xref: /titanic_51/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision b819cea2f73f98c5662230cc9affc8cc84f77fcf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  */
25 
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zil.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/dmu.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dsl_dataset.h>
48 #include <sys/dsl_deleg.h>
49 #include <sys/spa.h>
50 #include <sys/zap.h>
51 #include <sys/sa.h>
52 #include <sys/sa_impl.h>
53 #include <sys/varargs.h>
54 #include <sys/policy.h>
55 #include <sys/atomic.h>
56 #include <sys/mkdev.h>
57 #include <sys/modctl.h>
58 #include <sys/refstr.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/zfs_ctldir.h>
61 #include <sys/zfs_fuid.h>
62 #include <sys/bootconf.h>
63 #include <sys/sunddi.h>
64 #include <sys/dnlc.h>
65 #include <sys/dmu_objset.h>
66 #include <sys/spa_boot.h>
67 #include "zfs_comutil.h"
68 
69 int zfsfstype;
70 vfsops_t *zfs_vfsops = NULL;
71 static major_t zfs_major;
72 static minor_t zfs_minor;
73 static kmutex_t	zfs_dev_mtx;
74 
75 extern int sys_shutdown;
76 
77 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
78 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
79 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
80 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
81 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
82 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
83 static void zfs_freevfs(vfs_t *vfsp);
84 
85 static const fs_operation_def_t zfs_vfsops_template[] = {
86 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
87 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
88 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
89 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
90 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
91 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
92 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
93 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
94 	NULL,			NULL
95 };
96 
97 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
98 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
99 	NULL,			NULL
100 };
101 
102 /*
103  * We need to keep a count of active fs's.
104  * This is necessary to prevent our module
105  * from being unloaded after a umount -f
106  */
107 static uint32_t	zfs_active_fs_count = 0;
108 
109 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
110 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
111 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
112 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
113 
114 /*
115  * MO_DEFAULT is not used since the default value is determined
116  * by the equivalent property.
117  */
118 static mntopt_t mntopts[] = {
119 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
120 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
121 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
122 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
123 };
124 
125 static mntopts_t zfs_mntopts = {
126 	sizeof (mntopts) / sizeof (mntopt_t),
127 	mntopts
128 };
129 
130 /*ARGSUSED*/
131 int
132 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
133 {
134 	/*
135 	 * Data integrity is job one.  We don't want a compromised kernel
136 	 * writing to the storage pool, so we never sync during panic.
137 	 */
138 	if (panicstr)
139 		return (0);
140 
141 	/*
142 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
143 	 * to sync metadata, which they would otherwise cache indefinitely.
144 	 * Semantically, the only requirement is that the sync be initiated.
145 	 * The DMU syncs out txgs frequently, so there's nothing to do.
146 	 */
147 	if (flag & SYNC_ATTR)
148 		return (0);
149 
150 	if (vfsp != NULL) {
151 		/*
152 		 * Sync a specific filesystem.
153 		 */
154 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
155 		dsl_pool_t *dp;
156 
157 		ZFS_ENTER(zfsvfs);
158 		dp = dmu_objset_pool(zfsvfs->z_os);
159 
160 		/*
161 		 * If the system is shutting down, then skip any
162 		 * filesystems which may exist on a suspended pool.
163 		 */
164 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
165 			ZFS_EXIT(zfsvfs);
166 			return (0);
167 		}
168 
169 		if (zfsvfs->z_log != NULL)
170 			zil_commit(zfsvfs->z_log, 0);
171 
172 		ZFS_EXIT(zfsvfs);
173 	} else {
174 		/*
175 		 * Sync all ZFS filesystems.  This is what happens when you
176 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
177 		 * request by waiting for all pools to commit all dirty data.
178 		 */
179 		spa_sync_allpools();
180 	}
181 
182 	return (0);
183 }
184 
185 static int
186 zfs_create_unique_device(dev_t *dev)
187 {
188 	major_t new_major;
189 
190 	do {
191 		ASSERT3U(zfs_minor, <=, MAXMIN32);
192 		minor_t start = zfs_minor;
193 		do {
194 			mutex_enter(&zfs_dev_mtx);
195 			if (zfs_minor >= MAXMIN32) {
196 				/*
197 				 * If we're still using the real major
198 				 * keep out of /dev/zfs and /dev/zvol minor
199 				 * number space.  If we're using a getudev()'ed
200 				 * major number, we can use all of its minors.
201 				 */
202 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
203 					zfs_minor = ZFS_MIN_MINOR;
204 				else
205 					zfs_minor = 0;
206 			} else {
207 				zfs_minor++;
208 			}
209 			*dev = makedevice(zfs_major, zfs_minor);
210 			mutex_exit(&zfs_dev_mtx);
211 		} while (vfs_devismounted(*dev) && zfs_minor != start);
212 		if (zfs_minor == start) {
213 			/*
214 			 * We are using all ~262,000 minor numbers for the
215 			 * current major number.  Create a new major number.
216 			 */
217 			if ((new_major = getudev()) == (major_t)-1) {
218 				cmn_err(CE_WARN,
219 				    "zfs_mount: Can't get unique major "
220 				    "device number.");
221 				return (-1);
222 			}
223 			mutex_enter(&zfs_dev_mtx);
224 			zfs_major = new_major;
225 			zfs_minor = 0;
226 
227 			mutex_exit(&zfs_dev_mtx);
228 		} else {
229 			break;
230 		}
231 		/* CONSTANTCONDITION */
232 	} while (1);
233 
234 	return (0);
235 }
236 
237 static void
238 atime_changed_cb(void *arg, uint64_t newval)
239 {
240 	zfsvfs_t *zfsvfs = arg;
241 
242 	if (newval == TRUE) {
243 		zfsvfs->z_atime = TRUE;
244 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
245 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
246 	} else {
247 		zfsvfs->z_atime = FALSE;
248 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
249 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
250 	}
251 }
252 
253 static void
254 xattr_changed_cb(void *arg, uint64_t newval)
255 {
256 	zfsvfs_t *zfsvfs = arg;
257 
258 	if (newval == TRUE) {
259 		/* XXX locking on vfs_flag? */
260 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
261 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
262 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
263 	} else {
264 		/* XXX locking on vfs_flag? */
265 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
266 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
267 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
268 	}
269 }
270 
271 static void
272 blksz_changed_cb(void *arg, uint64_t newval)
273 {
274 	zfsvfs_t *zfsvfs = arg;
275 	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
276 	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
277 	ASSERT(ISP2(newval));
278 
279 	zfsvfs->z_max_blksz = newval;
280 	zfsvfs->z_vfs->vfs_bsize = newval;
281 }
282 
283 static void
284 readonly_changed_cb(void *arg, uint64_t newval)
285 {
286 	zfsvfs_t *zfsvfs = arg;
287 
288 	if (newval) {
289 		/* XXX locking on vfs_flag? */
290 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
291 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
292 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
293 	} else {
294 		/* XXX locking on vfs_flag? */
295 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
296 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
297 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
298 	}
299 }
300 
301 static void
302 devices_changed_cb(void *arg, uint64_t newval)
303 {
304 	zfsvfs_t *zfsvfs = arg;
305 
306 	if (newval == FALSE) {
307 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
308 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
309 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
310 	} else {
311 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
312 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
313 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
314 	}
315 }
316 
317 static void
318 setuid_changed_cb(void *arg, uint64_t newval)
319 {
320 	zfsvfs_t *zfsvfs = arg;
321 
322 	if (newval == FALSE) {
323 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
324 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
325 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
326 	} else {
327 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
328 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
329 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
330 	}
331 }
332 
333 static void
334 exec_changed_cb(void *arg, uint64_t newval)
335 {
336 	zfsvfs_t *zfsvfs = arg;
337 
338 	if (newval == FALSE) {
339 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
340 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
341 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
342 	} else {
343 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
344 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
345 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
346 	}
347 }
348 
349 /*
350  * The nbmand mount option can be changed at mount time.
351  * We can't allow it to be toggled on live file systems or incorrect
352  * behavior may be seen from cifs clients
353  *
354  * This property isn't registered via dsl_prop_register(), but this callback
355  * will be called when a file system is first mounted
356  */
357 static void
358 nbmand_changed_cb(void *arg, uint64_t newval)
359 {
360 	zfsvfs_t *zfsvfs = arg;
361 	if (newval == FALSE) {
362 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
363 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
364 	} else {
365 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
366 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
367 	}
368 }
369 
370 static void
371 snapdir_changed_cb(void *arg, uint64_t newval)
372 {
373 	zfsvfs_t *zfsvfs = arg;
374 
375 	zfsvfs->z_show_ctldir = newval;
376 }
377 
378 static void
379 vscan_changed_cb(void *arg, uint64_t newval)
380 {
381 	zfsvfs_t *zfsvfs = arg;
382 
383 	zfsvfs->z_vscan = newval;
384 }
385 
386 static void
387 acl_mode_changed_cb(void *arg, uint64_t newval)
388 {
389 	zfsvfs_t *zfsvfs = arg;
390 
391 	zfsvfs->z_acl_mode = newval;
392 }
393 
394 static void
395 acl_inherit_changed_cb(void *arg, uint64_t newval)
396 {
397 	zfsvfs_t *zfsvfs = arg;
398 
399 	zfsvfs->z_acl_inherit = newval;
400 }
401 
402 static int
403 zfs_register_callbacks(vfs_t *vfsp)
404 {
405 	struct dsl_dataset *ds = NULL;
406 	objset_t *os = NULL;
407 	zfsvfs_t *zfsvfs = NULL;
408 	uint64_t nbmand;
409 	boolean_t readonly = B_FALSE;
410 	boolean_t do_readonly = B_FALSE;
411 	boolean_t setuid = B_FALSE;
412 	boolean_t do_setuid = B_FALSE;
413 	boolean_t exec = B_FALSE;
414 	boolean_t do_exec = B_FALSE;
415 	boolean_t devices = B_FALSE;
416 	boolean_t do_devices = B_FALSE;
417 	boolean_t xattr = B_FALSE;
418 	boolean_t do_xattr = B_FALSE;
419 	boolean_t atime = B_FALSE;
420 	boolean_t do_atime = B_FALSE;
421 	int error = 0;
422 
423 	ASSERT(vfsp);
424 	zfsvfs = vfsp->vfs_data;
425 	ASSERT(zfsvfs);
426 	os = zfsvfs->z_os;
427 
428 	/*
429 	 * The act of registering our callbacks will destroy any mount
430 	 * options we may have.  In order to enable temporary overrides
431 	 * of mount options, we stash away the current values and
432 	 * restore them after we register the callbacks.
433 	 */
434 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
435 	    !spa_writeable(dmu_objset_spa(os))) {
436 		readonly = B_TRUE;
437 		do_readonly = B_TRUE;
438 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
439 		readonly = B_FALSE;
440 		do_readonly = B_TRUE;
441 	}
442 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
443 		devices = B_FALSE;
444 		setuid = B_FALSE;
445 		do_devices = B_TRUE;
446 		do_setuid = B_TRUE;
447 	} else {
448 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
449 			devices = B_FALSE;
450 			do_devices = B_TRUE;
451 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
452 			devices = B_TRUE;
453 			do_devices = B_TRUE;
454 		}
455 
456 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
457 			setuid = B_FALSE;
458 			do_setuid = B_TRUE;
459 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
460 			setuid = B_TRUE;
461 			do_setuid = B_TRUE;
462 		}
463 	}
464 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
465 		exec = B_FALSE;
466 		do_exec = B_TRUE;
467 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
468 		exec = B_TRUE;
469 		do_exec = B_TRUE;
470 	}
471 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
472 		xattr = B_FALSE;
473 		do_xattr = B_TRUE;
474 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
475 		xattr = B_TRUE;
476 		do_xattr = B_TRUE;
477 	}
478 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
479 		atime = B_FALSE;
480 		do_atime = B_TRUE;
481 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
482 		atime = B_TRUE;
483 		do_atime = B_TRUE;
484 	}
485 
486 	/*
487 	 * nbmand is a special property.  It can only be changed at
488 	 * mount time.
489 	 *
490 	 * This is weird, but it is documented to only be changeable
491 	 * at mount time.
492 	 */
493 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
494 		nbmand = B_FALSE;
495 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
496 		nbmand = B_TRUE;
497 	} else {
498 		char osname[MAXNAMELEN];
499 
500 		dmu_objset_name(os, osname);
501 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
502 		    NULL)) {
503 			return (error);
504 		}
505 	}
506 
507 	/*
508 	 * Register property callbacks.
509 	 *
510 	 * It would probably be fine to just check for i/o error from
511 	 * the first prop_register(), but I guess I like to go
512 	 * overboard...
513 	 */
514 	ds = dmu_objset_ds(os);
515 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
516 	error = dsl_prop_register(ds,
517 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
518 	error = error ? error : dsl_prop_register(ds,
519 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
520 	error = error ? error : dsl_prop_register(ds,
521 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
522 	error = error ? error : dsl_prop_register(ds,
523 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
524 	error = error ? error : dsl_prop_register(ds,
525 	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
526 	error = error ? error : dsl_prop_register(ds,
527 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
528 	error = error ? error : dsl_prop_register(ds,
529 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
530 	error = error ? error : dsl_prop_register(ds,
531 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
532 	error = error ? error : dsl_prop_register(ds,
533 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
534 	error = error ? error : dsl_prop_register(ds,
535 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
536 	    zfsvfs);
537 	error = error ? error : dsl_prop_register(ds,
538 	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
539 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
540 	if (error)
541 		goto unregister;
542 
543 	/*
544 	 * Invoke our callbacks to restore temporary mount options.
545 	 */
546 	if (do_readonly)
547 		readonly_changed_cb(zfsvfs, readonly);
548 	if (do_setuid)
549 		setuid_changed_cb(zfsvfs, setuid);
550 	if (do_exec)
551 		exec_changed_cb(zfsvfs, exec);
552 	if (do_devices)
553 		devices_changed_cb(zfsvfs, devices);
554 	if (do_xattr)
555 		xattr_changed_cb(zfsvfs, xattr);
556 	if (do_atime)
557 		atime_changed_cb(zfsvfs, atime);
558 
559 	nbmand_changed_cb(zfsvfs, nbmand);
560 
561 	return (0);
562 
563 unregister:
564 	/*
565 	 * We may attempt to unregister some callbacks that are not
566 	 * registered, but this is OK; it will simply return ENOMSG,
567 	 * which we will ignore.
568 	 */
569 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME),
570 	    atime_changed_cb, zfsvfs);
571 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR),
572 	    xattr_changed_cb, zfsvfs);
573 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
574 	    blksz_changed_cb, zfsvfs);
575 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY),
576 	    readonly_changed_cb, zfsvfs);
577 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES),
578 	    devices_changed_cb, zfsvfs);
579 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID),
580 	    setuid_changed_cb, zfsvfs);
581 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC),
582 	    exec_changed_cb, zfsvfs);
583 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR),
584 	    snapdir_changed_cb, zfsvfs);
585 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE),
586 	    acl_mode_changed_cb, zfsvfs);
587 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT),
588 	    acl_inherit_changed_cb, zfsvfs);
589 	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN),
590 	    vscan_changed_cb, zfsvfs);
591 	return (error);
592 }
593 
594 static int
595 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
596     uint64_t *userp, uint64_t *groupp)
597 {
598 	/*
599 	 * Is it a valid type of object to track?
600 	 */
601 	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
602 		return (SET_ERROR(ENOENT));
603 
604 	/*
605 	 * If we have a NULL data pointer
606 	 * then assume the id's aren't changing and
607 	 * return EEXIST to the dmu to let it know to
608 	 * use the same ids
609 	 */
610 	if (data == NULL)
611 		return (SET_ERROR(EEXIST));
612 
613 	if (bonustype == DMU_OT_ZNODE) {
614 		znode_phys_t *znp = data;
615 		*userp = znp->zp_uid;
616 		*groupp = znp->zp_gid;
617 	} else {
618 		int hdrsize;
619 		sa_hdr_phys_t *sap = data;
620 		sa_hdr_phys_t sa = *sap;
621 		boolean_t swap = B_FALSE;
622 
623 		ASSERT(bonustype == DMU_OT_SA);
624 
625 		if (sa.sa_magic == 0) {
626 			/*
627 			 * This should only happen for newly created
628 			 * files that haven't had the znode data filled
629 			 * in yet.
630 			 */
631 			*userp = 0;
632 			*groupp = 0;
633 			return (0);
634 		}
635 		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
636 			sa.sa_magic = SA_MAGIC;
637 			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
638 			swap = B_TRUE;
639 		} else {
640 			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
641 		}
642 
643 		hdrsize = sa_hdrsize(&sa);
644 		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
645 		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
646 		    SA_UID_OFFSET));
647 		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
648 		    SA_GID_OFFSET));
649 		if (swap) {
650 			*userp = BSWAP_64(*userp);
651 			*groupp = BSWAP_64(*groupp);
652 		}
653 	}
654 	return (0);
655 }
656 
657 static void
658 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
659     char *domainbuf, int buflen, uid_t *ridp)
660 {
661 	uint64_t fuid;
662 	const char *domain;
663 
664 	fuid = strtonum(fuidstr, NULL);
665 
666 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
667 	if (domain)
668 		(void) strlcpy(domainbuf, domain, buflen);
669 	else
670 		domainbuf[0] = '\0';
671 	*ridp = FUID_RID(fuid);
672 }
673 
674 static uint64_t
675 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
676 {
677 	switch (type) {
678 	case ZFS_PROP_USERUSED:
679 		return (DMU_USERUSED_OBJECT);
680 	case ZFS_PROP_GROUPUSED:
681 		return (DMU_GROUPUSED_OBJECT);
682 	case ZFS_PROP_USERQUOTA:
683 		return (zfsvfs->z_userquota_obj);
684 	case ZFS_PROP_GROUPQUOTA:
685 		return (zfsvfs->z_groupquota_obj);
686 	}
687 	return (0);
688 }
689 
690 int
691 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
692     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
693 {
694 	int error;
695 	zap_cursor_t zc;
696 	zap_attribute_t za;
697 	zfs_useracct_t *buf = vbuf;
698 	uint64_t obj;
699 
700 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
701 		return (SET_ERROR(ENOTSUP));
702 
703 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
704 	if (obj == 0) {
705 		*bufsizep = 0;
706 		return (0);
707 	}
708 
709 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
710 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
711 	    zap_cursor_advance(&zc)) {
712 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
713 		    *bufsizep)
714 			break;
715 
716 		fuidstr_to_sid(zfsvfs, za.za_name,
717 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
718 
719 		buf->zu_space = za.za_first_integer;
720 		buf++;
721 	}
722 	if (error == ENOENT)
723 		error = 0;
724 
725 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
726 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
727 	*cookiep = zap_cursor_serialize(&zc);
728 	zap_cursor_fini(&zc);
729 	return (error);
730 }
731 
732 /*
733  * buf must be big enough (eg, 32 bytes)
734  */
735 static int
736 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
737     char *buf, boolean_t addok)
738 {
739 	uint64_t fuid;
740 	int domainid = 0;
741 
742 	if (domain && domain[0]) {
743 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
744 		if (domainid == -1)
745 			return (SET_ERROR(ENOENT));
746 	}
747 	fuid = FUID_ENCODE(domainid, rid);
748 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
749 	return (0);
750 }
751 
752 int
753 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
754     const char *domain, uint64_t rid, uint64_t *valp)
755 {
756 	char buf[32];
757 	int err;
758 	uint64_t obj;
759 
760 	*valp = 0;
761 
762 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
763 		return (SET_ERROR(ENOTSUP));
764 
765 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
766 	if (obj == 0)
767 		return (0);
768 
769 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
770 	if (err)
771 		return (err);
772 
773 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
774 	if (err == ENOENT)
775 		err = 0;
776 	return (err);
777 }
778 
779 int
780 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
781     const char *domain, uint64_t rid, uint64_t quota)
782 {
783 	char buf[32];
784 	int err;
785 	dmu_tx_t *tx;
786 	uint64_t *objp;
787 	boolean_t fuid_dirtied;
788 
789 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
790 		return (SET_ERROR(EINVAL));
791 
792 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
793 		return (SET_ERROR(ENOTSUP));
794 
795 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
796 	    &zfsvfs->z_groupquota_obj;
797 
798 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
799 	if (err)
800 		return (err);
801 	fuid_dirtied = zfsvfs->z_fuid_dirty;
802 
803 	tx = dmu_tx_create(zfsvfs->z_os);
804 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
805 	if (*objp == 0) {
806 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
807 		    zfs_userquota_prop_prefixes[type]);
808 	}
809 	if (fuid_dirtied)
810 		zfs_fuid_txhold(zfsvfs, tx);
811 	err = dmu_tx_assign(tx, TXG_WAIT);
812 	if (err) {
813 		dmu_tx_abort(tx);
814 		return (err);
815 	}
816 
817 	mutex_enter(&zfsvfs->z_lock);
818 	if (*objp == 0) {
819 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
820 		    DMU_OT_NONE, 0, tx);
821 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
822 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
823 	}
824 	mutex_exit(&zfsvfs->z_lock);
825 
826 	if (quota == 0) {
827 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
828 		if (err == ENOENT)
829 			err = 0;
830 	} else {
831 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
832 	}
833 	ASSERT(err == 0);
834 	if (fuid_dirtied)
835 		zfs_fuid_sync(zfsvfs, tx);
836 	dmu_tx_commit(tx);
837 	return (err);
838 }
839 
840 boolean_t
841 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
842 {
843 	char buf[32];
844 	uint64_t used, quota, usedobj, quotaobj;
845 	int err;
846 
847 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
848 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
849 
850 	if (quotaobj == 0 || zfsvfs->z_replay)
851 		return (B_FALSE);
852 
853 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
854 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
855 	if (err != 0)
856 		return (B_FALSE);
857 
858 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
859 	if (err != 0)
860 		return (B_FALSE);
861 	return (used >= quota);
862 }
863 
864 boolean_t
865 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
866 {
867 	uint64_t fuid;
868 	uint64_t quotaobj;
869 
870 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
871 
872 	fuid = isgroup ? zp->z_gid : zp->z_uid;
873 
874 	if (quotaobj == 0 || zfsvfs->z_replay)
875 		return (B_FALSE);
876 
877 	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
878 }
879 
880 int
881 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
882 {
883 	objset_t *os;
884 	zfsvfs_t *zfsvfs;
885 	uint64_t zval;
886 	int i, error;
887 	uint64_t sa_obj;
888 
889 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
890 
891 	/*
892 	 * We claim to always be readonly so we can open snapshots;
893 	 * other ZPL code will prevent us from writing to snapshots.
894 	 */
895 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
896 	if (error) {
897 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
898 		return (error);
899 	}
900 
901 	/*
902 	 * Initialize the zfs-specific filesystem structure.
903 	 * Should probably make this a kmem cache, shuffle fields,
904 	 * and just bzero up to z_hold_mtx[].
905 	 */
906 	zfsvfs->z_vfs = NULL;
907 	zfsvfs->z_parent = zfsvfs;
908 	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
909 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
910 	zfsvfs->z_os = os;
911 
912 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
913 	if (error) {
914 		goto out;
915 	} else if (zfsvfs->z_version >
916 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
917 		(void) printf("Can't mount a version %lld file system "
918 		    "on a version %lld pool\n. Pool must be upgraded to mount "
919 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
920 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
921 		error = SET_ERROR(ENOTSUP);
922 		goto out;
923 	}
924 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
925 		goto out;
926 	zfsvfs->z_norm = (int)zval;
927 
928 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
929 		goto out;
930 	zfsvfs->z_utf8 = (zval != 0);
931 
932 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
933 		goto out;
934 	zfsvfs->z_case = (uint_t)zval;
935 
936 	/*
937 	 * Fold case on file systems that are always or sometimes case
938 	 * insensitive.
939 	 */
940 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
941 	    zfsvfs->z_case == ZFS_CASE_MIXED)
942 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
943 
944 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
945 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
946 
947 	if (zfsvfs->z_use_sa) {
948 		/* should either have both of these objects or none */
949 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
950 		    &sa_obj);
951 		if (error)
952 			return (error);
953 	} else {
954 		/*
955 		 * Pre SA versions file systems should never touch
956 		 * either the attribute registration or layout objects.
957 		 */
958 		sa_obj = 0;
959 	}
960 
961 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
962 	    &zfsvfs->z_attr_table);
963 	if (error)
964 		goto out;
965 
966 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
967 		sa_register_update_callback(os, zfs_sa_upgrade);
968 
969 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
970 	    &zfsvfs->z_root);
971 	if (error)
972 		goto out;
973 	ASSERT(zfsvfs->z_root != 0);
974 
975 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
976 	    &zfsvfs->z_unlinkedobj);
977 	if (error)
978 		goto out;
979 
980 	error = zap_lookup(os, MASTER_NODE_OBJ,
981 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
982 	    8, 1, &zfsvfs->z_userquota_obj);
983 	if (error && error != ENOENT)
984 		goto out;
985 
986 	error = zap_lookup(os, MASTER_NODE_OBJ,
987 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
988 	    8, 1, &zfsvfs->z_groupquota_obj);
989 	if (error && error != ENOENT)
990 		goto out;
991 
992 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
993 	    &zfsvfs->z_fuid_obj);
994 	if (error && error != ENOENT)
995 		goto out;
996 
997 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
998 	    &zfsvfs->z_shares_dir);
999 	if (error && error != ENOENT)
1000 		goto out;
1001 
1002 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1003 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
1004 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1005 	    offsetof(znode_t, z_link_node));
1006 	rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
1007 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
1008 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1009 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1010 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1011 
1012 	*zfvp = zfsvfs;
1013 	return (0);
1014 
1015 out:
1016 	dmu_objset_disown(os, zfsvfs);
1017 	*zfvp = NULL;
1018 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1019 	return (error);
1020 }
1021 
1022 static int
1023 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1024 {
1025 	int error;
1026 
1027 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1028 	if (error)
1029 		return (error);
1030 
1031 	/*
1032 	 * Set the objset user_ptr to track its zfsvfs.
1033 	 */
1034 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1035 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1036 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1037 
1038 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1039 
1040 	/*
1041 	 * If we are not mounting (ie: online recv), then we don't
1042 	 * have to worry about replaying the log as we blocked all
1043 	 * operations out since we closed the ZIL.
1044 	 */
1045 	if (mounting) {
1046 		boolean_t readonly;
1047 
1048 		/*
1049 		 * During replay we remove the read only flag to
1050 		 * allow replays to succeed.
1051 		 */
1052 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1053 		if (readonly != 0)
1054 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1055 		else
1056 			zfs_unlinked_drain(zfsvfs);
1057 
1058 		/*
1059 		 * Parse and replay the intent log.
1060 		 *
1061 		 * Because of ziltest, this must be done after
1062 		 * zfs_unlinked_drain().  (Further note: ziltest
1063 		 * doesn't use readonly mounts, where
1064 		 * zfs_unlinked_drain() isn't called.)  This is because
1065 		 * ziltest causes spa_sync() to think it's committed,
1066 		 * but actually it is not, so the intent log contains
1067 		 * many txg's worth of changes.
1068 		 *
1069 		 * In particular, if object N is in the unlinked set in
1070 		 * the last txg to actually sync, then it could be
1071 		 * actually freed in a later txg and then reallocated
1072 		 * in a yet later txg.  This would write a "create
1073 		 * object N" record to the intent log.  Normally, this
1074 		 * would be fine because the spa_sync() would have
1075 		 * written out the fact that object N is free, before
1076 		 * we could write the "create object N" intent log
1077 		 * record.
1078 		 *
1079 		 * But when we are in ziltest mode, we advance the "open
1080 		 * txg" without actually spa_sync()-ing the changes to
1081 		 * disk.  So we would see that object N is still
1082 		 * allocated and in the unlinked set, and there is an
1083 		 * intent log record saying to allocate it.
1084 		 */
1085 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1086 			if (zil_replay_disable) {
1087 				zil_destroy(zfsvfs->z_log, B_FALSE);
1088 			} else {
1089 				zfsvfs->z_replay = B_TRUE;
1090 				zil_replay(zfsvfs->z_os, zfsvfs,
1091 				    zfs_replay_vector);
1092 				zfsvfs->z_replay = B_FALSE;
1093 			}
1094 		}
1095 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1096 	}
1097 
1098 	return (0);
1099 }
1100 
1101 void
1102 zfsvfs_free(zfsvfs_t *zfsvfs)
1103 {
1104 	int i;
1105 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1106 
1107 	/*
1108 	 * This is a barrier to prevent the filesystem from going away in
1109 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1110 	 * not unmounted. We consider the filesystem valid before the barrier
1111 	 * and invalid after the barrier.
1112 	 */
1113 	rw_enter(&zfsvfs_lock, RW_READER);
1114 	rw_exit(&zfsvfs_lock);
1115 
1116 	zfs_fuid_destroy(zfsvfs);
1117 
1118 	mutex_destroy(&zfsvfs->z_znodes_lock);
1119 	mutex_destroy(&zfsvfs->z_lock);
1120 	list_destroy(&zfsvfs->z_all_znodes);
1121 	rrm_destroy(&zfsvfs->z_teardown_lock);
1122 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1123 	rw_destroy(&zfsvfs->z_fuid_lock);
1124 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1125 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1126 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1127 }
1128 
1129 static void
1130 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1131 {
1132 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1133 	if (zfsvfs->z_vfs) {
1134 		if (zfsvfs->z_use_fuids) {
1135 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1136 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1137 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1138 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1139 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1140 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1141 		} else {
1142 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1143 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1144 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1145 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1146 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1147 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1148 		}
1149 	}
1150 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1151 }
1152 
1153 static int
1154 zfs_domount(vfs_t *vfsp, char *osname)
1155 {
1156 	dev_t mount_dev;
1157 	uint64_t recordsize, fsid_guid;
1158 	int error = 0;
1159 	zfsvfs_t *zfsvfs;
1160 
1161 	ASSERT(vfsp);
1162 	ASSERT(osname);
1163 
1164 	error = zfsvfs_create(osname, &zfsvfs);
1165 	if (error)
1166 		return (error);
1167 	zfsvfs->z_vfs = vfsp;
1168 
1169 	/* Initialize the generic filesystem structure. */
1170 	vfsp->vfs_bcount = 0;
1171 	vfsp->vfs_data = NULL;
1172 
1173 	if (zfs_create_unique_device(&mount_dev) == -1) {
1174 		error = SET_ERROR(ENODEV);
1175 		goto out;
1176 	}
1177 	ASSERT(vfs_devismounted(mount_dev) == 0);
1178 
1179 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1180 	    NULL))
1181 		goto out;
1182 
1183 	vfsp->vfs_dev = mount_dev;
1184 	vfsp->vfs_fstype = zfsfstype;
1185 	vfsp->vfs_bsize = recordsize;
1186 	vfsp->vfs_flag |= VFS_NOTRUNC;
1187 	vfsp->vfs_data = zfsvfs;
1188 
1189 	/*
1190 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1191 	 * separates our fsid from any other filesystem types, and a
1192 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1193 	 * all objsets open on this system, provided by unique_create().
1194 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1195 	 * because that's where other Solaris filesystems put it.
1196 	 */
1197 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1198 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1199 	vfsp->vfs_fsid.val[0] = fsid_guid;
1200 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1201 	    zfsfstype & 0xFF;
1202 
1203 	/*
1204 	 * Set features for file system.
1205 	 */
1206 	zfs_set_fuid_feature(zfsvfs);
1207 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1208 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1209 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1210 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1211 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1212 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1213 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1214 	}
1215 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1216 
1217 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1218 		uint64_t pval;
1219 
1220 		atime_changed_cb(zfsvfs, B_FALSE);
1221 		readonly_changed_cb(zfsvfs, B_TRUE);
1222 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1223 			goto out;
1224 		xattr_changed_cb(zfsvfs, pval);
1225 		zfsvfs->z_issnap = B_TRUE;
1226 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1227 
1228 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1229 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1230 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1231 	} else {
1232 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1233 	}
1234 
1235 	if (!zfsvfs->z_issnap)
1236 		zfsctl_create(zfsvfs);
1237 out:
1238 	if (error) {
1239 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1240 		zfsvfs_free(zfsvfs);
1241 	} else {
1242 		atomic_inc_32(&zfs_active_fs_count);
1243 	}
1244 
1245 	return (error);
1246 }
1247 
1248 void
1249 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1250 {
1251 	objset_t *os = zfsvfs->z_os;
1252 	struct dsl_dataset *ds;
1253 
1254 	/*
1255 	 * Unregister properties.
1256 	 */
1257 	if (!dmu_objset_is_snapshot(os)) {
1258 		ds = dmu_objset_ds(os);
1259 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1260 		    zfsvfs) == 0);
1261 
1262 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1263 		    zfsvfs) == 0);
1264 
1265 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1266 		    zfsvfs) == 0);
1267 
1268 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1269 		    zfsvfs) == 0);
1270 
1271 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1272 		    zfsvfs) == 0);
1273 
1274 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1275 		    zfsvfs) == 0);
1276 
1277 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1278 		    zfsvfs) == 0);
1279 
1280 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1281 		    zfsvfs) == 0);
1282 
1283 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1284 		    zfsvfs) == 0);
1285 
1286 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1287 		    acl_inherit_changed_cb, zfsvfs) == 0);
1288 
1289 		VERIFY(dsl_prop_unregister(ds, "vscan",
1290 		    vscan_changed_cb, zfsvfs) == 0);
1291 	}
1292 }
1293 
1294 /*
1295  * Convert a decimal digit string to a uint64_t integer.
1296  */
1297 static int
1298 str_to_uint64(char *str, uint64_t *objnum)
1299 {
1300 	uint64_t num = 0;
1301 
1302 	while (*str) {
1303 		if (*str < '0' || *str > '9')
1304 			return (SET_ERROR(EINVAL));
1305 
1306 		num = num*10 + *str++ - '0';
1307 	}
1308 
1309 	*objnum = num;
1310 	return (0);
1311 }
1312 
1313 /*
1314  * The boot path passed from the boot loader is in the form of
1315  * "rootpool-name/root-filesystem-object-number'. Convert this
1316  * string to a dataset name: "rootpool-name/root-filesystem-name".
1317  */
1318 static int
1319 zfs_parse_bootfs(char *bpath, char *outpath)
1320 {
1321 	char *slashp;
1322 	uint64_t objnum;
1323 	int error;
1324 
1325 	if (*bpath == 0 || *bpath == '/')
1326 		return (SET_ERROR(EINVAL));
1327 
1328 	(void) strcpy(outpath, bpath);
1329 
1330 	slashp = strchr(bpath, '/');
1331 
1332 	/* if no '/', just return the pool name */
1333 	if (slashp == NULL) {
1334 		return (0);
1335 	}
1336 
1337 	/* if not a number, just return the root dataset name */
1338 	if (str_to_uint64(slashp+1, &objnum)) {
1339 		return (0);
1340 	}
1341 
1342 	*slashp = '\0';
1343 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1344 	*slashp = '/';
1345 
1346 	return (error);
1347 }
1348 
1349 /*
1350  * Check that the hex label string is appropriate for the dataset being
1351  * mounted into the global_zone proper.
1352  *
1353  * Return an error if the hex label string is not default or
1354  * admin_low/admin_high.  For admin_low labels, the corresponding
1355  * dataset must be readonly.
1356  */
1357 int
1358 zfs_check_global_label(const char *dsname, const char *hexsl)
1359 {
1360 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1361 		return (0);
1362 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1363 		return (0);
1364 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1365 		/* must be readonly */
1366 		uint64_t rdonly;
1367 
1368 		if (dsl_prop_get_integer(dsname,
1369 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1370 			return (SET_ERROR(EACCES));
1371 		return (rdonly ? 0 : EACCES);
1372 	}
1373 	return (SET_ERROR(EACCES));
1374 }
1375 
1376 /*
1377  * Determine whether the mount is allowed according to MAC check.
1378  * by comparing (where appropriate) label of the dataset against
1379  * the label of the zone being mounted into.  If the dataset has
1380  * no label, create one.
1381  *
1382  * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1383  */
1384 static int
1385 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1386 {
1387 	int		error, retv;
1388 	zone_t		*mntzone = NULL;
1389 	ts_label_t	*mnt_tsl;
1390 	bslabel_t	*mnt_sl;
1391 	bslabel_t	ds_sl;
1392 	char		ds_hexsl[MAXNAMELEN];
1393 
1394 	retv = EACCES;				/* assume the worst */
1395 
1396 	/*
1397 	 * Start by getting the dataset label if it exists.
1398 	 */
1399 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1400 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1401 	if (error)
1402 		return (SET_ERROR(EACCES));
1403 
1404 	/*
1405 	 * If labeling is NOT enabled, then disallow the mount of datasets
1406 	 * which have a non-default label already.  No other label checks
1407 	 * are needed.
1408 	 */
1409 	if (!is_system_labeled()) {
1410 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1411 			return (0);
1412 		return (SET_ERROR(EACCES));
1413 	}
1414 
1415 	/*
1416 	 * Get the label of the mountpoint.  If mounting into the global
1417 	 * zone (i.e. mountpoint is not within an active zone and the
1418 	 * zoned property is off), the label must be default or
1419 	 * admin_low/admin_high only; no other checks are needed.
1420 	 */
1421 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1422 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1423 		uint64_t zoned;
1424 
1425 		zone_rele(mntzone);
1426 
1427 		if (dsl_prop_get_integer(osname,
1428 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1429 			return (SET_ERROR(EACCES));
1430 		if (!zoned)
1431 			return (zfs_check_global_label(osname, ds_hexsl));
1432 		else
1433 			/*
1434 			 * This is the case of a zone dataset being mounted
1435 			 * initially, before the zone has been fully created;
1436 			 * allow this mount into global zone.
1437 			 */
1438 			return (0);
1439 	}
1440 
1441 	mnt_tsl = mntzone->zone_slabel;
1442 	ASSERT(mnt_tsl != NULL);
1443 	label_hold(mnt_tsl);
1444 	mnt_sl = label2bslabel(mnt_tsl);
1445 
1446 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1447 		/*
1448 		 * The dataset doesn't have a real label, so fabricate one.
1449 		 */
1450 		char *str = NULL;
1451 
1452 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1453 		    dsl_prop_set_string(osname,
1454 		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1455 		    ZPROP_SRC_LOCAL, str) == 0)
1456 			retv = 0;
1457 		if (str != NULL)
1458 			kmem_free(str, strlen(str) + 1);
1459 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1460 		/*
1461 		 * Now compare labels to complete the MAC check.  If the
1462 		 * labels are equal then allow access.  If the mountpoint
1463 		 * label dominates the dataset label, allow readonly access.
1464 		 * Otherwise, access is denied.
1465 		 */
1466 		if (blequal(mnt_sl, &ds_sl))
1467 			retv = 0;
1468 		else if (bldominates(mnt_sl, &ds_sl)) {
1469 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1470 			retv = 0;
1471 		}
1472 	}
1473 
1474 	label_rele(mnt_tsl);
1475 	zone_rele(mntzone);
1476 	return (retv);
1477 }
1478 
1479 static int
1480 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1481 {
1482 	int error = 0;
1483 	static int zfsrootdone = 0;
1484 	zfsvfs_t *zfsvfs = NULL;
1485 	znode_t *zp = NULL;
1486 	vnode_t *vp = NULL;
1487 	char *zfs_bootfs;
1488 	char *zfs_devid;
1489 
1490 	ASSERT(vfsp);
1491 
1492 	/*
1493 	 * The filesystem that we mount as root is defined in the
1494 	 * boot property "zfs-bootfs" with a format of
1495 	 * "poolname/root-dataset-objnum".
1496 	 */
1497 	if (why == ROOT_INIT) {
1498 		if (zfsrootdone++)
1499 			return (SET_ERROR(EBUSY));
1500 		/*
1501 		 * the process of doing a spa_load will require the
1502 		 * clock to be set before we could (for example) do
1503 		 * something better by looking at the timestamp on
1504 		 * an uberblock, so just set it to -1.
1505 		 */
1506 		clkset(-1);
1507 
1508 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1509 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1510 			    "bootfs name");
1511 			return (SET_ERROR(EINVAL));
1512 		}
1513 		zfs_devid = spa_get_bootprop("diskdevid");
1514 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1515 		if (zfs_devid)
1516 			spa_free_bootprop(zfs_devid);
1517 		if (error) {
1518 			spa_free_bootprop(zfs_bootfs);
1519 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1520 			    error);
1521 			return (error);
1522 		}
1523 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1524 			spa_free_bootprop(zfs_bootfs);
1525 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1526 			    error);
1527 			return (error);
1528 		}
1529 
1530 		spa_free_bootprop(zfs_bootfs);
1531 
1532 		if (error = vfs_lock(vfsp))
1533 			return (error);
1534 
1535 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1536 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1537 			goto out;
1538 		}
1539 
1540 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1541 		ASSERT(zfsvfs);
1542 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1543 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1544 			goto out;
1545 		}
1546 
1547 		vp = ZTOV(zp);
1548 		mutex_enter(&vp->v_lock);
1549 		vp->v_flag |= VROOT;
1550 		mutex_exit(&vp->v_lock);
1551 		rootvp = vp;
1552 
1553 		/*
1554 		 * Leave rootvp held.  The root file system is never unmounted.
1555 		 */
1556 
1557 		vfs_add((struct vnode *)0, vfsp,
1558 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1559 out:
1560 		vfs_unlock(vfsp);
1561 		return (error);
1562 	} else if (why == ROOT_REMOUNT) {
1563 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1564 		vfsp->vfs_flag |= VFS_REMOUNT;
1565 
1566 		/* refresh mount options */
1567 		zfs_unregister_callbacks(vfsp->vfs_data);
1568 		return (zfs_register_callbacks(vfsp));
1569 
1570 	} else if (why == ROOT_UNMOUNT) {
1571 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1572 		(void) zfs_sync(vfsp, 0, 0);
1573 		return (0);
1574 	}
1575 
1576 	/*
1577 	 * if "why" is equal to anything else other than ROOT_INIT,
1578 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1579 	 */
1580 	return (SET_ERROR(ENOTSUP));
1581 }
1582 
1583 /*ARGSUSED*/
1584 static int
1585 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1586 {
1587 	char		*osname;
1588 	pathname_t	spn;
1589 	int		error = 0;
1590 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1591 	    UIO_SYSSPACE : UIO_USERSPACE;
1592 	int		canwrite;
1593 
1594 	if (mvp->v_type != VDIR)
1595 		return (SET_ERROR(ENOTDIR));
1596 
1597 	mutex_enter(&mvp->v_lock);
1598 	if ((uap->flags & MS_REMOUNT) == 0 &&
1599 	    (uap->flags & MS_OVERLAY) == 0 &&
1600 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1601 		mutex_exit(&mvp->v_lock);
1602 		return (SET_ERROR(EBUSY));
1603 	}
1604 	mutex_exit(&mvp->v_lock);
1605 
1606 	/*
1607 	 * ZFS does not support passing unparsed data in via MS_DATA.
1608 	 * Users should use the MS_OPTIONSTR interface; this means
1609 	 * that all option parsing is already done and the options struct
1610 	 * can be interrogated.
1611 	 */
1612 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1613 		return (SET_ERROR(EINVAL));
1614 
1615 	/*
1616 	 * Get the objset name (the "special" mount argument).
1617 	 */
1618 	if (error = pn_get(uap->spec, fromspace, &spn))
1619 		return (error);
1620 
1621 	osname = spn.pn_path;
1622 
1623 	/*
1624 	 * Check for mount privilege?
1625 	 *
1626 	 * If we don't have privilege then see if
1627 	 * we have local permission to allow it
1628 	 */
1629 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1630 	if (error) {
1631 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1632 			vattr_t		vattr;
1633 
1634 			/*
1635 			 * Make sure user is the owner of the mount point
1636 			 * or has sufficient privileges.
1637 			 */
1638 
1639 			vattr.va_mask = AT_UID;
1640 
1641 			if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1642 				goto out;
1643 			}
1644 
1645 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1646 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1647 				goto out;
1648 			}
1649 			secpolicy_fs_mount_clearopts(cr, vfsp);
1650 		} else {
1651 			goto out;
1652 		}
1653 	}
1654 
1655 	/*
1656 	 * Refuse to mount a filesystem if we are in a local zone and the
1657 	 * dataset is not visible.
1658 	 */
1659 	if (!INGLOBALZONE(curproc) &&
1660 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1661 		error = SET_ERROR(EPERM);
1662 		goto out;
1663 	}
1664 
1665 	error = zfs_mount_label_policy(vfsp, osname);
1666 	if (error)
1667 		goto out;
1668 
1669 	/*
1670 	 * When doing a remount, we simply refresh our temporary properties
1671 	 * according to those options set in the current VFS options.
1672 	 */
1673 	if (uap->flags & MS_REMOUNT) {
1674 		/* refresh mount options */
1675 		zfs_unregister_callbacks(vfsp->vfs_data);
1676 		error = zfs_register_callbacks(vfsp);
1677 		goto out;
1678 	}
1679 
1680 	error = zfs_domount(vfsp, osname);
1681 
1682 	/*
1683 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1684 	 * disappear due to a forced unmount.
1685 	 */
1686 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1687 		VFS_HOLD(mvp->v_vfsp);
1688 
1689 out:
1690 	pn_free(&spn);
1691 	return (error);
1692 }
1693 
1694 static int
1695 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1696 {
1697 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1698 	dev32_t d32;
1699 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1700 
1701 	ZFS_ENTER(zfsvfs);
1702 
1703 	dmu_objset_space(zfsvfs->z_os,
1704 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1705 
1706 	/*
1707 	 * The underlying storage pool actually uses multiple block sizes.
1708 	 * We report the fragsize as the smallest block size we support,
1709 	 * and we report our blocksize as the filesystem's maximum blocksize.
1710 	 */
1711 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1712 	statp->f_bsize = zfsvfs->z_max_blksz;
1713 
1714 	/*
1715 	 * The following report "total" blocks of various kinds in the
1716 	 * file system, but reported in terms of f_frsize - the
1717 	 * "fragment" size.
1718 	 */
1719 
1720 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1721 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1722 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1723 
1724 	/*
1725 	 * statvfs() should really be called statufs(), because it assumes
1726 	 * static metadata.  ZFS doesn't preallocate files, so the best
1727 	 * we can do is report the max that could possibly fit in f_files,
1728 	 * and that minus the number actually used in f_ffree.
1729 	 * For f_ffree, report the smaller of the number of object available
1730 	 * and the number of blocks (each object will take at least a block).
1731 	 */
1732 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1733 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1734 	statp->f_files = statp->f_ffree + usedobjs;
1735 
1736 	(void) cmpldev(&d32, vfsp->vfs_dev);
1737 	statp->f_fsid = d32;
1738 
1739 	/*
1740 	 * We're a zfs filesystem.
1741 	 */
1742 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1743 
1744 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1745 
1746 	statp->f_namemax = ZFS_MAXNAMELEN;
1747 
1748 	/*
1749 	 * We have all of 32 characters to stuff a string here.
1750 	 * Is there anything useful we could/should provide?
1751 	 */
1752 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1753 
1754 	ZFS_EXIT(zfsvfs);
1755 	return (0);
1756 }
1757 
1758 static int
1759 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1760 {
1761 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1762 	znode_t *rootzp;
1763 	int error;
1764 
1765 	ZFS_ENTER(zfsvfs);
1766 
1767 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1768 	if (error == 0)
1769 		*vpp = ZTOV(rootzp);
1770 
1771 	ZFS_EXIT(zfsvfs);
1772 	return (error);
1773 }
1774 
1775 /*
1776  * Teardown the zfsvfs::z_os.
1777  *
1778  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1779  * and 'z_teardown_inactive_lock' held.
1780  */
1781 static int
1782 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1783 {
1784 	znode_t	*zp;
1785 
1786 	rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1787 
1788 	if (!unmounting) {
1789 		/*
1790 		 * We purge the parent filesystem's vfsp as the parent
1791 		 * filesystem and all of its snapshots have their vnode's
1792 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1793 		 * 'z_parent' is self referential for non-snapshots.
1794 		 */
1795 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1796 	}
1797 
1798 	/*
1799 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1800 	 * threads are blocked as zil_close can call zfs_inactive.
1801 	 */
1802 	if (zfsvfs->z_log) {
1803 		zil_close(zfsvfs->z_log);
1804 		zfsvfs->z_log = NULL;
1805 	}
1806 
1807 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1808 
1809 	/*
1810 	 * If we are not unmounting (ie: online recv) and someone already
1811 	 * unmounted this file system while we were doing the switcheroo,
1812 	 * or a reopen of z_os failed then just bail out now.
1813 	 */
1814 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1815 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1816 		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1817 		return (SET_ERROR(EIO));
1818 	}
1819 
1820 	/*
1821 	 * At this point there are no vops active, and any new vops will
1822 	 * fail with EIO since we have z_teardown_lock for writer (only
1823 	 * relavent for forced unmount).
1824 	 *
1825 	 * Release all holds on dbufs.
1826 	 */
1827 	mutex_enter(&zfsvfs->z_znodes_lock);
1828 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1829 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1830 		if (zp->z_sa_hdl) {
1831 			ASSERT(ZTOV(zp)->v_count > 0);
1832 			zfs_znode_dmu_fini(zp);
1833 		}
1834 	mutex_exit(&zfsvfs->z_znodes_lock);
1835 
1836 	/*
1837 	 * If we are unmounting, set the unmounted flag and let new vops
1838 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1839 	 * other vops will fail with EIO.
1840 	 */
1841 	if (unmounting) {
1842 		zfsvfs->z_unmounted = B_TRUE;
1843 		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1844 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1845 	}
1846 
1847 	/*
1848 	 * z_os will be NULL if there was an error in attempting to reopen
1849 	 * zfsvfs, so just return as the properties had already been
1850 	 * unregistered and cached data had been evicted before.
1851 	 */
1852 	if (zfsvfs->z_os == NULL)
1853 		return (0);
1854 
1855 	/*
1856 	 * Unregister properties.
1857 	 */
1858 	zfs_unregister_callbacks(zfsvfs);
1859 
1860 	/*
1861 	 * Evict cached data
1862 	 */
1863 	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1864 	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1865 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1866 	dmu_objset_evict_dbufs(zfsvfs->z_os);
1867 
1868 	return (0);
1869 }
1870 
1871 /*ARGSUSED*/
1872 static int
1873 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1874 {
1875 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1876 	objset_t *os;
1877 	int ret;
1878 
1879 	ret = secpolicy_fs_unmount(cr, vfsp);
1880 	if (ret) {
1881 		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1882 		    ZFS_DELEG_PERM_MOUNT, cr))
1883 			return (ret);
1884 	}
1885 
1886 	/*
1887 	 * We purge the parent filesystem's vfsp as the parent filesystem
1888 	 * and all of its snapshots have their vnode's v_vfsp set to the
1889 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1890 	 * referential for non-snapshots.
1891 	 */
1892 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1893 
1894 	/*
1895 	 * Unmount any snapshots mounted under .zfs before unmounting the
1896 	 * dataset itself.
1897 	 */
1898 	if (zfsvfs->z_ctldir != NULL &&
1899 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1900 		return (ret);
1901 	}
1902 
1903 	if (!(fflag & MS_FORCE)) {
1904 		/*
1905 		 * Check the number of active vnodes in the file system.
1906 		 * Our count is maintained in the vfs structure, but the
1907 		 * number is off by 1 to indicate a hold on the vfs
1908 		 * structure itself.
1909 		 *
1910 		 * The '.zfs' directory maintains a reference of its
1911 		 * own, and any active references underneath are
1912 		 * reflected in the vnode count.
1913 		 */
1914 		if (zfsvfs->z_ctldir == NULL) {
1915 			if (vfsp->vfs_count > 1)
1916 				return (SET_ERROR(EBUSY));
1917 		} else {
1918 			if (vfsp->vfs_count > 2 ||
1919 			    zfsvfs->z_ctldir->v_count > 1)
1920 				return (SET_ERROR(EBUSY));
1921 		}
1922 	}
1923 
1924 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1925 
1926 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1927 	os = zfsvfs->z_os;
1928 
1929 	/*
1930 	 * z_os will be NULL if there was an error in
1931 	 * attempting to reopen zfsvfs.
1932 	 */
1933 	if (os != NULL) {
1934 		/*
1935 		 * Unset the objset user_ptr.
1936 		 */
1937 		mutex_enter(&os->os_user_ptr_lock);
1938 		dmu_objset_set_user(os, NULL);
1939 		mutex_exit(&os->os_user_ptr_lock);
1940 
1941 		/*
1942 		 * Finally release the objset
1943 		 */
1944 		dmu_objset_disown(os, zfsvfs);
1945 	}
1946 
1947 	/*
1948 	 * We can now safely destroy the '.zfs' directory node.
1949 	 */
1950 	if (zfsvfs->z_ctldir != NULL)
1951 		zfsctl_destroy(zfsvfs);
1952 
1953 	return (0);
1954 }
1955 
1956 static int
1957 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1958 {
1959 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1960 	znode_t		*zp;
1961 	uint64_t	object = 0;
1962 	uint64_t	fid_gen = 0;
1963 	uint64_t	gen_mask;
1964 	uint64_t	zp_gen;
1965 	int 		i, err;
1966 
1967 	*vpp = NULL;
1968 
1969 	ZFS_ENTER(zfsvfs);
1970 
1971 	if (fidp->fid_len == LONG_FID_LEN) {
1972 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1973 		uint64_t	objsetid = 0;
1974 		uint64_t	setgen = 0;
1975 
1976 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1977 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1978 
1979 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1980 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1981 
1982 		ZFS_EXIT(zfsvfs);
1983 
1984 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1985 		if (err)
1986 			return (SET_ERROR(EINVAL));
1987 		ZFS_ENTER(zfsvfs);
1988 	}
1989 
1990 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1991 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1992 
1993 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1994 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1995 
1996 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1997 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1998 	} else {
1999 		ZFS_EXIT(zfsvfs);
2000 		return (SET_ERROR(EINVAL));
2001 	}
2002 
2003 	/* A zero fid_gen means we are in the .zfs control directories */
2004 	if (fid_gen == 0 &&
2005 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
2006 		*vpp = zfsvfs->z_ctldir;
2007 		ASSERT(*vpp != NULL);
2008 		if (object == ZFSCTL_INO_SNAPDIR) {
2009 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2010 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2011 		} else {
2012 			VN_HOLD(*vpp);
2013 		}
2014 		ZFS_EXIT(zfsvfs);
2015 		return (0);
2016 	}
2017 
2018 	gen_mask = -1ULL >> (64 - 8 * i);
2019 
2020 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2021 	if (err = zfs_zget(zfsvfs, object, &zp)) {
2022 		ZFS_EXIT(zfsvfs);
2023 		return (err);
2024 	}
2025 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2026 	    sizeof (uint64_t));
2027 	zp_gen = zp_gen & gen_mask;
2028 	if (zp_gen == 0)
2029 		zp_gen = 1;
2030 	if (zp->z_unlinked || zp_gen != fid_gen) {
2031 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2032 		VN_RELE(ZTOV(zp));
2033 		ZFS_EXIT(zfsvfs);
2034 		return (SET_ERROR(EINVAL));
2035 	}
2036 
2037 	*vpp = ZTOV(zp);
2038 	ZFS_EXIT(zfsvfs);
2039 	return (0);
2040 }
2041 
2042 /*
2043  * Block out VOPs and close zfsvfs_t::z_os
2044  *
2045  * Note, if successful, then we return with the 'z_teardown_lock' and
2046  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2047  * dataset and objset intact so that they can be atomically handed off during
2048  * a subsequent rollback or recv operation and the resume thereafter.
2049  */
2050 int
2051 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2052 {
2053 	int error;
2054 
2055 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2056 		return (error);
2057 
2058 	return (0);
2059 }
2060 
2061 /*
2062  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2063  * is an invariant across any of the operations that can be performed while the
2064  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2065  * are the same: the relevant objset and associated dataset are owned by
2066  * zfsvfs, held, and long held on entry.
2067  */
2068 int
2069 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2070 {
2071 	int err;
2072 	znode_t *zp;
2073 	uint64_t sa_obj = 0;
2074 
2075 	ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2076 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2077 
2078 	/*
2079 	 * We already own this, so just hold and rele it to update the
2080 	 * objset_t, as the one we had before may have been evicted.
2081 	 */
2082 	VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os));
2083 	VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2084 	VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset));
2085 	dmu_objset_rele(zfsvfs->z_os, zfsvfs);
2086 
2087 	/*
2088 	 * Make sure version hasn't changed
2089 	 */
2090 
2091 	err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2092 	    &zfsvfs->z_version);
2093 
2094 	if (err)
2095 		goto bail;
2096 
2097 	err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2098 	    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2099 
2100 	if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2101 		goto bail;
2102 
2103 	if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2104 	    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2105 		goto bail;
2106 
2107 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
2108 		sa_register_update_callback(zfsvfs->z_os,
2109 		    zfs_sa_upgrade);
2110 
2111 	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2112 
2113 	zfs_set_fuid_feature(zfsvfs);
2114 
2115 	/*
2116 	 * Attempt to re-establish all the active znodes with
2117 	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2118 	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2119 	 * when they try to use their znode.
2120 	 */
2121 	mutex_enter(&zfsvfs->z_znodes_lock);
2122 	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2123 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2124 		(void) zfs_rezget(zp);
2125 	}
2126 	mutex_exit(&zfsvfs->z_znodes_lock);
2127 
2128 bail:
2129 	/* release the VOPs */
2130 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2131 	rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2132 
2133 	if (err) {
2134 		/*
2135 		 * Since we couldn't setup the sa framework, try to force
2136 		 * unmount this file system.
2137 		 */
2138 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2139 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2140 	}
2141 	return (err);
2142 }
2143 
2144 static void
2145 zfs_freevfs(vfs_t *vfsp)
2146 {
2147 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2148 
2149 	/*
2150 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2151 	 * from zfs_mount().  Release it here.  If we came through
2152 	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2153 	 * skip the VFS_RELE for rootvfs.
2154 	 */
2155 	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2156 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2157 
2158 	zfsvfs_free(zfsvfs);
2159 
2160 	atomic_dec_32(&zfs_active_fs_count);
2161 }
2162 
2163 /*
2164  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2165  * so we can't safely do any non-idempotent initialization here.
2166  * Leave that to zfs_init() and zfs_fini(), which are called
2167  * from the module's _init() and _fini() entry points.
2168  */
2169 /*ARGSUSED*/
2170 static int
2171 zfs_vfsinit(int fstype, char *name)
2172 {
2173 	int error;
2174 
2175 	zfsfstype = fstype;
2176 
2177 	/*
2178 	 * Setup vfsops and vnodeops tables.
2179 	 */
2180 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2181 	if (error != 0) {
2182 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2183 	}
2184 
2185 	error = zfs_create_op_tables();
2186 	if (error) {
2187 		zfs_remove_op_tables();
2188 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2189 		(void) vfs_freevfsops_by_type(zfsfstype);
2190 		return (error);
2191 	}
2192 
2193 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2194 
2195 	/*
2196 	 * Unique major number for all zfs mounts.
2197 	 * If we run out of 32-bit minors, we'll getudev() another major.
2198 	 */
2199 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2200 	zfs_minor = ZFS_MIN_MINOR;
2201 
2202 	return (0);
2203 }
2204 
2205 void
2206 zfs_init(void)
2207 {
2208 	/*
2209 	 * Initialize .zfs directory structures
2210 	 */
2211 	zfsctl_init();
2212 
2213 	/*
2214 	 * Initialize znode cache, vnode ops, etc...
2215 	 */
2216 	zfs_znode_init();
2217 
2218 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2219 }
2220 
2221 void
2222 zfs_fini(void)
2223 {
2224 	zfsctl_fini();
2225 	zfs_znode_fini();
2226 }
2227 
2228 int
2229 zfs_busy(void)
2230 {
2231 	return (zfs_active_fs_count != 0);
2232 }
2233 
2234 int
2235 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2236 {
2237 	int error;
2238 	objset_t *os = zfsvfs->z_os;
2239 	dmu_tx_t *tx;
2240 
2241 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2242 		return (SET_ERROR(EINVAL));
2243 
2244 	if (newvers < zfsvfs->z_version)
2245 		return (SET_ERROR(EINVAL));
2246 
2247 	if (zfs_spa_version_map(newvers) >
2248 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2249 		return (SET_ERROR(ENOTSUP));
2250 
2251 	tx = dmu_tx_create(os);
2252 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2253 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2254 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2255 		    ZFS_SA_ATTRS);
2256 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2257 	}
2258 	error = dmu_tx_assign(tx, TXG_WAIT);
2259 	if (error) {
2260 		dmu_tx_abort(tx);
2261 		return (error);
2262 	}
2263 
2264 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2265 	    8, 1, &newvers, tx);
2266 
2267 	if (error) {
2268 		dmu_tx_commit(tx);
2269 		return (error);
2270 	}
2271 
2272 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2273 		uint64_t sa_obj;
2274 
2275 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2276 		    SPA_VERSION_SA);
2277 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2278 		    DMU_OT_NONE, 0, tx);
2279 
2280 		error = zap_add(os, MASTER_NODE_OBJ,
2281 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2282 		ASSERT0(error);
2283 
2284 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2285 		sa_register_update_callback(os, zfs_sa_upgrade);
2286 	}
2287 
2288 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2289 	    "from %llu to %llu", zfsvfs->z_version, newvers);
2290 
2291 	dmu_tx_commit(tx);
2292 
2293 	zfsvfs->z_version = newvers;
2294 
2295 	zfs_set_fuid_feature(zfsvfs);
2296 
2297 	return (0);
2298 }
2299 
2300 /*
2301  * Read a property stored within the master node.
2302  */
2303 int
2304 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2305 {
2306 	const char *pname;
2307 	int error = ENOENT;
2308 
2309 	/*
2310 	 * Look up the file system's value for the property.  For the
2311 	 * version property, we look up a slightly different string.
2312 	 */
2313 	if (prop == ZFS_PROP_VERSION)
2314 		pname = ZPL_VERSION_STR;
2315 	else
2316 		pname = zfs_prop_to_name(prop);
2317 
2318 	if (os != NULL)
2319 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2320 
2321 	if (error == ENOENT) {
2322 		/* No value set, use the default value */
2323 		switch (prop) {
2324 		case ZFS_PROP_VERSION:
2325 			*value = ZPL_VERSION;
2326 			break;
2327 		case ZFS_PROP_NORMALIZE:
2328 		case ZFS_PROP_UTF8ONLY:
2329 			*value = 0;
2330 			break;
2331 		case ZFS_PROP_CASE:
2332 			*value = ZFS_CASE_SENSITIVE;
2333 			break;
2334 		default:
2335 			return (error);
2336 		}
2337 		error = 0;
2338 	}
2339 	return (error);
2340 }
2341 
2342 static vfsdef_t vfw = {
2343 	VFSDEF_VERSION,
2344 	MNTTYPE_ZFS,
2345 	zfs_vfsinit,
2346 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2347 	    VSW_XID|VSW_ZMOUNT,
2348 	&zfs_mntopts
2349 };
2350 
2351 struct modlfs zfs_modlfs = {
2352 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2353 };
2354