1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* Portions Copyright 2007 Jeremy Teo */ 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <vm/kpm.h> 51 #include <vm/seg_kpm.h> 52 #include <sys/mman.h> 53 #include <sys/pathname.h> 54 #include <sys/cmn_err.h> 55 #include <sys/errno.h> 56 #include <sys/unistd.h> 57 #include <sys/zfs_dir.h> 58 #include <sys/zfs_acl.h> 59 #include <sys/zfs_ioctl.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/dmu.h> 62 #include <sys/dmu_objset.h> 63 #include <sys/spa.h> 64 #include <sys/txg.h> 65 #include <sys/dbuf.h> 66 #include <sys/zap.h> 67 #include <sys/sa.h> 68 #include <sys/dirent.h> 69 #include <sys/policy.h> 70 #include <sys/sunddi.h> 71 #include <sys/filio.h> 72 #include <sys/sid.h> 73 #include "fs/fs_subr.h" 74 #include <sys/zfs_ctldir.h> 75 #include <sys/zfs_fuid.h> 76 #include <sys/zfs_sa.h> 77 #include <sys/dnlc.h> 78 #include <sys/zfs_rlock.h> 79 #include <sys/extdirent.h> 80 #include <sys/kidmap.h> 81 #include <sys/cred.h> 82 #include <sys/attr.h> 83 84 /* 85 * Programming rules. 86 * 87 * Each vnode op performs some logical unit of work. To do this, the ZPL must 88 * properly lock its in-core state, create a DMU transaction, do the work, 89 * record this work in the intent log (ZIL), commit the DMU transaction, 90 * and wait for the intent log to commit if it is a synchronous operation. 91 * Moreover, the vnode ops must work in both normal and log replay context. 92 * The ordering of events is important to avoid deadlocks and references 93 * to freed memory. The example below illustrates the following Big Rules: 94 * 95 * (1) A check must be made in each zfs thread for a mounted file system. 96 * This is done avoiding races using ZFS_ENTER(zfsvfs). 97 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 98 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 99 * can return EIO from the calling function. 100 * 101 * (2) VN_RELE() should always be the last thing except for zil_commit() 102 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 103 * First, if it's the last reference, the vnode/znode 104 * can be freed, so the zp may point to freed memory. Second, the last 105 * reference will call zfs_zinactive(), which may induce a lot of work -- 106 * pushing cached pages (which acquires range locks) and syncing out 107 * cached atime changes. Third, zfs_zinactive() may require a new tx, 108 * which could deadlock the system if you were already holding one. 109 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 110 * 111 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 112 * as they can span dmu_tx_assign() calls. 113 * 114 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 115 * dmu_tx_assign(). This is critical because we don't want to block 116 * while holding locks. 117 * 118 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 119 * reduces lock contention and CPU usage when we must wait (note that if 120 * throughput is constrained by the storage, nearly every transaction 121 * must wait). 122 * 123 * Note, in particular, that if a lock is sometimes acquired before 124 * the tx assigns, and sometimes after (e.g. z_lock), then failing 125 * to use a non-blocking assign can deadlock the system. The scenario: 126 * 127 * Thread A has grabbed a lock before calling dmu_tx_assign(). 128 * Thread B is in an already-assigned tx, and blocks for this lock. 129 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 130 * forever, because the previous txg can't quiesce until B's tx commits. 131 * 132 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 133 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 134 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, 135 * to indicate that this operation has already called dmu_tx_wait(). 136 * This will ensure that we don't retry forever, waiting a short bit 137 * each time. 138 * 139 * (5) If the operation succeeded, generate the intent log entry for it 140 * before dropping locks. This ensures that the ordering of events 141 * in the intent log matches the order in which they actually occurred. 142 * During ZIL replay the zfs_log_* functions will update the sequence 143 * number to indicate the zil transaction has replayed. 144 * 145 * (6) At the end of each vnode op, the DMU tx must always commit, 146 * regardless of whether there were any errors. 147 * 148 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 149 * to ensure that synchronous semantics are provided when necessary. 150 * 151 * In general, this is how things should be ordered in each vnode op: 152 * 153 * ZFS_ENTER(zfsvfs); // exit if unmounted 154 * top: 155 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 156 * rw_enter(...); // grab any other locks you need 157 * tx = dmu_tx_create(...); // get DMU tx 158 * dmu_tx_hold_*(); // hold each object you might modify 159 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 160 * if (error) { 161 * rw_exit(...); // drop locks 162 * zfs_dirent_unlock(dl); // unlock directory entry 163 * VN_RELE(...); // release held vnodes 164 * if (error == ERESTART) { 165 * waited = B_TRUE; 166 * dmu_tx_wait(tx); 167 * dmu_tx_abort(tx); 168 * goto top; 169 * } 170 * dmu_tx_abort(tx); // abort DMU tx 171 * ZFS_EXIT(zfsvfs); // finished in zfs 172 * return (error); // really out of space 173 * } 174 * error = do_real_work(); // do whatever this VOP does 175 * if (error == 0) 176 * zfs_log_*(...); // on success, make ZIL entry 177 * dmu_tx_commit(tx); // commit DMU tx -- error or not 178 * rw_exit(...); // drop locks 179 * zfs_dirent_unlock(dl); // unlock directory entry 180 * VN_RELE(...); // release held vnodes 181 * zil_commit(zilog, foid); // synchronous when necessary 182 * ZFS_EXIT(zfsvfs); // finished in zfs 183 * return (error); // done, report error 184 */ 185 186 /* ARGSUSED */ 187 static int 188 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 189 { 190 znode_t *zp = VTOZ(*vpp); 191 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 192 193 ZFS_ENTER(zfsvfs); 194 ZFS_VERIFY_ZP(zp); 195 196 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 197 ((flag & FAPPEND) == 0)) { 198 ZFS_EXIT(zfsvfs); 199 return (SET_ERROR(EPERM)); 200 } 201 202 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 203 ZTOV(zp)->v_type == VREG && 204 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 205 if (fs_vscan(*vpp, cr, 0) != 0) { 206 ZFS_EXIT(zfsvfs); 207 return (SET_ERROR(EACCES)); 208 } 209 } 210 211 /* Keep a count of the synchronous opens in the znode */ 212 if (flag & (FSYNC | FDSYNC)) 213 atomic_inc_32(&zp->z_sync_cnt); 214 215 ZFS_EXIT(zfsvfs); 216 return (0); 217 } 218 219 /* ARGSUSED */ 220 static int 221 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 222 caller_context_t *ct) 223 { 224 znode_t *zp = VTOZ(vp); 225 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 226 227 /* 228 * Clean up any locks held by this process on the vp. 229 */ 230 cleanlocks(vp, ddi_get_pid(), 0); 231 cleanshares(vp, ddi_get_pid()); 232 233 ZFS_ENTER(zfsvfs); 234 ZFS_VERIFY_ZP(zp); 235 236 /* Decrement the synchronous opens in the znode */ 237 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 238 atomic_dec_32(&zp->z_sync_cnt); 239 240 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 241 ZTOV(zp)->v_type == VREG && 242 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 243 VERIFY(fs_vscan(vp, cr, 1) == 0); 244 245 ZFS_EXIT(zfsvfs); 246 return (0); 247 } 248 249 /* 250 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 251 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 252 */ 253 static int 254 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 255 { 256 znode_t *zp = VTOZ(vp); 257 uint64_t noff = (uint64_t)*off; /* new offset */ 258 uint64_t file_sz; 259 int error; 260 boolean_t hole; 261 262 file_sz = zp->z_size; 263 if (noff >= file_sz) { 264 return (SET_ERROR(ENXIO)); 265 } 266 267 if (cmd == _FIO_SEEK_HOLE) 268 hole = B_TRUE; 269 else 270 hole = B_FALSE; 271 272 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 273 274 /* end of file? */ 275 if ((error == ESRCH) || (noff > file_sz)) { 276 /* 277 * Handle the virtual hole at the end of file. 278 */ 279 if (hole) { 280 *off = file_sz; 281 return (0); 282 } 283 return (SET_ERROR(ENXIO)); 284 } 285 286 if (noff < *off) 287 return (error); 288 *off = noff; 289 return (error); 290 } 291 292 /* ARGSUSED */ 293 static int 294 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 295 int *rvalp, caller_context_t *ct) 296 { 297 offset_t off; 298 int error; 299 zfsvfs_t *zfsvfs; 300 znode_t *zp; 301 302 switch (com) { 303 case _FIOFFS: 304 return (zfs_sync(vp->v_vfsp, 0, cred)); 305 306 /* 307 * The following two ioctls are used by bfu. Faking out, 308 * necessary to avoid bfu errors. 309 */ 310 case _FIOGDIO: 311 case _FIOSDIO: 312 return (0); 313 314 case _FIO_SEEK_DATA: 315 case _FIO_SEEK_HOLE: 316 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 317 return (SET_ERROR(EFAULT)); 318 319 zp = VTOZ(vp); 320 zfsvfs = zp->z_zfsvfs; 321 ZFS_ENTER(zfsvfs); 322 ZFS_VERIFY_ZP(zp); 323 324 /* offset parameter is in/out */ 325 error = zfs_holey(vp, com, &off); 326 ZFS_EXIT(zfsvfs); 327 if (error) 328 return (error); 329 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 330 return (SET_ERROR(EFAULT)); 331 return (0); 332 } 333 return (SET_ERROR(ENOTTY)); 334 } 335 336 /* 337 * Utility functions to map and unmap a single physical page. These 338 * are used to manage the mappable copies of ZFS file data, and therefore 339 * do not update ref/mod bits. 340 */ 341 caddr_t 342 zfs_map_page(page_t *pp, enum seg_rw rw) 343 { 344 if (kpm_enable) 345 return (hat_kpm_mapin(pp, 0)); 346 ASSERT(rw == S_READ || rw == S_WRITE); 347 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 348 (caddr_t)-1)); 349 } 350 351 void 352 zfs_unmap_page(page_t *pp, caddr_t addr) 353 { 354 if (kpm_enable) { 355 hat_kpm_mapout(pp, 0, addr); 356 } else { 357 ppmapout(addr); 358 } 359 } 360 361 /* 362 * When a file is memory mapped, we must keep the IO data synchronized 363 * between the DMU cache and the memory mapped pages. What this means: 364 * 365 * On Write: If we find a memory mapped page, we write to *both* 366 * the page and the dmu buffer. 367 */ 368 static void 369 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 370 { 371 int64_t off; 372 373 off = start & PAGEOFFSET; 374 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 375 page_t *pp; 376 uint64_t nbytes = MIN(PAGESIZE - off, len); 377 378 if (pp = page_lookup(vp, start, SE_SHARED)) { 379 caddr_t va; 380 381 va = zfs_map_page(pp, S_WRITE); 382 (void) dmu_read(os, oid, start+off, nbytes, va+off, 383 DMU_READ_PREFETCH); 384 zfs_unmap_page(pp, va); 385 page_unlock(pp); 386 } 387 len -= nbytes; 388 off = 0; 389 } 390 } 391 392 /* 393 * When a file is memory mapped, we must keep the IO data synchronized 394 * between the DMU cache and the memory mapped pages. What this means: 395 * 396 * On Read: We "read" preferentially from memory mapped pages, 397 * else we default from the dmu buffer. 398 * 399 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 400 * the file is memory mapped. 401 */ 402 static int 403 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 404 { 405 znode_t *zp = VTOZ(vp); 406 objset_t *os = zp->z_zfsvfs->z_os; 407 int64_t start, off; 408 int len = nbytes; 409 int error = 0; 410 411 start = uio->uio_loffset; 412 off = start & PAGEOFFSET; 413 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 414 page_t *pp; 415 uint64_t bytes = MIN(PAGESIZE - off, len); 416 417 if (pp = page_lookup(vp, start, SE_SHARED)) { 418 caddr_t va; 419 420 va = zfs_map_page(pp, S_READ); 421 error = uiomove(va + off, bytes, UIO_READ, uio); 422 zfs_unmap_page(pp, va); 423 page_unlock(pp); 424 } else { 425 error = dmu_read_uio(os, zp->z_id, uio, bytes); 426 } 427 len -= bytes; 428 off = 0; 429 if (error) 430 break; 431 } 432 return (error); 433 } 434 435 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 436 437 /* 438 * Read bytes from specified file into supplied buffer. 439 * 440 * IN: vp - vnode of file to be read from. 441 * uio - structure supplying read location, range info, 442 * and return buffer. 443 * ioflag - SYNC flags; used to provide FRSYNC semantics. 444 * cr - credentials of caller. 445 * ct - caller context 446 * 447 * OUT: uio - updated offset and range, buffer filled. 448 * 449 * RETURN: 0 on success, error code on failure. 450 * 451 * Side Effects: 452 * vp - atime updated if byte count > 0 453 */ 454 /* ARGSUSED */ 455 static int 456 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 457 { 458 znode_t *zp = VTOZ(vp); 459 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 460 objset_t *os; 461 ssize_t n, nbytes; 462 int error = 0; 463 rl_t *rl; 464 xuio_t *xuio = NULL; 465 466 ZFS_ENTER(zfsvfs); 467 ZFS_VERIFY_ZP(zp); 468 os = zfsvfs->z_os; 469 470 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 471 ZFS_EXIT(zfsvfs); 472 return (SET_ERROR(EACCES)); 473 } 474 475 /* 476 * Validate file offset 477 */ 478 if (uio->uio_loffset < (offset_t)0) { 479 ZFS_EXIT(zfsvfs); 480 return (SET_ERROR(EINVAL)); 481 } 482 483 /* 484 * Fasttrack empty reads 485 */ 486 if (uio->uio_resid == 0) { 487 ZFS_EXIT(zfsvfs); 488 return (0); 489 } 490 491 /* 492 * Check for mandatory locks 493 */ 494 if (MANDMODE(zp->z_mode)) { 495 if (error = chklock(vp, FREAD, 496 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 497 ZFS_EXIT(zfsvfs); 498 return (error); 499 } 500 } 501 502 /* 503 * If we're in FRSYNC mode, sync out this znode before reading it. 504 */ 505 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 506 zil_commit(zfsvfs->z_log, zp->z_id); 507 508 /* 509 * Lock the range against changes. 510 */ 511 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 512 513 /* 514 * If we are reading past end-of-file we can skip 515 * to the end; but we might still need to set atime. 516 */ 517 if (uio->uio_loffset >= zp->z_size) { 518 error = 0; 519 goto out; 520 } 521 522 ASSERT(uio->uio_loffset < zp->z_size); 523 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 524 525 if ((uio->uio_extflg == UIO_XUIO) && 526 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 527 int nblk; 528 int blksz = zp->z_blksz; 529 uint64_t offset = uio->uio_loffset; 530 531 xuio = (xuio_t *)uio; 532 if ((ISP2(blksz))) { 533 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 534 blksz)) / blksz; 535 } else { 536 ASSERT(offset + n <= blksz); 537 nblk = 1; 538 } 539 (void) dmu_xuio_init(xuio, nblk); 540 541 if (vn_has_cached_data(vp)) { 542 /* 543 * For simplicity, we always allocate a full buffer 544 * even if we only expect to read a portion of a block. 545 */ 546 while (--nblk >= 0) { 547 (void) dmu_xuio_add(xuio, 548 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 549 blksz), 0, blksz); 550 } 551 } 552 } 553 554 while (n > 0) { 555 nbytes = MIN(n, zfs_read_chunk_size - 556 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 557 558 if (vn_has_cached_data(vp)) 559 error = mappedread(vp, nbytes, uio); 560 else 561 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 562 if (error) { 563 /* convert checksum errors into IO errors */ 564 if (error == ECKSUM) 565 error = SET_ERROR(EIO); 566 break; 567 } 568 569 n -= nbytes; 570 } 571 out: 572 zfs_range_unlock(rl); 573 574 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 575 ZFS_EXIT(zfsvfs); 576 return (error); 577 } 578 579 /* 580 * Write the bytes to a file. 581 * 582 * IN: vp - vnode of file to be written to. 583 * uio - structure supplying write location, range info, 584 * and data buffer. 585 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 586 * set if in append mode. 587 * cr - credentials of caller. 588 * ct - caller context (NFS/CIFS fem monitor only) 589 * 590 * OUT: uio - updated offset and range. 591 * 592 * RETURN: 0 on success, error code on failure. 593 * 594 * Timestamps: 595 * vp - ctime|mtime updated if byte count > 0 596 */ 597 598 /* ARGSUSED */ 599 static int 600 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 601 { 602 znode_t *zp = VTOZ(vp); 603 rlim64_t limit = uio->uio_llimit; 604 ssize_t start_resid = uio->uio_resid; 605 ssize_t tx_bytes; 606 uint64_t end_size; 607 dmu_tx_t *tx; 608 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 609 zilog_t *zilog; 610 offset_t woff; 611 ssize_t n, nbytes; 612 rl_t *rl; 613 int max_blksz = zfsvfs->z_max_blksz; 614 int error = 0; 615 arc_buf_t *abuf; 616 iovec_t *aiov = NULL; 617 xuio_t *xuio = NULL; 618 int i_iov = 0; 619 int iovcnt = uio->uio_iovcnt; 620 iovec_t *iovp = uio->uio_iov; 621 int write_eof; 622 int count = 0; 623 sa_bulk_attr_t bulk[4]; 624 uint64_t mtime[2], ctime[2]; 625 626 /* 627 * Fasttrack empty write 628 */ 629 n = start_resid; 630 if (n == 0) 631 return (0); 632 633 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 634 limit = MAXOFFSET_T; 635 636 ZFS_ENTER(zfsvfs); 637 ZFS_VERIFY_ZP(zp); 638 639 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 640 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 641 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 642 &zp->z_size, 8); 643 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 644 &zp->z_pflags, 8); 645 646 /* 647 * If immutable or not appending then return EPERM 648 */ 649 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 650 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 651 (uio->uio_loffset < zp->z_size))) { 652 ZFS_EXIT(zfsvfs); 653 return (SET_ERROR(EPERM)); 654 } 655 656 zilog = zfsvfs->z_log; 657 658 /* 659 * Validate file offset 660 */ 661 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 662 if (woff < 0) { 663 ZFS_EXIT(zfsvfs); 664 return (SET_ERROR(EINVAL)); 665 } 666 667 /* 668 * Check for mandatory locks before calling zfs_range_lock() 669 * in order to prevent a deadlock with locks set via fcntl(). 670 */ 671 if (MANDMODE((mode_t)zp->z_mode) && 672 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 673 ZFS_EXIT(zfsvfs); 674 return (error); 675 } 676 677 /* 678 * Pre-fault the pages to ensure slow (eg NFS) pages 679 * don't hold up txg. 680 * Skip this if uio contains loaned arc_buf. 681 */ 682 if ((uio->uio_extflg == UIO_XUIO) && 683 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 684 xuio = (xuio_t *)uio; 685 else 686 uio_prefaultpages(MIN(n, max_blksz), uio); 687 688 /* 689 * If in append mode, set the io offset pointer to eof. 690 */ 691 if (ioflag & FAPPEND) { 692 /* 693 * Obtain an appending range lock to guarantee file append 694 * semantics. We reset the write offset once we have the lock. 695 */ 696 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 697 woff = rl->r_off; 698 if (rl->r_len == UINT64_MAX) { 699 /* 700 * We overlocked the file because this write will cause 701 * the file block size to increase. 702 * Note that zp_size cannot change with this lock held. 703 */ 704 woff = zp->z_size; 705 } 706 uio->uio_loffset = woff; 707 } else { 708 /* 709 * Note that if the file block size will change as a result of 710 * this write, then this range lock will lock the entire file 711 * so that we can re-write the block safely. 712 */ 713 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 714 } 715 716 if (woff >= limit) { 717 zfs_range_unlock(rl); 718 ZFS_EXIT(zfsvfs); 719 return (SET_ERROR(EFBIG)); 720 } 721 722 if ((woff + n) > limit || woff > (limit - n)) 723 n = limit - woff; 724 725 /* Will this write extend the file length? */ 726 write_eof = (woff + n > zp->z_size); 727 728 end_size = MAX(zp->z_size, woff + n); 729 730 /* 731 * Write the file in reasonable size chunks. Each chunk is written 732 * in a separate transaction; this keeps the intent log records small 733 * and allows us to do more fine-grained space accounting. 734 */ 735 while (n > 0) { 736 abuf = NULL; 737 woff = uio->uio_loffset; 738 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 739 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 740 if (abuf != NULL) 741 dmu_return_arcbuf(abuf); 742 error = SET_ERROR(EDQUOT); 743 break; 744 } 745 746 if (xuio && abuf == NULL) { 747 ASSERT(i_iov < iovcnt); 748 aiov = &iovp[i_iov]; 749 abuf = dmu_xuio_arcbuf(xuio, i_iov); 750 dmu_xuio_clear(xuio, i_iov); 751 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 752 iovec_t *, aiov, arc_buf_t *, abuf); 753 ASSERT((aiov->iov_base == abuf->b_data) || 754 ((char *)aiov->iov_base - (char *)abuf->b_data + 755 aiov->iov_len == arc_buf_size(abuf))); 756 i_iov++; 757 } else if (abuf == NULL && n >= max_blksz && 758 woff >= zp->z_size && 759 P2PHASE(woff, max_blksz) == 0 && 760 zp->z_blksz == max_blksz) { 761 /* 762 * This write covers a full block. "Borrow" a buffer 763 * from the dmu so that we can fill it before we enter 764 * a transaction. This avoids the possibility of 765 * holding up the transaction if the data copy hangs 766 * up on a pagefault (e.g., from an NFS server mapping). 767 */ 768 size_t cbytes; 769 770 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 771 max_blksz); 772 ASSERT(abuf != NULL); 773 ASSERT(arc_buf_size(abuf) == max_blksz); 774 if (error = uiocopy(abuf->b_data, max_blksz, 775 UIO_WRITE, uio, &cbytes)) { 776 dmu_return_arcbuf(abuf); 777 break; 778 } 779 ASSERT(cbytes == max_blksz); 780 } 781 782 /* 783 * Start a transaction. 784 */ 785 tx = dmu_tx_create(zfsvfs->z_os); 786 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 787 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 788 zfs_sa_upgrade_txholds(tx, zp); 789 error = dmu_tx_assign(tx, TXG_WAIT); 790 if (error) { 791 dmu_tx_abort(tx); 792 if (abuf != NULL) 793 dmu_return_arcbuf(abuf); 794 break; 795 } 796 797 /* 798 * If zfs_range_lock() over-locked we grow the blocksize 799 * and then reduce the lock range. This will only happen 800 * on the first iteration since zfs_range_reduce() will 801 * shrink down r_len to the appropriate size. 802 */ 803 if (rl->r_len == UINT64_MAX) { 804 uint64_t new_blksz; 805 806 if (zp->z_blksz > max_blksz) { 807 ASSERT(!ISP2(zp->z_blksz)); 808 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 809 } else { 810 new_blksz = MIN(end_size, max_blksz); 811 } 812 zfs_grow_blocksize(zp, new_blksz, tx); 813 zfs_range_reduce(rl, woff, n); 814 } 815 816 /* 817 * XXX - should we really limit each write to z_max_blksz? 818 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 819 */ 820 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 821 822 if (abuf == NULL) { 823 tx_bytes = uio->uio_resid; 824 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 825 uio, nbytes, tx); 826 tx_bytes -= uio->uio_resid; 827 } else { 828 tx_bytes = nbytes; 829 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 830 /* 831 * If this is not a full block write, but we are 832 * extending the file past EOF and this data starts 833 * block-aligned, use assign_arcbuf(). Otherwise, 834 * write via dmu_write(). 835 */ 836 if (tx_bytes < max_blksz && (!write_eof || 837 aiov->iov_base != abuf->b_data)) { 838 ASSERT(xuio); 839 dmu_write(zfsvfs->z_os, zp->z_id, woff, 840 aiov->iov_len, aiov->iov_base, tx); 841 dmu_return_arcbuf(abuf); 842 xuio_stat_wbuf_copied(); 843 } else { 844 ASSERT(xuio || tx_bytes == max_blksz); 845 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 846 woff, abuf, tx); 847 } 848 ASSERT(tx_bytes <= uio->uio_resid); 849 uioskip(uio, tx_bytes); 850 } 851 if (tx_bytes && vn_has_cached_data(vp)) { 852 update_pages(vp, woff, 853 tx_bytes, zfsvfs->z_os, zp->z_id); 854 } 855 856 /* 857 * If we made no progress, we're done. If we made even 858 * partial progress, update the znode and ZIL accordingly. 859 */ 860 if (tx_bytes == 0) { 861 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 862 (void *)&zp->z_size, sizeof (uint64_t), tx); 863 dmu_tx_commit(tx); 864 ASSERT(error != 0); 865 break; 866 } 867 868 /* 869 * Clear Set-UID/Set-GID bits on successful write if not 870 * privileged and at least one of the excute bits is set. 871 * 872 * It would be nice to to this after all writes have 873 * been done, but that would still expose the ISUID/ISGID 874 * to another app after the partial write is committed. 875 * 876 * Note: we don't call zfs_fuid_map_id() here because 877 * user 0 is not an ephemeral uid. 878 */ 879 mutex_enter(&zp->z_acl_lock); 880 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 881 (S_IXUSR >> 6))) != 0 && 882 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 883 secpolicy_vnode_setid_retain(cr, 884 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 885 uint64_t newmode; 886 zp->z_mode &= ~(S_ISUID | S_ISGID); 887 newmode = zp->z_mode; 888 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 889 (void *)&newmode, sizeof (uint64_t), tx); 890 } 891 mutex_exit(&zp->z_acl_lock); 892 893 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 894 B_TRUE); 895 896 /* 897 * Update the file size (zp_size) if it has changed; 898 * account for possible concurrent updates. 899 */ 900 while ((end_size = zp->z_size) < uio->uio_loffset) { 901 (void) atomic_cas_64(&zp->z_size, end_size, 902 uio->uio_loffset); 903 ASSERT(error == 0); 904 } 905 /* 906 * If we are replaying and eof is non zero then force 907 * the file size to the specified eof. Note, there's no 908 * concurrency during replay. 909 */ 910 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 911 zp->z_size = zfsvfs->z_replay_eof; 912 913 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 914 915 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 916 dmu_tx_commit(tx); 917 918 if (error != 0) 919 break; 920 ASSERT(tx_bytes == nbytes); 921 n -= nbytes; 922 923 if (!xuio && n > 0) 924 uio_prefaultpages(MIN(n, max_blksz), uio); 925 } 926 927 zfs_range_unlock(rl); 928 929 /* 930 * If we're in replay mode, or we made no progress, return error. 931 * Otherwise, it's at least a partial write, so it's successful. 932 */ 933 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 934 ZFS_EXIT(zfsvfs); 935 return (error); 936 } 937 938 if (ioflag & (FSYNC | FDSYNC) || 939 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 940 zil_commit(zilog, zp->z_id); 941 942 ZFS_EXIT(zfsvfs); 943 return (0); 944 } 945 946 void 947 zfs_get_done(zgd_t *zgd, int error) 948 { 949 znode_t *zp = zgd->zgd_private; 950 objset_t *os = zp->z_zfsvfs->z_os; 951 952 if (zgd->zgd_db) 953 dmu_buf_rele(zgd->zgd_db, zgd); 954 955 zfs_range_unlock(zgd->zgd_rl); 956 957 /* 958 * Release the vnode asynchronously as we currently have the 959 * txg stopped from syncing. 960 */ 961 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 962 963 if (error == 0 && zgd->zgd_bp) 964 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 965 966 kmem_free(zgd, sizeof (zgd_t)); 967 } 968 969 #ifdef DEBUG 970 static int zil_fault_io = 0; 971 #endif 972 973 /* 974 * Get data to generate a TX_WRITE intent log record. 975 */ 976 int 977 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 978 { 979 zfsvfs_t *zfsvfs = arg; 980 objset_t *os = zfsvfs->z_os; 981 znode_t *zp; 982 uint64_t object = lr->lr_foid; 983 uint64_t offset = lr->lr_offset; 984 uint64_t size = lr->lr_length; 985 blkptr_t *bp = &lr->lr_blkptr; 986 dmu_buf_t *db; 987 zgd_t *zgd; 988 int error = 0; 989 990 ASSERT(zio != NULL); 991 ASSERT(size != 0); 992 993 /* 994 * Nothing to do if the file has been removed 995 */ 996 if (zfs_zget(zfsvfs, object, &zp) != 0) 997 return (SET_ERROR(ENOENT)); 998 if (zp->z_unlinked) { 999 /* 1000 * Release the vnode asynchronously as we currently have the 1001 * txg stopped from syncing. 1002 */ 1003 VN_RELE_ASYNC(ZTOV(zp), 1004 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1005 return (SET_ERROR(ENOENT)); 1006 } 1007 1008 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1009 zgd->zgd_zilog = zfsvfs->z_log; 1010 zgd->zgd_private = zp; 1011 1012 /* 1013 * Write records come in two flavors: immediate and indirect. 1014 * For small writes it's cheaper to store the data with the 1015 * log record (immediate); for large writes it's cheaper to 1016 * sync the data and get a pointer to it (indirect) so that 1017 * we don't have to write the data twice. 1018 */ 1019 if (buf != NULL) { /* immediate write */ 1020 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1021 /* test for truncation needs to be done while range locked */ 1022 if (offset >= zp->z_size) { 1023 error = SET_ERROR(ENOENT); 1024 } else { 1025 error = dmu_read(os, object, offset, size, buf, 1026 DMU_READ_NO_PREFETCH); 1027 } 1028 ASSERT(error == 0 || error == ENOENT); 1029 } else { /* indirect write */ 1030 /* 1031 * Have to lock the whole block to ensure when it's 1032 * written out and it's checksum is being calculated 1033 * that no one can change the data. We need to re-check 1034 * blocksize after we get the lock in case it's changed! 1035 */ 1036 for (;;) { 1037 uint64_t blkoff; 1038 size = zp->z_blksz; 1039 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1040 offset -= blkoff; 1041 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1042 RL_READER); 1043 if (zp->z_blksz == size) 1044 break; 1045 offset += blkoff; 1046 zfs_range_unlock(zgd->zgd_rl); 1047 } 1048 /* test for truncation needs to be done while range locked */ 1049 if (lr->lr_offset >= zp->z_size) 1050 error = SET_ERROR(ENOENT); 1051 #ifdef DEBUG 1052 if (zil_fault_io) { 1053 error = SET_ERROR(EIO); 1054 zil_fault_io = 0; 1055 } 1056 #endif 1057 if (error == 0) 1058 error = dmu_buf_hold(os, object, offset, zgd, &db, 1059 DMU_READ_NO_PREFETCH); 1060 1061 if (error == 0) { 1062 blkptr_t *obp = dmu_buf_get_blkptr(db); 1063 if (obp) { 1064 ASSERT(BP_IS_HOLE(bp)); 1065 *bp = *obp; 1066 } 1067 1068 zgd->zgd_db = db; 1069 zgd->zgd_bp = bp; 1070 1071 ASSERT(db->db_offset == offset); 1072 ASSERT(db->db_size == size); 1073 1074 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1075 zfs_get_done, zgd); 1076 ASSERT(error || lr->lr_length <= zp->z_blksz); 1077 1078 /* 1079 * On success, we need to wait for the write I/O 1080 * initiated by dmu_sync() to complete before we can 1081 * release this dbuf. We will finish everything up 1082 * in the zfs_get_done() callback. 1083 */ 1084 if (error == 0) 1085 return (0); 1086 1087 if (error == EALREADY) { 1088 lr->lr_common.lrc_txtype = TX_WRITE2; 1089 error = 0; 1090 } 1091 } 1092 } 1093 1094 zfs_get_done(zgd, error); 1095 1096 return (error); 1097 } 1098 1099 /*ARGSUSED*/ 1100 static int 1101 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1102 caller_context_t *ct) 1103 { 1104 znode_t *zp = VTOZ(vp); 1105 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1106 int error; 1107 1108 ZFS_ENTER(zfsvfs); 1109 ZFS_VERIFY_ZP(zp); 1110 1111 if (flag & V_ACE_MASK) 1112 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1113 else 1114 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1115 1116 ZFS_EXIT(zfsvfs); 1117 return (error); 1118 } 1119 1120 /* 1121 * If vnode is for a device return a specfs vnode instead. 1122 */ 1123 static int 1124 specvp_check(vnode_t **vpp, cred_t *cr) 1125 { 1126 int error = 0; 1127 1128 if (IS_DEVVP(*vpp)) { 1129 struct vnode *svp; 1130 1131 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1132 VN_RELE(*vpp); 1133 if (svp == NULL) 1134 error = SET_ERROR(ENOSYS); 1135 *vpp = svp; 1136 } 1137 return (error); 1138 } 1139 1140 1141 /* 1142 * Lookup an entry in a directory, or an extended attribute directory. 1143 * If it exists, return a held vnode reference for it. 1144 * 1145 * IN: dvp - vnode of directory to search. 1146 * nm - name of entry to lookup. 1147 * pnp - full pathname to lookup [UNUSED]. 1148 * flags - LOOKUP_XATTR set if looking for an attribute. 1149 * rdir - root directory vnode [UNUSED]. 1150 * cr - credentials of caller. 1151 * ct - caller context 1152 * direntflags - directory lookup flags 1153 * realpnp - returned pathname. 1154 * 1155 * OUT: vpp - vnode of located entry, NULL if not found. 1156 * 1157 * RETURN: 0 on success, error code on failure. 1158 * 1159 * Timestamps: 1160 * NA 1161 */ 1162 /* ARGSUSED */ 1163 static int 1164 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1165 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1166 int *direntflags, pathname_t *realpnp) 1167 { 1168 znode_t *zdp = VTOZ(dvp); 1169 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1170 int error = 0; 1171 1172 /* fast path */ 1173 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1174 1175 if (dvp->v_type != VDIR) { 1176 return (SET_ERROR(ENOTDIR)); 1177 } else if (zdp->z_sa_hdl == NULL) { 1178 return (SET_ERROR(EIO)); 1179 } 1180 1181 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1182 error = zfs_fastaccesschk_execute(zdp, cr); 1183 if (!error) { 1184 *vpp = dvp; 1185 VN_HOLD(*vpp); 1186 return (0); 1187 } 1188 return (error); 1189 } else { 1190 vnode_t *tvp = dnlc_lookup(dvp, nm); 1191 1192 if (tvp) { 1193 error = zfs_fastaccesschk_execute(zdp, cr); 1194 if (error) { 1195 VN_RELE(tvp); 1196 return (error); 1197 } 1198 if (tvp == DNLC_NO_VNODE) { 1199 VN_RELE(tvp); 1200 return (SET_ERROR(ENOENT)); 1201 } else { 1202 *vpp = tvp; 1203 return (specvp_check(vpp, cr)); 1204 } 1205 } 1206 } 1207 } 1208 1209 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1210 1211 ZFS_ENTER(zfsvfs); 1212 ZFS_VERIFY_ZP(zdp); 1213 1214 *vpp = NULL; 1215 1216 if (flags & LOOKUP_XATTR) { 1217 /* 1218 * If the xattr property is off, refuse the lookup request. 1219 */ 1220 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1221 ZFS_EXIT(zfsvfs); 1222 return (SET_ERROR(EINVAL)); 1223 } 1224 1225 /* 1226 * We don't allow recursive attributes.. 1227 * Maybe someday we will. 1228 */ 1229 if (zdp->z_pflags & ZFS_XATTR) { 1230 ZFS_EXIT(zfsvfs); 1231 return (SET_ERROR(EINVAL)); 1232 } 1233 1234 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1235 ZFS_EXIT(zfsvfs); 1236 return (error); 1237 } 1238 1239 /* 1240 * Do we have permission to get into attribute directory? 1241 */ 1242 1243 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1244 B_FALSE, cr)) { 1245 VN_RELE(*vpp); 1246 *vpp = NULL; 1247 } 1248 1249 ZFS_EXIT(zfsvfs); 1250 return (error); 1251 } 1252 1253 if (dvp->v_type != VDIR) { 1254 ZFS_EXIT(zfsvfs); 1255 return (SET_ERROR(ENOTDIR)); 1256 } 1257 1258 /* 1259 * Check accessibility of directory. 1260 */ 1261 1262 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1263 ZFS_EXIT(zfsvfs); 1264 return (error); 1265 } 1266 1267 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1268 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1269 ZFS_EXIT(zfsvfs); 1270 return (SET_ERROR(EILSEQ)); 1271 } 1272 1273 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1274 if (error == 0) 1275 error = specvp_check(vpp, cr); 1276 1277 ZFS_EXIT(zfsvfs); 1278 return (error); 1279 } 1280 1281 /* 1282 * Attempt to create a new entry in a directory. If the entry 1283 * already exists, truncate the file if permissible, else return 1284 * an error. Return the vp of the created or trunc'd file. 1285 * 1286 * IN: dvp - vnode of directory to put new file entry in. 1287 * name - name of new file entry. 1288 * vap - attributes of new file. 1289 * excl - flag indicating exclusive or non-exclusive mode. 1290 * mode - mode to open file with. 1291 * cr - credentials of caller. 1292 * flag - large file flag [UNUSED]. 1293 * ct - caller context 1294 * vsecp - ACL to be set 1295 * 1296 * OUT: vpp - vnode of created or trunc'd entry. 1297 * 1298 * RETURN: 0 on success, error code on failure. 1299 * 1300 * Timestamps: 1301 * dvp - ctime|mtime updated if new entry created 1302 * vp - ctime|mtime always, atime if new 1303 */ 1304 1305 /* ARGSUSED */ 1306 static int 1307 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1308 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1309 vsecattr_t *vsecp) 1310 { 1311 znode_t *zp, *dzp = VTOZ(dvp); 1312 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1313 zilog_t *zilog; 1314 objset_t *os; 1315 zfs_dirlock_t *dl; 1316 dmu_tx_t *tx; 1317 int error; 1318 ksid_t *ksid; 1319 uid_t uid; 1320 gid_t gid = crgetgid(cr); 1321 zfs_acl_ids_t acl_ids; 1322 boolean_t fuid_dirtied; 1323 boolean_t have_acl = B_FALSE; 1324 boolean_t waited = B_FALSE; 1325 1326 /* 1327 * If we have an ephemeral id, ACL, or XVATTR then 1328 * make sure file system is at proper version 1329 */ 1330 1331 ksid = crgetsid(cr, KSID_OWNER); 1332 if (ksid) 1333 uid = ksid_getid(ksid); 1334 else 1335 uid = crgetuid(cr); 1336 1337 if (zfsvfs->z_use_fuids == B_FALSE && 1338 (vsecp || (vap->va_mask & AT_XVATTR) || 1339 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1340 return (SET_ERROR(EINVAL)); 1341 1342 ZFS_ENTER(zfsvfs); 1343 ZFS_VERIFY_ZP(dzp); 1344 os = zfsvfs->z_os; 1345 zilog = zfsvfs->z_log; 1346 1347 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1348 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1349 ZFS_EXIT(zfsvfs); 1350 return (SET_ERROR(EILSEQ)); 1351 } 1352 1353 if (vap->va_mask & AT_XVATTR) { 1354 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1355 crgetuid(cr), cr, vap->va_type)) != 0) { 1356 ZFS_EXIT(zfsvfs); 1357 return (error); 1358 } 1359 } 1360 top: 1361 *vpp = NULL; 1362 1363 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1364 vap->va_mode &= ~VSVTX; 1365 1366 if (*name == '\0') { 1367 /* 1368 * Null component name refers to the directory itself. 1369 */ 1370 VN_HOLD(dvp); 1371 zp = dzp; 1372 dl = NULL; 1373 error = 0; 1374 } else { 1375 /* possible VN_HOLD(zp) */ 1376 int zflg = 0; 1377 1378 if (flag & FIGNORECASE) 1379 zflg |= ZCILOOK; 1380 1381 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1382 NULL, NULL); 1383 if (error) { 1384 if (have_acl) 1385 zfs_acl_ids_free(&acl_ids); 1386 if (strcmp(name, "..") == 0) 1387 error = SET_ERROR(EISDIR); 1388 ZFS_EXIT(zfsvfs); 1389 return (error); 1390 } 1391 } 1392 1393 if (zp == NULL) { 1394 uint64_t txtype; 1395 1396 /* 1397 * Create a new file object and update the directory 1398 * to reference it. 1399 */ 1400 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1401 if (have_acl) 1402 zfs_acl_ids_free(&acl_ids); 1403 goto out; 1404 } 1405 1406 /* 1407 * We only support the creation of regular files in 1408 * extended attribute directories. 1409 */ 1410 1411 if ((dzp->z_pflags & ZFS_XATTR) && 1412 (vap->va_type != VREG)) { 1413 if (have_acl) 1414 zfs_acl_ids_free(&acl_ids); 1415 error = SET_ERROR(EINVAL); 1416 goto out; 1417 } 1418 1419 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1420 cr, vsecp, &acl_ids)) != 0) 1421 goto out; 1422 have_acl = B_TRUE; 1423 1424 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1425 zfs_acl_ids_free(&acl_ids); 1426 error = SET_ERROR(EDQUOT); 1427 goto out; 1428 } 1429 1430 tx = dmu_tx_create(os); 1431 1432 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1433 ZFS_SA_BASE_ATTR_SIZE); 1434 1435 fuid_dirtied = zfsvfs->z_fuid_dirty; 1436 if (fuid_dirtied) 1437 zfs_fuid_txhold(zfsvfs, tx); 1438 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1439 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1440 if (!zfsvfs->z_use_sa && 1441 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1442 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1443 0, acl_ids.z_aclp->z_acl_bytes); 1444 } 1445 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1446 if (error) { 1447 zfs_dirent_unlock(dl); 1448 if (error == ERESTART) { 1449 waited = B_TRUE; 1450 dmu_tx_wait(tx); 1451 dmu_tx_abort(tx); 1452 goto top; 1453 } 1454 zfs_acl_ids_free(&acl_ids); 1455 dmu_tx_abort(tx); 1456 ZFS_EXIT(zfsvfs); 1457 return (error); 1458 } 1459 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1460 1461 if (fuid_dirtied) 1462 zfs_fuid_sync(zfsvfs, tx); 1463 1464 (void) zfs_link_create(dl, zp, tx, ZNEW); 1465 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1466 if (flag & FIGNORECASE) 1467 txtype |= TX_CI; 1468 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1469 vsecp, acl_ids.z_fuidp, vap); 1470 zfs_acl_ids_free(&acl_ids); 1471 dmu_tx_commit(tx); 1472 } else { 1473 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1474 1475 if (have_acl) 1476 zfs_acl_ids_free(&acl_ids); 1477 have_acl = B_FALSE; 1478 1479 /* 1480 * A directory entry already exists for this name. 1481 */ 1482 /* 1483 * Can't truncate an existing file if in exclusive mode. 1484 */ 1485 if (excl == EXCL) { 1486 error = SET_ERROR(EEXIST); 1487 goto out; 1488 } 1489 /* 1490 * Can't open a directory for writing. 1491 */ 1492 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1493 error = SET_ERROR(EISDIR); 1494 goto out; 1495 } 1496 /* 1497 * Verify requested access to file. 1498 */ 1499 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1500 goto out; 1501 } 1502 1503 mutex_enter(&dzp->z_lock); 1504 dzp->z_seq++; 1505 mutex_exit(&dzp->z_lock); 1506 1507 /* 1508 * Truncate regular files if requested. 1509 */ 1510 if ((ZTOV(zp)->v_type == VREG) && 1511 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1512 /* we can't hold any locks when calling zfs_freesp() */ 1513 zfs_dirent_unlock(dl); 1514 dl = NULL; 1515 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1516 if (error == 0) { 1517 vnevent_create(ZTOV(zp), ct); 1518 } 1519 } 1520 } 1521 out: 1522 1523 if (dl) 1524 zfs_dirent_unlock(dl); 1525 1526 if (error) { 1527 if (zp) 1528 VN_RELE(ZTOV(zp)); 1529 } else { 1530 *vpp = ZTOV(zp); 1531 error = specvp_check(vpp, cr); 1532 } 1533 1534 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1535 zil_commit(zilog, 0); 1536 1537 ZFS_EXIT(zfsvfs); 1538 return (error); 1539 } 1540 1541 /* 1542 * Remove an entry from a directory. 1543 * 1544 * IN: dvp - vnode of directory to remove entry from. 1545 * name - name of entry to remove. 1546 * cr - credentials of caller. 1547 * ct - caller context 1548 * flags - case flags 1549 * 1550 * RETURN: 0 on success, error code on failure. 1551 * 1552 * Timestamps: 1553 * dvp - ctime|mtime 1554 * vp - ctime (if nlink > 0) 1555 */ 1556 1557 uint64_t null_xattr = 0; 1558 1559 /*ARGSUSED*/ 1560 static int 1561 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1562 int flags) 1563 { 1564 znode_t *zp, *dzp = VTOZ(dvp); 1565 znode_t *xzp; 1566 vnode_t *vp; 1567 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1568 zilog_t *zilog; 1569 uint64_t acl_obj, xattr_obj; 1570 uint64_t xattr_obj_unlinked = 0; 1571 uint64_t obj = 0; 1572 zfs_dirlock_t *dl; 1573 dmu_tx_t *tx; 1574 boolean_t may_delete_now, delete_now = FALSE; 1575 boolean_t unlinked, toobig = FALSE; 1576 uint64_t txtype; 1577 pathname_t *realnmp = NULL; 1578 pathname_t realnm; 1579 int error; 1580 int zflg = ZEXISTS; 1581 boolean_t waited = B_FALSE; 1582 1583 ZFS_ENTER(zfsvfs); 1584 ZFS_VERIFY_ZP(dzp); 1585 zilog = zfsvfs->z_log; 1586 1587 if (flags & FIGNORECASE) { 1588 zflg |= ZCILOOK; 1589 pn_alloc(&realnm); 1590 realnmp = &realnm; 1591 } 1592 1593 top: 1594 xattr_obj = 0; 1595 xzp = NULL; 1596 /* 1597 * Attempt to lock directory; fail if entry doesn't exist. 1598 */ 1599 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1600 NULL, realnmp)) { 1601 if (realnmp) 1602 pn_free(realnmp); 1603 ZFS_EXIT(zfsvfs); 1604 return (error); 1605 } 1606 1607 vp = ZTOV(zp); 1608 1609 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1610 goto out; 1611 } 1612 1613 /* 1614 * Need to use rmdir for removing directories. 1615 */ 1616 if (vp->v_type == VDIR) { 1617 error = SET_ERROR(EPERM); 1618 goto out; 1619 } 1620 1621 vnevent_remove(vp, dvp, name, ct); 1622 1623 if (realnmp) 1624 dnlc_remove(dvp, realnmp->pn_buf); 1625 else 1626 dnlc_remove(dvp, name); 1627 1628 mutex_enter(&vp->v_lock); 1629 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1630 mutex_exit(&vp->v_lock); 1631 1632 /* 1633 * We may delete the znode now, or we may put it in the unlinked set; 1634 * it depends on whether we're the last link, and on whether there are 1635 * other holds on the vnode. So we dmu_tx_hold() the right things to 1636 * allow for either case. 1637 */ 1638 obj = zp->z_id; 1639 tx = dmu_tx_create(zfsvfs->z_os); 1640 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1641 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1642 zfs_sa_upgrade_txholds(tx, zp); 1643 zfs_sa_upgrade_txholds(tx, dzp); 1644 if (may_delete_now) { 1645 toobig = 1646 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1647 /* if the file is too big, only hold_free a token amount */ 1648 dmu_tx_hold_free(tx, zp->z_id, 0, 1649 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1650 } 1651 1652 /* are there any extended attributes? */ 1653 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1654 &xattr_obj, sizeof (xattr_obj)); 1655 if (error == 0 && xattr_obj) { 1656 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1657 ASSERT0(error); 1658 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1659 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1660 } 1661 1662 mutex_enter(&zp->z_lock); 1663 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1664 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1665 mutex_exit(&zp->z_lock); 1666 1667 /* charge as an update -- would be nice not to charge at all */ 1668 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1669 1670 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1671 if (error) { 1672 zfs_dirent_unlock(dl); 1673 VN_RELE(vp); 1674 if (xzp) 1675 VN_RELE(ZTOV(xzp)); 1676 if (error == ERESTART) { 1677 waited = B_TRUE; 1678 dmu_tx_wait(tx); 1679 dmu_tx_abort(tx); 1680 goto top; 1681 } 1682 if (realnmp) 1683 pn_free(realnmp); 1684 dmu_tx_abort(tx); 1685 ZFS_EXIT(zfsvfs); 1686 return (error); 1687 } 1688 1689 /* 1690 * Remove the directory entry. 1691 */ 1692 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1693 1694 if (error) { 1695 dmu_tx_commit(tx); 1696 goto out; 1697 } 1698 1699 if (unlinked) { 1700 1701 /* 1702 * Hold z_lock so that we can make sure that the ACL obj 1703 * hasn't changed. Could have been deleted due to 1704 * zfs_sa_upgrade(). 1705 */ 1706 mutex_enter(&zp->z_lock); 1707 mutex_enter(&vp->v_lock); 1708 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1709 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1710 delete_now = may_delete_now && !toobig && 1711 vp->v_count == 1 && !vn_has_cached_data(vp) && 1712 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1713 acl_obj; 1714 mutex_exit(&vp->v_lock); 1715 } 1716 1717 if (delete_now) { 1718 if (xattr_obj_unlinked) { 1719 ASSERT3U(xzp->z_links, ==, 2); 1720 mutex_enter(&xzp->z_lock); 1721 xzp->z_unlinked = 1; 1722 xzp->z_links = 0; 1723 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1724 &xzp->z_links, sizeof (xzp->z_links), tx); 1725 ASSERT3U(error, ==, 0); 1726 mutex_exit(&xzp->z_lock); 1727 zfs_unlinked_add(xzp, tx); 1728 1729 if (zp->z_is_sa) 1730 error = sa_remove(zp->z_sa_hdl, 1731 SA_ZPL_XATTR(zfsvfs), tx); 1732 else 1733 error = sa_update(zp->z_sa_hdl, 1734 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1735 sizeof (uint64_t), tx); 1736 ASSERT0(error); 1737 } 1738 mutex_enter(&vp->v_lock); 1739 vp->v_count--; 1740 ASSERT0(vp->v_count); 1741 mutex_exit(&vp->v_lock); 1742 mutex_exit(&zp->z_lock); 1743 zfs_znode_delete(zp, tx); 1744 } else if (unlinked) { 1745 mutex_exit(&zp->z_lock); 1746 zfs_unlinked_add(zp, tx); 1747 } 1748 1749 txtype = TX_REMOVE; 1750 if (flags & FIGNORECASE) 1751 txtype |= TX_CI; 1752 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1753 1754 dmu_tx_commit(tx); 1755 out: 1756 if (realnmp) 1757 pn_free(realnmp); 1758 1759 zfs_dirent_unlock(dl); 1760 1761 if (!delete_now) 1762 VN_RELE(vp); 1763 if (xzp) 1764 VN_RELE(ZTOV(xzp)); 1765 1766 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1767 zil_commit(zilog, 0); 1768 1769 ZFS_EXIT(zfsvfs); 1770 return (error); 1771 } 1772 1773 /* 1774 * Create a new directory and insert it into dvp using the name 1775 * provided. Return a pointer to the inserted directory. 1776 * 1777 * IN: dvp - vnode of directory to add subdir to. 1778 * dirname - name of new directory. 1779 * vap - attributes of new directory. 1780 * cr - credentials of caller. 1781 * ct - caller context 1782 * flags - case flags 1783 * vsecp - ACL to be set 1784 * 1785 * OUT: vpp - vnode of created directory. 1786 * 1787 * RETURN: 0 on success, error code on failure. 1788 * 1789 * Timestamps: 1790 * dvp - ctime|mtime updated 1791 * vp - ctime|mtime|atime updated 1792 */ 1793 /*ARGSUSED*/ 1794 static int 1795 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1796 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1797 { 1798 znode_t *zp, *dzp = VTOZ(dvp); 1799 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1800 zilog_t *zilog; 1801 zfs_dirlock_t *dl; 1802 uint64_t txtype; 1803 dmu_tx_t *tx; 1804 int error; 1805 int zf = ZNEW; 1806 ksid_t *ksid; 1807 uid_t uid; 1808 gid_t gid = crgetgid(cr); 1809 zfs_acl_ids_t acl_ids; 1810 boolean_t fuid_dirtied; 1811 boolean_t waited = B_FALSE; 1812 1813 ASSERT(vap->va_type == VDIR); 1814 1815 /* 1816 * If we have an ephemeral id, ACL, or XVATTR then 1817 * make sure file system is at proper version 1818 */ 1819 1820 ksid = crgetsid(cr, KSID_OWNER); 1821 if (ksid) 1822 uid = ksid_getid(ksid); 1823 else 1824 uid = crgetuid(cr); 1825 if (zfsvfs->z_use_fuids == B_FALSE && 1826 (vsecp || (vap->va_mask & AT_XVATTR) || 1827 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1828 return (SET_ERROR(EINVAL)); 1829 1830 ZFS_ENTER(zfsvfs); 1831 ZFS_VERIFY_ZP(dzp); 1832 zilog = zfsvfs->z_log; 1833 1834 if (dzp->z_pflags & ZFS_XATTR) { 1835 ZFS_EXIT(zfsvfs); 1836 return (SET_ERROR(EINVAL)); 1837 } 1838 1839 if (zfsvfs->z_utf8 && u8_validate(dirname, 1840 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1841 ZFS_EXIT(zfsvfs); 1842 return (SET_ERROR(EILSEQ)); 1843 } 1844 if (flags & FIGNORECASE) 1845 zf |= ZCILOOK; 1846 1847 if (vap->va_mask & AT_XVATTR) { 1848 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1849 crgetuid(cr), cr, vap->va_type)) != 0) { 1850 ZFS_EXIT(zfsvfs); 1851 return (error); 1852 } 1853 } 1854 1855 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1856 vsecp, &acl_ids)) != 0) { 1857 ZFS_EXIT(zfsvfs); 1858 return (error); 1859 } 1860 /* 1861 * First make sure the new directory doesn't exist. 1862 * 1863 * Existence is checked first to make sure we don't return 1864 * EACCES instead of EEXIST which can cause some applications 1865 * to fail. 1866 */ 1867 top: 1868 *vpp = NULL; 1869 1870 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1871 NULL, NULL)) { 1872 zfs_acl_ids_free(&acl_ids); 1873 ZFS_EXIT(zfsvfs); 1874 return (error); 1875 } 1876 1877 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1878 zfs_acl_ids_free(&acl_ids); 1879 zfs_dirent_unlock(dl); 1880 ZFS_EXIT(zfsvfs); 1881 return (error); 1882 } 1883 1884 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1885 zfs_acl_ids_free(&acl_ids); 1886 zfs_dirent_unlock(dl); 1887 ZFS_EXIT(zfsvfs); 1888 return (SET_ERROR(EDQUOT)); 1889 } 1890 1891 /* 1892 * Add a new entry to the directory. 1893 */ 1894 tx = dmu_tx_create(zfsvfs->z_os); 1895 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1896 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1897 fuid_dirtied = zfsvfs->z_fuid_dirty; 1898 if (fuid_dirtied) 1899 zfs_fuid_txhold(zfsvfs, tx); 1900 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1901 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1902 acl_ids.z_aclp->z_acl_bytes); 1903 } 1904 1905 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1906 ZFS_SA_BASE_ATTR_SIZE); 1907 1908 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1909 if (error) { 1910 zfs_dirent_unlock(dl); 1911 if (error == ERESTART) { 1912 waited = B_TRUE; 1913 dmu_tx_wait(tx); 1914 dmu_tx_abort(tx); 1915 goto top; 1916 } 1917 zfs_acl_ids_free(&acl_ids); 1918 dmu_tx_abort(tx); 1919 ZFS_EXIT(zfsvfs); 1920 return (error); 1921 } 1922 1923 /* 1924 * Create new node. 1925 */ 1926 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1927 1928 if (fuid_dirtied) 1929 zfs_fuid_sync(zfsvfs, tx); 1930 1931 /* 1932 * Now put new name in parent dir. 1933 */ 1934 (void) zfs_link_create(dl, zp, tx, ZNEW); 1935 1936 *vpp = ZTOV(zp); 1937 1938 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1939 if (flags & FIGNORECASE) 1940 txtype |= TX_CI; 1941 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1942 acl_ids.z_fuidp, vap); 1943 1944 zfs_acl_ids_free(&acl_ids); 1945 1946 dmu_tx_commit(tx); 1947 1948 zfs_dirent_unlock(dl); 1949 1950 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1951 zil_commit(zilog, 0); 1952 1953 ZFS_EXIT(zfsvfs); 1954 return (0); 1955 } 1956 1957 /* 1958 * Remove a directory subdir entry. If the current working 1959 * directory is the same as the subdir to be removed, the 1960 * remove will fail. 1961 * 1962 * IN: dvp - vnode of directory to remove from. 1963 * name - name of directory to be removed. 1964 * cwd - vnode of current working directory. 1965 * cr - credentials of caller. 1966 * ct - caller context 1967 * flags - case flags 1968 * 1969 * RETURN: 0 on success, error code on failure. 1970 * 1971 * Timestamps: 1972 * dvp - ctime|mtime updated 1973 */ 1974 /*ARGSUSED*/ 1975 static int 1976 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1977 caller_context_t *ct, int flags) 1978 { 1979 znode_t *dzp = VTOZ(dvp); 1980 znode_t *zp; 1981 vnode_t *vp; 1982 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1983 zilog_t *zilog; 1984 zfs_dirlock_t *dl; 1985 dmu_tx_t *tx; 1986 int error; 1987 int zflg = ZEXISTS; 1988 boolean_t waited = B_FALSE; 1989 1990 ZFS_ENTER(zfsvfs); 1991 ZFS_VERIFY_ZP(dzp); 1992 zilog = zfsvfs->z_log; 1993 1994 if (flags & FIGNORECASE) 1995 zflg |= ZCILOOK; 1996 top: 1997 zp = NULL; 1998 1999 /* 2000 * Attempt to lock directory; fail if entry doesn't exist. 2001 */ 2002 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2003 NULL, NULL)) { 2004 ZFS_EXIT(zfsvfs); 2005 return (error); 2006 } 2007 2008 vp = ZTOV(zp); 2009 2010 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2011 goto out; 2012 } 2013 2014 if (vp->v_type != VDIR) { 2015 error = SET_ERROR(ENOTDIR); 2016 goto out; 2017 } 2018 2019 if (vp == cwd) { 2020 error = SET_ERROR(EINVAL); 2021 goto out; 2022 } 2023 2024 vnevent_rmdir(vp, dvp, name, ct); 2025 2026 /* 2027 * Grab a lock on the directory to make sure that noone is 2028 * trying to add (or lookup) entries while we are removing it. 2029 */ 2030 rw_enter(&zp->z_name_lock, RW_WRITER); 2031 2032 /* 2033 * Grab a lock on the parent pointer to make sure we play well 2034 * with the treewalk and directory rename code. 2035 */ 2036 rw_enter(&zp->z_parent_lock, RW_WRITER); 2037 2038 tx = dmu_tx_create(zfsvfs->z_os); 2039 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2040 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2041 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2042 zfs_sa_upgrade_txholds(tx, zp); 2043 zfs_sa_upgrade_txholds(tx, dzp); 2044 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2045 if (error) { 2046 rw_exit(&zp->z_parent_lock); 2047 rw_exit(&zp->z_name_lock); 2048 zfs_dirent_unlock(dl); 2049 VN_RELE(vp); 2050 if (error == ERESTART) { 2051 waited = B_TRUE; 2052 dmu_tx_wait(tx); 2053 dmu_tx_abort(tx); 2054 goto top; 2055 } 2056 dmu_tx_abort(tx); 2057 ZFS_EXIT(zfsvfs); 2058 return (error); 2059 } 2060 2061 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2062 2063 if (error == 0) { 2064 uint64_t txtype = TX_RMDIR; 2065 if (flags & FIGNORECASE) 2066 txtype |= TX_CI; 2067 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2068 } 2069 2070 dmu_tx_commit(tx); 2071 2072 rw_exit(&zp->z_parent_lock); 2073 rw_exit(&zp->z_name_lock); 2074 out: 2075 zfs_dirent_unlock(dl); 2076 2077 VN_RELE(vp); 2078 2079 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2080 zil_commit(zilog, 0); 2081 2082 ZFS_EXIT(zfsvfs); 2083 return (error); 2084 } 2085 2086 /* 2087 * Read as many directory entries as will fit into the provided 2088 * buffer from the given directory cursor position (specified in 2089 * the uio structure). 2090 * 2091 * IN: vp - vnode of directory to read. 2092 * uio - structure supplying read location, range info, 2093 * and return buffer. 2094 * cr - credentials of caller. 2095 * ct - caller context 2096 * flags - case flags 2097 * 2098 * OUT: uio - updated offset and range, buffer filled. 2099 * eofp - set to true if end-of-file detected. 2100 * 2101 * RETURN: 0 on success, error code on failure. 2102 * 2103 * Timestamps: 2104 * vp - atime updated 2105 * 2106 * Note that the low 4 bits of the cookie returned by zap is always zero. 2107 * This allows us to use the low range for "special" directory entries: 2108 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2109 * we use the offset 2 for the '.zfs' directory. 2110 */ 2111 /* ARGSUSED */ 2112 static int 2113 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2114 caller_context_t *ct, int flags) 2115 { 2116 znode_t *zp = VTOZ(vp); 2117 iovec_t *iovp; 2118 edirent_t *eodp; 2119 dirent64_t *odp; 2120 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2121 objset_t *os; 2122 caddr_t outbuf; 2123 size_t bufsize; 2124 zap_cursor_t zc; 2125 zap_attribute_t zap; 2126 uint_t bytes_wanted; 2127 uint64_t offset; /* must be unsigned; checks for < 1 */ 2128 uint64_t parent; 2129 int local_eof; 2130 int outcount; 2131 int error; 2132 uint8_t prefetch; 2133 boolean_t check_sysattrs; 2134 2135 ZFS_ENTER(zfsvfs); 2136 ZFS_VERIFY_ZP(zp); 2137 2138 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2139 &parent, sizeof (parent))) != 0) { 2140 ZFS_EXIT(zfsvfs); 2141 return (error); 2142 } 2143 2144 /* 2145 * If we are not given an eof variable, 2146 * use a local one. 2147 */ 2148 if (eofp == NULL) 2149 eofp = &local_eof; 2150 2151 /* 2152 * Check for valid iov_len. 2153 */ 2154 if (uio->uio_iov->iov_len <= 0) { 2155 ZFS_EXIT(zfsvfs); 2156 return (SET_ERROR(EINVAL)); 2157 } 2158 2159 /* 2160 * Quit if directory has been removed (posix) 2161 */ 2162 if ((*eofp = zp->z_unlinked) != 0) { 2163 ZFS_EXIT(zfsvfs); 2164 return (0); 2165 } 2166 2167 error = 0; 2168 os = zfsvfs->z_os; 2169 offset = uio->uio_loffset; 2170 prefetch = zp->z_zn_prefetch; 2171 2172 /* 2173 * Initialize the iterator cursor. 2174 */ 2175 if (offset <= 3) { 2176 /* 2177 * Start iteration from the beginning of the directory. 2178 */ 2179 zap_cursor_init(&zc, os, zp->z_id); 2180 } else { 2181 /* 2182 * The offset is a serialized cursor. 2183 */ 2184 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2185 } 2186 2187 /* 2188 * Get space to change directory entries into fs independent format. 2189 */ 2190 iovp = uio->uio_iov; 2191 bytes_wanted = iovp->iov_len; 2192 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2193 bufsize = bytes_wanted; 2194 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2195 odp = (struct dirent64 *)outbuf; 2196 } else { 2197 bufsize = bytes_wanted; 2198 outbuf = NULL; 2199 odp = (struct dirent64 *)iovp->iov_base; 2200 } 2201 eodp = (struct edirent *)odp; 2202 2203 /* 2204 * If this VFS supports the system attribute view interface; and 2205 * we're looking at an extended attribute directory; and we care 2206 * about normalization conflicts on this vfs; then we must check 2207 * for normalization conflicts with the sysattr name space. 2208 */ 2209 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2210 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2211 (flags & V_RDDIR_ENTFLAGS); 2212 2213 /* 2214 * Transform to file-system independent format 2215 */ 2216 outcount = 0; 2217 while (outcount < bytes_wanted) { 2218 ino64_t objnum; 2219 ushort_t reclen; 2220 off64_t *next = NULL; 2221 2222 /* 2223 * Special case `.', `..', and `.zfs'. 2224 */ 2225 if (offset == 0) { 2226 (void) strcpy(zap.za_name, "."); 2227 zap.za_normalization_conflict = 0; 2228 objnum = zp->z_id; 2229 } else if (offset == 1) { 2230 (void) strcpy(zap.za_name, ".."); 2231 zap.za_normalization_conflict = 0; 2232 objnum = parent; 2233 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2234 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2235 zap.za_normalization_conflict = 0; 2236 objnum = ZFSCTL_INO_ROOT; 2237 } else { 2238 /* 2239 * Grab next entry. 2240 */ 2241 if (error = zap_cursor_retrieve(&zc, &zap)) { 2242 if ((*eofp = (error == ENOENT)) != 0) 2243 break; 2244 else 2245 goto update; 2246 } 2247 2248 if (zap.za_integer_length != 8 || 2249 zap.za_num_integers != 1) { 2250 cmn_err(CE_WARN, "zap_readdir: bad directory " 2251 "entry, obj = %lld, offset = %lld\n", 2252 (u_longlong_t)zp->z_id, 2253 (u_longlong_t)offset); 2254 error = SET_ERROR(ENXIO); 2255 goto update; 2256 } 2257 2258 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2259 /* 2260 * MacOS X can extract the object type here such as: 2261 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2262 */ 2263 2264 if (check_sysattrs && !zap.za_normalization_conflict) { 2265 zap.za_normalization_conflict = 2266 xattr_sysattr_casechk(zap.za_name); 2267 } 2268 } 2269 2270 if (flags & V_RDDIR_ACCFILTER) { 2271 /* 2272 * If we have no access at all, don't include 2273 * this entry in the returned information 2274 */ 2275 znode_t *ezp; 2276 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2277 goto skip_entry; 2278 if (!zfs_has_access(ezp, cr)) { 2279 VN_RELE(ZTOV(ezp)); 2280 goto skip_entry; 2281 } 2282 VN_RELE(ZTOV(ezp)); 2283 } 2284 2285 if (flags & V_RDDIR_ENTFLAGS) 2286 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2287 else 2288 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2289 2290 /* 2291 * Will this entry fit in the buffer? 2292 */ 2293 if (outcount + reclen > bufsize) { 2294 /* 2295 * Did we manage to fit anything in the buffer? 2296 */ 2297 if (!outcount) { 2298 error = SET_ERROR(EINVAL); 2299 goto update; 2300 } 2301 break; 2302 } 2303 if (flags & V_RDDIR_ENTFLAGS) { 2304 /* 2305 * Add extended flag entry: 2306 */ 2307 eodp->ed_ino = objnum; 2308 eodp->ed_reclen = reclen; 2309 /* NOTE: ed_off is the offset for the *next* entry */ 2310 next = &(eodp->ed_off); 2311 eodp->ed_eflags = zap.za_normalization_conflict ? 2312 ED_CASE_CONFLICT : 0; 2313 (void) strncpy(eodp->ed_name, zap.za_name, 2314 EDIRENT_NAMELEN(reclen)); 2315 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2316 } else { 2317 /* 2318 * Add normal entry: 2319 */ 2320 odp->d_ino = objnum; 2321 odp->d_reclen = reclen; 2322 /* NOTE: d_off is the offset for the *next* entry */ 2323 next = &(odp->d_off); 2324 (void) strncpy(odp->d_name, zap.za_name, 2325 DIRENT64_NAMELEN(reclen)); 2326 odp = (dirent64_t *)((intptr_t)odp + reclen); 2327 } 2328 outcount += reclen; 2329 2330 ASSERT(outcount <= bufsize); 2331 2332 /* Prefetch znode */ 2333 if (prefetch) 2334 dmu_prefetch(os, objnum, 0, 0); 2335 2336 skip_entry: 2337 /* 2338 * Move to the next entry, fill in the previous offset. 2339 */ 2340 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2341 zap_cursor_advance(&zc); 2342 offset = zap_cursor_serialize(&zc); 2343 } else { 2344 offset += 1; 2345 } 2346 if (next) 2347 *next = offset; 2348 } 2349 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2350 2351 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2352 iovp->iov_base += outcount; 2353 iovp->iov_len -= outcount; 2354 uio->uio_resid -= outcount; 2355 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2356 /* 2357 * Reset the pointer. 2358 */ 2359 offset = uio->uio_loffset; 2360 } 2361 2362 update: 2363 zap_cursor_fini(&zc); 2364 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2365 kmem_free(outbuf, bufsize); 2366 2367 if (error == ENOENT) 2368 error = 0; 2369 2370 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2371 2372 uio->uio_loffset = offset; 2373 ZFS_EXIT(zfsvfs); 2374 return (error); 2375 } 2376 2377 ulong_t zfs_fsync_sync_cnt = 4; 2378 2379 static int 2380 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2381 { 2382 znode_t *zp = VTOZ(vp); 2383 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2384 2385 /* 2386 * Regardless of whether this is required for standards conformance, 2387 * this is the logical behavior when fsync() is called on a file with 2388 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2389 * going to be pushed out as part of the zil_commit(). 2390 */ 2391 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2392 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2393 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2394 2395 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2396 2397 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2398 ZFS_ENTER(zfsvfs); 2399 ZFS_VERIFY_ZP(zp); 2400 zil_commit(zfsvfs->z_log, zp->z_id); 2401 ZFS_EXIT(zfsvfs); 2402 } 2403 return (0); 2404 } 2405 2406 2407 /* 2408 * Get the requested file attributes and place them in the provided 2409 * vattr structure. 2410 * 2411 * IN: vp - vnode of file. 2412 * vap - va_mask identifies requested attributes. 2413 * If AT_XVATTR set, then optional attrs are requested 2414 * flags - ATTR_NOACLCHECK (CIFS server context) 2415 * cr - credentials of caller. 2416 * ct - caller context 2417 * 2418 * OUT: vap - attribute values. 2419 * 2420 * RETURN: 0 (always succeeds). 2421 */ 2422 /* ARGSUSED */ 2423 static int 2424 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2425 caller_context_t *ct) 2426 { 2427 znode_t *zp = VTOZ(vp); 2428 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2429 int error = 0; 2430 uint64_t links; 2431 uint64_t mtime[2], ctime[2]; 2432 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2433 xoptattr_t *xoap = NULL; 2434 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2435 sa_bulk_attr_t bulk[2]; 2436 int count = 0; 2437 2438 ZFS_ENTER(zfsvfs); 2439 ZFS_VERIFY_ZP(zp); 2440 2441 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2442 2443 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2444 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2445 2446 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2447 ZFS_EXIT(zfsvfs); 2448 return (error); 2449 } 2450 2451 /* 2452 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2453 * Also, if we are the owner don't bother, since owner should 2454 * always be allowed to read basic attributes of file. 2455 */ 2456 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2457 (vap->va_uid != crgetuid(cr))) { 2458 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2459 skipaclchk, cr)) { 2460 ZFS_EXIT(zfsvfs); 2461 return (error); 2462 } 2463 } 2464 2465 /* 2466 * Return all attributes. It's cheaper to provide the answer 2467 * than to determine whether we were asked the question. 2468 */ 2469 2470 mutex_enter(&zp->z_lock); 2471 vap->va_type = vp->v_type; 2472 vap->va_mode = zp->z_mode & MODEMASK; 2473 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2474 vap->va_nodeid = zp->z_id; 2475 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2476 links = zp->z_links + 1; 2477 else 2478 links = zp->z_links; 2479 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2480 vap->va_size = zp->z_size; 2481 vap->va_rdev = vp->v_rdev; 2482 vap->va_seq = zp->z_seq; 2483 2484 /* 2485 * Add in any requested optional attributes and the create time. 2486 * Also set the corresponding bits in the returned attribute bitmap. 2487 */ 2488 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2489 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2490 xoap->xoa_archive = 2491 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2492 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2493 } 2494 2495 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2496 xoap->xoa_readonly = 2497 ((zp->z_pflags & ZFS_READONLY) != 0); 2498 XVA_SET_RTN(xvap, XAT_READONLY); 2499 } 2500 2501 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2502 xoap->xoa_system = 2503 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2504 XVA_SET_RTN(xvap, XAT_SYSTEM); 2505 } 2506 2507 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2508 xoap->xoa_hidden = 2509 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2510 XVA_SET_RTN(xvap, XAT_HIDDEN); 2511 } 2512 2513 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2514 xoap->xoa_nounlink = 2515 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2516 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2517 } 2518 2519 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2520 xoap->xoa_immutable = 2521 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2522 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2523 } 2524 2525 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2526 xoap->xoa_appendonly = 2527 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2528 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2529 } 2530 2531 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2532 xoap->xoa_nodump = 2533 ((zp->z_pflags & ZFS_NODUMP) != 0); 2534 XVA_SET_RTN(xvap, XAT_NODUMP); 2535 } 2536 2537 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2538 xoap->xoa_opaque = 2539 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2540 XVA_SET_RTN(xvap, XAT_OPAQUE); 2541 } 2542 2543 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2544 xoap->xoa_av_quarantined = 2545 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2546 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2547 } 2548 2549 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2550 xoap->xoa_av_modified = 2551 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2552 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2553 } 2554 2555 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2556 vp->v_type == VREG) { 2557 zfs_sa_get_scanstamp(zp, xvap); 2558 } 2559 2560 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2561 uint64_t times[2]; 2562 2563 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2564 times, sizeof (times)); 2565 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2566 XVA_SET_RTN(xvap, XAT_CREATETIME); 2567 } 2568 2569 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2570 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2571 XVA_SET_RTN(xvap, XAT_REPARSE); 2572 } 2573 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2574 xoap->xoa_generation = zp->z_gen; 2575 XVA_SET_RTN(xvap, XAT_GEN); 2576 } 2577 2578 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2579 xoap->xoa_offline = 2580 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2581 XVA_SET_RTN(xvap, XAT_OFFLINE); 2582 } 2583 2584 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2585 xoap->xoa_sparse = 2586 ((zp->z_pflags & ZFS_SPARSE) != 0); 2587 XVA_SET_RTN(xvap, XAT_SPARSE); 2588 } 2589 } 2590 2591 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2592 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2593 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2594 2595 mutex_exit(&zp->z_lock); 2596 2597 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2598 2599 if (zp->z_blksz == 0) { 2600 /* 2601 * Block size hasn't been set; suggest maximal I/O transfers. 2602 */ 2603 vap->va_blksize = zfsvfs->z_max_blksz; 2604 } 2605 2606 ZFS_EXIT(zfsvfs); 2607 return (0); 2608 } 2609 2610 /* 2611 * Set the file attributes to the values contained in the 2612 * vattr structure. 2613 * 2614 * IN: vp - vnode of file to be modified. 2615 * vap - new attribute values. 2616 * If AT_XVATTR set, then optional attrs are being set 2617 * flags - ATTR_UTIME set if non-default time values provided. 2618 * - ATTR_NOACLCHECK (CIFS context only). 2619 * cr - credentials of caller. 2620 * ct - caller context 2621 * 2622 * RETURN: 0 on success, error code on failure. 2623 * 2624 * Timestamps: 2625 * vp - ctime updated, mtime updated if size changed. 2626 */ 2627 /* ARGSUSED */ 2628 static int 2629 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2630 caller_context_t *ct) 2631 { 2632 znode_t *zp = VTOZ(vp); 2633 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2634 zilog_t *zilog; 2635 dmu_tx_t *tx; 2636 vattr_t oldva; 2637 xvattr_t tmpxvattr; 2638 uint_t mask = vap->va_mask; 2639 uint_t saved_mask = 0; 2640 int trim_mask = 0; 2641 uint64_t new_mode; 2642 uint64_t new_uid, new_gid; 2643 uint64_t xattr_obj; 2644 uint64_t mtime[2], ctime[2]; 2645 znode_t *attrzp; 2646 int need_policy = FALSE; 2647 int err, err2; 2648 zfs_fuid_info_t *fuidp = NULL; 2649 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2650 xoptattr_t *xoap; 2651 zfs_acl_t *aclp; 2652 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2653 boolean_t fuid_dirtied = B_FALSE; 2654 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2655 int count = 0, xattr_count = 0; 2656 2657 if (mask == 0) 2658 return (0); 2659 2660 if (mask & AT_NOSET) 2661 return (SET_ERROR(EINVAL)); 2662 2663 ZFS_ENTER(zfsvfs); 2664 ZFS_VERIFY_ZP(zp); 2665 2666 zilog = zfsvfs->z_log; 2667 2668 /* 2669 * Make sure that if we have ephemeral uid/gid or xvattr specified 2670 * that file system is at proper version level 2671 */ 2672 2673 if (zfsvfs->z_use_fuids == B_FALSE && 2674 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2675 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2676 (mask & AT_XVATTR))) { 2677 ZFS_EXIT(zfsvfs); 2678 return (SET_ERROR(EINVAL)); 2679 } 2680 2681 if (mask & AT_SIZE && vp->v_type == VDIR) { 2682 ZFS_EXIT(zfsvfs); 2683 return (SET_ERROR(EISDIR)); 2684 } 2685 2686 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2687 ZFS_EXIT(zfsvfs); 2688 return (SET_ERROR(EINVAL)); 2689 } 2690 2691 /* 2692 * If this is an xvattr_t, then get a pointer to the structure of 2693 * optional attributes. If this is NULL, then we have a vattr_t. 2694 */ 2695 xoap = xva_getxoptattr(xvap); 2696 2697 xva_init(&tmpxvattr); 2698 2699 /* 2700 * Immutable files can only alter immutable bit and atime 2701 */ 2702 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2703 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2704 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2705 ZFS_EXIT(zfsvfs); 2706 return (SET_ERROR(EPERM)); 2707 } 2708 2709 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2710 ZFS_EXIT(zfsvfs); 2711 return (SET_ERROR(EPERM)); 2712 } 2713 2714 /* 2715 * Verify timestamps doesn't overflow 32 bits. 2716 * ZFS can handle large timestamps, but 32bit syscalls can't 2717 * handle times greater than 2039. This check should be removed 2718 * once large timestamps are fully supported. 2719 */ 2720 if (mask & (AT_ATIME | AT_MTIME)) { 2721 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2722 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2723 ZFS_EXIT(zfsvfs); 2724 return (SET_ERROR(EOVERFLOW)); 2725 } 2726 } 2727 2728 top: 2729 attrzp = NULL; 2730 aclp = NULL; 2731 2732 /* Can this be moved to before the top label? */ 2733 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2734 ZFS_EXIT(zfsvfs); 2735 return (SET_ERROR(EROFS)); 2736 } 2737 2738 /* 2739 * First validate permissions 2740 */ 2741 2742 if (mask & AT_SIZE) { 2743 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2744 if (err) { 2745 ZFS_EXIT(zfsvfs); 2746 return (err); 2747 } 2748 /* 2749 * XXX - Note, we are not providing any open 2750 * mode flags here (like FNDELAY), so we may 2751 * block if there are locks present... this 2752 * should be addressed in openat(). 2753 */ 2754 /* XXX - would it be OK to generate a log record here? */ 2755 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2756 if (err) { 2757 ZFS_EXIT(zfsvfs); 2758 return (err); 2759 } 2760 2761 if (vap->va_size == 0) 2762 vnevent_truncate(ZTOV(zp), ct); 2763 } 2764 2765 if (mask & (AT_ATIME|AT_MTIME) || 2766 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2767 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2768 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2769 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2770 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2771 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2772 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2773 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2774 skipaclchk, cr); 2775 } 2776 2777 if (mask & (AT_UID|AT_GID)) { 2778 int idmask = (mask & (AT_UID|AT_GID)); 2779 int take_owner; 2780 int take_group; 2781 2782 /* 2783 * NOTE: even if a new mode is being set, 2784 * we may clear S_ISUID/S_ISGID bits. 2785 */ 2786 2787 if (!(mask & AT_MODE)) 2788 vap->va_mode = zp->z_mode; 2789 2790 /* 2791 * Take ownership or chgrp to group we are a member of 2792 */ 2793 2794 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2795 take_group = (mask & AT_GID) && 2796 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2797 2798 /* 2799 * If both AT_UID and AT_GID are set then take_owner and 2800 * take_group must both be set in order to allow taking 2801 * ownership. 2802 * 2803 * Otherwise, send the check through secpolicy_vnode_setattr() 2804 * 2805 */ 2806 2807 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2808 ((idmask == AT_UID) && take_owner) || 2809 ((idmask == AT_GID) && take_group)) { 2810 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2811 skipaclchk, cr) == 0) { 2812 /* 2813 * Remove setuid/setgid for non-privileged users 2814 */ 2815 secpolicy_setid_clear(vap, cr); 2816 trim_mask = (mask & (AT_UID|AT_GID)); 2817 } else { 2818 need_policy = TRUE; 2819 } 2820 } else { 2821 need_policy = TRUE; 2822 } 2823 } 2824 2825 mutex_enter(&zp->z_lock); 2826 oldva.va_mode = zp->z_mode; 2827 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2828 if (mask & AT_XVATTR) { 2829 /* 2830 * Update xvattr mask to include only those attributes 2831 * that are actually changing. 2832 * 2833 * the bits will be restored prior to actually setting 2834 * the attributes so the caller thinks they were set. 2835 */ 2836 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2837 if (xoap->xoa_appendonly != 2838 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2839 need_policy = TRUE; 2840 } else { 2841 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2842 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2843 } 2844 } 2845 2846 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2847 if (xoap->xoa_nounlink != 2848 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2849 need_policy = TRUE; 2850 } else { 2851 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2852 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2853 } 2854 } 2855 2856 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2857 if (xoap->xoa_immutable != 2858 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2859 need_policy = TRUE; 2860 } else { 2861 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2862 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2863 } 2864 } 2865 2866 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2867 if (xoap->xoa_nodump != 2868 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2869 need_policy = TRUE; 2870 } else { 2871 XVA_CLR_REQ(xvap, XAT_NODUMP); 2872 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2873 } 2874 } 2875 2876 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2877 if (xoap->xoa_av_modified != 2878 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2879 need_policy = TRUE; 2880 } else { 2881 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2882 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2883 } 2884 } 2885 2886 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2887 if ((vp->v_type != VREG && 2888 xoap->xoa_av_quarantined) || 2889 xoap->xoa_av_quarantined != 2890 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2891 need_policy = TRUE; 2892 } else { 2893 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2894 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2895 } 2896 } 2897 2898 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2899 mutex_exit(&zp->z_lock); 2900 ZFS_EXIT(zfsvfs); 2901 return (SET_ERROR(EPERM)); 2902 } 2903 2904 if (need_policy == FALSE && 2905 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2906 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2907 need_policy = TRUE; 2908 } 2909 } 2910 2911 mutex_exit(&zp->z_lock); 2912 2913 if (mask & AT_MODE) { 2914 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2915 err = secpolicy_setid_setsticky_clear(vp, vap, 2916 &oldva, cr); 2917 if (err) { 2918 ZFS_EXIT(zfsvfs); 2919 return (err); 2920 } 2921 trim_mask |= AT_MODE; 2922 } else { 2923 need_policy = TRUE; 2924 } 2925 } 2926 2927 if (need_policy) { 2928 /* 2929 * If trim_mask is set then take ownership 2930 * has been granted or write_acl is present and user 2931 * has the ability to modify mode. In that case remove 2932 * UID|GID and or MODE from mask so that 2933 * secpolicy_vnode_setattr() doesn't revoke it. 2934 */ 2935 2936 if (trim_mask) { 2937 saved_mask = vap->va_mask; 2938 vap->va_mask &= ~trim_mask; 2939 } 2940 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2941 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2942 if (err) { 2943 ZFS_EXIT(zfsvfs); 2944 return (err); 2945 } 2946 2947 if (trim_mask) 2948 vap->va_mask |= saved_mask; 2949 } 2950 2951 /* 2952 * secpolicy_vnode_setattr, or take ownership may have 2953 * changed va_mask 2954 */ 2955 mask = vap->va_mask; 2956 2957 if ((mask & (AT_UID | AT_GID))) { 2958 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 2959 &xattr_obj, sizeof (xattr_obj)); 2960 2961 if (err == 0 && xattr_obj) { 2962 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 2963 if (err) 2964 goto out2; 2965 } 2966 if (mask & AT_UID) { 2967 new_uid = zfs_fuid_create(zfsvfs, 2968 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2969 if (new_uid != zp->z_uid && 2970 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 2971 if (attrzp) 2972 VN_RELE(ZTOV(attrzp)); 2973 err = SET_ERROR(EDQUOT); 2974 goto out2; 2975 } 2976 } 2977 2978 if (mask & AT_GID) { 2979 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2980 cr, ZFS_GROUP, &fuidp); 2981 if (new_gid != zp->z_gid && 2982 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 2983 if (attrzp) 2984 VN_RELE(ZTOV(attrzp)); 2985 err = SET_ERROR(EDQUOT); 2986 goto out2; 2987 } 2988 } 2989 } 2990 tx = dmu_tx_create(zfsvfs->z_os); 2991 2992 if (mask & AT_MODE) { 2993 uint64_t pmode = zp->z_mode; 2994 uint64_t acl_obj; 2995 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2996 2997 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 2998 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 2999 err = SET_ERROR(EPERM); 3000 goto out; 3001 } 3002 3003 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3004 goto out; 3005 3006 mutex_enter(&zp->z_lock); 3007 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3008 /* 3009 * Are we upgrading ACL from old V0 format 3010 * to V1 format? 3011 */ 3012 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3013 zfs_znode_acl_version(zp) == 3014 ZFS_ACL_VERSION_INITIAL) { 3015 dmu_tx_hold_free(tx, acl_obj, 0, 3016 DMU_OBJECT_END); 3017 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3018 0, aclp->z_acl_bytes); 3019 } else { 3020 dmu_tx_hold_write(tx, acl_obj, 0, 3021 aclp->z_acl_bytes); 3022 } 3023 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3024 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3025 0, aclp->z_acl_bytes); 3026 } 3027 mutex_exit(&zp->z_lock); 3028 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3029 } else { 3030 if ((mask & AT_XVATTR) && 3031 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3032 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3033 else 3034 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3035 } 3036 3037 if (attrzp) { 3038 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3039 } 3040 3041 fuid_dirtied = zfsvfs->z_fuid_dirty; 3042 if (fuid_dirtied) 3043 zfs_fuid_txhold(zfsvfs, tx); 3044 3045 zfs_sa_upgrade_txholds(tx, zp); 3046 3047 err = dmu_tx_assign(tx, TXG_WAIT); 3048 if (err) 3049 goto out; 3050 3051 count = 0; 3052 /* 3053 * Set each attribute requested. 3054 * We group settings according to the locks they need to acquire. 3055 * 3056 * Note: you cannot set ctime directly, although it will be 3057 * updated as a side-effect of calling this function. 3058 */ 3059 3060 3061 if (mask & (AT_UID|AT_GID|AT_MODE)) 3062 mutex_enter(&zp->z_acl_lock); 3063 mutex_enter(&zp->z_lock); 3064 3065 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3066 &zp->z_pflags, sizeof (zp->z_pflags)); 3067 3068 if (attrzp) { 3069 if (mask & (AT_UID|AT_GID|AT_MODE)) 3070 mutex_enter(&attrzp->z_acl_lock); 3071 mutex_enter(&attrzp->z_lock); 3072 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3073 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3074 sizeof (attrzp->z_pflags)); 3075 } 3076 3077 if (mask & (AT_UID|AT_GID)) { 3078 3079 if (mask & AT_UID) { 3080 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3081 &new_uid, sizeof (new_uid)); 3082 zp->z_uid = new_uid; 3083 if (attrzp) { 3084 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3085 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3086 sizeof (new_uid)); 3087 attrzp->z_uid = new_uid; 3088 } 3089 } 3090 3091 if (mask & AT_GID) { 3092 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3093 NULL, &new_gid, sizeof (new_gid)); 3094 zp->z_gid = new_gid; 3095 if (attrzp) { 3096 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3097 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3098 sizeof (new_gid)); 3099 attrzp->z_gid = new_gid; 3100 } 3101 } 3102 if (!(mask & AT_MODE)) { 3103 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3104 NULL, &new_mode, sizeof (new_mode)); 3105 new_mode = zp->z_mode; 3106 } 3107 err = zfs_acl_chown_setattr(zp); 3108 ASSERT(err == 0); 3109 if (attrzp) { 3110 err = zfs_acl_chown_setattr(attrzp); 3111 ASSERT(err == 0); 3112 } 3113 } 3114 3115 if (mask & AT_MODE) { 3116 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3117 &new_mode, sizeof (new_mode)); 3118 zp->z_mode = new_mode; 3119 ASSERT3U((uintptr_t)aclp, !=, NULL); 3120 err = zfs_aclset_common(zp, aclp, cr, tx); 3121 ASSERT0(err); 3122 if (zp->z_acl_cached) 3123 zfs_acl_free(zp->z_acl_cached); 3124 zp->z_acl_cached = aclp; 3125 aclp = NULL; 3126 } 3127 3128 3129 if (mask & AT_ATIME) { 3130 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3131 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3132 &zp->z_atime, sizeof (zp->z_atime)); 3133 } 3134 3135 if (mask & AT_MTIME) { 3136 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3137 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3138 mtime, sizeof (mtime)); 3139 } 3140 3141 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3142 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3143 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3144 NULL, mtime, sizeof (mtime)); 3145 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3146 &ctime, sizeof (ctime)); 3147 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3148 B_TRUE); 3149 } else if (mask != 0) { 3150 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3151 &ctime, sizeof (ctime)); 3152 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3153 B_TRUE); 3154 if (attrzp) { 3155 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3156 SA_ZPL_CTIME(zfsvfs), NULL, 3157 &ctime, sizeof (ctime)); 3158 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3159 mtime, ctime, B_TRUE); 3160 } 3161 } 3162 /* 3163 * Do this after setting timestamps to prevent timestamp 3164 * update from toggling bit 3165 */ 3166 3167 if (xoap && (mask & AT_XVATTR)) { 3168 3169 /* 3170 * restore trimmed off masks 3171 * so that return masks can be set for caller. 3172 */ 3173 3174 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3175 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3176 } 3177 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3178 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3179 } 3180 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3181 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3182 } 3183 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3184 XVA_SET_REQ(xvap, XAT_NODUMP); 3185 } 3186 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3187 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3188 } 3189 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3190 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3191 } 3192 3193 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3194 ASSERT(vp->v_type == VREG); 3195 3196 zfs_xvattr_set(zp, xvap, tx); 3197 } 3198 3199 if (fuid_dirtied) 3200 zfs_fuid_sync(zfsvfs, tx); 3201 3202 if (mask != 0) 3203 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3204 3205 mutex_exit(&zp->z_lock); 3206 if (mask & (AT_UID|AT_GID|AT_MODE)) 3207 mutex_exit(&zp->z_acl_lock); 3208 3209 if (attrzp) { 3210 if (mask & (AT_UID|AT_GID|AT_MODE)) 3211 mutex_exit(&attrzp->z_acl_lock); 3212 mutex_exit(&attrzp->z_lock); 3213 } 3214 out: 3215 if (err == 0 && attrzp) { 3216 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3217 xattr_count, tx); 3218 ASSERT(err2 == 0); 3219 } 3220 3221 if (attrzp) 3222 VN_RELE(ZTOV(attrzp)); 3223 3224 if (aclp) 3225 zfs_acl_free(aclp); 3226 3227 if (fuidp) { 3228 zfs_fuid_info_free(fuidp); 3229 fuidp = NULL; 3230 } 3231 3232 if (err) { 3233 dmu_tx_abort(tx); 3234 if (err == ERESTART) 3235 goto top; 3236 } else { 3237 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3238 dmu_tx_commit(tx); 3239 } 3240 3241 out2: 3242 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3243 zil_commit(zilog, 0); 3244 3245 ZFS_EXIT(zfsvfs); 3246 return (err); 3247 } 3248 3249 typedef struct zfs_zlock { 3250 krwlock_t *zl_rwlock; /* lock we acquired */ 3251 znode_t *zl_znode; /* znode we held */ 3252 struct zfs_zlock *zl_next; /* next in list */ 3253 } zfs_zlock_t; 3254 3255 /* 3256 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3257 */ 3258 static void 3259 zfs_rename_unlock(zfs_zlock_t **zlpp) 3260 { 3261 zfs_zlock_t *zl; 3262 3263 while ((zl = *zlpp) != NULL) { 3264 if (zl->zl_znode != NULL) 3265 VN_RELE(ZTOV(zl->zl_znode)); 3266 rw_exit(zl->zl_rwlock); 3267 *zlpp = zl->zl_next; 3268 kmem_free(zl, sizeof (*zl)); 3269 } 3270 } 3271 3272 /* 3273 * Search back through the directory tree, using the ".." entries. 3274 * Lock each directory in the chain to prevent concurrent renames. 3275 * Fail any attempt to move a directory into one of its own descendants. 3276 * XXX - z_parent_lock can overlap with map or grow locks 3277 */ 3278 static int 3279 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3280 { 3281 zfs_zlock_t *zl; 3282 znode_t *zp = tdzp; 3283 uint64_t rootid = zp->z_zfsvfs->z_root; 3284 uint64_t oidp = zp->z_id; 3285 krwlock_t *rwlp = &szp->z_parent_lock; 3286 krw_t rw = RW_WRITER; 3287 3288 /* 3289 * First pass write-locks szp and compares to zp->z_id. 3290 * Later passes read-lock zp and compare to zp->z_parent. 3291 */ 3292 do { 3293 if (!rw_tryenter(rwlp, rw)) { 3294 /* 3295 * Another thread is renaming in this path. 3296 * Note that if we are a WRITER, we don't have any 3297 * parent_locks held yet. 3298 */ 3299 if (rw == RW_READER && zp->z_id > szp->z_id) { 3300 /* 3301 * Drop our locks and restart 3302 */ 3303 zfs_rename_unlock(&zl); 3304 *zlpp = NULL; 3305 zp = tdzp; 3306 oidp = zp->z_id; 3307 rwlp = &szp->z_parent_lock; 3308 rw = RW_WRITER; 3309 continue; 3310 } else { 3311 /* 3312 * Wait for other thread to drop its locks 3313 */ 3314 rw_enter(rwlp, rw); 3315 } 3316 } 3317 3318 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3319 zl->zl_rwlock = rwlp; 3320 zl->zl_znode = NULL; 3321 zl->zl_next = *zlpp; 3322 *zlpp = zl; 3323 3324 if (oidp == szp->z_id) /* We're a descendant of szp */ 3325 return (SET_ERROR(EINVAL)); 3326 3327 if (oidp == rootid) /* We've hit the top */ 3328 return (0); 3329 3330 if (rw == RW_READER) { /* i.e. not the first pass */ 3331 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3332 if (error) 3333 return (error); 3334 zl->zl_znode = zp; 3335 } 3336 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3337 &oidp, sizeof (oidp)); 3338 rwlp = &zp->z_parent_lock; 3339 rw = RW_READER; 3340 3341 } while (zp->z_id != sdzp->z_id); 3342 3343 return (0); 3344 } 3345 3346 /* 3347 * Move an entry from the provided source directory to the target 3348 * directory. Change the entry name as indicated. 3349 * 3350 * IN: sdvp - Source directory containing the "old entry". 3351 * snm - Old entry name. 3352 * tdvp - Target directory to contain the "new entry". 3353 * tnm - New entry name. 3354 * cr - credentials of caller. 3355 * ct - caller context 3356 * flags - case flags 3357 * 3358 * RETURN: 0 on success, error code on failure. 3359 * 3360 * Timestamps: 3361 * sdvp,tdvp - ctime|mtime updated 3362 */ 3363 /*ARGSUSED*/ 3364 static int 3365 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3366 caller_context_t *ct, int flags) 3367 { 3368 znode_t *tdzp, *szp, *tzp; 3369 znode_t *sdzp = VTOZ(sdvp); 3370 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3371 zilog_t *zilog; 3372 vnode_t *realvp; 3373 zfs_dirlock_t *sdl, *tdl; 3374 dmu_tx_t *tx; 3375 zfs_zlock_t *zl; 3376 int cmp, serr, terr; 3377 int error = 0; 3378 int zflg = 0; 3379 boolean_t waited = B_FALSE; 3380 3381 ZFS_ENTER(zfsvfs); 3382 ZFS_VERIFY_ZP(sdzp); 3383 zilog = zfsvfs->z_log; 3384 3385 /* 3386 * Make sure we have the real vp for the target directory. 3387 */ 3388 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3389 tdvp = realvp; 3390 3391 tdzp = VTOZ(tdvp); 3392 ZFS_VERIFY_ZP(tdzp); 3393 3394 /* 3395 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3396 * ctldir appear to have the same v_vfsp. 3397 */ 3398 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3399 ZFS_EXIT(zfsvfs); 3400 return (SET_ERROR(EXDEV)); 3401 } 3402 3403 if (zfsvfs->z_utf8 && u8_validate(tnm, 3404 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3405 ZFS_EXIT(zfsvfs); 3406 return (SET_ERROR(EILSEQ)); 3407 } 3408 3409 if (flags & FIGNORECASE) 3410 zflg |= ZCILOOK; 3411 3412 top: 3413 szp = NULL; 3414 tzp = NULL; 3415 zl = NULL; 3416 3417 /* 3418 * This is to prevent the creation of links into attribute space 3419 * by renaming a linked file into/outof an attribute directory. 3420 * See the comment in zfs_link() for why this is considered bad. 3421 */ 3422 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3423 ZFS_EXIT(zfsvfs); 3424 return (SET_ERROR(EINVAL)); 3425 } 3426 3427 /* 3428 * Lock source and target directory entries. To prevent deadlock, 3429 * a lock ordering must be defined. We lock the directory with 3430 * the smallest object id first, or if it's a tie, the one with 3431 * the lexically first name. 3432 */ 3433 if (sdzp->z_id < tdzp->z_id) { 3434 cmp = -1; 3435 } else if (sdzp->z_id > tdzp->z_id) { 3436 cmp = 1; 3437 } else { 3438 /* 3439 * First compare the two name arguments without 3440 * considering any case folding. 3441 */ 3442 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3443 3444 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3445 ASSERT(error == 0 || !zfsvfs->z_utf8); 3446 if (cmp == 0) { 3447 /* 3448 * POSIX: "If the old argument and the new argument 3449 * both refer to links to the same existing file, 3450 * the rename() function shall return successfully 3451 * and perform no other action." 3452 */ 3453 ZFS_EXIT(zfsvfs); 3454 return (0); 3455 } 3456 /* 3457 * If the file system is case-folding, then we may 3458 * have some more checking to do. A case-folding file 3459 * system is either supporting mixed case sensitivity 3460 * access or is completely case-insensitive. Note 3461 * that the file system is always case preserving. 3462 * 3463 * In mixed sensitivity mode case sensitive behavior 3464 * is the default. FIGNORECASE must be used to 3465 * explicitly request case insensitive behavior. 3466 * 3467 * If the source and target names provided differ only 3468 * by case (e.g., a request to rename 'tim' to 'Tim'), 3469 * we will treat this as a special case in the 3470 * case-insensitive mode: as long as the source name 3471 * is an exact match, we will allow this to proceed as 3472 * a name-change request. 3473 */ 3474 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3475 (zfsvfs->z_case == ZFS_CASE_MIXED && 3476 flags & FIGNORECASE)) && 3477 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3478 &error) == 0) { 3479 /* 3480 * case preserving rename request, require exact 3481 * name matches 3482 */ 3483 zflg |= ZCIEXACT; 3484 zflg &= ~ZCILOOK; 3485 } 3486 } 3487 3488 /* 3489 * If the source and destination directories are the same, we should 3490 * grab the z_name_lock of that directory only once. 3491 */ 3492 if (sdzp == tdzp) { 3493 zflg |= ZHAVELOCK; 3494 rw_enter(&sdzp->z_name_lock, RW_READER); 3495 } 3496 3497 if (cmp < 0) { 3498 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3499 ZEXISTS | zflg, NULL, NULL); 3500 terr = zfs_dirent_lock(&tdl, 3501 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3502 } else { 3503 terr = zfs_dirent_lock(&tdl, 3504 tdzp, tnm, &tzp, zflg, NULL, NULL); 3505 serr = zfs_dirent_lock(&sdl, 3506 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3507 NULL, NULL); 3508 } 3509 3510 if (serr) { 3511 /* 3512 * Source entry invalid or not there. 3513 */ 3514 if (!terr) { 3515 zfs_dirent_unlock(tdl); 3516 if (tzp) 3517 VN_RELE(ZTOV(tzp)); 3518 } 3519 3520 if (sdzp == tdzp) 3521 rw_exit(&sdzp->z_name_lock); 3522 3523 if (strcmp(snm, "..") == 0) 3524 serr = SET_ERROR(EINVAL); 3525 ZFS_EXIT(zfsvfs); 3526 return (serr); 3527 } 3528 if (terr) { 3529 zfs_dirent_unlock(sdl); 3530 VN_RELE(ZTOV(szp)); 3531 3532 if (sdzp == tdzp) 3533 rw_exit(&sdzp->z_name_lock); 3534 3535 if (strcmp(tnm, "..") == 0) 3536 terr = SET_ERROR(EINVAL); 3537 ZFS_EXIT(zfsvfs); 3538 return (terr); 3539 } 3540 3541 /* 3542 * Must have write access at the source to remove the old entry 3543 * and write access at the target to create the new entry. 3544 * Note that if target and source are the same, this can be 3545 * done in a single check. 3546 */ 3547 3548 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3549 goto out; 3550 3551 if (ZTOV(szp)->v_type == VDIR) { 3552 /* 3553 * Check to make sure rename is valid. 3554 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3555 */ 3556 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3557 goto out; 3558 } 3559 3560 /* 3561 * Does target exist? 3562 */ 3563 if (tzp) { 3564 /* 3565 * Source and target must be the same type. 3566 */ 3567 if (ZTOV(szp)->v_type == VDIR) { 3568 if (ZTOV(tzp)->v_type != VDIR) { 3569 error = SET_ERROR(ENOTDIR); 3570 goto out; 3571 } 3572 } else { 3573 if (ZTOV(tzp)->v_type == VDIR) { 3574 error = SET_ERROR(EISDIR); 3575 goto out; 3576 } 3577 } 3578 /* 3579 * POSIX dictates that when the source and target 3580 * entries refer to the same file object, rename 3581 * must do nothing and exit without error. 3582 */ 3583 if (szp->z_id == tzp->z_id) { 3584 error = 0; 3585 goto out; 3586 } 3587 } 3588 3589 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3590 if (tzp) 3591 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3592 3593 /* 3594 * notify the target directory if it is not the same 3595 * as source directory. 3596 */ 3597 if (tdvp != sdvp) { 3598 vnevent_rename_dest_dir(tdvp, ct); 3599 } 3600 3601 tx = dmu_tx_create(zfsvfs->z_os); 3602 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3603 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3604 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3605 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3606 if (sdzp != tdzp) { 3607 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3608 zfs_sa_upgrade_txholds(tx, tdzp); 3609 } 3610 if (tzp) { 3611 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3612 zfs_sa_upgrade_txholds(tx, tzp); 3613 } 3614 3615 zfs_sa_upgrade_txholds(tx, szp); 3616 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3617 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3618 if (error) { 3619 if (zl != NULL) 3620 zfs_rename_unlock(&zl); 3621 zfs_dirent_unlock(sdl); 3622 zfs_dirent_unlock(tdl); 3623 3624 if (sdzp == tdzp) 3625 rw_exit(&sdzp->z_name_lock); 3626 3627 VN_RELE(ZTOV(szp)); 3628 if (tzp) 3629 VN_RELE(ZTOV(tzp)); 3630 if (error == ERESTART) { 3631 waited = B_TRUE; 3632 dmu_tx_wait(tx); 3633 dmu_tx_abort(tx); 3634 goto top; 3635 } 3636 dmu_tx_abort(tx); 3637 ZFS_EXIT(zfsvfs); 3638 return (error); 3639 } 3640 3641 if (tzp) /* Attempt to remove the existing target */ 3642 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3643 3644 if (error == 0) { 3645 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3646 if (error == 0) { 3647 szp->z_pflags |= ZFS_AV_MODIFIED; 3648 3649 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3650 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3651 ASSERT0(error); 3652 3653 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3654 if (error == 0) { 3655 zfs_log_rename(zilog, tx, TX_RENAME | 3656 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3657 sdl->dl_name, tdzp, tdl->dl_name, szp); 3658 3659 /* 3660 * Update path information for the target vnode 3661 */ 3662 vn_renamepath(tdvp, ZTOV(szp), tnm, 3663 strlen(tnm)); 3664 } else { 3665 /* 3666 * At this point, we have successfully created 3667 * the target name, but have failed to remove 3668 * the source name. Since the create was done 3669 * with the ZRENAMING flag, there are 3670 * complications; for one, the link count is 3671 * wrong. The easiest way to deal with this 3672 * is to remove the newly created target, and 3673 * return the original error. This must 3674 * succeed; fortunately, it is very unlikely to 3675 * fail, since we just created it. 3676 */ 3677 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3678 ZRENAMING, NULL), ==, 0); 3679 } 3680 } 3681 } 3682 3683 dmu_tx_commit(tx); 3684 out: 3685 if (zl != NULL) 3686 zfs_rename_unlock(&zl); 3687 3688 zfs_dirent_unlock(sdl); 3689 zfs_dirent_unlock(tdl); 3690 3691 if (sdzp == tdzp) 3692 rw_exit(&sdzp->z_name_lock); 3693 3694 3695 VN_RELE(ZTOV(szp)); 3696 if (tzp) 3697 VN_RELE(ZTOV(tzp)); 3698 3699 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3700 zil_commit(zilog, 0); 3701 3702 ZFS_EXIT(zfsvfs); 3703 return (error); 3704 } 3705 3706 /* 3707 * Insert the indicated symbolic reference entry into the directory. 3708 * 3709 * IN: dvp - Directory to contain new symbolic link. 3710 * link - Name for new symlink entry. 3711 * vap - Attributes of new entry. 3712 * cr - credentials of caller. 3713 * ct - caller context 3714 * flags - case flags 3715 * 3716 * RETURN: 0 on success, error code on failure. 3717 * 3718 * Timestamps: 3719 * dvp - ctime|mtime updated 3720 */ 3721 /*ARGSUSED*/ 3722 static int 3723 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3724 caller_context_t *ct, int flags) 3725 { 3726 znode_t *zp, *dzp = VTOZ(dvp); 3727 zfs_dirlock_t *dl; 3728 dmu_tx_t *tx; 3729 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3730 zilog_t *zilog; 3731 uint64_t len = strlen(link); 3732 int error; 3733 int zflg = ZNEW; 3734 zfs_acl_ids_t acl_ids; 3735 boolean_t fuid_dirtied; 3736 uint64_t txtype = TX_SYMLINK; 3737 boolean_t waited = B_FALSE; 3738 3739 ASSERT(vap->va_type == VLNK); 3740 3741 ZFS_ENTER(zfsvfs); 3742 ZFS_VERIFY_ZP(dzp); 3743 zilog = zfsvfs->z_log; 3744 3745 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3746 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3747 ZFS_EXIT(zfsvfs); 3748 return (SET_ERROR(EILSEQ)); 3749 } 3750 if (flags & FIGNORECASE) 3751 zflg |= ZCILOOK; 3752 3753 if (len > MAXPATHLEN) { 3754 ZFS_EXIT(zfsvfs); 3755 return (SET_ERROR(ENAMETOOLONG)); 3756 } 3757 3758 if ((error = zfs_acl_ids_create(dzp, 0, 3759 vap, cr, NULL, &acl_ids)) != 0) { 3760 ZFS_EXIT(zfsvfs); 3761 return (error); 3762 } 3763 top: 3764 /* 3765 * Attempt to lock directory; fail if entry already exists. 3766 */ 3767 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3768 if (error) { 3769 zfs_acl_ids_free(&acl_ids); 3770 ZFS_EXIT(zfsvfs); 3771 return (error); 3772 } 3773 3774 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3775 zfs_acl_ids_free(&acl_ids); 3776 zfs_dirent_unlock(dl); 3777 ZFS_EXIT(zfsvfs); 3778 return (error); 3779 } 3780 3781 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3782 zfs_acl_ids_free(&acl_ids); 3783 zfs_dirent_unlock(dl); 3784 ZFS_EXIT(zfsvfs); 3785 return (SET_ERROR(EDQUOT)); 3786 } 3787 tx = dmu_tx_create(zfsvfs->z_os); 3788 fuid_dirtied = zfsvfs->z_fuid_dirty; 3789 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3790 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3791 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3792 ZFS_SA_BASE_ATTR_SIZE + len); 3793 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3794 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3795 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3796 acl_ids.z_aclp->z_acl_bytes); 3797 } 3798 if (fuid_dirtied) 3799 zfs_fuid_txhold(zfsvfs, tx); 3800 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3801 if (error) { 3802 zfs_dirent_unlock(dl); 3803 if (error == ERESTART) { 3804 waited = B_TRUE; 3805 dmu_tx_wait(tx); 3806 dmu_tx_abort(tx); 3807 goto top; 3808 } 3809 zfs_acl_ids_free(&acl_ids); 3810 dmu_tx_abort(tx); 3811 ZFS_EXIT(zfsvfs); 3812 return (error); 3813 } 3814 3815 /* 3816 * Create a new object for the symlink. 3817 * for version 4 ZPL datsets the symlink will be an SA attribute 3818 */ 3819 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3820 3821 if (fuid_dirtied) 3822 zfs_fuid_sync(zfsvfs, tx); 3823 3824 mutex_enter(&zp->z_lock); 3825 if (zp->z_is_sa) 3826 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3827 link, len, tx); 3828 else 3829 zfs_sa_symlink(zp, link, len, tx); 3830 mutex_exit(&zp->z_lock); 3831 3832 zp->z_size = len; 3833 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3834 &zp->z_size, sizeof (zp->z_size), tx); 3835 /* 3836 * Insert the new object into the directory. 3837 */ 3838 (void) zfs_link_create(dl, zp, tx, ZNEW); 3839 3840 if (flags & FIGNORECASE) 3841 txtype |= TX_CI; 3842 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3843 3844 zfs_acl_ids_free(&acl_ids); 3845 3846 dmu_tx_commit(tx); 3847 3848 zfs_dirent_unlock(dl); 3849 3850 VN_RELE(ZTOV(zp)); 3851 3852 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3853 zil_commit(zilog, 0); 3854 3855 ZFS_EXIT(zfsvfs); 3856 return (error); 3857 } 3858 3859 /* 3860 * Return, in the buffer contained in the provided uio structure, 3861 * the symbolic path referred to by vp. 3862 * 3863 * IN: vp - vnode of symbolic link. 3864 * uio - structure to contain the link path. 3865 * cr - credentials of caller. 3866 * ct - caller context 3867 * 3868 * OUT: uio - structure containing the link path. 3869 * 3870 * RETURN: 0 on success, error code on failure. 3871 * 3872 * Timestamps: 3873 * vp - atime updated 3874 */ 3875 /* ARGSUSED */ 3876 static int 3877 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3878 { 3879 znode_t *zp = VTOZ(vp); 3880 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3881 int error; 3882 3883 ZFS_ENTER(zfsvfs); 3884 ZFS_VERIFY_ZP(zp); 3885 3886 mutex_enter(&zp->z_lock); 3887 if (zp->z_is_sa) 3888 error = sa_lookup_uio(zp->z_sa_hdl, 3889 SA_ZPL_SYMLINK(zfsvfs), uio); 3890 else 3891 error = zfs_sa_readlink(zp, uio); 3892 mutex_exit(&zp->z_lock); 3893 3894 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3895 3896 ZFS_EXIT(zfsvfs); 3897 return (error); 3898 } 3899 3900 /* 3901 * Insert a new entry into directory tdvp referencing svp. 3902 * 3903 * IN: tdvp - Directory to contain new entry. 3904 * svp - vnode of new entry. 3905 * name - name of new entry. 3906 * cr - credentials of caller. 3907 * ct - caller context 3908 * 3909 * RETURN: 0 on success, error code on failure. 3910 * 3911 * Timestamps: 3912 * tdvp - ctime|mtime updated 3913 * svp - ctime updated 3914 */ 3915 /* ARGSUSED */ 3916 static int 3917 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3918 caller_context_t *ct, int flags) 3919 { 3920 znode_t *dzp = VTOZ(tdvp); 3921 znode_t *tzp, *szp; 3922 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3923 zilog_t *zilog; 3924 zfs_dirlock_t *dl; 3925 dmu_tx_t *tx; 3926 vnode_t *realvp; 3927 int error; 3928 int zf = ZNEW; 3929 uint64_t parent; 3930 uid_t owner; 3931 boolean_t waited = B_FALSE; 3932 3933 ASSERT(tdvp->v_type == VDIR); 3934 3935 ZFS_ENTER(zfsvfs); 3936 ZFS_VERIFY_ZP(dzp); 3937 zilog = zfsvfs->z_log; 3938 3939 if (VOP_REALVP(svp, &realvp, ct) == 0) 3940 svp = realvp; 3941 3942 /* 3943 * POSIX dictates that we return EPERM here. 3944 * Better choices include ENOTSUP or EISDIR. 3945 */ 3946 if (svp->v_type == VDIR) { 3947 ZFS_EXIT(zfsvfs); 3948 return (SET_ERROR(EPERM)); 3949 } 3950 3951 szp = VTOZ(svp); 3952 ZFS_VERIFY_ZP(szp); 3953 3954 /* 3955 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3956 * ctldir appear to have the same v_vfsp. 3957 */ 3958 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 3959 ZFS_EXIT(zfsvfs); 3960 return (SET_ERROR(EXDEV)); 3961 } 3962 3963 /* Prevent links to .zfs/shares files */ 3964 3965 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 3966 &parent, sizeof (uint64_t))) != 0) { 3967 ZFS_EXIT(zfsvfs); 3968 return (error); 3969 } 3970 if (parent == zfsvfs->z_shares_dir) { 3971 ZFS_EXIT(zfsvfs); 3972 return (SET_ERROR(EPERM)); 3973 } 3974 3975 if (zfsvfs->z_utf8 && u8_validate(name, 3976 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3977 ZFS_EXIT(zfsvfs); 3978 return (SET_ERROR(EILSEQ)); 3979 } 3980 if (flags & FIGNORECASE) 3981 zf |= ZCILOOK; 3982 3983 /* 3984 * We do not support links between attributes and non-attributes 3985 * because of the potential security risk of creating links 3986 * into "normal" file space in order to circumvent restrictions 3987 * imposed in attribute space. 3988 */ 3989 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 3990 ZFS_EXIT(zfsvfs); 3991 return (SET_ERROR(EINVAL)); 3992 } 3993 3994 3995 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 3996 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 3997 ZFS_EXIT(zfsvfs); 3998 return (SET_ERROR(EPERM)); 3999 } 4000 4001 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4002 ZFS_EXIT(zfsvfs); 4003 return (error); 4004 } 4005 4006 top: 4007 /* 4008 * Attempt to lock directory; fail if entry already exists. 4009 */ 4010 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4011 if (error) { 4012 ZFS_EXIT(zfsvfs); 4013 return (error); 4014 } 4015 4016 tx = dmu_tx_create(zfsvfs->z_os); 4017 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4018 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4019 zfs_sa_upgrade_txholds(tx, szp); 4020 zfs_sa_upgrade_txholds(tx, dzp); 4021 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 4022 if (error) { 4023 zfs_dirent_unlock(dl); 4024 if (error == ERESTART) { 4025 waited = B_TRUE; 4026 dmu_tx_wait(tx); 4027 dmu_tx_abort(tx); 4028 goto top; 4029 } 4030 dmu_tx_abort(tx); 4031 ZFS_EXIT(zfsvfs); 4032 return (error); 4033 } 4034 4035 error = zfs_link_create(dl, szp, tx, 0); 4036 4037 if (error == 0) { 4038 uint64_t txtype = TX_LINK; 4039 if (flags & FIGNORECASE) 4040 txtype |= TX_CI; 4041 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4042 } 4043 4044 dmu_tx_commit(tx); 4045 4046 zfs_dirent_unlock(dl); 4047 4048 if (error == 0) { 4049 vnevent_link(svp, ct); 4050 } 4051 4052 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4053 zil_commit(zilog, 0); 4054 4055 ZFS_EXIT(zfsvfs); 4056 return (error); 4057 } 4058 4059 /* 4060 * zfs_null_putapage() is used when the file system has been force 4061 * unmounted. It just drops the pages. 4062 */ 4063 /* ARGSUSED */ 4064 static int 4065 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4066 size_t *lenp, int flags, cred_t *cr) 4067 { 4068 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4069 return (0); 4070 } 4071 4072 /* 4073 * Push a page out to disk, klustering if possible. 4074 * 4075 * IN: vp - file to push page to. 4076 * pp - page to push. 4077 * flags - additional flags. 4078 * cr - credentials of caller. 4079 * 4080 * OUT: offp - start of range pushed. 4081 * lenp - len of range pushed. 4082 * 4083 * RETURN: 0 on success, error code on failure. 4084 * 4085 * NOTE: callers must have locked the page to be pushed. On 4086 * exit, the page (and all other pages in the kluster) must be 4087 * unlocked. 4088 */ 4089 /* ARGSUSED */ 4090 static int 4091 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4092 size_t *lenp, int flags, cred_t *cr) 4093 { 4094 znode_t *zp = VTOZ(vp); 4095 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4096 dmu_tx_t *tx; 4097 u_offset_t off, koff; 4098 size_t len, klen; 4099 int err; 4100 4101 off = pp->p_offset; 4102 len = PAGESIZE; 4103 /* 4104 * If our blocksize is bigger than the page size, try to kluster 4105 * multiple pages so that we write a full block (thus avoiding 4106 * a read-modify-write). 4107 */ 4108 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4109 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4110 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4111 ASSERT(koff <= zp->z_size); 4112 if (koff + klen > zp->z_size) 4113 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4114 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4115 } 4116 ASSERT3U(btop(len), ==, btopr(len)); 4117 4118 /* 4119 * Can't push pages past end-of-file. 4120 */ 4121 if (off >= zp->z_size) { 4122 /* ignore all pages */ 4123 err = 0; 4124 goto out; 4125 } else if (off + len > zp->z_size) { 4126 int npages = btopr(zp->z_size - off); 4127 page_t *trunc; 4128 4129 page_list_break(&pp, &trunc, npages); 4130 /* ignore pages past end of file */ 4131 if (trunc) 4132 pvn_write_done(trunc, flags); 4133 len = zp->z_size - off; 4134 } 4135 4136 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4137 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4138 err = SET_ERROR(EDQUOT); 4139 goto out; 4140 } 4141 tx = dmu_tx_create(zfsvfs->z_os); 4142 dmu_tx_hold_write(tx, zp->z_id, off, len); 4143 4144 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4145 zfs_sa_upgrade_txholds(tx, zp); 4146 err = dmu_tx_assign(tx, TXG_WAIT); 4147 if (err != 0) { 4148 dmu_tx_abort(tx); 4149 goto out; 4150 } 4151 4152 if (zp->z_blksz <= PAGESIZE) { 4153 caddr_t va = zfs_map_page(pp, S_READ); 4154 ASSERT3U(len, <=, PAGESIZE); 4155 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4156 zfs_unmap_page(pp, va); 4157 } else { 4158 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4159 } 4160 4161 if (err == 0) { 4162 uint64_t mtime[2], ctime[2]; 4163 sa_bulk_attr_t bulk[3]; 4164 int count = 0; 4165 4166 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4167 &mtime, 16); 4168 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4169 &ctime, 16); 4170 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4171 &zp->z_pflags, 8); 4172 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4173 B_TRUE); 4174 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4175 } 4176 dmu_tx_commit(tx); 4177 4178 out: 4179 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4180 if (offp) 4181 *offp = off; 4182 if (lenp) 4183 *lenp = len; 4184 4185 return (err); 4186 } 4187 4188 /* 4189 * Copy the portion of the file indicated from pages into the file. 4190 * The pages are stored in a page list attached to the files vnode. 4191 * 4192 * IN: vp - vnode of file to push page data to. 4193 * off - position in file to put data. 4194 * len - amount of data to write. 4195 * flags - flags to control the operation. 4196 * cr - credentials of caller. 4197 * ct - caller context. 4198 * 4199 * RETURN: 0 on success, error code on failure. 4200 * 4201 * Timestamps: 4202 * vp - ctime|mtime updated 4203 */ 4204 /*ARGSUSED*/ 4205 static int 4206 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4207 caller_context_t *ct) 4208 { 4209 znode_t *zp = VTOZ(vp); 4210 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4211 page_t *pp; 4212 size_t io_len; 4213 u_offset_t io_off; 4214 uint_t blksz; 4215 rl_t *rl; 4216 int error = 0; 4217 4218 ZFS_ENTER(zfsvfs); 4219 ZFS_VERIFY_ZP(zp); 4220 4221 /* 4222 * There's nothing to do if no data is cached. 4223 */ 4224 if (!vn_has_cached_data(vp)) { 4225 ZFS_EXIT(zfsvfs); 4226 return (0); 4227 } 4228 4229 /* 4230 * Align this request to the file block size in case we kluster. 4231 * XXX - this can result in pretty aggresive locking, which can 4232 * impact simultanious read/write access. One option might be 4233 * to break up long requests (len == 0) into block-by-block 4234 * operations to get narrower locking. 4235 */ 4236 blksz = zp->z_blksz; 4237 if (ISP2(blksz)) 4238 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4239 else 4240 io_off = 0; 4241 if (len > 0 && ISP2(blksz)) 4242 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4243 else 4244 io_len = 0; 4245 4246 if (io_len == 0) { 4247 /* 4248 * Search the entire vp list for pages >= io_off. 4249 */ 4250 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4251 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4252 goto out; 4253 } 4254 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4255 4256 if (off > zp->z_size) { 4257 /* past end of file */ 4258 zfs_range_unlock(rl); 4259 ZFS_EXIT(zfsvfs); 4260 return (0); 4261 } 4262 4263 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4264 4265 for (off = io_off; io_off < off + len; io_off += io_len) { 4266 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4267 pp = page_lookup(vp, io_off, 4268 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4269 } else { 4270 pp = page_lookup_nowait(vp, io_off, 4271 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4272 } 4273 4274 if (pp != NULL && pvn_getdirty(pp, flags)) { 4275 int err; 4276 4277 /* 4278 * Found a dirty page to push 4279 */ 4280 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4281 if (err) 4282 error = err; 4283 } else { 4284 io_len = PAGESIZE; 4285 } 4286 } 4287 out: 4288 zfs_range_unlock(rl); 4289 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4290 zil_commit(zfsvfs->z_log, zp->z_id); 4291 ZFS_EXIT(zfsvfs); 4292 return (error); 4293 } 4294 4295 /*ARGSUSED*/ 4296 void 4297 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4298 { 4299 znode_t *zp = VTOZ(vp); 4300 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4301 int error; 4302 4303 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4304 if (zp->z_sa_hdl == NULL) { 4305 /* 4306 * The fs has been unmounted, or we did a 4307 * suspend/resume and this file no longer exists. 4308 */ 4309 if (vn_has_cached_data(vp)) { 4310 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4311 B_INVAL, cr); 4312 } 4313 4314 mutex_enter(&zp->z_lock); 4315 mutex_enter(&vp->v_lock); 4316 ASSERT(vp->v_count == 1); 4317 vp->v_count = 0; 4318 mutex_exit(&vp->v_lock); 4319 mutex_exit(&zp->z_lock); 4320 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4321 zfs_znode_free(zp); 4322 return; 4323 } 4324 4325 /* 4326 * Attempt to push any data in the page cache. If this fails 4327 * we will get kicked out later in zfs_zinactive(). 4328 */ 4329 if (vn_has_cached_data(vp)) { 4330 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4331 cr); 4332 } 4333 4334 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4335 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4336 4337 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4338 zfs_sa_upgrade_txholds(tx, zp); 4339 error = dmu_tx_assign(tx, TXG_WAIT); 4340 if (error) { 4341 dmu_tx_abort(tx); 4342 } else { 4343 mutex_enter(&zp->z_lock); 4344 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4345 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4346 zp->z_atime_dirty = 0; 4347 mutex_exit(&zp->z_lock); 4348 dmu_tx_commit(tx); 4349 } 4350 } 4351 4352 zfs_zinactive(zp); 4353 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4354 } 4355 4356 /* 4357 * Bounds-check the seek operation. 4358 * 4359 * IN: vp - vnode seeking within 4360 * ooff - old file offset 4361 * noffp - pointer to new file offset 4362 * ct - caller context 4363 * 4364 * RETURN: 0 on success, EINVAL if new offset invalid. 4365 */ 4366 /* ARGSUSED */ 4367 static int 4368 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4369 caller_context_t *ct) 4370 { 4371 if (vp->v_type == VDIR) 4372 return (0); 4373 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4374 } 4375 4376 /* 4377 * Pre-filter the generic locking function to trap attempts to place 4378 * a mandatory lock on a memory mapped file. 4379 */ 4380 static int 4381 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4382 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4383 { 4384 znode_t *zp = VTOZ(vp); 4385 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4386 4387 ZFS_ENTER(zfsvfs); 4388 ZFS_VERIFY_ZP(zp); 4389 4390 /* 4391 * We are following the UFS semantics with respect to mapcnt 4392 * here: If we see that the file is mapped already, then we will 4393 * return an error, but we don't worry about races between this 4394 * function and zfs_map(). 4395 */ 4396 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4397 ZFS_EXIT(zfsvfs); 4398 return (SET_ERROR(EAGAIN)); 4399 } 4400 ZFS_EXIT(zfsvfs); 4401 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4402 } 4403 4404 /* 4405 * If we can't find a page in the cache, we will create a new page 4406 * and fill it with file data. For efficiency, we may try to fill 4407 * multiple pages at once (klustering) to fill up the supplied page 4408 * list. Note that the pages to be filled are held with an exclusive 4409 * lock to prevent access by other threads while they are being filled. 4410 */ 4411 static int 4412 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4413 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4414 { 4415 znode_t *zp = VTOZ(vp); 4416 page_t *pp, *cur_pp; 4417 objset_t *os = zp->z_zfsvfs->z_os; 4418 u_offset_t io_off, total; 4419 size_t io_len; 4420 int err; 4421 4422 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4423 /* 4424 * We only have a single page, don't bother klustering 4425 */ 4426 io_off = off; 4427 io_len = PAGESIZE; 4428 pp = page_create_va(vp, io_off, io_len, 4429 PG_EXCL | PG_WAIT, seg, addr); 4430 } else { 4431 /* 4432 * Try to find enough pages to fill the page list 4433 */ 4434 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4435 &io_len, off, plsz, 0); 4436 } 4437 if (pp == NULL) { 4438 /* 4439 * The page already exists, nothing to do here. 4440 */ 4441 *pl = NULL; 4442 return (0); 4443 } 4444 4445 /* 4446 * Fill the pages in the kluster. 4447 */ 4448 cur_pp = pp; 4449 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4450 caddr_t va; 4451 4452 ASSERT3U(io_off, ==, cur_pp->p_offset); 4453 va = zfs_map_page(cur_pp, S_WRITE); 4454 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4455 DMU_READ_PREFETCH); 4456 zfs_unmap_page(cur_pp, va); 4457 if (err) { 4458 /* On error, toss the entire kluster */ 4459 pvn_read_done(pp, B_ERROR); 4460 /* convert checksum errors into IO errors */ 4461 if (err == ECKSUM) 4462 err = SET_ERROR(EIO); 4463 return (err); 4464 } 4465 cur_pp = cur_pp->p_next; 4466 } 4467 4468 /* 4469 * Fill in the page list array from the kluster starting 4470 * from the desired offset `off'. 4471 * NOTE: the page list will always be null terminated. 4472 */ 4473 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4474 ASSERT(pl == NULL || (*pl)->p_offset == off); 4475 4476 return (0); 4477 } 4478 4479 /* 4480 * Return pointers to the pages for the file region [off, off + len] 4481 * in the pl array. If plsz is greater than len, this function may 4482 * also return page pointers from after the specified region 4483 * (i.e. the region [off, off + plsz]). These additional pages are 4484 * only returned if they are already in the cache, or were created as 4485 * part of a klustered read. 4486 * 4487 * IN: vp - vnode of file to get data from. 4488 * off - position in file to get data from. 4489 * len - amount of data to retrieve. 4490 * plsz - length of provided page list. 4491 * seg - segment to obtain pages for. 4492 * addr - virtual address of fault. 4493 * rw - mode of created pages. 4494 * cr - credentials of caller. 4495 * ct - caller context. 4496 * 4497 * OUT: protp - protection mode of created pages. 4498 * pl - list of pages created. 4499 * 4500 * RETURN: 0 on success, error code on failure. 4501 * 4502 * Timestamps: 4503 * vp - atime updated 4504 */ 4505 /* ARGSUSED */ 4506 static int 4507 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4508 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4509 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4510 { 4511 znode_t *zp = VTOZ(vp); 4512 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4513 page_t **pl0 = pl; 4514 int err = 0; 4515 4516 /* we do our own caching, faultahead is unnecessary */ 4517 if (pl == NULL) 4518 return (0); 4519 else if (len > plsz) 4520 len = plsz; 4521 else 4522 len = P2ROUNDUP(len, PAGESIZE); 4523 ASSERT(plsz >= len); 4524 4525 ZFS_ENTER(zfsvfs); 4526 ZFS_VERIFY_ZP(zp); 4527 4528 if (protp) 4529 *protp = PROT_ALL; 4530 4531 /* 4532 * Loop through the requested range [off, off + len) looking 4533 * for pages. If we don't find a page, we will need to create 4534 * a new page and fill it with data from the file. 4535 */ 4536 while (len > 0) { 4537 if (*pl = page_lookup(vp, off, SE_SHARED)) 4538 *(pl+1) = NULL; 4539 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4540 goto out; 4541 while (*pl) { 4542 ASSERT3U((*pl)->p_offset, ==, off); 4543 off += PAGESIZE; 4544 addr += PAGESIZE; 4545 if (len > 0) { 4546 ASSERT3U(len, >=, PAGESIZE); 4547 len -= PAGESIZE; 4548 } 4549 ASSERT3U(plsz, >=, PAGESIZE); 4550 plsz -= PAGESIZE; 4551 pl++; 4552 } 4553 } 4554 4555 /* 4556 * Fill out the page array with any pages already in the cache. 4557 */ 4558 while (plsz > 0 && 4559 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4560 off += PAGESIZE; 4561 plsz -= PAGESIZE; 4562 } 4563 out: 4564 if (err) { 4565 /* 4566 * Release any pages we have previously locked. 4567 */ 4568 while (pl > pl0) 4569 page_unlock(*--pl); 4570 } else { 4571 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4572 } 4573 4574 *pl = NULL; 4575 4576 ZFS_EXIT(zfsvfs); 4577 return (err); 4578 } 4579 4580 /* 4581 * Request a memory map for a section of a file. This code interacts 4582 * with common code and the VM system as follows: 4583 * 4584 * - common code calls mmap(), which ends up in smmap_common() 4585 * - this calls VOP_MAP(), which takes you into (say) zfs 4586 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4587 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4588 * - zfs_addmap() updates z_mapcnt 4589 */ 4590 /*ARGSUSED*/ 4591 static int 4592 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4593 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4594 caller_context_t *ct) 4595 { 4596 znode_t *zp = VTOZ(vp); 4597 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4598 segvn_crargs_t vn_a; 4599 int error; 4600 4601 ZFS_ENTER(zfsvfs); 4602 ZFS_VERIFY_ZP(zp); 4603 4604 if ((prot & PROT_WRITE) && (zp->z_pflags & 4605 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4606 ZFS_EXIT(zfsvfs); 4607 return (SET_ERROR(EPERM)); 4608 } 4609 4610 if ((prot & (PROT_READ | PROT_EXEC)) && 4611 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4612 ZFS_EXIT(zfsvfs); 4613 return (SET_ERROR(EACCES)); 4614 } 4615 4616 if (vp->v_flag & VNOMAP) { 4617 ZFS_EXIT(zfsvfs); 4618 return (SET_ERROR(ENOSYS)); 4619 } 4620 4621 if (off < 0 || len > MAXOFFSET_T - off) { 4622 ZFS_EXIT(zfsvfs); 4623 return (SET_ERROR(ENXIO)); 4624 } 4625 4626 if (vp->v_type != VREG) { 4627 ZFS_EXIT(zfsvfs); 4628 return (SET_ERROR(ENODEV)); 4629 } 4630 4631 /* 4632 * If file is locked, disallow mapping. 4633 */ 4634 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4635 ZFS_EXIT(zfsvfs); 4636 return (SET_ERROR(EAGAIN)); 4637 } 4638 4639 as_rangelock(as); 4640 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4641 if (error != 0) { 4642 as_rangeunlock(as); 4643 ZFS_EXIT(zfsvfs); 4644 return (error); 4645 } 4646 4647 vn_a.vp = vp; 4648 vn_a.offset = (u_offset_t)off; 4649 vn_a.type = flags & MAP_TYPE; 4650 vn_a.prot = prot; 4651 vn_a.maxprot = maxprot; 4652 vn_a.cred = cr; 4653 vn_a.amp = NULL; 4654 vn_a.flags = flags & ~MAP_TYPE; 4655 vn_a.szc = 0; 4656 vn_a.lgrp_mem_policy_flags = 0; 4657 4658 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4659 4660 as_rangeunlock(as); 4661 ZFS_EXIT(zfsvfs); 4662 return (error); 4663 } 4664 4665 /* ARGSUSED */ 4666 static int 4667 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4668 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4669 caller_context_t *ct) 4670 { 4671 uint64_t pages = btopr(len); 4672 4673 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4674 return (0); 4675 } 4676 4677 /* 4678 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4679 * more accurate mtime for the associated file. Since we don't have a way of 4680 * detecting when the data was actually modified, we have to resort to 4681 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4682 * last page is pushed. The problem occurs when the msync() call is omitted, 4683 * which by far the most common case: 4684 * 4685 * open() 4686 * mmap() 4687 * <modify memory> 4688 * munmap() 4689 * close() 4690 * <time lapse> 4691 * putpage() via fsflush 4692 * 4693 * If we wait until fsflush to come along, we can have a modification time that 4694 * is some arbitrary point in the future. In order to prevent this in the 4695 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4696 * torn down. 4697 */ 4698 /* ARGSUSED */ 4699 static int 4700 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4701 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4702 caller_context_t *ct) 4703 { 4704 uint64_t pages = btopr(len); 4705 4706 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4707 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4708 4709 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4710 vn_has_cached_data(vp)) 4711 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4712 4713 return (0); 4714 } 4715 4716 /* 4717 * Free or allocate space in a file. Currently, this function only 4718 * supports the `F_FREESP' command. However, this command is somewhat 4719 * misnamed, as its functionality includes the ability to allocate as 4720 * well as free space. 4721 * 4722 * IN: vp - vnode of file to free data in. 4723 * cmd - action to take (only F_FREESP supported). 4724 * bfp - section of file to free/alloc. 4725 * flag - current file open mode flags. 4726 * offset - current file offset. 4727 * cr - credentials of caller [UNUSED]. 4728 * ct - caller context. 4729 * 4730 * RETURN: 0 on success, error code on failure. 4731 * 4732 * Timestamps: 4733 * vp - ctime|mtime updated 4734 */ 4735 /* ARGSUSED */ 4736 static int 4737 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4738 offset_t offset, cred_t *cr, caller_context_t *ct) 4739 { 4740 znode_t *zp = VTOZ(vp); 4741 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4742 uint64_t off, len; 4743 int error; 4744 4745 ZFS_ENTER(zfsvfs); 4746 ZFS_VERIFY_ZP(zp); 4747 4748 if (cmd != F_FREESP) { 4749 ZFS_EXIT(zfsvfs); 4750 return (SET_ERROR(EINVAL)); 4751 } 4752 4753 if (error = convoff(vp, bfp, 0, offset)) { 4754 ZFS_EXIT(zfsvfs); 4755 return (error); 4756 } 4757 4758 if (bfp->l_len < 0) { 4759 ZFS_EXIT(zfsvfs); 4760 return (SET_ERROR(EINVAL)); 4761 } 4762 4763 off = bfp->l_start; 4764 len = bfp->l_len; /* 0 means from off to end of file */ 4765 4766 error = zfs_freesp(zp, off, len, flag, TRUE); 4767 4768 if (error == 0 && off == 0 && len == 0) 4769 vnevent_truncate(ZTOV(zp), ct); 4770 4771 ZFS_EXIT(zfsvfs); 4772 return (error); 4773 } 4774 4775 /*ARGSUSED*/ 4776 static int 4777 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4778 { 4779 znode_t *zp = VTOZ(vp); 4780 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4781 uint32_t gen; 4782 uint64_t gen64; 4783 uint64_t object = zp->z_id; 4784 zfid_short_t *zfid; 4785 int size, i, error; 4786 4787 ZFS_ENTER(zfsvfs); 4788 ZFS_VERIFY_ZP(zp); 4789 4790 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4791 &gen64, sizeof (uint64_t))) != 0) { 4792 ZFS_EXIT(zfsvfs); 4793 return (error); 4794 } 4795 4796 gen = (uint32_t)gen64; 4797 4798 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4799 if (fidp->fid_len < size) { 4800 fidp->fid_len = size; 4801 ZFS_EXIT(zfsvfs); 4802 return (SET_ERROR(ENOSPC)); 4803 } 4804 4805 zfid = (zfid_short_t *)fidp; 4806 4807 zfid->zf_len = size; 4808 4809 for (i = 0; i < sizeof (zfid->zf_object); i++) 4810 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4811 4812 /* Must have a non-zero generation number to distinguish from .zfs */ 4813 if (gen == 0) 4814 gen = 1; 4815 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4816 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4817 4818 if (size == LONG_FID_LEN) { 4819 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4820 zfid_long_t *zlfid; 4821 4822 zlfid = (zfid_long_t *)fidp; 4823 4824 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4825 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4826 4827 /* XXX - this should be the generation number for the objset */ 4828 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4829 zlfid->zf_setgen[i] = 0; 4830 } 4831 4832 ZFS_EXIT(zfsvfs); 4833 return (0); 4834 } 4835 4836 static int 4837 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4838 caller_context_t *ct) 4839 { 4840 znode_t *zp, *xzp; 4841 zfsvfs_t *zfsvfs; 4842 zfs_dirlock_t *dl; 4843 int error; 4844 4845 switch (cmd) { 4846 case _PC_LINK_MAX: 4847 *valp = ULONG_MAX; 4848 return (0); 4849 4850 case _PC_FILESIZEBITS: 4851 *valp = 64; 4852 return (0); 4853 4854 case _PC_XATTR_EXISTS: 4855 zp = VTOZ(vp); 4856 zfsvfs = zp->z_zfsvfs; 4857 ZFS_ENTER(zfsvfs); 4858 ZFS_VERIFY_ZP(zp); 4859 *valp = 0; 4860 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4861 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4862 if (error == 0) { 4863 zfs_dirent_unlock(dl); 4864 if (!zfs_dirempty(xzp)) 4865 *valp = 1; 4866 VN_RELE(ZTOV(xzp)); 4867 } else if (error == ENOENT) { 4868 /* 4869 * If there aren't extended attributes, it's the 4870 * same as having zero of them. 4871 */ 4872 error = 0; 4873 } 4874 ZFS_EXIT(zfsvfs); 4875 return (error); 4876 4877 case _PC_SATTR_ENABLED: 4878 case _PC_SATTR_EXISTS: 4879 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4880 (vp->v_type == VREG || vp->v_type == VDIR); 4881 return (0); 4882 4883 case _PC_ACCESS_FILTERING: 4884 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4885 vp->v_type == VDIR; 4886 return (0); 4887 4888 case _PC_ACL_ENABLED: 4889 *valp = _ACL_ACE_ENABLED; 4890 return (0); 4891 4892 case _PC_MIN_HOLE_SIZE: 4893 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4894 return (0); 4895 4896 case _PC_TIMESTAMP_RESOLUTION: 4897 /* nanosecond timestamp resolution */ 4898 *valp = 1L; 4899 return (0); 4900 4901 default: 4902 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4903 } 4904 } 4905 4906 /*ARGSUSED*/ 4907 static int 4908 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4909 caller_context_t *ct) 4910 { 4911 znode_t *zp = VTOZ(vp); 4912 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4913 int error; 4914 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4915 4916 ZFS_ENTER(zfsvfs); 4917 ZFS_VERIFY_ZP(zp); 4918 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4919 ZFS_EXIT(zfsvfs); 4920 4921 return (error); 4922 } 4923 4924 /*ARGSUSED*/ 4925 static int 4926 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4927 caller_context_t *ct) 4928 { 4929 znode_t *zp = VTOZ(vp); 4930 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4931 int error; 4932 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4933 zilog_t *zilog = zfsvfs->z_log; 4934 4935 ZFS_ENTER(zfsvfs); 4936 ZFS_VERIFY_ZP(zp); 4937 4938 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4939 4940 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4941 zil_commit(zilog, 0); 4942 4943 ZFS_EXIT(zfsvfs); 4944 return (error); 4945 } 4946 4947 /* 4948 * The smallest read we may consider to loan out an arcbuf. 4949 * This must be a power of 2. 4950 */ 4951 int zcr_blksz_min = (1 << 10); /* 1K */ 4952 /* 4953 * If set to less than the file block size, allow loaning out of an 4954 * arcbuf for a partial block read. This must be a power of 2. 4955 */ 4956 int zcr_blksz_max = (1 << 17); /* 128K */ 4957 4958 /*ARGSUSED*/ 4959 static int 4960 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 4961 caller_context_t *ct) 4962 { 4963 znode_t *zp = VTOZ(vp); 4964 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4965 int max_blksz = zfsvfs->z_max_blksz; 4966 uio_t *uio = &xuio->xu_uio; 4967 ssize_t size = uio->uio_resid; 4968 offset_t offset = uio->uio_loffset; 4969 int blksz; 4970 int fullblk, i; 4971 arc_buf_t *abuf; 4972 ssize_t maxsize; 4973 int preamble, postamble; 4974 4975 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 4976 return (SET_ERROR(EINVAL)); 4977 4978 ZFS_ENTER(zfsvfs); 4979 ZFS_VERIFY_ZP(zp); 4980 switch (ioflag) { 4981 case UIO_WRITE: 4982 /* 4983 * Loan out an arc_buf for write if write size is bigger than 4984 * max_blksz, and the file's block size is also max_blksz. 4985 */ 4986 blksz = max_blksz; 4987 if (size < blksz || zp->z_blksz != blksz) { 4988 ZFS_EXIT(zfsvfs); 4989 return (SET_ERROR(EINVAL)); 4990 } 4991 /* 4992 * Caller requests buffers for write before knowing where the 4993 * write offset might be (e.g. NFS TCP write). 4994 */ 4995 if (offset == -1) { 4996 preamble = 0; 4997 } else { 4998 preamble = P2PHASE(offset, blksz); 4999 if (preamble) { 5000 preamble = blksz - preamble; 5001 size -= preamble; 5002 } 5003 } 5004 5005 postamble = P2PHASE(size, blksz); 5006 size -= postamble; 5007 5008 fullblk = size / blksz; 5009 (void) dmu_xuio_init(xuio, 5010 (preamble != 0) + fullblk + (postamble != 0)); 5011 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5012 int, postamble, int, 5013 (preamble != 0) + fullblk + (postamble != 0)); 5014 5015 /* 5016 * Have to fix iov base/len for partial buffers. They 5017 * currently represent full arc_buf's. 5018 */ 5019 if (preamble) { 5020 /* data begins in the middle of the arc_buf */ 5021 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5022 blksz); 5023 ASSERT(abuf); 5024 (void) dmu_xuio_add(xuio, abuf, 5025 blksz - preamble, preamble); 5026 } 5027 5028 for (i = 0; i < fullblk; i++) { 5029 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5030 blksz); 5031 ASSERT(abuf); 5032 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5033 } 5034 5035 if (postamble) { 5036 /* data ends in the middle of the arc_buf */ 5037 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5038 blksz); 5039 ASSERT(abuf); 5040 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5041 } 5042 break; 5043 case UIO_READ: 5044 /* 5045 * Loan out an arc_buf for read if the read size is larger than 5046 * the current file block size. Block alignment is not 5047 * considered. Partial arc_buf will be loaned out for read. 5048 */ 5049 blksz = zp->z_blksz; 5050 if (blksz < zcr_blksz_min) 5051 blksz = zcr_blksz_min; 5052 if (blksz > zcr_blksz_max) 5053 blksz = zcr_blksz_max; 5054 /* avoid potential complexity of dealing with it */ 5055 if (blksz > max_blksz) { 5056 ZFS_EXIT(zfsvfs); 5057 return (SET_ERROR(EINVAL)); 5058 } 5059 5060 maxsize = zp->z_size - uio->uio_loffset; 5061 if (size > maxsize) 5062 size = maxsize; 5063 5064 if (size < blksz || vn_has_cached_data(vp)) { 5065 ZFS_EXIT(zfsvfs); 5066 return (SET_ERROR(EINVAL)); 5067 } 5068 break; 5069 default: 5070 ZFS_EXIT(zfsvfs); 5071 return (SET_ERROR(EINVAL)); 5072 } 5073 5074 uio->uio_extflg = UIO_XUIO; 5075 XUIO_XUZC_RW(xuio) = ioflag; 5076 ZFS_EXIT(zfsvfs); 5077 return (0); 5078 } 5079 5080 /*ARGSUSED*/ 5081 static int 5082 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5083 { 5084 int i; 5085 arc_buf_t *abuf; 5086 int ioflag = XUIO_XUZC_RW(xuio); 5087 5088 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5089 5090 i = dmu_xuio_cnt(xuio); 5091 while (i-- > 0) { 5092 abuf = dmu_xuio_arcbuf(xuio, i); 5093 /* 5094 * if abuf == NULL, it must be a write buffer 5095 * that has been returned in zfs_write(). 5096 */ 5097 if (abuf) 5098 dmu_return_arcbuf(abuf); 5099 ASSERT(abuf || ioflag == UIO_WRITE); 5100 } 5101 5102 dmu_xuio_fini(xuio); 5103 return (0); 5104 } 5105 5106 /* 5107 * Predeclare these here so that the compiler assumes that 5108 * this is an "old style" function declaration that does 5109 * not include arguments => we won't get type mismatch errors 5110 * in the initializations that follow. 5111 */ 5112 static int zfs_inval(); 5113 static int zfs_isdir(); 5114 5115 static int 5116 zfs_inval() 5117 { 5118 return (SET_ERROR(EINVAL)); 5119 } 5120 5121 static int 5122 zfs_isdir() 5123 { 5124 return (SET_ERROR(EISDIR)); 5125 } 5126 /* 5127 * Directory vnode operations template 5128 */ 5129 vnodeops_t *zfs_dvnodeops; 5130 const fs_operation_def_t zfs_dvnodeops_template[] = { 5131 VOPNAME_OPEN, { .vop_open = zfs_open }, 5132 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5133 VOPNAME_READ, { .error = zfs_isdir }, 5134 VOPNAME_WRITE, { .error = zfs_isdir }, 5135 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5136 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5137 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5138 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5139 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5140 VOPNAME_CREATE, { .vop_create = zfs_create }, 5141 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5142 VOPNAME_LINK, { .vop_link = zfs_link }, 5143 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5144 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5145 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5146 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5147 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5148 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5149 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5150 VOPNAME_FID, { .vop_fid = zfs_fid }, 5151 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5152 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5153 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5154 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5155 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5156 NULL, NULL 5157 }; 5158 5159 /* 5160 * Regular file vnode operations template 5161 */ 5162 vnodeops_t *zfs_fvnodeops; 5163 const fs_operation_def_t zfs_fvnodeops_template[] = { 5164 VOPNAME_OPEN, { .vop_open = zfs_open }, 5165 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5166 VOPNAME_READ, { .vop_read = zfs_read }, 5167 VOPNAME_WRITE, { .vop_write = zfs_write }, 5168 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5169 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5170 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5171 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5172 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5173 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5174 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5175 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5176 VOPNAME_FID, { .vop_fid = zfs_fid }, 5177 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5178 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5179 VOPNAME_SPACE, { .vop_space = zfs_space }, 5180 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5181 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5182 VOPNAME_MAP, { .vop_map = zfs_map }, 5183 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5184 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5185 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5186 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5187 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5188 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5189 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5190 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5191 NULL, NULL 5192 }; 5193 5194 /* 5195 * Symbolic link vnode operations template 5196 */ 5197 vnodeops_t *zfs_symvnodeops; 5198 const fs_operation_def_t zfs_symvnodeops_template[] = { 5199 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5200 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5201 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5202 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5203 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5204 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5205 VOPNAME_FID, { .vop_fid = zfs_fid }, 5206 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5207 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5208 NULL, NULL 5209 }; 5210 5211 /* 5212 * special share hidden files vnode operations template 5213 */ 5214 vnodeops_t *zfs_sharevnodeops; 5215 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5216 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5217 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5218 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5219 VOPNAME_FID, { .vop_fid = zfs_fid }, 5220 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5221 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5222 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5223 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5224 NULL, NULL 5225 }; 5226 5227 /* 5228 * Extended attribute directory vnode operations template 5229 * 5230 * This template is identical to the directory vnodes 5231 * operation template except for restricted operations: 5232 * VOP_MKDIR() 5233 * VOP_SYMLINK() 5234 * 5235 * Note that there are other restrictions embedded in: 5236 * zfs_create() - restrict type to VREG 5237 * zfs_link() - no links into/out of attribute space 5238 * zfs_rename() - no moves into/out of attribute space 5239 */ 5240 vnodeops_t *zfs_xdvnodeops; 5241 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5242 VOPNAME_OPEN, { .vop_open = zfs_open }, 5243 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5244 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5245 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5246 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5247 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5248 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5249 VOPNAME_CREATE, { .vop_create = zfs_create }, 5250 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5251 VOPNAME_LINK, { .vop_link = zfs_link }, 5252 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5253 VOPNAME_MKDIR, { .error = zfs_inval }, 5254 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5255 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5256 VOPNAME_SYMLINK, { .error = zfs_inval }, 5257 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5258 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5259 VOPNAME_FID, { .vop_fid = zfs_fid }, 5260 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5261 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5262 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5263 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5264 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5265 NULL, NULL 5266 }; 5267 5268 /* 5269 * Error vnode operations template 5270 */ 5271 vnodeops_t *zfs_evnodeops; 5272 const fs_operation_def_t zfs_evnodeops_template[] = { 5273 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5274 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5275 NULL, NULL 5276 }; 5277