 2755 * Update xvattr mask to include only those attributes 2756 * that are actually changing. 2757 * 2758 * the bits will be restored prior to actually setting 2759 * the attributes so the caller thinks they were set. 2760 */ 2761 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2762 if (xoap->xoa_appendonly != 2763 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2764 need_policy = TRUE; 2765 } else { 2766 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2767 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2768 } 2769 } 2770 2771 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2772 if (xoap->xoa_nounlink != 2773 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2774 need_policy = TRUE; 2775 } else { 2776 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2777 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2778 } 2779 } 2780 2781 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2782 if (xoap->xoa_immutable != 2783 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2784 need_policy = TRUE; 2785 } else { 2786 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2787 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2788 } 2789 } 2790 2791 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2792 if (xoap->xoa_nodump != 2793 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2794 need_policy = TRUE; 2795 } else { 2796 XVA_CLR_REQ(xvap, XAT_NODUMP); 2797 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2798 } 2799 } 2800 2801 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2802 if (xoap->xoa_av_modified != 2803 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2804 need_policy = TRUE; 2805 } else { 2806 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2807 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2808 } 2809 } 2810 2811 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2812 if ((vp->v_type != VREG && 2813 xoap->xoa_av_quarantined) || 2814 xoap->xoa_av_quarantined != 2815 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2816 need_policy = TRUE; 2817 } else { 2818 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2819 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2820 } 2821 } 2822 2823 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2824 mutex_exit(&zp->z_lock); 2825 ZFS_EXIT(zfsvfs); 2826 return (EPERM); 2827 } 2828 2829 if (need_policy == FALSE && 2830 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2831 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2832 need_policy = TRUE; 2833 } 2834 } 2835 2836 mutex_exit(&zp->z_lock); 2837 2838 if (mask & AT_MODE) { 2839 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2840 err = secpolicy_setid_setsticky_clear(vp, vap, 2841 &oldva, cr); 2842 if (err) { 2843 ZFS_EXIT(zfsvfs); 2844 return (err); 2845 } 2846 trim_mask |= AT_MODE; 2847 } else { 2848 need_policy = TRUE; 2849 } 2850 } 2851 2852 if (need_policy) { 2853 /* 2854 * If trim_mask is set then take ownership 2855 * has been granted or write_acl is present and user 2856 * has the ability to modify mode. In that case remove 2857 * UID|GID and or MODE from mask so that 2858 * secpolicy_vnode_setattr() doesn't revoke it. 2859 */ 2860 2861 if (trim_mask) { 2862 saved_mask = vap->va_mask; 2863 vap->va_mask &= ~trim_mask; 2864 } 2865 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2866 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2867 if (err) { 2868 ZFS_EXIT(zfsvfs); 2869 return (err); 2870 } 2871 2872 if (trim_mask) 2873 vap->va_mask |= saved_mask; 2874 } 2875 2876 /* 2877 * secpolicy_vnode_setattr, or take ownership may have 2878 * changed va_mask 2879 */ 2880 mask = vap->va_mask; 2881 2882 if ((mask & (AT_UID | AT_GID))) { 2883 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj, 2884 sizeof (xattr_obj)); 2885 2886 if (xattr_obj) { 2887 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 2888 if (err) 2889 goto out2; 2890 } 2891 if (mask & AT_UID) { 2892 new_uid = zfs_fuid_create(zfsvfs, 2893 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2894 if (vap->va_uid != zp->z_uid && 2895 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 2896 err = EDQUOT; 2897 goto out2; 2898 } 2899 } 2900 2901 if (mask & AT_GID) { 2902 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2903 cr, ZFS_GROUP, &fuidp); 2904 if (new_gid != zp->z_gid && 2905 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 2906 err = EDQUOT; 2907 goto out2; 2908 } 2909 } 2910 } 2911 tx = dmu_tx_create(zfsvfs->z_os); 2912 2913 if (mask & AT_MODE) { 2914 uint64_t pmode = zp->z_mode; 2915 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2916 2917 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2918 goto out; 2919 2920 if (!zp->z_is_sa && ZFS_EXTERNAL_ACL(zp)) { 2921 /* 2922 * Are we upgrading ACL from old V0 format 2923 * to V1 format? 2924 */ 2925 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2926 ZNODE_ACL_VERSION(zp) == 2927 ZFS_ACL_VERSION_INITIAL) { 2928 dmu_tx_hold_free(tx, 2929 ZFS_EXTERNAL_ACL(zp), 0, 2930 DMU_OBJECT_END); 2931 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2932 0, aclp->z_acl_bytes); 2933 } else { 2934 dmu_tx_hold_write(tx, ZFS_EXTERNAL_ACL(zp), 0, 2935 aclp->z_acl_bytes); 2936 } 2937 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2938 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2939 0, aclp->z_acl_bytes); 2940 } 2941 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2942 } else { 2943 if ((mask & AT_XVATTR) && 2944 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 2945 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2946 else 2947 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2948 } 2949 2950 if (attrzp) { 2951 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 2952 } 2953 2954 fuid_dirtied = zfsvfs->z_fuid_dirty; 2955 if (fuid_dirtied) 2956 zfs_fuid_txhold(zfsvfs, tx); 2957 2958 zfs_sa_upgrade_txholds(tx, zp); 2959 2960 err = dmu_tx_assign(tx, TXG_NOWAIT); 2961 if (err) { 2962 if (err == ERESTART) 2963 dmu_tx_wait(tx); 2964 goto out; 2965 } 2966 2967 count = 0; 2968 /* 2969 * Set each attribute requested. 2970 * We group settings according to the locks they need to acquire. 2971 * 2972 * Note: you cannot set ctime directly, although it will be 2973 * updated as a side-effect of calling this function. 2974 */ 2975 2976 mutex_enter(&zp->z_lock); 2977 2978 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 2979 &zp->z_pflags, sizeof (zp->z_pflags)); 2980 2981 if (attrzp) { 2982 mutex_enter(&attrzp->z_lock); 2983 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2984 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 2985 sizeof (attrzp->z_pflags)); 2986 } 2987 2988 if (mask & (AT_UID|AT_GID)) { 2989 2990 if (mask & AT_UID) { 2991 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 2992 &new_uid, sizeof (new_uid)); 2993 zp->z_uid = zfs_fuid_map_id(zfsvfs, new_uid, 2994 cr, ZFS_OWNER); 2995 if (attrzp) { 2996 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2997 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 2998 sizeof (new_uid)); 2999 attrzp->z_uid = zp->z_uid; 3000 } 3001 } 3002 3003 if (mask & AT_GID) { 3004 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3005 NULL, &new_gid, sizeof (new_gid)); 3006 zp->z_gid = zfs_fuid_map_id(zfsvfs, new_gid, cr, 3007 ZFS_GROUP); 3008 if (attrzp) { 3009 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3010 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3011 sizeof (new_gid)); 3012 attrzp->z_gid = zp->z_gid; 3013 } 3014 } 3015 if (!(mask & AT_MODE)) { 3016 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3017 NULL, &new_mode, sizeof (new_mode)); 3018 new_mode = zp->z_mode; 3019 } 3020 err = zfs_acl_chown_setattr(zp); 3021 ASSERT(err == 0); 3022 if (attrzp) { 3023 err = zfs_acl_chown_setattr(attrzp); 3024 ASSERT(err == 0); 3025 } 3026 } 3027 3028 if (mask & AT_MODE) { 3029 mutex_enter(&zp->z_acl_lock); 3030 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3031 &new_mode, sizeof (new_mode)); 3032 zp->z_mode = new_mode; 3033 ASSERT3U((uintptr_t)aclp, !=, NULL); 3034 err = zfs_aclset_common(zp, aclp, cr, tx); 3035 ASSERT3U(err, ==, 0); 3036 zp->z_acl_cached = aclp; 3037 aclp = NULL; 3038 mutex_exit(&zp->z_acl_lock); 3039 } 3040 3041 if (attrzp) 3042 mutex_exit(&attrzp->z_lock); 3043 3044 if (mask & AT_ATIME) { 3045 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3046 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3047 &zp->z_atime, sizeof (zp->z_atime)); 3048 } 3049 3050 if (mask & AT_MTIME) { 3051 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3052 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3053 mtime, sizeof (mtime)); 3054 } 3055 3056 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3057 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3058 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3059 NULL, mtime, sizeof (mtime)); 3060 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3061 &ctime, sizeof (ctime)); 3062 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3063 B_TRUE); 3064 } else if (mask != 0) { 3065 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3066 &ctime, sizeof (ctime)); 3067 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3068 B_TRUE); 3069 if (attrzp) { 3070 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3071 SA_ZPL_CTIME(zfsvfs), NULL, 3072 &ctime, sizeof (ctime)); 3073 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3074 mtime, ctime, B_TRUE); 3075 } 3076 } 3077 /* 3078 * Do this after setting timestamps to prevent timestamp 3079 * update from toggling bit 3080 */ 3081 3082 if (xoap && (mask & AT_XVATTR)) { 3083 3084 /* 3085 * restore trimmed off masks 3086 * so that return masks can be set for caller. 3087 */ 3088 3089 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3090 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3091 } 3092 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3093 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3094 } 3095 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3096 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3097 } 3098 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3099 XVA_SET_REQ(xvap, XAT_NODUMP); 3100 } 3101 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3102 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3103 } 3104 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3105 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3106 } 3107 3108 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3109 ASSERT(vp->v_type == VREG); 3110 3111 zfs_xvattr_set(zp, xvap, tx); 3112 } 3113 3114 if (fuid_dirtied) 3115 zfs_fuid_sync(zfsvfs, tx); 3116 3117 if (mask != 0) 3118 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3119 3120 mutex_exit(&zp->z_lock); 3121 3122 out: 3123 if (err == 0 && attrzp) { 3124 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3125 xattr_count, tx); 3126 ASSERT(err2 == 0); 3127 } 3128 3129 if (attrzp) 3130 VN_RELE(ZTOV(attrzp)); 3131 if (aclp) 3132 zfs_acl_free(aclp); 3133 3134 if (fuidp) { 3135 zfs_fuid_info_free(fuidp); 3136 fuidp = NULL; 3137 } 3138 3139 if (err) { 3140 dmu_tx_abort(tx); 3141 if (err == ERESTART) 3142 goto top; 3143 } else { 3144 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3145 dmu_tx_commit(tx); 3146 } 3147 3148 3149 out2: 3150 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3151 zil_commit(zilog, UINT64_MAX, 0); 3152 3153 ZFS_EXIT(zfsvfs); 3154 return (err); 3155 } 3156 3157 typedef struct zfs_zlock { 3158 krwlock_t *zl_rwlock; /* lock we acquired */ 3159 znode_t *zl_znode; /* znode we held */ 3160 struct zfs_zlock *zl_next; /* next in list */ 3161 } zfs_zlock_t; 3162 3163 /* 3164 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3165 */ 3166 static void 3167 zfs_rename_unlock(zfs_zlock_t **zlpp) 3168 { 3169 zfs_zlock_t *zl; 3170 3171 while ((zl = *zlpp) != NULL) { 3172 if (zl->zl_znode != NULL) 3173 VN_RELE(ZTOV(zl->zl_znode)); 3174 rw_exit(zl->zl_rwlock); 3175 *zlpp = zl->zl_next; 3176 kmem_free(zl, sizeof (*zl)); 3177 } 3178 } 3179 3180 /* 3181 * Search back through the directory tree, using the ".." entries. 3182 * Lock each directory in the chain to prevent concurrent renames. 3183 * Fail any attempt to move a directory into one of its own descendants. 3184 * XXX - z_parent_lock can overlap with map or grow locks 3185 */ 3186 static int 3187 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3188 { 3189 zfs_zlock_t *zl; 3190 znode_t *zp = tdzp; 3191 uint64_t rootid = zp->z_zfsvfs->z_root; 3192 uint64_t oidp = zp->z_id; 3193 krwlock_t *rwlp = &szp->z_parent_lock; 3194 krw_t rw = RW_WRITER; 3195 3196 /* 3197 * First pass write-locks szp and compares to zp->z_id. 3198 * Later passes read-lock zp and compare to zp->z_parent. 3199 */ 3200 do { 3201 if (!rw_tryenter(rwlp, rw)) { 3202 /* 3203 * Another thread is renaming in this path. 3204 * Note that if we are a WRITER, we don't have any 3205 * parent_locks held yet. 3206 */ 3207 if (rw == RW_READER && zp->z_id > szp->z_id) { 3208 /* 3209 * Drop our locks and restart 3210 */ 3211 zfs_rename_unlock(&zl); 3212 *zlpp = NULL; 3213 zp = tdzp; 3214 oidp = zp->z_id; 3215 rwlp = &szp->z_parent_lock; 3216 rw = RW_WRITER; 3217 continue; 3218 } else { 3219 /* 3220 * Wait for other thread to drop its locks 3221 */ 3222 rw_enter(rwlp, rw); 3223 } 3224 } 3225 3226 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3227 zl->zl_rwlock = rwlp; 3228 zl->zl_znode = NULL; 3229 zl->zl_next = *zlpp; 3230 *zlpp = zl; 3231 3232 if (oidp == szp->z_id) /* We're a descendant of szp */ 3233 return (EINVAL); 3234 3235 if (oidp == rootid) /* We've hit the top */ 3236 return (0); 3237 3238 if (rw == RW_READER) { /* i.e. not the first pass */ 3239 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3240 if (error) 3241 return (error); 3242 zl->zl_znode = zp; 3243 } 3244 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3245 &oidp, sizeof (oidp)); 3246 rwlp = &zp->z_parent_lock; 3247 rw = RW_READER; 3248 3249 } while (zp->z_id != sdzp->z_id); 3250 3251 return (0); 3252 } 3253 3254 /* 3255 * Move an entry from the provided source directory to the target 3256 * directory. Change the entry name as indicated. 3257 * 3258 * IN: sdvp - Source directory containing the "old entry". 3259 * snm - Old entry name. 3260 * tdvp - Target directory to contain the "new entry". 3261 * tnm - New entry name. 3262 * cr - credentials of caller. 3263 * ct - caller context 3264 * flags - case flags 3265 * 3266 * RETURN: 0 if success 3267 * error code if failure 3268 * 3269 * Timestamps: 3270 * sdvp,tdvp - ctime|mtime updated 3271 */ 3272 /*ARGSUSED*/ 3273 static int 3274 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3275 caller_context_t *ct, int flags) 3276 { 3277 znode_t *tdzp, *szp, *tzp; 3278 znode_t *sdzp = VTOZ(sdvp); 3279 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3280 zilog_t *zilog; 3281 vnode_t *realvp; 3282 zfs_dirlock_t *sdl, *tdl; 3283 dmu_tx_t *tx; 3284 zfs_zlock_t *zl; 3285 int cmp, serr, terr; 3286 int error = 0; 3287 int zflg = 0; 3288 3289 ZFS_ENTER(zfsvfs); 3290 ZFS_VERIFY_ZP(sdzp); 3291 zilog = zfsvfs->z_log; 3292 3293 /* 3294 * Make sure we have the real vp for the target directory. 3295 */ 3296 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3297 tdvp = realvp; 3298 3299 if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) { 3300 ZFS_EXIT(zfsvfs); 3301 return (EXDEV); 3302 } 3303 3304 tdzp = VTOZ(tdvp); 3305 ZFS_VERIFY_ZP(tdzp); 3306 if (zfsvfs->z_utf8 && u8_validate(tnm, 3307 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3308 ZFS_EXIT(zfsvfs); 3309 return (EILSEQ); 3310 } 3311 3312 if (flags & FIGNORECASE) 3313 zflg |= ZCILOOK; 3314 3315 top: 3316 szp = NULL; 3317 tzp = NULL; 3318 zl = NULL; 3319 3320 /* 3321 * This is to prevent the creation of links into attribute space 3322 * by renaming a linked file into/outof an attribute directory. 3323 * See the comment in zfs_link() for why this is considered bad. 3324 */ 3325 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3326 ZFS_EXIT(zfsvfs); 3327 return (EINVAL); 3328 } 3329 3330 /* 3331 * Lock source and target directory entries. To prevent deadlock, 3332 * a lock ordering must be defined. We lock the directory with 3333 * the smallest object id first, or if it's a tie, the one with 3334 * the lexically first name. 3335 */ 3336 if (sdzp->z_id < tdzp->z_id) { 3337 cmp = -1; 3338 } else if (sdzp->z_id > tdzp->z_id) { 3339 cmp = 1; 3340 } else { 3341 /* 3342 * First compare the two name arguments without 3343 * considering any case folding. 3344 */ 3345 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3346 3347 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3348 ASSERT(error == 0 || !zfsvfs->z_utf8); 3349 if (cmp == 0) { 3350 /* 3351 * POSIX: "If the old argument and the new argument 3352 * both refer to links to the same existing file, 3353 * the rename() function shall return successfully 3354 * and perform no other action." 3355 */ 3356 ZFS_EXIT(zfsvfs); 3357 return (0); 3358 } 3359 /* 3360 * If the file system is case-folding, then we may 3361 * have some more checking to do. A case-folding file 3362 * system is either supporting mixed case sensitivity 3363 * access or is completely case-insensitive. Note 3364 * that the file system is always case preserving. 3365 * 3366 * In mixed sensitivity mode case sensitive behavior 3367 * is the default. FIGNORECASE must be used to 3368 * explicitly request case insensitive behavior. 3369 * 3370 * If the source and target names provided differ only 3371 * by case (e.g., a request to rename 'tim' to 'Tim'), 3372 * we will treat this as a special case in the 3373 * case-insensitive mode: as long as the source name 3374 * is an exact match, we will allow this to proceed as 3375 * a name-change request. 3376 */ 3377 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3378 (zfsvfs->z_case == ZFS_CASE_MIXED && 3379 flags & FIGNORECASE)) && 3380 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3381 &error) == 0) { 3382 /* 3383 * case preserving rename request, require exact 3384 * name matches 3385 */ 3386 zflg |= ZCIEXACT; 3387 zflg &= ~ZCILOOK; 3388 } 3389 } 3390 3391 /* 3392 * If the source and destination directories are the same, we should 3393 * grab the z_name_lock of that directory only once. 3394 */ 3395 if (sdzp == tdzp) { 3396 zflg |= ZHAVELOCK; 3397 rw_enter(&sdzp->z_name_lock, RW_READER); 3398 } 3399 3400 if (cmp < 0) { 3401 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3402 ZEXISTS | zflg, NULL, NULL); 3403 terr = zfs_dirent_lock(&tdl, 3404 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3405 } else { 3406 terr = zfs_dirent_lock(&tdl, 3407 tdzp, tnm, &tzp, zflg, NULL, NULL); 3408 serr = zfs_dirent_lock(&sdl, 3409 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3410 NULL, NULL); 3411 } 3412 3413 if (serr) { 3414 /* 3415 * Source entry invalid or not there. 3416 */ 3417 if (!terr) { 3418 zfs_dirent_unlock(tdl); 3419 if (tzp) 3420 VN_RELE(ZTOV(tzp)); 3421 } 3422 3423 if (sdzp == tdzp) 3424 rw_exit(&sdzp->z_name_lock); 3425 3426 if (strcmp(snm, "..") == 0) 3427 serr = EINVAL; 3428 ZFS_EXIT(zfsvfs); 3429 return (serr); 3430 } 3431 if (terr) { 3432 zfs_dirent_unlock(sdl); 3433 VN_RELE(ZTOV(szp)); 3434 3435 if (sdzp == tdzp) 3436 rw_exit(&sdzp->z_name_lock); 3437 3438 if (strcmp(tnm, "..") == 0) 3439 terr = EINVAL; 3440 ZFS_EXIT(zfsvfs); 3441 return (terr); 3442 } 3443 3444 /* 3445 * Must have write access at the source to remove the old entry 3446 * and write access at the target to create the new entry. 3447 * Note that if target and source are the same, this can be 3448 * done in a single check. 3449 */ 3450 3451 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3452 goto out; 3453 3454 if (ZTOV(szp)->v_type == VDIR) { 3455 /* 3456 * Check to make sure rename is valid. 3457 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3458 */ 3459 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3460 goto out; 3461 } 3462 3463 /* 3464 * Does target exist? 3465 */ 3466 if (tzp) { 3467 /* 3468 * Source and target must be the same type. 3469 */ 3470 if (ZTOV(szp)->v_type == VDIR) { 3471 if (ZTOV(tzp)->v_type != VDIR) { 3472 error = ENOTDIR; 3473 goto out; 3474 } 3475 } else { 3476 if (ZTOV(tzp)->v_type == VDIR) { 3477 error = EISDIR; 3478 goto out; 3479 } 3480 } 3481 /* 3482 * POSIX dictates that when the source and target 3483 * entries refer to the same file object, rename 3484 * must do nothing and exit without error. 3485 */ 3486 if (szp->z_id == tzp->z_id) { 3487 error = 0; 3488 goto out; 3489 } 3490 } 3491 3492 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3493 if (tzp) 3494 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3495 3496 /* 3497 * notify the target directory if it is not the same 3498 * as source directory. 3499 */ 3500 if (tdvp != sdvp) { 3501 vnevent_rename_dest_dir(tdvp, ct); 3502 } 3503 3504 tx = dmu_tx_create(zfsvfs->z_os); 3505 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3506 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3507 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3508 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3509 if (sdzp != tdzp) { 3510 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3511 zfs_sa_upgrade_txholds(tx, tdzp); 3512 } 3513 if (tzp) { 3514 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3515 zfs_sa_upgrade_txholds(tx, tzp); 3516 } 3517 3518 zfs_sa_upgrade_txholds(tx, szp); 3519 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3520 error = dmu_tx_assign(tx, TXG_NOWAIT); 3521 if (error) { 3522 if (zl != NULL) 3523 zfs_rename_unlock(&zl); 3524 zfs_dirent_unlock(sdl); 3525 zfs_dirent_unlock(tdl); 3526 3527 if (sdzp == tdzp) 3528 rw_exit(&sdzp->z_name_lock); 3529 3530 VN_RELE(ZTOV(szp)); 3531 if (tzp) 3532 VN_RELE(ZTOV(tzp)); 3533 if (error == ERESTART) { 3534 dmu_tx_wait(tx); 3535 dmu_tx_abort(tx); 3536 goto top; 3537 } 3538 dmu_tx_abort(tx); 3539 ZFS_EXIT(zfsvfs); 3540 return (error); 3541 } 3542 3543 if (tzp) /* Attempt to remove the existing target */ 3544 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3545 3546 if (error == 0) { 3547 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3548 if (error == 0) { 3549 szp->z_pflags |= ZFS_AV_MODIFIED; 3550 3551 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3552 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3553 ASSERT3U(error, ==, 0); 3554 3555 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3556 if (error == 0) { 3557 zfs_log_rename(zilog, tx, TX_RENAME | 3558 (flags & FIGNORECASE ? TX_CI : 0), 3559 sdzp, sdl->dl_name, tdzp, tdl->dl_name, 3560 szp); 3561 3562 /* 3563 * Update path information for the target vnode 3564 */ 3565 vn_renamepath(tdvp, ZTOV(szp), tnm, 3566 strlen(tnm)); 3567 } else { 3568 /* 3569 * At this point, we have successfully created 3570 * the target name, but have failed to remove 3571 * the source name. Since the create was done 3572 * with the ZRENAMING flag, there are 3573 * complications; for one, the link count is 3574 * wrong. The easiest way to deal with this 3575 * is to remove the newly created target, and 3576 * return the original error. This must 3577 * succeed; fortunately, it is very unlikely to 3578 * fail, since we just created it. 3579 */ 3580 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3581 ZRENAMING, NULL), ==, 0); 3582 } 3583 } 3584 } 3585 3586 dmu_tx_commit(tx); 3587 out: 3588 if (zl != NULL) 3589 zfs_rename_unlock(&zl); 3590 3591 zfs_dirent_unlock(sdl); 3592 zfs_dirent_unlock(tdl); 3593 3594 if (sdzp == tdzp) 3595 rw_exit(&sdzp->z_name_lock); 3596 3597 3598 VN_RELE(ZTOV(szp)); 3599 if (tzp) 3600 VN_RELE(ZTOV(tzp)); 3601 3602 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3603 zil_commit(zilog, UINT64_MAX, 0); 3604 3605 ZFS_EXIT(zfsvfs); 3606 return (error); 3607 } 3608 3609 /* 3610 * Insert the indicated symbolic reference entry into the directory. 3611 * 3612 * IN: dvp - Directory to contain new symbolic link. 3613 * link - Name for new symlink entry. 3614 * vap - Attributes of new entry. 3615 * target - Target path of new symlink. 3616 * cr - credentials of caller. 3617 * ct - caller context 3618 * flags - case flags 3619 * 3620 * RETURN: 0 if success 3621 * error code if failure 3622 * 3623 * Timestamps: 3624 * dvp - ctime|mtime updated 3625 */ 3626 /*ARGSUSED*/ 3627 static int 3628 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3629 caller_context_t *ct, int flags) 3630 { 3631 znode_t *zp, *dzp = VTOZ(dvp); 3632 zfs_dirlock_t *dl; 3633 dmu_tx_t *tx; 3634 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3635 zilog_t *zilog; 3636 uint64_t len = strlen(link); 3637 int error; 3638 int zflg = ZNEW; 3639 zfs_acl_ids_t acl_ids; 3640 boolean_t fuid_dirtied; 3641 uint64_t txtype = TX_SYMLINK; 3642 3643 ASSERT(vap->va_type == VLNK); 3644 3645 ZFS_ENTER(zfsvfs); 3646 ZFS_VERIFY_ZP(dzp); 3647 zilog = zfsvfs->z_log; 3648 3649 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3650 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3651 ZFS_EXIT(zfsvfs); 3652 return (EILSEQ); 3653 } 3654 if (flags & FIGNORECASE) 3655 zflg |= ZCILOOK; 3656 3657 if (len > MAXPATHLEN) { 3658 ZFS_EXIT(zfsvfs); 3659 return (ENAMETOOLONG); 3660 } 3661 3662 if ((error = zfs_acl_ids_create(dzp, 0, 3663 vap, cr, NULL, &acl_ids)) != 0) { 3664 ZFS_EXIT(zfsvfs); 3665 return (error); 3666 } 3667 top: 3668 /* 3669 * Attempt to lock directory; fail if entry already exists. 3670 */ 3671 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3672 if (error) { 3673 zfs_acl_ids_free(&acl_ids); 3674 ZFS_EXIT(zfsvfs); 3675 return (error); 3676 } 3677 3678 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3679 zfs_acl_ids_free(&acl_ids); 3680 ZFS_EXIT(zfsvfs); 3681 return (error); 3682 } 3683 3684 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3685 zfs_acl_ids_free(&acl_ids); 3686 zfs_dirent_unlock(dl); 3687 ZFS_EXIT(zfsvfs); 3688 return (EDQUOT); 3689 } 3690 tx = dmu_tx_create(zfsvfs->z_os); 3691 fuid_dirtied = zfsvfs->z_fuid_dirty; 3692 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3693 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3694 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3695 ZFS_SA_BASE_ATTR_SIZE + len); 3696 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3697 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3698 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3699 acl_ids.z_aclp->z_acl_bytes); 3700 } 3701 if (fuid_dirtied) 3702 zfs_fuid_txhold(zfsvfs, tx); 3703 error = dmu_tx_assign(tx, TXG_NOWAIT); 3704 if (error) { 3705 zfs_dirent_unlock(dl); 3706 if (error == ERESTART) { 3707 dmu_tx_wait(tx); 3708 dmu_tx_abort(tx); 3709 goto top; 3710 } 3711 zfs_acl_ids_free(&acl_ids); 3712 dmu_tx_abort(tx); 3713 ZFS_EXIT(zfsvfs); 3714 return (error); 3715 } 3716 3717 /* 3718 * Create a new object for the symlink. 3719 * for version 4 ZPL datsets the symlink will be an SA attribute 3720 */ 3721 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3722 3723 if (fuid_dirtied) 3724 zfs_fuid_sync(zfsvfs, tx); 3725 3726 if (zp->z_is_sa) 3727 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3728 link, len, tx); 3729 else 3730 zfs_sa_symlink(zp, link, len, tx); 3731 3732 zp->z_size = len; 3733 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3734 &zp->z_size, sizeof (zp->z_size), tx); 3735 /* 3736 * Insert the new object into the directory. 3737 */ 3738 (void) zfs_link_create(dl, zp, tx, ZNEW); 3739 3740 if (flags & FIGNORECASE) 3741 txtype |= TX_CI; 3742 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3743 3744 zfs_acl_ids_free(&acl_ids); 3745 3746 dmu_tx_commit(tx); 3747 3748 zfs_dirent_unlock(dl); 3749 3750 VN_RELE(ZTOV(zp)); 3751 3752 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3753 zil_commit(zilog, UINT64_MAX, 0); 3754 3755 ZFS_EXIT(zfsvfs); 3756 return (error); 3757 } 3758 3759 /* 3760 * Return, in the buffer contained in the provided uio structure, 3761 * the symbolic path referred to by vp. 3762 * 3763 * IN: vp - vnode of symbolic link. 3764 * uoip - structure to contain the link path. 3765 * cr - credentials of caller. 3766 * ct - caller context 3767 * 3768 * OUT: uio - structure to contain the link path. 3769 * 3770 * RETURN: 0 if success 3771 * error code if failure 3772 * 3773 * Timestamps: 3774 * vp - atime updated 3775 */ 3776 /* ARGSUSED */ 3777 static int 3778 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3779 { 3780 znode_t *zp = VTOZ(vp); 3781 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3782 int error; 3783 3784 ZFS_ENTER(zfsvfs); 3785 ZFS_VERIFY_ZP(zp); 3786 3787 if (zp->z_is_sa) 3788 error = sa_lookup_uio(zp->z_sa_hdl, 3789 SA_ZPL_SYMLINK(zfsvfs), uio); 3790 else 3791 error = zfs_sa_readlink(zp, uio); 3792 3793 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3794 3795 ZFS_EXIT(zfsvfs); 3796 return (error); 3797 } 3798 3799 /* 3800 * Insert a new entry into directory tdvp referencing svp. 3801 * 3802 * IN: tdvp - Directory to contain new entry. 3803 * svp - vnode of new entry. 3804 * name - name of new entry. 3805 * cr - credentials of caller. 3806 * ct - caller context 3807 * 3808 * RETURN: 0 if success 3809 * error code if failure 3810 * 3811 * Timestamps: 3812 * tdvp - ctime|mtime updated 3813 * svp - ctime updated 3814 */ 3815 /* ARGSUSED */ 3816 static int 3817 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3818 caller_context_t *ct, int flags) 3819 { 3820 znode_t *dzp = VTOZ(tdvp); 3821 znode_t *tzp, *szp; 3822 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3823 zilog_t *zilog; 3824 zfs_dirlock_t *dl; 3825 dmu_tx_t *tx; 3826 vnode_t *realvp; 3827 int error; 3828 int zf = ZNEW; 3829 uint64_t parent; 3830 3831 ASSERT(tdvp->v_type == VDIR); 3832 3833 ZFS_ENTER(zfsvfs); 3834 ZFS_VERIFY_ZP(dzp); 3835 zilog = zfsvfs->z_log; 3836 3837 if (VOP_REALVP(svp, &realvp, ct) == 0) 3838 svp = realvp; 3839 3840 /* 3841 * POSIX dictates that we return EPERM here. 3842 * Better choices include ENOTSUP or EISDIR. 3843 */ 3844 if (svp->v_type == VDIR) { 3845 ZFS_EXIT(zfsvfs); 3846 return (EPERM); 3847 } 3848 3849 if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) { 3850 ZFS_EXIT(zfsvfs); 3851 return (EXDEV); 3852 } 3853 3854 szp = VTOZ(svp); 3855 ZFS_VERIFY_ZP(szp); 3856 3857 /* Prevent links to .zfs/shares files */ 3858 3859 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 3860 &parent, sizeof (uint64_t))) != 0) { 3861 ZFS_EXIT(zfsvfs); 3862 return (error); 3863 } 3864 if (parent == zfsvfs->z_shares_dir) { 3865 ZFS_EXIT(zfsvfs); 3866 return (EPERM); 3867 } 3868 3869 if (zfsvfs->z_utf8 && u8_validate(name, 3870 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3871 ZFS_EXIT(zfsvfs); 3872 return (EILSEQ); 3873 } 3874 if (flags & FIGNORECASE) 3875 zf |= ZCILOOK; 3876 3877 /* 3878 * We do not support links between attributes and non-attributes 3879 * because of the potential security risk of creating links 3880 * into "normal" file space in order to circumvent restrictions 3881 * imposed in attribute space. 3882 */ 3883 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 3884 ZFS_EXIT(zfsvfs); 3885 return (EINVAL); 3886 } 3887 3888 3889 if (szp->z_uid != crgetuid(cr) && 3890 secpolicy_basic_link(cr) != 0) { 3891 ZFS_EXIT(zfsvfs); 3892 return (EPERM); 3893 } 3894 3895 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3896 ZFS_EXIT(zfsvfs); 3897 return (error); 3898 } 3899 3900 top: 3901 /* 3902 * Attempt to lock directory; fail if entry already exists. 3903 */ 3904 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3905 if (error) { 3906 ZFS_EXIT(zfsvfs); 3907 return (error); 3908 } 3909 3910 tx = dmu_tx_create(zfsvfs->z_os); 3911 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3912 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3913 zfs_sa_upgrade_txholds(tx, szp); 3914 zfs_sa_upgrade_txholds(tx, dzp); 3915 error = dmu_tx_assign(tx, TXG_NOWAIT); 3916 if (error) { 3917 zfs_dirent_unlock(dl); 3918 if (error == ERESTART) { 3919 dmu_tx_wait(tx); 3920 dmu_tx_abort(tx); 3921 goto top; 3922 } 3923 dmu_tx_abort(tx); 3924 ZFS_EXIT(zfsvfs); 3925 return (error); 3926 } 3927 3928 error = zfs_link_create(dl, szp, tx, 0); 3929 3930 if (error == 0) { 3931 uint64_t txtype = TX_LINK; 3932 if (flags & FIGNORECASE) 3933 txtype |= TX_CI; 3934 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3935 } 3936 3937 dmu_tx_commit(tx); 3938 3939 zfs_dirent_unlock(dl); 3940 3941 if (error == 0) { 3942 vnevent_link(svp, ct); 3943 } 3944 3945 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3946 zil_commit(zilog, UINT64_MAX, 0); 3947 3948 ZFS_EXIT(zfsvfs); 3949 return (error); 3950 } 3951 3952 /* 3953 * zfs_null_putapage() is used when the file system has been force 3954 * unmounted. It just drops the pages. 3955 */ 3956 /* ARGSUSED */ 3957 static int 3958 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3959 size_t *lenp, int flags, cred_t *cr) 3960 { 3961 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3962 return (0); 3963 } 3964 3965 /* 3966 * Push a page out to disk, klustering if possible. 3967 * 3968 * IN: vp - file to push page to. 3969 * pp - page to push. 3970 * flags - additional flags. 3971 * cr - credentials of caller. 3972 * 3973 * OUT: offp - start of range pushed. 3974 * lenp - len of range pushed. 3975 * 3976 * RETURN: 0 if success 3977 * error code if failure 3978 * 3979 * NOTE: callers must have locked the page to be pushed. On 3980 * exit, the page (and all other pages in the kluster) must be 3981 * unlocked. 3982 */ 3983 /* ARGSUSED */ 3984 static int 3985 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3986 size_t *lenp, int flags, cred_t *cr) 3987 { 3988 znode_t *zp = VTOZ(vp); 3989 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3990 dmu_tx_t *tx; 3991 u_offset_t off, koff; 3992 size_t len, klen; 3993 int err; 3994 3995 off = pp->p_offset; 3996 len = PAGESIZE; 3997 /* 3998 * If our blocksize is bigger than the page size, try to kluster 3999 * multiple pages so that we write a full block (thus avoiding 4000 * a read-modify-write). 4001 */ 4002 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4003 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4004 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4005 ASSERT(koff <= zp->z_size); 4006 if (koff + klen > zp->z_size) 4007 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4008 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4009 } 4010 ASSERT3U(btop(len), ==, btopr(len)); 4011 4012 /* 4013 * Can't push pages past end-of-file. 4014 */ 4015 if (off >= zp->z_size) { 4016 /* ignore all pages */ 4017 err = 0; 4018 goto out; 4019 } else if (off + len > zp->z_size) { 4020 int npages = btopr(zp->z_size - off); 4021 page_t *trunc; 4022 4023 page_list_break(&pp, &trunc, npages); 4024 /* ignore pages past end of file */ 4025 if (trunc) 4026 pvn_write_done(trunc, flags); 4027 len = zp->z_size - off; 4028 } 4029 4030 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4031 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4032 err = EDQUOT; 4033 goto out; 4034 } 4035 top: 4036 tx = dmu_tx_create(zfsvfs->z_os); 4037 dmu_tx_hold_write(tx, zp->z_id, off, len); 4038 4039 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4040 zfs_sa_upgrade_txholds(tx, zp); 4041 err = dmu_tx_assign(tx, TXG_NOWAIT); 4042 if (err != 0) { 4043 if (err == ERESTART) { 4044 dmu_tx_wait(tx); 4045 dmu_tx_abort(tx); 4046 goto top; 4047 } 4048 dmu_tx_abort(tx); 4049 goto out; 4050 } 4051 4052 if (zp->z_blksz <= PAGESIZE) { 4053 caddr_t va = zfs_map_page(pp, S_READ); 4054 ASSERT3U(len, <=, PAGESIZE); 4055 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4056 zfs_unmap_page(pp, va); 4057 } else { 4058 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4059 } 4060 4061 if (err == 0) { 4062 uint64_t mtime[2], ctime[2]; 4063 sa_bulk_attr_t bulk[3]; 4064 int count = 0; 4065 4066 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4067 &mtime, 16); 4068 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4069 &ctime, 16); 4070 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4071 &zp->z_pflags, 8); 4072 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4073 B_TRUE); 4074 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4075 } 4076 dmu_tx_commit(tx); 4077 4078 out: 4079 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4080 if (offp) 4081 *offp = off; 4082 if (lenp) 4083 *lenp = len; 4084 4085 return (err); 4086 } 4087 4088 /* 4089 * Copy the portion of the file indicated from pages into the file. 4090 * The pages are stored in a page list attached to the files vnode. 4091 * 4092 * IN: vp - vnode of file to push page data to. 4093 * off - position in file to put data. 4094 * len - amount of data to write. 4095 * flags - flags to control the operation. 4096 * cr - credentials of caller. 4097 * ct - caller context. 4098 * 4099 * RETURN: 0 if success 4100 * error code if failure 4101 * 4102 * Timestamps: 4103 * vp - ctime|mtime updated 4104 */ 4105 /*ARGSUSED*/ 4106 static int 4107 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4108 caller_context_t *ct) 4109 { 4110 znode_t *zp = VTOZ(vp); 4111 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4112 page_t *pp; 4113 size_t io_len; 4114 u_offset_t io_off; 4115 uint_t blksz; 4116 rl_t *rl; 4117 int error = 0; 4118 4119 ZFS_ENTER(zfsvfs); 4120 ZFS_VERIFY_ZP(zp); 4121 4122 /* 4123 * Align this request to the file block size in case we kluster. 4124 * XXX - this can result in pretty aggresive locking, which can 4125 * impact simultanious read/write access. One option might be 4126 * to break up long requests (len == 0) into block-by-block 4127 * operations to get narrower locking. 4128 */ 4129 blksz = zp->z_blksz; 4130 if (ISP2(blksz)) 4131 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4132 else 4133 io_off = 0; 4134 if (len > 0 && ISP2(blksz)) 4135 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4136 else 4137 io_len = 0; 4138 4139 if (io_len == 0) { 4140 /* 4141 * Search the entire vp list for pages >= io_off. 4142 */ 4143 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4144 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4145 goto out; 4146 } 4147 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4148 4149 if (off > zp->z_size) { 4150 /* past end of file */ 4151 zfs_range_unlock(rl); 4152 ZFS_EXIT(zfsvfs); 4153 return (0); 4154 } 4155 4156 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4157 4158 for (off = io_off; io_off < off + len; io_off += io_len) { 4159 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4160 pp = page_lookup(vp, io_off, 4161 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4162 } else { 4163 pp = page_lookup_nowait(vp, io_off, 4164 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4165 } 4166 4167 if (pp != NULL && pvn_getdirty(pp, flags)) { 4168 int err; 4169 4170 /* 4171 * Found a dirty page to push 4172 */ 4173 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4174 if (err) 4175 error = err; 4176 } else { 4177 io_len = PAGESIZE; 4178 } 4179 } 4180 out: 4181 zfs_range_unlock(rl); 4182 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4183 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 4184 ZFS_EXIT(zfsvfs); 4185 return (error); 4186 } 4187 4188 /*ARGSUSED*/ 4189 void 4190 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4191 { 4192 znode_t *zp = VTOZ(vp); 4193 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4194 int error; 4195 4196 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4197 if (zp->z_sa_hdl == NULL) { 4198 /* 4199 * The fs has been unmounted, or we did a 4200 * suspend/resume and this file no longer exists. 4201 */ 4202 if (vn_has_cached_data(vp)) { 4203 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4204 B_INVAL, cr); 4205 } 4206 4207 mutex_enter(&zp->z_lock); 4208 mutex_enter(&vp->v_lock); 4209 ASSERT(vp->v_count == 1); 4210 vp->v_count = 0; 4211 mutex_exit(&vp->v_lock); 4212 mutex_exit(&zp->z_lock); 4213 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4214 zfs_znode_free(zp); 4215 return; 4216 } 4217 4218 /* 4219 * Attempt to push any data in the page cache. If this fails 4220 * we will get kicked out later in zfs_zinactive(). 4221 */ 4222 if (vn_has_cached_data(vp)) { 4223 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4224 cr); 4225 } 4226 4227 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4228 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4229 4230 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4231 zfs_sa_upgrade_txholds(tx, zp); 4232 error = dmu_tx_assign(tx, TXG_WAIT); 4233 if (error) { 4234 dmu_tx_abort(tx); 4235 } else { 4236 mutex_enter(&zp->z_lock); 4237 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4238 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4239 zp->z_atime_dirty = 0; 4240 mutex_exit(&zp->z_lock); 4241 dmu_tx_commit(tx); 4242 } 4243 } 4244 4245 zfs_zinactive(zp); 4246 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4247 } 4248 4249 /* 4250 * Bounds-check the seek operation. 4251 * 4252 * IN: vp - vnode seeking within 4253 * ooff - old file offset 4254 * noffp - pointer to new file offset 4255 * ct - caller context 4256 * 4257 * RETURN: 0 if success 4258 * EINVAL if new offset invalid 4259 */ 4260 /* ARGSUSED */ 4261 static int 4262 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4263 caller_context_t *ct) 4264 { 4265 if (vp->v_type == VDIR) 4266 return (0); 4267 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4268 } 4269 4270 /* 4271 * Pre-filter the generic locking function to trap attempts to place 4272 * a mandatory lock on a memory mapped file. 4273 */ 4274 static int 4275 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4276 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4277 { 4278 znode_t *zp = VTOZ(vp); 4279 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4280 4281 ZFS_ENTER(zfsvfs); 4282 ZFS_VERIFY_ZP(zp); 4283 4284 /* 4285 * We are following the UFS semantics with respect to mapcnt 4286 * here: If we see that the file is mapped already, then we will 4287 * return an error, but we don't worry about races between this 4288 * function and zfs_map(). 4289 */ 4290 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4291 ZFS_EXIT(zfsvfs); 4292 return (EAGAIN); 4293 } 4294 ZFS_EXIT(zfsvfs); 4295 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4296 } 4297 4298 /* 4299 * If we can't find a page in the cache, we will create a new page 4300 * and fill it with file data. For efficiency, we may try to fill 4301 * multiple pages at once (klustering) to fill up the supplied page 4302 * list. Note that the pages to be filled are held with an exclusive 4303 * lock to prevent access by other threads while they are being filled. 4304 */ 4305 static int 4306 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4307 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4308 { 4309 znode_t *zp = VTOZ(vp); 4310 page_t *pp, *cur_pp; 4311 objset_t *os = zp->z_zfsvfs->z_os; 4312 u_offset_t io_off, total; 4313 size_t io_len; 4314 int err; 4315 4316 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4317 /* 4318 * We only have a single page, don't bother klustering 4319 */ 4320 io_off = off; 4321 io_len = PAGESIZE; 4322 pp = page_create_va(vp, io_off, io_len, 4323 PG_EXCL | PG_WAIT, seg, addr); 4324 } else { 4325 /* 4326 * Try to find enough pages to fill the page list 4327 */ 4328 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4329 &io_len, off, plsz, 0); 4330 } 4331 if (pp == NULL) { 4332 /* 4333 * The page already exists, nothing to do here. 4334 */ 4335 *pl = NULL; 4336 return (0); 4337 } 4338 4339 /* 4340 * Fill the pages in the kluster. 4341 */ 4342 cur_pp = pp; 4343 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4344 caddr_t va; 4345 4346 ASSERT3U(io_off, ==, cur_pp->p_offset); 4347 va = zfs_map_page(cur_pp, S_WRITE); 4348 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4349 DMU_READ_PREFETCH); 4350 zfs_unmap_page(cur_pp, va); 4351 if (err) { 4352 /* On error, toss the entire kluster */ 4353 pvn_read_done(pp, B_ERROR); 4354 /* convert checksum errors into IO errors */ 4355 if (err == ECKSUM) 4356 err = EIO; 4357 return (err); 4358 } 4359 cur_pp = cur_pp->p_next; 4360 } 4361 4362 /* 4363 * Fill in the page list array from the kluster starting 4364 * from the desired offset `off'. 4365 * NOTE: the page list will always be null terminated. 4366 */ 4367 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4368 ASSERT(pl == NULL || (*pl)->p_offset == off); 4369 4370 return (0); 4371 } 4372 4373 /* 4374 * Return pointers to the pages for the file region [off, off + len] 4375 * in the pl array. If plsz is greater than len, this function may 4376 * also return page pointers from after the specified region 4377 * (i.e. the region [off, off + plsz]). These additional pages are 4378 * only returned if they are already in the cache, or were created as 4379 * part of a klustered read. 4380 * 4381 * IN: vp - vnode of file to get data from. 4382 * off - position in file to get data from. 4383 * len - amount of data to retrieve. 4384 * plsz - length of provided page list. 4385 * seg - segment to obtain pages for. 4386 * addr - virtual address of fault. 4387 * rw - mode of created pages. 4388 * cr - credentials of caller. 4389 * ct - caller context. 4390 * 4391 * OUT: protp - protection mode of created pages. 4392 * pl - list of pages created. 4393 * 4394 * RETURN: 0 if success 4395 * error code if failure 4396 * 4397 * Timestamps: 4398 * vp - atime updated 4399 */ 4400 /* ARGSUSED */ 4401 static int 4402 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4403 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4404 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4405 { 4406 znode_t *zp = VTOZ(vp); 4407 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4408 page_t **pl0 = pl; 4409 int err = 0; 4410 4411 /* we do our own caching, faultahead is unnecessary */ 4412 if (pl == NULL) 4413 return (0); 4414 else if (len > plsz) 4415 len = plsz; 4416 else 4417 len = P2ROUNDUP(len, PAGESIZE); 4418 ASSERT(plsz >= len); 4419 4420 ZFS_ENTER(zfsvfs); 4421 ZFS_VERIFY_ZP(zp); 4422 4423 if (protp) 4424 *protp = PROT_ALL; 4425 4426 /* 4427 * Loop through the requested range [off, off + len) looking 4428 * for pages. If we don't find a page, we will need to create 4429 * a new page and fill it with data from the file. 4430 */ 4431 while (len > 0) { 4432 if (*pl = page_lookup(vp, off, SE_SHARED)) 4433 *(pl+1) = NULL; 4434 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4435 goto out; 4436 while (*pl) { 4437 ASSERT3U((*pl)->p_offset, ==, off); 4438 off += PAGESIZE; 4439 addr += PAGESIZE; 4440 if (len > 0) { 4441 ASSERT3U(len, >=, PAGESIZE); 4442 len -= PAGESIZE; 4443 } 4444 ASSERT3U(plsz, >=, PAGESIZE); 4445 plsz -= PAGESIZE; 4446 pl++; 4447 } 4448 } 4449 4450 /* 4451 * Fill out the page array with any pages already in the cache. 4452 */ 4453 while (plsz > 0 && 4454 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4455 off += PAGESIZE; 4456 plsz -= PAGESIZE; 4457 } 4458 out: 4459 if (err) { 4460 /* 4461 * Release any pages we have previously locked. 4462 */ 4463 while (pl > pl0) 4464 page_unlock(*--pl); 4465 } else { 4466 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4467 } 4468 4469 *pl = NULL; 4470 4471 ZFS_EXIT(zfsvfs); 4472 return (err); 4473 } 4474 4475 /* 4476 * Request a memory map for a section of a file. This code interacts 4477 * with common code and the VM system as follows: 4478 * 4479 * common code calls mmap(), which ends up in smmap_common() 4480 * 4481 * this calls VOP_MAP(), which takes you into (say) zfs 4482 * 4483 * zfs_map() calls as_map(), passing segvn_create() as the callback 4484 * 4485 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4486 * 4487 * zfs_addmap() updates z_mapcnt 4488 */ 4489 /*ARGSUSED*/ 4490 static int 4491 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4492 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4493 caller_context_t *ct) 4494 { 4495 znode_t *zp = VTOZ(vp); 4496 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4497 segvn_crargs_t vn_a; 4498 int error; 4499 4500 ZFS_ENTER(zfsvfs); 4501 ZFS_VERIFY_ZP(zp); 4502 4503 if ((prot & PROT_WRITE) && (zp->z_pflags & 4504 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4505 ZFS_EXIT(zfsvfs); 4506 return (EPERM); 4507 } 4508 4509 if ((prot & (PROT_READ | PROT_EXEC)) && 4510 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4511 ZFS_EXIT(zfsvfs); 4512 return (EACCES); 4513 } 4514 4515 if (vp->v_flag & VNOMAP) { 4516 ZFS_EXIT(zfsvfs); 4517 return (ENOSYS); 4518 } 4519 4520 if (off < 0 || len > MAXOFFSET_T - off) { 4521 ZFS_EXIT(zfsvfs); 4522 return (ENXIO); 4523 } 4524 4525 if (vp->v_type != VREG) { 4526 ZFS_EXIT(zfsvfs); 4527 return (ENODEV); 4528 } 4529 4530 /* 4531 * If file is locked, disallow mapping. 4532 */ 4533 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4534 ZFS_EXIT(zfsvfs); 4535 return (EAGAIN); 4536 } 4537 4538 as_rangelock(as); 4539 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4540 if (error != 0) { 4541 as_rangeunlock(as); 4542 ZFS_EXIT(zfsvfs); 4543 return (error); 4544 } 4545 4546 vn_a.vp = vp; 4547 vn_a.offset = (u_offset_t)off; 4548 vn_a.type = flags & MAP_TYPE; 4549 vn_a.prot = prot; 4550 vn_a.maxprot = maxprot; 4551 vn_a.cred = cr; 4552 vn_a.amp = NULL; 4553 vn_a.flags = flags & ~MAP_TYPE; 4554 vn_a.szc = 0; 4555 vn_a.lgrp_mem_policy_flags = 0; 4556 4557 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4558 4559 as_rangeunlock(as); 4560 ZFS_EXIT(zfsvfs); 4561 return (error); 4562 } 4563 4564 /* ARGSUSED */ 4565 static int 4566 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4567 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4568 caller_context_t *ct) 4569 { 4570 uint64_t pages = btopr(len); 4571 4572 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4573 return (0); 4574 } 4575 4576 /* 4577 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4578 * more accurate mtime for the associated file. Since we don't have a way of 4579 * detecting when the data was actually modified, we have to resort to 4580 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4581 * last page is pushed. The problem occurs when the msync() call is omitted, 4582 * which by far the most common case: 4583 * 4584 * open() 4585 * mmap() 4586 * <modify memory> 4587 * munmap() 4588 * close() 4589 * <time lapse> 4590 * putpage() via fsflush 4591 * 4592 * If we wait until fsflush to come along, we can have a modification time that 4593 * is some arbitrary point in the future. In order to prevent this in the 4594 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4595 * torn down. 4596 */ 4597 /* ARGSUSED */ 4598 static int 4599 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4600 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4601 caller_context_t *ct) 4602 { 4603 uint64_t pages = btopr(len); 4604 4605 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4606 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4607 4608 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4609 vn_has_cached_data(vp)) 4610 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4611 4612 return (0); 4613 } 4614 4615 /* 4616 * Free or allocate space in a file. Currently, this function only 4617 * supports the `F_FREESP' command. However, this command is somewhat 4618 * misnamed, as its functionality includes the ability to allocate as 4619 * well as free space. 4620 * 4621 * IN: vp - vnode of file to free data in. 4622 * cmd - action to take (only F_FREESP supported). 4623 * bfp - section of file to free/alloc. 4624 * flag - current file open mode flags. 4625 * offset - current file offset. 4626 * cr - credentials of caller [UNUSED]. 4627 * ct - caller context. 4628 * 4629 * RETURN: 0 if success 4630 * error code if failure 4631 * 4632 * Timestamps: 4633 * vp - ctime|mtime updated 4634 */ 4635 /* ARGSUSED */ 4636 static int 4637 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4638 offset_t offset, cred_t *cr, caller_context_t *ct) 4639 { 4640 znode_t *zp = VTOZ(vp); 4641 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4642 uint64_t off, len; 4643 int error; 4644 4645 ZFS_ENTER(zfsvfs); 4646 ZFS_VERIFY_ZP(zp); 4647 4648 if (cmd != F_FREESP) { 4649 ZFS_EXIT(zfsvfs); 4650 return (EINVAL); 4651 } 4652 4653 if (error = convoff(vp, bfp, 0, offset)) { 4654 ZFS_EXIT(zfsvfs); 4655 return (error); 4656 } 4657 4658 if (bfp->l_len < 0) { 4659 ZFS_EXIT(zfsvfs); 4660 return (EINVAL); 4661 } 4662 4663 off = bfp->l_start; 4664 len = bfp->l_len; /* 0 means from off to end of file */ 4665 4666 error = zfs_freesp(zp, off, len, flag, TRUE); 4667 4668 ZFS_EXIT(zfsvfs); 4669 return (error); 4670 } 4671 4672 /*ARGSUSED*/ 4673 static int 4674 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4675 { 4676 znode_t *zp = VTOZ(vp); 4677 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4678 uint32_t gen; 4679 uint64_t gen64; 4680 uint64_t object = zp->z_id; 4681 zfid_short_t *zfid; 4682 int size, i, error; 4683 4684 ZFS_ENTER(zfsvfs); 4685 ZFS_VERIFY_ZP(zp); 4686 4687 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4688 &gen64, sizeof (uint64_t))) != 0) { 4689 ZFS_EXIT(zfsvfs); 4690 return (error); 4691 } 4692 4693 gen = (uint32_t)gen64; 4694 4695 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4696 if (fidp->fid_len < size) { 4697 fidp->fid_len = size; 4698 ZFS_EXIT(zfsvfs); 4699 return (ENOSPC); 4700 } 4701 4702 zfid = (zfid_short_t *)fidp; 4703 4704 zfid->zf_len = size; 4705 4706 for (i = 0; i < sizeof (zfid->zf_object); i++) 4707 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4708 4709 /* Must have a non-zero generation number to distinguish from .zfs */ 4710 if (gen == 0) 4711 gen = 1; 4712 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4713 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4714 4715 if (size == LONG_FID_LEN) { 4716 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4717 zfid_long_t *zlfid; 4718 4719 zlfid = (zfid_long_t *)fidp; 4720 4721 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4722 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4723 4724 /* XXX - this should be the generation number for the objset */ 4725 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4726 zlfid->zf_setgen[i] = 0; 4727 } 4728 4729 ZFS_EXIT(zfsvfs); 4730 return (0); 4731 } 4732 4733 static int 4734 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4735 caller_context_t *ct) 4736 { 4737 znode_t *zp, *xzp; 4738 zfsvfs_t *zfsvfs; 4739 zfs_dirlock_t *dl; 4740 int error; 4741 4742 switch (cmd) { 4743 case _PC_LINK_MAX: 4744 *valp = ULONG_MAX; 4745 return (0); 4746 4747 case _PC_FILESIZEBITS: 4748 *valp = 64; 4749 return (0); 4750 4751 case _PC_XATTR_EXISTS: 4752 zp = VTOZ(vp); 4753 zfsvfs = zp->z_zfsvfs; 4754 ZFS_ENTER(zfsvfs); 4755 ZFS_VERIFY_ZP(zp); 4756 *valp = 0; 4757 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4758 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4759 if (error == 0) { 4760 zfs_dirent_unlock(dl); 4761 if (!zfs_dirempty(xzp)) 4762 *valp = 1; 4763 VN_RELE(ZTOV(xzp)); 4764 } else if (error == ENOENT) { 4765 /* 4766 * If there aren't extended attributes, it's the 4767 * same as having zero of them. 4768 */ 4769 error = 0; 4770 } 4771 ZFS_EXIT(zfsvfs); 4772 return (error); 4773 4774 case _PC_SATTR_ENABLED: 4775 case _PC_SATTR_EXISTS: 4776 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4777 (vp->v_type == VREG || vp->v_type == VDIR); 4778 return (0); 4779 4780 case _PC_ACCESS_FILTERING: 4781 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4782 vp->v_type == VDIR; 4783 return (0); 4784 4785 case _PC_ACL_ENABLED: 4786 *valp = _ACL_ACE_ENABLED; 4787 return (0); 4788 4789 case _PC_MIN_HOLE_SIZE: 4790 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4791 return (0); 4792 4793 case _PC_TIMESTAMP_RESOLUTION: 4794 /* nanosecond timestamp resolution */ 4795 *valp = 1L; 4796 return (0); 4797 4798 default: 4799 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4800 } 4801 } 4802 4803 /*ARGSUSED*/ 4804 static int 4805 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4806 caller_context_t *ct) 4807 { 4808 znode_t *zp = VTOZ(vp); 4809 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4810 int error; 4811 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4812 4813 ZFS_ENTER(zfsvfs); 4814 ZFS_VERIFY_ZP(zp); 4815 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4816 ZFS_EXIT(zfsvfs); 4817 4818 return (error); 4819 } 4820 4821 /*ARGSUSED*/ 4822 static int 4823 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4824 caller_context_t *ct) 4825 { 4826 znode_t *zp = VTOZ(vp); 4827 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4828 int error; 4829 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4830 zilog_t *zilog = zfsvfs->z_log; 4831 4832 ZFS_ENTER(zfsvfs); 4833 ZFS_VERIFY_ZP(zp); 4834 4835 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4836 4837 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4838 zil_commit(zilog, UINT64_MAX, 0); 4839 4840 ZFS_EXIT(zfsvfs); 4841 return (error); 4842 } 4843 4844 /* 4845 * Tunable, both must be a power of 2. 4846 * 4847 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf 4848 * zcr_blksz_max: if set to less than the file block size, allow loaning out of 4849 * an arcbuf for a partial block read 4850 */ 4851 int zcr_blksz_min = (1 << 10); /* 1K */ 4852 int zcr_blksz_max = (1 << 17); /* 128K */ 4853 4854 /*ARGSUSED*/ 4855 static int 4856 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 4857 caller_context_t *ct) 4858 { 4859 znode_t *zp = VTOZ(vp); 4860 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4861 int max_blksz = zfsvfs->z_max_blksz; 4862 uio_t *uio = &xuio->xu_uio; 4863 ssize_t size = uio->uio_resid; 4864 offset_t offset = uio->uio_loffset; 4865 int blksz; 4866 int fullblk, i; 4867 arc_buf_t *abuf; 4868 ssize_t maxsize; 4869 int preamble, postamble; 4870 4871 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 4872 return (EINVAL); 4873 4874 ZFS_ENTER(zfsvfs); 4875 ZFS_VERIFY_ZP(zp); 4876 switch (ioflag) { 4877 case UIO_WRITE: 4878 /* 4879 * Loan out an arc_buf for write if write size is bigger than 4880 * max_blksz, and the file's block size is also max_blksz. 4881 */ 4882 blksz = max_blksz; 4883 if (size < blksz || zp->z_blksz != blksz) { 4884 ZFS_EXIT(zfsvfs); 4885 return (EINVAL); 4886 } 4887 /* 4888 * Caller requests buffers for write before knowing where the 4889 * write offset might be (e.g. NFS TCP write). 4890 */ 4891 if (offset == -1) { 4892 preamble = 0; 4893 } else { 4894 preamble = P2PHASE(offset, blksz); 4895 if (preamble) { 4896 preamble = blksz - preamble; 4897 size -= preamble; 4898 } 4899 } 4900 4901 postamble = P2PHASE(size, blksz); 4902 size -= postamble; 4903 4904 fullblk = size / blksz; 4905 (void) dmu_xuio_init(xuio, 4906 (preamble != 0) + fullblk + (postamble != 0)); 4907 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 4908 int, postamble, int, 4909 (preamble != 0) + fullblk + (postamble != 0)); 4910 4911 /* 4912 * Have to fix iov base/len for partial buffers. They 4913 * currently represent full arc_buf's. 4914 */ 4915 if (preamble) { 4916 /* data begins in the middle of the arc_buf */ 4917 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4918 blksz); 4919 ASSERT(abuf); 4920 (void) dmu_xuio_add(xuio, abuf, 4921 blksz - preamble, preamble); 4922 } 4923 4924 for (i = 0; i < fullblk; i++) { 4925 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4926 blksz); 4927 ASSERT(abuf); 4928 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 4929 } 4930 4931 if (postamble) { 4932 /* data ends in the middle of the arc_buf */ 4933 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4934 blksz); 4935 ASSERT(abuf); 4936 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 4937 } 4938 break; 4939 case UIO_READ: 4940 /* 4941 * Loan out an arc_buf for read if the read size is larger than 4942 * the current file block size. Block alignment is not 4943 * considered. Partial arc_buf will be loaned out for read. 4944 */ 4945 blksz = zp->z_blksz; 4946 if (blksz < zcr_blksz_min) 4947 blksz = zcr_blksz_min; 4948 if (blksz > zcr_blksz_max) 4949 blksz = zcr_blksz_max; 4950 /* avoid potential complexity of dealing with it */ 4951 if (blksz > max_blksz) { 4952 ZFS_EXIT(zfsvfs); 4953 return (EINVAL); 4954 } 4955 4956 maxsize = zp->z_size - uio->uio_loffset; 4957 if (size > maxsize) 4958 size = maxsize; 4959 4960 if (size < blksz || vn_has_cached_data(vp)) { 4961 ZFS_EXIT(zfsvfs); 4962 return (EINVAL); 4963 } 4964 break; 4965 default: 4966 ZFS_EXIT(zfsvfs); 4967 return (EINVAL); 4968 } 4969 4970 uio->uio_extflg = UIO_XUIO; 4971 XUIO_XUZC_RW(xuio) = ioflag; 4972 ZFS_EXIT(zfsvfs); 4973 return (0); 4974 } 4975 4976 /*ARGSUSED*/ 4977 static int 4978 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 4979 { 4980 int i; 4981 arc_buf_t *abuf; 4982 int ioflag = XUIO_XUZC_RW(xuio); 4983 4984 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 4985 4986 i = dmu_xuio_cnt(xuio); 4987 while (i-- > 0) { 4988 abuf = dmu_xuio_arcbuf(xuio, i); 4989 /* 4990 * if abuf == NULL, it must be a write buffer 4991 * that has been returned in zfs_write(). 4992 */ 4993 if (abuf) 4994 dmu_return_arcbuf(abuf); 4995 ASSERT(abuf || ioflag == UIO_WRITE); 4996 } 4997 4998 dmu_xuio_fini(xuio); 4999 return (0); 5000 } 5001 5002 /* 5003 * Predeclare these here so that the compiler assumes that 5004 * this is an "old style" function declaration that does 5005 * not include arguments => we won't get type mismatch errors 5006 * in the initializations that follow. 5007 */ 5008 static int zfs_inval(); 5009 static int zfs_isdir(); 5010 5011 static int 5012 zfs_inval() 5013 { 5014 return (EINVAL); 5015 } 5016 5017 static int 5018 zfs_isdir() 5019 { 5020 return (EISDIR); 5021 } 5022 /* 5023 * Directory vnode operations template 5024 */ 5025 vnodeops_t *zfs_dvnodeops; 5026 const fs_operation_def_t zfs_dvnodeops_template[] = { 5027 VOPNAME_OPEN, { .vop_open = zfs_open }, 5028 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5029 VOPNAME_READ, { .error = zfs_isdir }, 5030 VOPNAME_WRITE, { .error = zfs_isdir }, 5031 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5032 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5033 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5034 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5035 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5036 VOPNAME_CREATE, { .vop_create = zfs_create }, 5037 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5038 VOPNAME_LINK, { .vop_link = zfs_link }, 5039 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5040 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5041 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5042 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5043 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5044 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5045 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5046 VOPNAME_FID, { .vop_fid = zfs_fid }, 5047 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5048 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5049 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5050 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5051 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5052 NULL, NULL 5053 }; 5054 5055 /* 5056 * Regular file vnode operations template 5057 */ 5058 vnodeops_t *zfs_fvnodeops; 5059 const fs_operation_def_t zfs_fvnodeops_template[] = { 5060 VOPNAME_OPEN, { .vop_open = zfs_open }, 5061 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5062 VOPNAME_READ, { .vop_read = zfs_read }, 5063 VOPNAME_WRITE, { .vop_write = zfs_write }, 5064 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5065 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5066 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5067 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5068 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5069 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5070 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5071 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5072 VOPNAME_FID, { .vop_fid = zfs_fid }, 5073 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5074 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5075 VOPNAME_SPACE, { .vop_space = zfs_space }, 5076 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5077 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5078 VOPNAME_MAP, { .vop_map = zfs_map }, 5079 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5080 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5081 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5082 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5083 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5084 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5085 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5086 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5087 NULL, NULL 5088 }; 5089 5090 /* 5091 * Symbolic link vnode operations template 5092 */ 5093 vnodeops_t *zfs_symvnodeops; 5094 const fs_operation_def_t zfs_symvnodeops_template[] = { 5095 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5096 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5097 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5098 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5099 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5100 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5101 VOPNAME_FID, { .vop_fid = zfs_fid }, 5102 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5103 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5104 NULL, NULL 5105 }; 5106 5107 /* 5108 * special share hidden files vnode operations template 5109 */ 5110 vnodeops_t *zfs_sharevnodeops; 5111 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5112 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5113 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5114 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5115 VOPNAME_FID, { .vop_fid = zfs_fid }, 5116 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5117 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5118 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5119 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5120 NULL, NULL 5121 }; 5122 5123 /* 5124 * Extended attribute directory vnode operations template 5125 * This template is identical to the directory vnodes 5126 * operation template except for restricted operations: 5127 * VOP_MKDIR() 5128 * VOP_SYMLINK() 5129 * Note that there are other restrictions embedded in: 5130 * zfs_create() - restrict type to VREG 5131 * zfs_link() - no links into/out of attribute space 5132 * zfs_rename() - no moves into/out of attribute space 5133 */ 5134 vnodeops_t *zfs_xdvnodeops; 5135 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5136 VOPNAME_OPEN, { .vop_open = zfs_open }, 5137 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5138 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5139 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5140 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5141 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5142 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5143 VOPNAME_CREATE, { .vop_create = zfs_create }, 5144 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5145 VOPNAME_LINK, { .vop_link = zfs_link }, 5146 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5147 VOPNAME_MKDIR, { .error = zfs_inval }, 5148 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5149 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5150 VOPNAME_SYMLINK, { .error = zfs_inval }, 5151 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5152 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5153 VOPNAME_FID, { .vop_fid = zfs_fid }, 5154 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5155 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5156 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5157 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5158 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5159 NULL, NULL 5160 }; 5161 5162 /* 5163 * Error vnode operations template 5164 */ 5165 vnodeops_t *zfs_evnodeops; 5166 const fs_operation_def_t zfs_evnodeops_template[] = { 5167 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5168 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5169 NULL, NULL 5170 }; 5171