1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zfs_dir.h> 43 #include <sys/zil.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/dmu.h> 46 #include <sys/dsl_prop.h> 47 #include <sys/dsl_dataset.h> 48 #include <sys/dsl_deleg.h> 49 #include <sys/spa.h> 50 #include <sys/zap.h> 51 #include <sys/sa.h> 52 #include <sys/sa_impl.h> 53 #include <sys/varargs.h> 54 #include <sys/policy.h> 55 #include <sys/atomic.h> 56 #include <sys/mkdev.h> 57 #include <sys/modctl.h> 58 #include <sys/refstr.h> 59 #include <sys/zfs_ioctl.h> 60 #include <sys/zfs_ctldir.h> 61 #include <sys/zfs_fuid.h> 62 #include <sys/bootconf.h> 63 #include <sys/sunddi.h> 64 #include <sys/dnlc.h> 65 #include <sys/dmu_objset.h> 66 #include <sys/spa_boot.h> 67 #include "zfs_comutil.h" 68 69 int zfsfstype; 70 vfsops_t *zfs_vfsops = NULL; 71 static major_t zfs_major; 72 static minor_t zfs_minor; 73 static kmutex_t zfs_dev_mtx; 74 75 extern int sys_shutdown; 76 77 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 78 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 79 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 80 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 81 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 82 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 83 static void zfs_freevfs(vfs_t *vfsp); 84 85 static const fs_operation_def_t zfs_vfsops_template[] = { 86 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 87 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 88 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 89 VFSNAME_ROOT, { .vfs_root = zfs_root }, 90 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 91 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 92 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 94 NULL, NULL 95 }; 96 97 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 98 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 99 NULL, NULL 100 }; 101 102 /* 103 * We need to keep a count of active fs's. 104 * This is necessary to prevent our module 105 * from being unloaded after a umount -f 106 */ 107 static uint32_t zfs_active_fs_count = 0; 108 109 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 110 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 111 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 112 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 113 114 /* 115 * MO_DEFAULT is not used since the default value is determined 116 * by the equivalent property. 117 */ 118 static mntopt_t mntopts[] = { 119 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 120 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 121 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 122 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 123 }; 124 125 static mntopts_t zfs_mntopts = { 126 sizeof (mntopts) / sizeof (mntopt_t), 127 mntopts 128 }; 129 130 /*ARGSUSED*/ 131 int 132 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 133 { 134 /* 135 * Data integrity is job one. We don't want a compromised kernel 136 * writing to the storage pool, so we never sync during panic. 137 */ 138 if (panicstr) 139 return (0); 140 141 /* 142 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 143 * to sync metadata, which they would otherwise cache indefinitely. 144 * Semantically, the only requirement is that the sync be initiated. 145 * The DMU syncs out txgs frequently, so there's nothing to do. 146 */ 147 if (flag & SYNC_ATTR) 148 return (0); 149 150 if (vfsp != NULL) { 151 /* 152 * Sync a specific filesystem. 153 */ 154 zfsvfs_t *zfsvfs = vfsp->vfs_data; 155 dsl_pool_t *dp; 156 157 ZFS_ENTER(zfsvfs); 158 dp = dmu_objset_pool(zfsvfs->z_os); 159 160 /* 161 * If the system is shutting down, then skip any 162 * filesystems which may exist on a suspended pool. 163 */ 164 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 165 ZFS_EXIT(zfsvfs); 166 return (0); 167 } 168 169 if (zfsvfs->z_log != NULL) 170 zil_commit(zfsvfs->z_log, 0); 171 172 ZFS_EXIT(zfsvfs); 173 } else { 174 /* 175 * Sync all ZFS filesystems. This is what happens when you 176 * run sync(1M). Unlike other filesystems, ZFS honors the 177 * request by waiting for all pools to commit all dirty data. 178 */ 179 spa_sync_allpools(); 180 } 181 182 return (0); 183 } 184 185 static int 186 zfs_create_unique_device(dev_t *dev) 187 { 188 major_t new_major; 189 190 do { 191 ASSERT3U(zfs_minor, <=, MAXMIN32); 192 minor_t start = zfs_minor; 193 do { 194 mutex_enter(&zfs_dev_mtx); 195 if (zfs_minor >= MAXMIN32) { 196 /* 197 * If we're still using the real major 198 * keep out of /dev/zfs and /dev/zvol minor 199 * number space. If we're using a getudev()'ed 200 * major number, we can use all of its minors. 201 */ 202 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 203 zfs_minor = ZFS_MIN_MINOR; 204 else 205 zfs_minor = 0; 206 } else { 207 zfs_minor++; 208 } 209 *dev = makedevice(zfs_major, zfs_minor); 210 mutex_exit(&zfs_dev_mtx); 211 } while (vfs_devismounted(*dev) && zfs_minor != start); 212 if (zfs_minor == start) { 213 /* 214 * We are using all ~262,000 minor numbers for the 215 * current major number. Create a new major number. 216 */ 217 if ((new_major = getudev()) == (major_t)-1) { 218 cmn_err(CE_WARN, 219 "zfs_mount: Can't get unique major " 220 "device number."); 221 return (-1); 222 } 223 mutex_enter(&zfs_dev_mtx); 224 zfs_major = new_major; 225 zfs_minor = 0; 226 227 mutex_exit(&zfs_dev_mtx); 228 } else { 229 break; 230 } 231 /* CONSTANTCONDITION */ 232 } while (1); 233 234 return (0); 235 } 236 237 static void 238 atime_changed_cb(void *arg, uint64_t newval) 239 { 240 zfsvfs_t *zfsvfs = arg; 241 242 if (newval == TRUE) { 243 zfsvfs->z_atime = TRUE; 244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 246 } else { 247 zfsvfs->z_atime = FALSE; 248 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 249 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 250 } 251 } 252 253 static void 254 xattr_changed_cb(void *arg, uint64_t newval) 255 { 256 zfsvfs_t *zfsvfs = arg; 257 258 if (newval == TRUE) { 259 /* XXX locking on vfs_flag? */ 260 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 261 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 262 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 263 } else { 264 /* XXX locking on vfs_flag? */ 265 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 266 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 267 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 268 } 269 } 270 271 static void 272 blksz_changed_cb(void *arg, uint64_t newval) 273 { 274 zfsvfs_t *zfsvfs = arg; 275 276 if (newval < SPA_MINBLOCKSIZE || 277 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 278 newval = SPA_MAXBLOCKSIZE; 279 280 zfsvfs->z_max_blksz = newval; 281 zfsvfs->z_vfs->vfs_bsize = newval; 282 } 283 284 static void 285 readonly_changed_cb(void *arg, uint64_t newval) 286 { 287 zfsvfs_t *zfsvfs = arg; 288 289 if (newval) { 290 /* XXX locking on vfs_flag? */ 291 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 292 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 293 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 294 } else { 295 /* XXX locking on vfs_flag? */ 296 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 299 } 300 } 301 302 static void 303 devices_changed_cb(void *arg, uint64_t newval) 304 { 305 zfsvfs_t *zfsvfs = arg; 306 307 if (newval == FALSE) { 308 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 311 } else { 312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 315 } 316 } 317 318 static void 319 setuid_changed_cb(void *arg, uint64_t newval) 320 { 321 zfsvfs_t *zfsvfs = arg; 322 323 if (newval == FALSE) { 324 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 327 } else { 328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 331 } 332 } 333 334 static void 335 exec_changed_cb(void *arg, uint64_t newval) 336 { 337 zfsvfs_t *zfsvfs = arg; 338 339 if (newval == FALSE) { 340 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 343 } else { 344 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 347 } 348 } 349 350 /* 351 * The nbmand mount option can be changed at mount time. 352 * We can't allow it to be toggled on live file systems or incorrect 353 * behavior may be seen from cifs clients 354 * 355 * This property isn't registered via dsl_prop_register(), but this callback 356 * will be called when a file system is first mounted 357 */ 358 static void 359 nbmand_changed_cb(void *arg, uint64_t newval) 360 { 361 zfsvfs_t *zfsvfs = arg; 362 if (newval == FALSE) { 363 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 364 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 365 } else { 366 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 367 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 368 } 369 } 370 371 static void 372 snapdir_changed_cb(void *arg, uint64_t newval) 373 { 374 zfsvfs_t *zfsvfs = arg; 375 376 zfsvfs->z_show_ctldir = newval; 377 } 378 379 static void 380 vscan_changed_cb(void *arg, uint64_t newval) 381 { 382 zfsvfs_t *zfsvfs = arg; 383 384 zfsvfs->z_vscan = newval; 385 } 386 387 static void 388 acl_mode_changed_cb(void *arg, uint64_t newval) 389 { 390 zfsvfs_t *zfsvfs = arg; 391 392 zfsvfs->z_acl_mode = newval; 393 } 394 395 static void 396 acl_inherit_changed_cb(void *arg, uint64_t newval) 397 { 398 zfsvfs_t *zfsvfs = arg; 399 400 zfsvfs->z_acl_inherit = newval; 401 } 402 403 static int 404 zfs_register_callbacks(vfs_t *vfsp) 405 { 406 struct dsl_dataset *ds = NULL; 407 objset_t *os = NULL; 408 zfsvfs_t *zfsvfs = NULL; 409 uint64_t nbmand; 410 boolean_t readonly = B_FALSE; 411 boolean_t do_readonly = B_FALSE; 412 boolean_t setuid = B_FALSE; 413 boolean_t do_setuid = B_FALSE; 414 boolean_t exec = B_FALSE; 415 boolean_t do_exec = B_FALSE; 416 boolean_t devices = B_FALSE; 417 boolean_t do_devices = B_FALSE; 418 boolean_t xattr = B_FALSE; 419 boolean_t do_xattr = B_FALSE; 420 boolean_t atime = B_FALSE; 421 boolean_t do_atime = B_FALSE; 422 int error = 0; 423 424 ASSERT(vfsp); 425 zfsvfs = vfsp->vfs_data; 426 ASSERT(zfsvfs); 427 os = zfsvfs->z_os; 428 429 /* 430 * The act of registering our callbacks will destroy any mount 431 * options we may have. In order to enable temporary overrides 432 * of mount options, we stash away the current values and 433 * restore them after we register the callbacks. 434 */ 435 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || 436 !spa_writeable(dmu_objset_spa(os))) { 437 readonly = B_TRUE; 438 do_readonly = B_TRUE; 439 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 440 readonly = B_FALSE; 441 do_readonly = B_TRUE; 442 } 443 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 444 devices = B_FALSE; 445 setuid = B_FALSE; 446 do_devices = B_TRUE; 447 do_setuid = B_TRUE; 448 } else { 449 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 450 devices = B_FALSE; 451 do_devices = B_TRUE; 452 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 453 devices = B_TRUE; 454 do_devices = B_TRUE; 455 } 456 457 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 458 setuid = B_FALSE; 459 do_setuid = B_TRUE; 460 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 461 setuid = B_TRUE; 462 do_setuid = B_TRUE; 463 } 464 } 465 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 466 exec = B_FALSE; 467 do_exec = B_TRUE; 468 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 469 exec = B_TRUE; 470 do_exec = B_TRUE; 471 } 472 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 473 xattr = B_FALSE; 474 do_xattr = B_TRUE; 475 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 476 xattr = B_TRUE; 477 do_xattr = B_TRUE; 478 } 479 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 480 atime = B_FALSE; 481 do_atime = B_TRUE; 482 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 483 atime = B_TRUE; 484 do_atime = B_TRUE; 485 } 486 487 /* 488 * nbmand is a special property. It can only be changed at 489 * mount time. 490 * 491 * This is weird, but it is documented to only be changeable 492 * at mount time. 493 */ 494 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 495 nbmand = B_FALSE; 496 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 497 nbmand = B_TRUE; 498 } else { 499 char osname[MAXNAMELEN]; 500 501 dmu_objset_name(os, osname); 502 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 503 NULL)) { 504 return (error); 505 } 506 } 507 508 /* 509 * Register property callbacks. 510 * 511 * It would probably be fine to just check for i/o error from 512 * the first prop_register(), but I guess I like to go 513 * overboard... 514 */ 515 ds = dmu_objset_ds(os); 516 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 517 error = error ? error : dsl_prop_register(ds, 518 "xattr", xattr_changed_cb, zfsvfs); 519 error = error ? error : dsl_prop_register(ds, 520 "recordsize", blksz_changed_cb, zfsvfs); 521 error = error ? error : dsl_prop_register(ds, 522 "readonly", readonly_changed_cb, zfsvfs); 523 error = error ? error : dsl_prop_register(ds, 524 "devices", devices_changed_cb, zfsvfs); 525 error = error ? error : dsl_prop_register(ds, 526 "setuid", setuid_changed_cb, zfsvfs); 527 error = error ? error : dsl_prop_register(ds, 528 "exec", exec_changed_cb, zfsvfs); 529 error = error ? error : dsl_prop_register(ds, 530 "snapdir", snapdir_changed_cb, zfsvfs); 531 error = error ? error : dsl_prop_register(ds, 532 "aclmode", acl_mode_changed_cb, zfsvfs); 533 error = error ? error : dsl_prop_register(ds, 534 "aclinherit", acl_inherit_changed_cb, zfsvfs); 535 error = error ? error : dsl_prop_register(ds, 536 "vscan", vscan_changed_cb, zfsvfs); 537 if (error) 538 goto unregister; 539 540 /* 541 * Invoke our callbacks to restore temporary mount options. 542 */ 543 if (do_readonly) 544 readonly_changed_cb(zfsvfs, readonly); 545 if (do_setuid) 546 setuid_changed_cb(zfsvfs, setuid); 547 if (do_exec) 548 exec_changed_cb(zfsvfs, exec); 549 if (do_devices) 550 devices_changed_cb(zfsvfs, devices); 551 if (do_xattr) 552 xattr_changed_cb(zfsvfs, xattr); 553 if (do_atime) 554 atime_changed_cb(zfsvfs, atime); 555 556 nbmand_changed_cb(zfsvfs, nbmand); 557 558 return (0); 559 560 unregister: 561 /* 562 * We may attempt to unregister some callbacks that are not 563 * registered, but this is OK; it will simply return ENOMSG, 564 * which we will ignore. 565 */ 566 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 567 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 568 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 569 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 570 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 571 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 572 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 573 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 574 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 575 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 576 zfsvfs); 577 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 578 return (error); 579 580 } 581 582 static int 583 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 584 uint64_t *userp, uint64_t *groupp) 585 { 586 int error = 0; 587 588 /* 589 * Is it a valid type of object to track? 590 */ 591 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 592 return (ENOENT); 593 594 /* 595 * If we have a NULL data pointer 596 * then assume the id's aren't changing and 597 * return EEXIST to the dmu to let it know to 598 * use the same ids 599 */ 600 if (data == NULL) 601 return (EEXIST); 602 603 if (bonustype == DMU_OT_ZNODE) { 604 znode_phys_t *znp = data; 605 *userp = znp->zp_uid; 606 *groupp = znp->zp_gid; 607 } else { 608 int hdrsize; 609 sa_hdr_phys_t *sap = data; 610 sa_hdr_phys_t sa = *sap; 611 boolean_t swap = B_FALSE; 612 613 ASSERT(bonustype == DMU_OT_SA); 614 615 if (sa.sa_magic == 0) { 616 /* 617 * This should only happen for newly created 618 * files that haven't had the znode data filled 619 * in yet. 620 */ 621 *userp = 0; 622 *groupp = 0; 623 return (0); 624 } 625 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) { 626 sa.sa_magic = SA_MAGIC; 627 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info); 628 swap = B_TRUE; 629 } else { 630 VERIFY3U(sa.sa_magic, ==, SA_MAGIC); 631 } 632 633 hdrsize = sa_hdrsize(&sa); 634 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t)); 635 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 636 SA_UID_OFFSET)); 637 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 638 SA_GID_OFFSET)); 639 if (swap) { 640 *userp = BSWAP_64(*userp); 641 *groupp = BSWAP_64(*groupp); 642 } 643 } 644 return (error); 645 } 646 647 static void 648 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 649 char *domainbuf, int buflen, uid_t *ridp) 650 { 651 uint64_t fuid; 652 const char *domain; 653 654 fuid = strtonum(fuidstr, NULL); 655 656 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 657 if (domain) 658 (void) strlcpy(domainbuf, domain, buflen); 659 else 660 domainbuf[0] = '\0'; 661 *ridp = FUID_RID(fuid); 662 } 663 664 static uint64_t 665 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 666 { 667 switch (type) { 668 case ZFS_PROP_USERUSED: 669 return (DMU_USERUSED_OBJECT); 670 case ZFS_PROP_GROUPUSED: 671 return (DMU_GROUPUSED_OBJECT); 672 case ZFS_PROP_USERQUOTA: 673 return (zfsvfs->z_userquota_obj); 674 case ZFS_PROP_GROUPQUOTA: 675 return (zfsvfs->z_groupquota_obj); 676 } 677 return (0); 678 } 679 680 int 681 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 682 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 683 { 684 int error; 685 zap_cursor_t zc; 686 zap_attribute_t za; 687 zfs_useracct_t *buf = vbuf; 688 uint64_t obj; 689 690 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 691 return (ENOTSUP); 692 693 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 694 if (obj == 0) { 695 *bufsizep = 0; 696 return (0); 697 } 698 699 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 700 (error = zap_cursor_retrieve(&zc, &za)) == 0; 701 zap_cursor_advance(&zc)) { 702 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 703 *bufsizep) 704 break; 705 706 fuidstr_to_sid(zfsvfs, za.za_name, 707 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 708 709 buf->zu_space = za.za_first_integer; 710 buf++; 711 } 712 if (error == ENOENT) 713 error = 0; 714 715 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 716 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 717 *cookiep = zap_cursor_serialize(&zc); 718 zap_cursor_fini(&zc); 719 return (error); 720 } 721 722 /* 723 * buf must be big enough (eg, 32 bytes) 724 */ 725 static int 726 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 727 char *buf, boolean_t addok) 728 { 729 uint64_t fuid; 730 int domainid = 0; 731 732 if (domain && domain[0]) { 733 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 734 if (domainid == -1) 735 return (ENOENT); 736 } 737 fuid = FUID_ENCODE(domainid, rid); 738 (void) sprintf(buf, "%llx", (longlong_t)fuid); 739 return (0); 740 } 741 742 int 743 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 744 const char *domain, uint64_t rid, uint64_t *valp) 745 { 746 char buf[32]; 747 int err; 748 uint64_t obj; 749 750 *valp = 0; 751 752 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 753 return (ENOTSUP); 754 755 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 756 if (obj == 0) 757 return (0); 758 759 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 760 if (err) 761 return (err); 762 763 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 764 if (err == ENOENT) 765 err = 0; 766 return (err); 767 } 768 769 int 770 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 771 const char *domain, uint64_t rid, uint64_t quota) 772 { 773 char buf[32]; 774 int err; 775 dmu_tx_t *tx; 776 uint64_t *objp; 777 boolean_t fuid_dirtied; 778 779 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 780 return (EINVAL); 781 782 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 783 return (ENOTSUP); 784 785 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 786 &zfsvfs->z_groupquota_obj; 787 788 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 789 if (err) 790 return (err); 791 fuid_dirtied = zfsvfs->z_fuid_dirty; 792 793 tx = dmu_tx_create(zfsvfs->z_os); 794 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 795 if (*objp == 0) { 796 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 797 zfs_userquota_prop_prefixes[type]); 798 } 799 if (fuid_dirtied) 800 zfs_fuid_txhold(zfsvfs, tx); 801 err = dmu_tx_assign(tx, TXG_WAIT); 802 if (err) { 803 dmu_tx_abort(tx); 804 return (err); 805 } 806 807 mutex_enter(&zfsvfs->z_lock); 808 if (*objp == 0) { 809 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 810 DMU_OT_NONE, 0, tx); 811 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 812 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 813 } 814 mutex_exit(&zfsvfs->z_lock); 815 816 if (quota == 0) { 817 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 818 if (err == ENOENT) 819 err = 0; 820 } else { 821 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 822 } 823 ASSERT(err == 0); 824 if (fuid_dirtied) 825 zfs_fuid_sync(zfsvfs, tx); 826 dmu_tx_commit(tx); 827 return (err); 828 } 829 830 boolean_t 831 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 832 { 833 char buf[32]; 834 uint64_t used, quota, usedobj, quotaobj; 835 int err; 836 837 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 838 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 839 840 if (quotaobj == 0 || zfsvfs->z_replay) 841 return (B_FALSE); 842 843 (void) sprintf(buf, "%llx", (longlong_t)fuid); 844 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 845 if (err != 0) 846 return (B_FALSE); 847 848 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 849 if (err != 0) 850 return (B_FALSE); 851 return (used >= quota); 852 } 853 854 boolean_t 855 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 856 { 857 uint64_t fuid; 858 uint64_t quotaobj; 859 860 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 861 862 fuid = isgroup ? zp->z_gid : zp->z_uid; 863 864 if (quotaobj == 0 || zfsvfs->z_replay) 865 return (B_FALSE); 866 867 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 868 } 869 870 int 871 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 872 { 873 objset_t *os; 874 zfsvfs_t *zfsvfs; 875 uint64_t zval; 876 int i, error; 877 uint64_t sa_obj; 878 879 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 880 881 /* 882 * We claim to always be readonly so we can open snapshots; 883 * other ZPL code will prevent us from writing to snapshots. 884 */ 885 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 886 if (error) { 887 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 888 return (error); 889 } 890 891 /* 892 * Initialize the zfs-specific filesystem structure. 893 * Should probably make this a kmem cache, shuffle fields, 894 * and just bzero up to z_hold_mtx[]. 895 */ 896 zfsvfs->z_vfs = NULL; 897 zfsvfs->z_parent = zfsvfs; 898 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 899 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 900 zfsvfs->z_os = os; 901 902 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 903 if (error) { 904 goto out; 905 } else if (zfsvfs->z_version > 906 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 907 (void) printf("Can't mount a version %lld file system " 908 "on a version %lld pool\n. Pool must be upgraded to mount " 909 "this file system.", (u_longlong_t)zfsvfs->z_version, 910 (u_longlong_t)spa_version(dmu_objset_spa(os))); 911 error = ENOTSUP; 912 goto out; 913 } 914 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 915 goto out; 916 zfsvfs->z_norm = (int)zval; 917 918 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 919 goto out; 920 zfsvfs->z_utf8 = (zval != 0); 921 922 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 923 goto out; 924 zfsvfs->z_case = (uint_t)zval; 925 926 /* 927 * Fold case on file systems that are always or sometimes case 928 * insensitive. 929 */ 930 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 931 zfsvfs->z_case == ZFS_CASE_MIXED) 932 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 933 934 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 935 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 936 937 if (zfsvfs->z_use_sa) { 938 /* should either have both of these objects or none */ 939 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 940 &sa_obj); 941 if (error) 942 return (error); 943 } else { 944 /* 945 * Pre SA versions file systems should never touch 946 * either the attribute registration or layout objects. 947 */ 948 sa_obj = 0; 949 } 950 951 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 952 &zfsvfs->z_attr_table); 953 if (error) 954 goto out; 955 956 if (zfsvfs->z_version >= ZPL_VERSION_SA) 957 sa_register_update_callback(os, zfs_sa_upgrade); 958 959 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 960 &zfsvfs->z_root); 961 if (error) 962 goto out; 963 ASSERT(zfsvfs->z_root != 0); 964 965 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 966 &zfsvfs->z_unlinkedobj); 967 if (error) 968 goto out; 969 970 error = zap_lookup(os, MASTER_NODE_OBJ, 971 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 972 8, 1, &zfsvfs->z_userquota_obj); 973 if (error && error != ENOENT) 974 goto out; 975 976 error = zap_lookup(os, MASTER_NODE_OBJ, 977 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 978 8, 1, &zfsvfs->z_groupquota_obj); 979 if (error && error != ENOENT) 980 goto out; 981 982 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 983 &zfsvfs->z_fuid_obj); 984 if (error && error != ENOENT) 985 goto out; 986 987 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 988 &zfsvfs->z_shares_dir); 989 if (error && error != ENOENT) 990 goto out; 991 992 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 993 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 994 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 995 offsetof(znode_t, z_link_node)); 996 rrw_init(&zfsvfs->z_teardown_lock); 997 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 998 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 999 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1000 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1001 1002 *zfvp = zfsvfs; 1003 return (0); 1004 1005 out: 1006 dmu_objset_disown(os, zfsvfs); 1007 *zfvp = NULL; 1008 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1009 return (error); 1010 } 1011 1012 static int 1013 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 1014 { 1015 int error; 1016 1017 error = zfs_register_callbacks(zfsvfs->z_vfs); 1018 if (error) 1019 return (error); 1020 1021 /* 1022 * Set the objset user_ptr to track its zfsvfs. 1023 */ 1024 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1025 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1026 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1027 1028 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1029 1030 /* 1031 * If we are not mounting (ie: online recv), then we don't 1032 * have to worry about replaying the log as we blocked all 1033 * operations out since we closed the ZIL. 1034 */ 1035 if (mounting) { 1036 boolean_t readonly; 1037 1038 /* 1039 * During replay we remove the read only flag to 1040 * allow replays to succeed. 1041 */ 1042 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1043 if (readonly != 0) 1044 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1045 else 1046 zfs_unlinked_drain(zfsvfs); 1047 1048 /* 1049 * Parse and replay the intent log. 1050 * 1051 * Because of ziltest, this must be done after 1052 * zfs_unlinked_drain(). (Further note: ziltest 1053 * doesn't use readonly mounts, where 1054 * zfs_unlinked_drain() isn't called.) This is because 1055 * ziltest causes spa_sync() to think it's committed, 1056 * but actually it is not, so the intent log contains 1057 * many txg's worth of changes. 1058 * 1059 * In particular, if object N is in the unlinked set in 1060 * the last txg to actually sync, then it could be 1061 * actually freed in a later txg and then reallocated 1062 * in a yet later txg. This would write a "create 1063 * object N" record to the intent log. Normally, this 1064 * would be fine because the spa_sync() would have 1065 * written out the fact that object N is free, before 1066 * we could write the "create object N" intent log 1067 * record. 1068 * 1069 * But when we are in ziltest mode, we advance the "open 1070 * txg" without actually spa_sync()-ing the changes to 1071 * disk. So we would see that object N is still 1072 * allocated and in the unlinked set, and there is an 1073 * intent log record saying to allocate it. 1074 */ 1075 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 1076 if (zil_replay_disable) { 1077 zil_destroy(zfsvfs->z_log, B_FALSE); 1078 } else { 1079 zfsvfs->z_replay = B_TRUE; 1080 zil_replay(zfsvfs->z_os, zfsvfs, 1081 zfs_replay_vector); 1082 zfsvfs->z_replay = B_FALSE; 1083 } 1084 } 1085 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1086 } 1087 1088 return (0); 1089 } 1090 1091 void 1092 zfsvfs_free(zfsvfs_t *zfsvfs) 1093 { 1094 int i; 1095 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1096 1097 /* 1098 * This is a barrier to prevent the filesystem from going away in 1099 * zfs_znode_move() until we can safely ensure that the filesystem is 1100 * not unmounted. We consider the filesystem valid before the barrier 1101 * and invalid after the barrier. 1102 */ 1103 rw_enter(&zfsvfs_lock, RW_READER); 1104 rw_exit(&zfsvfs_lock); 1105 1106 zfs_fuid_destroy(zfsvfs); 1107 1108 mutex_destroy(&zfsvfs->z_znodes_lock); 1109 mutex_destroy(&zfsvfs->z_lock); 1110 list_destroy(&zfsvfs->z_all_znodes); 1111 rrw_destroy(&zfsvfs->z_teardown_lock); 1112 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1113 rw_destroy(&zfsvfs->z_fuid_lock); 1114 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1115 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1116 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1117 } 1118 1119 static void 1120 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1121 { 1122 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1123 if (zfsvfs->z_vfs) { 1124 if (zfsvfs->z_use_fuids) { 1125 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1126 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1127 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1128 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1129 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1130 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1131 } else { 1132 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1133 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1134 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1135 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1136 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1137 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1138 } 1139 } 1140 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1141 } 1142 1143 static int 1144 zfs_domount(vfs_t *vfsp, char *osname) 1145 { 1146 dev_t mount_dev; 1147 uint64_t recordsize, fsid_guid; 1148 int error = 0; 1149 zfsvfs_t *zfsvfs; 1150 1151 ASSERT(vfsp); 1152 ASSERT(osname); 1153 1154 error = zfsvfs_create(osname, &zfsvfs); 1155 if (error) 1156 return (error); 1157 zfsvfs->z_vfs = vfsp; 1158 1159 /* Initialize the generic filesystem structure. */ 1160 vfsp->vfs_bcount = 0; 1161 vfsp->vfs_data = NULL; 1162 1163 if (zfs_create_unique_device(&mount_dev) == -1) { 1164 error = ENODEV; 1165 goto out; 1166 } 1167 ASSERT(vfs_devismounted(mount_dev) == 0); 1168 1169 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1170 NULL)) 1171 goto out; 1172 1173 vfsp->vfs_dev = mount_dev; 1174 vfsp->vfs_fstype = zfsfstype; 1175 vfsp->vfs_bsize = recordsize; 1176 vfsp->vfs_flag |= VFS_NOTRUNC; 1177 vfsp->vfs_data = zfsvfs; 1178 1179 /* 1180 * The fsid is 64 bits, composed of an 8-bit fs type, which 1181 * separates our fsid from any other filesystem types, and a 1182 * 56-bit objset unique ID. The objset unique ID is unique to 1183 * all objsets open on this system, provided by unique_create(). 1184 * The 8-bit fs type must be put in the low bits of fsid[1] 1185 * because that's where other Solaris filesystems put it. 1186 */ 1187 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1188 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1189 vfsp->vfs_fsid.val[0] = fsid_guid; 1190 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1191 zfsfstype & 0xFF; 1192 1193 /* 1194 * Set features for file system. 1195 */ 1196 zfs_set_fuid_feature(zfsvfs); 1197 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1198 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1199 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1200 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1201 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1202 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1203 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1204 } 1205 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1206 1207 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1208 uint64_t pval; 1209 1210 atime_changed_cb(zfsvfs, B_FALSE); 1211 readonly_changed_cb(zfsvfs, B_TRUE); 1212 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1213 goto out; 1214 xattr_changed_cb(zfsvfs, pval); 1215 zfsvfs->z_issnap = B_TRUE; 1216 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1217 1218 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1219 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1220 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1221 } else { 1222 error = zfsvfs_setup(zfsvfs, B_TRUE); 1223 } 1224 1225 if (!zfsvfs->z_issnap) 1226 zfsctl_create(zfsvfs); 1227 out: 1228 if (error) { 1229 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1230 zfsvfs_free(zfsvfs); 1231 } else { 1232 atomic_add_32(&zfs_active_fs_count, 1); 1233 } 1234 1235 return (error); 1236 } 1237 1238 void 1239 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1240 { 1241 objset_t *os = zfsvfs->z_os; 1242 struct dsl_dataset *ds; 1243 1244 /* 1245 * Unregister properties. 1246 */ 1247 if (!dmu_objset_is_snapshot(os)) { 1248 ds = dmu_objset_ds(os); 1249 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1250 zfsvfs) == 0); 1251 1252 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1253 zfsvfs) == 0); 1254 1255 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1256 zfsvfs) == 0); 1257 1258 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1259 zfsvfs) == 0); 1260 1261 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1262 zfsvfs) == 0); 1263 1264 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1265 zfsvfs) == 0); 1266 1267 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1268 zfsvfs) == 0); 1269 1270 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1271 zfsvfs) == 0); 1272 1273 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 1274 zfsvfs) == 0); 1275 1276 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1277 acl_inherit_changed_cb, zfsvfs) == 0); 1278 1279 VERIFY(dsl_prop_unregister(ds, "vscan", 1280 vscan_changed_cb, zfsvfs) == 0); 1281 } 1282 } 1283 1284 /* 1285 * Convert a decimal digit string to a uint64_t integer. 1286 */ 1287 static int 1288 str_to_uint64(char *str, uint64_t *objnum) 1289 { 1290 uint64_t num = 0; 1291 1292 while (*str) { 1293 if (*str < '0' || *str > '9') 1294 return (EINVAL); 1295 1296 num = num*10 + *str++ - '0'; 1297 } 1298 1299 *objnum = num; 1300 return (0); 1301 } 1302 1303 /* 1304 * The boot path passed from the boot loader is in the form of 1305 * "rootpool-name/root-filesystem-object-number'. Convert this 1306 * string to a dataset name: "rootpool-name/root-filesystem-name". 1307 */ 1308 static int 1309 zfs_parse_bootfs(char *bpath, char *outpath) 1310 { 1311 char *slashp; 1312 uint64_t objnum; 1313 int error; 1314 1315 if (*bpath == 0 || *bpath == '/') 1316 return (EINVAL); 1317 1318 (void) strcpy(outpath, bpath); 1319 1320 slashp = strchr(bpath, '/'); 1321 1322 /* if no '/', just return the pool name */ 1323 if (slashp == NULL) { 1324 return (0); 1325 } 1326 1327 /* if not a number, just return the root dataset name */ 1328 if (str_to_uint64(slashp+1, &objnum)) { 1329 return (0); 1330 } 1331 1332 *slashp = '\0'; 1333 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1334 *slashp = '/'; 1335 1336 return (error); 1337 } 1338 1339 /* 1340 * zfs_check_global_label: 1341 * Check that the hex label string is appropriate for the dataset 1342 * being mounted into the global_zone proper. 1343 * 1344 * Return an error if the hex label string is not default or 1345 * admin_low/admin_high. For admin_low labels, the corresponding 1346 * dataset must be readonly. 1347 */ 1348 int 1349 zfs_check_global_label(const char *dsname, const char *hexsl) 1350 { 1351 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1352 return (0); 1353 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1354 return (0); 1355 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1356 /* must be readonly */ 1357 uint64_t rdonly; 1358 1359 if (dsl_prop_get_integer(dsname, 1360 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1361 return (EACCES); 1362 return (rdonly ? 0 : EACCES); 1363 } 1364 return (EACCES); 1365 } 1366 1367 /* 1368 * zfs_mount_label_policy: 1369 * Determine whether the mount is allowed according to MAC check. 1370 * by comparing (where appropriate) label of the dataset against 1371 * the label of the zone being mounted into. If the dataset has 1372 * no label, create one. 1373 * 1374 * Returns: 1375 * 0 : access allowed 1376 * >0 : error code, such as EACCES 1377 */ 1378 static int 1379 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1380 { 1381 int error, retv; 1382 zone_t *mntzone = NULL; 1383 ts_label_t *mnt_tsl; 1384 bslabel_t *mnt_sl; 1385 bslabel_t ds_sl; 1386 char ds_hexsl[MAXNAMELEN]; 1387 1388 retv = EACCES; /* assume the worst */ 1389 1390 /* 1391 * Start by getting the dataset label if it exists. 1392 */ 1393 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1394 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1395 if (error) 1396 return (EACCES); 1397 1398 /* 1399 * If labeling is NOT enabled, then disallow the mount of datasets 1400 * which have a non-default label already. No other label checks 1401 * are needed. 1402 */ 1403 if (!is_system_labeled()) { 1404 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1405 return (0); 1406 return (EACCES); 1407 } 1408 1409 /* 1410 * Get the label of the mountpoint. If mounting into the global 1411 * zone (i.e. mountpoint is not within an active zone and the 1412 * zoned property is off), the label must be default or 1413 * admin_low/admin_high only; no other checks are needed. 1414 */ 1415 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1416 if (mntzone->zone_id == GLOBAL_ZONEID) { 1417 uint64_t zoned; 1418 1419 zone_rele(mntzone); 1420 1421 if (dsl_prop_get_integer(osname, 1422 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1423 return (EACCES); 1424 if (!zoned) 1425 return (zfs_check_global_label(osname, ds_hexsl)); 1426 else 1427 /* 1428 * This is the case of a zone dataset being mounted 1429 * initially, before the zone has been fully created; 1430 * allow this mount into global zone. 1431 */ 1432 return (0); 1433 } 1434 1435 mnt_tsl = mntzone->zone_slabel; 1436 ASSERT(mnt_tsl != NULL); 1437 label_hold(mnt_tsl); 1438 mnt_sl = label2bslabel(mnt_tsl); 1439 1440 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1441 /* 1442 * The dataset doesn't have a real label, so fabricate one. 1443 */ 1444 char *str = NULL; 1445 1446 if (l_to_str_internal(mnt_sl, &str) == 0 && 1447 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1448 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0) 1449 retv = 0; 1450 if (str != NULL) 1451 kmem_free(str, strlen(str) + 1); 1452 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1453 /* 1454 * Now compare labels to complete the MAC check. If the 1455 * labels are equal then allow access. If the mountpoint 1456 * label dominates the dataset label, allow readonly access. 1457 * Otherwise, access is denied. 1458 */ 1459 if (blequal(mnt_sl, &ds_sl)) 1460 retv = 0; 1461 else if (bldominates(mnt_sl, &ds_sl)) { 1462 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1463 retv = 0; 1464 } 1465 } 1466 1467 label_rele(mnt_tsl); 1468 zone_rele(mntzone); 1469 return (retv); 1470 } 1471 1472 static int 1473 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1474 { 1475 int error = 0; 1476 static int zfsrootdone = 0; 1477 zfsvfs_t *zfsvfs = NULL; 1478 znode_t *zp = NULL; 1479 vnode_t *vp = NULL; 1480 char *zfs_bootfs; 1481 char *zfs_devid; 1482 1483 ASSERT(vfsp); 1484 1485 /* 1486 * The filesystem that we mount as root is defined in the 1487 * boot property "zfs-bootfs" with a format of 1488 * "poolname/root-dataset-objnum". 1489 */ 1490 if (why == ROOT_INIT) { 1491 if (zfsrootdone++) 1492 return (EBUSY); 1493 /* 1494 * the process of doing a spa_load will require the 1495 * clock to be set before we could (for example) do 1496 * something better by looking at the timestamp on 1497 * an uberblock, so just set it to -1. 1498 */ 1499 clkset(-1); 1500 1501 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1502 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1503 "bootfs name"); 1504 return (EINVAL); 1505 } 1506 zfs_devid = spa_get_bootprop("diskdevid"); 1507 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1508 if (zfs_devid) 1509 spa_free_bootprop(zfs_devid); 1510 if (error) { 1511 spa_free_bootprop(zfs_bootfs); 1512 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1513 error); 1514 return (error); 1515 } 1516 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1517 spa_free_bootprop(zfs_bootfs); 1518 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1519 error); 1520 return (error); 1521 } 1522 1523 spa_free_bootprop(zfs_bootfs); 1524 1525 if (error = vfs_lock(vfsp)) 1526 return (error); 1527 1528 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1529 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1530 goto out; 1531 } 1532 1533 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1534 ASSERT(zfsvfs); 1535 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1536 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1537 goto out; 1538 } 1539 1540 vp = ZTOV(zp); 1541 mutex_enter(&vp->v_lock); 1542 vp->v_flag |= VROOT; 1543 mutex_exit(&vp->v_lock); 1544 rootvp = vp; 1545 1546 /* 1547 * Leave rootvp held. The root file system is never unmounted. 1548 */ 1549 1550 vfs_add((struct vnode *)0, vfsp, 1551 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1552 out: 1553 vfs_unlock(vfsp); 1554 return (error); 1555 } else if (why == ROOT_REMOUNT) { 1556 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1557 vfsp->vfs_flag |= VFS_REMOUNT; 1558 1559 /* refresh mount options */ 1560 zfs_unregister_callbacks(vfsp->vfs_data); 1561 return (zfs_register_callbacks(vfsp)); 1562 1563 } else if (why == ROOT_UNMOUNT) { 1564 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1565 (void) zfs_sync(vfsp, 0, 0); 1566 return (0); 1567 } 1568 1569 /* 1570 * if "why" is equal to anything else other than ROOT_INIT, 1571 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1572 */ 1573 return (ENOTSUP); 1574 } 1575 1576 /*ARGSUSED*/ 1577 static int 1578 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1579 { 1580 char *osname; 1581 pathname_t spn; 1582 int error = 0; 1583 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1584 UIO_SYSSPACE : UIO_USERSPACE; 1585 int canwrite; 1586 1587 if (mvp->v_type != VDIR) 1588 return (ENOTDIR); 1589 1590 mutex_enter(&mvp->v_lock); 1591 if ((uap->flags & MS_REMOUNT) == 0 && 1592 (uap->flags & MS_OVERLAY) == 0 && 1593 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1594 mutex_exit(&mvp->v_lock); 1595 return (EBUSY); 1596 } 1597 mutex_exit(&mvp->v_lock); 1598 1599 /* 1600 * ZFS does not support passing unparsed data in via MS_DATA. 1601 * Users should use the MS_OPTIONSTR interface; this means 1602 * that all option parsing is already done and the options struct 1603 * can be interrogated. 1604 */ 1605 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1606 return (EINVAL); 1607 1608 /* 1609 * Get the objset name (the "special" mount argument). 1610 */ 1611 if (error = pn_get(uap->spec, fromspace, &spn)) 1612 return (error); 1613 1614 osname = spn.pn_path; 1615 1616 /* 1617 * Check for mount privilege? 1618 * 1619 * If we don't have privilege then see if 1620 * we have local permission to allow it 1621 */ 1622 error = secpolicy_fs_mount(cr, mvp, vfsp); 1623 if (error) { 1624 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1625 vattr_t vattr; 1626 1627 /* 1628 * Make sure user is the owner of the mount point 1629 * or has sufficient privileges. 1630 */ 1631 1632 vattr.va_mask = AT_UID; 1633 1634 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1635 goto out; 1636 } 1637 1638 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1639 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1640 goto out; 1641 } 1642 secpolicy_fs_mount_clearopts(cr, vfsp); 1643 } else { 1644 goto out; 1645 } 1646 } 1647 1648 /* 1649 * Refuse to mount a filesystem if we are in a local zone and the 1650 * dataset is not visible. 1651 */ 1652 if (!INGLOBALZONE(curproc) && 1653 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1654 error = EPERM; 1655 goto out; 1656 } 1657 1658 error = zfs_mount_label_policy(vfsp, osname); 1659 if (error) 1660 goto out; 1661 1662 /* 1663 * When doing a remount, we simply refresh our temporary properties 1664 * according to those options set in the current VFS options. 1665 */ 1666 if (uap->flags & MS_REMOUNT) { 1667 /* refresh mount options */ 1668 zfs_unregister_callbacks(vfsp->vfs_data); 1669 error = zfs_register_callbacks(vfsp); 1670 goto out; 1671 } 1672 1673 error = zfs_domount(vfsp, osname); 1674 1675 /* 1676 * Add an extra VFS_HOLD on our parent vfs so that it can't 1677 * disappear due to a forced unmount. 1678 */ 1679 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1680 VFS_HOLD(mvp->v_vfsp); 1681 1682 out: 1683 pn_free(&spn); 1684 return (error); 1685 } 1686 1687 static int 1688 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1689 { 1690 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1691 dev32_t d32; 1692 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1693 1694 ZFS_ENTER(zfsvfs); 1695 1696 dmu_objset_space(zfsvfs->z_os, 1697 &refdbytes, &availbytes, &usedobjs, &availobjs); 1698 1699 /* 1700 * The underlying storage pool actually uses multiple block sizes. 1701 * We report the fragsize as the smallest block size we support, 1702 * and we report our blocksize as the filesystem's maximum blocksize. 1703 */ 1704 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1705 statp->f_bsize = zfsvfs->z_max_blksz; 1706 1707 /* 1708 * The following report "total" blocks of various kinds in the 1709 * file system, but reported in terms of f_frsize - the 1710 * "fragment" size. 1711 */ 1712 1713 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1714 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1715 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1716 1717 /* 1718 * statvfs() should really be called statufs(), because it assumes 1719 * static metadata. ZFS doesn't preallocate files, so the best 1720 * we can do is report the max that could possibly fit in f_files, 1721 * and that minus the number actually used in f_ffree. 1722 * For f_ffree, report the smaller of the number of object available 1723 * and the number of blocks (each object will take at least a block). 1724 */ 1725 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1726 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1727 statp->f_files = statp->f_ffree + usedobjs; 1728 1729 (void) cmpldev(&d32, vfsp->vfs_dev); 1730 statp->f_fsid = d32; 1731 1732 /* 1733 * We're a zfs filesystem. 1734 */ 1735 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1736 1737 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1738 1739 statp->f_namemax = ZFS_MAXNAMELEN; 1740 1741 /* 1742 * We have all of 32 characters to stuff a string here. 1743 * Is there anything useful we could/should provide? 1744 */ 1745 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1746 1747 ZFS_EXIT(zfsvfs); 1748 return (0); 1749 } 1750 1751 static int 1752 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1753 { 1754 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1755 znode_t *rootzp; 1756 int error; 1757 1758 ZFS_ENTER(zfsvfs); 1759 1760 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1761 if (error == 0) 1762 *vpp = ZTOV(rootzp); 1763 1764 ZFS_EXIT(zfsvfs); 1765 return (error); 1766 } 1767 1768 /* 1769 * Teardown the zfsvfs::z_os. 1770 * 1771 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1772 * and 'z_teardown_inactive_lock' held. 1773 */ 1774 static int 1775 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1776 { 1777 znode_t *zp; 1778 1779 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1780 1781 if (!unmounting) { 1782 /* 1783 * We purge the parent filesystem's vfsp as the parent 1784 * filesystem and all of its snapshots have their vnode's 1785 * v_vfsp set to the parent's filesystem's vfsp. Note, 1786 * 'z_parent' is self referential for non-snapshots. 1787 */ 1788 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1789 } 1790 1791 /* 1792 * Close the zil. NB: Can't close the zil while zfs_inactive 1793 * threads are blocked as zil_close can call zfs_inactive. 1794 */ 1795 if (zfsvfs->z_log) { 1796 zil_close(zfsvfs->z_log); 1797 zfsvfs->z_log = NULL; 1798 } 1799 1800 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1801 1802 /* 1803 * If we are not unmounting (ie: online recv) and someone already 1804 * unmounted this file system while we were doing the switcheroo, 1805 * or a reopen of z_os failed then just bail out now. 1806 */ 1807 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1808 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1809 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1810 return (EIO); 1811 } 1812 1813 /* 1814 * At this point there are no vops active, and any new vops will 1815 * fail with EIO since we have z_teardown_lock for writer (only 1816 * relavent for forced unmount). 1817 * 1818 * Release all holds on dbufs. 1819 */ 1820 mutex_enter(&zfsvfs->z_znodes_lock); 1821 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1822 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1823 if (zp->z_sa_hdl) { 1824 ASSERT(ZTOV(zp)->v_count > 0); 1825 zfs_znode_dmu_fini(zp); 1826 } 1827 mutex_exit(&zfsvfs->z_znodes_lock); 1828 1829 /* 1830 * If we are unmounting, set the unmounted flag and let new vops 1831 * unblock. zfs_inactive will have the unmounted behavior, and all 1832 * other vops will fail with EIO. 1833 */ 1834 if (unmounting) { 1835 zfsvfs->z_unmounted = B_TRUE; 1836 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1837 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1838 } 1839 1840 /* 1841 * z_os will be NULL if there was an error in attempting to reopen 1842 * zfsvfs, so just return as the properties had already been 1843 * unregistered and cached data had been evicted before. 1844 */ 1845 if (zfsvfs->z_os == NULL) 1846 return (0); 1847 1848 /* 1849 * Unregister properties. 1850 */ 1851 zfs_unregister_callbacks(zfsvfs); 1852 1853 /* 1854 * Evict cached data 1855 */ 1856 if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) && 1857 !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 1858 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1859 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1860 1861 return (0); 1862 } 1863 1864 /*ARGSUSED*/ 1865 static int 1866 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1867 { 1868 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1869 objset_t *os; 1870 int ret; 1871 1872 ret = secpolicy_fs_unmount(cr, vfsp); 1873 if (ret) { 1874 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1875 ZFS_DELEG_PERM_MOUNT, cr)) 1876 return (ret); 1877 } 1878 1879 /* 1880 * We purge the parent filesystem's vfsp as the parent filesystem 1881 * and all of its snapshots have their vnode's v_vfsp set to the 1882 * parent's filesystem's vfsp. Note, 'z_parent' is self 1883 * referential for non-snapshots. 1884 */ 1885 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1886 1887 /* 1888 * Unmount any snapshots mounted under .zfs before unmounting the 1889 * dataset itself. 1890 */ 1891 if (zfsvfs->z_ctldir != NULL && 1892 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1893 return (ret); 1894 } 1895 1896 if (!(fflag & MS_FORCE)) { 1897 /* 1898 * Check the number of active vnodes in the file system. 1899 * Our count is maintained in the vfs structure, but the 1900 * number is off by 1 to indicate a hold on the vfs 1901 * structure itself. 1902 * 1903 * The '.zfs' directory maintains a reference of its 1904 * own, and any active references underneath are 1905 * reflected in the vnode count. 1906 */ 1907 if (zfsvfs->z_ctldir == NULL) { 1908 if (vfsp->vfs_count > 1) 1909 return (EBUSY); 1910 } else { 1911 if (vfsp->vfs_count > 2 || 1912 zfsvfs->z_ctldir->v_count > 1) 1913 return (EBUSY); 1914 } 1915 } 1916 1917 vfsp->vfs_flag |= VFS_UNMOUNTED; 1918 1919 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1920 os = zfsvfs->z_os; 1921 1922 /* 1923 * z_os will be NULL if there was an error in 1924 * attempting to reopen zfsvfs. 1925 */ 1926 if (os != NULL) { 1927 /* 1928 * Unset the objset user_ptr. 1929 */ 1930 mutex_enter(&os->os_user_ptr_lock); 1931 dmu_objset_set_user(os, NULL); 1932 mutex_exit(&os->os_user_ptr_lock); 1933 1934 /* 1935 * Finally release the objset 1936 */ 1937 dmu_objset_disown(os, zfsvfs); 1938 } 1939 1940 /* 1941 * We can now safely destroy the '.zfs' directory node. 1942 */ 1943 if (zfsvfs->z_ctldir != NULL) 1944 zfsctl_destroy(zfsvfs); 1945 1946 return (0); 1947 } 1948 1949 static int 1950 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1951 { 1952 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1953 znode_t *zp; 1954 uint64_t object = 0; 1955 uint64_t fid_gen = 0; 1956 uint64_t gen_mask; 1957 uint64_t zp_gen; 1958 int i, err; 1959 1960 *vpp = NULL; 1961 1962 ZFS_ENTER(zfsvfs); 1963 1964 if (fidp->fid_len == LONG_FID_LEN) { 1965 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1966 uint64_t objsetid = 0; 1967 uint64_t setgen = 0; 1968 1969 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1970 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1971 1972 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1973 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1974 1975 ZFS_EXIT(zfsvfs); 1976 1977 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1978 if (err) 1979 return (EINVAL); 1980 ZFS_ENTER(zfsvfs); 1981 } 1982 1983 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1984 zfid_short_t *zfid = (zfid_short_t *)fidp; 1985 1986 for (i = 0; i < sizeof (zfid->zf_object); i++) 1987 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1988 1989 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1990 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1991 } else { 1992 ZFS_EXIT(zfsvfs); 1993 return (EINVAL); 1994 } 1995 1996 /* A zero fid_gen means we are in the .zfs control directories */ 1997 if (fid_gen == 0 && 1998 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1999 *vpp = zfsvfs->z_ctldir; 2000 ASSERT(*vpp != NULL); 2001 if (object == ZFSCTL_INO_SNAPDIR) { 2002 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 2003 0, NULL, NULL, NULL, NULL, NULL) == 0); 2004 } else { 2005 VN_HOLD(*vpp); 2006 } 2007 ZFS_EXIT(zfsvfs); 2008 return (0); 2009 } 2010 2011 gen_mask = -1ULL >> (64 - 8 * i); 2012 2013 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 2014 if (err = zfs_zget(zfsvfs, object, &zp)) { 2015 ZFS_EXIT(zfsvfs); 2016 return (err); 2017 } 2018 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 2019 sizeof (uint64_t)); 2020 zp_gen = zp_gen & gen_mask; 2021 if (zp_gen == 0) 2022 zp_gen = 1; 2023 if (zp->z_unlinked || zp_gen != fid_gen) { 2024 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 2025 VN_RELE(ZTOV(zp)); 2026 ZFS_EXIT(zfsvfs); 2027 return (EINVAL); 2028 } 2029 2030 *vpp = ZTOV(zp); 2031 ZFS_EXIT(zfsvfs); 2032 return (0); 2033 } 2034 2035 /* 2036 * Block out VOPs and close zfsvfs_t::z_os 2037 * 2038 * Note, if successful, then we return with the 'z_teardown_lock' and 2039 * 'z_teardown_inactive_lock' write held. 2040 */ 2041 int 2042 zfs_suspend_fs(zfsvfs_t *zfsvfs) 2043 { 2044 int error; 2045 2046 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2047 return (error); 2048 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 2049 2050 return (0); 2051 } 2052 2053 /* 2054 * Reopen zfsvfs_t::z_os and release VOPs. 2055 */ 2056 int 2057 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2058 { 2059 int err; 2060 2061 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2062 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2063 2064 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs, 2065 &zfsvfs->z_os); 2066 if (err) { 2067 zfsvfs->z_os = NULL; 2068 } else { 2069 znode_t *zp; 2070 uint64_t sa_obj = 0; 2071 2072 /* 2073 * Make sure version hasn't changed 2074 */ 2075 2076 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION, 2077 &zfsvfs->z_version); 2078 2079 if (err) 2080 goto bail; 2081 2082 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 2083 ZFS_SA_ATTRS, 8, 1, &sa_obj); 2084 2085 if (err && zfsvfs->z_version >= ZPL_VERSION_SA) 2086 goto bail; 2087 2088 if ((err = sa_setup(zfsvfs->z_os, sa_obj, 2089 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0) 2090 goto bail; 2091 2092 if (zfsvfs->z_version >= ZPL_VERSION_SA) 2093 sa_register_update_callback(zfsvfs->z_os, 2094 zfs_sa_upgrade); 2095 2096 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2097 2098 zfs_set_fuid_feature(zfsvfs); 2099 2100 /* 2101 * Attempt to re-establish all the active znodes with 2102 * their dbufs. If a zfs_rezget() fails, then we'll let 2103 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2104 * when they try to use their znode. 2105 */ 2106 mutex_enter(&zfsvfs->z_znodes_lock); 2107 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2108 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2109 (void) zfs_rezget(zp); 2110 } 2111 mutex_exit(&zfsvfs->z_znodes_lock); 2112 } 2113 2114 bail: 2115 /* release the VOPs */ 2116 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2117 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 2118 2119 if (err) { 2120 /* 2121 * Since we couldn't reopen zfsvfs::z_os, or 2122 * setup the sa framework force unmount this file system. 2123 */ 2124 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2125 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2126 } 2127 return (err); 2128 } 2129 2130 static void 2131 zfs_freevfs(vfs_t *vfsp) 2132 { 2133 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2134 2135 /* 2136 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2137 * from zfs_mount(). Release it here. If we came through 2138 * zfs_mountroot() instead, we didn't grab an extra hold, so 2139 * skip the VFS_RELE for rootvfs. 2140 */ 2141 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2142 VFS_RELE(zfsvfs->z_parent->z_vfs); 2143 2144 zfsvfs_free(zfsvfs); 2145 2146 atomic_add_32(&zfs_active_fs_count, -1); 2147 } 2148 2149 /* 2150 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2151 * so we can't safely do any non-idempotent initialization here. 2152 * Leave that to zfs_init() and zfs_fini(), which are called 2153 * from the module's _init() and _fini() entry points. 2154 */ 2155 /*ARGSUSED*/ 2156 static int 2157 zfs_vfsinit(int fstype, char *name) 2158 { 2159 int error; 2160 2161 zfsfstype = fstype; 2162 2163 /* 2164 * Setup vfsops and vnodeops tables. 2165 */ 2166 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2167 if (error != 0) { 2168 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2169 } 2170 2171 error = zfs_create_op_tables(); 2172 if (error) { 2173 zfs_remove_op_tables(); 2174 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2175 (void) vfs_freevfsops_by_type(zfsfstype); 2176 return (error); 2177 } 2178 2179 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2180 2181 /* 2182 * Unique major number for all zfs mounts. 2183 * If we run out of 32-bit minors, we'll getudev() another major. 2184 */ 2185 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2186 zfs_minor = ZFS_MIN_MINOR; 2187 2188 return (0); 2189 } 2190 2191 void 2192 zfs_init(void) 2193 { 2194 /* 2195 * Initialize .zfs directory structures 2196 */ 2197 zfsctl_init(); 2198 2199 /* 2200 * Initialize znode cache, vnode ops, etc... 2201 */ 2202 zfs_znode_init(); 2203 2204 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2205 } 2206 2207 void 2208 zfs_fini(void) 2209 { 2210 zfsctl_fini(); 2211 zfs_znode_fini(); 2212 } 2213 2214 int 2215 zfs_busy(void) 2216 { 2217 return (zfs_active_fs_count != 0); 2218 } 2219 2220 int 2221 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2222 { 2223 int error; 2224 objset_t *os = zfsvfs->z_os; 2225 dmu_tx_t *tx; 2226 2227 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2228 return (EINVAL); 2229 2230 if (newvers < zfsvfs->z_version) 2231 return (EINVAL); 2232 2233 if (zfs_spa_version_map(newvers) > 2234 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2235 return (ENOTSUP); 2236 2237 tx = dmu_tx_create(os); 2238 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2239 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2240 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2241 ZFS_SA_ATTRS); 2242 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2243 } 2244 error = dmu_tx_assign(tx, TXG_WAIT); 2245 if (error) { 2246 dmu_tx_abort(tx); 2247 return (error); 2248 } 2249 2250 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2251 8, 1, &newvers, tx); 2252 2253 if (error) { 2254 dmu_tx_commit(tx); 2255 return (error); 2256 } 2257 2258 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2259 uint64_t sa_obj; 2260 2261 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2262 SPA_VERSION_SA); 2263 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2264 DMU_OT_NONE, 0, tx); 2265 2266 error = zap_add(os, MASTER_NODE_OBJ, 2267 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2268 ASSERT0(error); 2269 2270 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2271 sa_register_update_callback(os, zfs_sa_upgrade); 2272 } 2273 2274 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2275 "from %llu to %llu", zfsvfs->z_version, newvers); 2276 2277 dmu_tx_commit(tx); 2278 2279 zfsvfs->z_version = newvers; 2280 2281 zfs_set_fuid_feature(zfsvfs); 2282 2283 return (0); 2284 } 2285 2286 /* 2287 * Read a property stored within the master node. 2288 */ 2289 int 2290 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2291 { 2292 const char *pname; 2293 int error = ENOENT; 2294 2295 /* 2296 * Look up the file system's value for the property. For the 2297 * version property, we look up a slightly different string. 2298 */ 2299 if (prop == ZFS_PROP_VERSION) 2300 pname = ZPL_VERSION_STR; 2301 else 2302 pname = zfs_prop_to_name(prop); 2303 2304 if (os != NULL) 2305 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2306 2307 if (error == ENOENT) { 2308 /* No value set, use the default value */ 2309 switch (prop) { 2310 case ZFS_PROP_VERSION: 2311 *value = ZPL_VERSION; 2312 break; 2313 case ZFS_PROP_NORMALIZE: 2314 case ZFS_PROP_UTF8ONLY: 2315 *value = 0; 2316 break; 2317 case ZFS_PROP_CASE: 2318 *value = ZFS_CASE_SENSITIVE; 2319 break; 2320 default: 2321 return (error); 2322 } 2323 error = 0; 2324 } 2325 return (error); 2326 } 2327 2328 static vfsdef_t vfw = { 2329 VFSDEF_VERSION, 2330 MNTTYPE_ZFS, 2331 zfs_vfsinit, 2332 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2333 VSW_XID|VSW_ZMOUNT, 2334 &zfs_mntopts 2335 }; 2336 2337 struct modlfs zfs_modlfs = { 2338 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2339 }; 2340