1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vnode.h> 36 #include <sys/file.h> 37 #include <sys/stat.h> 38 #include <sys/kmem.h> 39 #include <sys/taskq.h> 40 #include <sys/uio.h> 41 #include <sys/vmsystm.h> 42 #include <sys/atomic.h> 43 #include <vm/seg_vn.h> 44 #include <vm/pvn.h> 45 #include <vm/as.h> 46 #include <sys/mman.h> 47 #include <sys/pathname.h> 48 #include <sys/cmn_err.h> 49 #include <sys/errno.h> 50 #include <sys/unistd.h> 51 #include <sys/zfs_vfsops.h> 52 #include <sys/zfs_dir.h> 53 #include <sys/zfs_acl.h> 54 #include <sys/zfs_ioctl.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/dmu.h> 57 #include <sys/spa.h> 58 #include <sys/txg.h> 59 #include <sys/dbuf.h> 60 #include <sys/zap.h> 61 #include <sys/dirent.h> 62 #include <sys/policy.h> 63 #include <sys/sunddi.h> 64 #include <sys/filio.h> 65 #include "fs/fs_subr.h" 66 #include <sys/zfs_ctldir.h> 67 #include <sys/dnlc.h> 68 #include <sys/zfs_rlock.h> 69 70 /* 71 * Programming rules. 72 * 73 * Each vnode op performs some logical unit of work. To do this, the ZPL must 74 * properly lock its in-core state, create a DMU transaction, do the work, 75 * record this work in the intent log (ZIL), commit the DMU transaction, 76 * and wait the the intent log to commit if it's is a synchronous operation. 77 * Morover, the vnode ops must work in both normal and log replay context. 78 * The ordering of events is important to avoid deadlocks and references 79 * to freed memory. The example below illustrates the following Big Rules: 80 * 81 * (1) A check must be made in each zfs thread for a mounted file system. 82 * This is done avoiding races using ZFS_ENTER(zfsvfs). 83 * A ZFS_EXIT(zfsvfs) is needed before all returns. 84 * 85 * (2) VN_RELE() should always be the last thing except for zil_commit() 86 * and ZFS_EXIT(). This is for 3 reasons: 87 * First, if it's the last reference, the vnode/znode 88 * can be freed, so the zp may point to freed memory. Second, the last 89 * reference will call zfs_zinactive(), which may induce a lot of work -- 90 * pushing cached pages (which acquires range locks) and syncing out 91 * cached atime changes. Third, zfs_zinactive() may require a new tx, 92 * which could deadlock the system if you were already holding one. 93 * 94 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 95 * as they can span dmu_tx_assign() calls. 96 * 97 * (4) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 98 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 99 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 100 * This is critical because we don't want to block while holding locks. 101 * Note, in particular, that if a lock is sometimes acquired before 102 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 103 * use a non-blocking assign can deadlock the system. The scenario: 104 * 105 * Thread A has grabbed a lock before calling dmu_tx_assign(). 106 * Thread B is in an already-assigned tx, and blocks for this lock. 107 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 108 * forever, because the previous txg can't quiesce until B's tx commits. 109 * 110 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 111 * then drop all locks, call txg_wait_open(), and try again. 112 * 113 * (5) If the operation succeeded, generate the intent log entry for it 114 * before dropping locks. This ensures that the ordering of events 115 * in the intent log matches the order in which they actually occurred. 116 * 117 * (6) At the end of each vnode op, the DMU tx must always commit, 118 * regardless of whether there were any errors. 119 * 120 * (7) After dropping all locks, invoke zil_commit(zilog, seq, ioflag) 121 * to ensure that synchronous semantics are provided when necessary. 122 * 123 * In general, this is how things should be ordered in each vnode op: 124 * 125 * ZFS_ENTER(zfsvfs); // exit if unmounted 126 * top: 127 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 128 * rw_enter(...); // grab any other locks you need 129 * tx = dmu_tx_create(...); // get DMU tx 130 * dmu_tx_hold_*(); // hold each object you might modify 131 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 132 * if (error) { 133 * dmu_tx_abort(tx); // abort DMU tx 134 * rw_exit(...); // drop locks 135 * zfs_dirent_unlock(dl); // unlock directory entry 136 * VN_RELE(...); // release held vnodes 137 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 138 * txg_wait_open(dmu_objset_pool(os), 0); 139 * goto top; 140 * } 141 * ZFS_EXIT(zfsvfs); // finished in zfs 142 * return (error); // really out of space 143 * } 144 * error = do_real_work(); // do whatever this VOP does 145 * if (error == 0) 146 * seq = zfs_log_*(...); // on success, make ZIL entry 147 * dmu_tx_commit(tx); // commit DMU tx -- error or not 148 * rw_exit(...); // drop locks 149 * zfs_dirent_unlock(dl); // unlock directory entry 150 * VN_RELE(...); // release held vnodes 151 * zil_commit(zilog, seq, ioflag); // synchronous when necessary 152 * ZFS_EXIT(zfsvfs); // finished in zfs 153 * return (error); // done, report error 154 */ 155 156 /* ARGSUSED */ 157 static int 158 zfs_open(vnode_t **vpp, int flag, cred_t *cr) 159 { 160 return (0); 161 } 162 163 /* ARGSUSED */ 164 static int 165 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 166 { 167 /* 168 * Clean up any locks held by this process on the vp. 169 */ 170 cleanlocks(vp, ddi_get_pid(), 0); 171 cleanshares(vp, ddi_get_pid()); 172 173 return (0); 174 } 175 176 /* 177 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 178 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 179 */ 180 static int 181 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 182 { 183 znode_t *zp = VTOZ(vp); 184 uint64_t noff = (uint64_t)*off; /* new offset */ 185 uint64_t file_sz; 186 int error; 187 boolean_t hole; 188 189 file_sz = zp->z_phys->zp_size; 190 if (noff >= file_sz) { 191 return (ENXIO); 192 } 193 194 if (cmd == _FIO_SEEK_HOLE) 195 hole = B_TRUE; 196 else 197 hole = B_FALSE; 198 199 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 200 201 /* end of file? */ 202 if ((error == ESRCH) || (noff > file_sz)) { 203 /* 204 * Handle the virtual hole at the end of file. 205 */ 206 if (hole) { 207 *off = file_sz; 208 return (0); 209 } 210 return (ENXIO); 211 } 212 213 if (noff < *off) 214 return (error); 215 *off = noff; 216 return (error); 217 } 218 219 /* ARGSUSED */ 220 static int 221 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 222 int *rvalp) 223 { 224 offset_t off; 225 int error; 226 zfsvfs_t *zfsvfs; 227 228 switch (com) { 229 case _FIOFFS: 230 return (zfs_sync(vp->v_vfsp, 0, cred)); 231 232 /* 233 * The following two ioctls are used by bfu. Faking out, 234 * necessary to avoid bfu errors. 235 */ 236 case _FIOGDIO: 237 case _FIOSDIO: 238 return (0); 239 240 case _FIO_SEEK_DATA: 241 case _FIO_SEEK_HOLE: 242 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 243 return (EFAULT); 244 245 zfsvfs = VTOZ(vp)->z_zfsvfs; 246 ZFS_ENTER(zfsvfs); 247 248 /* offset parameter is in/out */ 249 error = zfs_holey(vp, com, &off); 250 ZFS_EXIT(zfsvfs); 251 if (error) 252 return (error); 253 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 254 return (EFAULT); 255 return (0); 256 } 257 return (ENOTTY); 258 } 259 260 /* 261 * When a file is memory mapped, we must keep the IO data synchronized 262 * between the DMU cache and the memory mapped pages. What this means: 263 * 264 * On Write: If we find a memory mapped page, we write to *both* 265 * the page and the dmu buffer. 266 * 267 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 268 * the file is memory mapped. 269 */ 270 static int 271 mappedwrite(vnode_t *vp, uint64_t woff, int nbytes, uio_t *uio, dmu_tx_t *tx) 272 { 273 znode_t *zp = VTOZ(vp); 274 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 275 int64_t start, off; 276 int len = nbytes; 277 int error = 0; 278 279 start = uio->uio_loffset; 280 off = start & PAGEOFFSET; 281 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 282 page_t *pp; 283 uint64_t bytes = MIN(PAGESIZE - off, len); 284 285 /* 286 * We don't want a new page to "appear" in the middle of 287 * the file update (because it may not get the write 288 * update data), so we grab a lock to block 289 * zfs_getpage(). 290 */ 291 rw_enter(&zp->z_map_lock, RW_WRITER); 292 if (pp = page_lookup(vp, start, SE_SHARED)) { 293 caddr_t va; 294 295 rw_exit(&zp->z_map_lock); 296 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 297 error = uiomove(va+off, bytes, UIO_WRITE, uio); 298 if (error == 0) { 299 dmu_write(zfsvfs->z_os, zp->z_id, 300 woff, bytes, va+off, tx); 301 } 302 ppmapout(va); 303 page_unlock(pp); 304 } else { 305 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 306 woff, bytes, uio, tx); 307 rw_exit(&zp->z_map_lock); 308 } 309 len -= bytes; 310 woff += bytes; 311 off = 0; 312 if (error) 313 break; 314 } 315 return (error); 316 } 317 318 /* 319 * When a file is memory mapped, we must keep the IO data synchronized 320 * between the DMU cache and the memory mapped pages. What this means: 321 * 322 * On Read: We "read" preferentially from memory mapped pages, 323 * else we default from the dmu buffer. 324 * 325 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 326 * the file is memory mapped. 327 */ 328 static int 329 mappedread(vnode_t *vp, char *addr, int nbytes, uio_t *uio) 330 { 331 int64_t start, off, bytes; 332 int len = nbytes; 333 int error = 0; 334 335 start = uio->uio_loffset; 336 off = start & PAGEOFFSET; 337 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 338 page_t *pp; 339 340 bytes = MIN(PAGESIZE - off, len); 341 if (pp = page_lookup(vp, start, SE_SHARED)) { 342 caddr_t va; 343 344 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 345 error = uiomove(va + off, bytes, UIO_READ, uio); 346 ppmapout(va); 347 page_unlock(pp); 348 } else { 349 /* XXX use dmu_read here? */ 350 error = uiomove(addr, bytes, UIO_READ, uio); 351 } 352 len -= bytes; 353 addr += bytes; 354 off = 0; 355 if (error) 356 break; 357 } 358 return (error); 359 } 360 361 uint_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 362 363 /* 364 * Read bytes from specified file into supplied buffer. 365 * 366 * IN: vp - vnode of file to be read from. 367 * uio - structure supplying read location, range info, 368 * and return buffer. 369 * ioflag - SYNC flags; used to provide FRSYNC semantics. 370 * cr - credentials of caller. 371 * 372 * OUT: uio - updated offset and range, buffer filled. 373 * 374 * RETURN: 0 if success 375 * error code if failure 376 * 377 * Side Effects: 378 * vp - atime updated if byte count > 0 379 */ 380 /* ARGSUSED */ 381 static int 382 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 383 { 384 znode_t *zp = VTOZ(vp); 385 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 386 uint64_t delta; 387 ssize_t n, size, cnt, ndone; 388 int error, i, numbufs; 389 dmu_buf_t *dbp, **dbpp; 390 rl_t *rl; 391 392 ZFS_ENTER(zfsvfs); 393 394 /* 395 * Validate file offset 396 */ 397 if (uio->uio_loffset < (offset_t)0) { 398 ZFS_EXIT(zfsvfs); 399 return (EINVAL); 400 } 401 402 /* 403 * Fasttrack empty reads 404 */ 405 if (uio->uio_resid == 0) { 406 ZFS_EXIT(zfsvfs); 407 return (0); 408 } 409 410 /* 411 * Check for mandatory locks 412 */ 413 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 414 if (error = chklock(vp, FREAD, 415 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 416 ZFS_EXIT(zfsvfs); 417 return (error); 418 } 419 } 420 421 /* 422 * If we're in FRSYNC mode, sync out this znode before reading it. 423 */ 424 zil_commit(zfsvfs->z_log, zp->z_last_itx, ioflag & FRSYNC); 425 426 /* 427 * Lock the range against changes. 428 */ 429 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 430 431 /* 432 * If we are reading past end-of-file we can skip 433 * to the end; but we might still need to set atime. 434 */ 435 if (uio->uio_loffset >= zp->z_phys->zp_size) { 436 cnt = 0; 437 error = 0; 438 goto out; 439 } 440 441 cnt = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 442 443 for (ndone = 0; ndone < cnt; ndone += zfs_read_chunk_size) { 444 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 445 n = MIN(zfs_read_chunk_size, 446 zp->z_phys->zp_size - uio->uio_loffset); 447 n = MIN(n, cnt); 448 error = dmu_buf_hold_array(zfsvfs->z_os, zp->z_id, 449 uio->uio_loffset, n, TRUE, FTAG, &numbufs, &dbpp); 450 if (error) 451 goto out; 452 /* 453 * Compute the adjustment to align the dmu buffers 454 * with the uio buffer. 455 */ 456 delta = uio->uio_loffset - dbpp[0]->db_offset; 457 458 for (i = 0; i < numbufs; i++) { 459 if (n < 0) 460 break; 461 dbp = dbpp[i]; 462 size = dbp->db_size - delta; 463 /* 464 * XXX -- this is correct, but may be suboptimal. 465 * If the pages are all clean, we don't need to 466 * go through mappedread(). Maybe the VMODSORT 467 * stuff can help us here. 468 */ 469 if (vn_has_cached_data(vp)) { 470 error = mappedread(vp, (caddr_t)dbp->db_data + 471 delta, (n < size ? n : size), uio); 472 } else { 473 error = uiomove((caddr_t)dbp->db_data + delta, 474 (n < size ? n : size), UIO_READ, uio); 475 } 476 if (error) { 477 dmu_buf_rele_array(dbpp, numbufs, FTAG); 478 goto out; 479 } 480 n -= dbp->db_size; 481 if (delta) { 482 n += delta; 483 delta = 0; 484 } 485 } 486 dmu_buf_rele_array(dbpp, numbufs, FTAG); 487 } 488 out: 489 zfs_range_unlock(zp, rl); 490 491 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 492 ZFS_EXIT(zfsvfs); 493 return (error); 494 } 495 496 /* 497 * Fault in the pages of the first n bytes specified by the uio structure. 498 * 1 byte in each page is touched and the uio struct is unmodified. 499 * Any error will exit this routine as this is only a best 500 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 501 */ 502 static void 503 zfs_prefault_write(ssize_t n, struct uio *uio) 504 { 505 struct iovec *iov; 506 ulong_t cnt, incr; 507 caddr_t p; 508 uint8_t tmp; 509 510 iov = uio->uio_iov; 511 512 while (n) { 513 cnt = MIN(iov->iov_len, n); 514 if (cnt == 0) { 515 /* empty iov entry */ 516 iov++; 517 continue; 518 } 519 n -= cnt; 520 /* 521 * touch each page in this segment. 522 */ 523 p = iov->iov_base; 524 while (cnt) { 525 switch (uio->uio_segflg) { 526 case UIO_USERSPACE: 527 case UIO_USERISPACE: 528 if (fuword8(p, &tmp)) 529 return; 530 break; 531 case UIO_SYSSPACE: 532 if (kcopy(p, &tmp, 1)) 533 return; 534 break; 535 } 536 incr = MIN(cnt, PAGESIZE); 537 p += incr; 538 cnt -= incr; 539 } 540 /* 541 * touch the last byte in case it straddles a page. 542 */ 543 p--; 544 switch (uio->uio_segflg) { 545 case UIO_USERSPACE: 546 case UIO_USERISPACE: 547 if (fuword8(p, &tmp)) 548 return; 549 break; 550 case UIO_SYSSPACE: 551 if (kcopy(p, &tmp, 1)) 552 return; 553 break; 554 } 555 iov++; 556 } 557 } 558 559 /* 560 * Write the bytes to a file. 561 * 562 * IN: vp - vnode of file to be written to. 563 * uio - structure supplying write location, range info, 564 * and data buffer. 565 * ioflag - FAPPEND flag set if in append mode. 566 * cr - credentials of caller. 567 * 568 * OUT: uio - updated offset and range. 569 * 570 * RETURN: 0 if success 571 * error code if failure 572 * 573 * Timestamps: 574 * vp - ctime|mtime updated if byte count > 0 575 */ 576 /* ARGSUSED */ 577 static int 578 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 579 { 580 znode_t *zp = VTOZ(vp); 581 rlim64_t limit = uio->uio_llimit; 582 ssize_t start_resid = uio->uio_resid; 583 ssize_t tx_bytes; 584 uint64_t end_size; 585 dmu_tx_t *tx; 586 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 587 zilog_t *zilog = zfsvfs->z_log; 588 uint64_t seq = 0; 589 offset_t woff; 590 ssize_t n, nbytes; 591 rl_t *rl; 592 int max_blksz = zfsvfs->z_max_blksz; 593 int error; 594 595 /* 596 * Fasttrack empty write 597 */ 598 n = start_resid; 599 if (n == 0) 600 return (0); 601 602 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 603 limit = MAXOFFSET_T; 604 605 ZFS_ENTER(zfsvfs); 606 607 /* 608 * Pre-fault the initial pages to ensure slow (eg NFS) pages 609 * don't hold up txg. 610 */ 611 zfs_prefault_write(MIN(start_resid, SPA_MAXBLOCKSIZE), uio); 612 613 /* 614 * If in append mode, set the io offset pointer to eof. 615 */ 616 if (ioflag & FAPPEND) { 617 /* 618 * Range lock for a file append: 619 * The value for the start of range will be determined by 620 * zfs_range_lock() (to guarantee append semantics). 621 * If this write will cause the block size to increase, 622 * zfs_range_lock() will lock the entire file, so we must 623 * later reduce the range after we grow the block size. 624 */ 625 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 626 if (rl->r_len == UINT64_MAX) { 627 /* overlocked, zp_size can't change */ 628 woff = uio->uio_loffset = zp->z_phys->zp_size; 629 } else { 630 woff = uio->uio_loffset = rl->r_off; 631 } 632 } else { 633 woff = uio->uio_loffset; 634 /* 635 * Validate file offset 636 */ 637 if (woff < 0) { 638 ZFS_EXIT(zfsvfs); 639 return (EINVAL); 640 } 641 642 /* 643 * If we need to grow the block size then zfs_range_lock() 644 * will lock a wider range than we request here. 645 * Later after growing the block size we reduce the range. 646 */ 647 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 648 } 649 650 if (woff >= limit) { 651 error = EFBIG; 652 goto no_tx_done; 653 } 654 655 if ((woff + n) > limit || woff > (limit - n)) 656 n = limit - woff; 657 658 /* 659 * Check for mandatory locks 660 */ 661 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 662 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) 663 goto no_tx_done; 664 end_size = MAX(zp->z_phys->zp_size, woff + n); 665 top: 666 tx = dmu_tx_create(zfsvfs->z_os); 667 dmu_tx_hold_bonus(tx, zp->z_id); 668 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 669 error = dmu_tx_assign(tx, zfsvfs->z_assign); 670 if (error) { 671 dmu_tx_abort(tx); 672 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 673 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 674 goto top; 675 } 676 goto no_tx_done; 677 } 678 679 /* 680 * If zfs_range_lock() over-locked we grow the blocksize 681 * and then reduce the lock range. 682 */ 683 if (rl->r_len == UINT64_MAX) { 684 uint64_t new_blksz; 685 686 if (zp->z_blksz > max_blksz) { 687 ASSERT(!ISP2(zp->z_blksz)); 688 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 689 } else { 690 new_blksz = MIN(end_size, max_blksz); 691 } 692 zfs_grow_blocksize(zp, new_blksz, tx); 693 zfs_range_reduce(zp, rl, woff, n); 694 } 695 696 /* 697 * The file data does not fit in the znode "cache", so we 698 * will be writing to the file block data buffers. 699 * Each buffer will be written in a separate transaction; 700 * this keeps the intent log records small and allows us 701 * to do more fine-grained space accounting. 702 */ 703 while (n > 0) { 704 /* 705 * XXX - should we really limit each write to z_max_blksz? 706 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 707 */ 708 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 709 rw_enter(&zp->z_map_lock, RW_READER); 710 711 tx_bytes = uio->uio_resid; 712 if (vn_has_cached_data(vp)) { 713 rw_exit(&zp->z_map_lock); 714 error = mappedwrite(vp, woff, nbytes, uio, tx); 715 } else { 716 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 717 woff, nbytes, uio, tx); 718 rw_exit(&zp->z_map_lock); 719 } 720 tx_bytes -= uio->uio_resid; 721 722 if (error) { 723 /* XXX - do we need to "clean up" the dmu buffer? */ 724 break; 725 } 726 727 ASSERT(tx_bytes == nbytes); 728 729 /* 730 * Clear Set-UID/Set-GID bits on successful write if not 731 * privileged and at least one of the excute bits is set. 732 * 733 * It would be nice to to this after all writes have 734 * been done, but that would still expose the ISUID/ISGID 735 * to another app after the partial write is committed. 736 */ 737 738 mutex_enter(&zp->z_acl_lock); 739 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 740 (S_IXUSR >> 6))) != 0 && 741 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 742 secpolicy_vnode_setid_retain(cr, 743 (zp->z_phys->zp_mode & S_ISUID) != 0 && 744 zp->z_phys->zp_uid == 0) != 0) { 745 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 746 } 747 mutex_exit(&zp->z_acl_lock); 748 749 n -= nbytes; 750 if (n <= 0) 751 break; 752 753 /* 754 * We have more work ahead of us, so wrap up this transaction 755 * and start another. Exact same logic as tx_done below. 756 */ 757 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 758 dmu_buf_will_dirty(zp->z_dbuf, tx); 759 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 760 uio->uio_loffset); 761 } 762 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 763 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 764 ioflag, uio); 765 dmu_tx_commit(tx); 766 767 /* Pre-fault the next set of pages */ 768 zfs_prefault_write(MIN(n, SPA_MAXBLOCKSIZE), uio); 769 770 /* 771 * Start another transaction. 772 */ 773 woff = uio->uio_loffset; 774 tx = dmu_tx_create(zfsvfs->z_os); 775 dmu_tx_hold_bonus(tx, zp->z_id); 776 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 777 error = dmu_tx_assign(tx, zfsvfs->z_assign); 778 if (error) { 779 dmu_tx_abort(tx); 780 if (error == ERESTART && 781 zfsvfs->z_assign == TXG_NOWAIT) { 782 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 783 goto top; 784 } 785 goto no_tx_done; 786 } 787 } 788 789 tx_done: 790 791 if (tx_bytes != 0) { 792 /* 793 * Update the file size if it has changed; account 794 * for possible concurrent updates. 795 */ 796 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 797 dmu_buf_will_dirty(zp->z_dbuf, tx); 798 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 799 uio->uio_loffset); 800 } 801 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 802 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 803 ioflag, uio); 804 } 805 dmu_tx_commit(tx); 806 807 808 no_tx_done: 809 810 zfs_range_unlock(zp, rl); 811 812 /* 813 * If we're in replay mode, or we made no progress, return error. 814 * Otherwise, it's at least a partial write, so it's successful. 815 */ 816 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 817 ZFS_EXIT(zfsvfs); 818 return (error); 819 } 820 821 zil_commit(zilog, seq, ioflag & (FSYNC | FDSYNC)); 822 823 ZFS_EXIT(zfsvfs); 824 return (0); 825 } 826 827 /* 828 * Get data to generate a TX_WRITE intent log record. 829 */ 830 int 831 zfs_get_data(void *arg, lr_write_t *lr, char *buf) 832 { 833 zfsvfs_t *zfsvfs = arg; 834 objset_t *os = zfsvfs->z_os; 835 znode_t *zp; 836 uint64_t off = lr->lr_offset; 837 rl_t *rl; 838 int dlen = lr->lr_length; /* length of user data */ 839 int error = 0; 840 841 ASSERT(dlen != 0); 842 843 /* 844 * Nothing to do if the file has been removed 845 */ 846 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 847 return (ENOENT); 848 if (zp->z_reap) { 849 VN_RELE(ZTOV(zp)); 850 return (ENOENT); 851 } 852 853 /* 854 * Write records come in two flavors: immediate and indirect. 855 * For small writes it's cheaper to store the data with the 856 * log record (immediate); for large writes it's cheaper to 857 * sync the data and get a pointer to it (indirect) so that 858 * we don't have to write the data twice. 859 */ 860 if (buf != NULL) { /* immediate write */ 861 dmu_buf_t *db; 862 863 rl = zfs_range_lock(zp, off, dlen, RL_READER); 864 /* test for truncation needs to be done while range locked */ 865 if (off >= zp->z_phys->zp_size) { 866 error = ENOENT; 867 goto out; 868 } 869 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, off, FTAG, &db)); 870 bcopy((char *)db->db_data + off - db->db_offset, buf, dlen); 871 dmu_buf_rele(db, FTAG); 872 } else { /* indirect write */ 873 uint64_t boff; /* block starting offset */ 874 875 /* 876 * Have to lock the whole block to ensure when it's 877 * written out and it's checksum is being calculated 878 * that no one can change the data. We need to re-check 879 * blocksize after we get the lock in case it's changed! 880 */ 881 for (;;) { 882 if (ISP2(zp->z_blksz)) { 883 boff = P2ALIGN_TYPED(off, zp->z_blksz, 884 uint64_t); 885 } else { 886 boff = 0; 887 } 888 dlen = zp->z_blksz; 889 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 890 if (zp->z_blksz == dlen) 891 break; 892 zfs_range_unlock(zp, rl); 893 } 894 /* test for truncation needs to be done while range locked */ 895 if (off >= zp->z_phys->zp_size) { 896 error = ENOENT; 897 goto out; 898 } 899 txg_suspend(dmu_objset_pool(os)); 900 error = dmu_sync(os, lr->lr_foid, off, &lr->lr_blkoff, 901 &lr->lr_blkptr, lr->lr_common.lrc_txg); 902 txg_resume(dmu_objset_pool(os)); 903 } 904 out: 905 zfs_range_unlock(zp, rl); 906 VN_RELE(ZTOV(zp)); 907 return (error); 908 } 909 910 /*ARGSUSED*/ 911 static int 912 zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr) 913 { 914 znode_t *zp = VTOZ(vp); 915 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 916 int error; 917 918 ZFS_ENTER(zfsvfs); 919 error = zfs_zaccess_rwx(zp, mode, cr); 920 ZFS_EXIT(zfsvfs); 921 return (error); 922 } 923 924 /* 925 * Lookup an entry in a directory, or an extended attribute directory. 926 * If it exists, return a held vnode reference for it. 927 * 928 * IN: dvp - vnode of directory to search. 929 * nm - name of entry to lookup. 930 * pnp - full pathname to lookup [UNUSED]. 931 * flags - LOOKUP_XATTR set if looking for an attribute. 932 * rdir - root directory vnode [UNUSED]. 933 * cr - credentials of caller. 934 * 935 * OUT: vpp - vnode of located entry, NULL if not found. 936 * 937 * RETURN: 0 if success 938 * error code if failure 939 * 940 * Timestamps: 941 * NA 942 */ 943 /* ARGSUSED */ 944 static int 945 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 946 int flags, vnode_t *rdir, cred_t *cr) 947 { 948 949 znode_t *zdp = VTOZ(dvp); 950 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 951 int error; 952 953 ZFS_ENTER(zfsvfs); 954 955 *vpp = NULL; 956 957 if (flags & LOOKUP_XATTR) { 958 /* 959 * We don't allow recursive attributes.. 960 * Maybe someday we will. 961 */ 962 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 963 ZFS_EXIT(zfsvfs); 964 return (EINVAL); 965 } 966 967 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr)) { 968 ZFS_EXIT(zfsvfs); 969 return (error); 970 } 971 972 /* 973 * Do we have permission to get into attribute directory? 974 */ 975 976 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) { 977 VN_RELE(*vpp); 978 } 979 980 ZFS_EXIT(zfsvfs); 981 return (error); 982 } 983 984 if (dvp->v_type != VDIR) { 985 ZFS_EXIT(zfsvfs); 986 return (ENOTDIR); 987 } 988 989 /* 990 * Check accessibility of directory. 991 */ 992 993 if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) { 994 ZFS_EXIT(zfsvfs); 995 return (error); 996 } 997 998 if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) { 999 1000 /* 1001 * Convert device special files 1002 */ 1003 if (IS_DEVVP(*vpp)) { 1004 vnode_t *svp; 1005 1006 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1007 VN_RELE(*vpp); 1008 if (svp == NULL) 1009 error = ENOSYS; 1010 else 1011 *vpp = svp; 1012 } 1013 } 1014 1015 ZFS_EXIT(zfsvfs); 1016 return (error); 1017 } 1018 1019 /* 1020 * Attempt to create a new entry in a directory. If the entry 1021 * already exists, truncate the file if permissible, else return 1022 * an error. Return the vp of the created or trunc'd file. 1023 * 1024 * IN: dvp - vnode of directory to put new file entry in. 1025 * name - name of new file entry. 1026 * vap - attributes of new file. 1027 * excl - flag indicating exclusive or non-exclusive mode. 1028 * mode - mode to open file with. 1029 * cr - credentials of caller. 1030 * flag - large file flag [UNUSED]. 1031 * 1032 * OUT: vpp - vnode of created or trunc'd entry. 1033 * 1034 * RETURN: 0 if success 1035 * error code if failure 1036 * 1037 * Timestamps: 1038 * dvp - ctime|mtime updated if new entry created 1039 * vp - ctime|mtime always, atime if new 1040 */ 1041 /* ARGSUSED */ 1042 static int 1043 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1044 int mode, vnode_t **vpp, cred_t *cr, int flag) 1045 { 1046 znode_t *zp, *dzp = VTOZ(dvp); 1047 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1048 zilog_t *zilog = zfsvfs->z_log; 1049 uint64_t seq = 0; 1050 objset_t *os = zfsvfs->z_os; 1051 zfs_dirlock_t *dl; 1052 dmu_tx_t *tx; 1053 int error; 1054 uint64_t zoid; 1055 1056 ZFS_ENTER(zfsvfs); 1057 1058 top: 1059 *vpp = NULL; 1060 1061 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1062 vap->va_mode &= ~VSVTX; 1063 1064 if (*name == '\0') { 1065 /* 1066 * Null component name refers to the directory itself. 1067 */ 1068 VN_HOLD(dvp); 1069 zp = dzp; 1070 dl = NULL; 1071 error = 0; 1072 } else { 1073 /* possible VN_HOLD(zp) */ 1074 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) { 1075 if (strcmp(name, "..") == 0) 1076 error = EISDIR; 1077 ZFS_EXIT(zfsvfs); 1078 return (error); 1079 } 1080 } 1081 1082 zoid = zp ? zp->z_id : -1ULL; 1083 1084 if (zp == NULL) { 1085 /* 1086 * Create a new file object and update the directory 1087 * to reference it. 1088 */ 1089 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 1090 goto out; 1091 } 1092 1093 /* 1094 * We only support the creation of regular files in 1095 * extended attribute directories. 1096 */ 1097 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1098 (vap->va_type != VREG)) { 1099 error = EINVAL; 1100 goto out; 1101 } 1102 1103 tx = dmu_tx_create(os); 1104 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1105 dmu_tx_hold_bonus(tx, dzp->z_id); 1106 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1107 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1108 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1109 0, SPA_MAXBLOCKSIZE); 1110 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1111 if (error) { 1112 dmu_tx_abort(tx); 1113 zfs_dirent_unlock(dl); 1114 if (error == ERESTART && 1115 zfsvfs->z_assign == TXG_NOWAIT) { 1116 txg_wait_open(dmu_objset_pool(os), 0); 1117 goto top; 1118 } 1119 ZFS_EXIT(zfsvfs); 1120 return (error); 1121 } 1122 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1123 ASSERT(zp->z_id == zoid); 1124 (void) zfs_link_create(dl, zp, tx, ZNEW); 1125 seq = zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name); 1126 dmu_tx_commit(tx); 1127 } else { 1128 /* 1129 * A directory entry already exists for this name. 1130 */ 1131 /* 1132 * Can't truncate an existing file if in exclusive mode. 1133 */ 1134 if (excl == EXCL) { 1135 error = EEXIST; 1136 goto out; 1137 } 1138 /* 1139 * Can't open a directory for writing. 1140 */ 1141 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1142 error = EISDIR; 1143 goto out; 1144 } 1145 /* 1146 * Verify requested access to file. 1147 */ 1148 if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) { 1149 goto out; 1150 } 1151 1152 mutex_enter(&dzp->z_lock); 1153 dzp->z_seq++; 1154 mutex_exit(&dzp->z_lock); 1155 1156 /* 1157 * Truncate regular files if requested. 1158 */ 1159 if ((ZTOV(zp)->v_type == VREG) && 1160 (zp->z_phys->zp_size != 0) && 1161 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1162 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1163 if (error == ERESTART && 1164 zfsvfs->z_assign == TXG_NOWAIT) { 1165 zfs_dirent_unlock(dl); 1166 txg_wait_open(dmu_objset_pool(os), 0); 1167 goto top; 1168 } 1169 } 1170 } 1171 out: 1172 1173 if (dl) 1174 zfs_dirent_unlock(dl); 1175 1176 if (error) { 1177 if (zp) 1178 VN_RELE(ZTOV(zp)); 1179 } else { 1180 *vpp = ZTOV(zp); 1181 /* 1182 * If vnode is for a device return a specfs vnode instead. 1183 */ 1184 if (IS_DEVVP(*vpp)) { 1185 struct vnode *svp; 1186 1187 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1188 VN_RELE(*vpp); 1189 if (svp == NULL) { 1190 error = ENOSYS; 1191 } 1192 *vpp = svp; 1193 } 1194 } 1195 1196 zil_commit(zilog, seq, 0); 1197 1198 ZFS_EXIT(zfsvfs); 1199 return (error); 1200 } 1201 1202 /* 1203 * Remove an entry from a directory. 1204 * 1205 * IN: dvp - vnode of directory to remove entry from. 1206 * name - name of entry to remove. 1207 * cr - credentials of caller. 1208 * 1209 * RETURN: 0 if success 1210 * error code if failure 1211 * 1212 * Timestamps: 1213 * dvp - ctime|mtime 1214 * vp - ctime (if nlink > 0) 1215 */ 1216 static int 1217 zfs_remove(vnode_t *dvp, char *name, cred_t *cr) 1218 { 1219 znode_t *zp, *dzp = VTOZ(dvp); 1220 znode_t *xzp = NULL; 1221 vnode_t *vp; 1222 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1223 zilog_t *zilog = zfsvfs->z_log; 1224 uint64_t seq = 0; 1225 uint64_t acl_obj, xattr_obj; 1226 zfs_dirlock_t *dl; 1227 dmu_tx_t *tx; 1228 int may_delete_now, delete_now = FALSE; 1229 int reaped; 1230 int error; 1231 1232 ZFS_ENTER(zfsvfs); 1233 1234 top: 1235 /* 1236 * Attempt to lock directory; fail if entry doesn't exist. 1237 */ 1238 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1239 ZFS_EXIT(zfsvfs); 1240 return (error); 1241 } 1242 1243 vp = ZTOV(zp); 1244 1245 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1246 goto out; 1247 } 1248 1249 /* 1250 * Need to use rmdir for removing directories. 1251 */ 1252 if (vp->v_type == VDIR) { 1253 error = EPERM; 1254 goto out; 1255 } 1256 1257 vnevent_remove(vp); 1258 1259 dnlc_remove(dvp, name); 1260 1261 mutex_enter(&vp->v_lock); 1262 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1263 mutex_exit(&vp->v_lock); 1264 1265 /* 1266 * We may delete the znode now, or we may put it on the delete queue; 1267 * it depends on whether we're the last link, and on whether there are 1268 * other holds on the vnode. So we dmu_tx_hold() the right things to 1269 * allow for either case. 1270 */ 1271 tx = dmu_tx_create(zfsvfs->z_os); 1272 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1273 dmu_tx_hold_bonus(tx, zp->z_id); 1274 if (may_delete_now) 1275 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1276 1277 /* are there any extended attributes? */ 1278 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1279 /* 1280 * XXX - There is a possibility that the delete 1281 * of the parent file could succeed, but then we get 1282 * an ENOSPC when we try to delete the xattrs... 1283 * so we would need to re-try the deletes periodically 1284 */ 1285 /* XXX - do we need this if we are deleting? */ 1286 dmu_tx_hold_bonus(tx, xattr_obj); 1287 } 1288 1289 /* are there any additional acls */ 1290 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1291 may_delete_now) 1292 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1293 1294 /* charge as an update -- would be nice not to charge at all */ 1295 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 1296 1297 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1298 if (error) { 1299 dmu_tx_abort(tx); 1300 zfs_dirent_unlock(dl); 1301 VN_RELE(vp); 1302 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1303 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1304 goto top; 1305 } 1306 ZFS_EXIT(zfsvfs); 1307 return (error); 1308 } 1309 1310 /* 1311 * Remove the directory entry. 1312 */ 1313 error = zfs_link_destroy(dl, zp, tx, 0, &reaped); 1314 1315 if (error) { 1316 dmu_tx_commit(tx); 1317 goto out; 1318 } 1319 1320 if (reaped) { 1321 mutex_enter(&vp->v_lock); 1322 delete_now = may_delete_now && 1323 vp->v_count == 1 && !vn_has_cached_data(vp) && 1324 zp->z_phys->zp_xattr == xattr_obj && 1325 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1326 mutex_exit(&vp->v_lock); 1327 } 1328 1329 if (delete_now) { 1330 if (zp->z_phys->zp_xattr) { 1331 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1332 ASSERT3U(error, ==, 0); 1333 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1334 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1335 mutex_enter(&xzp->z_lock); 1336 xzp->z_reap = 1; 1337 xzp->z_phys->zp_links = 0; 1338 mutex_exit(&xzp->z_lock); 1339 zfs_dq_add(xzp, tx); 1340 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1341 } 1342 mutex_enter(&zp->z_lock); 1343 mutex_enter(&vp->v_lock); 1344 vp->v_count--; 1345 ASSERT3U(vp->v_count, ==, 0); 1346 mutex_exit(&vp->v_lock); 1347 zp->z_active = 0; 1348 mutex_exit(&zp->z_lock); 1349 zfs_znode_delete(zp, tx); 1350 VFS_RELE(zfsvfs->z_vfs); 1351 } else if (reaped) { 1352 zfs_dq_add(zp, tx); 1353 } 1354 1355 seq = zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name); 1356 1357 dmu_tx_commit(tx); 1358 out: 1359 zfs_dirent_unlock(dl); 1360 1361 if (!delete_now) { 1362 VN_RELE(vp); 1363 } else if (xzp) { 1364 /* this rele delayed to prevent nesting transactions */ 1365 VN_RELE(ZTOV(xzp)); 1366 } 1367 1368 zil_commit(zilog, seq, 0); 1369 1370 ZFS_EXIT(zfsvfs); 1371 return (error); 1372 } 1373 1374 /* 1375 * Create a new directory and insert it into dvp using the name 1376 * provided. Return a pointer to the inserted directory. 1377 * 1378 * IN: dvp - vnode of directory to add subdir to. 1379 * dirname - name of new directory. 1380 * vap - attributes of new directory. 1381 * cr - credentials of caller. 1382 * 1383 * OUT: vpp - vnode of created directory. 1384 * 1385 * RETURN: 0 if success 1386 * error code if failure 1387 * 1388 * Timestamps: 1389 * dvp - ctime|mtime updated 1390 * vp - ctime|mtime|atime updated 1391 */ 1392 static int 1393 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr) 1394 { 1395 znode_t *zp, *dzp = VTOZ(dvp); 1396 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1397 zilog_t *zilog = zfsvfs->z_log; 1398 uint64_t seq = 0; 1399 zfs_dirlock_t *dl; 1400 uint64_t zoid = 0; 1401 dmu_tx_t *tx; 1402 int error; 1403 1404 ASSERT(vap->va_type == VDIR); 1405 1406 ZFS_ENTER(zfsvfs); 1407 1408 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1409 ZFS_EXIT(zfsvfs); 1410 return (EINVAL); 1411 } 1412 top: 1413 *vpp = NULL; 1414 1415 /* 1416 * First make sure the new directory doesn't exist. 1417 */ 1418 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) { 1419 ZFS_EXIT(zfsvfs); 1420 return (error); 1421 } 1422 1423 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) { 1424 zfs_dirent_unlock(dl); 1425 ZFS_EXIT(zfsvfs); 1426 return (error); 1427 } 1428 1429 /* 1430 * Add a new entry to the directory. 1431 */ 1432 tx = dmu_tx_create(zfsvfs->z_os); 1433 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1434 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1435 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1436 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1437 0, SPA_MAXBLOCKSIZE); 1438 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1439 if (error) { 1440 dmu_tx_abort(tx); 1441 zfs_dirent_unlock(dl); 1442 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1443 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1444 goto top; 1445 } 1446 ZFS_EXIT(zfsvfs); 1447 return (error); 1448 } 1449 1450 /* 1451 * Create new node. 1452 */ 1453 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1454 1455 /* 1456 * Now put new name in parent dir. 1457 */ 1458 (void) zfs_link_create(dl, zp, tx, ZNEW); 1459 1460 *vpp = ZTOV(zp); 1461 1462 seq = zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname); 1463 dmu_tx_commit(tx); 1464 1465 zfs_dirent_unlock(dl); 1466 1467 zil_commit(zilog, seq, 0); 1468 1469 ZFS_EXIT(zfsvfs); 1470 return (0); 1471 } 1472 1473 /* 1474 * Remove a directory subdir entry. If the current working 1475 * directory is the same as the subdir to be removed, the 1476 * remove will fail. 1477 * 1478 * IN: dvp - vnode of directory to remove from. 1479 * name - name of directory to be removed. 1480 * cwd - vnode of current working directory. 1481 * cr - credentials of caller. 1482 * 1483 * RETURN: 0 if success 1484 * error code if failure 1485 * 1486 * Timestamps: 1487 * dvp - ctime|mtime updated 1488 */ 1489 static int 1490 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 1491 { 1492 znode_t *dzp = VTOZ(dvp); 1493 znode_t *zp; 1494 vnode_t *vp; 1495 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1496 zilog_t *zilog = zfsvfs->z_log; 1497 uint64_t seq = 0; 1498 zfs_dirlock_t *dl; 1499 dmu_tx_t *tx; 1500 int error; 1501 1502 ZFS_ENTER(zfsvfs); 1503 1504 top: 1505 zp = NULL; 1506 1507 /* 1508 * Attempt to lock directory; fail if entry doesn't exist. 1509 */ 1510 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1511 ZFS_EXIT(zfsvfs); 1512 return (error); 1513 } 1514 1515 vp = ZTOV(zp); 1516 1517 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1518 goto out; 1519 } 1520 1521 if (vp->v_type != VDIR) { 1522 error = ENOTDIR; 1523 goto out; 1524 } 1525 1526 if (vp == cwd) { 1527 error = EINVAL; 1528 goto out; 1529 } 1530 1531 vnevent_rmdir(vp); 1532 1533 /* 1534 * Grab a lock on the parent pointer make sure we play well 1535 * with the treewalk and directory rename code. 1536 */ 1537 rw_enter(&zp->z_parent_lock, RW_WRITER); 1538 1539 tx = dmu_tx_create(zfsvfs->z_os); 1540 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1541 dmu_tx_hold_bonus(tx, zp->z_id); 1542 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 1543 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1544 if (error) { 1545 dmu_tx_abort(tx); 1546 rw_exit(&zp->z_parent_lock); 1547 zfs_dirent_unlock(dl); 1548 VN_RELE(vp); 1549 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1550 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1551 goto top; 1552 } 1553 ZFS_EXIT(zfsvfs); 1554 return (error); 1555 } 1556 1557 error = zfs_link_destroy(dl, zp, tx, 0, NULL); 1558 1559 if (error == 0) 1560 seq = zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name); 1561 1562 dmu_tx_commit(tx); 1563 1564 rw_exit(&zp->z_parent_lock); 1565 out: 1566 zfs_dirent_unlock(dl); 1567 1568 VN_RELE(vp); 1569 1570 zil_commit(zilog, seq, 0); 1571 1572 ZFS_EXIT(zfsvfs); 1573 return (error); 1574 } 1575 1576 /* 1577 * Read as many directory entries as will fit into the provided 1578 * buffer from the given directory cursor position (specified in 1579 * the uio structure. 1580 * 1581 * IN: vp - vnode of directory to read. 1582 * uio - structure supplying read location, range info, 1583 * and return buffer. 1584 * cr - credentials of caller. 1585 * 1586 * OUT: uio - updated offset and range, buffer filled. 1587 * eofp - set to true if end-of-file detected. 1588 * 1589 * RETURN: 0 if success 1590 * error code if failure 1591 * 1592 * Timestamps: 1593 * vp - atime updated 1594 * 1595 * Note that the low 4 bits of the cookie returned by zap is always zero. 1596 * This allows us to use the low range for "special" directory entries: 1597 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1598 * we use the offset 2 for the '.zfs' directory. 1599 */ 1600 /* ARGSUSED */ 1601 static int 1602 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp) 1603 { 1604 znode_t *zp = VTOZ(vp); 1605 iovec_t *iovp; 1606 dirent64_t *odp; 1607 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1608 objset_t *os; 1609 caddr_t outbuf; 1610 size_t bufsize; 1611 zap_cursor_t zc; 1612 zap_attribute_t zap; 1613 uint_t bytes_wanted; 1614 ushort_t this_reclen; 1615 uint64_t offset; /* must be unsigned; checks for < 1 */ 1616 off64_t *next; 1617 int local_eof; 1618 int outcount; 1619 int error; 1620 uint8_t prefetch; 1621 1622 ZFS_ENTER(zfsvfs); 1623 1624 /* 1625 * If we are not given an eof variable, 1626 * use a local one. 1627 */ 1628 if (eofp == NULL) 1629 eofp = &local_eof; 1630 1631 /* 1632 * Check for valid iov_len. 1633 */ 1634 if (uio->uio_iov->iov_len <= 0) { 1635 ZFS_EXIT(zfsvfs); 1636 return (EINVAL); 1637 } 1638 1639 /* 1640 * Quit if directory has been removed (posix) 1641 */ 1642 if ((*eofp = zp->z_reap) != 0) { 1643 ZFS_EXIT(zfsvfs); 1644 return (0); 1645 } 1646 1647 error = 0; 1648 os = zfsvfs->z_os; 1649 offset = uio->uio_loffset; 1650 prefetch = zp->z_zn_prefetch; 1651 1652 /* 1653 * Initialize the iterator cursor. 1654 */ 1655 if (offset <= 3) { 1656 /* 1657 * Start iteration from the beginning of the directory. 1658 */ 1659 zap_cursor_init(&zc, os, zp->z_id); 1660 } else { 1661 /* 1662 * The offset is a serialized cursor. 1663 */ 1664 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1665 } 1666 1667 /* 1668 * Get space to change directory entries into fs independent format. 1669 */ 1670 iovp = uio->uio_iov; 1671 bytes_wanted = iovp->iov_len; 1672 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1673 bufsize = bytes_wanted; 1674 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1675 odp = (struct dirent64 *)outbuf; 1676 } else { 1677 bufsize = bytes_wanted; 1678 odp = (struct dirent64 *)iovp->iov_base; 1679 } 1680 1681 /* 1682 * Transform to file-system independent format 1683 */ 1684 outcount = 0; 1685 while (outcount < bytes_wanted) { 1686 /* 1687 * Special case `.', `..', and `.zfs'. 1688 */ 1689 if (offset == 0) { 1690 (void) strcpy(zap.za_name, "."); 1691 zap.za_first_integer = zp->z_id; 1692 this_reclen = DIRENT64_RECLEN(1); 1693 } else if (offset == 1) { 1694 (void) strcpy(zap.za_name, ".."); 1695 zap.za_first_integer = zp->z_phys->zp_parent; 1696 this_reclen = DIRENT64_RECLEN(2); 1697 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1698 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1699 zap.za_first_integer = ZFSCTL_INO_ROOT; 1700 this_reclen = 1701 DIRENT64_RECLEN(sizeof (ZFS_CTLDIR_NAME) - 1); 1702 } else { 1703 /* 1704 * Grab next entry. 1705 */ 1706 if (error = zap_cursor_retrieve(&zc, &zap)) { 1707 if ((*eofp = (error == ENOENT)) != 0) 1708 break; 1709 else 1710 goto update; 1711 } 1712 1713 if (zap.za_integer_length != 8 || 1714 zap.za_num_integers != 1) { 1715 cmn_err(CE_WARN, "zap_readdir: bad directory " 1716 "entry, obj = %lld, offset = %lld\n", 1717 (u_longlong_t)zp->z_id, 1718 (u_longlong_t)offset); 1719 error = ENXIO; 1720 goto update; 1721 } 1722 this_reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1723 } 1724 1725 /* 1726 * Will this entry fit in the buffer? 1727 */ 1728 if (outcount + this_reclen > bufsize) { 1729 /* 1730 * Did we manage to fit anything in the buffer? 1731 */ 1732 if (!outcount) { 1733 error = EINVAL; 1734 goto update; 1735 } 1736 break; 1737 } 1738 /* 1739 * Add this entry: 1740 */ 1741 odp->d_ino = (ino64_t)zap.za_first_integer; 1742 odp->d_reclen = (ushort_t)this_reclen; 1743 /* NOTE: d_off is the offset for the *next* entry */ 1744 next = &(odp->d_off); 1745 (void) strncpy(odp->d_name, zap.za_name, 1746 DIRENT64_NAMELEN(this_reclen)); 1747 outcount += this_reclen; 1748 odp = (dirent64_t *)((intptr_t)odp + this_reclen); 1749 1750 ASSERT(outcount <= bufsize); 1751 1752 /* Prefetch znode */ 1753 if (prefetch) 1754 dmu_prefetch(os, zap.za_first_integer, 0, 0); 1755 1756 /* 1757 * Move to the next entry, fill in the previous offset. 1758 */ 1759 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 1760 zap_cursor_advance(&zc); 1761 offset = zap_cursor_serialize(&zc); 1762 } else { 1763 offset += 1; 1764 } 1765 *next = offset; 1766 } 1767 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 1768 1769 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 1770 iovp->iov_base += outcount; 1771 iovp->iov_len -= outcount; 1772 uio->uio_resid -= outcount; 1773 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 1774 /* 1775 * Reset the pointer. 1776 */ 1777 offset = uio->uio_loffset; 1778 } 1779 1780 update: 1781 zap_cursor_fini(&zc); 1782 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 1783 kmem_free(outbuf, bufsize); 1784 1785 if (error == ENOENT) 1786 error = 0; 1787 1788 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 1789 1790 uio->uio_loffset = offset; 1791 ZFS_EXIT(zfsvfs); 1792 return (error); 1793 } 1794 1795 static int 1796 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1797 { 1798 znode_t *zp = VTOZ(vp); 1799 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1800 1801 /* 1802 * Regardless of whether this is required for standards conformance, 1803 * this is the logical behavior when fsync() is called on a file with 1804 * dirty pages. We use B_ASYNC since the ZIL transactions are already 1805 * going to be pushed out as part of the zil_commit(). 1806 */ 1807 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 1808 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 1809 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr); 1810 1811 ZFS_ENTER(zfsvfs); 1812 zil_commit(zfsvfs->z_log, zp->z_last_itx, FSYNC); 1813 ZFS_EXIT(zfsvfs); 1814 return (0); 1815 } 1816 1817 /* 1818 * Get the requested file attributes and place them in the provided 1819 * vattr structure. 1820 * 1821 * IN: vp - vnode of file. 1822 * vap - va_mask identifies requested attributes. 1823 * flags - [UNUSED] 1824 * cr - credentials of caller. 1825 * 1826 * OUT: vap - attribute values. 1827 * 1828 * RETURN: 0 (always succeeds) 1829 */ 1830 /* ARGSUSED */ 1831 static int 1832 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 1833 { 1834 znode_t *zp = VTOZ(vp); 1835 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1836 znode_phys_t *pzp = zp->z_phys; 1837 int error; 1838 1839 ZFS_ENTER(zfsvfs); 1840 1841 /* 1842 * Return all attributes. It's cheaper to provide the answer 1843 * than to determine whether we were asked the question. 1844 */ 1845 mutex_enter(&zp->z_lock); 1846 1847 vap->va_type = vp->v_type; 1848 vap->va_mode = pzp->zp_mode & MODEMASK; 1849 vap->va_uid = zp->z_phys->zp_uid; 1850 vap->va_gid = zp->z_phys->zp_gid; 1851 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 1852 vap->va_nodeid = zp->z_id; 1853 vap->va_nlink = MIN(pzp->zp_links, UINT32_MAX); /* nlink_t limit! */ 1854 vap->va_size = pzp->zp_size; 1855 vap->va_rdev = vp->v_rdev; 1856 vap->va_seq = zp->z_seq; 1857 1858 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 1859 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 1860 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 1861 1862 /* 1863 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 1864 * Also, if we are the owner don't bother, since owner should 1865 * always be allowed to read basic attributes of file. 1866 */ 1867 if (!(zp->z_phys->zp_flags & ZFS_ACL_TRIVIAL) && 1868 (zp->z_phys->zp_uid != crgetuid(cr))) { 1869 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) { 1870 mutex_exit(&zp->z_lock); 1871 ZFS_EXIT(zfsvfs); 1872 return (error); 1873 } 1874 } 1875 1876 mutex_exit(&zp->z_lock); 1877 1878 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 1879 1880 if (zp->z_blksz == 0) { 1881 /* 1882 * Block size hasn't been set; suggest maximal I/O transfers. 1883 */ 1884 vap->va_blksize = zfsvfs->z_max_blksz; 1885 } 1886 1887 ZFS_EXIT(zfsvfs); 1888 return (0); 1889 } 1890 1891 /* 1892 * Set the file attributes to the values contained in the 1893 * vattr structure. 1894 * 1895 * IN: vp - vnode of file to be modified. 1896 * vap - new attribute values. 1897 * flags - ATTR_UTIME set if non-default time values provided. 1898 * cr - credentials of caller. 1899 * 1900 * RETURN: 0 if success 1901 * error code if failure 1902 * 1903 * Timestamps: 1904 * vp - ctime updated, mtime updated if size changed. 1905 */ 1906 /* ARGSUSED */ 1907 static int 1908 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1909 caller_context_t *ct) 1910 { 1911 struct znode *zp = VTOZ(vp); 1912 znode_phys_t *pzp = zp->z_phys; 1913 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1914 zilog_t *zilog = zfsvfs->z_log; 1915 uint64_t seq = 0; 1916 dmu_tx_t *tx; 1917 vattr_t oldva; 1918 uint_t mask = vap->va_mask; 1919 uint_t saved_mask; 1920 int trim_mask = FALSE; 1921 uint64_t new_mode; 1922 znode_t *attrzp; 1923 int need_policy = FALSE; 1924 int err; 1925 1926 if (mask == 0) 1927 return (0); 1928 1929 if (mask & AT_NOSET) 1930 return (EINVAL); 1931 1932 if (mask & AT_SIZE && vp->v_type == VDIR) 1933 return (EISDIR); 1934 1935 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) 1936 return (EINVAL); 1937 1938 ZFS_ENTER(zfsvfs); 1939 1940 top: 1941 attrzp = NULL; 1942 1943 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 1944 ZFS_EXIT(zfsvfs); 1945 return (EROFS); 1946 } 1947 1948 /* 1949 * First validate permissions 1950 */ 1951 1952 if (mask & AT_SIZE) { 1953 err = zfs_zaccess(zp, ACE_WRITE_DATA, cr); 1954 if (err) { 1955 ZFS_EXIT(zfsvfs); 1956 return (err); 1957 } 1958 /* 1959 * XXX - Note, we are not providing any open 1960 * mode flags here (like FNDELAY), so we may 1961 * block if there are locks present... this 1962 * should be addressed in openat(). 1963 */ 1964 do { 1965 if (err == ERESTART) 1966 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 1967 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 1968 } while (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 1969 if (err) { 1970 ZFS_EXIT(zfsvfs); 1971 return (err); 1972 } 1973 } 1974 1975 if (mask & (AT_ATIME|AT_MTIME)) 1976 need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr); 1977 1978 if (mask & (AT_UID|AT_GID)) { 1979 int idmask = (mask & (AT_UID|AT_GID)); 1980 int take_owner; 1981 int take_group; 1982 1983 /* 1984 * NOTE: even if a new mode is being set, 1985 * we may clear S_ISUID/S_ISGID bits. 1986 */ 1987 1988 if (!(mask & AT_MODE)) 1989 vap->va_mode = pzp->zp_mode; 1990 1991 /* 1992 * Take ownership or chgrp to group we are a member of 1993 */ 1994 1995 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 1996 take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr); 1997 1998 /* 1999 * If both AT_UID and AT_GID are set then take_owner and 2000 * take_group must both be set in order to allow taking 2001 * ownership. 2002 * 2003 * Otherwise, send the check through secpolicy_vnode_setattr() 2004 * 2005 */ 2006 2007 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2008 ((idmask == AT_UID) && take_owner) || 2009 ((idmask == AT_GID) && take_group)) { 2010 if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) { 2011 /* 2012 * Remove setuid/setgid for non-privileged users 2013 */ 2014 secpolicy_setid_clear(vap, cr); 2015 trim_mask = TRUE; 2016 saved_mask = vap->va_mask; 2017 } else { 2018 need_policy = TRUE; 2019 } 2020 } else { 2021 need_policy = TRUE; 2022 } 2023 } 2024 2025 if (mask & AT_MODE) 2026 need_policy = TRUE; 2027 2028 if (need_policy) { 2029 mutex_enter(&zp->z_lock); 2030 oldva.va_mode = pzp->zp_mode; 2031 oldva.va_uid = zp->z_phys->zp_uid; 2032 oldva.va_gid = zp->z_phys->zp_gid; 2033 mutex_exit(&zp->z_lock); 2034 2035 /* 2036 * If trim_mask is set then take ownership 2037 * has been granted. In that case remove 2038 * UID|GID from mask so that 2039 * secpolicy_vnode_setattr() doesn't revoke it. 2040 */ 2041 if (trim_mask) 2042 vap->va_mask &= ~(AT_UID|AT_GID); 2043 2044 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2045 (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp); 2046 if (err) { 2047 ZFS_EXIT(zfsvfs); 2048 return (err); 2049 } 2050 2051 if (trim_mask) 2052 vap->va_mask |= (saved_mask & (AT_UID|AT_GID)); 2053 } 2054 2055 /* 2056 * secpolicy_vnode_setattr, or take ownership may have 2057 * changed va_mask 2058 */ 2059 mask = vap->va_mask; 2060 2061 tx = dmu_tx_create(zfsvfs->z_os); 2062 dmu_tx_hold_bonus(tx, zp->z_id); 2063 2064 if (mask & AT_MODE) { 2065 uint64_t pmode = pzp->zp_mode; 2066 2067 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2068 2069 if (zp->z_phys->zp_acl.z_acl_extern_obj) 2070 dmu_tx_hold_write(tx, 2071 pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE); 2072 else 2073 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2074 0, ZFS_ACL_SIZE(MAX_ACL_SIZE)); 2075 } 2076 2077 if ((mask & (AT_UID | AT_GID)) && zp->z_phys->zp_xattr != 0) { 2078 err = zfs_zget(zp->z_zfsvfs, zp->z_phys->zp_xattr, &attrzp); 2079 if (err) { 2080 dmu_tx_abort(tx); 2081 ZFS_EXIT(zfsvfs); 2082 return (err); 2083 } 2084 dmu_tx_hold_bonus(tx, attrzp->z_id); 2085 } 2086 2087 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2088 if (err) { 2089 if (attrzp) 2090 VN_RELE(ZTOV(attrzp)); 2091 dmu_tx_abort(tx); 2092 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2093 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2094 goto top; 2095 } 2096 ZFS_EXIT(zfsvfs); 2097 return (err); 2098 } 2099 2100 dmu_buf_will_dirty(zp->z_dbuf, tx); 2101 2102 /* 2103 * Set each attribute requested. 2104 * We group settings according to the locks they need to acquire. 2105 * 2106 * Note: you cannot set ctime directly, although it will be 2107 * updated as a side-effect of calling this function. 2108 */ 2109 2110 mutex_enter(&zp->z_lock); 2111 2112 if (mask & AT_MODE) { 2113 err = zfs_acl_chmod_setattr(zp, new_mode, tx); 2114 ASSERT3U(err, ==, 0); 2115 } 2116 2117 if (attrzp) 2118 mutex_enter(&attrzp->z_lock); 2119 2120 if (mask & AT_UID) { 2121 zp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2122 if (attrzp) { 2123 attrzp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2124 } 2125 } 2126 2127 if (mask & AT_GID) { 2128 zp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2129 if (attrzp) 2130 attrzp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2131 } 2132 2133 if (attrzp) 2134 mutex_exit(&attrzp->z_lock); 2135 2136 if (mask & AT_ATIME) 2137 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2138 2139 if (mask & AT_MTIME) 2140 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2141 2142 if (mask & AT_SIZE) 2143 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2144 else if (mask != 0) 2145 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2146 2147 if (mask != 0) 2148 seq = zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask); 2149 2150 mutex_exit(&zp->z_lock); 2151 2152 if (attrzp) 2153 VN_RELE(ZTOV(attrzp)); 2154 2155 dmu_tx_commit(tx); 2156 2157 zil_commit(zilog, seq, 0); 2158 2159 ZFS_EXIT(zfsvfs); 2160 return (err); 2161 } 2162 2163 /* 2164 * Search back through the directory tree, using the ".." entries. 2165 * Lock each directory in the chain to prevent concurrent renames. 2166 * Fail any attempt to move a directory into one of its own descendants. 2167 * XXX - z_parent_lock can overlap with map or grow locks 2168 */ 2169 typedef struct zfs_zlock { 2170 krwlock_t *zl_rwlock; /* lock we acquired */ 2171 znode_t *zl_znode; /* znode we held */ 2172 struct zfs_zlock *zl_next; /* next in list */ 2173 } zfs_zlock_t; 2174 2175 static int 2176 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2177 { 2178 zfs_zlock_t *zl; 2179 znode_t *zp = tdzp; 2180 uint64_t rootid = zp->z_zfsvfs->z_root; 2181 uint64_t *oidp = &zp->z_id; 2182 krwlock_t *rwlp = &szp->z_parent_lock; 2183 krw_t rw = RW_WRITER; 2184 2185 /* 2186 * First pass write-locks szp and compares to zp->z_id. 2187 * Later passes read-lock zp and compare to zp->z_parent. 2188 */ 2189 do { 2190 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2191 zl->zl_rwlock = rwlp; 2192 zl->zl_znode = NULL; 2193 zl->zl_next = *zlpp; 2194 *zlpp = zl; 2195 2196 rw_enter(rwlp, rw); 2197 2198 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2199 return (EINVAL); 2200 2201 if (*oidp == rootid) /* We've hit the top */ 2202 return (0); 2203 2204 if (rw == RW_READER) { /* i.e. not the first pass */ 2205 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2206 if (error) 2207 return (error); 2208 zl->zl_znode = zp; 2209 } 2210 oidp = &zp->z_phys->zp_parent; 2211 rwlp = &zp->z_parent_lock; 2212 rw = RW_READER; 2213 2214 } while (zp->z_id != sdzp->z_id); 2215 2216 return (0); 2217 } 2218 2219 /* 2220 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2221 */ 2222 static void 2223 zfs_rename_unlock(zfs_zlock_t **zlpp) 2224 { 2225 zfs_zlock_t *zl; 2226 2227 while ((zl = *zlpp) != NULL) { 2228 if (zl->zl_znode != NULL) 2229 VN_RELE(ZTOV(zl->zl_znode)); 2230 rw_exit(zl->zl_rwlock); 2231 *zlpp = zl->zl_next; 2232 kmem_free(zl, sizeof (*zl)); 2233 } 2234 } 2235 2236 /* 2237 * Move an entry from the provided source directory to the target 2238 * directory. Change the entry name as indicated. 2239 * 2240 * IN: sdvp - Source directory containing the "old entry". 2241 * snm - Old entry name. 2242 * tdvp - Target directory to contain the "new entry". 2243 * tnm - New entry name. 2244 * cr - credentials of caller. 2245 * 2246 * RETURN: 0 if success 2247 * error code if failure 2248 * 2249 * Timestamps: 2250 * sdvp,tdvp - ctime|mtime updated 2251 */ 2252 static int 2253 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr) 2254 { 2255 znode_t *tdzp, *szp, *tzp; 2256 znode_t *sdzp = VTOZ(sdvp); 2257 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2258 zilog_t *zilog = zfsvfs->z_log; 2259 uint64_t seq = 0; 2260 vnode_t *realvp; 2261 zfs_dirlock_t *sdl, *tdl; 2262 dmu_tx_t *tx; 2263 zfs_zlock_t *zl; 2264 int cmp, serr, terr, error; 2265 2266 ZFS_ENTER(zfsvfs); 2267 2268 /* 2269 * Make sure we have the real vp for the target directory. 2270 */ 2271 if (VOP_REALVP(tdvp, &realvp) == 0) 2272 tdvp = realvp; 2273 2274 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2275 ZFS_EXIT(zfsvfs); 2276 return (EXDEV); 2277 } 2278 2279 tdzp = VTOZ(tdvp); 2280 top: 2281 szp = NULL; 2282 tzp = NULL; 2283 zl = NULL; 2284 2285 /* 2286 * This is to prevent the creation of links into attribute space 2287 * by renaming a linked file into/outof an attribute directory. 2288 * See the comment in zfs_link() for why this is considered bad. 2289 */ 2290 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2291 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2292 ZFS_EXIT(zfsvfs); 2293 return (EINVAL); 2294 } 2295 2296 /* 2297 * Lock source and target directory entries. To prevent deadlock, 2298 * a lock ordering must be defined. We lock the directory with 2299 * the smallest object id first, or if it's a tie, the one with 2300 * the lexically first name. 2301 */ 2302 if (sdzp->z_id < tdzp->z_id) { 2303 cmp = -1; 2304 } else if (sdzp->z_id > tdzp->z_id) { 2305 cmp = 1; 2306 } else { 2307 cmp = strcmp(snm, tnm); 2308 if (cmp == 0) { 2309 /* 2310 * POSIX: "If the old argument and the new argument 2311 * both refer to links to the same existing file, 2312 * the rename() function shall return successfully 2313 * and perform no other action." 2314 */ 2315 ZFS_EXIT(zfsvfs); 2316 return (0); 2317 } 2318 } 2319 if (cmp < 0) { 2320 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2321 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2322 } else { 2323 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2324 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2325 } 2326 2327 if (serr) { 2328 /* 2329 * Source entry invalid or not there. 2330 */ 2331 if (!terr) { 2332 zfs_dirent_unlock(tdl); 2333 if (tzp) 2334 VN_RELE(ZTOV(tzp)); 2335 } 2336 if (strcmp(snm, "..") == 0) 2337 serr = EINVAL; 2338 ZFS_EXIT(zfsvfs); 2339 return (serr); 2340 } 2341 if (terr) { 2342 zfs_dirent_unlock(sdl); 2343 VN_RELE(ZTOV(szp)); 2344 if (strcmp(tnm, "..") == 0) 2345 terr = EINVAL; 2346 ZFS_EXIT(zfsvfs); 2347 return (terr); 2348 } 2349 2350 /* 2351 * Must have write access at the source to remove the old entry 2352 * and write access at the target to create the new entry. 2353 * Note that if target and source are the same, this can be 2354 * done in a single check. 2355 */ 2356 2357 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 2358 goto out; 2359 2360 if (ZTOV(szp)->v_type == VDIR) { 2361 /* 2362 * Check to make sure rename is valid. 2363 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 2364 */ 2365 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 2366 goto out; 2367 } 2368 2369 /* 2370 * Does target exist? 2371 */ 2372 if (tzp) { 2373 /* 2374 * Source and target must be the same type. 2375 */ 2376 if (ZTOV(szp)->v_type == VDIR) { 2377 if (ZTOV(tzp)->v_type != VDIR) { 2378 error = ENOTDIR; 2379 goto out; 2380 } 2381 } else { 2382 if (ZTOV(tzp)->v_type == VDIR) { 2383 error = EISDIR; 2384 goto out; 2385 } 2386 } 2387 /* 2388 * POSIX dictates that when the source and target 2389 * entries refer to the same file object, rename 2390 * must do nothing and exit without error. 2391 */ 2392 if (szp->z_id == tzp->z_id) { 2393 error = 0; 2394 goto out; 2395 } 2396 } 2397 2398 vnevent_rename_src(ZTOV(szp)); 2399 if (tzp) 2400 vnevent_rename_dest(ZTOV(tzp)); 2401 2402 tx = dmu_tx_create(zfsvfs->z_os); 2403 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 2404 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 2405 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 2406 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 2407 if (sdzp != tdzp) 2408 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 2409 if (tzp) 2410 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 2411 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 2412 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2413 if (error) { 2414 dmu_tx_abort(tx); 2415 if (zl != NULL) 2416 zfs_rename_unlock(&zl); 2417 zfs_dirent_unlock(sdl); 2418 zfs_dirent_unlock(tdl); 2419 VN_RELE(ZTOV(szp)); 2420 if (tzp) 2421 VN_RELE(ZTOV(tzp)); 2422 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2423 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2424 goto top; 2425 } 2426 ZFS_EXIT(zfsvfs); 2427 return (error); 2428 } 2429 2430 if (tzp) /* Attempt to remove the existing target */ 2431 error = zfs_link_destroy(tdl, tzp, tx, 0, NULL); 2432 2433 if (error == 0) { 2434 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 2435 if (error == 0) { 2436 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 2437 ASSERT(error == 0); 2438 seq = zfs_log_rename(zilog, tx, TX_RENAME, 2439 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 2440 } 2441 } 2442 2443 dmu_tx_commit(tx); 2444 out: 2445 if (zl != NULL) 2446 zfs_rename_unlock(&zl); 2447 2448 zfs_dirent_unlock(sdl); 2449 zfs_dirent_unlock(tdl); 2450 2451 VN_RELE(ZTOV(szp)); 2452 if (tzp) 2453 VN_RELE(ZTOV(tzp)); 2454 2455 zil_commit(zilog, seq, 0); 2456 2457 ZFS_EXIT(zfsvfs); 2458 return (error); 2459 } 2460 2461 /* 2462 * Insert the indicated symbolic reference entry into the directory. 2463 * 2464 * IN: dvp - Directory to contain new symbolic link. 2465 * link - Name for new symlink entry. 2466 * vap - Attributes of new entry. 2467 * target - Target path of new symlink. 2468 * cr - credentials of caller. 2469 * 2470 * RETURN: 0 if success 2471 * error code if failure 2472 * 2473 * Timestamps: 2474 * dvp - ctime|mtime updated 2475 */ 2476 static int 2477 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr) 2478 { 2479 znode_t *zp, *dzp = VTOZ(dvp); 2480 zfs_dirlock_t *dl; 2481 dmu_tx_t *tx; 2482 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2483 zilog_t *zilog = zfsvfs->z_log; 2484 uint64_t seq = 0; 2485 uint64_t zoid; 2486 int len = strlen(link); 2487 int error; 2488 2489 ASSERT(vap->va_type == VLNK); 2490 2491 ZFS_ENTER(zfsvfs); 2492 top: 2493 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2494 ZFS_EXIT(zfsvfs); 2495 return (error); 2496 } 2497 2498 if (len > MAXPATHLEN) { 2499 ZFS_EXIT(zfsvfs); 2500 return (ENAMETOOLONG); 2501 } 2502 2503 /* 2504 * Attempt to lock directory; fail if entry already exists. 2505 */ 2506 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) { 2507 ZFS_EXIT(zfsvfs); 2508 return (error); 2509 } 2510 2511 tx = dmu_tx_create(zfsvfs->z_os); 2512 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 2513 dmu_tx_hold_bonus(tx, dzp->z_id); 2514 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2515 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 2516 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 2517 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2518 if (error) { 2519 dmu_tx_abort(tx); 2520 zfs_dirent_unlock(dl); 2521 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2522 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2523 goto top; 2524 } 2525 ZFS_EXIT(zfsvfs); 2526 return (error); 2527 } 2528 2529 dmu_buf_will_dirty(dzp->z_dbuf, tx); 2530 2531 /* 2532 * Create a new object for the symlink. 2533 * Put the link content into bonus buffer if it will fit; 2534 * otherwise, store it just like any other file data. 2535 */ 2536 zoid = 0; 2537 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 2538 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len); 2539 if (len != 0) 2540 bcopy(link, zp->z_phys + 1, len); 2541 } else { 2542 dmu_buf_t *dbp; 2543 2544 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 2545 2546 /* 2547 * Nothing can access the znode yet so no locking needed 2548 * for growing the znode's blocksize. 2549 */ 2550 zfs_grow_blocksize(zp, len, tx); 2551 2552 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, zoid, 0, FTAG, &dbp)); 2553 dmu_buf_will_dirty(dbp, tx); 2554 2555 ASSERT3U(len, <=, dbp->db_size); 2556 bcopy(link, dbp->db_data, len); 2557 dmu_buf_rele(dbp, FTAG); 2558 } 2559 zp->z_phys->zp_size = len; 2560 2561 /* 2562 * Insert the new object into the directory. 2563 */ 2564 (void) zfs_link_create(dl, zp, tx, ZNEW); 2565 out: 2566 if (error == 0) 2567 seq = zfs_log_symlink(zilog, tx, TX_SYMLINK, 2568 dzp, zp, name, link); 2569 2570 dmu_tx_commit(tx); 2571 2572 zfs_dirent_unlock(dl); 2573 2574 VN_RELE(ZTOV(zp)); 2575 2576 zil_commit(zilog, seq, 0); 2577 2578 ZFS_EXIT(zfsvfs); 2579 return (error); 2580 } 2581 2582 /* 2583 * Return, in the buffer contained in the provided uio structure, 2584 * the symbolic path referred to by vp. 2585 * 2586 * IN: vp - vnode of symbolic link. 2587 * uoip - structure to contain the link path. 2588 * cr - credentials of caller. 2589 * 2590 * OUT: uio - structure to contain the link path. 2591 * 2592 * RETURN: 0 if success 2593 * error code if failure 2594 * 2595 * Timestamps: 2596 * vp - atime updated 2597 */ 2598 /* ARGSUSED */ 2599 static int 2600 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr) 2601 { 2602 znode_t *zp = VTOZ(vp); 2603 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2604 size_t bufsz; 2605 int error; 2606 2607 ZFS_ENTER(zfsvfs); 2608 2609 bufsz = (size_t)zp->z_phys->zp_size; 2610 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 2611 error = uiomove(zp->z_phys + 1, 2612 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2613 } else { 2614 dmu_buf_t *dbp; 2615 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 2616 if (error) { 2617 ZFS_EXIT(zfsvfs); 2618 return (error); 2619 } 2620 error = uiomove(dbp->db_data, 2621 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2622 dmu_buf_rele(dbp, FTAG); 2623 } 2624 2625 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2626 ZFS_EXIT(zfsvfs); 2627 return (error); 2628 } 2629 2630 /* 2631 * Insert a new entry into directory tdvp referencing svp. 2632 * 2633 * IN: tdvp - Directory to contain new entry. 2634 * svp - vnode of new entry. 2635 * name - name of new entry. 2636 * cr - credentials of caller. 2637 * 2638 * RETURN: 0 if success 2639 * error code if failure 2640 * 2641 * Timestamps: 2642 * tdvp - ctime|mtime updated 2643 * svp - ctime updated 2644 */ 2645 /* ARGSUSED */ 2646 static int 2647 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr) 2648 { 2649 znode_t *dzp = VTOZ(tdvp); 2650 znode_t *tzp, *szp; 2651 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2652 zilog_t *zilog = zfsvfs->z_log; 2653 uint64_t seq = 0; 2654 zfs_dirlock_t *dl; 2655 dmu_tx_t *tx; 2656 vnode_t *realvp; 2657 int error; 2658 2659 ASSERT(tdvp->v_type == VDIR); 2660 2661 ZFS_ENTER(zfsvfs); 2662 2663 if (VOP_REALVP(svp, &realvp) == 0) 2664 svp = realvp; 2665 2666 if (svp->v_vfsp != tdvp->v_vfsp) { 2667 ZFS_EXIT(zfsvfs); 2668 return (EXDEV); 2669 } 2670 2671 szp = VTOZ(svp); 2672 top: 2673 /* 2674 * We do not support links between attributes and non-attributes 2675 * because of the potential security risk of creating links 2676 * into "normal" file space in order to circumvent restrictions 2677 * imposed in attribute space. 2678 */ 2679 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 2680 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 2681 ZFS_EXIT(zfsvfs); 2682 return (EINVAL); 2683 } 2684 2685 /* 2686 * POSIX dictates that we return EPERM here. 2687 * Better choices include ENOTSUP or EISDIR. 2688 */ 2689 if (svp->v_type == VDIR) { 2690 ZFS_EXIT(zfsvfs); 2691 return (EPERM); 2692 } 2693 2694 if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) && 2695 secpolicy_basic_link(cr) != 0) { 2696 ZFS_EXIT(zfsvfs); 2697 return (EPERM); 2698 } 2699 2700 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2701 ZFS_EXIT(zfsvfs); 2702 return (error); 2703 } 2704 2705 /* 2706 * Attempt to lock directory; fail if entry already exists. 2707 */ 2708 if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) { 2709 ZFS_EXIT(zfsvfs); 2710 return (error); 2711 } 2712 2713 tx = dmu_tx_create(zfsvfs->z_os); 2714 dmu_tx_hold_bonus(tx, szp->z_id); 2715 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2716 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2717 if (error) { 2718 dmu_tx_abort(tx); 2719 zfs_dirent_unlock(dl); 2720 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2721 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2722 goto top; 2723 } 2724 ZFS_EXIT(zfsvfs); 2725 return (error); 2726 } 2727 2728 error = zfs_link_create(dl, szp, tx, 0); 2729 2730 if (error == 0) 2731 seq = zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name); 2732 2733 dmu_tx_commit(tx); 2734 2735 zfs_dirent_unlock(dl); 2736 2737 zil_commit(zilog, seq, 0); 2738 2739 ZFS_EXIT(zfsvfs); 2740 return (error); 2741 } 2742 2743 /* 2744 * zfs_null_putapage() is used when the file system has been force 2745 * unmounted. It just drops the pages. 2746 */ 2747 /* ARGSUSED */ 2748 static int 2749 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2750 size_t *lenp, int flags, cred_t *cr) 2751 { 2752 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 2753 return (0); 2754 } 2755 2756 /* ARGSUSED */ 2757 static int 2758 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2759 size_t *lenp, int flags, cred_t *cr) 2760 { 2761 znode_t *zp = VTOZ(vp); 2762 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2763 zilog_t *zilog = zfsvfs->z_log; 2764 dmu_tx_t *tx; 2765 rl_t *rl; 2766 u_offset_t off; 2767 ssize_t len; 2768 caddr_t va; 2769 int err; 2770 2771 top: 2772 off = pp->p_offset; 2773 rl = zfs_range_lock(zp, off, PAGESIZE, RL_WRITER); 2774 /* 2775 * Can't push pages past end-of-file. 2776 */ 2777 if (off >= zp->z_phys->zp_size) { 2778 zfs_range_unlock(zp, rl); 2779 return (EIO); 2780 } 2781 len = MIN(PAGESIZE, zp->z_phys->zp_size - off); 2782 2783 tx = dmu_tx_create(zfsvfs->z_os); 2784 dmu_tx_hold_write(tx, zp->z_id, off, len); 2785 dmu_tx_hold_bonus(tx, zp->z_id); 2786 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2787 if (err != 0) { 2788 dmu_tx_abort(tx); 2789 zfs_range_unlock(zp, rl); 2790 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2791 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 2792 goto top; 2793 } 2794 goto out; 2795 } 2796 2797 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 2798 2799 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 2800 2801 ppmapout(va); 2802 2803 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 2804 (void) zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0, NULL); 2805 dmu_tx_commit(tx); 2806 2807 zfs_range_unlock(zp, rl); 2808 2809 pvn_write_done(pp, B_WRITE | flags); 2810 if (offp) 2811 *offp = off; 2812 if (lenp) 2813 *lenp = len; 2814 2815 out: 2816 return (err); 2817 } 2818 2819 /* 2820 * Copy the portion of the file indicated from pages into the file. 2821 * The pages are stored in a page list attached to the files vnode. 2822 * 2823 * IN: vp - vnode of file to push page data to. 2824 * off - position in file to put data. 2825 * len - amount of data to write. 2826 * flags - flags to control the operation. 2827 * cr - credentials of caller. 2828 * 2829 * RETURN: 0 if success 2830 * error code if failure 2831 * 2832 * Timestamps: 2833 * vp - ctime|mtime updated 2834 */ 2835 static int 2836 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 2837 { 2838 znode_t *zp = VTOZ(vp); 2839 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2840 page_t *pp; 2841 size_t io_len; 2842 u_offset_t io_off; 2843 uint64_t filesz; 2844 int error = 0; 2845 2846 ZFS_ENTER(zfsvfs); 2847 2848 ASSERT(zp->z_dbuf_held && zp->z_phys); 2849 2850 if (len == 0) { 2851 /* 2852 * Search the entire vp list for pages >= off. 2853 */ 2854 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 2855 flags, cr); 2856 goto out; 2857 } 2858 2859 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 2860 if (off > filesz) { 2861 /* past end of file */ 2862 ZFS_EXIT(zfsvfs); 2863 return (0); 2864 } 2865 2866 len = MIN(len, filesz - off); 2867 2868 for (io_off = off; io_off < off + len; io_off += io_len) { 2869 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2870 pp = page_lookup(vp, io_off, 2871 (flags & (B_INVAL | B_FREE)) ? 2872 SE_EXCL : SE_SHARED); 2873 } else { 2874 pp = page_lookup_nowait(vp, io_off, 2875 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2876 } 2877 2878 if (pp != NULL && pvn_getdirty(pp, flags)) { 2879 int err; 2880 2881 /* 2882 * Found a dirty page to push 2883 */ 2884 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 2885 if (err) 2886 error = err; 2887 } else { 2888 io_len = PAGESIZE; 2889 } 2890 } 2891 out: 2892 zil_commit(zfsvfs->z_log, UINT64_MAX, (flags & B_ASYNC) ? 0 : FDSYNC); 2893 ZFS_EXIT(zfsvfs); 2894 return (error); 2895 } 2896 2897 void 2898 zfs_inactive(vnode_t *vp, cred_t *cr) 2899 { 2900 znode_t *zp = VTOZ(vp); 2901 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2902 int error; 2903 2904 rw_enter(&zfsvfs->z_um_lock, RW_READER); 2905 if (zfsvfs->z_unmounted2) { 2906 ASSERT(zp->z_dbuf_held == 0); 2907 2908 if (vn_has_cached_data(vp)) { 2909 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 2910 B_INVAL, cr); 2911 } 2912 2913 mutex_enter(&zp->z_lock); 2914 vp->v_count = 0; /* count arrives as 1 */ 2915 if (zp->z_dbuf == NULL) { 2916 mutex_exit(&zp->z_lock); 2917 zfs_znode_free(zp); 2918 } else { 2919 mutex_exit(&zp->z_lock); 2920 } 2921 rw_exit(&zfsvfs->z_um_lock); 2922 VFS_RELE(zfsvfs->z_vfs); 2923 return; 2924 } 2925 2926 /* 2927 * Attempt to push any data in the page cache. If this fails 2928 * we will get kicked out later in zfs_zinactive(). 2929 */ 2930 if (vn_has_cached_data(vp)) { 2931 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 2932 cr); 2933 } 2934 2935 if (zp->z_atime_dirty && zp->z_reap == 0) { 2936 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 2937 2938 dmu_tx_hold_bonus(tx, zp->z_id); 2939 error = dmu_tx_assign(tx, TXG_WAIT); 2940 if (error) { 2941 dmu_tx_abort(tx); 2942 } else { 2943 dmu_buf_will_dirty(zp->z_dbuf, tx); 2944 mutex_enter(&zp->z_lock); 2945 zp->z_atime_dirty = 0; 2946 mutex_exit(&zp->z_lock); 2947 dmu_tx_commit(tx); 2948 } 2949 } 2950 2951 zfs_zinactive(zp); 2952 rw_exit(&zfsvfs->z_um_lock); 2953 } 2954 2955 /* 2956 * Bounds-check the seek operation. 2957 * 2958 * IN: vp - vnode seeking within 2959 * ooff - old file offset 2960 * noffp - pointer to new file offset 2961 * 2962 * RETURN: 0 if success 2963 * EINVAL if new offset invalid 2964 */ 2965 /* ARGSUSED */ 2966 static int 2967 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 2968 { 2969 if (vp->v_type == VDIR) 2970 return (0); 2971 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 2972 } 2973 2974 /* 2975 * Pre-filter the generic locking function to trap attempts to place 2976 * a mandatory lock on a memory mapped file. 2977 */ 2978 static int 2979 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 2980 flk_callback_t *flk_cbp, cred_t *cr) 2981 { 2982 znode_t *zp = VTOZ(vp); 2983 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2984 int error; 2985 2986 ZFS_ENTER(zfsvfs); 2987 2988 /* 2989 * We are following the UFS semantics with respect to mapcnt 2990 * here: If we see that the file is mapped already, then we will 2991 * return an error, but we don't worry about races between this 2992 * function and zfs_map(). 2993 */ 2994 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 2995 ZFS_EXIT(zfsvfs); 2996 return (EAGAIN); 2997 } 2998 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr); 2999 ZFS_EXIT(zfsvfs); 3000 return (error); 3001 } 3002 3003 /* 3004 * If we can't find a page in the cache, we will create a new page 3005 * and fill it with file data. For efficiency, we may try to fill 3006 * multiple pages at once (klustering). 3007 */ 3008 static int 3009 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3010 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3011 { 3012 znode_t *zp = VTOZ(vp); 3013 page_t *pp, *cur_pp; 3014 objset_t *os = zp->z_zfsvfs->z_os; 3015 caddr_t va; 3016 u_offset_t io_off, total; 3017 uint64_t oid = zp->z_id; 3018 size_t io_len; 3019 uint64_t filesz; 3020 int err; 3021 3022 /* 3023 * If we are only asking for a single page don't bother klustering. 3024 */ 3025 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3026 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE || off > filesz) { 3027 io_off = off; 3028 io_len = PAGESIZE; 3029 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3030 } else { 3031 /* 3032 * Try to fill a kluster of pages (a blocks worth). 3033 */ 3034 size_t klen; 3035 u_offset_t koff; 3036 3037 if (!ISP2(zp->z_blksz)) { 3038 /* Only one block in the file. */ 3039 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3040 koff = 0; 3041 } else { 3042 klen = plsz; 3043 koff = P2ALIGN(off, (u_offset_t)klen); 3044 } 3045 ASSERT(koff <= filesz); 3046 if (koff + klen > filesz) 3047 klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff; 3048 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3049 &io_len, koff, klen, 0); 3050 } 3051 if (pp == NULL) { 3052 /* 3053 * Some other thread entered the page before us. 3054 * Return to zfs_getpage to retry the lookup. 3055 */ 3056 *pl = NULL; 3057 return (0); 3058 } 3059 3060 /* 3061 * Fill the pages in the kluster. 3062 */ 3063 cur_pp = pp; 3064 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3065 ASSERT(io_off == cur_pp->p_offset); 3066 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3067 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3068 ppmapout(va); 3069 if (err) { 3070 /* On error, toss the entire kluster */ 3071 pvn_read_done(pp, B_ERROR); 3072 return (err); 3073 } 3074 cur_pp = cur_pp->p_next; 3075 } 3076 out: 3077 /* 3078 * Fill in the page list array from the kluster. If 3079 * there are too many pages in the kluster, return 3080 * as many pages as possible starting from the desired 3081 * offset `off'. 3082 * NOTE: the page list will always be null terminated. 3083 */ 3084 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3085 3086 return (0); 3087 } 3088 3089 /* 3090 * Return pointers to the pages for the file region [off, off + len] 3091 * in the pl array. If plsz is greater than len, this function may 3092 * also return page pointers from before or after the specified 3093 * region (i.e. some region [off', off' + plsz]). These additional 3094 * pages are only returned if they are already in the cache, or were 3095 * created as part of a klustered read. 3096 * 3097 * IN: vp - vnode of file to get data from. 3098 * off - position in file to get data from. 3099 * len - amount of data to retrieve. 3100 * plsz - length of provided page list. 3101 * seg - segment to obtain pages for. 3102 * addr - virtual address of fault. 3103 * rw - mode of created pages. 3104 * cr - credentials of caller. 3105 * 3106 * OUT: protp - protection mode of created pages. 3107 * pl - list of pages created. 3108 * 3109 * RETURN: 0 if success 3110 * error code if failure 3111 * 3112 * Timestamps: 3113 * vp - atime updated 3114 */ 3115 /* ARGSUSED */ 3116 static int 3117 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3118 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3119 enum seg_rw rw, cred_t *cr) 3120 { 3121 znode_t *zp = VTOZ(vp); 3122 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3123 page_t *pp, **pl0 = pl; 3124 rl_t *rl; 3125 int cnt = 0, need_unlock = 0, err = 0; 3126 3127 ZFS_ENTER(zfsvfs); 3128 3129 if (protp) 3130 *protp = PROT_ALL; 3131 3132 ASSERT(zp->z_dbuf_held && zp->z_phys); 3133 3134 /* no faultahead (for now) */ 3135 if (pl == NULL) { 3136 ZFS_EXIT(zfsvfs); 3137 return (0); 3138 } 3139 3140 /* 3141 * Make sure nobody restructures the file in the middle of the getpage. 3142 */ 3143 rl = zfs_range_lock(zp, off, len, RL_READER); 3144 3145 /* can't fault past EOF */ 3146 if (off >= zp->z_phys->zp_size) { 3147 zfs_range_unlock(zp, rl); 3148 ZFS_EXIT(zfsvfs); 3149 return (EFAULT); 3150 } 3151 3152 /* 3153 * If we already own the lock, then we must be page faulting 3154 * in the middle of a write to this file (i.e., we are writing 3155 * to this file using data from a mapped region of the file). 3156 */ 3157 if (!rw_owner(&zp->z_map_lock)) { 3158 rw_enter(&zp->z_map_lock, RW_WRITER); 3159 need_unlock = TRUE; 3160 } 3161 3162 /* 3163 * Loop through the requested range [off, off + len] looking 3164 * for pages. If we don't find a page, we will need to create 3165 * a new page and fill it with data from the file. 3166 */ 3167 while (len > 0) { 3168 if (plsz < PAGESIZE) 3169 break; 3170 if (pp = page_lookup(vp, off, SE_SHARED)) { 3171 *pl++ = pp; 3172 off += PAGESIZE; 3173 addr += PAGESIZE; 3174 len -= PAGESIZE; 3175 plsz -= PAGESIZE; 3176 } else { 3177 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3178 /* 3179 * klustering may have changed our region 3180 * to be block aligned. 3181 */ 3182 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3183 int delta = off - pp->p_offset; 3184 len += delta; 3185 off -= delta; 3186 addr -= delta; 3187 } 3188 while (*pl) { 3189 pl++; 3190 cnt++; 3191 off += PAGESIZE; 3192 addr += PAGESIZE; 3193 plsz -= PAGESIZE; 3194 if (len > PAGESIZE) 3195 len -= PAGESIZE; 3196 else 3197 len = 0; 3198 } 3199 if (err) { 3200 /* 3201 * Release any pages we have locked. 3202 */ 3203 while (pl > pl0) 3204 page_unlock(*--pl); 3205 goto out; 3206 } 3207 } 3208 } 3209 3210 /* 3211 * Fill out the page array with any pages already in the cache. 3212 */ 3213 while (plsz > 0) { 3214 pp = page_lookup_nowait(vp, off, SE_SHARED); 3215 if (pp == NULL) 3216 break; 3217 *pl++ = pp; 3218 off += PAGESIZE; 3219 plsz -= PAGESIZE; 3220 } 3221 3222 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3223 out: 3224 *pl = NULL; 3225 3226 if (need_unlock) 3227 rw_exit(&zp->z_map_lock); 3228 zfs_range_unlock(zp, rl); 3229 3230 ZFS_EXIT(zfsvfs); 3231 return (err); 3232 } 3233 3234 /* 3235 * Request a memory map for a section of a file. This code interacts 3236 * with common code and the VM system as follows: 3237 * 3238 * common code calls mmap(), which ends up in smmap_common() 3239 * 3240 * this calls VOP_MAP(), which takes you into (say) zfs 3241 * 3242 * zfs_map() calls as_map(), passing segvn_create() as the callback 3243 * 3244 * segvn_create() creates the new segment and calls VOP_ADDMAP() 3245 * 3246 * zfs_addmap() updates z_mapcnt 3247 */ 3248 static int 3249 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 3250 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3251 { 3252 znode_t *zp = VTOZ(vp); 3253 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3254 segvn_crargs_t vn_a; 3255 int error; 3256 3257 ZFS_ENTER(zfsvfs); 3258 3259 if (vp->v_flag & VNOMAP) { 3260 ZFS_EXIT(zfsvfs); 3261 return (ENOSYS); 3262 } 3263 3264 if (off < 0 || len > MAXOFFSET_T - off) { 3265 ZFS_EXIT(zfsvfs); 3266 return (ENXIO); 3267 } 3268 3269 if (vp->v_type != VREG) { 3270 ZFS_EXIT(zfsvfs); 3271 return (ENODEV); 3272 } 3273 3274 /* 3275 * If file is locked, disallow mapping. 3276 */ 3277 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 3278 ZFS_EXIT(zfsvfs); 3279 return (EAGAIN); 3280 } 3281 3282 as_rangelock(as); 3283 if ((flags & MAP_FIXED) == 0) { 3284 map_addr(addrp, len, off, 1, flags); 3285 if (*addrp == NULL) { 3286 as_rangeunlock(as); 3287 ZFS_EXIT(zfsvfs); 3288 return (ENOMEM); 3289 } 3290 } else { 3291 /* 3292 * User specified address - blow away any previous mappings 3293 */ 3294 (void) as_unmap(as, *addrp, len); 3295 } 3296 3297 vn_a.vp = vp; 3298 vn_a.offset = (u_offset_t)off; 3299 vn_a.type = flags & MAP_TYPE; 3300 vn_a.prot = prot; 3301 vn_a.maxprot = maxprot; 3302 vn_a.cred = cr; 3303 vn_a.amp = NULL; 3304 vn_a.flags = flags & ~MAP_TYPE; 3305 vn_a.szc = 0; 3306 vn_a.lgrp_mem_policy_flags = 0; 3307 3308 error = as_map(as, *addrp, len, segvn_create, &vn_a); 3309 3310 as_rangeunlock(as); 3311 ZFS_EXIT(zfsvfs); 3312 return (error); 3313 } 3314 3315 /* ARGSUSED */ 3316 static int 3317 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3318 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3319 { 3320 uint64_t pages = btopr(len); 3321 3322 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 3323 return (0); 3324 } 3325 3326 /* 3327 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 3328 * more accurate mtime for the associated file. Since we don't have a way of 3329 * detecting when the data was actually modified, we have to resort to 3330 * heuristics. If an explicit msync() is done, then we mark the mtime when the 3331 * last page is pushed. The problem occurs when the msync() call is omitted, 3332 * which by far the most common case: 3333 * 3334 * open() 3335 * mmap() 3336 * <modify memory> 3337 * munmap() 3338 * close() 3339 * <time lapse> 3340 * putpage() via fsflush 3341 * 3342 * If we wait until fsflush to come along, we can have a modification time that 3343 * is some arbitrary point in the future. In order to prevent this in the 3344 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 3345 * torn down. 3346 */ 3347 /* ARGSUSED */ 3348 static int 3349 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3350 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 3351 { 3352 uint64_t pages = btopr(len); 3353 3354 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 3355 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 3356 3357 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 3358 vn_has_cached_data(vp)) 3359 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr); 3360 3361 return (0); 3362 } 3363 3364 /* 3365 * Free or allocate space in a file. Currently, this function only 3366 * supports the `F_FREESP' command. However, this command is somewhat 3367 * misnamed, as its functionality includes the ability to allocate as 3368 * well as free space. 3369 * 3370 * IN: vp - vnode of file to free data in. 3371 * cmd - action to take (only F_FREESP supported). 3372 * bfp - section of file to free/alloc. 3373 * flag - current file open mode flags. 3374 * offset - current file offset. 3375 * cr - credentials of caller [UNUSED]. 3376 * 3377 * RETURN: 0 if success 3378 * error code if failure 3379 * 3380 * Timestamps: 3381 * vp - ctime|mtime updated 3382 */ 3383 /* ARGSUSED */ 3384 static int 3385 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 3386 offset_t offset, cred_t *cr, caller_context_t *ct) 3387 { 3388 znode_t *zp = VTOZ(vp); 3389 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3390 uint64_t off, len; 3391 int error; 3392 3393 ZFS_ENTER(zfsvfs); 3394 3395 top: 3396 if (cmd != F_FREESP) { 3397 ZFS_EXIT(zfsvfs); 3398 return (EINVAL); 3399 } 3400 3401 if (error = convoff(vp, bfp, 0, offset)) { 3402 ZFS_EXIT(zfsvfs); 3403 return (error); 3404 } 3405 3406 if (bfp->l_len < 0) { 3407 ZFS_EXIT(zfsvfs); 3408 return (EINVAL); 3409 } 3410 3411 off = bfp->l_start; 3412 len = bfp->l_len; /* 0 means from off to end of file */ 3413 3414 do { 3415 if (error == ERESTART) 3416 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 3417 error = zfs_freesp(zp, off, len, flag, TRUE); 3418 } while (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 3419 3420 ZFS_EXIT(zfsvfs); 3421 return (error); 3422 } 3423 3424 static int 3425 zfs_fid(vnode_t *vp, fid_t *fidp) 3426 { 3427 znode_t *zp = VTOZ(vp); 3428 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3429 uint32_t gen = (uint32_t)zp->z_phys->zp_gen; 3430 uint64_t object = zp->z_id; 3431 zfid_short_t *zfid; 3432 int size, i; 3433 3434 ZFS_ENTER(zfsvfs); 3435 3436 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 3437 if (fidp->fid_len < size) { 3438 fidp->fid_len = size; 3439 ZFS_EXIT(zfsvfs); 3440 return (ENOSPC); 3441 } 3442 3443 zfid = (zfid_short_t *)fidp; 3444 3445 zfid->zf_len = size; 3446 3447 for (i = 0; i < sizeof (zfid->zf_object); i++) 3448 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 3449 3450 /* Must have a non-zero generation number to distinguish from .zfs */ 3451 if (gen == 0) 3452 gen = 1; 3453 for (i = 0; i < sizeof (zfid->zf_gen); i++) 3454 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 3455 3456 if (size == LONG_FID_LEN) { 3457 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 3458 zfid_long_t *zlfid; 3459 3460 zlfid = (zfid_long_t *)fidp; 3461 3462 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 3463 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 3464 3465 /* XXX - this should be the generation number for the objset */ 3466 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 3467 zlfid->zf_setgen[i] = 0; 3468 } 3469 3470 ZFS_EXIT(zfsvfs); 3471 return (0); 3472 } 3473 3474 static int 3475 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 3476 { 3477 znode_t *zp, *xzp; 3478 zfsvfs_t *zfsvfs; 3479 zfs_dirlock_t *dl; 3480 int error; 3481 3482 switch (cmd) { 3483 case _PC_LINK_MAX: 3484 *valp = ULONG_MAX; 3485 return (0); 3486 3487 case _PC_FILESIZEBITS: 3488 *valp = 64; 3489 return (0); 3490 3491 case _PC_XATTR_EXISTS: 3492 zp = VTOZ(vp); 3493 zfsvfs = zp->z_zfsvfs; 3494 ZFS_ENTER(zfsvfs); 3495 *valp = 0; 3496 error = zfs_dirent_lock(&dl, zp, "", &xzp, 3497 ZXATTR | ZEXISTS | ZSHARED); 3498 if (error == 0) { 3499 zfs_dirent_unlock(dl); 3500 if (!zfs_dirempty(xzp)) 3501 *valp = 1; 3502 VN_RELE(ZTOV(xzp)); 3503 } else if (error == ENOENT) { 3504 /* 3505 * If there aren't extended attributes, it's the 3506 * same as having zero of them. 3507 */ 3508 error = 0; 3509 } 3510 ZFS_EXIT(zfsvfs); 3511 return (error); 3512 3513 case _PC_ACL_ENABLED: 3514 *valp = _ACL_ACE_ENABLED; 3515 return (0); 3516 3517 case _PC_MIN_HOLE_SIZE: 3518 *valp = (ulong_t)SPA_MINBLOCKSIZE; 3519 return (0); 3520 3521 default: 3522 return (fs_pathconf(vp, cmd, valp, cr)); 3523 } 3524 } 3525 3526 /*ARGSUSED*/ 3527 static int 3528 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3529 { 3530 znode_t *zp = VTOZ(vp); 3531 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3532 int error; 3533 3534 ZFS_ENTER(zfsvfs); 3535 error = zfs_getacl(zp, vsecp, cr); 3536 ZFS_EXIT(zfsvfs); 3537 3538 return (error); 3539 } 3540 3541 /*ARGSUSED*/ 3542 static int 3543 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3544 { 3545 znode_t *zp = VTOZ(vp); 3546 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3547 int error; 3548 3549 ZFS_ENTER(zfsvfs); 3550 error = zfs_setacl(zp, vsecp, cr); 3551 ZFS_EXIT(zfsvfs); 3552 return (error); 3553 } 3554 3555 /* 3556 * Predeclare these here so that the compiler assumes that 3557 * this is an "old style" function declaration that does 3558 * not include arguments => we won't get type mismatch errors 3559 * in the initializations that follow. 3560 */ 3561 static int zfs_inval(); 3562 static int zfs_isdir(); 3563 3564 static int 3565 zfs_inval() 3566 { 3567 return (EINVAL); 3568 } 3569 3570 static int 3571 zfs_isdir() 3572 { 3573 return (EISDIR); 3574 } 3575 /* 3576 * Directory vnode operations template 3577 */ 3578 vnodeops_t *zfs_dvnodeops; 3579 const fs_operation_def_t zfs_dvnodeops_template[] = { 3580 VOPNAME_OPEN, zfs_open, 3581 VOPNAME_CLOSE, zfs_close, 3582 VOPNAME_READ, zfs_isdir, 3583 VOPNAME_WRITE, zfs_isdir, 3584 VOPNAME_IOCTL, zfs_ioctl, 3585 VOPNAME_GETATTR, zfs_getattr, 3586 VOPNAME_SETATTR, zfs_setattr, 3587 VOPNAME_ACCESS, zfs_access, 3588 VOPNAME_LOOKUP, zfs_lookup, 3589 VOPNAME_CREATE, zfs_create, 3590 VOPNAME_REMOVE, zfs_remove, 3591 VOPNAME_LINK, zfs_link, 3592 VOPNAME_RENAME, zfs_rename, 3593 VOPNAME_MKDIR, zfs_mkdir, 3594 VOPNAME_RMDIR, zfs_rmdir, 3595 VOPNAME_READDIR, zfs_readdir, 3596 VOPNAME_SYMLINK, zfs_symlink, 3597 VOPNAME_FSYNC, zfs_fsync, 3598 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3599 VOPNAME_FID, zfs_fid, 3600 VOPNAME_SEEK, zfs_seek, 3601 VOPNAME_PATHCONF, zfs_pathconf, 3602 VOPNAME_GETSECATTR, zfs_getsecattr, 3603 VOPNAME_SETSECATTR, zfs_setsecattr, 3604 NULL, NULL 3605 }; 3606 3607 /* 3608 * Regular file vnode operations template 3609 */ 3610 vnodeops_t *zfs_fvnodeops; 3611 const fs_operation_def_t zfs_fvnodeops_template[] = { 3612 VOPNAME_OPEN, zfs_open, 3613 VOPNAME_CLOSE, zfs_close, 3614 VOPNAME_READ, zfs_read, 3615 VOPNAME_WRITE, zfs_write, 3616 VOPNAME_IOCTL, zfs_ioctl, 3617 VOPNAME_GETATTR, zfs_getattr, 3618 VOPNAME_SETATTR, zfs_setattr, 3619 VOPNAME_ACCESS, zfs_access, 3620 VOPNAME_LOOKUP, zfs_lookup, 3621 VOPNAME_RENAME, zfs_rename, 3622 VOPNAME_FSYNC, zfs_fsync, 3623 VOPNAME_INACTIVE, (fs_generic_func_p)zfs_inactive, 3624 VOPNAME_FID, zfs_fid, 3625 VOPNAME_SEEK, zfs_seek, 3626 VOPNAME_FRLOCK, zfs_frlock, 3627 VOPNAME_SPACE, zfs_space, 3628 VOPNAME_GETPAGE, zfs_getpage, 3629 VOPNAME_PUTPAGE, zfs_putpage, 3630 VOPNAME_MAP, (fs_generic_func_p) zfs_map, 3631 VOPNAME_ADDMAP, (fs_generic_func_p) zfs_addmap, 3632 VOPNAME_DELMAP, zfs_delmap, 3633 VOPNAME_PATHCONF, zfs_pathconf, 3634 VOPNAME_GETSECATTR, zfs_getsecattr, 3635 VOPNAME_SETSECATTR, zfs_setsecattr, 3636 VOPNAME_VNEVENT, fs_vnevent_support, 3637 NULL, NULL 3638 }; 3639 3640 /* 3641 * Symbolic link vnode operations template 3642 */ 3643 vnodeops_t *zfs_symvnodeops; 3644 const fs_operation_def_t zfs_symvnodeops_template[] = { 3645 VOPNAME_GETATTR, zfs_getattr, 3646 VOPNAME_SETATTR, zfs_setattr, 3647 VOPNAME_ACCESS, zfs_access, 3648 VOPNAME_RENAME, zfs_rename, 3649 VOPNAME_READLINK, zfs_readlink, 3650 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3651 VOPNAME_FID, zfs_fid, 3652 VOPNAME_PATHCONF, zfs_pathconf, 3653 VOPNAME_VNEVENT, fs_vnevent_support, 3654 NULL, NULL 3655 }; 3656 3657 /* 3658 * Extended attribute directory vnode operations template 3659 * This template is identical to the directory vnodes 3660 * operation template except for restricted operations: 3661 * VOP_MKDIR() 3662 * VOP_SYMLINK() 3663 * Note that there are other restrictions embedded in: 3664 * zfs_create() - restrict type to VREG 3665 * zfs_link() - no links into/out of attribute space 3666 * zfs_rename() - no moves into/out of attribute space 3667 */ 3668 vnodeops_t *zfs_xdvnodeops; 3669 const fs_operation_def_t zfs_xdvnodeops_template[] = { 3670 VOPNAME_OPEN, zfs_open, 3671 VOPNAME_CLOSE, zfs_close, 3672 VOPNAME_IOCTL, zfs_ioctl, 3673 VOPNAME_GETATTR, zfs_getattr, 3674 VOPNAME_SETATTR, zfs_setattr, 3675 VOPNAME_ACCESS, zfs_access, 3676 VOPNAME_LOOKUP, zfs_lookup, 3677 VOPNAME_CREATE, zfs_create, 3678 VOPNAME_REMOVE, zfs_remove, 3679 VOPNAME_LINK, zfs_link, 3680 VOPNAME_RENAME, zfs_rename, 3681 VOPNAME_MKDIR, zfs_inval, 3682 VOPNAME_RMDIR, zfs_rmdir, 3683 VOPNAME_READDIR, zfs_readdir, 3684 VOPNAME_SYMLINK, zfs_inval, 3685 VOPNAME_FSYNC, zfs_fsync, 3686 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3687 VOPNAME_FID, zfs_fid, 3688 VOPNAME_SEEK, zfs_seek, 3689 VOPNAME_PATHCONF, zfs_pathconf, 3690 VOPNAME_GETSECATTR, zfs_getsecattr, 3691 VOPNAME_SETSECATTR, zfs_setsecattr, 3692 VOPNAME_VNEVENT, fs_vnevent_support, 3693 NULL, NULL 3694 }; 3695 3696 /* 3697 * Error vnode operations template 3698 */ 3699 vnodeops_t *zfs_evnodeops; 3700 const fs_operation_def_t zfs_evnodeops_template[] = { 3701 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3702 VOPNAME_PATHCONF, zfs_pathconf, 3703 NULL, NULL 3704 }; 3705