xref: /titanic_51/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision 587bcfd8cd125a4c0708a7e4d939d7ea6746e388)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/resource.h>
35 #include <sys/vfs.h>
36 #include <sys/vnode.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/kmem.h>
40 #include <sys/taskq.h>
41 #include <sys/uio.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <vm/seg_vn.h>
45 #include <vm/pvn.h>
46 #include <vm/as.h>
47 #include <sys/mman.h>
48 #include <sys/pathname.h>
49 #include <sys/cmn_err.h>
50 #include <sys/errno.h>
51 #include <sys/unistd.h>
52 #include <sys/zfs_vfsops.h>
53 #include <sys/zfs_dir.h>
54 #include <sys/zfs_acl.h>
55 #include <sys/zfs_ioctl.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/dmu.h>
58 #include <sys/spa.h>
59 #include <sys/txg.h>
60 #include <sys/refcount.h>  /* temporary for debugging purposes */
61 #include <sys/dbuf.h>
62 #include <sys/zap.h>
63 #include <sys/dirent.h>
64 #include <sys/policy.h>
65 #include <sys/sunddi.h>
66 #include <sys/filio.h>
67 #include "fs/fs_subr.h"
68 #include <sys/zfs_ctldir.h>
69 
70 /*
71  * Programming rules.
72  *
73  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
74  * properly lock its in-core state, create a DMU transaction, do the work,
75  * record this work in the intent log (ZIL), commit the DMU transaction,
76  * and wait the the intent log to commit if it's is a synchronous operation.
77  * Morover, the vnode ops must work in both normal and log replay context.
78  * The ordering of events is important to avoid deadlocks and references
79  * to freed memory.  The example below illustrates the following Big Rules:
80  *
81  *  (1) A check must be made in each zfs thread for a mounted file system.
82  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
83  *	A ZFS_EXIT(zfsvfs) is needed before all returns.
84  *
85  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
86  *	and ZFS_EXIT(). This is for 3 reasons:
87  *	First, if it's the last reference, the vnode/znode
88  *	can be freed, so the zp may point to freed memory.  Second, the last
89  *	reference will call zfs_zinactive(), which may induce a lot of work --
90  *	pushing cached pages (which requires z_grow_lock) and syncing out
91  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
92  *	which could deadlock the system if you were already holding one.
93  *
94  *  (3)	Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign().
95  *	In normal operation, this will be TXG_NOWAIT.  During ZIL replay,
96  *	it will be a specific txg.  Either way, dmu_tx_assign() never blocks.
97  *	This is critical because we don't want to block while holding locks.
98  *	Note, in particular, that if a lock is sometimes acquired before
99  *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
100  *	use a non-blocking assign can deadlock the system.  The scenario:
101  *
102  *	Thread A has grabbed a lock before calling dmu_tx_assign().
103  *	Thread B is in an already-assigned tx, and blocks for this lock.
104  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
105  *	forever, because the previous txg can't quiesce until B's tx commits.
106  *
107  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
108  *	then drop all locks, call txg_wait_open(), and try again.
109  *
110  *  (4)	If the operation succeeded, generate the intent log entry for it
111  *	before dropping locks.  This ensures that the ordering of events
112  *	in the intent log matches the order in which they actually occurred.
113  *
114  *  (5)	At the end of each vnode op, the DMU tx must always commit,
115  *	regardless of whether there were any errors.
116  *
117  *  (6)	After dropping all locks, invoke zil_commit(zilog, seq, ioflag)
118  *	to ensure that synchronous semantics are provided when necessary.
119  *
120  * In general, this is how things should be ordered in each vnode op:
121  *
122  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
123  * top:
124  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
125  *	rw_enter(...);			// grab any other locks you need
126  *	tx = dmu_tx_create(...);	// get DMU tx
127  *	dmu_tx_hold_*();		// hold each object you might modify
128  *	error = dmu_tx_assign(tx, zfsvfs->z_assign);	// try to assign
129  *	if (error) {
130  *		dmu_tx_abort(tx);	// abort DMU tx
131  *		rw_exit(...);		// drop locks
132  *		zfs_dirent_unlock(dl);	// unlock directory entry
133  *		VN_RELE(...);		// release held vnodes
134  *		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
135  *			txg_wait_open(dmu_objset_pool(os), 0);
136  *			goto top;
137  *		}
138  *		ZFS_EXIT(zfsvfs);	// finished in zfs
139  *		return (error);		// really out of space
140  *	}
141  *	error = do_real_work();		// do whatever this VOP does
142  *	if (error == 0)
143  *		seq = zfs_log_*(...);	// on success, make ZIL entry
144  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
145  *	rw_exit(...);			// drop locks
146  *	zfs_dirent_unlock(dl);		// unlock directory entry
147  *	VN_RELE(...);			// release held vnodes
148  *	zil_commit(zilog, seq, ioflag);	// synchronous when necessary
149  *	ZFS_EXIT(zfsvfs);		// finished in zfs
150  *	return (error);			// done, report error
151  */
152 
153 /* ARGSUSED */
154 static int
155 zfs_open(vnode_t **vpp, int flag, cred_t *cr)
156 {
157 	return (0);
158 }
159 
160 /* ARGSUSED */
161 static int
162 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr)
163 {
164 	/*
165 	 * Clean up any locks held by this process on the vp.
166 	 */
167 	cleanlocks(vp, ddi_get_pid(), 0);
168 	cleanshares(vp, ddi_get_pid());
169 
170 	return (0);
171 }
172 
173 /*
174  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
175  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
176  */
177 static int
178 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
179 {
180 	znode_t	*zp = VTOZ(vp);
181 	uint64_t noff = (uint64_t)*off; /* new offset */
182 	uint64_t file_sz;
183 	int error;
184 	boolean_t hole;
185 
186 	rw_enter(&zp->z_grow_lock, RW_READER);
187 	file_sz = zp->z_phys->zp_size;
188 	if (noff >= file_sz)  {
189 		rw_exit(&zp->z_grow_lock);
190 		return (ENXIO);
191 	}
192 
193 	if (cmd == _FIO_SEEK_HOLE)
194 		hole = B_TRUE;
195 	else
196 		hole = B_FALSE;
197 
198 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
199 	rw_exit(&zp->z_grow_lock);
200 
201 	/* end of file? */
202 	if ((error == ESRCH) || (noff > file_sz)) {
203 		/*
204 		 * Handle the virtual hole at the end of file.
205 		 */
206 		if (hole) {
207 			*off = file_sz;
208 			return (0);
209 		}
210 		return (ENXIO);
211 	}
212 
213 	if (noff < *off)
214 		return (error);
215 	*off = noff;
216 	return (error);
217 }
218 
219 /* ARGSUSED */
220 static int
221 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
222     int *rvalp)
223 {
224 	offset_t off;
225 	int error;
226 	zfsvfs_t *zfsvfs;
227 
228 	switch (com) {
229 	    case _FIOFFS:
230 		return (zfs_sync(vp->v_vfsp, 0, cred));
231 
232 	    case _FIO_SEEK_DATA:
233 	    case _FIO_SEEK_HOLE:
234 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
235 			return (EFAULT);
236 
237 		zfsvfs = VTOZ(vp)->z_zfsvfs;
238 		ZFS_ENTER(zfsvfs);
239 
240 		/* offset parameter is in/out */
241 		error = zfs_holey(vp, com, &off);
242 		ZFS_EXIT(zfsvfs);
243 		if (error)
244 			return (error);
245 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
246 			return (EFAULT);
247 		return (0);
248 	}
249 	return (ENOTTY);
250 }
251 
252 /*
253  * When a file is memory mapped, we must keep the IO data synchronized
254  * between the DMU cache and the memory mapped pages.  What this means:
255  *
256  * On Write:	If we find a memory mapped page, we write to *both*
257  *		the page and the dmu buffer.
258  *
259  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
260  *	the file is memory mapped.
261  */
262 static int
263 mappedwrite(vnode_t *vp, uint64_t woff, int nbytes, uio_t *uio, dmu_tx_t *tx)
264 {
265 	znode_t	*zp = VTOZ(vp);
266 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
267 	int64_t	start, off;
268 	int len = nbytes;
269 	int error = 0;
270 
271 	start = uio->uio_loffset;
272 	off = start & PAGEOFFSET;
273 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
274 		page_t *pp;
275 		uint64_t bytes = MIN(PAGESIZE - off, len);
276 
277 		/*
278 		 * We don't want a new page to "appear" in the middle of
279 		 * the file update (because it may not get the write
280 		 * update data), so we grab a lock to block
281 		 * zfs_getpage().
282 		 */
283 		rw_enter(&zp->z_map_lock, RW_WRITER);
284 		if (pp = page_lookup(vp, start, SE_SHARED)) {
285 			caddr_t va;
286 
287 			rw_exit(&zp->z_map_lock);
288 			va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L);
289 			error = uiomove(va+off, bytes, UIO_WRITE, uio);
290 			if (error == 0) {
291 				dmu_write(zfsvfs->z_os, zp->z_id,
292 				    woff, bytes, va+off, tx);
293 			}
294 			ppmapout(va);
295 			page_unlock(pp);
296 		} else {
297 			error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
298 			    woff, bytes, uio, tx);
299 			rw_exit(&zp->z_map_lock);
300 		}
301 		len -= bytes;
302 		woff += bytes;
303 		off = 0;
304 		if (error)
305 			break;
306 	}
307 	return (error);
308 }
309 
310 /*
311  * When a file is memory mapped, we must keep the IO data synchronized
312  * between the DMU cache and the memory mapped pages.  What this means:
313  *
314  * On Read:	We "read" preferentially from memory mapped pages,
315  *		else we default from the dmu buffer.
316  *
317  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
318  *	the file is memory mapped.
319  */
320 static int
321 mappedread(vnode_t *vp, char *addr, int nbytes, uio_t *uio)
322 {
323 	int64_t	start, off, bytes;
324 	int len = nbytes;
325 	int error = 0;
326 
327 	start = uio->uio_loffset;
328 	off = start & PAGEOFFSET;
329 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
330 		page_t *pp;
331 
332 		bytes = MIN(PAGESIZE - off, len);
333 		if (pp = page_lookup(vp, start, SE_SHARED)) {
334 			caddr_t va;
335 
336 			va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L);
337 			error = uiomove(va + off, bytes, UIO_READ, uio);
338 			ppmapout(va);
339 			page_unlock(pp);
340 		} else {
341 			/* XXX use dmu_read here? */
342 			error = uiomove(addr, bytes, UIO_READ, uio);
343 		}
344 		len -= bytes;
345 		addr += bytes;
346 		off = 0;
347 		if (error)
348 			break;
349 	}
350 	return (error);
351 }
352 
353 uint_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
354 
355 /*
356  * Read bytes from specified file into supplied buffer.
357  *
358  *	IN:	vp	- vnode of file to be read from.
359  *		uio	- structure supplying read location, range info,
360  *			  and return buffer.
361  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
362  *		cr	- credentials of caller.
363  *
364  *	OUT:	uio	- updated offset and range, buffer filled.
365  *
366  *	RETURN:	0 if success
367  *		error code if failure
368  *
369  * Side Effects:
370  *	vp - atime updated if byte count > 0
371  */
372 /* ARGSUSED */
373 static int
374 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
375 {
376 	znode_t		*zp = VTOZ(vp);
377 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
378 	uint64_t	delta;
379 	ssize_t		n, size, cnt, ndone;
380 	int		error, i, numbufs;
381 	dmu_buf_t	*dbp, **dbpp;
382 
383 	ZFS_ENTER(zfsvfs);
384 
385 	/*
386 	 * Validate file offset
387 	 */
388 	if (uio->uio_loffset < (offset_t)0) {
389 		ZFS_EXIT(zfsvfs);
390 		return (EINVAL);
391 	}
392 
393 	/*
394 	 * Fasttrack empty reads
395 	 */
396 	if (uio->uio_resid == 0) {
397 		ZFS_EXIT(zfsvfs);
398 		return (0);
399 	}
400 
401 	/*
402 	 * Check for region locks
403 	 */
404 	if (MANDMODE((mode_t)zp->z_phys->zp_mode)) {
405 		if (error = chklock(vp, FREAD,
406 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
407 			ZFS_EXIT(zfsvfs);
408 			return (error);
409 		}
410 	}
411 
412 	/*
413 	 * If we're in FRSYNC mode, sync out this znode before reading it.
414 	 */
415 	zil_commit(zfsvfs->z_log, zp->z_last_itx, ioflag & FRSYNC);
416 
417 	/*
418 	 * Make sure nobody restructures the file (changes block size)
419 	 * in the middle of the read.
420 	 */
421 	rw_enter(&zp->z_grow_lock, RW_READER);
422 	/*
423 	 * If we are reading past end-of-file we can skip
424 	 * to the end; but we might still need to set atime.
425 	 */
426 	if (uio->uio_loffset >= zp->z_phys->zp_size) {
427 		cnt = 0;
428 		error = 0;
429 		goto out;
430 	}
431 
432 	cnt = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset);
433 
434 	for (ndone = 0; ndone < cnt; ndone += zfs_read_chunk_size) {
435 		ASSERT(uio->uio_loffset < zp->z_phys->zp_size);
436 		n = MIN(zfs_read_chunk_size,
437 		    zp->z_phys->zp_size - uio->uio_loffset);
438 		n = MIN(n, cnt);
439 		dbpp = dmu_buf_hold_array(zfsvfs->z_os, zp->z_id,
440 		    uio->uio_loffset, n, &numbufs);
441 		if (error = dmu_buf_read_array_canfail(dbpp, numbufs)) {
442 			dmu_buf_rele_array(dbpp, numbufs);
443 			goto out;
444 		}
445 		/*
446 		 * Compute the adjustment to align the dmu buffers
447 		 * with the uio buffer.
448 		 */
449 		delta = uio->uio_loffset - dbpp[0]->db_offset;
450 
451 		for (i = 0; i < numbufs; i++) {
452 			if (n < 0)
453 				break;
454 			dbp = dbpp[i];
455 			size = dbp->db_size - delta;
456 			/*
457 			 * XXX -- this is correct, but may be suboptimal.
458 			 * If the pages are all clean, we don't need to
459 			 * go through mappedread().  Maybe the VMODSORT
460 			 * stuff can help us here.
461 			 */
462 			if (vn_has_cached_data(vp)) {
463 				error = mappedread(vp, (caddr_t)dbp->db_data +
464 				    delta, (n < size ? n : size), uio);
465 			} else {
466 				error = uiomove((caddr_t)dbp->db_data + delta,
467 					(n < size ? n : size), UIO_READ, uio);
468 			}
469 			if (error) {
470 				dmu_buf_rele_array(dbpp, numbufs);
471 				goto out;
472 			}
473 			n -= dbp->db_size;
474 			if (delta) {
475 				n += delta;
476 				delta = 0;
477 			}
478 		}
479 		dmu_buf_rele_array(dbpp, numbufs);
480 	}
481 out:
482 	rw_exit(&zp->z_grow_lock);
483 
484 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
485 	ZFS_EXIT(zfsvfs);
486 	return (error);
487 }
488 
489 /*
490  * Fault in the pages of the first n bytes specified by the uio structure.
491  * 1 byte in each page is touched and the uio struct is unmodified.
492  * Any error will exit this routine as this is only a best
493  * attempt to get the pages resident. This is a copy of ufs_trans_touch().
494  */
495 static void
496 zfs_prefault_write(ssize_t n, struct uio *uio)
497 {
498 	struct iovec *iov;
499 	ulong_t cnt, incr;
500 	caddr_t p;
501 	uint8_t tmp;
502 
503 	iov = uio->uio_iov;
504 
505 	while (n) {
506 		cnt = MIN(iov->iov_len, n);
507 		if (cnt == 0) {
508 			/* empty iov entry */
509 			iov++;
510 			continue;
511 		}
512 		n -= cnt;
513 		/*
514 		 * touch each page in this segment.
515 		 */
516 		p = iov->iov_base;
517 		while (cnt) {
518 			switch (uio->uio_segflg) {
519 			case UIO_USERSPACE:
520 			case UIO_USERISPACE:
521 				if (fuword8(p, &tmp))
522 					return;
523 				break;
524 			case UIO_SYSSPACE:
525 				if (kcopy(p, &tmp, 1))
526 					return;
527 				break;
528 			}
529 			incr = MIN(cnt, PAGESIZE);
530 			p += incr;
531 			cnt -= incr;
532 		}
533 		/*
534 		 * touch the last byte in case it straddles a page.
535 		 */
536 		p--;
537 		switch (uio->uio_segflg) {
538 		case UIO_USERSPACE:
539 		case UIO_USERISPACE:
540 			if (fuword8(p, &tmp))
541 				return;
542 			break;
543 		case UIO_SYSSPACE:
544 			if (kcopy(p, &tmp, 1))
545 				return;
546 			break;
547 		}
548 		iov++;
549 	}
550 }
551 
552 /*
553  * Write the bytes to a file.
554  *
555  *	IN:	vp	- vnode of file to be written to.
556  *		uio	- structure supplying write location, range info,
557  *			  and data buffer.
558  *		ioflag	- FAPPEND flag set if in append mode.
559  *		cr	- credentials of caller.
560  *
561  *	OUT:	uio	- updated offset and range.
562  *
563  *	RETURN:	0 if success
564  *		error code if failure
565  *
566  * Timestamps:
567  *	vp - ctime|mtime updated if byte count > 0
568  *
569  * Note: zfs_write() holds z_append_lock across calls to txg_wait_open().
570  * It has to because of the semantics of FAPPEND.  The implication is that
571  * we must never grab z_append_lock while in an assigned tx.
572  */
573 /* ARGSUSED */
574 static int
575 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
576 {
577 	znode_t		*zp = VTOZ(vp);
578 	rlim64_t	limit = uio->uio_llimit;
579 	ssize_t		start_resid = uio->uio_resid;
580 	ssize_t		tx_bytes;
581 	uint64_t	end_size;
582 	dmu_tx_t	*tx;
583 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
584 	zilog_t		*zilog = zfsvfs->z_log;
585 	uint64_t	seq = 0;
586 	offset_t	woff;
587 	ssize_t		n, nbytes;
588 	int		max_blksz = zfsvfs->z_max_blksz;
589 	int		need_append_lock, error;
590 	krw_t		grow_rw = RW_READER;
591 
592 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
593 		limit = MAXOFFSET_T;
594 
595 	n = start_resid;
596 
597 	/*
598 	 * Fasttrack empty write
599 	 */
600 	if (n == 0)
601 		return (0);
602 
603 	ZFS_ENTER(zfsvfs);
604 
605 	/*
606 	 * Pre-fault the pages to ensure slow (eg NFS) pages don't hold up txg
607 	 */
608 	zfs_prefault_write(MIN(start_resid, SPA_MAXBLOCKSIZE), uio);
609 
610 	/*
611 	 * If in append mode, set the io offset pointer to eof.
612 	 */
613 	need_append_lock = ioflag & FAPPEND;
614 	if (need_append_lock) {
615 		rw_enter(&zp->z_append_lock, RW_WRITER);
616 		woff = uio->uio_loffset = zp->z_phys->zp_size;
617 	} else {
618 		woff = uio->uio_loffset;
619 		/*
620 		 * Validate file offset
621 		 */
622 		if (woff < 0) {
623 			ZFS_EXIT(zfsvfs);
624 			return (EINVAL);
625 		}
626 
627 		/*
628 		 * If this write could change the file length,
629 		 * we need to synchronize with "appenders".
630 		 */
631 		if (woff < limit - n && woff + n > zp->z_phys->zp_size) {
632 			need_append_lock = TRUE;
633 			rw_enter(&zp->z_append_lock, RW_READER);
634 		}
635 	}
636 
637 	if (woff >= limit) {
638 		error = EFBIG;
639 		goto no_tx_done;
640 	}
641 
642 	if ((woff + n) > limit || woff > (limit - n))
643 		n = limit - woff;
644 
645 	/*
646 	 * Check for region locks
647 	 */
648 	if (MANDMODE((mode_t)zp->z_phys->zp_mode) &&
649 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0)
650 		goto no_tx_done;
651 top:
652 	/*
653 	 * Make sure nobody restructures the file (changes block size)
654 	 * in the middle of the write.
655 	 */
656 	rw_enter(&zp->z_grow_lock, grow_rw);
657 
658 	end_size = MAX(zp->z_phys->zp_size, woff + n);
659 	tx = dmu_tx_create(zfsvfs->z_os);
660 	dmu_tx_hold_bonus(tx, zp->z_id);
661 	dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
662 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
663 	if (error) {
664 		dmu_tx_abort(tx);
665 		rw_exit(&zp->z_grow_lock);
666 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
667 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
668 			goto top;
669 		}
670 		goto no_tx_done;
671 	}
672 
673 	if (end_size > zp->z_blksz &&
674 	    (!ISP2(zp->z_blksz) || zp->z_blksz < max_blksz)) {
675 		uint64_t new_blksz;
676 		/*
677 		 * This write will increase the file size beyond
678 		 * the current block size so increase the block size.
679 		 */
680 		if (grow_rw == RW_READER && !rw_tryupgrade(&zp->z_grow_lock)) {
681 			dmu_tx_commit(tx);
682 			rw_exit(&zp->z_grow_lock);
683 			grow_rw = RW_WRITER;
684 			goto top;
685 		}
686 		if (zp->z_blksz > max_blksz) {
687 			ASSERT(!ISP2(zp->z_blksz));
688 			new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
689 		} else {
690 			new_blksz = MIN(end_size, max_blksz);
691 		}
692 		error = zfs_grow_blocksize(zp, new_blksz, tx);
693 		if (error) {
694 			tx_bytes = 0;
695 			goto tx_done;
696 		}
697 	}
698 
699 	if (grow_rw == RW_WRITER) {
700 		rw_downgrade(&zp->z_grow_lock);
701 		grow_rw = RW_READER;
702 	}
703 
704 	/*
705 	 * The file data does not fit in the znode "cache", so we
706 	 * will be writing to the file block data buffers.
707 	 * Each buffer will be written in a separate transaction;
708 	 * this keeps the intent log records small and allows us
709 	 * to do more fine-grained space accounting.
710 	 */
711 	while (n > 0) {
712 		/*
713 		 * XXX - should we really limit each write to z_max_blksz?
714 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
715 		 */
716 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
717 		rw_enter(&zp->z_map_lock, RW_READER);
718 
719 		tx_bytes = uio->uio_resid;
720 		if (vn_has_cached_data(vp)) {
721 			rw_exit(&zp->z_map_lock);
722 			error = mappedwrite(vp, woff, nbytes, uio, tx);
723 		} else {
724 			error = dmu_write_uio(zfsvfs->z_os, zp->z_id,
725 			    woff, nbytes, uio, tx);
726 			rw_exit(&zp->z_map_lock);
727 		}
728 		tx_bytes -= uio->uio_resid;
729 
730 		if (error) {
731 			/* XXX - do we need to "clean up" the dmu buffer? */
732 			break;
733 		}
734 
735 		ASSERT(tx_bytes == nbytes);
736 
737 		n -= nbytes;
738 		if (n <= 0)
739 			break;
740 
741 		/*
742 		 * We have more work ahead of us, so wrap up this transaction
743 		 * and start another.  Exact same logic as tx_done below.
744 		 */
745 		while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) {
746 			dmu_buf_will_dirty(zp->z_dbuf, tx);
747 			(void) atomic_cas_64(&zp->z_phys->zp_size, end_size,
748 			    uio->uio_loffset);
749 		}
750 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
751 		seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes,
752 		    ioflag, uio);
753 		dmu_tx_commit(tx);
754 
755 		/* Pre-fault the next set of pages */
756 		zfs_prefault_write(MIN(n, SPA_MAXBLOCKSIZE), uio);
757 
758 		/*
759 		 * Start another transaction.
760 		 */
761 		woff = uio->uio_loffset;
762 		tx = dmu_tx_create(zfsvfs->z_os);
763 		dmu_tx_hold_bonus(tx, zp->z_id);
764 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
765 		error = dmu_tx_assign(tx, zfsvfs->z_assign);
766 		if (error) {
767 			dmu_tx_abort(tx);
768 			rw_exit(&zp->z_grow_lock);
769 			if (error == ERESTART &&
770 			    zfsvfs->z_assign == TXG_NOWAIT) {
771 				txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
772 				goto top;
773 			}
774 			goto no_tx_done;
775 		}
776 	}
777 
778 tx_done:
779 
780 	if (tx_bytes != 0) {
781 		/*
782 		 * Update the file size if it has changed; account
783 		 * for possible concurrent updates.
784 		 */
785 		while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) {
786 			dmu_buf_will_dirty(zp->z_dbuf, tx);
787 			(void) atomic_cas_64(&zp->z_phys->zp_size, end_size,
788 			    uio->uio_loffset);
789 		}
790 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
791 		seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes,
792 		    ioflag, uio);
793 	}
794 	dmu_tx_commit(tx);
795 
796 	rw_exit(&zp->z_grow_lock);
797 
798 no_tx_done:
799 
800 	if (need_append_lock)
801 		rw_exit(&zp->z_append_lock);
802 
803 	/*
804 	 * If we're in replay mode, or we made no progress, return error.
805 	 * Otherwise, it's at least a partial write, so it's successful.
806 	 */
807 	if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) {
808 		ZFS_EXIT(zfsvfs);
809 		return (error);
810 	}
811 
812 	zil_commit(zilog, seq, ioflag & (FSYNC | FDSYNC));
813 
814 	ZFS_EXIT(zfsvfs);
815 	return (0);
816 }
817 
818 /*
819  * Get data to generate a TX_WRITE intent log record.
820  */
821 int
822 zfs_get_data(void *arg, lr_write_t *lr)
823 {
824 	zfsvfs_t *zfsvfs = arg;
825 	objset_t *os = zfsvfs->z_os;
826 	znode_t *zp;
827 	uint64_t off = lr->lr_offset;
828 	int dlen = lr->lr_length;  		/* length of user data */
829 	int reclen = lr->lr_common.lrc_reclen;
830 	int error = 0;
831 
832 	ASSERT(dlen != 0);
833 
834 	/*
835 	 * Nothing to do if the file has been removed or truncated.
836 	 */
837 	if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0)
838 		return (ENOENT);
839 	if (off >= zp->z_phys->zp_size || zp->z_reap) {
840 		VN_RELE(ZTOV(zp));
841 		return (ENOENT);
842 	}
843 
844 	/*
845 	 * Write records come in two flavors: immediate and indirect.
846 	 * For small writes it's cheaper to store the data with the
847 	 * log record (immediate); for large writes it's cheaper to
848 	 * sync the data and get a pointer to it (indirect) so that
849 	 * we don't have to write the data twice.
850 	 */
851 	if (sizeof (lr_write_t) + dlen <= reclen) { /* immediate write */
852 		rw_enter(&zp->z_grow_lock, RW_READER);
853 		dmu_buf_t *db = dmu_buf_hold(os, lr->lr_foid, off);
854 		dmu_buf_read(db);
855 		bcopy((char *)db->db_data + off - db->db_offset, lr + 1, dlen);
856 		dmu_buf_rele(db);
857 		rw_exit(&zp->z_grow_lock);
858 	} else {
859 		/*
860 		 * We have to grab z_grow_lock as RW_WRITER because
861 		 * dmu_sync() can't handle concurrent dbuf_dirty() (6313856).
862 		 * z_grow_lock will be replaced with a range lock soon,
863 		 * which will eliminate the concurrency hit, but dmu_sync()
864 		 * really needs more thought.  It shouldn't have to rely on
865 		 * the caller to provide MT safety.
866 		 */
867 		rw_enter(&zp->z_grow_lock, RW_WRITER);
868 		txg_suspend(dmu_objset_pool(os));
869 		error = dmu_sync(os, lr->lr_foid, off, &lr->lr_blkoff,
870 		    &lr->lr_blkptr, lr->lr_common.lrc_txg);
871 		txg_resume(dmu_objset_pool(os));
872 		rw_exit(&zp->z_grow_lock);
873 	}
874 	VN_RELE(ZTOV(zp));
875 	return (error);
876 }
877 
878 /*ARGSUSED*/
879 static int
880 zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr)
881 {
882 	znode_t *zp = VTOZ(vp);
883 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
884 	int error;
885 
886 	ZFS_ENTER(zfsvfs);
887 	error = zfs_zaccess_rwx(zp, mode, cr);
888 	ZFS_EXIT(zfsvfs);
889 	return (error);
890 }
891 
892 /*
893  * Lookup an entry in a directory, or an extended attribute directory.
894  * If it exists, return a held vnode reference for it.
895  *
896  *	IN:	dvp	- vnode of directory to search.
897  *		nm	- name of entry to lookup.
898  *		pnp	- full pathname to lookup [UNUSED].
899  *		flags	- LOOKUP_XATTR set if looking for an attribute.
900  *		rdir	- root directory vnode [UNUSED].
901  *		cr	- credentials of caller.
902  *
903  *	OUT:	vpp	- vnode of located entry, NULL if not found.
904  *
905  *	RETURN:	0 if success
906  *		error code if failure
907  *
908  * Timestamps:
909  *	NA
910  */
911 /* ARGSUSED */
912 static int
913 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
914     int flags, vnode_t *rdir, cred_t *cr)
915 {
916 
917 	znode_t *zdp = VTOZ(dvp);
918 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
919 	int	error;
920 
921 	ZFS_ENTER(zfsvfs);
922 
923 	*vpp = NULL;
924 
925 	if (flags & LOOKUP_XATTR) {
926 		/*
927 		 * We don't allow recursive attributes..
928 		 * Maybe someday we will.
929 		 */
930 		if (zdp->z_phys->zp_flags & ZFS_XATTR) {
931 			ZFS_EXIT(zfsvfs);
932 			return (EINVAL);
933 		}
934 
935 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr)) {
936 			ZFS_EXIT(zfsvfs);
937 			return (error);
938 		}
939 
940 		/*
941 		 * Do we have permission to get into attribute directory?
942 		 */
943 
944 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) {
945 			VN_RELE(*vpp);
946 		}
947 
948 		ZFS_EXIT(zfsvfs);
949 		return (error);
950 	}
951 
952 	/*
953 	 * Check accessibility of directory.
954 	 */
955 
956 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) {
957 		ZFS_EXIT(zfsvfs);
958 		return (error);
959 	}
960 
961 	if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) {
962 
963 		/*
964 		 * Convert device special files
965 		 */
966 		if (IS_DEVVP(*vpp)) {
967 			vnode_t	*svp;
968 
969 			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
970 			VN_RELE(*vpp);
971 			if (svp == NULL)
972 				error = ENOSYS;
973 			else
974 				*vpp = svp;
975 		}
976 	}
977 
978 	ZFS_EXIT(zfsvfs);
979 	return (error);
980 }
981 
982 /*
983  * Attempt to create a new entry in a directory.  If the entry
984  * already exists, truncate the file if permissible, else return
985  * an error.  Return the vp of the created or trunc'd file.
986  *
987  *	IN:	dvp	- vnode of directory to put new file entry in.
988  *		name	- name of new file entry.
989  *		vap	- attributes of new file.
990  *		excl	- flag indicating exclusive or non-exclusive mode.
991  *		mode	- mode to open file with.
992  *		cr	- credentials of caller.
993  *		flag	- large file flag [UNUSED].
994  *
995  *	OUT:	vpp	- vnode of created or trunc'd entry.
996  *
997  *	RETURN:	0 if success
998  *		error code if failure
999  *
1000  * Timestamps:
1001  *	dvp - ctime|mtime updated if new entry created
1002  *	 vp - ctime|mtime always, atime if new
1003  */
1004 /* ARGSUSED */
1005 static int
1006 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1007     int mode, vnode_t **vpp, cred_t *cr, int flag)
1008 {
1009 	znode_t		*zp, *dzp = VTOZ(dvp);
1010 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1011 	zilog_t		*zilog = zfsvfs->z_log;
1012 	uint64_t	seq = 0;
1013 	objset_t	*os = zfsvfs->z_os;
1014 	zfs_dirlock_t	*dl;
1015 	dmu_tx_t	*tx;
1016 	int		error;
1017 	uint64_t	zoid;
1018 
1019 	ZFS_ENTER(zfsvfs);
1020 
1021 top:
1022 	*vpp = NULL;
1023 
1024 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1025 		vap->va_mode &= ~VSVTX;
1026 
1027 	if (*name == '\0') {
1028 		/*
1029 		 * Null component name refers to the directory itself.
1030 		 */
1031 		VN_HOLD(dvp);
1032 		zp = dzp;
1033 		dl = NULL;
1034 		error = 0;
1035 	} else {
1036 		/* possible VN_HOLD(zp) */
1037 		if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) {
1038 			if (strcmp(name, "..") == 0)
1039 				error = EISDIR;
1040 			ZFS_EXIT(zfsvfs);
1041 			return (error);
1042 		}
1043 	}
1044 
1045 	zoid = zp ? zp->z_id : -1ULL;
1046 
1047 	if (zp == NULL) {
1048 		/*
1049 		 * Create a new file object and update the directory
1050 		 * to reference it.
1051 		 */
1052 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) {
1053 			goto out;
1054 		}
1055 
1056 		/*
1057 		 * We only support the creation of regular files in
1058 		 * extended attribute directories.
1059 		 */
1060 		if ((dzp->z_phys->zp_flags & ZFS_XATTR) &&
1061 		    (vap->va_type != VREG)) {
1062 			error = EINVAL;
1063 			goto out;
1064 		}
1065 
1066 		tx = dmu_tx_create(os);
1067 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1068 		dmu_tx_hold_bonus(tx, dzp->z_id);
1069 		dmu_tx_hold_zap(tx, dzp->z_id, 1);
1070 		if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
1071 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1072 			    0, SPA_MAXBLOCKSIZE);
1073 		error = dmu_tx_assign(tx, zfsvfs->z_assign);
1074 		if (error) {
1075 			dmu_tx_abort(tx);
1076 			zfs_dirent_unlock(dl);
1077 			if (error == ERESTART &&
1078 			    zfsvfs->z_assign == TXG_NOWAIT) {
1079 				txg_wait_open(dmu_objset_pool(os), 0);
1080 				goto top;
1081 			}
1082 			ZFS_EXIT(zfsvfs);
1083 			return (error);
1084 		}
1085 		zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0);
1086 		ASSERT(zp->z_id == zoid);
1087 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1088 		seq = zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name);
1089 		dmu_tx_commit(tx);
1090 	} else {
1091 		/*
1092 		 * A directory entry already exists for this name.
1093 		 */
1094 		/*
1095 		 * Can't truncate an existing file if in exclusive mode.
1096 		 */
1097 		if (excl == EXCL) {
1098 			error = EEXIST;
1099 			goto out;
1100 		}
1101 		/*
1102 		 * Can't open a directory for writing.
1103 		 */
1104 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1105 			error = EISDIR;
1106 			goto out;
1107 		}
1108 		/*
1109 		 * Verify requested access to file.
1110 		 */
1111 		if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) {
1112 			goto out;
1113 		}
1114 		/*
1115 		 * Truncate regular files if requested.
1116 		 */
1117 
1118 		/*
1119 		 * Need to update dzp->z_seq?
1120 		 */
1121 
1122 		mutex_enter(&dzp->z_lock);
1123 		dzp->z_seq++;
1124 		mutex_exit(&dzp->z_lock);
1125 
1126 		if ((ZTOV(zp)->v_type == VREG) && (zp->z_phys->zp_size != 0) &&
1127 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1128 			/*
1129 			 * Truncate the file.
1130 			 */
1131 			tx = dmu_tx_create(os);
1132 			dmu_tx_hold_bonus(tx, zoid);
1133 			dmu_tx_hold_free(tx, zoid, 0, DMU_OBJECT_END);
1134 			error = dmu_tx_assign(tx, zfsvfs->z_assign);
1135 			if (error) {
1136 				dmu_tx_abort(tx);
1137 				if (dl)
1138 					zfs_dirent_unlock(dl);
1139 				VN_RELE(ZTOV(zp));
1140 				if (error == ERESTART &&
1141 				    zfsvfs->z_assign == TXG_NOWAIT) {
1142 					txg_wait_open(dmu_objset_pool(os), 0);
1143 					goto top;
1144 				}
1145 				ZFS_EXIT(zfsvfs);
1146 				return (error);
1147 			}
1148 			/*
1149 			 * Grab the grow_lock to serialize this change with
1150 			 * respect to other file manipulations.
1151 			 */
1152 			rw_enter(&zp->z_grow_lock, RW_WRITER);
1153 			error = zfs_freesp(zp, 0, 0, mode, tx, cr);
1154 			if (error == 0) {
1155 				zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
1156 				seq = zfs_log_truncate(zilog, tx,
1157 				    TX_TRUNCATE, zp, 0, 0);
1158 			}
1159 			rw_exit(&zp->z_grow_lock);
1160 			dmu_tx_commit(tx);
1161 		}
1162 	}
1163 out:
1164 
1165 	if (dl)
1166 		zfs_dirent_unlock(dl);
1167 
1168 	if (error) {
1169 		if (zp)
1170 			VN_RELE(ZTOV(zp));
1171 	} else {
1172 		*vpp = ZTOV(zp);
1173 		/*
1174 		 * If vnode is for a device return a specfs vnode instead.
1175 		 */
1176 		if (IS_DEVVP(*vpp)) {
1177 			struct vnode *svp;
1178 
1179 			svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1180 			VN_RELE(*vpp);
1181 			if (svp == NULL) {
1182 				error = ENOSYS;
1183 			}
1184 			*vpp = svp;
1185 		}
1186 	}
1187 
1188 	zil_commit(zilog, seq, 0);
1189 
1190 	ZFS_EXIT(zfsvfs);
1191 	return (error);
1192 }
1193 
1194 /*
1195  * Remove an entry from a directory.
1196  *
1197  *	IN:	dvp	- vnode of directory to remove entry from.
1198  *		name	- name of entry to remove.
1199  *		cr	- credentials of caller.
1200  *
1201  *	RETURN:	0 if success
1202  *		error code if failure
1203  *
1204  * Timestamps:
1205  *	dvp - ctime|mtime
1206  *	 vp - ctime (if nlink > 0)
1207  */
1208 static int
1209 zfs_remove(vnode_t *dvp, char *name, cred_t *cr)
1210 {
1211 	znode_t		*zp, *dzp = VTOZ(dvp);
1212 	znode_t		*xzp = NULL;
1213 	vnode_t		*vp;
1214 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1215 	zilog_t		*zilog = zfsvfs->z_log;
1216 	uint64_t	seq = 0;
1217 	uint64_t	acl_obj, xattr_obj;
1218 	zfs_dirlock_t	*dl;
1219 	dmu_tx_t	*tx;
1220 	int		may_delete_now, delete_now = FALSE;
1221 	int		reaped;
1222 	int		error;
1223 
1224 	ZFS_ENTER(zfsvfs);
1225 
1226 top:
1227 	/*
1228 	 * Attempt to lock directory; fail if entry doesn't exist.
1229 	 */
1230 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) {
1231 		ZFS_EXIT(zfsvfs);
1232 		return (error);
1233 	}
1234 
1235 	vp = ZTOV(zp);
1236 
1237 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1238 		goto out;
1239 	}
1240 
1241 	/*
1242 	 * Need to use rmdir for removing directories.
1243 	 */
1244 	if (vp->v_type == VDIR) {
1245 		error = EPERM;
1246 		goto out;
1247 	}
1248 
1249 	vnevent_remove(vp);
1250 
1251 	mutex_enter(&vp->v_lock);
1252 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1253 	mutex_exit(&vp->v_lock);
1254 
1255 	/*
1256 	 * We may delete the znode now, or we may put it on the delete queue;
1257 	 * it depends on whether we're the last link, and on whether there are
1258 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1259 	 * allow for either case.
1260 	 */
1261 	tx = dmu_tx_create(zfsvfs->z_os);
1262 	dmu_tx_hold_zap(tx, dzp->z_id, -1);
1263 	dmu_tx_hold_bonus(tx, zp->z_id);
1264 	if (may_delete_now)
1265 		dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
1266 
1267 	/* are there any extended attributes? */
1268 	if ((xattr_obj = zp->z_phys->zp_xattr) != 0) {
1269 		/*
1270 		 * XXX - There is a possibility that the delete
1271 		 * of the parent file could succeed, but then we get
1272 		 * an ENOSPC when we try to delete the xattrs...
1273 		 * so we would need to re-try the deletes periodically
1274 		 */
1275 		/* XXX - do we need this if we are deleting? */
1276 		dmu_tx_hold_bonus(tx, xattr_obj);
1277 	}
1278 
1279 	/* are there any additional acls */
1280 	if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 &&
1281 	    may_delete_now)
1282 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1283 
1284 	/* charge as an update -- would be nice not to charge at all */
1285 	dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, -1);
1286 
1287 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1288 	if (error) {
1289 		dmu_tx_abort(tx);
1290 		zfs_dirent_unlock(dl);
1291 		VN_RELE(vp);
1292 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1293 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
1294 			goto top;
1295 		}
1296 		ZFS_EXIT(zfsvfs);
1297 		return (error);
1298 	}
1299 
1300 	/*
1301 	 * Remove the directory entry.
1302 	 */
1303 	error = zfs_link_destroy(dl, zp, tx, 0, &reaped);
1304 
1305 	if (error) {
1306 		dmu_tx_commit(tx);
1307 		goto out;
1308 	}
1309 
1310 	if (reaped) {
1311 		mutex_enter(&vp->v_lock);
1312 		delete_now = may_delete_now &&
1313 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1314 		    zp->z_phys->zp_xattr == xattr_obj &&
1315 		    zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj;
1316 		mutex_exit(&vp->v_lock);
1317 	}
1318 
1319 	if (delete_now) {
1320 		if (zp->z_phys->zp_xattr) {
1321 			error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp);
1322 			ASSERT3U(error, ==, 0);
1323 			ASSERT3U(xzp->z_phys->zp_links, ==, 2);
1324 			dmu_buf_will_dirty(xzp->z_dbuf, tx);
1325 			mutex_enter(&xzp->z_lock);
1326 			xzp->z_reap = 1;
1327 			xzp->z_phys->zp_links = 0;
1328 			mutex_exit(&xzp->z_lock);
1329 			zfs_dq_add(xzp, tx);
1330 			zp->z_phys->zp_xattr = 0; /* probably unnecessary */
1331 		}
1332 		mutex_enter(&zp->z_lock);
1333 		mutex_enter(&vp->v_lock);
1334 		vp->v_count--;
1335 		ASSERT3U(vp->v_count, ==, 0);
1336 		mutex_exit(&vp->v_lock);
1337 		zp->z_active = 0;
1338 		mutex_exit(&zp->z_lock);
1339 		zfs_znode_delete(zp, tx);
1340 		VFS_RELE(zfsvfs->z_vfs);
1341 	} else if (reaped) {
1342 		zfs_dq_add(zp, tx);
1343 	}
1344 
1345 	seq = zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name);
1346 
1347 	dmu_tx_commit(tx);
1348 out:
1349 	zfs_dirent_unlock(dl);
1350 
1351 	if (!delete_now) {
1352 		VN_RELE(vp);
1353 	} else if (xzp) {
1354 		/* this rele delayed to prevent nesting transactions */
1355 		VN_RELE(ZTOV(xzp));
1356 	}
1357 
1358 	zil_commit(zilog, seq, 0);
1359 
1360 	ZFS_EXIT(zfsvfs);
1361 	return (error);
1362 }
1363 
1364 /*
1365  * Create a new directory and insert it into dvp using the name
1366  * provided.  Return a pointer to the inserted directory.
1367  *
1368  *	IN:	dvp	- vnode of directory to add subdir to.
1369  *		dirname	- name of new directory.
1370  *		vap	- attributes of new directory.
1371  *		cr	- credentials of caller.
1372  *
1373  *	OUT:	vpp	- vnode of created directory.
1374  *
1375  *	RETURN:	0 if success
1376  *		error code if failure
1377  *
1378  * Timestamps:
1379  *	dvp - ctime|mtime updated
1380  *	 vp - ctime|mtime|atime updated
1381  */
1382 static int
1383 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr)
1384 {
1385 	znode_t		*zp, *dzp = VTOZ(dvp);
1386 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1387 	zilog_t		*zilog = zfsvfs->z_log;
1388 	uint64_t	seq = 0;
1389 	zfs_dirlock_t	*dl;
1390 	uint64_t	zoid = 0;
1391 	dmu_tx_t	*tx;
1392 	int		error;
1393 
1394 	ASSERT(vap->va_type == VDIR);
1395 
1396 	ZFS_ENTER(zfsvfs);
1397 
1398 	if (dzp->z_phys->zp_flags & ZFS_XATTR) {
1399 		ZFS_EXIT(zfsvfs);
1400 		return (EINVAL);
1401 	}
1402 top:
1403 	*vpp = NULL;
1404 
1405 	/*
1406 	 * First make sure the new directory doesn't exist.
1407 	 */
1408 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) {
1409 		ZFS_EXIT(zfsvfs);
1410 		return (error);
1411 	}
1412 
1413 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) {
1414 		zfs_dirent_unlock(dl);
1415 		ZFS_EXIT(zfsvfs);
1416 		return (error);
1417 	}
1418 
1419 	/*
1420 	 * Add a new entry to the directory.
1421 	 */
1422 	tx = dmu_tx_create(zfsvfs->z_os);
1423 	dmu_tx_hold_zap(tx, dzp->z_id, 1);
1424 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 0);
1425 	if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
1426 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1427 		    0, SPA_MAXBLOCKSIZE);
1428 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1429 	if (error) {
1430 		dmu_tx_abort(tx);
1431 		zfs_dirent_unlock(dl);
1432 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1433 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
1434 			goto top;
1435 		}
1436 		ZFS_EXIT(zfsvfs);
1437 		return (error);
1438 	}
1439 
1440 	/*
1441 	 * Create new node.
1442 	 */
1443 	zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0);
1444 
1445 	/*
1446 	 * Now put new name in parent dir.
1447 	 */
1448 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1449 
1450 	*vpp = ZTOV(zp);
1451 
1452 	seq = zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname);
1453 	dmu_tx_commit(tx);
1454 
1455 	zfs_dirent_unlock(dl);
1456 
1457 	zil_commit(zilog, seq, 0);
1458 
1459 	ZFS_EXIT(zfsvfs);
1460 	return (0);
1461 }
1462 
1463 /*
1464  * Remove a directory subdir entry.  If the current working
1465  * directory is the same as the subdir to be removed, the
1466  * remove will fail.
1467  *
1468  *	IN:	dvp	- vnode of directory to remove from.
1469  *		name	- name of directory to be removed.
1470  *		cwd	- vnode of current working directory.
1471  *		cr	- credentials of caller.
1472  *
1473  *	RETURN:	0 if success
1474  *		error code if failure
1475  *
1476  * Timestamps:
1477  *	dvp - ctime|mtime updated
1478  */
1479 static int
1480 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr)
1481 {
1482 	znode_t		*dzp = VTOZ(dvp);
1483 	znode_t		*zp;
1484 	vnode_t		*vp;
1485 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1486 	zilog_t		*zilog = zfsvfs->z_log;
1487 	uint64_t	seq = 0;
1488 	zfs_dirlock_t	*dl;
1489 	dmu_tx_t	*tx;
1490 	int		error;
1491 
1492 	ZFS_ENTER(zfsvfs);
1493 
1494 top:
1495 	zp = NULL;
1496 
1497 	/*
1498 	 * Attempt to lock directory; fail if entry doesn't exist.
1499 	 */
1500 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) {
1501 		ZFS_EXIT(zfsvfs);
1502 		return (error);
1503 	}
1504 
1505 	vp = ZTOV(zp);
1506 
1507 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1508 		goto out;
1509 	}
1510 
1511 	if (vp->v_type != VDIR) {
1512 		error = ENOTDIR;
1513 		goto out;
1514 	}
1515 
1516 	if (vp == cwd) {
1517 		error = EINVAL;
1518 		goto out;
1519 	}
1520 
1521 	vnevent_rmdir(vp);
1522 
1523 	/*
1524 	 * Grab a lock on the parent pointer make sure we play well
1525 	 * with the treewalk and directory rename code.
1526 	 */
1527 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1528 
1529 	tx = dmu_tx_create(zfsvfs->z_os);
1530 	dmu_tx_hold_zap(tx, dzp->z_id, 1);
1531 	dmu_tx_hold_bonus(tx, zp->z_id);
1532 	dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, 1);
1533 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1534 	if (error) {
1535 		dmu_tx_abort(tx);
1536 		rw_exit(&zp->z_parent_lock);
1537 		zfs_dirent_unlock(dl);
1538 		VN_RELE(vp);
1539 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1540 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
1541 			goto top;
1542 		}
1543 		ZFS_EXIT(zfsvfs);
1544 		return (error);
1545 	}
1546 
1547 	error = zfs_link_destroy(dl, zp, tx, 0, NULL);
1548 
1549 	if (error == 0)
1550 		seq = zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name);
1551 
1552 	dmu_tx_commit(tx);
1553 
1554 	rw_exit(&zp->z_parent_lock);
1555 out:
1556 	zfs_dirent_unlock(dl);
1557 
1558 	VN_RELE(vp);
1559 
1560 	zil_commit(zilog, seq, 0);
1561 
1562 	ZFS_EXIT(zfsvfs);
1563 	return (error);
1564 }
1565 
1566 /*
1567  * Read as many directory entries as will fit into the provided
1568  * buffer from the given directory cursor position (specified in
1569  * the uio structure.
1570  *
1571  *	IN:	vp	- vnode of directory to read.
1572  *		uio	- structure supplying read location, range info,
1573  *			  and return buffer.
1574  *		cr	- credentials of caller.
1575  *
1576  *	OUT:	uio	- updated offset and range, buffer filled.
1577  *		eofp	- set to true if end-of-file detected.
1578  *
1579  *	RETURN:	0 if success
1580  *		error code if failure
1581  *
1582  * Timestamps:
1583  *	vp - atime updated
1584  *
1585  * Note that the low 4 bits of the cookie returned by zap is always zero.
1586  * This allows us to use the low range for "special" directory entries:
1587  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1588  * we use the offset 2 for the '.zfs' directory.
1589  */
1590 /* ARGSUSED */
1591 static int
1592 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp)
1593 {
1594 	znode_t		*zp = VTOZ(vp);
1595 	iovec_t		*iovp;
1596 	dirent64_t	*odp;
1597 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
1598 	objset_t	*os;
1599 	caddr_t		outbuf;
1600 	size_t		bufsize;
1601 	zap_cursor_t	zc;
1602 	zap_attribute_t	zap;
1603 	uint_t		bytes_wanted;
1604 	ushort_t	this_reclen;
1605 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1606 	off64_t		*next;
1607 	int		local_eof;
1608 	int		outcount;
1609 	int		error;
1610 	uint8_t		prefetch;
1611 
1612 	ZFS_ENTER(zfsvfs);
1613 
1614 	/*
1615 	 * If we are not given an eof variable,
1616 	 * use a local one.
1617 	 */
1618 	if (eofp == NULL)
1619 		eofp = &local_eof;
1620 
1621 	/*
1622 	 * Check for valid iov_len.
1623 	 */
1624 	if (uio->uio_iov->iov_len <= 0) {
1625 		ZFS_EXIT(zfsvfs);
1626 		return (EINVAL);
1627 	}
1628 
1629 	/*
1630 	 * Quit if directory has been removed (posix)
1631 	 */
1632 	if ((*eofp = zp->z_reap) != 0) {
1633 		ZFS_EXIT(zfsvfs);
1634 		return (0);
1635 	}
1636 
1637 	error = 0;
1638 	os = zfsvfs->z_os;
1639 	offset = uio->uio_loffset;
1640 	prefetch = zp->z_zn_prefetch;
1641 
1642 	/*
1643 	 * Initialize the iterator cursor.
1644 	 */
1645 	if (offset <= 3) {
1646 		/*
1647 		 * Start iteration from the beginning of the directory.
1648 		 */
1649 		zap_cursor_init(&zc, os, zp->z_id);
1650 	} else {
1651 		/*
1652 		 * The offset is a serialized cursor.
1653 		 */
1654 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1655 	}
1656 
1657 	/*
1658 	 * Get space to change directory entries into fs independent format.
1659 	 */
1660 	iovp = uio->uio_iov;
1661 	bytes_wanted = iovp->iov_len;
1662 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
1663 		bufsize = bytes_wanted;
1664 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
1665 		odp = (struct dirent64 *)outbuf;
1666 	} else {
1667 		bufsize = bytes_wanted;
1668 		odp = (struct dirent64 *)iovp->iov_base;
1669 	}
1670 
1671 	/*
1672 	 * Transform to file-system independent format
1673 	 */
1674 	outcount = 0;
1675 	while (outcount < bytes_wanted) {
1676 		/*
1677 		 * Special case `.', `..', and `.zfs'.
1678 		 */
1679 		if (offset == 0) {
1680 			(void) strcpy(zap.za_name, ".");
1681 			zap.za_first_integer = zp->z_id;
1682 			this_reclen = DIRENT64_RECLEN(1);
1683 		} else if (offset == 1) {
1684 			(void) strcpy(zap.za_name, "..");
1685 			zap.za_first_integer = zp->z_phys->zp_parent;
1686 			this_reclen = DIRENT64_RECLEN(2);
1687 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1688 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1689 			zap.za_first_integer = ZFSCTL_INO_ROOT;
1690 			this_reclen =
1691 			    DIRENT64_RECLEN(sizeof (ZFS_CTLDIR_NAME) - 1);
1692 		} else {
1693 			/*
1694 			 * Grab next entry.
1695 			 */
1696 			if (error = zap_cursor_retrieve(&zc, &zap)) {
1697 				if ((*eofp = (error == ENOENT)) != 0)
1698 					break;
1699 				else
1700 					goto update;
1701 			}
1702 
1703 			if (zap.za_integer_length != 8 ||
1704 			    zap.za_num_integers != 1) {
1705 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1706 				    "entry, obj = %lld, offset = %lld\n",
1707 				    (u_longlong_t)zp->z_id,
1708 				    (u_longlong_t)offset);
1709 				error = ENXIO;
1710 				goto update;
1711 			}
1712 			this_reclen = DIRENT64_RECLEN(strlen(zap.za_name));
1713 		}
1714 
1715 		/*
1716 		 * Will this entry fit in the buffer?
1717 		 */
1718 		if (outcount + this_reclen > bufsize) {
1719 			/*
1720 			 * Did we manage to fit anything in the buffer?
1721 			 */
1722 			if (!outcount) {
1723 				error = EINVAL;
1724 				goto update;
1725 			}
1726 			break;
1727 		}
1728 		/*
1729 		 * Add this entry:
1730 		 */
1731 		odp->d_ino = (ino64_t)zap.za_first_integer;
1732 		odp->d_reclen = (ushort_t)this_reclen;
1733 		/* NOTE: d_off is the offset for the *next* entry */
1734 		next = &(odp->d_off);
1735 		(void) strncpy(odp->d_name, zap.za_name,
1736 		    DIRENT64_NAMELEN(this_reclen));
1737 		outcount += this_reclen;
1738 		odp = (dirent64_t *)((intptr_t)odp + this_reclen);
1739 
1740 		ASSERT(outcount <= bufsize);
1741 
1742 		/* Prefetch znode */
1743 		if (prefetch)
1744 			dmu_prefetch(os, zap.za_first_integer, 0, 0);
1745 
1746 		/*
1747 		 * Move to the next entry, fill in the previous offset.
1748 		 */
1749 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1750 			zap_cursor_advance(&zc);
1751 			offset = zap_cursor_serialize(&zc);
1752 		} else {
1753 			offset += 1;
1754 		}
1755 		*next = offset;
1756 	}
1757 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1758 
1759 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
1760 		iovp->iov_base += outcount;
1761 		iovp->iov_len -= outcount;
1762 		uio->uio_resid -= outcount;
1763 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
1764 		/*
1765 		 * Reset the pointer.
1766 		 */
1767 		offset = uio->uio_loffset;
1768 	}
1769 
1770 update:
1771 	zap_cursor_fini(&zc);
1772 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
1773 		kmem_free(outbuf, bufsize);
1774 
1775 	if (error == ENOENT)
1776 		error = 0;
1777 
1778 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
1779 
1780 	uio->uio_loffset = offset;
1781 	ZFS_EXIT(zfsvfs);
1782 	return (error);
1783 }
1784 
1785 /* ARGSUSED */
1786 static int
1787 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr)
1788 {
1789 	znode_t	*zp = VTOZ(vp);
1790 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1791 
1792 	ZFS_ENTER(zfsvfs);
1793 	zil_commit(zfsvfs->z_log, zp->z_last_itx, FSYNC);
1794 	ZFS_EXIT(zfsvfs);
1795 	return (0);
1796 }
1797 
1798 /*
1799  * Get the requested file attributes and place them in the provided
1800  * vattr structure.
1801  *
1802  *	IN:	vp	- vnode of file.
1803  *		vap	- va_mask identifies requested attributes.
1804  *		flags	- [UNUSED]
1805  *		cr	- credentials of caller.
1806  *
1807  *	OUT:	vap	- attribute values.
1808  *
1809  *	RETURN:	0 (always succeeds)
1810  */
1811 /* ARGSUSED */
1812 static int
1813 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr)
1814 {
1815 	znode_t *zp = VTOZ(vp);
1816 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1817 	znode_phys_t *pzp = zp->z_phys;
1818 	int	error;
1819 
1820 	ZFS_ENTER(zfsvfs);
1821 
1822 	/*
1823 	 * Return all attributes.  It's cheaper to provide the answer
1824 	 * than to determine whether we were asked the question.
1825 	 */
1826 	mutex_enter(&zp->z_lock);
1827 
1828 	vap->va_type = vp->v_type;
1829 	vap->va_mode = pzp->zp_mode & MODEMASK;
1830 	vap->va_uid = zp->z_phys->zp_uid;
1831 	vap->va_gid = zp->z_phys->zp_gid;
1832 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
1833 	vap->va_nodeid = zp->z_id;
1834 	vap->va_nlink = MIN(pzp->zp_links, UINT32_MAX);	/* nlink_t limit! */
1835 	vap->va_size = pzp->zp_size;
1836 	vap->va_rdev = pzp->zp_rdev;
1837 	vap->va_seq = zp->z_seq;
1838 
1839 	ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime);
1840 	ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime);
1841 	ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime);
1842 
1843 	/*
1844 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
1845 	 * Also, if we are the owner don't bother, since owner should
1846 	 * always be allowed to read basic attributes of file.
1847 	 */
1848 	if (!(zp->z_phys->zp_flags & ZFS_ACL_TRIVIAL) &&
1849 	    (zp->z_phys->zp_uid != crgetuid(cr))) {
1850 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) {
1851 			mutex_exit(&zp->z_lock);
1852 			ZFS_EXIT(zfsvfs);
1853 			return (error);
1854 		}
1855 	}
1856 
1857 	mutex_exit(&zp->z_lock);
1858 
1859 	dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks);
1860 
1861 	if (zp->z_blksz == 0) {
1862 		/*
1863 		 * Block size hasn't been set; suggest maximal I/O transfers.
1864 		 */
1865 		vap->va_blksize = zfsvfs->z_max_blksz;
1866 	}
1867 
1868 	ZFS_EXIT(zfsvfs);
1869 	return (0);
1870 }
1871 
1872 /*
1873  * Set the file attributes to the values contained in the
1874  * vattr structure.
1875  *
1876  *	IN:	vp	- vnode of file to be modified.
1877  *		vap	- new attribute values.
1878  *		flags	- ATTR_UTIME set if non-default time values provided.
1879  *		cr	- credentials of caller.
1880  *
1881  *	RETURN:	0 if success
1882  *		error code if failure
1883  *
1884  * Timestamps:
1885  *	vp - ctime updated, mtime updated if size changed.
1886  */
1887 /* ARGSUSED */
1888 static int
1889 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1890 	caller_context_t *ct)
1891 {
1892 	struct znode	*zp = VTOZ(vp);
1893 	znode_phys_t	*pzp = zp->z_phys;
1894 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
1895 	zilog_t		*zilog = zfsvfs->z_log;
1896 	uint64_t	seq = 0;
1897 	dmu_tx_t	*tx;
1898 	uint_t		mask = vap->va_mask;
1899 	uint_t		mask_applied = 0;
1900 	vattr_t		oldva;
1901 	int		trim_mask = FALSE;
1902 	int		saved_mask;
1903 	uint64_t	new_mode;
1904 	znode_t		*attrzp;
1905 	int		have_grow_lock;
1906 	int		need_policy = FALSE;
1907 	int		err;
1908 
1909 	if (mask == 0)
1910 		return (0);
1911 
1912 	if (mask & AT_NOSET)
1913 		return (EINVAL);
1914 
1915 	if (mask & AT_SIZE && vp->v_type == VDIR)
1916 		return (EISDIR);
1917 
1918 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO)
1919 		return (EINVAL);
1920 
1921 	ZFS_ENTER(zfsvfs);
1922 
1923 top:
1924 	have_grow_lock = FALSE;
1925 	attrzp = NULL;
1926 
1927 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
1928 		ZFS_EXIT(zfsvfs);
1929 		return (EROFS);
1930 	}
1931 
1932 	/*
1933 	 * First validate permissions
1934 	 */
1935 
1936 	if (mask & AT_SIZE) {
1937 		err = zfs_zaccess(zp, ACE_WRITE_DATA, cr);
1938 		if (err) {
1939 			ZFS_EXIT(zfsvfs);
1940 			return (err);
1941 		}
1942 	}
1943 
1944 	if (mask & (AT_ATIME|AT_MTIME))
1945 		need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr);
1946 
1947 	if (mask & (AT_UID|AT_GID)) {
1948 		int	idmask = (mask & (AT_UID|AT_GID));
1949 		int	take_owner;
1950 		int	take_group;
1951 
1952 		/*
1953 		 * NOTE: even if a new mode is being set,
1954 		 * we may clear S_ISUID/S_ISGID bits.
1955 		 */
1956 
1957 		if (!(mask & AT_MODE))
1958 			vap->va_mode = pzp->zp_mode;
1959 
1960 		/*
1961 		 * Take ownership or chgrp to group we are a member of
1962 		 */
1963 
1964 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
1965 		take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr);
1966 
1967 		/*
1968 		 * If both AT_UID and AT_GID are set then take_owner and
1969 		 * take_group must both be set in order to allow taking
1970 		 * ownership.
1971 		 *
1972 		 * Otherwise, send the check through secpolicy_vnode_setattr()
1973 		 *
1974 		 */
1975 
1976 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
1977 		    ((idmask == AT_UID) && take_owner) ||
1978 		    ((idmask == AT_GID) && take_group)) {
1979 			if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) {
1980 				/*
1981 				 * Remove setuid/setgid for non-privileged users
1982 				 */
1983 				secpolicy_setid_clear(vap, cr);
1984 				trim_mask = TRUE;
1985 				saved_mask = vap->va_mask;
1986 			} else {
1987 				need_policy =  TRUE;
1988 			}
1989 		} else {
1990 			need_policy =  TRUE;
1991 		}
1992 	}
1993 
1994 	if (mask & AT_MODE)
1995 		need_policy = TRUE;
1996 
1997 	if (need_policy) {
1998 		mutex_enter(&zp->z_lock);
1999 		oldva.va_mode = pzp->zp_mode;
2000 		oldva.va_uid = zp->z_phys->zp_uid;
2001 		oldva.va_gid = zp->z_phys->zp_gid;
2002 		mutex_exit(&zp->z_lock);
2003 
2004 		/*
2005 		 * If trim_mask is set then take ownership
2006 		 * has been granted.  In that case remove
2007 		 * UID|GID from mask so that
2008 		 * secpolicy_vnode_setattr() doesn't revoke it.
2009 		 */
2010 		if (trim_mask)
2011 			vap->va_mask &= ~(AT_UID|AT_GID);
2012 
2013 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2014 		    (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp);
2015 		if (err) {
2016 			ZFS_EXIT(zfsvfs);
2017 			return (err);
2018 		}
2019 
2020 		if (trim_mask)
2021 			vap->va_mask |= (saved_mask & (AT_UID|AT_GID));
2022 	}
2023 
2024 	/*
2025 	 * secpolicy_vnode_setattr, or take ownership may have
2026 	 * changed va_mask
2027 	 */
2028 	mask = vap->va_mask;
2029 
2030 	tx = dmu_tx_create(zfsvfs->z_os);
2031 	dmu_tx_hold_bonus(tx, zp->z_id);
2032 
2033 	if (mask & AT_MODE) {
2034 
2035 		new_mode = (pzp->zp_mode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2036 
2037 		if (zp->z_phys->zp_acl.z_acl_extern_obj)
2038 			dmu_tx_hold_write(tx,
2039 			    pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE);
2040 		else
2041 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2042 			    0, ZFS_ACL_SIZE(MAX_ACL_SIZE));
2043 	}
2044 
2045 	if (mask & AT_SIZE) {
2046 		uint64_t off = vap->va_size;
2047 		/*
2048 		 * Grab the grow_lock to serialize this change with
2049 		 * respect to other file manipulations.
2050 		 */
2051 		rw_enter(&zp->z_grow_lock, RW_WRITER);
2052 		have_grow_lock = TRUE;
2053 		if (off < zp->z_phys->zp_size)
2054 			dmu_tx_hold_free(tx, zp->z_id, off, DMU_OBJECT_END);
2055 		else if (zp->z_phys->zp_size &&
2056 		    zp->z_blksz < zfsvfs->z_max_blksz && off > zp->z_blksz)
2057 			/* we will rewrite this block if we grow */
2058 			dmu_tx_hold_write(tx, zp->z_id, 0, zp->z_phys->zp_size);
2059 	}
2060 
2061 	if ((mask & (AT_UID | AT_GID)) && zp->z_phys->zp_xattr != 0) {
2062 		err = zfs_zget(zp->z_zfsvfs, zp->z_phys->zp_xattr, &attrzp);
2063 		if (err) {
2064 			dmu_tx_abort(tx);
2065 			if (have_grow_lock)
2066 				rw_exit(&zp->z_grow_lock);
2067 			ZFS_EXIT(zfsvfs);
2068 			return (err);
2069 		}
2070 		dmu_tx_hold_bonus(tx, attrzp->z_id);
2071 	}
2072 
2073 	err = dmu_tx_assign(tx, zfsvfs->z_assign);
2074 	if (err) {
2075 		if (attrzp)
2076 			VN_RELE(ZTOV(attrzp));
2077 		dmu_tx_abort(tx);
2078 		if (have_grow_lock)
2079 			rw_exit(&zp->z_grow_lock);
2080 		if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2081 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
2082 			goto top;
2083 		}
2084 		ZFS_EXIT(zfsvfs);
2085 		return (err);
2086 	}
2087 
2088 	dmu_buf_will_dirty(zp->z_dbuf, tx);
2089 
2090 	/*
2091 	 * Set each attribute requested.
2092 	 * We group settings according to the locks they need to acquire.
2093 	 *
2094 	 * Note: you cannot set ctime directly, although it will be
2095 	 * updated as a side-effect of calling this function.
2096 	 */
2097 	if (mask & AT_SIZE) {
2098 		/*
2099 		 * XXX - Note, we are not providing any open
2100 		 * mode flags here (like FNDELAY), so we may
2101 		 * block if there are locks present... this
2102 		 * should be addressed in openat().
2103 		 */
2104 		err = zfs_freesp(zp, vap->va_size, 0, 0, tx, cr);
2105 		if (err) {
2106 			mutex_enter(&zp->z_lock);
2107 			goto out;
2108 		}
2109 		mask_applied |= AT_SIZE;
2110 	}
2111 
2112 	mask_applied = mask;	/* no errors after this point */
2113 
2114 	mutex_enter(&zp->z_lock);
2115 
2116 	if (mask & AT_MODE) {
2117 		err = zfs_acl_chmod_setattr(zp, new_mode, tx);
2118 		ASSERT3U(err, ==, 0);
2119 	}
2120 
2121 	if (attrzp)
2122 		mutex_enter(&attrzp->z_lock);
2123 
2124 	if (mask & AT_UID) {
2125 		zp->z_phys->zp_uid = (uint64_t)vap->va_uid;
2126 		if (attrzp) {
2127 			attrzp->z_phys->zp_uid = (uint64_t)vap->va_uid;
2128 		}
2129 	}
2130 
2131 	if (mask & AT_GID) {
2132 		zp->z_phys->zp_gid = (uint64_t)vap->va_gid;
2133 		if (attrzp)
2134 			attrzp->z_phys->zp_gid = (uint64_t)vap->va_gid;
2135 	}
2136 
2137 	if (attrzp)
2138 		mutex_exit(&attrzp->z_lock);
2139 
2140 	if (mask & AT_ATIME)
2141 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
2142 
2143 	if (mask & AT_MTIME)
2144 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
2145 
2146 	if (mask_applied & AT_SIZE)
2147 		zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx);
2148 	else if (mask_applied != 0)
2149 		zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
2150 
2151 out:
2152 
2153 	if (mask_applied != 0)
2154 		seq = zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap,
2155 		    mask_applied);
2156 
2157 	mutex_exit(&zp->z_lock);
2158 
2159 	if (attrzp)
2160 		VN_RELE(ZTOV(attrzp));
2161 
2162 	if (have_grow_lock)
2163 		rw_exit(&zp->z_grow_lock);
2164 
2165 	dmu_tx_commit(tx);
2166 
2167 	zil_commit(zilog, seq, 0);
2168 
2169 	ZFS_EXIT(zfsvfs);
2170 	return (err);
2171 }
2172 
2173 /*
2174  * Search back through the directory tree, using the ".." entries.
2175  * Lock each directory in the chain to prevent concurrent renames.
2176  * Fail any attempt to move a directory into one of its own descendants.
2177  * XXX - z_parent_lock can overlap with map or grow locks
2178  */
2179 typedef struct zfs_zlock {
2180 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2181 	znode_t		*zl_znode;	/* znode we held */
2182 	struct zfs_zlock *zl_next;	/* next in list */
2183 } zfs_zlock_t;
2184 
2185 static int
2186 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2187 {
2188 	zfs_zlock_t	*zl;
2189 	znode_t 	*zp = tdzp;
2190 	uint64_t	rootid = zp->z_zfsvfs->z_root;
2191 	uint64_t	*oidp = &zp->z_id;
2192 	krwlock_t	*rwlp = &szp->z_parent_lock;
2193 	krw_t		rw = RW_WRITER;
2194 
2195 	/*
2196 	 * First pass write-locks szp and compares to zp->z_id.
2197 	 * Later passes read-lock zp and compare to zp->z_parent.
2198 	 */
2199 	do {
2200 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2201 		zl->zl_rwlock = rwlp;
2202 		zl->zl_znode = NULL;
2203 		zl->zl_next = *zlpp;
2204 		*zlpp = zl;
2205 
2206 		rw_enter(rwlp, rw);
2207 
2208 		if (*oidp == szp->z_id)		/* We're a descendant of szp */
2209 			return (EINVAL);
2210 
2211 		if (*oidp == rootid)		/* We've hit the top */
2212 			return (0);
2213 
2214 		if (rw == RW_READER) {		/* i.e. not the first pass */
2215 			int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp);
2216 			if (error)
2217 				return (error);
2218 			zl->zl_znode = zp;
2219 		}
2220 		oidp = &zp->z_phys->zp_parent;
2221 		rwlp = &zp->z_parent_lock;
2222 		rw = RW_READER;
2223 
2224 	} while (zp->z_id != sdzp->z_id);
2225 
2226 	return (0);
2227 }
2228 
2229 /*
2230  * Drop locks and release vnodes that were held by zfs_rename_lock().
2231  */
2232 static void
2233 zfs_rename_unlock(zfs_zlock_t **zlpp)
2234 {
2235 	zfs_zlock_t *zl;
2236 
2237 	while ((zl = *zlpp) != NULL) {
2238 		if (zl->zl_znode != NULL)
2239 			VN_RELE(ZTOV(zl->zl_znode));
2240 		rw_exit(zl->zl_rwlock);
2241 		*zlpp = zl->zl_next;
2242 		kmem_free(zl, sizeof (*zl));
2243 	}
2244 }
2245 
2246 /*
2247  * Move an entry from the provided source directory to the target
2248  * directory.  Change the entry name as indicated.
2249  *
2250  *	IN:	sdvp	- Source directory containing the "old entry".
2251  *		snm	- Old entry name.
2252  *		tdvp	- Target directory to contain the "new entry".
2253  *		tnm	- New entry name.
2254  *		cr	- credentials of caller.
2255  *
2256  *	RETURN:	0 if success
2257  *		error code if failure
2258  *
2259  * Timestamps:
2260  *	sdvp,tdvp - ctime|mtime updated
2261  */
2262 static int
2263 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr)
2264 {
2265 	znode_t		*tdzp, *szp, *tzp;
2266 	znode_t		*sdzp = VTOZ(sdvp);
2267 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
2268 	zilog_t		*zilog = zfsvfs->z_log;
2269 	uint64_t	seq = 0;
2270 	vnode_t		*realvp;
2271 	zfs_dirlock_t	*sdl, *tdl;
2272 	dmu_tx_t	*tx;
2273 	zfs_zlock_t	*zl;
2274 	int		cmp, serr, terr, error;
2275 
2276 	ZFS_ENTER(zfsvfs);
2277 
2278 	/*
2279 	 * Make sure we have the real vp for the target directory.
2280 	 */
2281 	if (VOP_REALVP(tdvp, &realvp) == 0)
2282 		tdvp = realvp;
2283 
2284 	if (tdvp->v_vfsp != sdvp->v_vfsp) {
2285 		ZFS_EXIT(zfsvfs);
2286 		return (EXDEV);
2287 	}
2288 
2289 	tdzp = VTOZ(tdvp);
2290 top:
2291 	szp = NULL;
2292 	tzp = NULL;
2293 	zl = NULL;
2294 
2295 	/*
2296 	 * This is to prevent the creation of links into attribute space
2297 	 * by renaming a linked file into/outof an attribute directory.
2298 	 * See the comment in zfs_link() for why this is considered bad.
2299 	 */
2300 	if ((tdzp->z_phys->zp_flags & ZFS_XATTR) !=
2301 	    (sdzp->z_phys->zp_flags & ZFS_XATTR)) {
2302 		ZFS_EXIT(zfsvfs);
2303 		return (EINVAL);
2304 	}
2305 
2306 	/*
2307 	 * Lock source and target directory entries.  To prevent deadlock,
2308 	 * a lock ordering must be defined.  We lock the directory with
2309 	 * the smallest object id first, or if it's a tie, the one with
2310 	 * the lexically first name.
2311 	 */
2312 	if (sdzp->z_id < tdzp->z_id) {
2313 		cmp = -1;
2314 	} else if (sdzp->z_id > tdzp->z_id) {
2315 		cmp = 1;
2316 	} else {
2317 		cmp = strcmp(snm, tnm);
2318 		if (cmp == 0) {
2319 			/*
2320 			 * POSIX: "If the old argument and the new argument
2321 			 * both refer to links to the same existing file,
2322 			 * the rename() function shall return successfully
2323 			 * and perform no other action."
2324 			 */
2325 			ZFS_EXIT(zfsvfs);
2326 			return (0);
2327 		}
2328 	}
2329 	if (cmp < 0) {
2330 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS);
2331 		terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0);
2332 	} else {
2333 		terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0);
2334 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS);
2335 	}
2336 
2337 	if (serr) {
2338 		/*
2339 		 * Source entry invalid or not there.
2340 		 */
2341 		if (!terr) {
2342 			zfs_dirent_unlock(tdl);
2343 			if (tzp)
2344 				VN_RELE(ZTOV(tzp));
2345 		}
2346 		if (strcmp(snm, "..") == 0)
2347 			serr = EINVAL;
2348 		ZFS_EXIT(zfsvfs);
2349 		return (serr);
2350 	}
2351 	if (terr) {
2352 		zfs_dirent_unlock(sdl);
2353 		VN_RELE(ZTOV(szp));
2354 		if (strcmp(tnm, "..") == 0)
2355 			terr = EINVAL;
2356 		ZFS_EXIT(zfsvfs);
2357 		return (terr);
2358 	}
2359 
2360 	/*
2361 	 * Must have write access at the source to remove the old entry
2362 	 * and write access at the target to create the new entry.
2363 	 * Note that if target and source are the same, this can be
2364 	 * done in a single check.
2365 	 */
2366 
2367 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
2368 		goto out;
2369 
2370 	if (ZTOV(szp)->v_type == VDIR) {
2371 		/*
2372 		 * Check to make sure rename is valid.
2373 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2374 		 */
2375 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
2376 			goto out;
2377 	}
2378 
2379 	/*
2380 	 * Does target exist?
2381 	 */
2382 	if (tzp) {
2383 		/*
2384 		 * Source and target must be the same type.
2385 		 */
2386 		if (ZTOV(szp)->v_type == VDIR) {
2387 			if (ZTOV(tzp)->v_type != VDIR) {
2388 				error = ENOTDIR;
2389 				goto out;
2390 			}
2391 		} else {
2392 			if (ZTOV(tzp)->v_type == VDIR) {
2393 				error = EISDIR;
2394 				goto out;
2395 			}
2396 		}
2397 		/*
2398 		 * POSIX dictates that when the source and target
2399 		 * entries refer to the same file object, rename
2400 		 * must do nothing and exit without error.
2401 		 */
2402 		if (szp->z_id == tzp->z_id) {
2403 			error = 0;
2404 			goto out;
2405 		}
2406 	}
2407 
2408 	vnevent_rename_src(ZTOV(szp));
2409 	if (tzp)
2410 		vnevent_rename_dest(ZTOV(tzp));
2411 
2412 	tx = dmu_tx_create(zfsvfs->z_os);
2413 	dmu_tx_hold_bonus(tx, szp->z_id);	/* nlink changes */
2414 	dmu_tx_hold_bonus(tx, sdzp->z_id);	/* nlink changes */
2415 	if (sdzp != tdzp) {
2416 		dmu_tx_hold_zap(tx, sdzp->z_id, 1);
2417 		dmu_tx_hold_zap(tx, tdzp->z_id, 1);
2418 		dmu_tx_hold_bonus(tx, tdzp->z_id);	/* nlink changes */
2419 	} else {
2420 		dmu_tx_hold_zap(tx, sdzp->z_id, 2);
2421 	}
2422 	if (tzp) {
2423 		dmu_tx_hold_bonus(tx, tzp->z_id);	/* nlink changes */
2424 	}
2425 	dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, 1);
2426 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
2427 	if (error) {
2428 		dmu_tx_abort(tx);
2429 		if (zl != NULL)
2430 			zfs_rename_unlock(&zl);
2431 		zfs_dirent_unlock(sdl);
2432 		zfs_dirent_unlock(tdl);
2433 		VN_RELE(ZTOV(szp));
2434 		if (tzp)
2435 			VN_RELE(ZTOV(tzp));
2436 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2437 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
2438 			goto top;
2439 		}
2440 		ZFS_EXIT(zfsvfs);
2441 		return (error);
2442 	}
2443 
2444 	if (tzp)	/* Attempt to remove the existing target */
2445 		error = zfs_link_destroy(tdl, tzp, tx, 0, NULL);
2446 
2447 	if (error == 0) {
2448 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
2449 		if (error == 0) {
2450 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
2451 			ASSERT(error == 0);
2452 			seq = zfs_log_rename(zilog, tx, TX_RENAME,
2453 			    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
2454 		}
2455 	}
2456 
2457 	dmu_tx_commit(tx);
2458 out:
2459 	if (zl != NULL)
2460 		zfs_rename_unlock(&zl);
2461 
2462 	zfs_dirent_unlock(sdl);
2463 	zfs_dirent_unlock(tdl);
2464 
2465 	VN_RELE(ZTOV(szp));
2466 	if (tzp)
2467 		VN_RELE(ZTOV(tzp));
2468 
2469 	zil_commit(zilog, seq, 0);
2470 
2471 	ZFS_EXIT(zfsvfs);
2472 	return (error);
2473 }
2474 
2475 /*
2476  * Insert the indicated symbolic reference entry into the directory.
2477  *
2478  *	IN:	dvp	- Directory to contain new symbolic link.
2479  *		link	- Name for new symlink entry.
2480  *		vap	- Attributes of new entry.
2481  *		target	- Target path of new symlink.
2482  *		cr	- credentials of caller.
2483  *
2484  *	RETURN:	0 if success
2485  *		error code if failure
2486  *
2487  * Timestamps:
2488  *	dvp - ctime|mtime updated
2489  */
2490 static int
2491 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr)
2492 {
2493 	znode_t		*zp, *dzp = VTOZ(dvp);
2494 	zfs_dirlock_t	*dl;
2495 	dmu_tx_t	*tx;
2496 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2497 	zilog_t		*zilog = zfsvfs->z_log;
2498 	uint64_t	seq = 0;
2499 	uint64_t	zoid;
2500 	int		len = strlen(link);
2501 	int		error;
2502 
2503 	ASSERT(vap->va_type == VLNK);
2504 
2505 	ZFS_ENTER(zfsvfs);
2506 top:
2507 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) {
2508 		ZFS_EXIT(zfsvfs);
2509 		return (error);
2510 	}
2511 
2512 	if (len > MAXPATHLEN) {
2513 		ZFS_EXIT(zfsvfs);
2514 		return (ENAMETOOLONG);
2515 	}
2516 
2517 	/*
2518 	 * Attempt to lock directory; fail if entry already exists.
2519 	 */
2520 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) {
2521 		ZFS_EXIT(zfsvfs);
2522 		return (error);
2523 	}
2524 
2525 	tx = dmu_tx_create(zfsvfs->z_os);
2526 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
2527 	dmu_tx_hold_bonus(tx, dzp->z_id);
2528 	dmu_tx_hold_zap(tx, dzp->z_id, 1);
2529 	if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE)
2530 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE);
2531 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
2532 	if (error) {
2533 		dmu_tx_abort(tx);
2534 		zfs_dirent_unlock(dl);
2535 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2536 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
2537 			goto top;
2538 		}
2539 		ZFS_EXIT(zfsvfs);
2540 		return (error);
2541 	}
2542 
2543 	dmu_buf_will_dirty(dzp->z_dbuf, tx);
2544 
2545 	/*
2546 	 * Create a new object for the symlink.
2547 	 * Put the link content into bonus buffer if it will fit;
2548 	 * otherwise, store it just like any other file data.
2549 	 */
2550 	zoid = 0;
2551 	if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) {
2552 		zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len);
2553 		if (len != 0)
2554 			bcopy(link, zp->z_phys + 1, len);
2555 	} else {
2556 		dmu_buf_t *dbp;
2557 		zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0);
2558 
2559 		rw_enter(&zp->z_grow_lock, RW_WRITER);
2560 		error = zfs_grow_blocksize(zp, len, tx);
2561 		rw_exit(&zp->z_grow_lock);
2562 		if (error)
2563 			goto out;
2564 
2565 		dbp = dmu_buf_hold(zfsvfs->z_os, zoid, 0);
2566 		dmu_buf_will_dirty(dbp, tx);
2567 
2568 		ASSERT3U(len, <=, dbp->db_size);
2569 		bcopy(link, dbp->db_data, len);
2570 		dmu_buf_rele(dbp);
2571 	}
2572 	zp->z_phys->zp_size = len;
2573 
2574 	/*
2575 	 * Insert the new object into the directory.
2576 	 */
2577 	(void) zfs_link_create(dl, zp, tx, ZNEW);
2578 out:
2579 	if (error == 0)
2580 		seq = zfs_log_symlink(zilog, tx, TX_SYMLINK,
2581 		    dzp, zp, name, link);
2582 
2583 	dmu_tx_commit(tx);
2584 
2585 	zfs_dirent_unlock(dl);
2586 
2587 	VN_RELE(ZTOV(zp));
2588 
2589 	zil_commit(zilog, seq, 0);
2590 
2591 	ZFS_EXIT(zfsvfs);
2592 	return (error);
2593 }
2594 
2595 /*
2596  * Return, in the buffer contained in the provided uio structure,
2597  * the symbolic path referred to by vp.
2598  *
2599  *	IN:	vp	- vnode of symbolic link.
2600  *		uoip	- structure to contain the link path.
2601  *		cr	- credentials of caller.
2602  *
2603  *	OUT:	uio	- structure to contain the link path.
2604  *
2605  *	RETURN:	0 if success
2606  *		error code if failure
2607  *
2608  * Timestamps:
2609  *	vp - atime updated
2610  */
2611 /* ARGSUSED */
2612 static int
2613 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr)
2614 {
2615 	znode_t		*zp = VTOZ(vp);
2616 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2617 	size_t		bufsz;
2618 	int		error;
2619 
2620 	ZFS_ENTER(zfsvfs);
2621 
2622 	bufsz = (size_t)zp->z_phys->zp_size;
2623 	if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) {
2624 		error = uiomove(zp->z_phys + 1,
2625 		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
2626 	} else {
2627 		dmu_buf_t *dbp = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0);
2628 		if ((error = dmu_buf_read_canfail(dbp)) != 0) {
2629 			dmu_buf_rele(dbp);
2630 			ZFS_EXIT(zfsvfs);
2631 			return (error);
2632 		}
2633 		error = uiomove(dbp->db_data,
2634 		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
2635 		dmu_buf_rele(dbp);
2636 	}
2637 
2638 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2639 	ZFS_EXIT(zfsvfs);
2640 	return (error);
2641 }
2642 
2643 /*
2644  * Insert a new entry into directory tdvp referencing svp.
2645  *
2646  *	IN:	tdvp	- Directory to contain new entry.
2647  *		svp	- vnode of new entry.
2648  *		name	- name of new entry.
2649  *		cr	- credentials of caller.
2650  *
2651  *	RETURN:	0 if success
2652  *		error code if failure
2653  *
2654  * Timestamps:
2655  *	tdvp - ctime|mtime updated
2656  *	 svp - ctime updated
2657  */
2658 /* ARGSUSED */
2659 static int
2660 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr)
2661 {
2662 	znode_t		*dzp = VTOZ(tdvp);
2663 	znode_t		*tzp, *szp;
2664 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2665 	zilog_t		*zilog = zfsvfs->z_log;
2666 	uint64_t	seq = 0;
2667 	zfs_dirlock_t	*dl;
2668 	dmu_tx_t	*tx;
2669 	vnode_t		*realvp;
2670 	int		error;
2671 
2672 	ASSERT(tdvp->v_type == VDIR);
2673 
2674 	ZFS_ENTER(zfsvfs);
2675 
2676 	if (VOP_REALVP(svp, &realvp) == 0)
2677 		svp = realvp;
2678 
2679 	if (svp->v_vfsp != tdvp->v_vfsp) {
2680 		ZFS_EXIT(zfsvfs);
2681 		return (EXDEV);
2682 	}
2683 
2684 	szp = VTOZ(svp);
2685 top:
2686 	/*
2687 	 * We do not support links between attributes and non-attributes
2688 	 * because of the potential security risk of creating links
2689 	 * into "normal" file space in order to circumvent restrictions
2690 	 * imposed in attribute space.
2691 	 */
2692 	if ((szp->z_phys->zp_flags & ZFS_XATTR) !=
2693 	    (dzp->z_phys->zp_flags & ZFS_XATTR)) {
2694 		ZFS_EXIT(zfsvfs);
2695 		return (EINVAL);
2696 	}
2697 
2698 	/*
2699 	 * POSIX dictates that we return EPERM here.
2700 	 * Better choices include ENOTSUP or EISDIR.
2701 	 */
2702 	if (svp->v_type == VDIR) {
2703 		ZFS_EXIT(zfsvfs);
2704 		return (EPERM);
2705 	}
2706 
2707 	if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) &&
2708 	    secpolicy_basic_link(cr) != 0) {
2709 		ZFS_EXIT(zfsvfs);
2710 		return (EPERM);
2711 	}
2712 
2713 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) {
2714 		ZFS_EXIT(zfsvfs);
2715 		return (error);
2716 	}
2717 
2718 	/*
2719 	 * Attempt to lock directory; fail if entry already exists.
2720 	 */
2721 	if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) {
2722 		ZFS_EXIT(zfsvfs);
2723 		return (error);
2724 	}
2725 
2726 	tx = dmu_tx_create(zfsvfs->z_os);
2727 	dmu_tx_hold_bonus(tx, szp->z_id);
2728 	dmu_tx_hold_zap(tx, dzp->z_id, 1);
2729 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
2730 	if (error) {
2731 		dmu_tx_abort(tx);
2732 		zfs_dirent_unlock(dl);
2733 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2734 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
2735 			goto top;
2736 		}
2737 		ZFS_EXIT(zfsvfs);
2738 		return (error);
2739 	}
2740 
2741 	error = zfs_link_create(dl, szp, tx, 0);
2742 
2743 	if (error == 0)
2744 		seq = zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name);
2745 
2746 	dmu_tx_commit(tx);
2747 
2748 	zfs_dirent_unlock(dl);
2749 
2750 	zil_commit(zilog, seq, 0);
2751 
2752 	ZFS_EXIT(zfsvfs);
2753 	return (error);
2754 }
2755 
2756 /*
2757  * zfs_null_putapage() is used when the file system has been force
2758  * unmounted. It just drops the pages.
2759  */
2760 /* ARGSUSED */
2761 static int
2762 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
2763 		size_t *lenp, int flags, cred_t *cr)
2764 {
2765 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
2766 	return (0);
2767 }
2768 
2769 /* ARGSUSED */
2770 static int
2771 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
2772 		size_t *lenp, int flags, cred_t *cr)
2773 {
2774 	znode_t		*zp = VTOZ(vp);
2775 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2776 	zilog_t		*zilog = zfsvfs->z_log;
2777 	uint64_t	seq = 0;
2778 	dmu_tx_t	*tx;
2779 	u_offset_t	off;
2780 	ssize_t		len;
2781 	caddr_t		va;
2782 	int		err;
2783 
2784 top:
2785 	rw_enter(&zp->z_grow_lock, RW_READER);
2786 
2787 	off = pp->p_offset;
2788 	len = MIN(PAGESIZE, zp->z_phys->zp_size - off);
2789 
2790 	tx = dmu_tx_create(zfsvfs->z_os);
2791 	dmu_tx_hold_write(tx, zp->z_id, off, len);
2792 	dmu_tx_hold_bonus(tx, zp->z_id);
2793 	err = dmu_tx_assign(tx, zfsvfs->z_assign);
2794 	if (err != 0) {
2795 		dmu_tx_abort(tx);
2796 		rw_exit(&zp->z_grow_lock);
2797 		if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
2798 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
2799 			goto top;
2800 		}
2801 		goto out;
2802 	}
2803 
2804 	va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1);
2805 
2806 	dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
2807 
2808 	ppmapout(va);
2809 
2810 	zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
2811 	seq = zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0, NULL);
2812 	dmu_tx_commit(tx);
2813 
2814 	rw_exit(&zp->z_grow_lock);
2815 
2816 	pvn_write_done(pp, B_WRITE | flags);
2817 	if (offp)
2818 		*offp = off;
2819 	if (lenp)
2820 		*lenp = len;
2821 
2822 	zil_commit(zilog, seq, (flags & B_ASYNC) ? 0 : FDSYNC);
2823 out:
2824 	return (err);
2825 }
2826 
2827 /*
2828  * Copy the portion of the file indicated from pages into the file.
2829  * The pages are stored in a page list attached to the files vnode.
2830  *
2831  *	IN:	vp	- vnode of file to push page data to.
2832  *		off	- position in file to put data.
2833  *		len	- amount of data to write.
2834  *		flags	- flags to control the operation.
2835  *		cr	- credentials of caller.
2836  *
2837  *	RETURN:	0 if success
2838  *		error code if failure
2839  *
2840  * Timestamps:
2841  *	vp - ctime|mtime updated
2842  */
2843 static int
2844 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr)
2845 {
2846 	znode_t		*zp = VTOZ(vp);
2847 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2848 	page_t		*pp;
2849 	size_t		io_len;
2850 	u_offset_t	io_off;
2851 	int		error = 0;
2852 
2853 	ZFS_ENTER(zfsvfs);
2854 
2855 	ASSERT(zp->z_dbuf_held && zp->z_phys);
2856 
2857 	if (len == 0) {
2858 		/*
2859 		 * Search the entire vp list for pages >= off.
2860 		 */
2861 		error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage,
2862 		    flags, cr);
2863 		ZFS_EXIT(zfsvfs);
2864 		return (error);
2865 	}
2866 
2867 	if (off > zp->z_phys->zp_size) {
2868 		/* past end of file */
2869 		ZFS_EXIT(zfsvfs);
2870 		return (0);
2871 	}
2872 
2873 	len = MIN(len, zp->z_phys->zp_size - off);
2874 
2875 	io_off = off;
2876 	while (io_off < off + len) {
2877 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
2878 			pp  = page_lookup(vp, io_off,
2879 				(flags & (B_INVAL | B_FREE)) ?
2880 					SE_EXCL : SE_SHARED);
2881 		} else {
2882 			pp = page_lookup_nowait(vp, io_off,
2883 				(flags & B_FREE) ? SE_EXCL : SE_SHARED);
2884 		}
2885 
2886 		if (pp != NULL && pvn_getdirty(pp, flags)) {
2887 			int err;
2888 
2889 			/*
2890 			 * Found a dirty page to push
2891 			 */
2892 			if (err =
2893 			    zfs_putapage(vp, pp, &io_off, &io_len, flags, cr))
2894 				error = err;
2895 		} else {
2896 			io_len = PAGESIZE;
2897 		}
2898 		io_off += io_len;
2899 	}
2900 	ZFS_EXIT(zfsvfs);
2901 	return (error);
2902 }
2903 
2904 void
2905 zfs_inactive(vnode_t *vp, cred_t *cr)
2906 {
2907 	znode_t	*zp = VTOZ(vp);
2908 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2909 	int error;
2910 
2911 	rw_enter(&zfsvfs->z_um_lock, RW_READER);
2912 	if (zfsvfs->z_unmounted2) {
2913 		ASSERT(zp->z_dbuf_held == 0);
2914 
2915 		if (vn_has_cached_data(vp)) {
2916 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
2917 			    B_INVAL, cr);
2918 		}
2919 
2920 		vp->v_count = 0; /* count arrives as 1 */
2921 		zfs_znode_free(zp);
2922 		rw_exit(&zfsvfs->z_um_lock);
2923 		VFS_RELE(zfsvfs->z_vfs);
2924 		return;
2925 	}
2926 
2927 	/*
2928 	 * Attempt to push any data in the page cache.  If this fails
2929 	 * we will get kicked out later in zfs_zinactive().
2930 	 */
2931 	if (vn_has_cached_data(vp)) {
2932 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
2933 		    cr);
2934 	}
2935 
2936 	if (zp->z_atime_dirty && zp->z_reap == 0) {
2937 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
2938 
2939 		dmu_tx_hold_bonus(tx, zp->z_id);
2940 		error = dmu_tx_assign(tx, TXG_WAIT);
2941 		if (error) {
2942 			dmu_tx_abort(tx);
2943 		} else {
2944 			dmu_buf_will_dirty(zp->z_dbuf, tx);
2945 			mutex_enter(&zp->z_lock);
2946 			zp->z_atime_dirty = 0;
2947 			mutex_exit(&zp->z_lock);
2948 			dmu_tx_commit(tx);
2949 		}
2950 	}
2951 
2952 	zfs_zinactive(zp);
2953 	rw_exit(&zfsvfs->z_um_lock);
2954 }
2955 
2956 /*
2957  * Bounds-check the seek operation.
2958  *
2959  *	IN:	vp	- vnode seeking within
2960  *		ooff	- old file offset
2961  *		noffp	- pointer to new file offset
2962  *
2963  *	RETURN:	0 if success
2964  *		EINVAL if new offset invalid
2965  */
2966 /* ARGSUSED */
2967 static int
2968 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp)
2969 {
2970 	if (vp->v_type == VDIR)
2971 		return (0);
2972 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
2973 }
2974 
2975 /*
2976  * Pre-filter the generic locking function to trap attempts to place
2977  * a mandatory lock on a memory mapped file.
2978  */
2979 static int
2980 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
2981     flk_callback_t *flk_cbp, cred_t *cr)
2982 {
2983 	znode_t *zp = VTOZ(vp);
2984 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2985 	uint_t cnt = 1;
2986 	int error;
2987 
2988 	ZFS_ENTER(zfsvfs);
2989 
2990 	/*
2991 	 * If file is being mapped, disallow frlock.  We set the mapcnt to
2992 	 * -1 here to signal that we are in the process of setting a lock.
2993 	 * This prevents a race with zfs_map().
2994 	 * XXX - well, sort of; since zfs_map() does not change z_mapcnt,
2995 	 * we could be in the middle of zfs_map() and still call fs_frlock().
2996 	 * Also, we are doing no checking in zfs_addmap() (where z_mapcnt
2997 	 * *is* manipulated).
2998 	 */
2999 	if (MANDMODE((mode_t)zp->z_phys->zp_mode) &&
3000 	    (int)(cnt = atomic_cas_32(&zp->z_mapcnt, 0, -1)) > 0) {
3001 		ZFS_EXIT(zfsvfs);
3002 		return (EAGAIN);
3003 	}
3004 	error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr);
3005 	ASSERT((cnt != 0) || ((int)atomic_cas_32(&zp->z_mapcnt, -1, 0) == -1));
3006 	ZFS_EXIT(zfsvfs);
3007 	return (error);
3008 }
3009 
3010 /*
3011  * If we can't find a page in the cache, we will create a new page
3012  * and fill it with file data.  For efficiency, we may try to fill
3013  * multiple pages as once (klustering).
3014  */
3015 static int
3016 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
3017     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
3018 {
3019 	znode_t *zp = VTOZ(vp);
3020 	page_t *pp, *cur_pp;
3021 	objset_t *os = zp->z_zfsvfs->z_os;
3022 	caddr_t va;
3023 	u_offset_t io_off, total;
3024 	uint64_t oid = zp->z_id;
3025 	size_t io_len;
3026 	int err;
3027 
3028 	/*
3029 	 * If we are only asking for a single page don't bother klustering.
3030 	 */
3031 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE ||
3032 	    off > zp->z_phys->zp_size) {
3033 		io_off = off;
3034 		io_len = PAGESIZE;
3035 		pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr);
3036 	} else {
3037 		/*
3038 		 * Try to fill a kluster of pages (a blocks worth).
3039 		 */
3040 		size_t klen;
3041 		u_offset_t koff;
3042 
3043 		if (!ISP2(zp->z_blksz)) {
3044 			/* Only one block in the file. */
3045 			klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
3046 			koff = 0;
3047 		} else {
3048 			klen = plsz;
3049 			koff = P2ALIGN(off, (u_offset_t)klen);
3050 		}
3051 		if (klen > zp->z_phys->zp_size)
3052 			klen = P2ROUNDUP(zp->z_phys->zp_size,
3053 			    (uint64_t)PAGESIZE);
3054 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
3055 			    &io_len, koff, klen, 0);
3056 	}
3057 	if (pp == NULL) {
3058 		/*
3059 		 * Some other thread entered the page before us.
3060 		 * Return to zfs_getpage to retry the lookup.
3061 		 */
3062 		*pl = NULL;
3063 		return (0);
3064 	}
3065 
3066 	/*
3067 	 * Fill the pages in the kluster.
3068 	 */
3069 	cur_pp = pp;
3070 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
3071 		ASSERT(io_off == cur_pp->p_offset);
3072 		va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1);
3073 		err = dmu_read_canfail(os, oid, io_off, PAGESIZE, va);
3074 		ppmapout(va);
3075 		if (err) {
3076 			/* On error, toss the entire kluster */
3077 			pvn_read_done(pp, B_ERROR);
3078 			return (err);
3079 		}
3080 		cur_pp = cur_pp->p_next;
3081 	}
3082 out:
3083 	/*
3084 	 * Fill in the page list array from the kluster.  If
3085 	 * there are too many pages in the kluster, return
3086 	 * as many pages as possible starting from the desired
3087 	 * offset `off'.
3088 	 * NOTE: the page list will always be null terminated.
3089 	 */
3090 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
3091 
3092 	return (0);
3093 }
3094 
3095 /*
3096  * Return pointers to the pages for the file region [off, off + len]
3097  * in the pl array.  If plsz is greater than len, this function may
3098  * also return page pointers from before or after the specified
3099  * region (i.e. some region [off', off' + plsz]).  These additional
3100  * pages are only returned if they are already in the cache, or were
3101  * created as part of a klustered read.
3102  *
3103  *	IN:	vp	- vnode of file to get data from.
3104  *		off	- position in file to get data from.
3105  *		len	- amount of data to retrieve.
3106  *		plsz	- length of provided page list.
3107  *		seg	- segment to obtain pages for.
3108  *		addr	- virtual address of fault.
3109  *		rw	- mode of created pages.
3110  *		cr	- credentials of caller.
3111  *
3112  *	OUT:	protp	- protection mode of created pages.
3113  *		pl	- list of pages created.
3114  *
3115  *	RETURN:	0 if success
3116  *		error code if failure
3117  *
3118  * Timestamps:
3119  *	vp - atime updated
3120  */
3121 /* ARGSUSED */
3122 static int
3123 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
3124 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3125 	enum seg_rw rw, cred_t *cr)
3126 {
3127 	znode_t		*zp = VTOZ(vp);
3128 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3129 	page_t		*pp, **pl0 = pl;
3130 	int		cnt = 0, need_unlock = 0, err = 0;
3131 
3132 	ZFS_ENTER(zfsvfs);
3133 
3134 	if (protp)
3135 		*protp = PROT_ALL;
3136 
3137 	ASSERT(zp->z_dbuf_held && zp->z_phys);
3138 
3139 	/* no faultahead (for now) */
3140 	if (pl == NULL) {
3141 		ZFS_EXIT(zfsvfs);
3142 		return (0);
3143 	}
3144 
3145 	/* can't fault past EOF */
3146 	if (off >= zp->z_phys->zp_size) {
3147 		ZFS_EXIT(zfsvfs);
3148 		return (EFAULT);
3149 	}
3150 
3151 	/*
3152 	 * Make sure nobody restructures the file (changes block size)
3153 	 * in the middle of the getpage.
3154 	 */
3155 	rw_enter(&zp->z_grow_lock, RW_READER);
3156 
3157 	/*
3158 	 * If we already own the lock, then we must be page faulting
3159 	 * in the middle of a write to this file (i.e., we are writing
3160 	 * to this file using data from a mapped region of the file).
3161 	 */
3162 	if (!rw_owner(&zp->z_map_lock)) {
3163 		rw_enter(&zp->z_map_lock, RW_WRITER);
3164 		need_unlock = TRUE;
3165 	}
3166 
3167 	/*
3168 	 * Loop through the requested range [off, off + len] looking
3169 	 * for pages.  If we don't find a page, we will need to create
3170 	 * a new page and fill it with data from the file.
3171 	 */
3172 	while (len > 0) {
3173 		if (plsz < PAGESIZE)
3174 			break;
3175 		if (pp = page_lookup(vp, off, SE_SHARED)) {
3176 			*pl++ = pp;
3177 			off += PAGESIZE;
3178 			addr += PAGESIZE;
3179 			len -= PAGESIZE;
3180 			plsz -= PAGESIZE;
3181 		} else {
3182 			err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw);
3183 			/*
3184 			 * klustering may have changed our region
3185 			 * to be block aligned.
3186 			 */
3187 			if (((pp = *pl) != 0) && (off != pp->p_offset)) {
3188 				int delta = off - pp->p_offset;
3189 				len += delta;
3190 				off -= delta;
3191 				addr -= delta;
3192 			}
3193 			while (*pl) {
3194 				pl++;
3195 				cnt++;
3196 				off += PAGESIZE;
3197 				addr += PAGESIZE;
3198 				plsz -= PAGESIZE;
3199 				if (len > PAGESIZE)
3200 					len -= PAGESIZE;
3201 				else
3202 					len = 0;
3203 			}
3204 		}
3205 		if (err)
3206 			goto out;
3207 	}
3208 
3209 	/*
3210 	 * Fill out the page array with any pages already in the cache.
3211 	 */
3212 	while (plsz > 0) {
3213 		pp = page_lookup_nowait(vp, off, SE_SHARED);
3214 		if (pp == NULL)
3215 			break;
3216 		*pl++ = pp;
3217 		off += PAGESIZE;
3218 		plsz -= PAGESIZE;
3219 	}
3220 
3221 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3222 out:
3223 	if (err) {
3224 		/*
3225 		 * Release any pages we have locked.
3226 		 */
3227 		while (pl > pl0)
3228 			page_unlock(*--pl);
3229 	}
3230 	*pl = NULL;
3231 
3232 	if (need_unlock)
3233 		rw_exit(&zp->z_map_lock);
3234 	rw_exit(&zp->z_grow_lock);
3235 
3236 	ZFS_EXIT(zfsvfs);
3237 	return (err);
3238 }
3239 
3240 static int
3241 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
3242     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr)
3243 {
3244 	znode_t *zp = VTOZ(vp);
3245 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3246 	segvn_crargs_t	vn_a;
3247 	int		error;
3248 
3249 	ZFS_ENTER(zfsvfs);
3250 
3251 	if (vp->v_flag & VNOMAP) {
3252 		ZFS_EXIT(zfsvfs);
3253 		return (ENOSYS);
3254 	}
3255 
3256 	if (off < 0 || len > MAXOFFSET_T - off) {
3257 		ZFS_EXIT(zfsvfs);
3258 		return (ENXIO);
3259 	}
3260 
3261 	if (vp->v_type != VREG) {
3262 		ZFS_EXIT(zfsvfs);
3263 		return (ENODEV);
3264 	}
3265 
3266 	/*
3267 	 * If file is locked, disallow mapping.
3268 	 * XXX - since we don't modify z_mapcnt here, there is nothing
3269 	 * to stop a file lock being placed immediately after we complete
3270 	 * this check.
3271 	 */
3272 	if (MANDMODE((mode_t)zp->z_phys->zp_mode)) {
3273 		if (vn_has_flocks(vp) || zp->z_mapcnt == -1) {
3274 			ZFS_EXIT(zfsvfs);
3275 			return (EAGAIN);
3276 		}
3277 	}
3278 
3279 	as_rangelock(as);
3280 	if ((flags & MAP_FIXED) == 0) {
3281 		map_addr(addrp, len, off, 1, flags);
3282 		if (*addrp == NULL) {
3283 			as_rangeunlock(as);
3284 			ZFS_EXIT(zfsvfs);
3285 			return (ENOMEM);
3286 		}
3287 	} else {
3288 		/*
3289 		 * User specified address - blow away any previous mappings
3290 		 */
3291 		(void) as_unmap(as, *addrp, len);
3292 	}
3293 
3294 	vn_a.vp = vp;
3295 	vn_a.offset = (u_offset_t)off;
3296 	vn_a.type = flags & MAP_TYPE;
3297 	vn_a.prot = prot;
3298 	vn_a.maxprot = maxprot;
3299 	vn_a.cred = cr;
3300 	vn_a.amp = NULL;
3301 	vn_a.flags = flags & ~MAP_TYPE;
3302 	vn_a.szc = 0;
3303 	vn_a.lgrp_mem_policy_flags = 0;
3304 
3305 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
3306 
3307 	as_rangeunlock(as);
3308 	ZFS_EXIT(zfsvfs);
3309 	return (error);
3310 }
3311 
3312 /* ARGSUSED */
3313 static int
3314 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
3315     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr)
3316 {
3317 	/*
3318 	 * XXX - shouldn't we be checking for file locks here?
3319 	 */
3320 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, 0);
3321 	atomic_add_32(&VTOZ(vp)->z_mapcnt, btopr(len));
3322 	return (0);
3323 }
3324 
3325 /* ARGSUSED */
3326 static int
3327 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
3328     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr)
3329 {
3330 	atomic_add_32(&VTOZ(vp)->z_mapcnt, -btopr(len));
3331 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, 0);
3332 	return (0);
3333 }
3334 
3335 /*
3336  * Free or allocate space in a file.  Currently, this function only
3337  * supports the `F_FREESP' command.  However, this command is somewhat
3338  * misnamed, as its functionality includes the ability to allocate as
3339  * well as free space.
3340  *
3341  *	IN:	vp	- vnode of file to free data in.
3342  *		cmd	- action to take (only F_FREESP supported).
3343  *		bfp	- section of file to free/alloc.
3344  *		flag	- current file open mode flags.
3345  *		offset	- current file offset.
3346  *		cr	- credentials of caller [UNUSED].
3347  *
3348  *	RETURN:	0 if success
3349  *		error code if failure
3350  *
3351  * Timestamps:
3352  *	vp - ctime|mtime updated
3353  *
3354  * NOTE: This function is limited in that it will only permit space to
3355  *   be freed at the end of a file.  In essence, this function simply
3356  *   allows one to set the file size.
3357  */
3358 /* ARGSUSED */
3359 static int
3360 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
3361     offset_t offset, cred_t *cr, caller_context_t *ct)
3362 {
3363 	dmu_tx_t	*tx;
3364 	znode_t		*zp = VTOZ(vp);
3365 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3366 	zilog_t		*zilog = zfsvfs->z_log;
3367 	uint64_t	seq = 0;
3368 	uint64_t	off, len;
3369 	int		error;
3370 
3371 	ZFS_ENTER(zfsvfs);
3372 
3373 top:
3374 	if (cmd != F_FREESP) {
3375 		ZFS_EXIT(zfsvfs);
3376 		return (EINVAL);
3377 	}
3378 
3379 	if (error = convoff(vp, bfp, 0, offset)) {
3380 		ZFS_EXIT(zfsvfs);
3381 		return (error);
3382 	}
3383 
3384 	if (bfp->l_len < 0) {
3385 		ZFS_EXIT(zfsvfs);
3386 		return (EINVAL);
3387 	}
3388 
3389 	off = bfp->l_start;
3390 	len = bfp->l_len;
3391 	tx = dmu_tx_create(zfsvfs->z_os);
3392 	/*
3393 	 * Grab the grow_lock to serialize this change with
3394 	 * respect to other file size changes.
3395 	 */
3396 	dmu_tx_hold_bonus(tx, zp->z_id);
3397 	rw_enter(&zp->z_grow_lock, RW_WRITER);
3398 	if (off + len > zp->z_blksz && zp->z_blksz < zfsvfs->z_max_blksz &&
3399 	    off >= zp->z_phys->zp_size) {
3400 		/*
3401 		 * We are increasing the length of the file,
3402 		 * and this may mean a block size increase.
3403 		 */
3404 		dmu_tx_hold_write(tx, zp->z_id, 0,
3405 		    MIN(off + len, zfsvfs->z_max_blksz));
3406 	} else if (off < zp->z_phys->zp_size) {
3407 		/*
3408 		 * If len == 0, we are truncating the file.
3409 		 */
3410 		dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END);
3411 	}
3412 
3413 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
3414 	if (error) {
3415 		dmu_tx_abort(tx);
3416 		rw_exit(&zp->z_grow_lock);
3417 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
3418 			txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0);
3419 			goto top;
3420 		}
3421 		ZFS_EXIT(zfsvfs);
3422 		return (error);
3423 	}
3424 
3425 	error = zfs_freesp(zp, off, len, flag, tx, cr);
3426 
3427 	if (error == 0) {
3428 		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
3429 		seq = zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
3430 	}
3431 
3432 	rw_exit(&zp->z_grow_lock);
3433 
3434 	dmu_tx_commit(tx);
3435 
3436 	zil_commit(zilog, seq, 0);
3437 
3438 	ZFS_EXIT(zfsvfs);
3439 	return (error);
3440 }
3441 
3442 static int
3443 zfs_fid(vnode_t *vp, fid_t *fidp)
3444 {
3445 	znode_t		*zp = VTOZ(vp);
3446 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3447 	uint32_t	gen = (uint32_t)zp->z_phys->zp_gen;
3448 	uint64_t	object = zp->z_id;
3449 	zfid_short_t	*zfid;
3450 	int		size, i;
3451 
3452 	ZFS_ENTER(zfsvfs);
3453 
3454 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
3455 	if (fidp->fid_len < size) {
3456 		fidp->fid_len = size;
3457 		return (ENOSPC);
3458 	}
3459 
3460 	zfid = (zfid_short_t *)fidp;
3461 
3462 	zfid->zf_len = size;
3463 
3464 	for (i = 0; i < sizeof (zfid->zf_object); i++)
3465 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
3466 
3467 	/* Must have a non-zero generation number to distinguish from .zfs */
3468 	if (gen == 0)
3469 		gen = 1;
3470 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
3471 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
3472 
3473 	if (size == LONG_FID_LEN) {
3474 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
3475 		zfid_long_t	*zlfid;
3476 
3477 		zlfid = (zfid_long_t *)fidp;
3478 
3479 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
3480 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
3481 
3482 		/* XXX - this should be the generation number for the objset */
3483 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
3484 			zlfid->zf_setgen[i] = 0;
3485 	}
3486 
3487 	ZFS_EXIT(zfsvfs);
3488 	return (0);
3489 }
3490 
3491 static int
3492 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr)
3493 {
3494 	znode_t		*zp, *xzp;
3495 	zfsvfs_t	*zfsvfs;
3496 	zfs_dirlock_t	*dl;
3497 	int		error;
3498 
3499 	switch (cmd) {
3500 	case _PC_LINK_MAX:
3501 		*valp = ULONG_MAX;
3502 		return (0);
3503 
3504 	case _PC_FILESIZEBITS:
3505 		*valp = 64;
3506 		return (0);
3507 
3508 	case _PC_XATTR_EXISTS:
3509 		zp = VTOZ(vp);
3510 		zfsvfs = zp->z_zfsvfs;
3511 		ZFS_ENTER(zfsvfs);
3512 		*valp = 0;
3513 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
3514 		    ZXATTR | ZEXISTS | ZSHARED);
3515 		if (error == 0) {
3516 			zfs_dirent_unlock(dl);
3517 			if (!zfs_dirempty(xzp))
3518 				*valp = 1;
3519 			VN_RELE(ZTOV(xzp));
3520 		} else if (error == ENOENT) {
3521 			/*
3522 			 * If there aren't extended attributes, it's the
3523 			 * same as having zero of them.
3524 			 */
3525 			error = 0;
3526 		}
3527 		ZFS_EXIT(zfsvfs);
3528 		return (error);
3529 
3530 	case _PC_ACL_ENABLED:
3531 		*valp = _ACL_ACE_ENABLED;
3532 		return (0);
3533 
3534 	case _PC_MIN_HOLE_SIZE:
3535 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
3536 		return (0);
3537 
3538 	default:
3539 		return (fs_pathconf(vp, cmd, valp, cr));
3540 	}
3541 }
3542 
3543 /*ARGSUSED*/
3544 static int
3545 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr)
3546 {
3547 	znode_t *zp = VTOZ(vp);
3548 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3549 	int error;
3550 
3551 	ZFS_ENTER(zfsvfs);
3552 	error = zfs_getacl(zp, vsecp, cr);
3553 	ZFS_EXIT(zfsvfs);
3554 
3555 	return (error);
3556 }
3557 
3558 /*ARGSUSED*/
3559 static int
3560 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr)
3561 {
3562 	znode_t *zp = VTOZ(vp);
3563 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3564 	int error;
3565 
3566 	ZFS_ENTER(zfsvfs);
3567 	error = zfs_setacl(zp, vsecp, cr);
3568 	ZFS_EXIT(zfsvfs);
3569 	return (error);
3570 }
3571 
3572 /*
3573  * Predeclare these here so that the compiler assumes that
3574  * this is an "old style" function declaration that does
3575  * not include arguments => we won't get type mismatch errors
3576  * in the initializations that follow.
3577  */
3578 static int zfs_inval();
3579 static int zfs_isdir();
3580 
3581 static int
3582 zfs_inval()
3583 {
3584 	return (EINVAL);
3585 }
3586 
3587 static int
3588 zfs_isdir()
3589 {
3590 	return (EISDIR);
3591 }
3592 /*
3593  * Directory vnode operations template
3594  */
3595 vnodeops_t *zfs_dvnodeops;
3596 const fs_operation_def_t zfs_dvnodeops_template[] = {
3597 	VOPNAME_OPEN, zfs_open,
3598 	VOPNAME_CLOSE, zfs_close,
3599 	VOPNAME_READ, zfs_isdir,
3600 	VOPNAME_WRITE, zfs_isdir,
3601 	VOPNAME_IOCTL, zfs_ioctl,
3602 	VOPNAME_GETATTR, zfs_getattr,
3603 	VOPNAME_SETATTR, zfs_setattr,
3604 	VOPNAME_ACCESS, zfs_access,
3605 	VOPNAME_LOOKUP, zfs_lookup,
3606 	VOPNAME_CREATE, zfs_create,
3607 	VOPNAME_REMOVE, zfs_remove,
3608 	VOPNAME_LINK, zfs_link,
3609 	VOPNAME_RENAME, zfs_rename,
3610 	VOPNAME_MKDIR, zfs_mkdir,
3611 	VOPNAME_RMDIR, zfs_rmdir,
3612 	VOPNAME_READDIR, zfs_readdir,
3613 	VOPNAME_SYMLINK, zfs_symlink,
3614 	VOPNAME_FSYNC, zfs_fsync,
3615 	VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
3616 	VOPNAME_FID, zfs_fid,
3617 	VOPNAME_SEEK, zfs_seek,
3618 	VOPNAME_PATHCONF, zfs_pathconf,
3619 	VOPNAME_GETSECATTR, zfs_getsecattr,
3620 	VOPNAME_SETSECATTR, zfs_setsecattr,
3621 	NULL, NULL
3622 };
3623 
3624 /*
3625  * Regular file vnode operations template
3626  */
3627 vnodeops_t *zfs_fvnodeops;
3628 const fs_operation_def_t zfs_fvnodeops_template[] = {
3629 	VOPNAME_OPEN, zfs_open,
3630 	VOPNAME_CLOSE, zfs_close,
3631 	VOPNAME_READ, zfs_read,
3632 	VOPNAME_WRITE, zfs_write,
3633 	VOPNAME_IOCTL, zfs_ioctl,
3634 	VOPNAME_GETATTR, zfs_getattr,
3635 	VOPNAME_SETATTR, zfs_setattr,
3636 	VOPNAME_ACCESS, zfs_access,
3637 	VOPNAME_LOOKUP, zfs_lookup,
3638 	VOPNAME_RENAME, zfs_rename,
3639 	VOPNAME_FSYNC, zfs_fsync,
3640 	VOPNAME_INACTIVE, (fs_generic_func_p)zfs_inactive,
3641 	VOPNAME_FID, zfs_fid,
3642 	VOPNAME_SEEK, zfs_seek,
3643 	VOPNAME_FRLOCK, zfs_frlock,
3644 	VOPNAME_SPACE, zfs_space,
3645 	VOPNAME_GETPAGE, zfs_getpage,
3646 	VOPNAME_PUTPAGE, zfs_putpage,
3647 	VOPNAME_MAP, (fs_generic_func_p) zfs_map,
3648 	VOPNAME_ADDMAP, (fs_generic_func_p) zfs_addmap,
3649 	VOPNAME_DELMAP, zfs_delmap,
3650 	VOPNAME_PATHCONF, zfs_pathconf,
3651 	VOPNAME_GETSECATTR, zfs_getsecattr,
3652 	VOPNAME_SETSECATTR, zfs_setsecattr,
3653 	VOPNAME_VNEVENT, fs_vnevent_support,
3654 	NULL, NULL
3655 };
3656 
3657 /*
3658  * Symbolic link vnode operations template
3659  */
3660 vnodeops_t *zfs_symvnodeops;
3661 const fs_operation_def_t zfs_symvnodeops_template[] = {
3662 	VOPNAME_GETATTR, zfs_getattr,
3663 	VOPNAME_SETATTR, zfs_setattr,
3664 	VOPNAME_ACCESS, zfs_access,
3665 	VOPNAME_RENAME, zfs_rename,
3666 	VOPNAME_READLINK, zfs_readlink,
3667 	VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
3668 	VOPNAME_FID, zfs_fid,
3669 	VOPNAME_PATHCONF, zfs_pathconf,
3670 	VOPNAME_VNEVENT, fs_vnevent_support,
3671 	NULL, NULL
3672 };
3673 
3674 /*
3675  * Extended attribute directory vnode operations template
3676  *	This template is identical to the directory vnodes
3677  *	operation template except for restricted operations:
3678  *		VOP_MKDIR()
3679  *		VOP_SYMLINK()
3680  * Note that there are other restrictions embedded in:
3681  *	zfs_create()	- restrict type to VREG
3682  *	zfs_link()	- no links into/out of attribute space
3683  *	zfs_rename()	- no moves into/out of attribute space
3684  */
3685 vnodeops_t *zfs_xdvnodeops;
3686 const fs_operation_def_t zfs_xdvnodeops_template[] = {
3687 	VOPNAME_OPEN, zfs_open,
3688 	VOPNAME_CLOSE, zfs_close,
3689 	VOPNAME_IOCTL, zfs_ioctl,
3690 	VOPNAME_GETATTR, zfs_getattr,
3691 	VOPNAME_SETATTR, zfs_setattr,
3692 	VOPNAME_ACCESS, zfs_access,
3693 	VOPNAME_LOOKUP, zfs_lookup,
3694 	VOPNAME_CREATE, zfs_create,
3695 	VOPNAME_REMOVE, zfs_remove,
3696 	VOPNAME_LINK, zfs_link,
3697 	VOPNAME_RENAME, zfs_rename,
3698 	VOPNAME_MKDIR, zfs_inval,
3699 	VOPNAME_RMDIR, zfs_rmdir,
3700 	VOPNAME_READDIR, zfs_readdir,
3701 	VOPNAME_SYMLINK, zfs_inval,
3702 	VOPNAME_FSYNC, zfs_fsync,
3703 	VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
3704 	VOPNAME_FID, zfs_fid,
3705 	VOPNAME_SEEK, zfs_seek,
3706 	VOPNAME_PATHCONF, zfs_pathconf,
3707 	VOPNAME_GETSECATTR, zfs_getsecattr,
3708 	VOPNAME_SETSECATTR, zfs_setsecattr,
3709 	VOPNAME_VNEVENT, fs_vnevent_support,
3710 	NULL, NULL
3711 };
3712 
3713 /*
3714  * Error vnode operations template
3715  */
3716 vnodeops_t *zfs_evnodeops;
3717 const fs_operation_def_t zfs_evnodeops_template[] = {
3718 	VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive,
3719 	VOPNAME_PATHCONF, zfs_pathconf,
3720 	NULL, NULL
3721 };
3722