1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include "fs/fs_subr.h" 69 #include <sys/zfs_ctldir.h> 70 #include <sys/zfs_fuid.h> 71 #include <sys/dnlc.h> 72 #include <sys/zfs_rlock.h> 73 #include <sys/extdirent.h> 74 #include <sys/kidmap.h> 75 #include <sys/cred_impl.h> 76 #include <sys/attr.h> 77 78 /* 79 * Programming rules. 80 * 81 * Each vnode op performs some logical unit of work. To do this, the ZPL must 82 * properly lock its in-core state, create a DMU transaction, do the work, 83 * record this work in the intent log (ZIL), commit the DMU transaction, 84 * and wait for the intent log to commit if it is a synchronous operation. 85 * Moreover, the vnode ops must work in both normal and log replay context. 86 * The ordering of events is important to avoid deadlocks and references 87 * to freed memory. The example below illustrates the following Big Rules: 88 * 89 * (1) A check must be made in each zfs thread for a mounted file system. 90 * This is done avoiding races using ZFS_ENTER(zfsvfs). 91 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 92 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 93 * can return EIO from the calling function. 94 * 95 * (2) VN_RELE() should always be the last thing except for zil_commit() 96 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 97 * First, if it's the last reference, the vnode/znode 98 * can be freed, so the zp may point to freed memory. Second, the last 99 * reference will call zfs_zinactive(), which may induce a lot of work -- 100 * pushing cached pages (which acquires range locks) and syncing out 101 * cached atime changes. Third, zfs_zinactive() may require a new tx, 102 * which could deadlock the system if you were already holding one. 103 * 104 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 105 * as they can span dmu_tx_assign() calls. 106 * 107 * (4) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 108 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 109 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 110 * This is critical because we don't want to block while holding locks. 111 * Note, in particular, that if a lock is sometimes acquired before 112 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 113 * use a non-blocking assign can deadlock the system. The scenario: 114 * 115 * Thread A has grabbed a lock before calling dmu_tx_assign(). 116 * Thread B is in an already-assigned tx, and blocks for this lock. 117 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 118 * forever, because the previous txg can't quiesce until B's tx commits. 119 * 120 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 121 * then drop all locks, call dmu_tx_wait(), and try again. 122 * 123 * (5) If the operation succeeded, generate the intent log entry for it 124 * before dropping locks. This ensures that the ordering of events 125 * in the intent log matches the order in which they actually occurred. 126 * 127 * (6) At the end of each vnode op, the DMU tx must always commit, 128 * regardless of whether there were any errors. 129 * 130 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 131 * to ensure that synchronous semantics are provided when necessary. 132 * 133 * In general, this is how things should be ordered in each vnode op: 134 * 135 * ZFS_ENTER(zfsvfs); // exit if unmounted 136 * top: 137 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 138 * rw_enter(...); // grab any other locks you need 139 * tx = dmu_tx_create(...); // get DMU tx 140 * dmu_tx_hold_*(); // hold each object you might modify 141 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 142 * if (error) { 143 * rw_exit(...); // drop locks 144 * zfs_dirent_unlock(dl); // unlock directory entry 145 * VN_RELE(...); // release held vnodes 146 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 147 * dmu_tx_wait(tx); 148 * dmu_tx_abort(tx); 149 * goto top; 150 * } 151 * dmu_tx_abort(tx); // abort DMU tx 152 * ZFS_EXIT(zfsvfs); // finished in zfs 153 * return (error); // really out of space 154 * } 155 * error = do_real_work(); // do whatever this VOP does 156 * if (error == 0) 157 * zfs_log_*(...); // on success, make ZIL entry 158 * dmu_tx_commit(tx); // commit DMU tx -- error or not 159 * rw_exit(...); // drop locks 160 * zfs_dirent_unlock(dl); // unlock directory entry 161 * VN_RELE(...); // release held vnodes 162 * zil_commit(zilog, seq, foid); // synchronous when necessary 163 * ZFS_EXIT(zfsvfs); // finished in zfs 164 * return (error); // done, report error 165 */ 166 167 /* ARGSUSED */ 168 static int 169 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 170 { 171 znode_t *zp = VTOZ(*vpp); 172 173 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 174 ((flag & FAPPEND) == 0)) { 175 return (EPERM); 176 } 177 178 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 179 ZTOV(zp)->v_type == VREG && 180 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 181 zp->z_phys->zp_size > 0) 182 if (fs_vscan(*vpp, cr, 0) != 0) 183 return (EACCES); 184 185 /* Keep a count of the synchronous opens in the znode */ 186 if (flag & (FSYNC | FDSYNC)) 187 atomic_inc_32(&zp->z_sync_cnt); 188 189 return (0); 190 } 191 192 /* ARGSUSED */ 193 static int 194 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 195 caller_context_t *ct) 196 { 197 znode_t *zp = VTOZ(vp); 198 199 /* Decrement the synchronous opens in the znode */ 200 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 201 atomic_dec_32(&zp->z_sync_cnt); 202 203 /* 204 * Clean up any locks held by this process on the vp. 205 */ 206 cleanlocks(vp, ddi_get_pid(), 0); 207 cleanshares(vp, ddi_get_pid()); 208 209 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 210 ZTOV(zp)->v_type == VREG && 211 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 212 zp->z_phys->zp_size > 0) 213 VERIFY(fs_vscan(vp, cr, 1) == 0); 214 215 return (0); 216 } 217 218 /* 219 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 220 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 221 */ 222 static int 223 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 224 { 225 znode_t *zp = VTOZ(vp); 226 uint64_t noff = (uint64_t)*off; /* new offset */ 227 uint64_t file_sz; 228 int error; 229 boolean_t hole; 230 231 file_sz = zp->z_phys->zp_size; 232 if (noff >= file_sz) { 233 return (ENXIO); 234 } 235 236 if (cmd == _FIO_SEEK_HOLE) 237 hole = B_TRUE; 238 else 239 hole = B_FALSE; 240 241 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 242 243 /* end of file? */ 244 if ((error == ESRCH) || (noff > file_sz)) { 245 /* 246 * Handle the virtual hole at the end of file. 247 */ 248 if (hole) { 249 *off = file_sz; 250 return (0); 251 } 252 return (ENXIO); 253 } 254 255 if (noff < *off) 256 return (error); 257 *off = noff; 258 return (error); 259 } 260 261 /* ARGSUSED */ 262 static int 263 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 264 int *rvalp, caller_context_t *ct) 265 { 266 offset_t off; 267 int error; 268 zfsvfs_t *zfsvfs; 269 znode_t *zp; 270 271 switch (com) { 272 case _FIOFFS: 273 return (zfs_sync(vp->v_vfsp, 0, cred)); 274 275 /* 276 * The following two ioctls are used by bfu. Faking out, 277 * necessary to avoid bfu errors. 278 */ 279 case _FIOGDIO: 280 case _FIOSDIO: 281 return (0); 282 283 case _FIO_SEEK_DATA: 284 case _FIO_SEEK_HOLE: 285 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 286 return (EFAULT); 287 288 zp = VTOZ(vp); 289 zfsvfs = zp->z_zfsvfs; 290 ZFS_ENTER(zfsvfs); 291 ZFS_VERIFY_ZP(zp); 292 293 /* offset parameter is in/out */ 294 error = zfs_holey(vp, com, &off); 295 ZFS_EXIT(zfsvfs); 296 if (error) 297 return (error); 298 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 299 return (EFAULT); 300 return (0); 301 } 302 return (ENOTTY); 303 } 304 305 /* 306 * When a file is memory mapped, we must keep the IO data synchronized 307 * between the DMU cache and the memory mapped pages. What this means: 308 * 309 * On Write: If we find a memory mapped page, we write to *both* 310 * the page and the dmu buffer. 311 * 312 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 313 * the file is memory mapped. 314 */ 315 static int 316 mappedwrite(vnode_t *vp, int nbytes, uio_t *uio, dmu_tx_t *tx) 317 { 318 znode_t *zp = VTOZ(vp); 319 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 320 int64_t start, off; 321 int len = nbytes; 322 int error = 0; 323 324 start = uio->uio_loffset; 325 off = start & PAGEOFFSET; 326 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 327 page_t *pp; 328 uint64_t bytes = MIN(PAGESIZE - off, len); 329 uint64_t woff = uio->uio_loffset; 330 331 /* 332 * We don't want a new page to "appear" in the middle of 333 * the file update (because it may not get the write 334 * update data), so we grab a lock to block 335 * zfs_getpage(). 336 */ 337 rw_enter(&zp->z_map_lock, RW_WRITER); 338 if (pp = page_lookup(vp, start, SE_SHARED)) { 339 caddr_t va; 340 341 rw_exit(&zp->z_map_lock); 342 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 343 error = uiomove(va+off, bytes, UIO_WRITE, uio); 344 if (error == 0) { 345 dmu_write(zfsvfs->z_os, zp->z_id, 346 woff, bytes, va+off, tx); 347 } 348 ppmapout(va); 349 page_unlock(pp); 350 } else { 351 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 352 uio, bytes, tx); 353 rw_exit(&zp->z_map_lock); 354 } 355 len -= bytes; 356 off = 0; 357 if (error) 358 break; 359 } 360 return (error); 361 } 362 363 /* 364 * When a file is memory mapped, we must keep the IO data synchronized 365 * between the DMU cache and the memory mapped pages. What this means: 366 * 367 * On Read: We "read" preferentially from memory mapped pages, 368 * else we default from the dmu buffer. 369 * 370 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 371 * the file is memory mapped. 372 */ 373 static int 374 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 375 { 376 znode_t *zp = VTOZ(vp); 377 objset_t *os = zp->z_zfsvfs->z_os; 378 int64_t start, off; 379 int len = nbytes; 380 int error = 0; 381 382 start = uio->uio_loffset; 383 off = start & PAGEOFFSET; 384 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 385 page_t *pp; 386 uint64_t bytes = MIN(PAGESIZE - off, len); 387 388 if (pp = page_lookup(vp, start, SE_SHARED)) { 389 caddr_t va; 390 391 va = ppmapin(pp, PROT_READ, (caddr_t)-1L); 392 error = uiomove(va + off, bytes, UIO_READ, uio); 393 ppmapout(va); 394 page_unlock(pp); 395 } else { 396 error = dmu_read_uio(os, zp->z_id, uio, bytes); 397 } 398 len -= bytes; 399 off = 0; 400 if (error) 401 break; 402 } 403 return (error); 404 } 405 406 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 407 408 /* 409 * Read bytes from specified file into supplied buffer. 410 * 411 * IN: vp - vnode of file to be read from. 412 * uio - structure supplying read location, range info, 413 * and return buffer. 414 * ioflag - SYNC flags; used to provide FRSYNC semantics. 415 * cr - credentials of caller. 416 * ct - caller context 417 * 418 * OUT: uio - updated offset and range, buffer filled. 419 * 420 * RETURN: 0 if success 421 * error code if failure 422 * 423 * Side Effects: 424 * vp - atime updated if byte count > 0 425 */ 426 /* ARGSUSED */ 427 static int 428 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 429 { 430 znode_t *zp = VTOZ(vp); 431 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 432 objset_t *os; 433 ssize_t n, nbytes; 434 int error; 435 rl_t *rl; 436 437 ZFS_ENTER(zfsvfs); 438 ZFS_VERIFY_ZP(zp); 439 os = zfsvfs->z_os; 440 441 if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) { 442 ZFS_EXIT(zfsvfs); 443 return (EACCES); 444 } 445 446 /* 447 * Validate file offset 448 */ 449 if (uio->uio_loffset < (offset_t)0) { 450 ZFS_EXIT(zfsvfs); 451 return (EINVAL); 452 } 453 454 /* 455 * Fasttrack empty reads 456 */ 457 if (uio->uio_resid == 0) { 458 ZFS_EXIT(zfsvfs); 459 return (0); 460 } 461 462 /* 463 * Check for mandatory locks 464 */ 465 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 466 if (error = chklock(vp, FREAD, 467 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 468 ZFS_EXIT(zfsvfs); 469 return (error); 470 } 471 } 472 473 /* 474 * If we're in FRSYNC mode, sync out this znode before reading it. 475 */ 476 if (ioflag & FRSYNC) 477 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 478 479 /* 480 * Lock the range against changes. 481 */ 482 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 483 484 /* 485 * If we are reading past end-of-file we can skip 486 * to the end; but we might still need to set atime. 487 */ 488 if (uio->uio_loffset >= zp->z_phys->zp_size) { 489 error = 0; 490 goto out; 491 } 492 493 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 494 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 495 496 while (n > 0) { 497 nbytes = MIN(n, zfs_read_chunk_size - 498 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 499 500 if (vn_has_cached_data(vp)) 501 error = mappedread(vp, nbytes, uio); 502 else 503 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 504 if (error) 505 break; 506 507 n -= nbytes; 508 } 509 510 out: 511 zfs_range_unlock(rl); 512 513 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 514 ZFS_EXIT(zfsvfs); 515 return (error); 516 } 517 518 /* 519 * Fault in the pages of the first n bytes specified by the uio structure. 520 * 1 byte in each page is touched and the uio struct is unmodified. 521 * Any error will exit this routine as this is only a best 522 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 523 */ 524 static void 525 zfs_prefault_write(ssize_t n, struct uio *uio) 526 { 527 struct iovec *iov; 528 ulong_t cnt, incr; 529 caddr_t p; 530 uint8_t tmp; 531 532 iov = uio->uio_iov; 533 534 while (n) { 535 cnt = MIN(iov->iov_len, n); 536 if (cnt == 0) { 537 /* empty iov entry */ 538 iov++; 539 continue; 540 } 541 n -= cnt; 542 /* 543 * touch each page in this segment. 544 */ 545 p = iov->iov_base; 546 while (cnt) { 547 switch (uio->uio_segflg) { 548 case UIO_USERSPACE: 549 case UIO_USERISPACE: 550 if (fuword8(p, &tmp)) 551 return; 552 break; 553 case UIO_SYSSPACE: 554 if (kcopy(p, &tmp, 1)) 555 return; 556 break; 557 } 558 incr = MIN(cnt, PAGESIZE); 559 p += incr; 560 cnt -= incr; 561 } 562 /* 563 * touch the last byte in case it straddles a page. 564 */ 565 p--; 566 switch (uio->uio_segflg) { 567 case UIO_USERSPACE: 568 case UIO_USERISPACE: 569 if (fuword8(p, &tmp)) 570 return; 571 break; 572 case UIO_SYSSPACE: 573 if (kcopy(p, &tmp, 1)) 574 return; 575 break; 576 } 577 iov++; 578 } 579 } 580 581 /* 582 * Write the bytes to a file. 583 * 584 * IN: vp - vnode of file to be written to. 585 * uio - structure supplying write location, range info, 586 * and data buffer. 587 * ioflag - FAPPEND flag set if in append mode. 588 * cr - credentials of caller. 589 * ct - caller context (NFS/CIFS fem monitor only) 590 * 591 * OUT: uio - updated offset and range. 592 * 593 * RETURN: 0 if success 594 * error code if failure 595 * 596 * Timestamps: 597 * vp - ctime|mtime updated if byte count > 0 598 */ 599 /* ARGSUSED */ 600 static int 601 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 602 { 603 znode_t *zp = VTOZ(vp); 604 rlim64_t limit = uio->uio_llimit; 605 ssize_t start_resid = uio->uio_resid; 606 ssize_t tx_bytes; 607 uint64_t end_size; 608 dmu_tx_t *tx; 609 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 610 zilog_t *zilog; 611 offset_t woff; 612 ssize_t n, nbytes; 613 rl_t *rl; 614 int max_blksz = zfsvfs->z_max_blksz; 615 uint64_t pflags; 616 int error; 617 618 /* 619 * Fasttrack empty write 620 */ 621 n = start_resid; 622 if (n == 0) 623 return (0); 624 625 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 626 limit = MAXOFFSET_T; 627 628 ZFS_ENTER(zfsvfs); 629 ZFS_VERIFY_ZP(zp); 630 631 /* 632 * If immutable or not appending then return EPERM 633 */ 634 pflags = zp->z_phys->zp_flags; 635 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 636 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 637 (uio->uio_loffset < zp->z_phys->zp_size))) { 638 ZFS_EXIT(zfsvfs); 639 return (EPERM); 640 } 641 642 zilog = zfsvfs->z_log; 643 644 /* 645 * Pre-fault the pages to ensure slow (eg NFS) pages 646 * don't hold up txg. 647 */ 648 zfs_prefault_write(n, uio); 649 650 /* 651 * If in append mode, set the io offset pointer to eof. 652 */ 653 if (ioflag & FAPPEND) { 654 /* 655 * Range lock for a file append: 656 * The value for the start of range will be determined by 657 * zfs_range_lock() (to guarantee append semantics). 658 * If this write will cause the block size to increase, 659 * zfs_range_lock() will lock the entire file, so we must 660 * later reduce the range after we grow the block size. 661 */ 662 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 663 if (rl->r_len == UINT64_MAX) { 664 /* overlocked, zp_size can't change */ 665 woff = uio->uio_loffset = zp->z_phys->zp_size; 666 } else { 667 woff = uio->uio_loffset = rl->r_off; 668 } 669 } else { 670 woff = uio->uio_loffset; 671 /* 672 * Validate file offset 673 */ 674 if (woff < 0) { 675 ZFS_EXIT(zfsvfs); 676 return (EINVAL); 677 } 678 679 /* 680 * If we need to grow the block size then zfs_range_lock() 681 * will lock a wider range than we request here. 682 * Later after growing the block size we reduce the range. 683 */ 684 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 685 } 686 687 if (woff >= limit) { 688 zfs_range_unlock(rl); 689 ZFS_EXIT(zfsvfs); 690 return (EFBIG); 691 } 692 693 if ((woff + n) > limit || woff > (limit - n)) 694 n = limit - woff; 695 696 /* 697 * Check for mandatory locks 698 */ 699 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 700 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 701 zfs_range_unlock(rl); 702 ZFS_EXIT(zfsvfs); 703 return (error); 704 } 705 end_size = MAX(zp->z_phys->zp_size, woff + n); 706 707 /* 708 * Write the file in reasonable size chunks. Each chunk is written 709 * in a separate transaction; this keeps the intent log records small 710 * and allows us to do more fine-grained space accounting. 711 */ 712 while (n > 0) { 713 /* 714 * Start a transaction. 715 */ 716 woff = uio->uio_loffset; 717 tx = dmu_tx_create(zfsvfs->z_os); 718 dmu_tx_hold_bonus(tx, zp->z_id); 719 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 720 error = dmu_tx_assign(tx, zfsvfs->z_assign); 721 if (error) { 722 if (error == ERESTART && 723 zfsvfs->z_assign == TXG_NOWAIT) { 724 dmu_tx_wait(tx); 725 dmu_tx_abort(tx); 726 continue; 727 } 728 dmu_tx_abort(tx); 729 break; 730 } 731 732 /* 733 * If zfs_range_lock() over-locked we grow the blocksize 734 * and then reduce the lock range. This will only happen 735 * on the first iteration since zfs_range_reduce() will 736 * shrink down r_len to the appropriate size. 737 */ 738 if (rl->r_len == UINT64_MAX) { 739 uint64_t new_blksz; 740 741 if (zp->z_blksz > max_blksz) { 742 ASSERT(!ISP2(zp->z_blksz)); 743 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 744 } else { 745 new_blksz = MIN(end_size, max_blksz); 746 } 747 zfs_grow_blocksize(zp, new_blksz, tx); 748 zfs_range_reduce(rl, woff, n); 749 } 750 751 /* 752 * XXX - should we really limit each write to z_max_blksz? 753 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 754 */ 755 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 756 rw_enter(&zp->z_map_lock, RW_READER); 757 758 tx_bytes = uio->uio_resid; 759 if (vn_has_cached_data(vp)) { 760 rw_exit(&zp->z_map_lock); 761 error = mappedwrite(vp, nbytes, uio, tx); 762 } else { 763 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 764 uio, nbytes, tx); 765 rw_exit(&zp->z_map_lock); 766 } 767 tx_bytes -= uio->uio_resid; 768 769 /* 770 * If we made no progress, we're done. If we made even 771 * partial progress, update the znode and ZIL accordingly. 772 */ 773 if (tx_bytes == 0) { 774 dmu_tx_commit(tx); 775 ASSERT(error != 0); 776 break; 777 } 778 779 /* 780 * Clear Set-UID/Set-GID bits on successful write if not 781 * privileged and at least one of the excute bits is set. 782 * 783 * It would be nice to to this after all writes have 784 * been done, but that would still expose the ISUID/ISGID 785 * to another app after the partial write is committed. 786 * 787 * Note: we don't call zfs_fuid_map_id() here because 788 * user 0 is not an ephemeral uid. 789 */ 790 mutex_enter(&zp->z_acl_lock); 791 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 792 (S_IXUSR >> 6))) != 0 && 793 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 794 secpolicy_vnode_setid_retain(cr, 795 (zp->z_phys->zp_mode & S_ISUID) != 0 && 796 zp->z_phys->zp_uid == 0) != 0) { 797 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 798 } 799 mutex_exit(&zp->z_acl_lock); 800 801 /* 802 * Update time stamp. NOTE: This marks the bonus buffer as 803 * dirty, so we don't have to do it again for zp_size. 804 */ 805 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 806 807 /* 808 * Update the file size (zp_size) if it has changed; 809 * account for possible concurrent updates. 810 */ 811 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 812 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 813 uio->uio_loffset); 814 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 815 dmu_tx_commit(tx); 816 817 if (error != 0) 818 break; 819 ASSERT(tx_bytes == nbytes); 820 n -= nbytes; 821 } 822 823 zfs_range_unlock(rl); 824 825 /* 826 * If we're in replay mode, or we made no progress, return error. 827 * Otherwise, it's at least a partial write, so it's successful. 828 */ 829 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 830 ZFS_EXIT(zfsvfs); 831 return (error); 832 } 833 834 if (ioflag & (FSYNC | FDSYNC)) 835 zil_commit(zilog, zp->z_last_itx, zp->z_id); 836 837 ZFS_EXIT(zfsvfs); 838 return (0); 839 } 840 841 void 842 zfs_get_done(dmu_buf_t *db, void *vzgd) 843 { 844 zgd_t *zgd = (zgd_t *)vzgd; 845 rl_t *rl = zgd->zgd_rl; 846 vnode_t *vp = ZTOV(rl->r_zp); 847 848 dmu_buf_rele(db, vzgd); 849 zfs_range_unlock(rl); 850 VN_RELE(vp); 851 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 852 kmem_free(zgd, sizeof (zgd_t)); 853 } 854 855 /* 856 * Get data to generate a TX_WRITE intent log record. 857 */ 858 int 859 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 860 { 861 zfsvfs_t *zfsvfs = arg; 862 objset_t *os = zfsvfs->z_os; 863 znode_t *zp; 864 uint64_t off = lr->lr_offset; 865 dmu_buf_t *db; 866 rl_t *rl; 867 zgd_t *zgd; 868 int dlen = lr->lr_length; /* length of user data */ 869 int error = 0; 870 871 ASSERT(zio); 872 ASSERT(dlen != 0); 873 874 /* 875 * Nothing to do if the file has been removed 876 */ 877 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 878 return (ENOENT); 879 if (zp->z_unlinked) { 880 VN_RELE(ZTOV(zp)); 881 return (ENOENT); 882 } 883 884 /* 885 * Write records come in two flavors: immediate and indirect. 886 * For small writes it's cheaper to store the data with the 887 * log record (immediate); for large writes it's cheaper to 888 * sync the data and get a pointer to it (indirect) so that 889 * we don't have to write the data twice. 890 */ 891 if (buf != NULL) { /* immediate write */ 892 rl = zfs_range_lock(zp, off, dlen, RL_READER); 893 /* test for truncation needs to be done while range locked */ 894 if (off >= zp->z_phys->zp_size) { 895 error = ENOENT; 896 goto out; 897 } 898 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf)); 899 } else { /* indirect write */ 900 uint64_t boff; /* block starting offset */ 901 902 /* 903 * Have to lock the whole block to ensure when it's 904 * written out and it's checksum is being calculated 905 * that no one can change the data. We need to re-check 906 * blocksize after we get the lock in case it's changed! 907 */ 908 for (;;) { 909 if (ISP2(zp->z_blksz)) { 910 boff = P2ALIGN_TYPED(off, zp->z_blksz, 911 uint64_t); 912 } else { 913 boff = 0; 914 } 915 dlen = zp->z_blksz; 916 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 917 if (zp->z_blksz == dlen) 918 break; 919 zfs_range_unlock(rl); 920 } 921 /* test for truncation needs to be done while range locked */ 922 if (off >= zp->z_phys->zp_size) { 923 error = ENOENT; 924 goto out; 925 } 926 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 927 zgd->zgd_rl = rl; 928 zgd->zgd_zilog = zfsvfs->z_log; 929 zgd->zgd_bp = &lr->lr_blkptr; 930 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db)); 931 ASSERT(boff == db->db_offset); 932 lr->lr_blkoff = off - boff; 933 error = dmu_sync(zio, db, &lr->lr_blkptr, 934 lr->lr_common.lrc_txg, zfs_get_done, zgd); 935 ASSERT((error && error != EINPROGRESS) || 936 lr->lr_length <= zp->z_blksz); 937 if (error == 0) 938 zil_add_block(zfsvfs->z_log, &lr->lr_blkptr); 939 /* 940 * If we get EINPROGRESS, then we need to wait for a 941 * write IO initiated by dmu_sync() to complete before 942 * we can release this dbuf. We will finish everything 943 * up in the zfs_get_done() callback. 944 */ 945 if (error == EINPROGRESS) 946 return (0); 947 dmu_buf_rele(db, zgd); 948 kmem_free(zgd, sizeof (zgd_t)); 949 } 950 out: 951 zfs_range_unlock(rl); 952 VN_RELE(ZTOV(zp)); 953 return (error); 954 } 955 956 /*ARGSUSED*/ 957 static int 958 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 959 caller_context_t *ct) 960 { 961 znode_t *zp = VTOZ(vp); 962 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 963 int error; 964 965 ZFS_ENTER(zfsvfs); 966 ZFS_VERIFY_ZP(zp); 967 968 if (flag & V_ACE_MASK) 969 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 970 else 971 error = zfs_zaccess_rwx(zp, mode, flag, cr); 972 973 ZFS_EXIT(zfsvfs); 974 return (error); 975 } 976 977 /* 978 * Lookup an entry in a directory, or an extended attribute directory. 979 * If it exists, return a held vnode reference for it. 980 * 981 * IN: dvp - vnode of directory to search. 982 * nm - name of entry to lookup. 983 * pnp - full pathname to lookup [UNUSED]. 984 * flags - LOOKUP_XATTR set if looking for an attribute. 985 * rdir - root directory vnode [UNUSED]. 986 * cr - credentials of caller. 987 * ct - caller context 988 * direntflags - directory lookup flags 989 * realpnp - returned pathname. 990 * 991 * OUT: vpp - vnode of located entry, NULL if not found. 992 * 993 * RETURN: 0 if success 994 * error code if failure 995 * 996 * Timestamps: 997 * NA 998 */ 999 /* ARGSUSED */ 1000 static int 1001 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1002 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1003 int *direntflags, pathname_t *realpnp) 1004 { 1005 znode_t *zdp = VTOZ(dvp); 1006 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1007 int error; 1008 1009 ZFS_ENTER(zfsvfs); 1010 ZFS_VERIFY_ZP(zdp); 1011 1012 *vpp = NULL; 1013 1014 if (flags & LOOKUP_XATTR) { 1015 /* 1016 * If the xattr property is off, refuse the lookup request. 1017 */ 1018 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1019 ZFS_EXIT(zfsvfs); 1020 return (EINVAL); 1021 } 1022 1023 /* 1024 * We don't allow recursive attributes.. 1025 * Maybe someday we will. 1026 */ 1027 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1028 ZFS_EXIT(zfsvfs); 1029 return (EINVAL); 1030 } 1031 1032 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1033 ZFS_EXIT(zfsvfs); 1034 return (error); 1035 } 1036 1037 /* 1038 * Do we have permission to get into attribute directory? 1039 */ 1040 1041 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1042 B_FALSE, cr)) { 1043 VN_RELE(*vpp); 1044 *vpp = NULL; 1045 } 1046 1047 ZFS_EXIT(zfsvfs); 1048 return (error); 1049 } 1050 1051 if (dvp->v_type != VDIR) { 1052 ZFS_EXIT(zfsvfs); 1053 return (ENOTDIR); 1054 } 1055 1056 /* 1057 * Check accessibility of directory. 1058 */ 1059 1060 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1061 ZFS_EXIT(zfsvfs); 1062 return (error); 1063 } 1064 1065 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1066 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1067 ZFS_EXIT(zfsvfs); 1068 return (EILSEQ); 1069 } 1070 1071 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1072 if (error == 0) { 1073 /* 1074 * Convert device special files 1075 */ 1076 if (IS_DEVVP(*vpp)) { 1077 vnode_t *svp; 1078 1079 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1080 VN_RELE(*vpp); 1081 if (svp == NULL) 1082 error = ENOSYS; 1083 else 1084 *vpp = svp; 1085 } 1086 } 1087 1088 ZFS_EXIT(zfsvfs); 1089 return (error); 1090 } 1091 1092 /* 1093 * Attempt to create a new entry in a directory. If the entry 1094 * already exists, truncate the file if permissible, else return 1095 * an error. Return the vp of the created or trunc'd file. 1096 * 1097 * IN: dvp - vnode of directory to put new file entry in. 1098 * name - name of new file entry. 1099 * vap - attributes of new file. 1100 * excl - flag indicating exclusive or non-exclusive mode. 1101 * mode - mode to open file with. 1102 * cr - credentials of caller. 1103 * flag - large file flag [UNUSED]. 1104 * ct - caller context 1105 * vsecp - ACL to be set 1106 * 1107 * OUT: vpp - vnode of created or trunc'd entry. 1108 * 1109 * RETURN: 0 if success 1110 * error code if failure 1111 * 1112 * Timestamps: 1113 * dvp - ctime|mtime updated if new entry created 1114 * vp - ctime|mtime always, atime if new 1115 */ 1116 1117 /* ARGSUSED */ 1118 static int 1119 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1120 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1121 vsecattr_t *vsecp) 1122 { 1123 znode_t *zp, *dzp = VTOZ(dvp); 1124 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1125 zilog_t *zilog; 1126 objset_t *os; 1127 zfs_dirlock_t *dl; 1128 dmu_tx_t *tx; 1129 int error; 1130 zfs_acl_t *aclp = NULL; 1131 zfs_fuid_info_t *fuidp = NULL; 1132 1133 /* 1134 * If we have an ephemeral id, ACL, or XVATTR then 1135 * make sure file system is at proper version 1136 */ 1137 1138 if (zfsvfs->z_use_fuids == B_FALSE && 1139 (vsecp || (vap->va_mask & AT_XVATTR) || 1140 IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr)))) 1141 return (EINVAL); 1142 1143 ZFS_ENTER(zfsvfs); 1144 ZFS_VERIFY_ZP(dzp); 1145 os = zfsvfs->z_os; 1146 zilog = zfsvfs->z_log; 1147 1148 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1149 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1150 ZFS_EXIT(zfsvfs); 1151 return (EILSEQ); 1152 } 1153 1154 if (vap->va_mask & AT_XVATTR) { 1155 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1156 crgetuid(cr), cr, vap->va_type)) != 0) { 1157 ZFS_EXIT(zfsvfs); 1158 return (error); 1159 } 1160 } 1161 top: 1162 *vpp = NULL; 1163 1164 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1165 vap->va_mode &= ~VSVTX; 1166 1167 if (*name == '\0') { 1168 /* 1169 * Null component name refers to the directory itself. 1170 */ 1171 VN_HOLD(dvp); 1172 zp = dzp; 1173 dl = NULL; 1174 error = 0; 1175 } else { 1176 /* possible VN_HOLD(zp) */ 1177 int zflg = 0; 1178 1179 if (flag & FIGNORECASE) 1180 zflg |= ZCILOOK; 1181 1182 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1183 NULL, NULL); 1184 if (error) { 1185 if (strcmp(name, "..") == 0) 1186 error = EISDIR; 1187 ZFS_EXIT(zfsvfs); 1188 if (aclp) 1189 zfs_acl_free(aclp); 1190 return (error); 1191 } 1192 } 1193 if (vsecp && aclp == NULL) { 1194 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1195 if (error) { 1196 ZFS_EXIT(zfsvfs); 1197 if (dl) 1198 zfs_dirent_unlock(dl); 1199 return (error); 1200 } 1201 } 1202 1203 if (zp == NULL) { 1204 uint64_t txtype; 1205 1206 /* 1207 * Create a new file object and update the directory 1208 * to reference it. 1209 */ 1210 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1211 goto out; 1212 } 1213 1214 /* 1215 * We only support the creation of regular files in 1216 * extended attribute directories. 1217 */ 1218 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1219 (vap->va_type != VREG)) { 1220 error = EINVAL; 1221 goto out; 1222 } 1223 1224 tx = dmu_tx_create(os); 1225 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1226 if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(crgetuid(cr)) || 1227 IS_EPHEMERAL(crgetgid(cr))) { 1228 if (zfsvfs->z_fuid_obj == 0) { 1229 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1230 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1231 FUID_SIZE_ESTIMATE(zfsvfs)); 1232 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 1233 FALSE, NULL); 1234 } else { 1235 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1236 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1237 FUID_SIZE_ESTIMATE(zfsvfs)); 1238 } 1239 } 1240 dmu_tx_hold_bonus(tx, dzp->z_id); 1241 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1242 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) { 1243 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1244 0, SPA_MAXBLOCKSIZE); 1245 } 1246 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1247 if (error) { 1248 zfs_dirent_unlock(dl); 1249 if (error == ERESTART && 1250 zfsvfs->z_assign == TXG_NOWAIT) { 1251 dmu_tx_wait(tx); 1252 dmu_tx_abort(tx); 1253 goto top; 1254 } 1255 dmu_tx_abort(tx); 1256 ZFS_EXIT(zfsvfs); 1257 if (aclp) 1258 zfs_acl_free(aclp); 1259 return (error); 1260 } 1261 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1262 (void) zfs_link_create(dl, zp, tx, ZNEW); 1263 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1264 if (flag & FIGNORECASE) 1265 txtype |= TX_CI; 1266 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1267 vsecp, fuidp, vap); 1268 if (fuidp) 1269 zfs_fuid_info_free(fuidp); 1270 dmu_tx_commit(tx); 1271 } else { 1272 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1273 1274 /* 1275 * A directory entry already exists for this name. 1276 */ 1277 /* 1278 * Can't truncate an existing file if in exclusive mode. 1279 */ 1280 if (excl == EXCL) { 1281 error = EEXIST; 1282 goto out; 1283 } 1284 /* 1285 * Can't open a directory for writing. 1286 */ 1287 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1288 error = EISDIR; 1289 goto out; 1290 } 1291 /* 1292 * Verify requested access to file. 1293 */ 1294 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1295 goto out; 1296 } 1297 1298 mutex_enter(&dzp->z_lock); 1299 dzp->z_seq++; 1300 mutex_exit(&dzp->z_lock); 1301 1302 /* 1303 * Truncate regular files if requested. 1304 */ 1305 if ((ZTOV(zp)->v_type == VREG) && 1306 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1307 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1308 if (error == ERESTART && 1309 zfsvfs->z_assign == TXG_NOWAIT) { 1310 /* NB: we already did dmu_tx_wait() */ 1311 zfs_dirent_unlock(dl); 1312 VN_RELE(ZTOV(zp)); 1313 goto top; 1314 } 1315 1316 if (error == 0) { 1317 vnevent_create(ZTOV(zp), ct); 1318 } 1319 } 1320 } 1321 out: 1322 1323 if (dl) 1324 zfs_dirent_unlock(dl); 1325 1326 if (error) { 1327 if (zp) 1328 VN_RELE(ZTOV(zp)); 1329 } else { 1330 *vpp = ZTOV(zp); 1331 /* 1332 * If vnode is for a device return a specfs vnode instead. 1333 */ 1334 if (IS_DEVVP(*vpp)) { 1335 struct vnode *svp; 1336 1337 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1338 VN_RELE(*vpp); 1339 if (svp == NULL) { 1340 error = ENOSYS; 1341 } 1342 *vpp = svp; 1343 } 1344 } 1345 if (aclp) 1346 zfs_acl_free(aclp); 1347 1348 ZFS_EXIT(zfsvfs); 1349 return (error); 1350 } 1351 1352 /* 1353 * Remove an entry from a directory. 1354 * 1355 * IN: dvp - vnode of directory to remove entry from. 1356 * name - name of entry to remove. 1357 * cr - credentials of caller. 1358 * ct - caller context 1359 * flags - case flags 1360 * 1361 * RETURN: 0 if success 1362 * error code if failure 1363 * 1364 * Timestamps: 1365 * dvp - ctime|mtime 1366 * vp - ctime (if nlink > 0) 1367 */ 1368 /*ARGSUSED*/ 1369 static int 1370 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1371 int flags) 1372 { 1373 znode_t *zp, *dzp = VTOZ(dvp); 1374 znode_t *xzp = NULL; 1375 vnode_t *vp; 1376 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1377 zilog_t *zilog; 1378 uint64_t acl_obj, xattr_obj; 1379 zfs_dirlock_t *dl; 1380 dmu_tx_t *tx; 1381 boolean_t may_delete_now, delete_now = FALSE; 1382 boolean_t unlinked; 1383 uint64_t txtype; 1384 pathname_t *realnmp = NULL; 1385 pathname_t realnm; 1386 int error; 1387 int zflg = ZEXISTS; 1388 1389 ZFS_ENTER(zfsvfs); 1390 ZFS_VERIFY_ZP(dzp); 1391 zilog = zfsvfs->z_log; 1392 1393 if (flags & FIGNORECASE) { 1394 zflg |= ZCILOOK; 1395 pn_alloc(&realnm); 1396 realnmp = &realnm; 1397 } 1398 1399 top: 1400 /* 1401 * Attempt to lock directory; fail if entry doesn't exist. 1402 */ 1403 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1404 NULL, realnmp)) { 1405 if (realnmp) 1406 pn_free(realnmp); 1407 ZFS_EXIT(zfsvfs); 1408 return (error); 1409 } 1410 1411 vp = ZTOV(zp); 1412 1413 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1414 goto out; 1415 } 1416 1417 /* 1418 * Need to use rmdir for removing directories. 1419 */ 1420 if (vp->v_type == VDIR) { 1421 error = EPERM; 1422 goto out; 1423 } 1424 1425 vnevent_remove(vp, dvp, name, ct); 1426 1427 if (realnmp) 1428 dnlc_remove(dvp, realnmp->pn_buf); 1429 else 1430 dnlc_remove(dvp, name); 1431 1432 mutex_enter(&vp->v_lock); 1433 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1434 mutex_exit(&vp->v_lock); 1435 1436 /* 1437 * We may delete the znode now, or we may put it in the unlinked set; 1438 * it depends on whether we're the last link, and on whether there are 1439 * other holds on the vnode. So we dmu_tx_hold() the right things to 1440 * allow for either case. 1441 */ 1442 tx = dmu_tx_create(zfsvfs->z_os); 1443 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1444 dmu_tx_hold_bonus(tx, zp->z_id); 1445 if (may_delete_now) 1446 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1447 1448 /* are there any extended attributes? */ 1449 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1450 /* XXX - do we need this if we are deleting? */ 1451 dmu_tx_hold_bonus(tx, xattr_obj); 1452 } 1453 1454 /* are there any additional acls */ 1455 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1456 may_delete_now) 1457 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1458 1459 /* charge as an update -- would be nice not to charge at all */ 1460 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1461 1462 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1463 if (error) { 1464 zfs_dirent_unlock(dl); 1465 VN_RELE(vp); 1466 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1467 dmu_tx_wait(tx); 1468 dmu_tx_abort(tx); 1469 goto top; 1470 } 1471 if (realnmp) 1472 pn_free(realnmp); 1473 dmu_tx_abort(tx); 1474 ZFS_EXIT(zfsvfs); 1475 return (error); 1476 } 1477 1478 /* 1479 * Remove the directory entry. 1480 */ 1481 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1482 1483 if (error) { 1484 dmu_tx_commit(tx); 1485 goto out; 1486 } 1487 1488 if (unlinked) { 1489 mutex_enter(&vp->v_lock); 1490 delete_now = may_delete_now && 1491 vp->v_count == 1 && !vn_has_cached_data(vp) && 1492 zp->z_phys->zp_xattr == xattr_obj && 1493 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1494 mutex_exit(&vp->v_lock); 1495 } 1496 1497 if (delete_now) { 1498 if (zp->z_phys->zp_xattr) { 1499 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1500 ASSERT3U(error, ==, 0); 1501 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1502 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1503 mutex_enter(&xzp->z_lock); 1504 xzp->z_unlinked = 1; 1505 xzp->z_phys->zp_links = 0; 1506 mutex_exit(&xzp->z_lock); 1507 zfs_unlinked_add(xzp, tx); 1508 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1509 } 1510 mutex_enter(&zp->z_lock); 1511 mutex_enter(&vp->v_lock); 1512 vp->v_count--; 1513 ASSERT3U(vp->v_count, ==, 0); 1514 mutex_exit(&vp->v_lock); 1515 mutex_exit(&zp->z_lock); 1516 zfs_znode_delete(zp, tx); 1517 } else if (unlinked) { 1518 zfs_unlinked_add(zp, tx); 1519 } 1520 1521 txtype = TX_REMOVE; 1522 if (flags & FIGNORECASE) 1523 txtype |= TX_CI; 1524 zfs_log_remove(zilog, tx, txtype, dzp, name); 1525 1526 dmu_tx_commit(tx); 1527 out: 1528 if (realnmp) 1529 pn_free(realnmp); 1530 1531 zfs_dirent_unlock(dl); 1532 1533 if (!delete_now) { 1534 VN_RELE(vp); 1535 } else if (xzp) { 1536 /* this rele delayed to prevent nesting transactions */ 1537 VN_RELE(ZTOV(xzp)); 1538 } 1539 1540 ZFS_EXIT(zfsvfs); 1541 return (error); 1542 } 1543 1544 /* 1545 * Create a new directory and insert it into dvp using the name 1546 * provided. Return a pointer to the inserted directory. 1547 * 1548 * IN: dvp - vnode of directory to add subdir to. 1549 * dirname - name of new directory. 1550 * vap - attributes of new directory. 1551 * cr - credentials of caller. 1552 * ct - caller context 1553 * vsecp - ACL to be set 1554 * 1555 * OUT: vpp - vnode of created directory. 1556 * 1557 * RETURN: 0 if success 1558 * error code if failure 1559 * 1560 * Timestamps: 1561 * dvp - ctime|mtime updated 1562 * vp - ctime|mtime|atime updated 1563 */ 1564 /*ARGSUSED*/ 1565 static int 1566 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1567 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1568 { 1569 znode_t *zp, *dzp = VTOZ(dvp); 1570 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1571 zilog_t *zilog; 1572 zfs_dirlock_t *dl; 1573 uint64_t txtype; 1574 dmu_tx_t *tx; 1575 int error; 1576 zfs_acl_t *aclp = NULL; 1577 zfs_fuid_info_t *fuidp = NULL; 1578 int zf = ZNEW; 1579 1580 ASSERT(vap->va_type == VDIR); 1581 1582 /* 1583 * If we have an ephemeral id, ACL, or XVATTR then 1584 * make sure file system is at proper version 1585 */ 1586 1587 if (zfsvfs->z_use_fuids == B_FALSE && 1588 (vsecp || (vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(crgetuid(cr))|| 1589 IS_EPHEMERAL(crgetgid(cr)))) 1590 return (EINVAL); 1591 1592 ZFS_ENTER(zfsvfs); 1593 ZFS_VERIFY_ZP(dzp); 1594 zilog = zfsvfs->z_log; 1595 1596 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1597 ZFS_EXIT(zfsvfs); 1598 return (EINVAL); 1599 } 1600 1601 if (zfsvfs->z_utf8 && u8_validate(dirname, 1602 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1603 ZFS_EXIT(zfsvfs); 1604 return (EILSEQ); 1605 } 1606 if (flags & FIGNORECASE) 1607 zf |= ZCILOOK; 1608 1609 if (vap->va_mask & AT_XVATTR) 1610 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1611 crgetuid(cr), cr, vap->va_type)) != 0) { 1612 ZFS_EXIT(zfsvfs); 1613 return (error); 1614 } 1615 1616 /* 1617 * First make sure the new directory doesn't exist. 1618 */ 1619 top: 1620 *vpp = NULL; 1621 1622 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1623 NULL, NULL)) { 1624 ZFS_EXIT(zfsvfs); 1625 return (error); 1626 } 1627 1628 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1629 zfs_dirent_unlock(dl); 1630 ZFS_EXIT(zfsvfs); 1631 return (error); 1632 } 1633 1634 if (vsecp && aclp == NULL) { 1635 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1636 if (error) { 1637 zfs_dirent_unlock(dl); 1638 ZFS_EXIT(zfsvfs); 1639 return (error); 1640 } 1641 } 1642 /* 1643 * Add a new entry to the directory. 1644 */ 1645 tx = dmu_tx_create(zfsvfs->z_os); 1646 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1647 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1648 if ((aclp && aclp->z_has_fuids) || IS_EPHEMERAL(crgetuid(cr)) || 1649 IS_EPHEMERAL(crgetgid(cr))) { 1650 if (zfsvfs->z_fuid_obj == 0) { 1651 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1652 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1653 FUID_SIZE_ESTIMATE(zfsvfs)); 1654 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 1655 } else { 1656 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1657 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1658 FUID_SIZE_ESTIMATE(zfsvfs)); 1659 } 1660 } 1661 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) 1662 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1663 0, SPA_MAXBLOCKSIZE); 1664 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1665 if (error) { 1666 zfs_dirent_unlock(dl); 1667 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1668 dmu_tx_wait(tx); 1669 dmu_tx_abort(tx); 1670 goto top; 1671 } 1672 dmu_tx_abort(tx); 1673 ZFS_EXIT(zfsvfs); 1674 if (aclp) 1675 zfs_acl_free(aclp); 1676 return (error); 1677 } 1678 1679 /* 1680 * Create new node. 1681 */ 1682 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1683 1684 if (aclp) 1685 zfs_acl_free(aclp); 1686 1687 /* 1688 * Now put new name in parent dir. 1689 */ 1690 (void) zfs_link_create(dl, zp, tx, ZNEW); 1691 1692 *vpp = ZTOV(zp); 1693 1694 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1695 if (flags & FIGNORECASE) 1696 txtype |= TX_CI; 1697 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, fuidp, vap); 1698 1699 if (fuidp) 1700 zfs_fuid_info_free(fuidp); 1701 dmu_tx_commit(tx); 1702 1703 zfs_dirent_unlock(dl); 1704 1705 ZFS_EXIT(zfsvfs); 1706 return (0); 1707 } 1708 1709 /* 1710 * Remove a directory subdir entry. If the current working 1711 * directory is the same as the subdir to be removed, the 1712 * remove will fail. 1713 * 1714 * IN: dvp - vnode of directory to remove from. 1715 * name - name of directory to be removed. 1716 * cwd - vnode of current working directory. 1717 * cr - credentials of caller. 1718 * ct - caller context 1719 * flags - case flags 1720 * 1721 * RETURN: 0 if success 1722 * error code if failure 1723 * 1724 * Timestamps: 1725 * dvp - ctime|mtime updated 1726 */ 1727 /*ARGSUSED*/ 1728 static int 1729 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1730 caller_context_t *ct, int flags) 1731 { 1732 znode_t *dzp = VTOZ(dvp); 1733 znode_t *zp; 1734 vnode_t *vp; 1735 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1736 zilog_t *zilog; 1737 zfs_dirlock_t *dl; 1738 dmu_tx_t *tx; 1739 int error; 1740 int zflg = ZEXISTS; 1741 1742 ZFS_ENTER(zfsvfs); 1743 ZFS_VERIFY_ZP(dzp); 1744 zilog = zfsvfs->z_log; 1745 1746 if (flags & FIGNORECASE) 1747 zflg |= ZCILOOK; 1748 top: 1749 zp = NULL; 1750 1751 /* 1752 * Attempt to lock directory; fail if entry doesn't exist. 1753 */ 1754 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1755 NULL, NULL)) { 1756 ZFS_EXIT(zfsvfs); 1757 return (error); 1758 } 1759 1760 vp = ZTOV(zp); 1761 1762 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1763 goto out; 1764 } 1765 1766 if (vp->v_type != VDIR) { 1767 error = ENOTDIR; 1768 goto out; 1769 } 1770 1771 if (vp == cwd) { 1772 error = EINVAL; 1773 goto out; 1774 } 1775 1776 vnevent_rmdir(vp, dvp, name, ct); 1777 1778 /* 1779 * Grab a lock on the directory to make sure that noone is 1780 * trying to add (or lookup) entries while we are removing it. 1781 */ 1782 rw_enter(&zp->z_name_lock, RW_WRITER); 1783 1784 /* 1785 * Grab a lock on the parent pointer to make sure we play well 1786 * with the treewalk and directory rename code. 1787 */ 1788 rw_enter(&zp->z_parent_lock, RW_WRITER); 1789 1790 tx = dmu_tx_create(zfsvfs->z_os); 1791 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1792 dmu_tx_hold_bonus(tx, zp->z_id); 1793 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1794 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1795 if (error) { 1796 rw_exit(&zp->z_parent_lock); 1797 rw_exit(&zp->z_name_lock); 1798 zfs_dirent_unlock(dl); 1799 VN_RELE(vp); 1800 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1801 dmu_tx_wait(tx); 1802 dmu_tx_abort(tx); 1803 goto top; 1804 } 1805 dmu_tx_abort(tx); 1806 ZFS_EXIT(zfsvfs); 1807 return (error); 1808 } 1809 1810 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1811 1812 if (error == 0) { 1813 uint64_t txtype = TX_RMDIR; 1814 if (flags & FIGNORECASE) 1815 txtype |= TX_CI; 1816 zfs_log_remove(zilog, tx, txtype, dzp, name); 1817 } 1818 1819 dmu_tx_commit(tx); 1820 1821 rw_exit(&zp->z_parent_lock); 1822 rw_exit(&zp->z_name_lock); 1823 out: 1824 zfs_dirent_unlock(dl); 1825 1826 VN_RELE(vp); 1827 1828 ZFS_EXIT(zfsvfs); 1829 return (error); 1830 } 1831 1832 /* 1833 * Read as many directory entries as will fit into the provided 1834 * buffer from the given directory cursor position (specified in 1835 * the uio structure. 1836 * 1837 * IN: vp - vnode of directory to read. 1838 * uio - structure supplying read location, range info, 1839 * and return buffer. 1840 * cr - credentials of caller. 1841 * ct - caller context 1842 * flags - case flags 1843 * 1844 * OUT: uio - updated offset and range, buffer filled. 1845 * eofp - set to true if end-of-file detected. 1846 * 1847 * RETURN: 0 if success 1848 * error code if failure 1849 * 1850 * Timestamps: 1851 * vp - atime updated 1852 * 1853 * Note that the low 4 bits of the cookie returned by zap is always zero. 1854 * This allows us to use the low range for "special" directory entries: 1855 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1856 * we use the offset 2 for the '.zfs' directory. 1857 */ 1858 /* ARGSUSED */ 1859 static int 1860 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1861 caller_context_t *ct, int flags) 1862 { 1863 znode_t *zp = VTOZ(vp); 1864 iovec_t *iovp; 1865 edirent_t *eodp; 1866 dirent64_t *odp; 1867 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1868 objset_t *os; 1869 caddr_t outbuf; 1870 size_t bufsize; 1871 zap_cursor_t zc; 1872 zap_attribute_t zap; 1873 uint_t bytes_wanted; 1874 uint64_t offset; /* must be unsigned; checks for < 1 */ 1875 int local_eof; 1876 int outcount; 1877 int error; 1878 uint8_t prefetch; 1879 boolean_t check_sysattrs; 1880 1881 ZFS_ENTER(zfsvfs); 1882 ZFS_VERIFY_ZP(zp); 1883 1884 /* 1885 * If we are not given an eof variable, 1886 * use a local one. 1887 */ 1888 if (eofp == NULL) 1889 eofp = &local_eof; 1890 1891 /* 1892 * Check for valid iov_len. 1893 */ 1894 if (uio->uio_iov->iov_len <= 0) { 1895 ZFS_EXIT(zfsvfs); 1896 return (EINVAL); 1897 } 1898 1899 /* 1900 * Quit if directory has been removed (posix) 1901 */ 1902 if ((*eofp = zp->z_unlinked) != 0) { 1903 ZFS_EXIT(zfsvfs); 1904 return (0); 1905 } 1906 1907 error = 0; 1908 os = zfsvfs->z_os; 1909 offset = uio->uio_loffset; 1910 prefetch = zp->z_zn_prefetch; 1911 1912 /* 1913 * Initialize the iterator cursor. 1914 */ 1915 if (offset <= 3) { 1916 /* 1917 * Start iteration from the beginning of the directory. 1918 */ 1919 zap_cursor_init(&zc, os, zp->z_id); 1920 } else { 1921 /* 1922 * The offset is a serialized cursor. 1923 */ 1924 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1925 } 1926 1927 /* 1928 * Get space to change directory entries into fs independent format. 1929 */ 1930 iovp = uio->uio_iov; 1931 bytes_wanted = iovp->iov_len; 1932 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1933 bufsize = bytes_wanted; 1934 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1935 odp = (struct dirent64 *)outbuf; 1936 } else { 1937 bufsize = bytes_wanted; 1938 odp = (struct dirent64 *)iovp->iov_base; 1939 } 1940 eodp = (struct edirent *)odp; 1941 1942 /* 1943 * If this VFS supports system attributes; and we're looking at an 1944 * extended attribute directory; and we care about normalization 1945 * conflicts on this vfs; then we must check for normalization 1946 * conflicts with the sysattr name space. 1947 */ 1948 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) && 1949 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 1950 (flags & V_RDDIR_ENTFLAGS); 1951 1952 /* 1953 * Transform to file-system independent format 1954 */ 1955 outcount = 0; 1956 while (outcount < bytes_wanted) { 1957 ino64_t objnum; 1958 ushort_t reclen; 1959 off64_t *next; 1960 1961 /* 1962 * Special case `.', `..', and `.zfs'. 1963 */ 1964 if (offset == 0) { 1965 (void) strcpy(zap.za_name, "."); 1966 zap.za_normalization_conflict = 0; 1967 objnum = zp->z_id; 1968 } else if (offset == 1) { 1969 (void) strcpy(zap.za_name, ".."); 1970 zap.za_normalization_conflict = 0; 1971 objnum = zp->z_phys->zp_parent; 1972 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1973 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1974 zap.za_normalization_conflict = 0; 1975 objnum = ZFSCTL_INO_ROOT; 1976 } else { 1977 /* 1978 * Grab next entry. 1979 */ 1980 if (error = zap_cursor_retrieve(&zc, &zap)) { 1981 if ((*eofp = (error == ENOENT)) != 0) 1982 break; 1983 else 1984 goto update; 1985 } 1986 1987 if (zap.za_integer_length != 8 || 1988 zap.za_num_integers != 1) { 1989 cmn_err(CE_WARN, "zap_readdir: bad directory " 1990 "entry, obj = %lld, offset = %lld\n", 1991 (u_longlong_t)zp->z_id, 1992 (u_longlong_t)offset); 1993 error = ENXIO; 1994 goto update; 1995 } 1996 1997 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 1998 /* 1999 * MacOS X can extract the object type here such as: 2000 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2001 */ 2002 2003 if (check_sysattrs && !zap.za_normalization_conflict) { 2004 zap.za_normalization_conflict = 2005 xattr_sysattr_casechk(zap.za_name); 2006 } 2007 } 2008 2009 if (flags & V_RDDIR_ENTFLAGS) 2010 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2011 else 2012 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2013 2014 /* 2015 * Will this entry fit in the buffer? 2016 */ 2017 if (outcount + reclen > bufsize) { 2018 /* 2019 * Did we manage to fit anything in the buffer? 2020 */ 2021 if (!outcount) { 2022 error = EINVAL; 2023 goto update; 2024 } 2025 break; 2026 } 2027 if (flags & V_RDDIR_ENTFLAGS) { 2028 /* 2029 * Add extended flag entry: 2030 */ 2031 eodp->ed_ino = objnum; 2032 eodp->ed_reclen = reclen; 2033 /* NOTE: ed_off is the offset for the *next* entry */ 2034 next = &(eodp->ed_off); 2035 eodp->ed_eflags = zap.za_normalization_conflict ? 2036 ED_CASE_CONFLICT : 0; 2037 (void) strncpy(eodp->ed_name, zap.za_name, 2038 EDIRENT_NAMELEN(reclen)); 2039 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2040 } else { 2041 /* 2042 * Add normal entry: 2043 */ 2044 odp->d_ino = objnum; 2045 odp->d_reclen = reclen; 2046 /* NOTE: d_off is the offset for the *next* entry */ 2047 next = &(odp->d_off); 2048 (void) strncpy(odp->d_name, zap.za_name, 2049 DIRENT64_NAMELEN(reclen)); 2050 odp = (dirent64_t *)((intptr_t)odp + reclen); 2051 } 2052 outcount += reclen; 2053 2054 ASSERT(outcount <= bufsize); 2055 2056 /* Prefetch znode */ 2057 if (prefetch) 2058 dmu_prefetch(os, objnum, 0, 0); 2059 2060 /* 2061 * Move to the next entry, fill in the previous offset. 2062 */ 2063 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2064 zap_cursor_advance(&zc); 2065 offset = zap_cursor_serialize(&zc); 2066 } else { 2067 offset += 1; 2068 } 2069 *next = offset; 2070 } 2071 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2072 2073 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2074 iovp->iov_base += outcount; 2075 iovp->iov_len -= outcount; 2076 uio->uio_resid -= outcount; 2077 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2078 /* 2079 * Reset the pointer. 2080 */ 2081 offset = uio->uio_loffset; 2082 } 2083 2084 update: 2085 zap_cursor_fini(&zc); 2086 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2087 kmem_free(outbuf, bufsize); 2088 2089 if (error == ENOENT) 2090 error = 0; 2091 2092 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2093 2094 uio->uio_loffset = offset; 2095 ZFS_EXIT(zfsvfs); 2096 return (error); 2097 } 2098 2099 ulong_t zfs_fsync_sync_cnt = 4; 2100 2101 static int 2102 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2103 { 2104 znode_t *zp = VTOZ(vp); 2105 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2106 2107 /* 2108 * Regardless of whether this is required for standards conformance, 2109 * this is the logical behavior when fsync() is called on a file with 2110 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2111 * going to be pushed out as part of the zil_commit(). 2112 */ 2113 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2114 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2115 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2116 2117 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2118 2119 ZFS_ENTER(zfsvfs); 2120 ZFS_VERIFY_ZP(zp); 2121 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2122 ZFS_EXIT(zfsvfs); 2123 return (0); 2124 } 2125 2126 2127 /* 2128 * Get the requested file attributes and place them in the provided 2129 * vattr structure. 2130 * 2131 * IN: vp - vnode of file. 2132 * vap - va_mask identifies requested attributes. 2133 * If AT_XVATTR set, then optional attrs are requested 2134 * flags - ATTR_NOACLCHECK (CIFS server context) 2135 * cr - credentials of caller. 2136 * ct - caller context 2137 * 2138 * OUT: vap - attribute values. 2139 * 2140 * RETURN: 0 (always succeeds) 2141 */ 2142 /* ARGSUSED */ 2143 static int 2144 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2145 caller_context_t *ct) 2146 { 2147 znode_t *zp = VTOZ(vp); 2148 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2149 znode_phys_t *pzp; 2150 int error = 0; 2151 uint64_t links; 2152 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2153 xoptattr_t *xoap = NULL; 2154 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2155 2156 ZFS_ENTER(zfsvfs); 2157 ZFS_VERIFY_ZP(zp); 2158 pzp = zp->z_phys; 2159 2160 mutex_enter(&zp->z_lock); 2161 2162 /* 2163 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2164 * Also, if we are the owner don't bother, since owner should 2165 * always be allowed to read basic attributes of file. 2166 */ 2167 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2168 (pzp->zp_uid != crgetuid(cr))) { 2169 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2170 skipaclchk, cr)) { 2171 mutex_exit(&zp->z_lock); 2172 ZFS_EXIT(zfsvfs); 2173 return (error); 2174 } 2175 } 2176 2177 /* 2178 * Return all attributes. It's cheaper to provide the answer 2179 * than to determine whether we were asked the question. 2180 */ 2181 2182 vap->va_type = vp->v_type; 2183 vap->va_mode = pzp->zp_mode & MODEMASK; 2184 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2185 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2186 vap->va_nodeid = zp->z_id; 2187 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2188 links = pzp->zp_links + 1; 2189 else 2190 links = pzp->zp_links; 2191 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2192 vap->va_size = pzp->zp_size; 2193 vap->va_rdev = vp->v_rdev; 2194 vap->va_seq = zp->z_seq; 2195 2196 /* 2197 * Add in any requested optional attributes and the create time. 2198 * Also set the corresponding bits in the returned attribute bitmap. 2199 */ 2200 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2201 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2202 xoap->xoa_archive = 2203 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2204 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2205 } 2206 2207 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2208 xoap->xoa_readonly = 2209 ((pzp->zp_flags & ZFS_READONLY) != 0); 2210 XVA_SET_RTN(xvap, XAT_READONLY); 2211 } 2212 2213 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2214 xoap->xoa_system = 2215 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2216 XVA_SET_RTN(xvap, XAT_SYSTEM); 2217 } 2218 2219 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2220 xoap->xoa_hidden = 2221 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2222 XVA_SET_RTN(xvap, XAT_HIDDEN); 2223 } 2224 2225 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2226 xoap->xoa_nounlink = 2227 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2228 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2229 } 2230 2231 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2232 xoap->xoa_immutable = 2233 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2234 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2235 } 2236 2237 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2238 xoap->xoa_appendonly = 2239 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2240 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2241 } 2242 2243 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2244 xoap->xoa_nodump = 2245 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2246 XVA_SET_RTN(xvap, XAT_NODUMP); 2247 } 2248 2249 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2250 xoap->xoa_opaque = 2251 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2252 XVA_SET_RTN(xvap, XAT_OPAQUE); 2253 } 2254 2255 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2256 xoap->xoa_av_quarantined = 2257 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2258 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2259 } 2260 2261 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2262 xoap->xoa_av_modified = 2263 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2264 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2265 } 2266 2267 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2268 vp->v_type == VREG && 2269 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2270 size_t len; 2271 dmu_object_info_t doi; 2272 2273 /* 2274 * Only VREG files have anti-virus scanstamps, so we 2275 * won't conflict with symlinks in the bonus buffer. 2276 */ 2277 dmu_object_info_from_db(zp->z_dbuf, &doi); 2278 len = sizeof (xoap->xoa_av_scanstamp) + 2279 sizeof (znode_phys_t); 2280 if (len <= doi.doi_bonus_size) { 2281 /* 2282 * pzp points to the start of the 2283 * znode_phys_t. pzp + 1 points to the 2284 * first byte after the znode_phys_t. 2285 */ 2286 (void) memcpy(xoap->xoa_av_scanstamp, 2287 pzp + 1, 2288 sizeof (xoap->xoa_av_scanstamp)); 2289 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2290 } 2291 } 2292 2293 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2294 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2295 XVA_SET_RTN(xvap, XAT_CREATETIME); 2296 } 2297 } 2298 2299 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2300 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2301 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2302 2303 mutex_exit(&zp->z_lock); 2304 2305 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2306 2307 if (zp->z_blksz == 0) { 2308 /* 2309 * Block size hasn't been set; suggest maximal I/O transfers. 2310 */ 2311 vap->va_blksize = zfsvfs->z_max_blksz; 2312 } 2313 2314 ZFS_EXIT(zfsvfs); 2315 return (0); 2316 } 2317 2318 /* 2319 * Set the file attributes to the values contained in the 2320 * vattr structure. 2321 * 2322 * IN: vp - vnode of file to be modified. 2323 * vap - new attribute values. 2324 * If AT_XVATTR set, then optional attrs are being set 2325 * flags - ATTR_UTIME set if non-default time values provided. 2326 * - ATTR_NOACLCHECK (CIFS context only). 2327 * cr - credentials of caller. 2328 * ct - caller context 2329 * 2330 * RETURN: 0 if success 2331 * error code if failure 2332 * 2333 * Timestamps: 2334 * vp - ctime updated, mtime updated if size changed. 2335 */ 2336 /* ARGSUSED */ 2337 static int 2338 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2339 caller_context_t *ct) 2340 { 2341 znode_t *zp = VTOZ(vp); 2342 znode_phys_t *pzp; 2343 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2344 zilog_t *zilog; 2345 dmu_tx_t *tx; 2346 vattr_t oldva; 2347 uint_t mask = vap->va_mask; 2348 uint_t saved_mask; 2349 int trim_mask = 0; 2350 uint64_t new_mode; 2351 znode_t *attrzp; 2352 int need_policy = FALSE; 2353 int err; 2354 zfs_fuid_info_t *fuidp = NULL; 2355 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2356 xoptattr_t *xoap; 2357 zfs_acl_t *aclp = NULL; 2358 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2359 2360 if (mask == 0) 2361 return (0); 2362 2363 if (mask & AT_NOSET) 2364 return (EINVAL); 2365 2366 ZFS_ENTER(zfsvfs); 2367 ZFS_VERIFY_ZP(zp); 2368 2369 pzp = zp->z_phys; 2370 zilog = zfsvfs->z_log; 2371 2372 /* 2373 * Make sure that if we have ephemeral uid/gid or xvattr specified 2374 * that file system is at proper version level 2375 */ 2376 2377 if (zfsvfs->z_use_fuids == B_FALSE && 2378 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2379 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2380 (mask & AT_XVATTR))) { 2381 ZFS_EXIT(zfsvfs); 2382 return (EINVAL); 2383 } 2384 2385 if (mask & AT_SIZE && vp->v_type == VDIR) { 2386 ZFS_EXIT(zfsvfs); 2387 return (EISDIR); 2388 } 2389 2390 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2391 ZFS_EXIT(zfsvfs); 2392 return (EINVAL); 2393 } 2394 2395 /* 2396 * If this is an xvattr_t, then get a pointer to the structure of 2397 * optional attributes. If this is NULL, then we have a vattr_t. 2398 */ 2399 xoap = xva_getxoptattr(xvap); 2400 2401 /* 2402 * Immutable files can only alter immutable bit and atime 2403 */ 2404 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2405 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2406 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2407 ZFS_EXIT(zfsvfs); 2408 return (EPERM); 2409 } 2410 2411 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2412 ZFS_EXIT(zfsvfs); 2413 return (EPERM); 2414 } 2415 2416 /* 2417 * Verify timestamps doesn't overflow 32 bits. 2418 * ZFS can handle large timestamps, but 32bit syscalls can't 2419 * handle times greater than 2039. This check should be removed 2420 * once large timestamps are fully supported. 2421 */ 2422 if (mask & (AT_ATIME | AT_MTIME)) { 2423 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2424 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2425 ZFS_EXIT(zfsvfs); 2426 return (EOVERFLOW); 2427 } 2428 } 2429 2430 top: 2431 attrzp = NULL; 2432 2433 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2434 ZFS_EXIT(zfsvfs); 2435 return (EROFS); 2436 } 2437 2438 /* 2439 * First validate permissions 2440 */ 2441 2442 if (mask & AT_SIZE) { 2443 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2444 if (err) { 2445 ZFS_EXIT(zfsvfs); 2446 return (err); 2447 } 2448 /* 2449 * XXX - Note, we are not providing any open 2450 * mode flags here (like FNDELAY), so we may 2451 * block if there are locks present... this 2452 * should be addressed in openat(). 2453 */ 2454 do { 2455 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2456 /* NB: we already did dmu_tx_wait() if necessary */ 2457 } while (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 2458 if (err) { 2459 ZFS_EXIT(zfsvfs); 2460 return (err); 2461 } 2462 } 2463 2464 if (mask & (AT_ATIME|AT_MTIME) || 2465 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2466 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2467 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2468 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2469 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2470 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2471 skipaclchk, cr); 2472 2473 if (mask & (AT_UID|AT_GID)) { 2474 int idmask = (mask & (AT_UID|AT_GID)); 2475 int take_owner; 2476 int take_group; 2477 2478 /* 2479 * NOTE: even if a new mode is being set, 2480 * we may clear S_ISUID/S_ISGID bits. 2481 */ 2482 2483 if (!(mask & AT_MODE)) 2484 vap->va_mode = pzp->zp_mode; 2485 2486 /* 2487 * Take ownership or chgrp to group we are a member of 2488 */ 2489 2490 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2491 take_group = (mask & AT_GID) && 2492 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2493 2494 /* 2495 * If both AT_UID and AT_GID are set then take_owner and 2496 * take_group must both be set in order to allow taking 2497 * ownership. 2498 * 2499 * Otherwise, send the check through secpolicy_vnode_setattr() 2500 * 2501 */ 2502 2503 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2504 ((idmask == AT_UID) && take_owner) || 2505 ((idmask == AT_GID) && take_group)) { 2506 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2507 skipaclchk, cr) == 0) { 2508 /* 2509 * Remove setuid/setgid for non-privileged users 2510 */ 2511 secpolicy_setid_clear(vap, cr); 2512 trim_mask = (mask & (AT_UID|AT_GID)); 2513 } else { 2514 need_policy = TRUE; 2515 } 2516 } else { 2517 need_policy = TRUE; 2518 } 2519 } 2520 2521 mutex_enter(&zp->z_lock); 2522 oldva.va_mode = pzp->zp_mode; 2523 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2524 if (mask & AT_XVATTR) { 2525 if ((need_policy == FALSE) && 2526 (XVA_ISSET_REQ(xvap, XAT_APPENDONLY) && 2527 xoap->xoa_appendonly != 2528 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) || 2529 (XVA_ISSET_REQ(xvap, XAT_NOUNLINK) && 2530 xoap->xoa_nounlink != 2531 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) || 2532 (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE) && 2533 xoap->xoa_immutable != 2534 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) || 2535 (XVA_ISSET_REQ(xvap, XAT_NODUMP) && 2536 xoap->xoa_nodump != 2537 ((pzp->zp_flags & ZFS_NODUMP) != 0)) || 2538 (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED) && 2539 xoap->xoa_av_modified != 2540 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) || 2541 ((XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED) && 2542 ((vp->v_type != VREG && xoap->xoa_av_quarantined) || 2543 xoap->xoa_av_quarantined != 2544 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)))) || 2545 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || 2546 (XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2547 need_policy = TRUE; 2548 } 2549 } 2550 2551 mutex_exit(&zp->z_lock); 2552 2553 if (mask & AT_MODE) { 2554 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2555 err = secpolicy_setid_setsticky_clear(vp, vap, 2556 &oldva, cr); 2557 if (err) { 2558 ZFS_EXIT(zfsvfs); 2559 return (err); 2560 } 2561 trim_mask |= AT_MODE; 2562 } else { 2563 need_policy = TRUE; 2564 } 2565 } 2566 2567 if (need_policy) { 2568 /* 2569 * If trim_mask is set then take ownership 2570 * has been granted or write_acl is present and user 2571 * has the ability to modify mode. In that case remove 2572 * UID|GID and or MODE from mask so that 2573 * secpolicy_vnode_setattr() doesn't revoke it. 2574 */ 2575 2576 if (trim_mask) { 2577 saved_mask = vap->va_mask; 2578 vap->va_mask &= ~trim_mask; 2579 } 2580 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2581 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2582 if (err) { 2583 ZFS_EXIT(zfsvfs); 2584 return (err); 2585 } 2586 2587 if (trim_mask) 2588 vap->va_mask |= saved_mask; 2589 } 2590 2591 /* 2592 * secpolicy_vnode_setattr, or take ownership may have 2593 * changed va_mask 2594 */ 2595 mask = vap->va_mask; 2596 2597 tx = dmu_tx_create(zfsvfs->z_os); 2598 dmu_tx_hold_bonus(tx, zp->z_id); 2599 if (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2600 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid))) { 2601 if (zfsvfs->z_fuid_obj == 0) { 2602 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2603 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2604 FUID_SIZE_ESTIMATE(zfsvfs)); 2605 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 2606 } else { 2607 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2608 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2609 FUID_SIZE_ESTIMATE(zfsvfs)); 2610 } 2611 } 2612 2613 if (mask & AT_MODE) { 2614 uint64_t pmode = pzp->zp_mode; 2615 2616 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2617 2618 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) { 2619 dmu_tx_abort(tx); 2620 ZFS_EXIT(zfsvfs); 2621 return (err); 2622 } 2623 if (pzp->zp_acl.z_acl_extern_obj) { 2624 /* Are we upgrading ACL from old V0 format to new V1 */ 2625 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2626 pzp->zp_acl.z_acl_version == 2627 ZFS_ACL_VERSION_INITIAL) { 2628 dmu_tx_hold_free(tx, 2629 pzp->zp_acl.z_acl_extern_obj, 0, 2630 DMU_OBJECT_END); 2631 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2632 0, aclp->z_acl_bytes); 2633 } else { 2634 dmu_tx_hold_write(tx, 2635 pzp->zp_acl.z_acl_extern_obj, 0, 2636 aclp->z_acl_bytes); 2637 } 2638 } else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2639 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2640 0, aclp->z_acl_bytes); 2641 } 2642 } 2643 2644 if ((mask & (AT_UID | AT_GID)) && pzp->zp_xattr != 0) { 2645 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2646 if (err) { 2647 dmu_tx_abort(tx); 2648 ZFS_EXIT(zfsvfs); 2649 if (aclp) 2650 zfs_acl_free(aclp); 2651 return (err); 2652 } 2653 dmu_tx_hold_bonus(tx, attrzp->z_id); 2654 } 2655 2656 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2657 if (err) { 2658 if (attrzp) 2659 VN_RELE(ZTOV(attrzp)); 2660 2661 if (aclp) { 2662 zfs_acl_free(aclp); 2663 aclp = NULL; 2664 } 2665 2666 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2667 dmu_tx_wait(tx); 2668 dmu_tx_abort(tx); 2669 goto top; 2670 } 2671 dmu_tx_abort(tx); 2672 ZFS_EXIT(zfsvfs); 2673 return (err); 2674 } 2675 2676 dmu_buf_will_dirty(zp->z_dbuf, tx); 2677 2678 /* 2679 * Set each attribute requested. 2680 * We group settings according to the locks they need to acquire. 2681 * 2682 * Note: you cannot set ctime directly, although it will be 2683 * updated as a side-effect of calling this function. 2684 */ 2685 2686 mutex_enter(&zp->z_lock); 2687 2688 if (mask & AT_MODE) { 2689 mutex_enter(&zp->z_acl_lock); 2690 zp->z_phys->zp_mode = new_mode; 2691 err = zfs_aclset_common(zp, aclp, cr, &fuidp, tx); 2692 ASSERT3U(err, ==, 0); 2693 mutex_exit(&zp->z_acl_lock); 2694 } 2695 2696 if (attrzp) 2697 mutex_enter(&attrzp->z_lock); 2698 2699 if (mask & AT_UID) { 2700 pzp->zp_uid = zfs_fuid_create(zfsvfs, 2701 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp); 2702 if (attrzp) { 2703 attrzp->z_phys->zp_uid = zfs_fuid_create(zfsvfs, 2704 vap->va_uid, cr, ZFS_OWNER, tx, &fuidp); 2705 } 2706 } 2707 2708 if (mask & AT_GID) { 2709 pzp->zp_gid = zfs_fuid_create(zfsvfs, vap->va_gid, 2710 cr, ZFS_GROUP, tx, &fuidp); 2711 if (attrzp) 2712 attrzp->z_phys->zp_gid = zfs_fuid_create(zfsvfs, 2713 vap->va_gid, cr, ZFS_GROUP, tx, &fuidp); 2714 } 2715 2716 if (aclp) 2717 zfs_acl_free(aclp); 2718 2719 if (attrzp) 2720 mutex_exit(&attrzp->z_lock); 2721 2722 if (mask & AT_ATIME) 2723 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2724 2725 if (mask & AT_MTIME) 2726 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2727 2728 if (mask & AT_SIZE) 2729 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2730 else if (mask != 0) 2731 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2732 /* 2733 * Do this after setting timestamps to prevent timestamp 2734 * update from toggling bit 2735 */ 2736 2737 if (xoap && (mask & AT_XVATTR)) { 2738 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2739 size_t len; 2740 dmu_object_info_t doi; 2741 2742 ASSERT(vp->v_type == VREG); 2743 2744 /* Grow the bonus buffer if necessary. */ 2745 dmu_object_info_from_db(zp->z_dbuf, &doi); 2746 len = sizeof (xoap->xoa_av_scanstamp) + 2747 sizeof (znode_phys_t); 2748 if (len > doi.doi_bonus_size) 2749 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2750 } 2751 zfs_xvattr_set(zp, xvap); 2752 } 2753 2754 if (mask != 0) 2755 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2756 2757 if (fuidp) 2758 zfs_fuid_info_free(fuidp); 2759 mutex_exit(&zp->z_lock); 2760 2761 if (attrzp) 2762 VN_RELE(ZTOV(attrzp)); 2763 2764 dmu_tx_commit(tx); 2765 2766 ZFS_EXIT(zfsvfs); 2767 return (err); 2768 } 2769 2770 typedef struct zfs_zlock { 2771 krwlock_t *zl_rwlock; /* lock we acquired */ 2772 znode_t *zl_znode; /* znode we held */ 2773 struct zfs_zlock *zl_next; /* next in list */ 2774 } zfs_zlock_t; 2775 2776 /* 2777 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2778 */ 2779 static void 2780 zfs_rename_unlock(zfs_zlock_t **zlpp) 2781 { 2782 zfs_zlock_t *zl; 2783 2784 while ((zl = *zlpp) != NULL) { 2785 if (zl->zl_znode != NULL) 2786 VN_RELE(ZTOV(zl->zl_znode)); 2787 rw_exit(zl->zl_rwlock); 2788 *zlpp = zl->zl_next; 2789 kmem_free(zl, sizeof (*zl)); 2790 } 2791 } 2792 2793 /* 2794 * Search back through the directory tree, using the ".." entries. 2795 * Lock each directory in the chain to prevent concurrent renames. 2796 * Fail any attempt to move a directory into one of its own descendants. 2797 * XXX - z_parent_lock can overlap with map or grow locks 2798 */ 2799 static int 2800 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2801 { 2802 zfs_zlock_t *zl; 2803 znode_t *zp = tdzp; 2804 uint64_t rootid = zp->z_zfsvfs->z_root; 2805 uint64_t *oidp = &zp->z_id; 2806 krwlock_t *rwlp = &szp->z_parent_lock; 2807 krw_t rw = RW_WRITER; 2808 2809 /* 2810 * First pass write-locks szp and compares to zp->z_id. 2811 * Later passes read-lock zp and compare to zp->z_parent. 2812 */ 2813 do { 2814 if (!rw_tryenter(rwlp, rw)) { 2815 /* 2816 * Another thread is renaming in this path. 2817 * Note that if we are a WRITER, we don't have any 2818 * parent_locks held yet. 2819 */ 2820 if (rw == RW_READER && zp->z_id > szp->z_id) { 2821 /* 2822 * Drop our locks and restart 2823 */ 2824 zfs_rename_unlock(&zl); 2825 *zlpp = NULL; 2826 zp = tdzp; 2827 oidp = &zp->z_id; 2828 rwlp = &szp->z_parent_lock; 2829 rw = RW_WRITER; 2830 continue; 2831 } else { 2832 /* 2833 * Wait for other thread to drop its locks 2834 */ 2835 rw_enter(rwlp, rw); 2836 } 2837 } 2838 2839 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2840 zl->zl_rwlock = rwlp; 2841 zl->zl_znode = NULL; 2842 zl->zl_next = *zlpp; 2843 *zlpp = zl; 2844 2845 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2846 return (EINVAL); 2847 2848 if (*oidp == rootid) /* We've hit the top */ 2849 return (0); 2850 2851 if (rw == RW_READER) { /* i.e. not the first pass */ 2852 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2853 if (error) 2854 return (error); 2855 zl->zl_znode = zp; 2856 } 2857 oidp = &zp->z_phys->zp_parent; 2858 rwlp = &zp->z_parent_lock; 2859 rw = RW_READER; 2860 2861 } while (zp->z_id != sdzp->z_id); 2862 2863 return (0); 2864 } 2865 2866 /* 2867 * Move an entry from the provided source directory to the target 2868 * directory. Change the entry name as indicated. 2869 * 2870 * IN: sdvp - Source directory containing the "old entry". 2871 * snm - Old entry name. 2872 * tdvp - Target directory to contain the "new entry". 2873 * tnm - New entry name. 2874 * cr - credentials of caller. 2875 * ct - caller context 2876 * flags - case flags 2877 * 2878 * RETURN: 0 if success 2879 * error code if failure 2880 * 2881 * Timestamps: 2882 * sdvp,tdvp - ctime|mtime updated 2883 */ 2884 /*ARGSUSED*/ 2885 static int 2886 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 2887 caller_context_t *ct, int flags) 2888 { 2889 znode_t *tdzp, *szp, *tzp; 2890 znode_t *sdzp = VTOZ(sdvp); 2891 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2892 zilog_t *zilog; 2893 vnode_t *realvp; 2894 zfs_dirlock_t *sdl, *tdl; 2895 dmu_tx_t *tx; 2896 zfs_zlock_t *zl; 2897 int cmp, serr, terr; 2898 int error = 0; 2899 int zflg = 0; 2900 2901 ZFS_ENTER(zfsvfs); 2902 ZFS_VERIFY_ZP(sdzp); 2903 zilog = zfsvfs->z_log; 2904 2905 /* 2906 * Make sure we have the real vp for the target directory. 2907 */ 2908 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 2909 tdvp = realvp; 2910 2911 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2912 ZFS_EXIT(zfsvfs); 2913 return (EXDEV); 2914 } 2915 2916 tdzp = VTOZ(tdvp); 2917 ZFS_VERIFY_ZP(tdzp); 2918 if (zfsvfs->z_utf8 && u8_validate(tnm, 2919 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2920 ZFS_EXIT(zfsvfs); 2921 return (EILSEQ); 2922 } 2923 2924 if (flags & FIGNORECASE) 2925 zflg |= ZCILOOK; 2926 2927 top: 2928 szp = NULL; 2929 tzp = NULL; 2930 zl = NULL; 2931 2932 /* 2933 * This is to prevent the creation of links into attribute space 2934 * by renaming a linked file into/outof an attribute directory. 2935 * See the comment in zfs_link() for why this is considered bad. 2936 */ 2937 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2938 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2939 ZFS_EXIT(zfsvfs); 2940 return (EINVAL); 2941 } 2942 2943 /* 2944 * Lock source and target directory entries. To prevent deadlock, 2945 * a lock ordering must be defined. We lock the directory with 2946 * the smallest object id first, or if it's a tie, the one with 2947 * the lexically first name. 2948 */ 2949 if (sdzp->z_id < tdzp->z_id) { 2950 cmp = -1; 2951 } else if (sdzp->z_id > tdzp->z_id) { 2952 cmp = 1; 2953 } else { 2954 /* 2955 * First compare the two name arguments without 2956 * considering any case folding. 2957 */ 2958 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 2959 2960 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 2961 ASSERT(error == 0 || !zfsvfs->z_utf8); 2962 if (cmp == 0) { 2963 /* 2964 * POSIX: "If the old argument and the new argument 2965 * both refer to links to the same existing file, 2966 * the rename() function shall return successfully 2967 * and perform no other action." 2968 */ 2969 ZFS_EXIT(zfsvfs); 2970 return (0); 2971 } 2972 /* 2973 * If the file system is case-folding, then we may 2974 * have some more checking to do. A case-folding file 2975 * system is either supporting mixed case sensitivity 2976 * access or is completely case-insensitive. Note 2977 * that the file system is always case preserving. 2978 * 2979 * In mixed sensitivity mode case sensitive behavior 2980 * is the default. FIGNORECASE must be used to 2981 * explicitly request case insensitive behavior. 2982 * 2983 * If the source and target names provided differ only 2984 * by case (e.g., a request to rename 'tim' to 'Tim'), 2985 * we will treat this as a special case in the 2986 * case-insensitive mode: as long as the source name 2987 * is an exact match, we will allow this to proceed as 2988 * a name-change request. 2989 */ 2990 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 2991 (zfsvfs->z_case == ZFS_CASE_MIXED && 2992 flags & FIGNORECASE)) && 2993 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 2994 &error) == 0) { 2995 /* 2996 * case preserving rename request, require exact 2997 * name matches 2998 */ 2999 zflg |= ZCIEXACT; 3000 zflg &= ~ZCILOOK; 3001 } 3002 } 3003 3004 if (cmp < 0) { 3005 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3006 ZEXISTS | zflg, NULL, NULL); 3007 terr = zfs_dirent_lock(&tdl, 3008 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3009 } else { 3010 terr = zfs_dirent_lock(&tdl, 3011 tdzp, tnm, &tzp, zflg, NULL, NULL); 3012 serr = zfs_dirent_lock(&sdl, 3013 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3014 NULL, NULL); 3015 } 3016 3017 if (serr) { 3018 /* 3019 * Source entry invalid or not there. 3020 */ 3021 if (!terr) { 3022 zfs_dirent_unlock(tdl); 3023 if (tzp) 3024 VN_RELE(ZTOV(tzp)); 3025 } 3026 if (strcmp(snm, "..") == 0) 3027 serr = EINVAL; 3028 ZFS_EXIT(zfsvfs); 3029 return (serr); 3030 } 3031 if (terr) { 3032 zfs_dirent_unlock(sdl); 3033 VN_RELE(ZTOV(szp)); 3034 if (strcmp(tnm, "..") == 0) 3035 terr = EINVAL; 3036 ZFS_EXIT(zfsvfs); 3037 return (terr); 3038 } 3039 3040 /* 3041 * Must have write access at the source to remove the old entry 3042 * and write access at the target to create the new entry. 3043 * Note that if target and source are the same, this can be 3044 * done in a single check. 3045 */ 3046 3047 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3048 goto out; 3049 3050 if (ZTOV(szp)->v_type == VDIR) { 3051 /* 3052 * Check to make sure rename is valid. 3053 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3054 */ 3055 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3056 goto out; 3057 } 3058 3059 /* 3060 * Does target exist? 3061 */ 3062 if (tzp) { 3063 /* 3064 * Source and target must be the same type. 3065 */ 3066 if (ZTOV(szp)->v_type == VDIR) { 3067 if (ZTOV(tzp)->v_type != VDIR) { 3068 error = ENOTDIR; 3069 goto out; 3070 } 3071 } else { 3072 if (ZTOV(tzp)->v_type == VDIR) { 3073 error = EISDIR; 3074 goto out; 3075 } 3076 } 3077 /* 3078 * POSIX dictates that when the source and target 3079 * entries refer to the same file object, rename 3080 * must do nothing and exit without error. 3081 */ 3082 if (szp->z_id == tzp->z_id) { 3083 error = 0; 3084 goto out; 3085 } 3086 } 3087 3088 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3089 if (tzp) 3090 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3091 3092 /* 3093 * notify the target directory if it is not the same 3094 * as source directory. 3095 */ 3096 if (tdvp != sdvp) { 3097 vnevent_rename_dest_dir(tdvp, ct); 3098 } 3099 3100 tx = dmu_tx_create(zfsvfs->z_os); 3101 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3102 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3103 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3104 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3105 if (sdzp != tdzp) 3106 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3107 if (tzp) 3108 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3109 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3110 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3111 if (error) { 3112 if (zl != NULL) 3113 zfs_rename_unlock(&zl); 3114 zfs_dirent_unlock(sdl); 3115 zfs_dirent_unlock(tdl); 3116 VN_RELE(ZTOV(szp)); 3117 if (tzp) 3118 VN_RELE(ZTOV(tzp)); 3119 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3120 dmu_tx_wait(tx); 3121 dmu_tx_abort(tx); 3122 goto top; 3123 } 3124 dmu_tx_abort(tx); 3125 ZFS_EXIT(zfsvfs); 3126 return (error); 3127 } 3128 3129 if (tzp) /* Attempt to remove the existing target */ 3130 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3131 3132 if (error == 0) { 3133 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3134 if (error == 0) { 3135 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3136 3137 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3138 ASSERT(error == 0); 3139 3140 zfs_log_rename(zilog, tx, 3141 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3142 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3143 } 3144 } 3145 3146 dmu_tx_commit(tx); 3147 out: 3148 if (zl != NULL) 3149 zfs_rename_unlock(&zl); 3150 3151 zfs_dirent_unlock(sdl); 3152 zfs_dirent_unlock(tdl); 3153 3154 VN_RELE(ZTOV(szp)); 3155 if (tzp) 3156 VN_RELE(ZTOV(tzp)); 3157 3158 ZFS_EXIT(zfsvfs); 3159 return (error); 3160 } 3161 3162 /* 3163 * Insert the indicated symbolic reference entry into the directory. 3164 * 3165 * IN: dvp - Directory to contain new symbolic link. 3166 * link - Name for new symlink entry. 3167 * vap - Attributes of new entry. 3168 * target - Target path of new symlink. 3169 * cr - credentials of caller. 3170 * ct - caller context 3171 * flags - case flags 3172 * 3173 * RETURN: 0 if success 3174 * error code if failure 3175 * 3176 * Timestamps: 3177 * dvp - ctime|mtime updated 3178 */ 3179 /*ARGSUSED*/ 3180 static int 3181 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3182 caller_context_t *ct, int flags) 3183 { 3184 znode_t *zp, *dzp = VTOZ(dvp); 3185 zfs_dirlock_t *dl; 3186 dmu_tx_t *tx; 3187 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3188 zilog_t *zilog; 3189 int len = strlen(link); 3190 int error; 3191 int zflg = ZNEW; 3192 zfs_fuid_info_t *fuidp = NULL; 3193 3194 ASSERT(vap->va_type == VLNK); 3195 3196 ZFS_ENTER(zfsvfs); 3197 ZFS_VERIFY_ZP(dzp); 3198 zilog = zfsvfs->z_log; 3199 3200 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3201 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3202 ZFS_EXIT(zfsvfs); 3203 return (EILSEQ); 3204 } 3205 if (flags & FIGNORECASE) 3206 zflg |= ZCILOOK; 3207 top: 3208 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3209 ZFS_EXIT(zfsvfs); 3210 return (error); 3211 } 3212 3213 if (len > MAXPATHLEN) { 3214 ZFS_EXIT(zfsvfs); 3215 return (ENAMETOOLONG); 3216 } 3217 3218 /* 3219 * Attempt to lock directory; fail if entry already exists. 3220 */ 3221 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3222 if (error) { 3223 ZFS_EXIT(zfsvfs); 3224 return (error); 3225 } 3226 3227 tx = dmu_tx_create(zfsvfs->z_os); 3228 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3229 dmu_tx_hold_bonus(tx, dzp->z_id); 3230 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3231 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 3232 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3233 if (IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))) { 3234 if (zfsvfs->z_fuid_obj == 0) { 3235 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 3236 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3237 FUID_SIZE_ESTIMATE(zfsvfs)); 3238 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 3239 } else { 3240 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 3241 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 3242 FUID_SIZE_ESTIMATE(zfsvfs)); 3243 } 3244 } 3245 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3246 if (error) { 3247 zfs_dirent_unlock(dl); 3248 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3249 dmu_tx_wait(tx); 3250 dmu_tx_abort(tx); 3251 goto top; 3252 } 3253 dmu_tx_abort(tx); 3254 ZFS_EXIT(zfsvfs); 3255 return (error); 3256 } 3257 3258 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3259 3260 /* 3261 * Create a new object for the symlink. 3262 * Put the link content into bonus buffer if it will fit; 3263 * otherwise, store it just like any other file data. 3264 */ 3265 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3266 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, NULL, &fuidp); 3267 if (len != 0) 3268 bcopy(link, zp->z_phys + 1, len); 3269 } else { 3270 dmu_buf_t *dbp; 3271 3272 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, NULL, &fuidp); 3273 /* 3274 * Nothing can access the znode yet so no locking needed 3275 * for growing the znode's blocksize. 3276 */ 3277 zfs_grow_blocksize(zp, len, tx); 3278 3279 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3280 zp->z_id, 0, FTAG, &dbp)); 3281 dmu_buf_will_dirty(dbp, tx); 3282 3283 ASSERT3U(len, <=, dbp->db_size); 3284 bcopy(link, dbp->db_data, len); 3285 dmu_buf_rele(dbp, FTAG); 3286 } 3287 zp->z_phys->zp_size = len; 3288 3289 /* 3290 * Insert the new object into the directory. 3291 */ 3292 (void) zfs_link_create(dl, zp, tx, ZNEW); 3293 out: 3294 if (error == 0) { 3295 uint64_t txtype = TX_SYMLINK; 3296 if (flags & FIGNORECASE) 3297 txtype |= TX_CI; 3298 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3299 } 3300 if (fuidp) 3301 zfs_fuid_info_free(fuidp); 3302 3303 dmu_tx_commit(tx); 3304 3305 zfs_dirent_unlock(dl); 3306 3307 VN_RELE(ZTOV(zp)); 3308 3309 ZFS_EXIT(zfsvfs); 3310 return (error); 3311 } 3312 3313 /* 3314 * Return, in the buffer contained in the provided uio structure, 3315 * the symbolic path referred to by vp. 3316 * 3317 * IN: vp - vnode of symbolic link. 3318 * uoip - structure to contain the link path. 3319 * cr - credentials of caller. 3320 * ct - caller context 3321 * 3322 * OUT: uio - structure to contain the link path. 3323 * 3324 * RETURN: 0 if success 3325 * error code if failure 3326 * 3327 * Timestamps: 3328 * vp - atime updated 3329 */ 3330 /* ARGSUSED */ 3331 static int 3332 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3333 { 3334 znode_t *zp = VTOZ(vp); 3335 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3336 size_t bufsz; 3337 int error; 3338 3339 ZFS_ENTER(zfsvfs); 3340 ZFS_VERIFY_ZP(zp); 3341 3342 bufsz = (size_t)zp->z_phys->zp_size; 3343 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3344 error = uiomove(zp->z_phys + 1, 3345 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3346 } else { 3347 dmu_buf_t *dbp; 3348 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3349 if (error) { 3350 ZFS_EXIT(zfsvfs); 3351 return (error); 3352 } 3353 error = uiomove(dbp->db_data, 3354 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3355 dmu_buf_rele(dbp, FTAG); 3356 } 3357 3358 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3359 ZFS_EXIT(zfsvfs); 3360 return (error); 3361 } 3362 3363 /* 3364 * Insert a new entry into directory tdvp referencing svp. 3365 * 3366 * IN: tdvp - Directory to contain new entry. 3367 * svp - vnode of new entry. 3368 * name - name of new entry. 3369 * cr - credentials of caller. 3370 * ct - caller context 3371 * 3372 * RETURN: 0 if success 3373 * error code if failure 3374 * 3375 * Timestamps: 3376 * tdvp - ctime|mtime updated 3377 * svp - ctime updated 3378 */ 3379 /* ARGSUSED */ 3380 static int 3381 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3382 caller_context_t *ct, int flags) 3383 { 3384 znode_t *dzp = VTOZ(tdvp); 3385 znode_t *tzp, *szp; 3386 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3387 zilog_t *zilog; 3388 zfs_dirlock_t *dl; 3389 dmu_tx_t *tx; 3390 vnode_t *realvp; 3391 int error; 3392 int zf = ZNEW; 3393 uid_t owner; 3394 3395 ASSERT(tdvp->v_type == VDIR); 3396 3397 ZFS_ENTER(zfsvfs); 3398 ZFS_VERIFY_ZP(dzp); 3399 zilog = zfsvfs->z_log; 3400 3401 if (VOP_REALVP(svp, &realvp, ct) == 0) 3402 svp = realvp; 3403 3404 if (svp->v_vfsp != tdvp->v_vfsp) { 3405 ZFS_EXIT(zfsvfs); 3406 return (EXDEV); 3407 } 3408 szp = VTOZ(svp); 3409 ZFS_VERIFY_ZP(szp); 3410 3411 if (zfsvfs->z_utf8 && u8_validate(name, 3412 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3413 ZFS_EXIT(zfsvfs); 3414 return (EILSEQ); 3415 } 3416 if (flags & FIGNORECASE) 3417 zf |= ZCILOOK; 3418 3419 top: 3420 /* 3421 * We do not support links between attributes and non-attributes 3422 * because of the potential security risk of creating links 3423 * into "normal" file space in order to circumvent restrictions 3424 * imposed in attribute space. 3425 */ 3426 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3427 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3428 ZFS_EXIT(zfsvfs); 3429 return (EINVAL); 3430 } 3431 3432 /* 3433 * POSIX dictates that we return EPERM here. 3434 * Better choices include ENOTSUP or EISDIR. 3435 */ 3436 if (svp->v_type == VDIR) { 3437 ZFS_EXIT(zfsvfs); 3438 return (EPERM); 3439 } 3440 3441 owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER); 3442 if (owner != crgetuid(cr) && 3443 secpolicy_basic_link(cr) != 0) { 3444 ZFS_EXIT(zfsvfs); 3445 return (EPERM); 3446 } 3447 3448 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3449 ZFS_EXIT(zfsvfs); 3450 return (error); 3451 } 3452 3453 /* 3454 * Attempt to lock directory; fail if entry already exists. 3455 */ 3456 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3457 if (error) { 3458 ZFS_EXIT(zfsvfs); 3459 return (error); 3460 } 3461 3462 tx = dmu_tx_create(zfsvfs->z_os); 3463 dmu_tx_hold_bonus(tx, szp->z_id); 3464 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3465 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3466 if (error) { 3467 zfs_dirent_unlock(dl); 3468 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3469 dmu_tx_wait(tx); 3470 dmu_tx_abort(tx); 3471 goto top; 3472 } 3473 dmu_tx_abort(tx); 3474 ZFS_EXIT(zfsvfs); 3475 return (error); 3476 } 3477 3478 error = zfs_link_create(dl, szp, tx, 0); 3479 3480 if (error == 0) { 3481 uint64_t txtype = TX_LINK; 3482 if (flags & FIGNORECASE) 3483 txtype |= TX_CI; 3484 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3485 } 3486 3487 dmu_tx_commit(tx); 3488 3489 zfs_dirent_unlock(dl); 3490 3491 if (error == 0) { 3492 vnevent_link(svp, ct); 3493 } 3494 3495 ZFS_EXIT(zfsvfs); 3496 return (error); 3497 } 3498 3499 /* 3500 * zfs_null_putapage() is used when the file system has been force 3501 * unmounted. It just drops the pages. 3502 */ 3503 /* ARGSUSED */ 3504 static int 3505 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3506 size_t *lenp, int flags, cred_t *cr) 3507 { 3508 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3509 return (0); 3510 } 3511 3512 /* 3513 * Push a page out to disk, klustering if possible. 3514 * 3515 * IN: vp - file to push page to. 3516 * pp - page to push. 3517 * flags - additional flags. 3518 * cr - credentials of caller. 3519 * 3520 * OUT: offp - start of range pushed. 3521 * lenp - len of range pushed. 3522 * 3523 * RETURN: 0 if success 3524 * error code if failure 3525 * 3526 * NOTE: callers must have locked the page to be pushed. On 3527 * exit, the page (and all other pages in the kluster) must be 3528 * unlocked. 3529 */ 3530 /* ARGSUSED */ 3531 static int 3532 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3533 size_t *lenp, int flags, cred_t *cr) 3534 { 3535 znode_t *zp = VTOZ(vp); 3536 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3537 zilog_t *zilog = zfsvfs->z_log; 3538 dmu_tx_t *tx; 3539 rl_t *rl; 3540 u_offset_t off, koff; 3541 size_t len, klen; 3542 uint64_t filesz; 3543 int err; 3544 3545 filesz = zp->z_phys->zp_size; 3546 off = pp->p_offset; 3547 len = PAGESIZE; 3548 /* 3549 * If our blocksize is bigger than the page size, try to kluster 3550 * muiltiple pages so that we write a full block (thus avoiding 3551 * a read-modify-write). 3552 */ 3553 if (off < filesz && zp->z_blksz > PAGESIZE) { 3554 if (!ISP2(zp->z_blksz)) { 3555 /* Only one block in the file. */ 3556 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3557 koff = 0; 3558 } else { 3559 klen = zp->z_blksz; 3560 koff = P2ALIGN(off, (u_offset_t)klen); 3561 } 3562 ASSERT(koff <= filesz); 3563 if (koff + klen > filesz) 3564 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3565 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3566 } 3567 ASSERT3U(btop(len), ==, btopr(len)); 3568 top: 3569 rl = zfs_range_lock(zp, off, len, RL_WRITER); 3570 /* 3571 * Can't push pages past end-of-file. 3572 */ 3573 filesz = zp->z_phys->zp_size; 3574 if (off >= filesz) { 3575 /* ignore all pages */ 3576 err = 0; 3577 goto out; 3578 } else if (off + len > filesz) { 3579 int npages = btopr(filesz - off); 3580 page_t *trunc; 3581 3582 page_list_break(&pp, &trunc, npages); 3583 /* ignore pages past end of file */ 3584 if (trunc) 3585 pvn_write_done(trunc, flags); 3586 len = filesz - off; 3587 } 3588 3589 tx = dmu_tx_create(zfsvfs->z_os); 3590 dmu_tx_hold_write(tx, zp->z_id, off, len); 3591 dmu_tx_hold_bonus(tx, zp->z_id); 3592 err = dmu_tx_assign(tx, zfsvfs->z_assign); 3593 if (err != 0) { 3594 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3595 zfs_range_unlock(rl); 3596 dmu_tx_wait(tx); 3597 dmu_tx_abort(tx); 3598 err = 0; 3599 goto top; 3600 } 3601 dmu_tx_abort(tx); 3602 goto out; 3603 } 3604 3605 if (zp->z_blksz <= PAGESIZE) { 3606 caddr_t va = ppmapin(pp, PROT_READ, (caddr_t)-1); 3607 ASSERT3U(len, <=, PAGESIZE); 3608 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3609 ppmapout(va); 3610 } else { 3611 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3612 } 3613 3614 if (err == 0) { 3615 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3616 zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0); 3617 dmu_tx_commit(tx); 3618 } 3619 3620 out: 3621 zfs_range_unlock(rl); 3622 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3623 if (offp) 3624 *offp = off; 3625 if (lenp) 3626 *lenp = len; 3627 3628 return (err); 3629 } 3630 3631 /* 3632 * Copy the portion of the file indicated from pages into the file. 3633 * The pages are stored in a page list attached to the files vnode. 3634 * 3635 * IN: vp - vnode of file to push page data to. 3636 * off - position in file to put data. 3637 * len - amount of data to write. 3638 * flags - flags to control the operation. 3639 * cr - credentials of caller. 3640 * ct - caller context. 3641 * 3642 * RETURN: 0 if success 3643 * error code if failure 3644 * 3645 * Timestamps: 3646 * vp - ctime|mtime updated 3647 */ 3648 /*ARGSUSED*/ 3649 static int 3650 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3651 caller_context_t *ct) 3652 { 3653 znode_t *zp = VTOZ(vp); 3654 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3655 page_t *pp; 3656 size_t io_len; 3657 u_offset_t io_off; 3658 uint64_t filesz; 3659 int error = 0; 3660 3661 ZFS_ENTER(zfsvfs); 3662 ZFS_VERIFY_ZP(zp); 3663 3664 if (len == 0) { 3665 /* 3666 * Search the entire vp list for pages >= off. 3667 */ 3668 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 3669 flags, cr); 3670 goto out; 3671 } 3672 3673 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3674 if (off > filesz) { 3675 /* past end of file */ 3676 ZFS_EXIT(zfsvfs); 3677 return (0); 3678 } 3679 3680 len = MIN(len, filesz - off); 3681 3682 for (io_off = off; io_off < off + len; io_off += io_len) { 3683 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3684 pp = page_lookup(vp, io_off, 3685 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3686 } else { 3687 pp = page_lookup_nowait(vp, io_off, 3688 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3689 } 3690 3691 if (pp != NULL && pvn_getdirty(pp, flags)) { 3692 int err; 3693 3694 /* 3695 * Found a dirty page to push 3696 */ 3697 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3698 if (err) 3699 error = err; 3700 } else { 3701 io_len = PAGESIZE; 3702 } 3703 } 3704 out: 3705 if ((flags & B_ASYNC) == 0) 3706 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3707 ZFS_EXIT(zfsvfs); 3708 return (error); 3709 } 3710 3711 /*ARGSUSED*/ 3712 void 3713 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3714 { 3715 znode_t *zp = VTOZ(vp); 3716 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3717 int error; 3718 3719 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3720 if (zp->z_dbuf == NULL) { 3721 /* 3722 * The fs has been unmounted, or we did a 3723 * suspend/resume and this file no longer exists. 3724 */ 3725 if (vn_has_cached_data(vp)) { 3726 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3727 B_INVAL, cr); 3728 } 3729 3730 mutex_enter(&zp->z_lock); 3731 vp->v_count = 0; /* count arrives as 1 */ 3732 mutex_exit(&zp->z_lock); 3733 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3734 zfs_znode_free(zp); 3735 return; 3736 } 3737 3738 /* 3739 * Attempt to push any data in the page cache. If this fails 3740 * we will get kicked out later in zfs_zinactive(). 3741 */ 3742 if (vn_has_cached_data(vp)) { 3743 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3744 cr); 3745 } 3746 3747 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3748 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3749 3750 dmu_tx_hold_bonus(tx, zp->z_id); 3751 error = dmu_tx_assign(tx, TXG_WAIT); 3752 if (error) { 3753 dmu_tx_abort(tx); 3754 } else { 3755 dmu_buf_will_dirty(zp->z_dbuf, tx); 3756 mutex_enter(&zp->z_lock); 3757 zp->z_atime_dirty = 0; 3758 mutex_exit(&zp->z_lock); 3759 dmu_tx_commit(tx); 3760 } 3761 } 3762 3763 zfs_zinactive(zp); 3764 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3765 } 3766 3767 /* 3768 * Bounds-check the seek operation. 3769 * 3770 * IN: vp - vnode seeking within 3771 * ooff - old file offset 3772 * noffp - pointer to new file offset 3773 * ct - caller context 3774 * 3775 * RETURN: 0 if success 3776 * EINVAL if new offset invalid 3777 */ 3778 /* ARGSUSED */ 3779 static int 3780 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 3781 caller_context_t *ct) 3782 { 3783 if (vp->v_type == VDIR) 3784 return (0); 3785 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3786 } 3787 3788 /* 3789 * Pre-filter the generic locking function to trap attempts to place 3790 * a mandatory lock on a memory mapped file. 3791 */ 3792 static int 3793 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3794 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 3795 { 3796 znode_t *zp = VTOZ(vp); 3797 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3798 int error; 3799 3800 ZFS_ENTER(zfsvfs); 3801 ZFS_VERIFY_ZP(zp); 3802 3803 /* 3804 * We are following the UFS semantics with respect to mapcnt 3805 * here: If we see that the file is mapped already, then we will 3806 * return an error, but we don't worry about races between this 3807 * function and zfs_map(). 3808 */ 3809 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3810 ZFS_EXIT(zfsvfs); 3811 return (EAGAIN); 3812 } 3813 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3814 ZFS_EXIT(zfsvfs); 3815 return (error); 3816 } 3817 3818 /* 3819 * If we can't find a page in the cache, we will create a new page 3820 * and fill it with file data. For efficiency, we may try to fill 3821 * multiple pages at once (klustering). 3822 */ 3823 static int 3824 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3825 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3826 { 3827 znode_t *zp = VTOZ(vp); 3828 page_t *pp, *cur_pp; 3829 objset_t *os = zp->z_zfsvfs->z_os; 3830 caddr_t va; 3831 u_offset_t io_off, total; 3832 uint64_t oid = zp->z_id; 3833 size_t io_len; 3834 uint64_t filesz; 3835 int err; 3836 3837 /* 3838 * If we are only asking for a single page don't bother klustering. 3839 */ 3840 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3841 if (off >= filesz) 3842 return (EFAULT); 3843 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 3844 io_off = off; 3845 io_len = PAGESIZE; 3846 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3847 } else { 3848 /* 3849 * Try to fill a kluster of pages (a blocks worth). 3850 */ 3851 size_t klen; 3852 u_offset_t koff; 3853 3854 if (!ISP2(zp->z_blksz)) { 3855 /* Only one block in the file. */ 3856 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3857 koff = 0; 3858 } else { 3859 /* 3860 * It would be ideal to align our offset to the 3861 * blocksize but doing so has resulted in some 3862 * strange application crashes. For now, we 3863 * leave the offset as is and only adjust the 3864 * length if we are off the end of the file. 3865 */ 3866 koff = off; 3867 klen = plsz; 3868 } 3869 ASSERT(koff <= filesz); 3870 if (koff + klen > filesz) 3871 klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff; 3872 ASSERT3U(off, >=, koff); 3873 ASSERT3U(off, <, koff + klen); 3874 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3875 &io_len, koff, klen, 0); 3876 } 3877 if (pp == NULL) { 3878 /* 3879 * Some other thread entered the page before us. 3880 * Return to zfs_getpage to retry the lookup. 3881 */ 3882 *pl = NULL; 3883 return (0); 3884 } 3885 3886 /* 3887 * Fill the pages in the kluster. 3888 */ 3889 cur_pp = pp; 3890 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3891 ASSERT3U(io_off, ==, cur_pp->p_offset); 3892 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3893 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3894 ppmapout(va); 3895 if (err) { 3896 /* On error, toss the entire kluster */ 3897 pvn_read_done(pp, B_ERROR); 3898 return (err); 3899 } 3900 cur_pp = cur_pp->p_next; 3901 } 3902 out: 3903 /* 3904 * Fill in the page list array from the kluster. If 3905 * there are too many pages in the kluster, return 3906 * as many pages as possible starting from the desired 3907 * offset `off'. 3908 * NOTE: the page list will always be null terminated. 3909 */ 3910 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3911 3912 return (0); 3913 } 3914 3915 /* 3916 * Return pointers to the pages for the file region [off, off + len] 3917 * in the pl array. If plsz is greater than len, this function may 3918 * also return page pointers from before or after the specified 3919 * region (i.e. some region [off', off' + plsz]). These additional 3920 * pages are only returned if they are already in the cache, or were 3921 * created as part of a klustered read. 3922 * 3923 * IN: vp - vnode of file to get data from. 3924 * off - position in file to get data from. 3925 * len - amount of data to retrieve. 3926 * plsz - length of provided page list. 3927 * seg - segment to obtain pages for. 3928 * addr - virtual address of fault. 3929 * rw - mode of created pages. 3930 * cr - credentials of caller. 3931 * ct - caller context. 3932 * 3933 * OUT: protp - protection mode of created pages. 3934 * pl - list of pages created. 3935 * 3936 * RETURN: 0 if success 3937 * error code if failure 3938 * 3939 * Timestamps: 3940 * vp - atime updated 3941 */ 3942 /* ARGSUSED */ 3943 static int 3944 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3945 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3946 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3947 { 3948 znode_t *zp = VTOZ(vp); 3949 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3950 page_t *pp, **pl0 = pl; 3951 int need_unlock = 0, err = 0; 3952 offset_t orig_off; 3953 3954 ZFS_ENTER(zfsvfs); 3955 ZFS_VERIFY_ZP(zp); 3956 3957 if (protp) 3958 *protp = PROT_ALL; 3959 3960 /* no faultahead (for now) */ 3961 if (pl == NULL) { 3962 ZFS_EXIT(zfsvfs); 3963 return (0); 3964 } 3965 3966 /* can't fault past EOF */ 3967 if (off >= zp->z_phys->zp_size) { 3968 ZFS_EXIT(zfsvfs); 3969 return (EFAULT); 3970 } 3971 orig_off = off; 3972 3973 /* 3974 * If we already own the lock, then we must be page faulting 3975 * in the middle of a write to this file (i.e., we are writing 3976 * to this file using data from a mapped region of the file). 3977 */ 3978 if (rw_owner(&zp->z_map_lock) != curthread) { 3979 rw_enter(&zp->z_map_lock, RW_WRITER); 3980 need_unlock = TRUE; 3981 } 3982 3983 /* 3984 * Loop through the requested range [off, off + len] looking 3985 * for pages. If we don't find a page, we will need to create 3986 * a new page and fill it with data from the file. 3987 */ 3988 while (len > 0) { 3989 if (plsz < PAGESIZE) 3990 break; 3991 if (pp = page_lookup(vp, off, SE_SHARED)) { 3992 *pl++ = pp; 3993 off += PAGESIZE; 3994 addr += PAGESIZE; 3995 len -= PAGESIZE; 3996 plsz -= PAGESIZE; 3997 } else { 3998 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3999 if (err) 4000 goto out; 4001 /* 4002 * klustering may have changed our region 4003 * to be block aligned. 4004 */ 4005 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 4006 int delta = off - pp->p_offset; 4007 len += delta; 4008 off -= delta; 4009 addr -= delta; 4010 } 4011 while (*pl) { 4012 pl++; 4013 off += PAGESIZE; 4014 addr += PAGESIZE; 4015 plsz -= PAGESIZE; 4016 if (len > PAGESIZE) 4017 len -= PAGESIZE; 4018 else 4019 len = 0; 4020 } 4021 } 4022 } 4023 4024 /* 4025 * Fill out the page array with any pages already in the cache. 4026 */ 4027 while (plsz > 0) { 4028 pp = page_lookup_nowait(vp, off, SE_SHARED); 4029 if (pp == NULL) 4030 break; 4031 *pl++ = pp; 4032 off += PAGESIZE; 4033 plsz -= PAGESIZE; 4034 } 4035 4036 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4037 out: 4038 /* 4039 * We can't grab the range lock for the page as reader which would 4040 * stop truncation as this leads to deadlock. So we need to recheck 4041 * the file size. 4042 */ 4043 if (orig_off >= zp->z_phys->zp_size) 4044 err = EFAULT; 4045 if (err) { 4046 /* 4047 * Release any pages we have previously locked. 4048 */ 4049 while (pl > pl0) 4050 page_unlock(*--pl); 4051 } 4052 4053 *pl = NULL; 4054 4055 if (need_unlock) 4056 rw_exit(&zp->z_map_lock); 4057 4058 ZFS_EXIT(zfsvfs); 4059 return (err); 4060 } 4061 4062 /* 4063 * Request a memory map for a section of a file. This code interacts 4064 * with common code and the VM system as follows: 4065 * 4066 * common code calls mmap(), which ends up in smmap_common() 4067 * 4068 * this calls VOP_MAP(), which takes you into (say) zfs 4069 * 4070 * zfs_map() calls as_map(), passing segvn_create() as the callback 4071 * 4072 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4073 * 4074 * zfs_addmap() updates z_mapcnt 4075 */ 4076 /*ARGSUSED*/ 4077 static int 4078 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4079 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4080 caller_context_t *ct) 4081 { 4082 znode_t *zp = VTOZ(vp); 4083 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4084 segvn_crargs_t vn_a; 4085 int error; 4086 4087 ZFS_ENTER(zfsvfs); 4088 ZFS_VERIFY_ZP(zp); 4089 4090 if ((prot & PROT_WRITE) && 4091 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4092 ZFS_APPENDONLY))) { 4093 ZFS_EXIT(zfsvfs); 4094 return (EPERM); 4095 } 4096 4097 if ((prot & (PROT_READ | PROT_EXEC)) && 4098 (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) { 4099 ZFS_EXIT(zfsvfs); 4100 return (EACCES); 4101 } 4102 4103 if (vp->v_flag & VNOMAP) { 4104 ZFS_EXIT(zfsvfs); 4105 return (ENOSYS); 4106 } 4107 4108 if (off < 0 || len > MAXOFFSET_T - off) { 4109 ZFS_EXIT(zfsvfs); 4110 return (ENXIO); 4111 } 4112 4113 if (vp->v_type != VREG) { 4114 ZFS_EXIT(zfsvfs); 4115 return (ENODEV); 4116 } 4117 4118 /* 4119 * If file is locked, disallow mapping. 4120 */ 4121 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4122 ZFS_EXIT(zfsvfs); 4123 return (EAGAIN); 4124 } 4125 4126 as_rangelock(as); 4127 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4128 if (error != 0) { 4129 as_rangeunlock(as); 4130 ZFS_EXIT(zfsvfs); 4131 return (error); 4132 } 4133 4134 vn_a.vp = vp; 4135 vn_a.offset = (u_offset_t)off; 4136 vn_a.type = flags & MAP_TYPE; 4137 vn_a.prot = prot; 4138 vn_a.maxprot = maxprot; 4139 vn_a.cred = cr; 4140 vn_a.amp = NULL; 4141 vn_a.flags = flags & ~MAP_TYPE; 4142 vn_a.szc = 0; 4143 vn_a.lgrp_mem_policy_flags = 0; 4144 4145 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4146 4147 as_rangeunlock(as); 4148 ZFS_EXIT(zfsvfs); 4149 return (error); 4150 } 4151 4152 /* ARGSUSED */ 4153 static int 4154 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4155 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4156 caller_context_t *ct) 4157 { 4158 uint64_t pages = btopr(len); 4159 4160 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4161 return (0); 4162 } 4163 4164 /* 4165 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4166 * more accurate mtime for the associated file. Since we don't have a way of 4167 * detecting when the data was actually modified, we have to resort to 4168 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4169 * last page is pushed. The problem occurs when the msync() call is omitted, 4170 * which by far the most common case: 4171 * 4172 * open() 4173 * mmap() 4174 * <modify memory> 4175 * munmap() 4176 * close() 4177 * <time lapse> 4178 * putpage() via fsflush 4179 * 4180 * If we wait until fsflush to come along, we can have a modification time that 4181 * is some arbitrary point in the future. In order to prevent this in the 4182 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4183 * torn down. 4184 */ 4185 /* ARGSUSED */ 4186 static int 4187 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4188 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4189 caller_context_t *ct) 4190 { 4191 uint64_t pages = btopr(len); 4192 4193 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4194 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4195 4196 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4197 vn_has_cached_data(vp)) 4198 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4199 4200 return (0); 4201 } 4202 4203 /* 4204 * Free or allocate space in a file. Currently, this function only 4205 * supports the `F_FREESP' command. However, this command is somewhat 4206 * misnamed, as its functionality includes the ability to allocate as 4207 * well as free space. 4208 * 4209 * IN: vp - vnode of file to free data in. 4210 * cmd - action to take (only F_FREESP supported). 4211 * bfp - section of file to free/alloc. 4212 * flag - current file open mode flags. 4213 * offset - current file offset. 4214 * cr - credentials of caller [UNUSED]. 4215 * ct - caller context. 4216 * 4217 * RETURN: 0 if success 4218 * error code if failure 4219 * 4220 * Timestamps: 4221 * vp - ctime|mtime updated 4222 */ 4223 /* ARGSUSED */ 4224 static int 4225 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4226 offset_t offset, cred_t *cr, caller_context_t *ct) 4227 { 4228 znode_t *zp = VTOZ(vp); 4229 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4230 uint64_t off, len; 4231 int error; 4232 4233 ZFS_ENTER(zfsvfs); 4234 ZFS_VERIFY_ZP(zp); 4235 4236 top: 4237 if (cmd != F_FREESP) { 4238 ZFS_EXIT(zfsvfs); 4239 return (EINVAL); 4240 } 4241 4242 if (error = convoff(vp, bfp, 0, offset)) { 4243 ZFS_EXIT(zfsvfs); 4244 return (error); 4245 } 4246 4247 if (bfp->l_len < 0) { 4248 ZFS_EXIT(zfsvfs); 4249 return (EINVAL); 4250 } 4251 4252 off = bfp->l_start; 4253 len = bfp->l_len; /* 0 means from off to end of file */ 4254 4255 do { 4256 error = zfs_freesp(zp, off, len, flag, TRUE); 4257 /* NB: we already did dmu_tx_wait() if necessary */ 4258 } while (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 4259 4260 ZFS_EXIT(zfsvfs); 4261 return (error); 4262 } 4263 4264 /*ARGSUSED*/ 4265 static int 4266 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4267 { 4268 znode_t *zp = VTOZ(vp); 4269 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4270 uint32_t gen; 4271 uint64_t object = zp->z_id; 4272 zfid_short_t *zfid; 4273 int size, i; 4274 4275 ZFS_ENTER(zfsvfs); 4276 ZFS_VERIFY_ZP(zp); 4277 gen = (uint32_t)zp->z_gen; 4278 4279 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4280 if (fidp->fid_len < size) { 4281 fidp->fid_len = size; 4282 ZFS_EXIT(zfsvfs); 4283 return (ENOSPC); 4284 } 4285 4286 zfid = (zfid_short_t *)fidp; 4287 4288 zfid->zf_len = size; 4289 4290 for (i = 0; i < sizeof (zfid->zf_object); i++) 4291 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4292 4293 /* Must have a non-zero generation number to distinguish from .zfs */ 4294 if (gen == 0) 4295 gen = 1; 4296 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4297 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4298 4299 if (size == LONG_FID_LEN) { 4300 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4301 zfid_long_t *zlfid; 4302 4303 zlfid = (zfid_long_t *)fidp; 4304 4305 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4306 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4307 4308 /* XXX - this should be the generation number for the objset */ 4309 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4310 zlfid->zf_setgen[i] = 0; 4311 } 4312 4313 ZFS_EXIT(zfsvfs); 4314 return (0); 4315 } 4316 4317 static int 4318 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4319 caller_context_t *ct) 4320 { 4321 znode_t *zp, *xzp; 4322 zfsvfs_t *zfsvfs; 4323 zfs_dirlock_t *dl; 4324 int error; 4325 4326 switch (cmd) { 4327 case _PC_LINK_MAX: 4328 *valp = ULONG_MAX; 4329 return (0); 4330 4331 case _PC_FILESIZEBITS: 4332 *valp = 64; 4333 return (0); 4334 4335 case _PC_XATTR_EXISTS: 4336 zp = VTOZ(vp); 4337 zfsvfs = zp->z_zfsvfs; 4338 ZFS_ENTER(zfsvfs); 4339 ZFS_VERIFY_ZP(zp); 4340 *valp = 0; 4341 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4342 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4343 if (error == 0) { 4344 zfs_dirent_unlock(dl); 4345 if (!zfs_dirempty(xzp)) 4346 *valp = 1; 4347 VN_RELE(ZTOV(xzp)); 4348 } else if (error == ENOENT) { 4349 /* 4350 * If there aren't extended attributes, it's the 4351 * same as having zero of them. 4352 */ 4353 error = 0; 4354 } 4355 ZFS_EXIT(zfsvfs); 4356 return (error); 4357 4358 case _PC_SATTR_ENABLED: 4359 case _PC_SATTR_EXISTS: 4360 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) && 4361 (vp->v_type == VREG || vp->v_type == VDIR); 4362 return (0); 4363 4364 case _PC_ACL_ENABLED: 4365 *valp = _ACL_ACE_ENABLED; 4366 return (0); 4367 4368 case _PC_MIN_HOLE_SIZE: 4369 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4370 return (0); 4371 4372 default: 4373 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4374 } 4375 } 4376 4377 /*ARGSUSED*/ 4378 static int 4379 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4380 caller_context_t *ct) 4381 { 4382 znode_t *zp = VTOZ(vp); 4383 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4384 int error; 4385 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4386 4387 ZFS_ENTER(zfsvfs); 4388 ZFS_VERIFY_ZP(zp); 4389 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4390 ZFS_EXIT(zfsvfs); 4391 4392 return (error); 4393 } 4394 4395 /*ARGSUSED*/ 4396 static int 4397 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4398 caller_context_t *ct) 4399 { 4400 znode_t *zp = VTOZ(vp); 4401 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4402 int error; 4403 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4404 4405 ZFS_ENTER(zfsvfs); 4406 ZFS_VERIFY_ZP(zp); 4407 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4408 ZFS_EXIT(zfsvfs); 4409 return (error); 4410 } 4411 4412 /* 4413 * Predeclare these here so that the compiler assumes that 4414 * this is an "old style" function declaration that does 4415 * not include arguments => we won't get type mismatch errors 4416 * in the initializations that follow. 4417 */ 4418 static int zfs_inval(); 4419 static int zfs_isdir(); 4420 4421 static int 4422 zfs_inval() 4423 { 4424 return (EINVAL); 4425 } 4426 4427 static int 4428 zfs_isdir() 4429 { 4430 return (EISDIR); 4431 } 4432 /* 4433 * Directory vnode operations template 4434 */ 4435 vnodeops_t *zfs_dvnodeops; 4436 const fs_operation_def_t zfs_dvnodeops_template[] = { 4437 VOPNAME_OPEN, { .vop_open = zfs_open }, 4438 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4439 VOPNAME_READ, { .error = zfs_isdir }, 4440 VOPNAME_WRITE, { .error = zfs_isdir }, 4441 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4442 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4443 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4444 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4445 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4446 VOPNAME_CREATE, { .vop_create = zfs_create }, 4447 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4448 VOPNAME_LINK, { .vop_link = zfs_link }, 4449 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4450 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4451 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4452 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4453 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4454 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4455 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4456 VOPNAME_FID, { .vop_fid = zfs_fid }, 4457 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4458 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4459 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4460 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4461 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4462 NULL, NULL 4463 }; 4464 4465 /* 4466 * Regular file vnode operations template 4467 */ 4468 vnodeops_t *zfs_fvnodeops; 4469 const fs_operation_def_t zfs_fvnodeops_template[] = { 4470 VOPNAME_OPEN, { .vop_open = zfs_open }, 4471 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4472 VOPNAME_READ, { .vop_read = zfs_read }, 4473 VOPNAME_WRITE, { .vop_write = zfs_write }, 4474 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4475 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4476 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4477 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4478 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4479 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4480 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4481 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4482 VOPNAME_FID, { .vop_fid = zfs_fid }, 4483 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4484 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4485 VOPNAME_SPACE, { .vop_space = zfs_space }, 4486 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4487 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4488 VOPNAME_MAP, { .vop_map = zfs_map }, 4489 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4490 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4491 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4492 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4493 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4494 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4495 NULL, NULL 4496 }; 4497 4498 /* 4499 * Symbolic link vnode operations template 4500 */ 4501 vnodeops_t *zfs_symvnodeops; 4502 const fs_operation_def_t zfs_symvnodeops_template[] = { 4503 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4504 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4505 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4506 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4507 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4508 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4509 VOPNAME_FID, { .vop_fid = zfs_fid }, 4510 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4511 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4512 NULL, NULL 4513 }; 4514 4515 /* 4516 * Extended attribute directory vnode operations template 4517 * This template is identical to the directory vnodes 4518 * operation template except for restricted operations: 4519 * VOP_MKDIR() 4520 * VOP_SYMLINK() 4521 * Note that there are other restrictions embedded in: 4522 * zfs_create() - restrict type to VREG 4523 * zfs_link() - no links into/out of attribute space 4524 * zfs_rename() - no moves into/out of attribute space 4525 */ 4526 vnodeops_t *zfs_xdvnodeops; 4527 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4528 VOPNAME_OPEN, { .vop_open = zfs_open }, 4529 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4530 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4531 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4532 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4533 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4534 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4535 VOPNAME_CREATE, { .vop_create = zfs_create }, 4536 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4537 VOPNAME_LINK, { .vop_link = zfs_link }, 4538 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4539 VOPNAME_MKDIR, { .error = zfs_inval }, 4540 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4541 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4542 VOPNAME_SYMLINK, { .error = zfs_inval }, 4543 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4544 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4545 VOPNAME_FID, { .vop_fid = zfs_fid }, 4546 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4547 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4548 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4549 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4550 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4551 NULL, NULL 4552 }; 4553 4554 /* 4555 * Error vnode operations template 4556 */ 4557 vnodeops_t *zfs_evnodeops; 4558 const fs_operation_def_t zfs_evnodeops_template[] = { 4559 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4560 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4561 NULL, NULL 4562 }; 4563