1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vnode.h> 36 #include <sys/file.h> 37 #include <sys/stat.h> 38 #include <sys/kmem.h> 39 #include <sys/taskq.h> 40 #include <sys/uio.h> 41 #include <sys/vmsystm.h> 42 #include <sys/atomic.h> 43 #include <vm/seg_vn.h> 44 #include <vm/pvn.h> 45 #include <vm/as.h> 46 #include <sys/mman.h> 47 #include <sys/pathname.h> 48 #include <sys/cmn_err.h> 49 #include <sys/errno.h> 50 #include <sys/unistd.h> 51 #include <sys/zfs_vfsops.h> 52 #include <sys/zfs_dir.h> 53 #include <sys/zfs_acl.h> 54 #include <sys/zfs_ioctl.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/dmu.h> 57 #include <sys/spa.h> 58 #include <sys/txg.h> 59 #include <sys/dbuf.h> 60 #include <sys/zap.h> 61 #include <sys/dirent.h> 62 #include <sys/policy.h> 63 #include <sys/sunddi.h> 64 #include <sys/filio.h> 65 #include "fs/fs_subr.h" 66 #include <sys/zfs_ctldir.h> 67 #include <sys/dnlc.h> 68 #include <sys/zfs_rlock.h> 69 70 /* 71 * Programming rules. 72 * 73 * Each vnode op performs some logical unit of work. To do this, the ZPL must 74 * properly lock its in-core state, create a DMU transaction, do the work, 75 * record this work in the intent log (ZIL), commit the DMU transaction, 76 * and wait the the intent log to commit if it's is a synchronous operation. 77 * Morover, the vnode ops must work in both normal and log replay context. 78 * The ordering of events is important to avoid deadlocks and references 79 * to freed memory. The example below illustrates the following Big Rules: 80 * 81 * (1) A check must be made in each zfs thread for a mounted file system. 82 * This is done avoiding races using ZFS_ENTER(zfsvfs). 83 * A ZFS_EXIT(zfsvfs) is needed before all returns. 84 * 85 * (2) VN_RELE() should always be the last thing except for zil_commit() 86 * and ZFS_EXIT(). This is for 3 reasons: 87 * First, if it's the last reference, the vnode/znode 88 * can be freed, so the zp may point to freed memory. Second, the last 89 * reference will call zfs_zinactive(), which may induce a lot of work -- 90 * pushing cached pages (which acquires range locks) and syncing out 91 * cached atime changes. Third, zfs_zinactive() may require a new tx, 92 * which could deadlock the system if you were already holding one. 93 * 94 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 95 * as they can span dmu_tx_assign() calls. 96 * 97 * (4) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 98 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 99 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 100 * This is critical because we don't want to block while holding locks. 101 * Note, in particular, that if a lock is sometimes acquired before 102 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 103 * use a non-blocking assign can deadlock the system. The scenario: 104 * 105 * Thread A has grabbed a lock before calling dmu_tx_assign(). 106 * Thread B is in an already-assigned tx, and blocks for this lock. 107 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 108 * forever, because the previous txg can't quiesce until B's tx commits. 109 * 110 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 111 * then drop all locks, call dmu_tx_wait(), and try again. 112 * 113 * (5) If the operation succeeded, generate the intent log entry for it 114 * before dropping locks. This ensures that the ordering of events 115 * in the intent log matches the order in which they actually occurred. 116 * 117 * (6) At the end of each vnode op, the DMU tx must always commit, 118 * regardless of whether there were any errors. 119 * 120 * (7) After dropping all locks, invoke zil_commit(zilog, seq, ioflag) 121 * to ensure that synchronous semantics are provided when necessary. 122 * 123 * In general, this is how things should be ordered in each vnode op: 124 * 125 * ZFS_ENTER(zfsvfs); // exit if unmounted 126 * top: 127 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 128 * rw_enter(...); // grab any other locks you need 129 * tx = dmu_tx_create(...); // get DMU tx 130 * dmu_tx_hold_*(); // hold each object you might modify 131 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 132 * if (error) { 133 * rw_exit(...); // drop locks 134 * zfs_dirent_unlock(dl); // unlock directory entry 135 * VN_RELE(...); // release held vnodes 136 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 137 * dmu_tx_wait(tx); 138 * dmu_tx_abort(tx); 139 * goto top; 140 * } 141 * dmu_tx_abort(tx); // abort DMU tx 142 * ZFS_EXIT(zfsvfs); // finished in zfs 143 * return (error); // really out of space 144 * } 145 * error = do_real_work(); // do whatever this VOP does 146 * if (error == 0) 147 * seq = zfs_log_*(...); // on success, make ZIL entry 148 * dmu_tx_commit(tx); // commit DMU tx -- error or not 149 * rw_exit(...); // drop locks 150 * zfs_dirent_unlock(dl); // unlock directory entry 151 * VN_RELE(...); // release held vnodes 152 * zil_commit(zilog, seq, ioflag); // synchronous when necessary 153 * ZFS_EXIT(zfsvfs); // finished in zfs 154 * return (error); // done, report error 155 */ 156 157 /* ARGSUSED */ 158 static int 159 zfs_open(vnode_t **vpp, int flag, cred_t *cr) 160 { 161 return (0); 162 } 163 164 /* ARGSUSED */ 165 static int 166 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 167 { 168 /* 169 * Clean up any locks held by this process on the vp. 170 */ 171 cleanlocks(vp, ddi_get_pid(), 0); 172 cleanshares(vp, ddi_get_pid()); 173 174 return (0); 175 } 176 177 /* 178 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 179 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 180 */ 181 static int 182 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 183 { 184 znode_t *zp = VTOZ(vp); 185 uint64_t noff = (uint64_t)*off; /* new offset */ 186 uint64_t file_sz; 187 int error; 188 boolean_t hole; 189 190 file_sz = zp->z_phys->zp_size; 191 if (noff >= file_sz) { 192 return (ENXIO); 193 } 194 195 if (cmd == _FIO_SEEK_HOLE) 196 hole = B_TRUE; 197 else 198 hole = B_FALSE; 199 200 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 201 202 /* end of file? */ 203 if ((error == ESRCH) || (noff > file_sz)) { 204 /* 205 * Handle the virtual hole at the end of file. 206 */ 207 if (hole) { 208 *off = file_sz; 209 return (0); 210 } 211 return (ENXIO); 212 } 213 214 if (noff < *off) 215 return (error); 216 *off = noff; 217 return (error); 218 } 219 220 /* ARGSUSED */ 221 static int 222 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 223 int *rvalp) 224 { 225 offset_t off; 226 int error; 227 zfsvfs_t *zfsvfs; 228 229 switch (com) { 230 case _FIOFFS: 231 return (zfs_sync(vp->v_vfsp, 0, cred)); 232 233 /* 234 * The following two ioctls are used by bfu. Faking out, 235 * necessary to avoid bfu errors. 236 */ 237 case _FIOGDIO: 238 case _FIOSDIO: 239 return (0); 240 241 case _FIO_SEEK_DATA: 242 case _FIO_SEEK_HOLE: 243 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 244 return (EFAULT); 245 246 zfsvfs = VTOZ(vp)->z_zfsvfs; 247 ZFS_ENTER(zfsvfs); 248 249 /* offset parameter is in/out */ 250 error = zfs_holey(vp, com, &off); 251 ZFS_EXIT(zfsvfs); 252 if (error) 253 return (error); 254 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 255 return (EFAULT); 256 return (0); 257 } 258 return (ENOTTY); 259 } 260 261 /* 262 * When a file is memory mapped, we must keep the IO data synchronized 263 * between the DMU cache and the memory mapped pages. What this means: 264 * 265 * On Write: If we find a memory mapped page, we write to *both* 266 * the page and the dmu buffer. 267 * 268 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 269 * the file is memory mapped. 270 */ 271 static int 272 mappedwrite(vnode_t *vp, uint64_t woff, int nbytes, uio_t *uio, dmu_tx_t *tx) 273 { 274 znode_t *zp = VTOZ(vp); 275 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 276 int64_t start, off; 277 int len = nbytes; 278 int error = 0; 279 280 start = uio->uio_loffset; 281 off = start & PAGEOFFSET; 282 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 283 page_t *pp; 284 uint64_t bytes = MIN(PAGESIZE - off, len); 285 286 /* 287 * We don't want a new page to "appear" in the middle of 288 * the file update (because it may not get the write 289 * update data), so we grab a lock to block 290 * zfs_getpage(). 291 */ 292 rw_enter(&zp->z_map_lock, RW_WRITER); 293 if (pp = page_lookup(vp, start, SE_SHARED)) { 294 caddr_t va; 295 296 rw_exit(&zp->z_map_lock); 297 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 298 error = uiomove(va+off, bytes, UIO_WRITE, uio); 299 if (error == 0) { 300 dmu_write(zfsvfs->z_os, zp->z_id, 301 woff, bytes, va+off, tx); 302 } 303 ppmapout(va); 304 page_unlock(pp); 305 } else { 306 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 307 woff, bytes, uio, tx); 308 rw_exit(&zp->z_map_lock); 309 } 310 len -= bytes; 311 woff += bytes; 312 off = 0; 313 if (error) 314 break; 315 } 316 return (error); 317 } 318 319 /* 320 * When a file is memory mapped, we must keep the IO data synchronized 321 * between the DMU cache and the memory mapped pages. What this means: 322 * 323 * On Read: We "read" preferentially from memory mapped pages, 324 * else we default from the dmu buffer. 325 * 326 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 327 * the file is memory mapped. 328 */ 329 static int 330 mappedread(vnode_t *vp, char *addr, int nbytes, uio_t *uio) 331 { 332 int64_t start, off, bytes; 333 int len = nbytes; 334 int error = 0; 335 336 start = uio->uio_loffset; 337 off = start & PAGEOFFSET; 338 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 339 page_t *pp; 340 341 bytes = MIN(PAGESIZE - off, len); 342 if (pp = page_lookup(vp, start, SE_SHARED)) { 343 caddr_t va; 344 345 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 346 error = uiomove(va + off, bytes, UIO_READ, uio); 347 ppmapout(va); 348 page_unlock(pp); 349 } else { 350 /* XXX use dmu_read here? */ 351 error = uiomove(addr, bytes, UIO_READ, uio); 352 } 353 len -= bytes; 354 addr += bytes; 355 off = 0; 356 if (error) 357 break; 358 } 359 return (error); 360 } 361 362 uint_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 363 364 /* 365 * Read bytes from specified file into supplied buffer. 366 * 367 * IN: vp - vnode of file to be read from. 368 * uio - structure supplying read location, range info, 369 * and return buffer. 370 * ioflag - SYNC flags; used to provide FRSYNC semantics. 371 * cr - credentials of caller. 372 * 373 * OUT: uio - updated offset and range, buffer filled. 374 * 375 * RETURN: 0 if success 376 * error code if failure 377 * 378 * Side Effects: 379 * vp - atime updated if byte count > 0 380 */ 381 /* ARGSUSED */ 382 static int 383 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 384 { 385 znode_t *zp = VTOZ(vp); 386 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 387 uint64_t delta; 388 ssize_t n, size, cnt, ndone; 389 int error, i, numbufs; 390 dmu_buf_t *dbp, **dbpp; 391 rl_t *rl; 392 393 ZFS_ENTER(zfsvfs); 394 395 /* 396 * Validate file offset 397 */ 398 if (uio->uio_loffset < (offset_t)0) { 399 ZFS_EXIT(zfsvfs); 400 return (EINVAL); 401 } 402 403 /* 404 * Fasttrack empty reads 405 */ 406 if (uio->uio_resid == 0) { 407 ZFS_EXIT(zfsvfs); 408 return (0); 409 } 410 411 /* 412 * Check for mandatory locks 413 */ 414 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 415 if (error = chklock(vp, FREAD, 416 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 417 ZFS_EXIT(zfsvfs); 418 return (error); 419 } 420 } 421 422 /* 423 * If we're in FRSYNC mode, sync out this znode before reading it. 424 */ 425 zil_commit(zfsvfs->z_log, zp->z_last_itx, ioflag & FRSYNC); 426 427 /* 428 * Lock the range against changes. 429 */ 430 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 431 432 /* 433 * If we are reading past end-of-file we can skip 434 * to the end; but we might still need to set atime. 435 */ 436 if (uio->uio_loffset >= zp->z_phys->zp_size) { 437 cnt = 0; 438 error = 0; 439 goto out; 440 } 441 442 cnt = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 443 444 for (ndone = 0; ndone < cnt; ndone += zfs_read_chunk_size) { 445 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 446 n = MIN(zfs_read_chunk_size, 447 zp->z_phys->zp_size - uio->uio_loffset); 448 n = MIN(n, cnt); 449 error = dmu_buf_hold_array(zfsvfs->z_os, zp->z_id, 450 uio->uio_loffset, n, TRUE, FTAG, &numbufs, &dbpp); 451 if (error) 452 goto out; 453 /* 454 * Compute the adjustment to align the dmu buffers 455 * with the uio buffer. 456 */ 457 delta = uio->uio_loffset - dbpp[0]->db_offset; 458 459 for (i = 0; i < numbufs; i++) { 460 if (n < 0) 461 break; 462 dbp = dbpp[i]; 463 size = dbp->db_size - delta; 464 /* 465 * XXX -- this is correct, but may be suboptimal. 466 * If the pages are all clean, we don't need to 467 * go through mappedread(). Maybe the VMODSORT 468 * stuff can help us here. 469 */ 470 if (vn_has_cached_data(vp)) { 471 error = mappedread(vp, (caddr_t)dbp->db_data + 472 delta, (n < size ? n : size), uio); 473 } else { 474 error = uiomove((caddr_t)dbp->db_data + delta, 475 (n < size ? n : size), UIO_READ, uio); 476 } 477 if (error) { 478 dmu_buf_rele_array(dbpp, numbufs, FTAG); 479 goto out; 480 } 481 n -= dbp->db_size; 482 if (delta) { 483 n += delta; 484 delta = 0; 485 } 486 } 487 dmu_buf_rele_array(dbpp, numbufs, FTAG); 488 } 489 out: 490 zfs_range_unlock(rl); 491 492 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 493 ZFS_EXIT(zfsvfs); 494 return (error); 495 } 496 497 /* 498 * Fault in the pages of the first n bytes specified by the uio structure. 499 * 1 byte in each page is touched and the uio struct is unmodified. 500 * Any error will exit this routine as this is only a best 501 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 502 */ 503 static void 504 zfs_prefault_write(ssize_t n, struct uio *uio) 505 { 506 struct iovec *iov; 507 ulong_t cnt, incr; 508 caddr_t p; 509 uint8_t tmp; 510 511 iov = uio->uio_iov; 512 513 while (n) { 514 cnt = MIN(iov->iov_len, n); 515 if (cnt == 0) { 516 /* empty iov entry */ 517 iov++; 518 continue; 519 } 520 n -= cnt; 521 /* 522 * touch each page in this segment. 523 */ 524 p = iov->iov_base; 525 while (cnt) { 526 switch (uio->uio_segflg) { 527 case UIO_USERSPACE: 528 case UIO_USERISPACE: 529 if (fuword8(p, &tmp)) 530 return; 531 break; 532 case UIO_SYSSPACE: 533 if (kcopy(p, &tmp, 1)) 534 return; 535 break; 536 } 537 incr = MIN(cnt, PAGESIZE); 538 p += incr; 539 cnt -= incr; 540 } 541 /* 542 * touch the last byte in case it straddles a page. 543 */ 544 p--; 545 switch (uio->uio_segflg) { 546 case UIO_USERSPACE: 547 case UIO_USERISPACE: 548 if (fuword8(p, &tmp)) 549 return; 550 break; 551 case UIO_SYSSPACE: 552 if (kcopy(p, &tmp, 1)) 553 return; 554 break; 555 } 556 iov++; 557 } 558 } 559 560 /* 561 * Write the bytes to a file. 562 * 563 * IN: vp - vnode of file to be written to. 564 * uio - structure supplying write location, range info, 565 * and data buffer. 566 * ioflag - FAPPEND flag set if in append mode. 567 * cr - credentials of caller. 568 * 569 * OUT: uio - updated offset and range. 570 * 571 * RETURN: 0 if success 572 * error code if failure 573 * 574 * Timestamps: 575 * vp - ctime|mtime updated if byte count > 0 576 */ 577 /* ARGSUSED */ 578 static int 579 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 580 { 581 znode_t *zp = VTOZ(vp); 582 rlim64_t limit = uio->uio_llimit; 583 ssize_t start_resid = uio->uio_resid; 584 ssize_t tx_bytes; 585 uint64_t end_size; 586 dmu_tx_t *tx; 587 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 588 zilog_t *zilog = zfsvfs->z_log; 589 uint64_t seq = 0; 590 offset_t woff; 591 ssize_t n, nbytes; 592 rl_t *rl; 593 int max_blksz = zfsvfs->z_max_blksz; 594 int error; 595 596 /* 597 * Fasttrack empty write 598 */ 599 n = start_resid; 600 if (n == 0) 601 return (0); 602 603 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 604 limit = MAXOFFSET_T; 605 606 ZFS_ENTER(zfsvfs); 607 608 /* 609 * Pre-fault the pages to ensure slow (eg NFS) pages 610 * don't hold up txg. 611 */ 612 zfs_prefault_write(n, uio); 613 614 /* 615 * If in append mode, set the io offset pointer to eof. 616 */ 617 if (ioflag & FAPPEND) { 618 /* 619 * Range lock for a file append: 620 * The value for the start of range will be determined by 621 * zfs_range_lock() (to guarantee append semantics). 622 * If this write will cause the block size to increase, 623 * zfs_range_lock() will lock the entire file, so we must 624 * later reduce the range after we grow the block size. 625 */ 626 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 627 if (rl->r_len == UINT64_MAX) { 628 /* overlocked, zp_size can't change */ 629 woff = uio->uio_loffset = zp->z_phys->zp_size; 630 } else { 631 woff = uio->uio_loffset = rl->r_off; 632 } 633 } else { 634 woff = uio->uio_loffset; 635 /* 636 * Validate file offset 637 */ 638 if (woff < 0) { 639 ZFS_EXIT(zfsvfs); 640 return (EINVAL); 641 } 642 643 /* 644 * If we need to grow the block size then zfs_range_lock() 645 * will lock a wider range than we request here. 646 * Later after growing the block size we reduce the range. 647 */ 648 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 649 } 650 651 if (woff >= limit) { 652 error = EFBIG; 653 goto no_tx_done; 654 } 655 656 if ((woff + n) > limit || woff > (limit - n)) 657 n = limit - woff; 658 659 /* 660 * Check for mandatory locks 661 */ 662 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 663 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) 664 goto no_tx_done; 665 end_size = MAX(zp->z_phys->zp_size, woff + n); 666 top: 667 tx = dmu_tx_create(zfsvfs->z_os); 668 dmu_tx_hold_bonus(tx, zp->z_id); 669 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 670 error = dmu_tx_assign(tx, zfsvfs->z_assign); 671 if (error) { 672 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 673 dmu_tx_wait(tx); 674 dmu_tx_abort(tx); 675 goto top; 676 } 677 dmu_tx_abort(tx); 678 goto no_tx_done; 679 } 680 681 /* 682 * If zfs_range_lock() over-locked we grow the blocksize 683 * and then reduce the lock range. 684 */ 685 if (rl->r_len == UINT64_MAX) { 686 uint64_t new_blksz; 687 688 if (zp->z_blksz > max_blksz) { 689 ASSERT(!ISP2(zp->z_blksz)); 690 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 691 } else { 692 new_blksz = MIN(end_size, max_blksz); 693 } 694 zfs_grow_blocksize(zp, new_blksz, tx); 695 zfs_range_reduce(rl, woff, n); 696 } 697 698 /* 699 * The file data does not fit in the znode "cache", so we 700 * will be writing to the file block data buffers. 701 * Each buffer will be written in a separate transaction; 702 * this keeps the intent log records small and allows us 703 * to do more fine-grained space accounting. 704 */ 705 while (n > 0) { 706 /* 707 * XXX - should we really limit each write to z_max_blksz? 708 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 709 */ 710 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 711 rw_enter(&zp->z_map_lock, RW_READER); 712 713 tx_bytes = uio->uio_resid; 714 if (vn_has_cached_data(vp)) { 715 rw_exit(&zp->z_map_lock); 716 error = mappedwrite(vp, woff, nbytes, uio, tx); 717 } else { 718 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 719 woff, nbytes, uio, tx); 720 rw_exit(&zp->z_map_lock); 721 } 722 tx_bytes -= uio->uio_resid; 723 724 if (error) { 725 /* XXX - do we need to "clean up" the dmu buffer? */ 726 break; 727 } 728 729 ASSERT(tx_bytes == nbytes); 730 731 /* 732 * Clear Set-UID/Set-GID bits on successful write if not 733 * privileged and at least one of the excute bits is set. 734 * 735 * It would be nice to to this after all writes have 736 * been done, but that would still expose the ISUID/ISGID 737 * to another app after the partial write is committed. 738 */ 739 740 mutex_enter(&zp->z_acl_lock); 741 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 742 (S_IXUSR >> 6))) != 0 && 743 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 744 secpolicy_vnode_setid_retain(cr, 745 (zp->z_phys->zp_mode & S_ISUID) != 0 && 746 zp->z_phys->zp_uid == 0) != 0) { 747 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 748 } 749 mutex_exit(&zp->z_acl_lock); 750 751 n -= nbytes; 752 if (n <= 0) 753 break; 754 755 /* 756 * We have more work ahead of us, so wrap up this transaction 757 * and start another. Exact same logic as tx_done below. 758 */ 759 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 760 dmu_buf_will_dirty(zp->z_dbuf, tx); 761 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 762 uio->uio_loffset); 763 } 764 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 765 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 766 ioflag, uio); 767 dmu_tx_commit(tx); 768 769 /* 770 * Start another transaction. 771 */ 772 woff = uio->uio_loffset; 773 tx = dmu_tx_create(zfsvfs->z_os); 774 dmu_tx_hold_bonus(tx, zp->z_id); 775 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 776 error = dmu_tx_assign(tx, zfsvfs->z_assign); 777 if (error) { 778 if (error == ERESTART && 779 zfsvfs->z_assign == TXG_NOWAIT) { 780 dmu_tx_wait(tx); 781 dmu_tx_abort(tx); 782 goto top; 783 } 784 dmu_tx_abort(tx); 785 goto no_tx_done; 786 } 787 } 788 789 tx_done: 790 791 if (tx_bytes != 0) { 792 /* 793 * Update the file size if it has changed; account 794 * for possible concurrent updates. 795 */ 796 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 797 dmu_buf_will_dirty(zp->z_dbuf, tx); 798 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 799 uio->uio_loffset); 800 } 801 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 802 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 803 ioflag, uio); 804 } 805 dmu_tx_commit(tx); 806 807 808 no_tx_done: 809 810 zfs_range_unlock(rl); 811 812 /* 813 * If we're in replay mode, or we made no progress, return error. 814 * Otherwise, it's at least a partial write, so it's successful. 815 */ 816 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 817 ZFS_EXIT(zfsvfs); 818 return (error); 819 } 820 821 zil_commit(zilog, seq, ioflag & (FSYNC | FDSYNC)); 822 823 ZFS_EXIT(zfsvfs); 824 return (0); 825 } 826 827 void 828 zfs_get_done(dmu_buf_t *db, void *vrl) 829 { 830 rl_t *rl = (rl_t *)vrl; 831 vnode_t *vp = ZTOV(rl->r_zp); 832 833 dmu_buf_rele(db, rl); 834 zfs_range_unlock(rl); 835 VN_RELE(vp); 836 } 837 838 /* 839 * Get data to generate a TX_WRITE intent log record. 840 */ 841 int 842 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 843 { 844 zfsvfs_t *zfsvfs = arg; 845 objset_t *os = zfsvfs->z_os; 846 znode_t *zp; 847 uint64_t off = lr->lr_offset; 848 dmu_buf_t *db; 849 rl_t *rl; 850 int dlen = lr->lr_length; /* length of user data */ 851 int error = 0; 852 853 ASSERT(dlen != 0); 854 855 /* 856 * Nothing to do if the file has been removed 857 */ 858 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 859 return (ENOENT); 860 if (zp->z_reap) { 861 VN_RELE(ZTOV(zp)); 862 return (ENOENT); 863 } 864 865 /* 866 * Write records come in two flavors: immediate and indirect. 867 * For small writes it's cheaper to store the data with the 868 * log record (immediate); for large writes it's cheaper to 869 * sync the data and get a pointer to it (indirect) so that 870 * we don't have to write the data twice. 871 */ 872 if (buf != NULL) { /* immediate write */ 873 rl = zfs_range_lock(zp, off, dlen, RL_READER); 874 /* test for truncation needs to be done while range locked */ 875 if (off >= zp->z_phys->zp_size) { 876 error = ENOENT; 877 goto out; 878 } 879 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, off, FTAG, &db)); 880 bcopy((char *)db->db_data + off - db->db_offset, buf, dlen); 881 dmu_buf_rele(db, FTAG); 882 } else { /* indirect write */ 883 uint64_t boff; /* block starting offset */ 884 885 /* 886 * Have to lock the whole block to ensure when it's 887 * written out and it's checksum is being calculated 888 * that no one can change the data. We need to re-check 889 * blocksize after we get the lock in case it's changed! 890 */ 891 for (;;) { 892 if (ISP2(zp->z_blksz)) { 893 boff = P2ALIGN_TYPED(off, zp->z_blksz, 894 uint64_t); 895 } else { 896 boff = 0; 897 } 898 dlen = zp->z_blksz; 899 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 900 if (zp->z_blksz == dlen) 901 break; 902 zfs_range_unlock(rl); 903 } 904 /* test for truncation needs to be done while range locked */ 905 if (off >= zp->z_phys->zp_size) { 906 error = ENOENT; 907 goto out; 908 } 909 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, rl, &db)); 910 ASSERT(boff == db->db_offset); 911 lr->lr_blkoff = off - boff; 912 error = dmu_sync(zio, db, &lr->lr_blkptr, 913 lr->lr_common.lrc_txg, zio ? zfs_get_done : NULL, rl); 914 /* 915 * If we get EINPROGRESS, then we need to wait for a 916 * write IO initiated by dmu_sync() to complete before 917 * we can release this dbuf. We will finish everthing 918 * up in the zfs_get_done() callback. 919 */ 920 if (error == EINPROGRESS) 921 return (0); 922 dmu_buf_rele(db, rl); 923 } 924 out: 925 zfs_range_unlock(rl); 926 VN_RELE(ZTOV(zp)); 927 return (error); 928 } 929 930 /*ARGSUSED*/ 931 static int 932 zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr) 933 { 934 znode_t *zp = VTOZ(vp); 935 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 936 int error; 937 938 ZFS_ENTER(zfsvfs); 939 error = zfs_zaccess_rwx(zp, mode, cr); 940 ZFS_EXIT(zfsvfs); 941 return (error); 942 } 943 944 /* 945 * Lookup an entry in a directory, or an extended attribute directory. 946 * If it exists, return a held vnode reference for it. 947 * 948 * IN: dvp - vnode of directory to search. 949 * nm - name of entry to lookup. 950 * pnp - full pathname to lookup [UNUSED]. 951 * flags - LOOKUP_XATTR set if looking for an attribute. 952 * rdir - root directory vnode [UNUSED]. 953 * cr - credentials of caller. 954 * 955 * OUT: vpp - vnode of located entry, NULL if not found. 956 * 957 * RETURN: 0 if success 958 * error code if failure 959 * 960 * Timestamps: 961 * NA 962 */ 963 /* ARGSUSED */ 964 static int 965 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 966 int flags, vnode_t *rdir, cred_t *cr) 967 { 968 969 znode_t *zdp = VTOZ(dvp); 970 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 971 int error; 972 973 ZFS_ENTER(zfsvfs); 974 975 *vpp = NULL; 976 977 if (flags & LOOKUP_XATTR) { 978 /* 979 * We don't allow recursive attributes.. 980 * Maybe someday we will. 981 */ 982 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 983 ZFS_EXIT(zfsvfs); 984 return (EINVAL); 985 } 986 987 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr)) { 988 ZFS_EXIT(zfsvfs); 989 return (error); 990 } 991 992 /* 993 * Do we have permission to get into attribute directory? 994 */ 995 996 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) { 997 VN_RELE(*vpp); 998 } 999 1000 ZFS_EXIT(zfsvfs); 1001 return (error); 1002 } 1003 1004 if (dvp->v_type != VDIR) { 1005 ZFS_EXIT(zfsvfs); 1006 return (ENOTDIR); 1007 } 1008 1009 /* 1010 * Check accessibility of directory. 1011 */ 1012 1013 if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) { 1014 ZFS_EXIT(zfsvfs); 1015 return (error); 1016 } 1017 1018 if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) { 1019 1020 /* 1021 * Convert device special files 1022 */ 1023 if (IS_DEVVP(*vpp)) { 1024 vnode_t *svp; 1025 1026 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1027 VN_RELE(*vpp); 1028 if (svp == NULL) 1029 error = ENOSYS; 1030 else 1031 *vpp = svp; 1032 } 1033 } 1034 1035 ZFS_EXIT(zfsvfs); 1036 return (error); 1037 } 1038 1039 /* 1040 * Attempt to create a new entry in a directory. If the entry 1041 * already exists, truncate the file if permissible, else return 1042 * an error. Return the vp of the created or trunc'd file. 1043 * 1044 * IN: dvp - vnode of directory to put new file entry in. 1045 * name - name of new file entry. 1046 * vap - attributes of new file. 1047 * excl - flag indicating exclusive or non-exclusive mode. 1048 * mode - mode to open file with. 1049 * cr - credentials of caller. 1050 * flag - large file flag [UNUSED]. 1051 * 1052 * OUT: vpp - vnode of created or trunc'd entry. 1053 * 1054 * RETURN: 0 if success 1055 * error code if failure 1056 * 1057 * Timestamps: 1058 * dvp - ctime|mtime updated if new entry created 1059 * vp - ctime|mtime always, atime if new 1060 */ 1061 /* ARGSUSED */ 1062 static int 1063 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1064 int mode, vnode_t **vpp, cred_t *cr, int flag) 1065 { 1066 znode_t *zp, *dzp = VTOZ(dvp); 1067 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1068 zilog_t *zilog = zfsvfs->z_log; 1069 uint64_t seq = 0; 1070 objset_t *os = zfsvfs->z_os; 1071 zfs_dirlock_t *dl; 1072 dmu_tx_t *tx; 1073 int error; 1074 uint64_t zoid; 1075 1076 ZFS_ENTER(zfsvfs); 1077 1078 top: 1079 *vpp = NULL; 1080 1081 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1082 vap->va_mode &= ~VSVTX; 1083 1084 if (*name == '\0') { 1085 /* 1086 * Null component name refers to the directory itself. 1087 */ 1088 VN_HOLD(dvp); 1089 zp = dzp; 1090 dl = NULL; 1091 error = 0; 1092 } else { 1093 /* possible VN_HOLD(zp) */ 1094 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) { 1095 if (strcmp(name, "..") == 0) 1096 error = EISDIR; 1097 ZFS_EXIT(zfsvfs); 1098 return (error); 1099 } 1100 } 1101 1102 zoid = zp ? zp->z_id : -1ULL; 1103 1104 if (zp == NULL) { 1105 /* 1106 * Create a new file object and update the directory 1107 * to reference it. 1108 */ 1109 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 1110 goto out; 1111 } 1112 1113 /* 1114 * We only support the creation of regular files in 1115 * extended attribute directories. 1116 */ 1117 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1118 (vap->va_type != VREG)) { 1119 error = EINVAL; 1120 goto out; 1121 } 1122 1123 tx = dmu_tx_create(os); 1124 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1125 dmu_tx_hold_bonus(tx, dzp->z_id); 1126 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1127 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1128 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1129 0, SPA_MAXBLOCKSIZE); 1130 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1131 if (error) { 1132 zfs_dirent_unlock(dl); 1133 if (error == ERESTART && 1134 zfsvfs->z_assign == TXG_NOWAIT) { 1135 dmu_tx_wait(tx); 1136 dmu_tx_abort(tx); 1137 goto top; 1138 } 1139 dmu_tx_abort(tx); 1140 ZFS_EXIT(zfsvfs); 1141 return (error); 1142 } 1143 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1144 ASSERT(zp->z_id == zoid); 1145 (void) zfs_link_create(dl, zp, tx, ZNEW); 1146 seq = zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name); 1147 dmu_tx_commit(tx); 1148 } else { 1149 /* 1150 * A directory entry already exists for this name. 1151 */ 1152 /* 1153 * Can't truncate an existing file if in exclusive mode. 1154 */ 1155 if (excl == EXCL) { 1156 error = EEXIST; 1157 goto out; 1158 } 1159 /* 1160 * Can't open a directory for writing. 1161 */ 1162 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1163 error = EISDIR; 1164 goto out; 1165 } 1166 /* 1167 * Verify requested access to file. 1168 */ 1169 if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) { 1170 goto out; 1171 } 1172 1173 mutex_enter(&dzp->z_lock); 1174 dzp->z_seq++; 1175 mutex_exit(&dzp->z_lock); 1176 1177 /* 1178 * Truncate regular files if requested. 1179 */ 1180 if ((ZTOV(zp)->v_type == VREG) && 1181 (zp->z_phys->zp_size != 0) && 1182 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1183 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1184 if (error == ERESTART && 1185 zfsvfs->z_assign == TXG_NOWAIT) { 1186 /* NB: we already did dmu_tx_wait() */ 1187 zfs_dirent_unlock(dl); 1188 VN_RELE(ZTOV(zp)); 1189 goto top; 1190 } 1191 } 1192 } 1193 out: 1194 1195 if (dl) 1196 zfs_dirent_unlock(dl); 1197 1198 if (error) { 1199 if (zp) 1200 VN_RELE(ZTOV(zp)); 1201 } else { 1202 *vpp = ZTOV(zp); 1203 /* 1204 * If vnode is for a device return a specfs vnode instead. 1205 */ 1206 if (IS_DEVVP(*vpp)) { 1207 struct vnode *svp; 1208 1209 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1210 VN_RELE(*vpp); 1211 if (svp == NULL) { 1212 error = ENOSYS; 1213 } 1214 *vpp = svp; 1215 } 1216 } 1217 1218 zil_commit(zilog, seq, 0); 1219 1220 ZFS_EXIT(zfsvfs); 1221 return (error); 1222 } 1223 1224 /* 1225 * Remove an entry from a directory. 1226 * 1227 * IN: dvp - vnode of directory to remove entry from. 1228 * name - name of entry to remove. 1229 * cr - credentials of caller. 1230 * 1231 * RETURN: 0 if success 1232 * error code if failure 1233 * 1234 * Timestamps: 1235 * dvp - ctime|mtime 1236 * vp - ctime (if nlink > 0) 1237 */ 1238 static int 1239 zfs_remove(vnode_t *dvp, char *name, cred_t *cr) 1240 { 1241 znode_t *zp, *dzp = VTOZ(dvp); 1242 znode_t *xzp = NULL; 1243 vnode_t *vp; 1244 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1245 zilog_t *zilog = zfsvfs->z_log; 1246 uint64_t seq = 0; 1247 uint64_t acl_obj, xattr_obj; 1248 zfs_dirlock_t *dl; 1249 dmu_tx_t *tx; 1250 int may_delete_now, delete_now = FALSE; 1251 int reaped; 1252 int error; 1253 1254 ZFS_ENTER(zfsvfs); 1255 1256 top: 1257 /* 1258 * Attempt to lock directory; fail if entry doesn't exist. 1259 */ 1260 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1261 ZFS_EXIT(zfsvfs); 1262 return (error); 1263 } 1264 1265 vp = ZTOV(zp); 1266 1267 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1268 goto out; 1269 } 1270 1271 /* 1272 * Need to use rmdir for removing directories. 1273 */ 1274 if (vp->v_type == VDIR) { 1275 error = EPERM; 1276 goto out; 1277 } 1278 1279 vnevent_remove(vp); 1280 1281 dnlc_remove(dvp, name); 1282 1283 mutex_enter(&vp->v_lock); 1284 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1285 mutex_exit(&vp->v_lock); 1286 1287 /* 1288 * We may delete the znode now, or we may put it on the delete queue; 1289 * it depends on whether we're the last link, and on whether there are 1290 * other holds on the vnode. So we dmu_tx_hold() the right things to 1291 * allow for either case. 1292 */ 1293 tx = dmu_tx_create(zfsvfs->z_os); 1294 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1295 dmu_tx_hold_bonus(tx, zp->z_id); 1296 if (may_delete_now) 1297 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1298 1299 /* are there any extended attributes? */ 1300 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1301 /* 1302 * XXX - There is a possibility that the delete 1303 * of the parent file could succeed, but then we get 1304 * an ENOSPC when we try to delete the xattrs... 1305 * so we would need to re-try the deletes periodically 1306 */ 1307 /* XXX - do we need this if we are deleting? */ 1308 dmu_tx_hold_bonus(tx, xattr_obj); 1309 } 1310 1311 /* are there any additional acls */ 1312 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1313 may_delete_now) 1314 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1315 1316 /* charge as an update -- would be nice not to charge at all */ 1317 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 1318 1319 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1320 if (error) { 1321 zfs_dirent_unlock(dl); 1322 VN_RELE(vp); 1323 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1324 dmu_tx_wait(tx); 1325 dmu_tx_abort(tx); 1326 goto top; 1327 } 1328 dmu_tx_abort(tx); 1329 ZFS_EXIT(zfsvfs); 1330 return (error); 1331 } 1332 1333 /* 1334 * Remove the directory entry. 1335 */ 1336 error = zfs_link_destroy(dl, zp, tx, 0, &reaped); 1337 1338 if (error) { 1339 dmu_tx_commit(tx); 1340 goto out; 1341 } 1342 1343 if (reaped) { 1344 mutex_enter(&vp->v_lock); 1345 delete_now = may_delete_now && 1346 vp->v_count == 1 && !vn_has_cached_data(vp) && 1347 zp->z_phys->zp_xattr == xattr_obj && 1348 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1349 mutex_exit(&vp->v_lock); 1350 } 1351 1352 if (delete_now) { 1353 if (zp->z_phys->zp_xattr) { 1354 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1355 ASSERT3U(error, ==, 0); 1356 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1357 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1358 mutex_enter(&xzp->z_lock); 1359 xzp->z_reap = 1; 1360 xzp->z_phys->zp_links = 0; 1361 mutex_exit(&xzp->z_lock); 1362 zfs_dq_add(xzp, tx); 1363 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1364 } 1365 mutex_enter(&zp->z_lock); 1366 mutex_enter(&vp->v_lock); 1367 vp->v_count--; 1368 ASSERT3U(vp->v_count, ==, 0); 1369 mutex_exit(&vp->v_lock); 1370 zp->z_active = 0; 1371 mutex_exit(&zp->z_lock); 1372 zfs_znode_delete(zp, tx); 1373 VFS_RELE(zfsvfs->z_vfs); 1374 } else if (reaped) { 1375 zfs_dq_add(zp, tx); 1376 } 1377 1378 seq = zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name); 1379 1380 dmu_tx_commit(tx); 1381 out: 1382 zfs_dirent_unlock(dl); 1383 1384 if (!delete_now) { 1385 VN_RELE(vp); 1386 } else if (xzp) { 1387 /* this rele delayed to prevent nesting transactions */ 1388 VN_RELE(ZTOV(xzp)); 1389 } 1390 1391 zil_commit(zilog, seq, 0); 1392 1393 ZFS_EXIT(zfsvfs); 1394 return (error); 1395 } 1396 1397 /* 1398 * Create a new directory and insert it into dvp using the name 1399 * provided. Return a pointer to the inserted directory. 1400 * 1401 * IN: dvp - vnode of directory to add subdir to. 1402 * dirname - name of new directory. 1403 * vap - attributes of new directory. 1404 * cr - credentials of caller. 1405 * 1406 * OUT: vpp - vnode of created directory. 1407 * 1408 * RETURN: 0 if success 1409 * error code if failure 1410 * 1411 * Timestamps: 1412 * dvp - ctime|mtime updated 1413 * vp - ctime|mtime|atime updated 1414 */ 1415 static int 1416 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr) 1417 { 1418 znode_t *zp, *dzp = VTOZ(dvp); 1419 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1420 zilog_t *zilog = zfsvfs->z_log; 1421 uint64_t seq = 0; 1422 zfs_dirlock_t *dl; 1423 uint64_t zoid = 0; 1424 dmu_tx_t *tx; 1425 int error; 1426 1427 ASSERT(vap->va_type == VDIR); 1428 1429 ZFS_ENTER(zfsvfs); 1430 1431 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1432 ZFS_EXIT(zfsvfs); 1433 return (EINVAL); 1434 } 1435 top: 1436 *vpp = NULL; 1437 1438 /* 1439 * First make sure the new directory doesn't exist. 1440 */ 1441 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) { 1442 ZFS_EXIT(zfsvfs); 1443 return (error); 1444 } 1445 1446 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) { 1447 zfs_dirent_unlock(dl); 1448 ZFS_EXIT(zfsvfs); 1449 return (error); 1450 } 1451 1452 /* 1453 * Add a new entry to the directory. 1454 */ 1455 tx = dmu_tx_create(zfsvfs->z_os); 1456 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1457 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1458 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1459 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1460 0, SPA_MAXBLOCKSIZE); 1461 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1462 if (error) { 1463 zfs_dirent_unlock(dl); 1464 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1465 dmu_tx_wait(tx); 1466 dmu_tx_abort(tx); 1467 goto top; 1468 } 1469 dmu_tx_abort(tx); 1470 ZFS_EXIT(zfsvfs); 1471 return (error); 1472 } 1473 1474 /* 1475 * Create new node. 1476 */ 1477 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1478 1479 /* 1480 * Now put new name in parent dir. 1481 */ 1482 (void) zfs_link_create(dl, zp, tx, ZNEW); 1483 1484 *vpp = ZTOV(zp); 1485 1486 seq = zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname); 1487 dmu_tx_commit(tx); 1488 1489 zfs_dirent_unlock(dl); 1490 1491 zil_commit(zilog, seq, 0); 1492 1493 ZFS_EXIT(zfsvfs); 1494 return (0); 1495 } 1496 1497 /* 1498 * Remove a directory subdir entry. If the current working 1499 * directory is the same as the subdir to be removed, the 1500 * remove will fail. 1501 * 1502 * IN: dvp - vnode of directory to remove from. 1503 * name - name of directory to be removed. 1504 * cwd - vnode of current working directory. 1505 * cr - credentials of caller. 1506 * 1507 * RETURN: 0 if success 1508 * error code if failure 1509 * 1510 * Timestamps: 1511 * dvp - ctime|mtime updated 1512 */ 1513 static int 1514 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 1515 { 1516 znode_t *dzp = VTOZ(dvp); 1517 znode_t *zp; 1518 vnode_t *vp; 1519 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1520 zilog_t *zilog = zfsvfs->z_log; 1521 uint64_t seq = 0; 1522 zfs_dirlock_t *dl; 1523 dmu_tx_t *tx; 1524 int error; 1525 1526 ZFS_ENTER(zfsvfs); 1527 1528 top: 1529 zp = NULL; 1530 1531 /* 1532 * Attempt to lock directory; fail if entry doesn't exist. 1533 */ 1534 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1535 ZFS_EXIT(zfsvfs); 1536 return (error); 1537 } 1538 1539 vp = ZTOV(zp); 1540 1541 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1542 goto out; 1543 } 1544 1545 if (vp->v_type != VDIR) { 1546 error = ENOTDIR; 1547 goto out; 1548 } 1549 1550 if (vp == cwd) { 1551 error = EINVAL; 1552 goto out; 1553 } 1554 1555 vnevent_rmdir(vp); 1556 1557 /* 1558 * Grab a lock on the parent pointer make sure we play well 1559 * with the treewalk and directory rename code. 1560 */ 1561 rw_enter(&zp->z_parent_lock, RW_WRITER); 1562 1563 tx = dmu_tx_create(zfsvfs->z_os); 1564 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1565 dmu_tx_hold_bonus(tx, zp->z_id); 1566 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 1567 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1568 if (error) { 1569 rw_exit(&zp->z_parent_lock); 1570 zfs_dirent_unlock(dl); 1571 VN_RELE(vp); 1572 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1573 dmu_tx_wait(tx); 1574 dmu_tx_abort(tx); 1575 goto top; 1576 } 1577 dmu_tx_abort(tx); 1578 ZFS_EXIT(zfsvfs); 1579 return (error); 1580 } 1581 1582 error = zfs_link_destroy(dl, zp, tx, 0, NULL); 1583 1584 if (error == 0) 1585 seq = zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name); 1586 1587 dmu_tx_commit(tx); 1588 1589 rw_exit(&zp->z_parent_lock); 1590 out: 1591 zfs_dirent_unlock(dl); 1592 1593 VN_RELE(vp); 1594 1595 zil_commit(zilog, seq, 0); 1596 1597 ZFS_EXIT(zfsvfs); 1598 return (error); 1599 } 1600 1601 /* 1602 * Read as many directory entries as will fit into the provided 1603 * buffer from the given directory cursor position (specified in 1604 * the uio structure. 1605 * 1606 * IN: vp - vnode of directory to read. 1607 * uio - structure supplying read location, range info, 1608 * and return buffer. 1609 * cr - credentials of caller. 1610 * 1611 * OUT: uio - updated offset and range, buffer filled. 1612 * eofp - set to true if end-of-file detected. 1613 * 1614 * RETURN: 0 if success 1615 * error code if failure 1616 * 1617 * Timestamps: 1618 * vp - atime updated 1619 * 1620 * Note that the low 4 bits of the cookie returned by zap is always zero. 1621 * This allows us to use the low range for "special" directory entries: 1622 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1623 * we use the offset 2 for the '.zfs' directory. 1624 */ 1625 /* ARGSUSED */ 1626 static int 1627 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp) 1628 { 1629 znode_t *zp = VTOZ(vp); 1630 iovec_t *iovp; 1631 dirent64_t *odp; 1632 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1633 objset_t *os; 1634 caddr_t outbuf; 1635 size_t bufsize; 1636 zap_cursor_t zc; 1637 zap_attribute_t zap; 1638 uint_t bytes_wanted; 1639 ushort_t this_reclen; 1640 uint64_t offset; /* must be unsigned; checks for < 1 */ 1641 off64_t *next; 1642 int local_eof; 1643 int outcount; 1644 int error; 1645 uint8_t prefetch; 1646 1647 ZFS_ENTER(zfsvfs); 1648 1649 /* 1650 * If we are not given an eof variable, 1651 * use a local one. 1652 */ 1653 if (eofp == NULL) 1654 eofp = &local_eof; 1655 1656 /* 1657 * Check for valid iov_len. 1658 */ 1659 if (uio->uio_iov->iov_len <= 0) { 1660 ZFS_EXIT(zfsvfs); 1661 return (EINVAL); 1662 } 1663 1664 /* 1665 * Quit if directory has been removed (posix) 1666 */ 1667 if ((*eofp = zp->z_reap) != 0) { 1668 ZFS_EXIT(zfsvfs); 1669 return (0); 1670 } 1671 1672 error = 0; 1673 os = zfsvfs->z_os; 1674 offset = uio->uio_loffset; 1675 prefetch = zp->z_zn_prefetch; 1676 1677 /* 1678 * Initialize the iterator cursor. 1679 */ 1680 if (offset <= 3) { 1681 /* 1682 * Start iteration from the beginning of the directory. 1683 */ 1684 zap_cursor_init(&zc, os, zp->z_id); 1685 } else { 1686 /* 1687 * The offset is a serialized cursor. 1688 */ 1689 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1690 } 1691 1692 /* 1693 * Get space to change directory entries into fs independent format. 1694 */ 1695 iovp = uio->uio_iov; 1696 bytes_wanted = iovp->iov_len; 1697 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1698 bufsize = bytes_wanted; 1699 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1700 odp = (struct dirent64 *)outbuf; 1701 } else { 1702 bufsize = bytes_wanted; 1703 odp = (struct dirent64 *)iovp->iov_base; 1704 } 1705 1706 /* 1707 * Transform to file-system independent format 1708 */ 1709 outcount = 0; 1710 while (outcount < bytes_wanted) { 1711 /* 1712 * Special case `.', `..', and `.zfs'. 1713 */ 1714 if (offset == 0) { 1715 (void) strcpy(zap.za_name, "."); 1716 zap.za_first_integer = zp->z_id; 1717 this_reclen = DIRENT64_RECLEN(1); 1718 } else if (offset == 1) { 1719 (void) strcpy(zap.za_name, ".."); 1720 zap.za_first_integer = zp->z_phys->zp_parent; 1721 this_reclen = DIRENT64_RECLEN(2); 1722 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1723 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1724 zap.za_first_integer = ZFSCTL_INO_ROOT; 1725 this_reclen = 1726 DIRENT64_RECLEN(sizeof (ZFS_CTLDIR_NAME) - 1); 1727 } else { 1728 /* 1729 * Grab next entry. 1730 */ 1731 if (error = zap_cursor_retrieve(&zc, &zap)) { 1732 if ((*eofp = (error == ENOENT)) != 0) 1733 break; 1734 else 1735 goto update; 1736 } 1737 1738 if (zap.za_integer_length != 8 || 1739 zap.za_num_integers != 1) { 1740 cmn_err(CE_WARN, "zap_readdir: bad directory " 1741 "entry, obj = %lld, offset = %lld\n", 1742 (u_longlong_t)zp->z_id, 1743 (u_longlong_t)offset); 1744 error = ENXIO; 1745 goto update; 1746 } 1747 this_reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1748 } 1749 1750 /* 1751 * Will this entry fit in the buffer? 1752 */ 1753 if (outcount + this_reclen > bufsize) { 1754 /* 1755 * Did we manage to fit anything in the buffer? 1756 */ 1757 if (!outcount) { 1758 error = EINVAL; 1759 goto update; 1760 } 1761 break; 1762 } 1763 /* 1764 * Add this entry: 1765 */ 1766 odp->d_ino = (ino64_t)zap.za_first_integer; 1767 odp->d_reclen = (ushort_t)this_reclen; 1768 /* NOTE: d_off is the offset for the *next* entry */ 1769 next = &(odp->d_off); 1770 (void) strncpy(odp->d_name, zap.za_name, 1771 DIRENT64_NAMELEN(this_reclen)); 1772 outcount += this_reclen; 1773 odp = (dirent64_t *)((intptr_t)odp + this_reclen); 1774 1775 ASSERT(outcount <= bufsize); 1776 1777 /* Prefetch znode */ 1778 if (prefetch) 1779 dmu_prefetch(os, zap.za_first_integer, 0, 0); 1780 1781 /* 1782 * Move to the next entry, fill in the previous offset. 1783 */ 1784 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 1785 zap_cursor_advance(&zc); 1786 offset = zap_cursor_serialize(&zc); 1787 } else { 1788 offset += 1; 1789 } 1790 *next = offset; 1791 } 1792 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 1793 1794 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 1795 iovp->iov_base += outcount; 1796 iovp->iov_len -= outcount; 1797 uio->uio_resid -= outcount; 1798 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 1799 /* 1800 * Reset the pointer. 1801 */ 1802 offset = uio->uio_loffset; 1803 } 1804 1805 update: 1806 zap_cursor_fini(&zc); 1807 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 1808 kmem_free(outbuf, bufsize); 1809 1810 if (error == ENOENT) 1811 error = 0; 1812 1813 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 1814 1815 uio->uio_loffset = offset; 1816 ZFS_EXIT(zfsvfs); 1817 return (error); 1818 } 1819 1820 static int 1821 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1822 { 1823 znode_t *zp = VTOZ(vp); 1824 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1825 1826 /* 1827 * Regardless of whether this is required for standards conformance, 1828 * this is the logical behavior when fsync() is called on a file with 1829 * dirty pages. We use B_ASYNC since the ZIL transactions are already 1830 * going to be pushed out as part of the zil_commit(). 1831 */ 1832 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 1833 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 1834 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr); 1835 1836 ZFS_ENTER(zfsvfs); 1837 zil_commit(zfsvfs->z_log, zp->z_last_itx, FSYNC); 1838 ZFS_EXIT(zfsvfs); 1839 return (0); 1840 } 1841 1842 /* 1843 * Get the requested file attributes and place them in the provided 1844 * vattr structure. 1845 * 1846 * IN: vp - vnode of file. 1847 * vap - va_mask identifies requested attributes. 1848 * flags - [UNUSED] 1849 * cr - credentials of caller. 1850 * 1851 * OUT: vap - attribute values. 1852 * 1853 * RETURN: 0 (always succeeds) 1854 */ 1855 /* ARGSUSED */ 1856 static int 1857 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 1858 { 1859 znode_t *zp = VTOZ(vp); 1860 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1861 znode_phys_t *pzp = zp->z_phys; 1862 int error; 1863 1864 ZFS_ENTER(zfsvfs); 1865 1866 /* 1867 * Return all attributes. It's cheaper to provide the answer 1868 * than to determine whether we were asked the question. 1869 */ 1870 mutex_enter(&zp->z_lock); 1871 1872 vap->va_type = vp->v_type; 1873 vap->va_mode = pzp->zp_mode & MODEMASK; 1874 vap->va_uid = zp->z_phys->zp_uid; 1875 vap->va_gid = zp->z_phys->zp_gid; 1876 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 1877 vap->va_nodeid = zp->z_id; 1878 vap->va_nlink = MIN(pzp->zp_links, UINT32_MAX); /* nlink_t limit! */ 1879 vap->va_size = pzp->zp_size; 1880 vap->va_rdev = vp->v_rdev; 1881 vap->va_seq = zp->z_seq; 1882 1883 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 1884 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 1885 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 1886 1887 /* 1888 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 1889 * Also, if we are the owner don't bother, since owner should 1890 * always be allowed to read basic attributes of file. 1891 */ 1892 if (!(zp->z_phys->zp_flags & ZFS_ACL_TRIVIAL) && 1893 (zp->z_phys->zp_uid != crgetuid(cr))) { 1894 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) { 1895 mutex_exit(&zp->z_lock); 1896 ZFS_EXIT(zfsvfs); 1897 return (error); 1898 } 1899 } 1900 1901 mutex_exit(&zp->z_lock); 1902 1903 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 1904 1905 if (zp->z_blksz == 0) { 1906 /* 1907 * Block size hasn't been set; suggest maximal I/O transfers. 1908 */ 1909 vap->va_blksize = zfsvfs->z_max_blksz; 1910 } 1911 1912 ZFS_EXIT(zfsvfs); 1913 return (0); 1914 } 1915 1916 /* 1917 * Set the file attributes to the values contained in the 1918 * vattr structure. 1919 * 1920 * IN: vp - vnode of file to be modified. 1921 * vap - new attribute values. 1922 * flags - ATTR_UTIME set if non-default time values provided. 1923 * cr - credentials of caller. 1924 * 1925 * RETURN: 0 if success 1926 * error code if failure 1927 * 1928 * Timestamps: 1929 * vp - ctime updated, mtime updated if size changed. 1930 */ 1931 /* ARGSUSED */ 1932 static int 1933 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1934 caller_context_t *ct) 1935 { 1936 struct znode *zp = VTOZ(vp); 1937 znode_phys_t *pzp = zp->z_phys; 1938 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1939 zilog_t *zilog = zfsvfs->z_log; 1940 uint64_t seq = 0; 1941 dmu_tx_t *tx; 1942 vattr_t oldva; 1943 uint_t mask = vap->va_mask; 1944 uint_t saved_mask; 1945 int trim_mask = FALSE; 1946 uint64_t new_mode; 1947 znode_t *attrzp; 1948 int need_policy = FALSE; 1949 int err; 1950 1951 if (mask == 0) 1952 return (0); 1953 1954 if (mask & AT_NOSET) 1955 return (EINVAL); 1956 1957 if (mask & AT_SIZE && vp->v_type == VDIR) 1958 return (EISDIR); 1959 1960 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) 1961 return (EINVAL); 1962 1963 ZFS_ENTER(zfsvfs); 1964 1965 top: 1966 attrzp = NULL; 1967 1968 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 1969 ZFS_EXIT(zfsvfs); 1970 return (EROFS); 1971 } 1972 1973 /* 1974 * First validate permissions 1975 */ 1976 1977 if (mask & AT_SIZE) { 1978 err = zfs_zaccess(zp, ACE_WRITE_DATA, cr); 1979 if (err) { 1980 ZFS_EXIT(zfsvfs); 1981 return (err); 1982 } 1983 /* 1984 * XXX - Note, we are not providing any open 1985 * mode flags here (like FNDELAY), so we may 1986 * block if there are locks present... this 1987 * should be addressed in openat(). 1988 */ 1989 do { 1990 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 1991 /* NB: we already did dmu_tx_wait() if necessary */ 1992 } while (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 1993 if (err) { 1994 ZFS_EXIT(zfsvfs); 1995 return (err); 1996 } 1997 } 1998 1999 if (mask & (AT_ATIME|AT_MTIME)) 2000 need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr); 2001 2002 if (mask & (AT_UID|AT_GID)) { 2003 int idmask = (mask & (AT_UID|AT_GID)); 2004 int take_owner; 2005 int take_group; 2006 2007 /* 2008 * NOTE: even if a new mode is being set, 2009 * we may clear S_ISUID/S_ISGID bits. 2010 */ 2011 2012 if (!(mask & AT_MODE)) 2013 vap->va_mode = pzp->zp_mode; 2014 2015 /* 2016 * Take ownership or chgrp to group we are a member of 2017 */ 2018 2019 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2020 take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr); 2021 2022 /* 2023 * If both AT_UID and AT_GID are set then take_owner and 2024 * take_group must both be set in order to allow taking 2025 * ownership. 2026 * 2027 * Otherwise, send the check through secpolicy_vnode_setattr() 2028 * 2029 */ 2030 2031 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2032 ((idmask == AT_UID) && take_owner) || 2033 ((idmask == AT_GID) && take_group)) { 2034 if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) { 2035 /* 2036 * Remove setuid/setgid for non-privileged users 2037 */ 2038 secpolicy_setid_clear(vap, cr); 2039 trim_mask = TRUE; 2040 saved_mask = vap->va_mask; 2041 } else { 2042 need_policy = TRUE; 2043 } 2044 } else { 2045 need_policy = TRUE; 2046 } 2047 } 2048 2049 if (mask & AT_MODE) 2050 need_policy = TRUE; 2051 2052 if (need_policy) { 2053 mutex_enter(&zp->z_lock); 2054 oldva.va_mode = pzp->zp_mode; 2055 oldva.va_uid = zp->z_phys->zp_uid; 2056 oldva.va_gid = zp->z_phys->zp_gid; 2057 mutex_exit(&zp->z_lock); 2058 2059 /* 2060 * If trim_mask is set then take ownership 2061 * has been granted. In that case remove 2062 * UID|GID from mask so that 2063 * secpolicy_vnode_setattr() doesn't revoke it. 2064 */ 2065 if (trim_mask) 2066 vap->va_mask &= ~(AT_UID|AT_GID); 2067 2068 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2069 (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp); 2070 if (err) { 2071 ZFS_EXIT(zfsvfs); 2072 return (err); 2073 } 2074 2075 if (trim_mask) 2076 vap->va_mask |= (saved_mask & (AT_UID|AT_GID)); 2077 } 2078 2079 /* 2080 * secpolicy_vnode_setattr, or take ownership may have 2081 * changed va_mask 2082 */ 2083 mask = vap->va_mask; 2084 2085 tx = dmu_tx_create(zfsvfs->z_os); 2086 dmu_tx_hold_bonus(tx, zp->z_id); 2087 2088 if (mask & AT_MODE) { 2089 uint64_t pmode = pzp->zp_mode; 2090 2091 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2092 2093 if (zp->z_phys->zp_acl.z_acl_extern_obj) 2094 dmu_tx_hold_write(tx, 2095 pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE); 2096 else 2097 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2098 0, ZFS_ACL_SIZE(MAX_ACL_SIZE)); 2099 } 2100 2101 if ((mask & (AT_UID | AT_GID)) && zp->z_phys->zp_xattr != 0) { 2102 err = zfs_zget(zp->z_zfsvfs, zp->z_phys->zp_xattr, &attrzp); 2103 if (err) { 2104 dmu_tx_abort(tx); 2105 ZFS_EXIT(zfsvfs); 2106 return (err); 2107 } 2108 dmu_tx_hold_bonus(tx, attrzp->z_id); 2109 } 2110 2111 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2112 if (err) { 2113 if (attrzp) 2114 VN_RELE(ZTOV(attrzp)); 2115 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2116 dmu_tx_wait(tx); 2117 dmu_tx_abort(tx); 2118 goto top; 2119 } 2120 dmu_tx_abort(tx); 2121 ZFS_EXIT(zfsvfs); 2122 return (err); 2123 } 2124 2125 dmu_buf_will_dirty(zp->z_dbuf, tx); 2126 2127 /* 2128 * Set each attribute requested. 2129 * We group settings according to the locks they need to acquire. 2130 * 2131 * Note: you cannot set ctime directly, although it will be 2132 * updated as a side-effect of calling this function. 2133 */ 2134 2135 mutex_enter(&zp->z_lock); 2136 2137 if (mask & AT_MODE) { 2138 err = zfs_acl_chmod_setattr(zp, new_mode, tx); 2139 ASSERT3U(err, ==, 0); 2140 } 2141 2142 if (attrzp) 2143 mutex_enter(&attrzp->z_lock); 2144 2145 if (mask & AT_UID) { 2146 zp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2147 if (attrzp) { 2148 attrzp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2149 } 2150 } 2151 2152 if (mask & AT_GID) { 2153 zp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2154 if (attrzp) 2155 attrzp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2156 } 2157 2158 if (attrzp) 2159 mutex_exit(&attrzp->z_lock); 2160 2161 if (mask & AT_ATIME) 2162 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2163 2164 if (mask & AT_MTIME) 2165 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2166 2167 if (mask & AT_SIZE) 2168 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2169 else if (mask != 0) 2170 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2171 2172 if (mask != 0) 2173 seq = zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask); 2174 2175 mutex_exit(&zp->z_lock); 2176 2177 if (attrzp) 2178 VN_RELE(ZTOV(attrzp)); 2179 2180 dmu_tx_commit(tx); 2181 2182 zil_commit(zilog, seq, 0); 2183 2184 ZFS_EXIT(zfsvfs); 2185 return (err); 2186 } 2187 2188 /* 2189 * Search back through the directory tree, using the ".." entries. 2190 * Lock each directory in the chain to prevent concurrent renames. 2191 * Fail any attempt to move a directory into one of its own descendants. 2192 * XXX - z_parent_lock can overlap with map or grow locks 2193 */ 2194 typedef struct zfs_zlock { 2195 krwlock_t *zl_rwlock; /* lock we acquired */ 2196 znode_t *zl_znode; /* znode we held */ 2197 struct zfs_zlock *zl_next; /* next in list */ 2198 } zfs_zlock_t; 2199 2200 static int 2201 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2202 { 2203 zfs_zlock_t *zl; 2204 znode_t *zp = tdzp; 2205 uint64_t rootid = zp->z_zfsvfs->z_root; 2206 uint64_t *oidp = &zp->z_id; 2207 krwlock_t *rwlp = &szp->z_parent_lock; 2208 krw_t rw = RW_WRITER; 2209 2210 /* 2211 * First pass write-locks szp and compares to zp->z_id. 2212 * Later passes read-lock zp and compare to zp->z_parent. 2213 */ 2214 do { 2215 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2216 zl->zl_rwlock = rwlp; 2217 zl->zl_znode = NULL; 2218 zl->zl_next = *zlpp; 2219 *zlpp = zl; 2220 2221 rw_enter(rwlp, rw); 2222 2223 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2224 return (EINVAL); 2225 2226 if (*oidp == rootid) /* We've hit the top */ 2227 return (0); 2228 2229 if (rw == RW_READER) { /* i.e. not the first pass */ 2230 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2231 if (error) 2232 return (error); 2233 zl->zl_znode = zp; 2234 } 2235 oidp = &zp->z_phys->zp_parent; 2236 rwlp = &zp->z_parent_lock; 2237 rw = RW_READER; 2238 2239 } while (zp->z_id != sdzp->z_id); 2240 2241 return (0); 2242 } 2243 2244 /* 2245 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2246 */ 2247 static void 2248 zfs_rename_unlock(zfs_zlock_t **zlpp) 2249 { 2250 zfs_zlock_t *zl; 2251 2252 while ((zl = *zlpp) != NULL) { 2253 if (zl->zl_znode != NULL) 2254 VN_RELE(ZTOV(zl->zl_znode)); 2255 rw_exit(zl->zl_rwlock); 2256 *zlpp = zl->zl_next; 2257 kmem_free(zl, sizeof (*zl)); 2258 } 2259 } 2260 2261 /* 2262 * Move an entry from the provided source directory to the target 2263 * directory. Change the entry name as indicated. 2264 * 2265 * IN: sdvp - Source directory containing the "old entry". 2266 * snm - Old entry name. 2267 * tdvp - Target directory to contain the "new entry". 2268 * tnm - New entry name. 2269 * cr - credentials of caller. 2270 * 2271 * RETURN: 0 if success 2272 * error code if failure 2273 * 2274 * Timestamps: 2275 * sdvp,tdvp - ctime|mtime updated 2276 */ 2277 static int 2278 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr) 2279 { 2280 znode_t *tdzp, *szp, *tzp; 2281 znode_t *sdzp = VTOZ(sdvp); 2282 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2283 zilog_t *zilog = zfsvfs->z_log; 2284 uint64_t seq = 0; 2285 vnode_t *realvp; 2286 zfs_dirlock_t *sdl, *tdl; 2287 dmu_tx_t *tx; 2288 zfs_zlock_t *zl; 2289 int cmp, serr, terr, error; 2290 2291 ZFS_ENTER(zfsvfs); 2292 2293 /* 2294 * Make sure we have the real vp for the target directory. 2295 */ 2296 if (VOP_REALVP(tdvp, &realvp) == 0) 2297 tdvp = realvp; 2298 2299 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2300 ZFS_EXIT(zfsvfs); 2301 return (EXDEV); 2302 } 2303 2304 tdzp = VTOZ(tdvp); 2305 top: 2306 szp = NULL; 2307 tzp = NULL; 2308 zl = NULL; 2309 2310 /* 2311 * This is to prevent the creation of links into attribute space 2312 * by renaming a linked file into/outof an attribute directory. 2313 * See the comment in zfs_link() for why this is considered bad. 2314 */ 2315 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2316 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2317 ZFS_EXIT(zfsvfs); 2318 return (EINVAL); 2319 } 2320 2321 /* 2322 * Lock source and target directory entries. To prevent deadlock, 2323 * a lock ordering must be defined. We lock the directory with 2324 * the smallest object id first, or if it's a tie, the one with 2325 * the lexically first name. 2326 */ 2327 if (sdzp->z_id < tdzp->z_id) { 2328 cmp = -1; 2329 } else if (sdzp->z_id > tdzp->z_id) { 2330 cmp = 1; 2331 } else { 2332 cmp = strcmp(snm, tnm); 2333 if (cmp == 0) { 2334 /* 2335 * POSIX: "If the old argument and the new argument 2336 * both refer to links to the same existing file, 2337 * the rename() function shall return successfully 2338 * and perform no other action." 2339 */ 2340 ZFS_EXIT(zfsvfs); 2341 return (0); 2342 } 2343 } 2344 if (cmp < 0) { 2345 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2346 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2347 } else { 2348 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2349 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2350 } 2351 2352 if (serr) { 2353 /* 2354 * Source entry invalid or not there. 2355 */ 2356 if (!terr) { 2357 zfs_dirent_unlock(tdl); 2358 if (tzp) 2359 VN_RELE(ZTOV(tzp)); 2360 } 2361 if (strcmp(snm, "..") == 0) 2362 serr = EINVAL; 2363 ZFS_EXIT(zfsvfs); 2364 return (serr); 2365 } 2366 if (terr) { 2367 zfs_dirent_unlock(sdl); 2368 VN_RELE(ZTOV(szp)); 2369 if (strcmp(tnm, "..") == 0) 2370 terr = EINVAL; 2371 ZFS_EXIT(zfsvfs); 2372 return (terr); 2373 } 2374 2375 /* 2376 * Must have write access at the source to remove the old entry 2377 * and write access at the target to create the new entry. 2378 * Note that if target and source are the same, this can be 2379 * done in a single check. 2380 */ 2381 2382 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 2383 goto out; 2384 2385 if (ZTOV(szp)->v_type == VDIR) { 2386 /* 2387 * Check to make sure rename is valid. 2388 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 2389 */ 2390 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 2391 goto out; 2392 } 2393 2394 /* 2395 * Does target exist? 2396 */ 2397 if (tzp) { 2398 /* 2399 * Source and target must be the same type. 2400 */ 2401 if (ZTOV(szp)->v_type == VDIR) { 2402 if (ZTOV(tzp)->v_type != VDIR) { 2403 error = ENOTDIR; 2404 goto out; 2405 } 2406 } else { 2407 if (ZTOV(tzp)->v_type == VDIR) { 2408 error = EISDIR; 2409 goto out; 2410 } 2411 } 2412 /* 2413 * POSIX dictates that when the source and target 2414 * entries refer to the same file object, rename 2415 * must do nothing and exit without error. 2416 */ 2417 if (szp->z_id == tzp->z_id) { 2418 error = 0; 2419 goto out; 2420 } 2421 } 2422 2423 vnevent_rename_src(ZTOV(szp)); 2424 if (tzp) 2425 vnevent_rename_dest(ZTOV(tzp)); 2426 2427 tx = dmu_tx_create(zfsvfs->z_os); 2428 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 2429 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 2430 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 2431 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 2432 if (sdzp != tdzp) 2433 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 2434 if (tzp) 2435 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 2436 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 2437 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2438 if (error) { 2439 if (zl != NULL) 2440 zfs_rename_unlock(&zl); 2441 zfs_dirent_unlock(sdl); 2442 zfs_dirent_unlock(tdl); 2443 VN_RELE(ZTOV(szp)); 2444 if (tzp) 2445 VN_RELE(ZTOV(tzp)); 2446 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2447 dmu_tx_wait(tx); 2448 dmu_tx_abort(tx); 2449 goto top; 2450 } 2451 dmu_tx_abort(tx); 2452 ZFS_EXIT(zfsvfs); 2453 return (error); 2454 } 2455 2456 if (tzp) /* Attempt to remove the existing target */ 2457 error = zfs_link_destroy(tdl, tzp, tx, 0, NULL); 2458 2459 if (error == 0) { 2460 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 2461 if (error == 0) { 2462 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 2463 ASSERT(error == 0); 2464 seq = zfs_log_rename(zilog, tx, TX_RENAME, 2465 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 2466 } 2467 } 2468 2469 dmu_tx_commit(tx); 2470 out: 2471 if (zl != NULL) 2472 zfs_rename_unlock(&zl); 2473 2474 zfs_dirent_unlock(sdl); 2475 zfs_dirent_unlock(tdl); 2476 2477 VN_RELE(ZTOV(szp)); 2478 if (tzp) 2479 VN_RELE(ZTOV(tzp)); 2480 2481 zil_commit(zilog, seq, 0); 2482 2483 ZFS_EXIT(zfsvfs); 2484 return (error); 2485 } 2486 2487 /* 2488 * Insert the indicated symbolic reference entry into the directory. 2489 * 2490 * IN: dvp - Directory to contain new symbolic link. 2491 * link - Name for new symlink entry. 2492 * vap - Attributes of new entry. 2493 * target - Target path of new symlink. 2494 * cr - credentials of caller. 2495 * 2496 * RETURN: 0 if success 2497 * error code if failure 2498 * 2499 * Timestamps: 2500 * dvp - ctime|mtime updated 2501 */ 2502 static int 2503 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr) 2504 { 2505 znode_t *zp, *dzp = VTOZ(dvp); 2506 zfs_dirlock_t *dl; 2507 dmu_tx_t *tx; 2508 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2509 zilog_t *zilog = zfsvfs->z_log; 2510 uint64_t seq = 0; 2511 uint64_t zoid; 2512 int len = strlen(link); 2513 int error; 2514 2515 ASSERT(vap->va_type == VLNK); 2516 2517 ZFS_ENTER(zfsvfs); 2518 top: 2519 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2520 ZFS_EXIT(zfsvfs); 2521 return (error); 2522 } 2523 2524 if (len > MAXPATHLEN) { 2525 ZFS_EXIT(zfsvfs); 2526 return (ENAMETOOLONG); 2527 } 2528 2529 /* 2530 * Attempt to lock directory; fail if entry already exists. 2531 */ 2532 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) { 2533 ZFS_EXIT(zfsvfs); 2534 return (error); 2535 } 2536 2537 tx = dmu_tx_create(zfsvfs->z_os); 2538 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 2539 dmu_tx_hold_bonus(tx, dzp->z_id); 2540 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2541 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 2542 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 2543 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2544 if (error) { 2545 zfs_dirent_unlock(dl); 2546 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2547 dmu_tx_wait(tx); 2548 dmu_tx_abort(tx); 2549 goto top; 2550 } 2551 dmu_tx_abort(tx); 2552 ZFS_EXIT(zfsvfs); 2553 return (error); 2554 } 2555 2556 dmu_buf_will_dirty(dzp->z_dbuf, tx); 2557 2558 /* 2559 * Create a new object for the symlink. 2560 * Put the link content into bonus buffer if it will fit; 2561 * otherwise, store it just like any other file data. 2562 */ 2563 zoid = 0; 2564 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 2565 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len); 2566 if (len != 0) 2567 bcopy(link, zp->z_phys + 1, len); 2568 } else { 2569 dmu_buf_t *dbp; 2570 2571 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 2572 2573 /* 2574 * Nothing can access the znode yet so no locking needed 2575 * for growing the znode's blocksize. 2576 */ 2577 zfs_grow_blocksize(zp, len, tx); 2578 2579 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, zoid, 0, FTAG, &dbp)); 2580 dmu_buf_will_dirty(dbp, tx); 2581 2582 ASSERT3U(len, <=, dbp->db_size); 2583 bcopy(link, dbp->db_data, len); 2584 dmu_buf_rele(dbp, FTAG); 2585 } 2586 zp->z_phys->zp_size = len; 2587 2588 /* 2589 * Insert the new object into the directory. 2590 */ 2591 (void) zfs_link_create(dl, zp, tx, ZNEW); 2592 out: 2593 if (error == 0) 2594 seq = zfs_log_symlink(zilog, tx, TX_SYMLINK, 2595 dzp, zp, name, link); 2596 2597 dmu_tx_commit(tx); 2598 2599 zfs_dirent_unlock(dl); 2600 2601 VN_RELE(ZTOV(zp)); 2602 2603 zil_commit(zilog, seq, 0); 2604 2605 ZFS_EXIT(zfsvfs); 2606 return (error); 2607 } 2608 2609 /* 2610 * Return, in the buffer contained in the provided uio structure, 2611 * the symbolic path referred to by vp. 2612 * 2613 * IN: vp - vnode of symbolic link. 2614 * uoip - structure to contain the link path. 2615 * cr - credentials of caller. 2616 * 2617 * OUT: uio - structure to contain the link path. 2618 * 2619 * RETURN: 0 if success 2620 * error code if failure 2621 * 2622 * Timestamps: 2623 * vp - atime updated 2624 */ 2625 /* ARGSUSED */ 2626 static int 2627 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr) 2628 { 2629 znode_t *zp = VTOZ(vp); 2630 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2631 size_t bufsz; 2632 int error; 2633 2634 ZFS_ENTER(zfsvfs); 2635 2636 bufsz = (size_t)zp->z_phys->zp_size; 2637 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 2638 error = uiomove(zp->z_phys + 1, 2639 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2640 } else { 2641 dmu_buf_t *dbp; 2642 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 2643 if (error) { 2644 ZFS_EXIT(zfsvfs); 2645 return (error); 2646 } 2647 error = uiomove(dbp->db_data, 2648 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2649 dmu_buf_rele(dbp, FTAG); 2650 } 2651 2652 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2653 ZFS_EXIT(zfsvfs); 2654 return (error); 2655 } 2656 2657 /* 2658 * Insert a new entry into directory tdvp referencing svp. 2659 * 2660 * IN: tdvp - Directory to contain new entry. 2661 * svp - vnode of new entry. 2662 * name - name of new entry. 2663 * cr - credentials of caller. 2664 * 2665 * RETURN: 0 if success 2666 * error code if failure 2667 * 2668 * Timestamps: 2669 * tdvp - ctime|mtime updated 2670 * svp - ctime updated 2671 */ 2672 /* ARGSUSED */ 2673 static int 2674 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr) 2675 { 2676 znode_t *dzp = VTOZ(tdvp); 2677 znode_t *tzp, *szp; 2678 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2679 zilog_t *zilog = zfsvfs->z_log; 2680 uint64_t seq = 0; 2681 zfs_dirlock_t *dl; 2682 dmu_tx_t *tx; 2683 vnode_t *realvp; 2684 int error; 2685 2686 ASSERT(tdvp->v_type == VDIR); 2687 2688 ZFS_ENTER(zfsvfs); 2689 2690 if (VOP_REALVP(svp, &realvp) == 0) 2691 svp = realvp; 2692 2693 if (svp->v_vfsp != tdvp->v_vfsp) { 2694 ZFS_EXIT(zfsvfs); 2695 return (EXDEV); 2696 } 2697 2698 szp = VTOZ(svp); 2699 top: 2700 /* 2701 * We do not support links between attributes and non-attributes 2702 * because of the potential security risk of creating links 2703 * into "normal" file space in order to circumvent restrictions 2704 * imposed in attribute space. 2705 */ 2706 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 2707 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 2708 ZFS_EXIT(zfsvfs); 2709 return (EINVAL); 2710 } 2711 2712 /* 2713 * POSIX dictates that we return EPERM here. 2714 * Better choices include ENOTSUP or EISDIR. 2715 */ 2716 if (svp->v_type == VDIR) { 2717 ZFS_EXIT(zfsvfs); 2718 return (EPERM); 2719 } 2720 2721 if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) && 2722 secpolicy_basic_link(cr) != 0) { 2723 ZFS_EXIT(zfsvfs); 2724 return (EPERM); 2725 } 2726 2727 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2728 ZFS_EXIT(zfsvfs); 2729 return (error); 2730 } 2731 2732 /* 2733 * Attempt to lock directory; fail if entry already exists. 2734 */ 2735 if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) { 2736 ZFS_EXIT(zfsvfs); 2737 return (error); 2738 } 2739 2740 tx = dmu_tx_create(zfsvfs->z_os); 2741 dmu_tx_hold_bonus(tx, szp->z_id); 2742 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2743 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2744 if (error) { 2745 zfs_dirent_unlock(dl); 2746 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2747 dmu_tx_wait(tx); 2748 dmu_tx_abort(tx); 2749 goto top; 2750 } 2751 dmu_tx_abort(tx); 2752 ZFS_EXIT(zfsvfs); 2753 return (error); 2754 } 2755 2756 error = zfs_link_create(dl, szp, tx, 0); 2757 2758 if (error == 0) 2759 seq = zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name); 2760 2761 dmu_tx_commit(tx); 2762 2763 zfs_dirent_unlock(dl); 2764 2765 zil_commit(zilog, seq, 0); 2766 2767 ZFS_EXIT(zfsvfs); 2768 return (error); 2769 } 2770 2771 /* 2772 * zfs_null_putapage() is used when the file system has been force 2773 * unmounted. It just drops the pages. 2774 */ 2775 /* ARGSUSED */ 2776 static int 2777 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2778 size_t *lenp, int flags, cred_t *cr) 2779 { 2780 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 2781 return (0); 2782 } 2783 2784 /* ARGSUSED */ 2785 static int 2786 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2787 size_t *lenp, int flags, cred_t *cr) 2788 { 2789 znode_t *zp = VTOZ(vp); 2790 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2791 zilog_t *zilog = zfsvfs->z_log; 2792 dmu_tx_t *tx; 2793 rl_t *rl; 2794 u_offset_t off; 2795 ssize_t len; 2796 caddr_t va; 2797 int err; 2798 2799 top: 2800 off = pp->p_offset; 2801 rl = zfs_range_lock(zp, off, PAGESIZE, RL_WRITER); 2802 /* 2803 * Can't push pages past end-of-file. 2804 */ 2805 if (off >= zp->z_phys->zp_size) { 2806 zfs_range_unlock(rl); 2807 return (EIO); 2808 } 2809 len = MIN(PAGESIZE, zp->z_phys->zp_size - off); 2810 2811 tx = dmu_tx_create(zfsvfs->z_os); 2812 dmu_tx_hold_write(tx, zp->z_id, off, len); 2813 dmu_tx_hold_bonus(tx, zp->z_id); 2814 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2815 if (err != 0) { 2816 zfs_range_unlock(rl); 2817 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2818 dmu_tx_wait(tx); 2819 dmu_tx_abort(tx); 2820 goto top; 2821 } 2822 dmu_tx_abort(tx); 2823 goto out; 2824 } 2825 2826 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 2827 2828 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 2829 2830 ppmapout(va); 2831 2832 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 2833 (void) zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0, NULL); 2834 dmu_tx_commit(tx); 2835 2836 zfs_range_unlock(rl); 2837 2838 pvn_write_done(pp, B_WRITE | flags); 2839 if (offp) 2840 *offp = off; 2841 if (lenp) 2842 *lenp = len; 2843 2844 out: 2845 return (err); 2846 } 2847 2848 /* 2849 * Copy the portion of the file indicated from pages into the file. 2850 * The pages are stored in a page list attached to the files vnode. 2851 * 2852 * IN: vp - vnode of file to push page data to. 2853 * off - position in file to put data. 2854 * len - amount of data to write. 2855 * flags - flags to control the operation. 2856 * cr - credentials of caller. 2857 * 2858 * RETURN: 0 if success 2859 * error code if failure 2860 * 2861 * Timestamps: 2862 * vp - ctime|mtime updated 2863 */ 2864 static int 2865 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 2866 { 2867 znode_t *zp = VTOZ(vp); 2868 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2869 page_t *pp; 2870 size_t io_len; 2871 u_offset_t io_off; 2872 uint64_t filesz; 2873 int error = 0; 2874 2875 ZFS_ENTER(zfsvfs); 2876 2877 ASSERT(zp->z_dbuf_held && zp->z_phys); 2878 2879 if (len == 0) { 2880 /* 2881 * Search the entire vp list for pages >= off. 2882 */ 2883 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 2884 flags, cr); 2885 goto out; 2886 } 2887 2888 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 2889 if (off > filesz) { 2890 /* past end of file */ 2891 ZFS_EXIT(zfsvfs); 2892 return (0); 2893 } 2894 2895 len = MIN(len, filesz - off); 2896 2897 for (io_off = off; io_off < off + len; io_off += io_len) { 2898 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2899 pp = page_lookup(vp, io_off, 2900 (flags & (B_INVAL | B_FREE)) ? 2901 SE_EXCL : SE_SHARED); 2902 } else { 2903 pp = page_lookup_nowait(vp, io_off, 2904 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2905 } 2906 2907 if (pp != NULL && pvn_getdirty(pp, flags)) { 2908 int err; 2909 2910 /* 2911 * Found a dirty page to push 2912 */ 2913 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 2914 if (err) 2915 error = err; 2916 } else { 2917 io_len = PAGESIZE; 2918 } 2919 } 2920 out: 2921 zil_commit(zfsvfs->z_log, UINT64_MAX, (flags & B_ASYNC) ? 0 : FDSYNC); 2922 ZFS_EXIT(zfsvfs); 2923 return (error); 2924 } 2925 2926 void 2927 zfs_inactive(vnode_t *vp, cred_t *cr) 2928 { 2929 znode_t *zp = VTOZ(vp); 2930 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2931 int error; 2932 2933 rw_enter(&zfsvfs->z_um_lock, RW_READER); 2934 if (zfsvfs->z_unmounted2) { 2935 ASSERT(zp->z_dbuf_held == 0); 2936 2937 if (vn_has_cached_data(vp)) { 2938 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 2939 B_INVAL, cr); 2940 } 2941 2942 mutex_enter(&zp->z_lock); 2943 vp->v_count = 0; /* count arrives as 1 */ 2944 if (zp->z_dbuf == NULL) { 2945 mutex_exit(&zp->z_lock); 2946 zfs_znode_free(zp); 2947 } else { 2948 mutex_exit(&zp->z_lock); 2949 } 2950 rw_exit(&zfsvfs->z_um_lock); 2951 VFS_RELE(zfsvfs->z_vfs); 2952 return; 2953 } 2954 2955 /* 2956 * Attempt to push any data in the page cache. If this fails 2957 * we will get kicked out later in zfs_zinactive(). 2958 */ 2959 if (vn_has_cached_data(vp)) { 2960 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 2961 cr); 2962 } 2963 2964 if (zp->z_atime_dirty && zp->z_reap == 0) { 2965 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 2966 2967 dmu_tx_hold_bonus(tx, zp->z_id); 2968 error = dmu_tx_assign(tx, TXG_WAIT); 2969 if (error) { 2970 dmu_tx_abort(tx); 2971 } else { 2972 dmu_buf_will_dirty(zp->z_dbuf, tx); 2973 mutex_enter(&zp->z_lock); 2974 zp->z_atime_dirty = 0; 2975 mutex_exit(&zp->z_lock); 2976 dmu_tx_commit(tx); 2977 } 2978 } 2979 2980 zfs_zinactive(zp); 2981 rw_exit(&zfsvfs->z_um_lock); 2982 } 2983 2984 /* 2985 * Bounds-check the seek operation. 2986 * 2987 * IN: vp - vnode seeking within 2988 * ooff - old file offset 2989 * noffp - pointer to new file offset 2990 * 2991 * RETURN: 0 if success 2992 * EINVAL if new offset invalid 2993 */ 2994 /* ARGSUSED */ 2995 static int 2996 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 2997 { 2998 if (vp->v_type == VDIR) 2999 return (0); 3000 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3001 } 3002 3003 /* 3004 * Pre-filter the generic locking function to trap attempts to place 3005 * a mandatory lock on a memory mapped file. 3006 */ 3007 static int 3008 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3009 flk_callback_t *flk_cbp, cred_t *cr) 3010 { 3011 znode_t *zp = VTOZ(vp); 3012 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3013 int error; 3014 3015 ZFS_ENTER(zfsvfs); 3016 3017 /* 3018 * We are following the UFS semantics with respect to mapcnt 3019 * here: If we see that the file is mapped already, then we will 3020 * return an error, but we don't worry about races between this 3021 * function and zfs_map(). 3022 */ 3023 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3024 ZFS_EXIT(zfsvfs); 3025 return (EAGAIN); 3026 } 3027 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr); 3028 ZFS_EXIT(zfsvfs); 3029 return (error); 3030 } 3031 3032 /* 3033 * If we can't find a page in the cache, we will create a new page 3034 * and fill it with file data. For efficiency, we may try to fill 3035 * multiple pages at once (klustering). 3036 */ 3037 static int 3038 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3039 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3040 { 3041 znode_t *zp = VTOZ(vp); 3042 page_t *pp, *cur_pp; 3043 objset_t *os = zp->z_zfsvfs->z_os; 3044 caddr_t va; 3045 u_offset_t io_off, total; 3046 uint64_t oid = zp->z_id; 3047 size_t io_len; 3048 uint64_t filesz; 3049 int err; 3050 3051 /* 3052 * If we are only asking for a single page don't bother klustering. 3053 */ 3054 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3055 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE || off > filesz) { 3056 io_off = off; 3057 io_len = PAGESIZE; 3058 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3059 } else { 3060 /* 3061 * Try to fill a kluster of pages (a blocks worth). 3062 */ 3063 size_t klen; 3064 u_offset_t koff; 3065 3066 if (!ISP2(zp->z_blksz)) { 3067 /* Only one block in the file. */ 3068 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3069 koff = 0; 3070 } else { 3071 klen = plsz; 3072 koff = P2ALIGN(off, (u_offset_t)klen); 3073 } 3074 ASSERT(koff <= filesz); 3075 if (koff + klen > filesz) 3076 klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff; 3077 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3078 &io_len, koff, klen, 0); 3079 } 3080 if (pp == NULL) { 3081 /* 3082 * Some other thread entered the page before us. 3083 * Return to zfs_getpage to retry the lookup. 3084 */ 3085 *pl = NULL; 3086 return (0); 3087 } 3088 3089 /* 3090 * Fill the pages in the kluster. 3091 */ 3092 cur_pp = pp; 3093 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3094 ASSERT(io_off == cur_pp->p_offset); 3095 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3096 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3097 ppmapout(va); 3098 if (err) { 3099 /* On error, toss the entire kluster */ 3100 pvn_read_done(pp, B_ERROR); 3101 return (err); 3102 } 3103 cur_pp = cur_pp->p_next; 3104 } 3105 out: 3106 /* 3107 * Fill in the page list array from the kluster. If 3108 * there are too many pages in the kluster, return 3109 * as many pages as possible starting from the desired 3110 * offset `off'. 3111 * NOTE: the page list will always be null terminated. 3112 */ 3113 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3114 3115 return (0); 3116 } 3117 3118 /* 3119 * Return pointers to the pages for the file region [off, off + len] 3120 * in the pl array. If plsz is greater than len, this function may 3121 * also return page pointers from before or after the specified 3122 * region (i.e. some region [off', off' + plsz]). These additional 3123 * pages are only returned if they are already in the cache, or were 3124 * created as part of a klustered read. 3125 * 3126 * IN: vp - vnode of file to get data from. 3127 * off - position in file to get data from. 3128 * len - amount of data to retrieve. 3129 * plsz - length of provided page list. 3130 * seg - segment to obtain pages for. 3131 * addr - virtual address of fault. 3132 * rw - mode of created pages. 3133 * cr - credentials of caller. 3134 * 3135 * OUT: protp - protection mode of created pages. 3136 * pl - list of pages created. 3137 * 3138 * RETURN: 0 if success 3139 * error code if failure 3140 * 3141 * Timestamps: 3142 * vp - atime updated 3143 */ 3144 /* ARGSUSED */ 3145 static int 3146 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3147 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3148 enum seg_rw rw, cred_t *cr) 3149 { 3150 znode_t *zp = VTOZ(vp); 3151 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3152 page_t *pp, **pl0 = pl; 3153 rl_t *rl; 3154 int cnt = 0, need_unlock = 0, err = 0; 3155 3156 ZFS_ENTER(zfsvfs); 3157 3158 if (protp) 3159 *protp = PROT_ALL; 3160 3161 ASSERT(zp->z_dbuf_held && zp->z_phys); 3162 3163 /* no faultahead (for now) */ 3164 if (pl == NULL) { 3165 ZFS_EXIT(zfsvfs); 3166 return (0); 3167 } 3168 3169 /* 3170 * Make sure nobody restructures the file in the middle of the getpage. 3171 */ 3172 rl = zfs_range_lock(zp, off, len, RL_READER); 3173 3174 /* can't fault past EOF */ 3175 if (off >= zp->z_phys->zp_size) { 3176 zfs_range_unlock(rl); 3177 ZFS_EXIT(zfsvfs); 3178 return (EFAULT); 3179 } 3180 3181 /* 3182 * If we already own the lock, then we must be page faulting 3183 * in the middle of a write to this file (i.e., we are writing 3184 * to this file using data from a mapped region of the file). 3185 */ 3186 if (!rw_owner(&zp->z_map_lock)) { 3187 rw_enter(&zp->z_map_lock, RW_WRITER); 3188 need_unlock = TRUE; 3189 } 3190 3191 /* 3192 * Loop through the requested range [off, off + len] looking 3193 * for pages. If we don't find a page, we will need to create 3194 * a new page and fill it with data from the file. 3195 */ 3196 while (len > 0) { 3197 if (plsz < PAGESIZE) 3198 break; 3199 if (pp = page_lookup(vp, off, SE_SHARED)) { 3200 *pl++ = pp; 3201 off += PAGESIZE; 3202 addr += PAGESIZE; 3203 len -= PAGESIZE; 3204 plsz -= PAGESIZE; 3205 } else { 3206 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3207 /* 3208 * klustering may have changed our region 3209 * to be block aligned. 3210 */ 3211 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3212 int delta = off - pp->p_offset; 3213 len += delta; 3214 off -= delta; 3215 addr -= delta; 3216 } 3217 while (*pl) { 3218 pl++; 3219 cnt++; 3220 off += PAGESIZE; 3221 addr += PAGESIZE; 3222 plsz -= PAGESIZE; 3223 if (len > PAGESIZE) 3224 len -= PAGESIZE; 3225 else 3226 len = 0; 3227 } 3228 if (err) { 3229 /* 3230 * Release any pages we have locked. 3231 */ 3232 while (pl > pl0) 3233 page_unlock(*--pl); 3234 goto out; 3235 } 3236 } 3237 } 3238 3239 /* 3240 * Fill out the page array with any pages already in the cache. 3241 */ 3242 while (plsz > 0) { 3243 pp = page_lookup_nowait(vp, off, SE_SHARED); 3244 if (pp == NULL) 3245 break; 3246 *pl++ = pp; 3247 off += PAGESIZE; 3248 plsz -= PAGESIZE; 3249 } 3250 3251 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3252 out: 3253 *pl = NULL; 3254 3255 if (need_unlock) 3256 rw_exit(&zp->z_map_lock); 3257 zfs_range_unlock(rl); 3258 3259 ZFS_EXIT(zfsvfs); 3260 return (err); 3261 } 3262 3263 /* 3264 * Request a memory map for a section of a file. This code interacts 3265 * with common code and the VM system as follows: 3266 * 3267 * common code calls mmap(), which ends up in smmap_common() 3268 * 3269 * this calls VOP_MAP(), which takes you into (say) zfs 3270 * 3271 * zfs_map() calls as_map(), passing segvn_create() as the callback 3272 * 3273 * segvn_create() creates the new segment and calls VOP_ADDMAP() 3274 * 3275 * zfs_addmap() updates z_mapcnt 3276 */ 3277 static int 3278 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 3279 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3280 { 3281 znode_t *zp = VTOZ(vp); 3282 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3283 segvn_crargs_t vn_a; 3284 int error; 3285 3286 ZFS_ENTER(zfsvfs); 3287 3288 if (vp->v_flag & VNOMAP) { 3289 ZFS_EXIT(zfsvfs); 3290 return (ENOSYS); 3291 } 3292 3293 if (off < 0 || len > MAXOFFSET_T - off) { 3294 ZFS_EXIT(zfsvfs); 3295 return (ENXIO); 3296 } 3297 3298 if (vp->v_type != VREG) { 3299 ZFS_EXIT(zfsvfs); 3300 return (ENODEV); 3301 } 3302 3303 /* 3304 * If file is locked, disallow mapping. 3305 */ 3306 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 3307 ZFS_EXIT(zfsvfs); 3308 return (EAGAIN); 3309 } 3310 3311 as_rangelock(as); 3312 if ((flags & MAP_FIXED) == 0) { 3313 map_addr(addrp, len, off, 1, flags); 3314 if (*addrp == NULL) { 3315 as_rangeunlock(as); 3316 ZFS_EXIT(zfsvfs); 3317 return (ENOMEM); 3318 } 3319 } else { 3320 /* 3321 * User specified address - blow away any previous mappings 3322 */ 3323 (void) as_unmap(as, *addrp, len); 3324 } 3325 3326 vn_a.vp = vp; 3327 vn_a.offset = (u_offset_t)off; 3328 vn_a.type = flags & MAP_TYPE; 3329 vn_a.prot = prot; 3330 vn_a.maxprot = maxprot; 3331 vn_a.cred = cr; 3332 vn_a.amp = NULL; 3333 vn_a.flags = flags & ~MAP_TYPE; 3334 vn_a.szc = 0; 3335 vn_a.lgrp_mem_policy_flags = 0; 3336 3337 error = as_map(as, *addrp, len, segvn_create, &vn_a); 3338 3339 as_rangeunlock(as); 3340 ZFS_EXIT(zfsvfs); 3341 return (error); 3342 } 3343 3344 /* ARGSUSED */ 3345 static int 3346 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3347 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3348 { 3349 uint64_t pages = btopr(len); 3350 3351 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 3352 return (0); 3353 } 3354 3355 /* 3356 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 3357 * more accurate mtime for the associated file. Since we don't have a way of 3358 * detecting when the data was actually modified, we have to resort to 3359 * heuristics. If an explicit msync() is done, then we mark the mtime when the 3360 * last page is pushed. The problem occurs when the msync() call is omitted, 3361 * which by far the most common case: 3362 * 3363 * open() 3364 * mmap() 3365 * <modify memory> 3366 * munmap() 3367 * close() 3368 * <time lapse> 3369 * putpage() via fsflush 3370 * 3371 * If we wait until fsflush to come along, we can have a modification time that 3372 * is some arbitrary point in the future. In order to prevent this in the 3373 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 3374 * torn down. 3375 */ 3376 /* ARGSUSED */ 3377 static int 3378 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3379 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 3380 { 3381 uint64_t pages = btopr(len); 3382 3383 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 3384 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 3385 3386 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 3387 vn_has_cached_data(vp)) 3388 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr); 3389 3390 return (0); 3391 } 3392 3393 /* 3394 * Free or allocate space in a file. Currently, this function only 3395 * supports the `F_FREESP' command. However, this command is somewhat 3396 * misnamed, as its functionality includes the ability to allocate as 3397 * well as free space. 3398 * 3399 * IN: vp - vnode of file to free data in. 3400 * cmd - action to take (only F_FREESP supported). 3401 * bfp - section of file to free/alloc. 3402 * flag - current file open mode flags. 3403 * offset - current file offset. 3404 * cr - credentials of caller [UNUSED]. 3405 * 3406 * RETURN: 0 if success 3407 * error code if failure 3408 * 3409 * Timestamps: 3410 * vp - ctime|mtime updated 3411 */ 3412 /* ARGSUSED */ 3413 static int 3414 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 3415 offset_t offset, cred_t *cr, caller_context_t *ct) 3416 { 3417 znode_t *zp = VTOZ(vp); 3418 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3419 uint64_t off, len; 3420 int error; 3421 3422 ZFS_ENTER(zfsvfs); 3423 3424 top: 3425 if (cmd != F_FREESP) { 3426 ZFS_EXIT(zfsvfs); 3427 return (EINVAL); 3428 } 3429 3430 if (error = convoff(vp, bfp, 0, offset)) { 3431 ZFS_EXIT(zfsvfs); 3432 return (error); 3433 } 3434 3435 if (bfp->l_len < 0) { 3436 ZFS_EXIT(zfsvfs); 3437 return (EINVAL); 3438 } 3439 3440 off = bfp->l_start; 3441 len = bfp->l_len; /* 0 means from off to end of file */ 3442 3443 do { 3444 error = zfs_freesp(zp, off, len, flag, TRUE); 3445 /* NB: we already did dmu_tx_wait() if necessary */ 3446 } while (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 3447 3448 ZFS_EXIT(zfsvfs); 3449 return (error); 3450 } 3451 3452 static int 3453 zfs_fid(vnode_t *vp, fid_t *fidp) 3454 { 3455 znode_t *zp = VTOZ(vp); 3456 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3457 uint32_t gen = (uint32_t)zp->z_phys->zp_gen; 3458 uint64_t object = zp->z_id; 3459 zfid_short_t *zfid; 3460 int size, i; 3461 3462 ZFS_ENTER(zfsvfs); 3463 3464 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 3465 if (fidp->fid_len < size) { 3466 fidp->fid_len = size; 3467 ZFS_EXIT(zfsvfs); 3468 return (ENOSPC); 3469 } 3470 3471 zfid = (zfid_short_t *)fidp; 3472 3473 zfid->zf_len = size; 3474 3475 for (i = 0; i < sizeof (zfid->zf_object); i++) 3476 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 3477 3478 /* Must have a non-zero generation number to distinguish from .zfs */ 3479 if (gen == 0) 3480 gen = 1; 3481 for (i = 0; i < sizeof (zfid->zf_gen); i++) 3482 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 3483 3484 if (size == LONG_FID_LEN) { 3485 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 3486 zfid_long_t *zlfid; 3487 3488 zlfid = (zfid_long_t *)fidp; 3489 3490 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 3491 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 3492 3493 /* XXX - this should be the generation number for the objset */ 3494 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 3495 zlfid->zf_setgen[i] = 0; 3496 } 3497 3498 ZFS_EXIT(zfsvfs); 3499 return (0); 3500 } 3501 3502 static int 3503 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 3504 { 3505 znode_t *zp, *xzp; 3506 zfsvfs_t *zfsvfs; 3507 zfs_dirlock_t *dl; 3508 int error; 3509 3510 switch (cmd) { 3511 case _PC_LINK_MAX: 3512 *valp = ULONG_MAX; 3513 return (0); 3514 3515 case _PC_FILESIZEBITS: 3516 *valp = 64; 3517 return (0); 3518 3519 case _PC_XATTR_EXISTS: 3520 zp = VTOZ(vp); 3521 zfsvfs = zp->z_zfsvfs; 3522 ZFS_ENTER(zfsvfs); 3523 *valp = 0; 3524 error = zfs_dirent_lock(&dl, zp, "", &xzp, 3525 ZXATTR | ZEXISTS | ZSHARED); 3526 if (error == 0) { 3527 zfs_dirent_unlock(dl); 3528 if (!zfs_dirempty(xzp)) 3529 *valp = 1; 3530 VN_RELE(ZTOV(xzp)); 3531 } else if (error == ENOENT) { 3532 /* 3533 * If there aren't extended attributes, it's the 3534 * same as having zero of them. 3535 */ 3536 error = 0; 3537 } 3538 ZFS_EXIT(zfsvfs); 3539 return (error); 3540 3541 case _PC_ACL_ENABLED: 3542 *valp = _ACL_ACE_ENABLED; 3543 return (0); 3544 3545 case _PC_MIN_HOLE_SIZE: 3546 *valp = (ulong_t)SPA_MINBLOCKSIZE; 3547 return (0); 3548 3549 default: 3550 return (fs_pathconf(vp, cmd, valp, cr)); 3551 } 3552 } 3553 3554 /*ARGSUSED*/ 3555 static int 3556 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3557 { 3558 znode_t *zp = VTOZ(vp); 3559 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3560 int error; 3561 3562 ZFS_ENTER(zfsvfs); 3563 error = zfs_getacl(zp, vsecp, cr); 3564 ZFS_EXIT(zfsvfs); 3565 3566 return (error); 3567 } 3568 3569 /*ARGSUSED*/ 3570 static int 3571 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3572 { 3573 znode_t *zp = VTOZ(vp); 3574 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3575 int error; 3576 3577 ZFS_ENTER(zfsvfs); 3578 error = zfs_setacl(zp, vsecp, cr); 3579 ZFS_EXIT(zfsvfs); 3580 return (error); 3581 } 3582 3583 /* 3584 * Predeclare these here so that the compiler assumes that 3585 * this is an "old style" function declaration that does 3586 * not include arguments => we won't get type mismatch errors 3587 * in the initializations that follow. 3588 */ 3589 static int zfs_inval(); 3590 static int zfs_isdir(); 3591 3592 static int 3593 zfs_inval() 3594 { 3595 return (EINVAL); 3596 } 3597 3598 static int 3599 zfs_isdir() 3600 { 3601 return (EISDIR); 3602 } 3603 /* 3604 * Directory vnode operations template 3605 */ 3606 vnodeops_t *zfs_dvnodeops; 3607 const fs_operation_def_t zfs_dvnodeops_template[] = { 3608 VOPNAME_OPEN, zfs_open, 3609 VOPNAME_CLOSE, zfs_close, 3610 VOPNAME_READ, zfs_isdir, 3611 VOPNAME_WRITE, zfs_isdir, 3612 VOPNAME_IOCTL, zfs_ioctl, 3613 VOPNAME_GETATTR, zfs_getattr, 3614 VOPNAME_SETATTR, zfs_setattr, 3615 VOPNAME_ACCESS, zfs_access, 3616 VOPNAME_LOOKUP, zfs_lookup, 3617 VOPNAME_CREATE, zfs_create, 3618 VOPNAME_REMOVE, zfs_remove, 3619 VOPNAME_LINK, zfs_link, 3620 VOPNAME_RENAME, zfs_rename, 3621 VOPNAME_MKDIR, zfs_mkdir, 3622 VOPNAME_RMDIR, zfs_rmdir, 3623 VOPNAME_READDIR, zfs_readdir, 3624 VOPNAME_SYMLINK, zfs_symlink, 3625 VOPNAME_FSYNC, zfs_fsync, 3626 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3627 VOPNAME_FID, zfs_fid, 3628 VOPNAME_SEEK, zfs_seek, 3629 VOPNAME_PATHCONF, zfs_pathconf, 3630 VOPNAME_GETSECATTR, zfs_getsecattr, 3631 VOPNAME_SETSECATTR, zfs_setsecattr, 3632 NULL, NULL 3633 }; 3634 3635 /* 3636 * Regular file vnode operations template 3637 */ 3638 vnodeops_t *zfs_fvnodeops; 3639 const fs_operation_def_t zfs_fvnodeops_template[] = { 3640 VOPNAME_OPEN, zfs_open, 3641 VOPNAME_CLOSE, zfs_close, 3642 VOPNAME_READ, zfs_read, 3643 VOPNAME_WRITE, zfs_write, 3644 VOPNAME_IOCTL, zfs_ioctl, 3645 VOPNAME_GETATTR, zfs_getattr, 3646 VOPNAME_SETATTR, zfs_setattr, 3647 VOPNAME_ACCESS, zfs_access, 3648 VOPNAME_LOOKUP, zfs_lookup, 3649 VOPNAME_RENAME, zfs_rename, 3650 VOPNAME_FSYNC, zfs_fsync, 3651 VOPNAME_INACTIVE, (fs_generic_func_p)zfs_inactive, 3652 VOPNAME_FID, zfs_fid, 3653 VOPNAME_SEEK, zfs_seek, 3654 VOPNAME_FRLOCK, zfs_frlock, 3655 VOPNAME_SPACE, zfs_space, 3656 VOPNAME_GETPAGE, zfs_getpage, 3657 VOPNAME_PUTPAGE, zfs_putpage, 3658 VOPNAME_MAP, (fs_generic_func_p) zfs_map, 3659 VOPNAME_ADDMAP, (fs_generic_func_p) zfs_addmap, 3660 VOPNAME_DELMAP, zfs_delmap, 3661 VOPNAME_PATHCONF, zfs_pathconf, 3662 VOPNAME_GETSECATTR, zfs_getsecattr, 3663 VOPNAME_SETSECATTR, zfs_setsecattr, 3664 VOPNAME_VNEVENT, fs_vnevent_support, 3665 NULL, NULL 3666 }; 3667 3668 /* 3669 * Symbolic link vnode operations template 3670 */ 3671 vnodeops_t *zfs_symvnodeops; 3672 const fs_operation_def_t zfs_symvnodeops_template[] = { 3673 VOPNAME_GETATTR, zfs_getattr, 3674 VOPNAME_SETATTR, zfs_setattr, 3675 VOPNAME_ACCESS, zfs_access, 3676 VOPNAME_RENAME, zfs_rename, 3677 VOPNAME_READLINK, zfs_readlink, 3678 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3679 VOPNAME_FID, zfs_fid, 3680 VOPNAME_PATHCONF, zfs_pathconf, 3681 VOPNAME_VNEVENT, fs_vnevent_support, 3682 NULL, NULL 3683 }; 3684 3685 /* 3686 * Extended attribute directory vnode operations template 3687 * This template is identical to the directory vnodes 3688 * operation template except for restricted operations: 3689 * VOP_MKDIR() 3690 * VOP_SYMLINK() 3691 * Note that there are other restrictions embedded in: 3692 * zfs_create() - restrict type to VREG 3693 * zfs_link() - no links into/out of attribute space 3694 * zfs_rename() - no moves into/out of attribute space 3695 */ 3696 vnodeops_t *zfs_xdvnodeops; 3697 const fs_operation_def_t zfs_xdvnodeops_template[] = { 3698 VOPNAME_OPEN, zfs_open, 3699 VOPNAME_CLOSE, zfs_close, 3700 VOPNAME_IOCTL, zfs_ioctl, 3701 VOPNAME_GETATTR, zfs_getattr, 3702 VOPNAME_SETATTR, zfs_setattr, 3703 VOPNAME_ACCESS, zfs_access, 3704 VOPNAME_LOOKUP, zfs_lookup, 3705 VOPNAME_CREATE, zfs_create, 3706 VOPNAME_REMOVE, zfs_remove, 3707 VOPNAME_LINK, zfs_link, 3708 VOPNAME_RENAME, zfs_rename, 3709 VOPNAME_MKDIR, zfs_inval, 3710 VOPNAME_RMDIR, zfs_rmdir, 3711 VOPNAME_READDIR, zfs_readdir, 3712 VOPNAME_SYMLINK, zfs_inval, 3713 VOPNAME_FSYNC, zfs_fsync, 3714 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3715 VOPNAME_FID, zfs_fid, 3716 VOPNAME_SEEK, zfs_seek, 3717 VOPNAME_PATHCONF, zfs_pathconf, 3718 VOPNAME_GETSECATTR, zfs_getsecattr, 3719 VOPNAME_SETSECATTR, zfs_setsecattr, 3720 VOPNAME_VNEVENT, fs_vnevent_support, 3721 NULL, NULL 3722 }; 3723 3724 /* 3725 * Error vnode operations template 3726 */ 3727 vnodeops_t *zfs_evnodeops; 3728 const fs_operation_def_t zfs_evnodeops_template[] = { 3729 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3730 VOPNAME_PATHCONF, zfs_pathconf, 3731 NULL, NULL 3732 }; 3733