1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/pathname.h> 32 #include <sys/vnode.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/mntent.h> 36 #include <sys/mount.h> 37 #include <sys/cmn_err.h> 38 #include "fs/fs_subr.h" 39 #include <sys/zfs_znode.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/refstr.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa_boot.h> 63 64 int zfsfstype; 65 vfsops_t *zfs_vfsops = NULL; 66 static major_t zfs_major; 67 static minor_t zfs_minor; 68 static kmutex_t zfs_dev_mtx; 69 70 extern int sys_shutdown; 71 72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 78 static void zfs_freevfs(vfs_t *vfsp); 79 80 static const fs_operation_def_t zfs_vfsops_template[] = { 81 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 82 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 83 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 84 VFSNAME_ROOT, { .vfs_root = zfs_root }, 85 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 86 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 87 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 88 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 89 NULL, NULL 90 }; 91 92 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 94 NULL, NULL 95 }; 96 97 /* 98 * We need to keep a count of active fs's. 99 * This is necessary to prevent our module 100 * from being unloaded after a umount -f 101 */ 102 static uint32_t zfs_active_fs_count = 0; 103 104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 108 109 /* 110 * MO_DEFAULT is not used since the default value is determined 111 * by the equivalent property. 112 */ 113 static mntopt_t mntopts[] = { 114 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 115 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 116 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 117 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 118 }; 119 120 static mntopts_t zfs_mntopts = { 121 sizeof (mntopts) / sizeof (mntopt_t), 122 mntopts 123 }; 124 125 /*ARGSUSED*/ 126 int 127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 128 { 129 /* 130 * Data integrity is job one. We don't want a compromised kernel 131 * writing to the storage pool, so we never sync during panic. 132 */ 133 if (panicstr) 134 return (0); 135 136 /* 137 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 138 * to sync metadata, which they would otherwise cache indefinitely. 139 * Semantically, the only requirement is that the sync be initiated. 140 * The DMU syncs out txgs frequently, so there's nothing to do. 141 */ 142 if (flag & SYNC_ATTR) 143 return (0); 144 145 if (vfsp != NULL) { 146 /* 147 * Sync a specific filesystem. 148 */ 149 zfsvfs_t *zfsvfs = vfsp->vfs_data; 150 dsl_pool_t *dp; 151 152 ZFS_ENTER(zfsvfs); 153 dp = dmu_objset_pool(zfsvfs->z_os); 154 155 /* 156 * If the system is shutting down, then skip any 157 * filesystems which may exist on a suspended pool. 158 */ 159 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 160 ZFS_EXIT(zfsvfs); 161 return (0); 162 } 163 164 if (zfsvfs->z_log != NULL) 165 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 166 else 167 txg_wait_synced(dp, 0); 168 ZFS_EXIT(zfsvfs); 169 } else { 170 /* 171 * Sync all ZFS filesystems. This is what happens when you 172 * run sync(1M). Unlike other filesystems, ZFS honors the 173 * request by waiting for all pools to commit all dirty data. 174 */ 175 spa_sync_allpools(); 176 } 177 178 return (0); 179 } 180 181 static int 182 zfs_create_unique_device(dev_t *dev) 183 { 184 major_t new_major; 185 186 do { 187 ASSERT3U(zfs_minor, <=, MAXMIN32); 188 minor_t start = zfs_minor; 189 do { 190 mutex_enter(&zfs_dev_mtx); 191 if (zfs_minor >= MAXMIN32) { 192 /* 193 * If we're still using the real major 194 * keep out of /dev/zfs and /dev/zvol minor 195 * number space. If we're using a getudev()'ed 196 * major number, we can use all of its minors. 197 */ 198 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 199 zfs_minor = ZFS_MIN_MINOR; 200 else 201 zfs_minor = 0; 202 } else { 203 zfs_minor++; 204 } 205 *dev = makedevice(zfs_major, zfs_minor); 206 mutex_exit(&zfs_dev_mtx); 207 } while (vfs_devismounted(*dev) && zfs_minor != start); 208 if (zfs_minor == start) { 209 /* 210 * We are using all ~262,000 minor numbers for the 211 * current major number. Create a new major number. 212 */ 213 if ((new_major = getudev()) == (major_t)-1) { 214 cmn_err(CE_WARN, 215 "zfs_mount: Can't get unique major " 216 "device number."); 217 return (-1); 218 } 219 mutex_enter(&zfs_dev_mtx); 220 zfs_major = new_major; 221 zfs_minor = 0; 222 223 mutex_exit(&zfs_dev_mtx); 224 } else { 225 break; 226 } 227 /* CONSTANTCONDITION */ 228 } while (1); 229 230 return (0); 231 } 232 233 static void 234 atime_changed_cb(void *arg, uint64_t newval) 235 { 236 zfsvfs_t *zfsvfs = arg; 237 238 if (newval == TRUE) { 239 zfsvfs->z_atime = TRUE; 240 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 241 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 242 } else { 243 zfsvfs->z_atime = FALSE; 244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 246 } 247 } 248 249 static void 250 xattr_changed_cb(void *arg, uint64_t newval) 251 { 252 zfsvfs_t *zfsvfs = arg; 253 254 if (newval == TRUE) { 255 /* XXX locking on vfs_flag? */ 256 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 257 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 258 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 259 } else { 260 /* XXX locking on vfs_flag? */ 261 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 262 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 263 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 264 } 265 } 266 267 static void 268 blksz_changed_cb(void *arg, uint64_t newval) 269 { 270 zfsvfs_t *zfsvfs = arg; 271 272 if (newval < SPA_MINBLOCKSIZE || 273 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 274 newval = SPA_MAXBLOCKSIZE; 275 276 zfsvfs->z_max_blksz = newval; 277 zfsvfs->z_vfs->vfs_bsize = newval; 278 } 279 280 static void 281 readonly_changed_cb(void *arg, uint64_t newval) 282 { 283 zfsvfs_t *zfsvfs = arg; 284 285 if (newval) { 286 /* XXX locking on vfs_flag? */ 287 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 288 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 289 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 290 } else { 291 /* XXX locking on vfs_flag? */ 292 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 295 } 296 } 297 298 static void 299 devices_changed_cb(void *arg, uint64_t newval) 300 { 301 zfsvfs_t *zfsvfs = arg; 302 303 if (newval == FALSE) { 304 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 305 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 306 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 307 } else { 308 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 311 } 312 } 313 314 static void 315 setuid_changed_cb(void *arg, uint64_t newval) 316 { 317 zfsvfs_t *zfsvfs = arg; 318 319 if (newval == FALSE) { 320 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 321 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 322 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 323 } else { 324 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 327 } 328 } 329 330 static void 331 exec_changed_cb(void *arg, uint64_t newval) 332 { 333 zfsvfs_t *zfsvfs = arg; 334 335 if (newval == FALSE) { 336 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 337 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 338 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 339 } else { 340 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 343 } 344 } 345 346 /* 347 * The nbmand mount option can be changed at mount time. 348 * We can't allow it to be toggled on live file systems or incorrect 349 * behavior may be seen from cifs clients 350 * 351 * This property isn't registered via dsl_prop_register(), but this callback 352 * will be called when a file system is first mounted 353 */ 354 static void 355 nbmand_changed_cb(void *arg, uint64_t newval) 356 { 357 zfsvfs_t *zfsvfs = arg; 358 if (newval == FALSE) { 359 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 360 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 361 } else { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 364 } 365 } 366 367 static void 368 snapdir_changed_cb(void *arg, uint64_t newval) 369 { 370 zfsvfs_t *zfsvfs = arg; 371 372 zfsvfs->z_show_ctldir = newval; 373 } 374 375 static void 376 vscan_changed_cb(void *arg, uint64_t newval) 377 { 378 zfsvfs_t *zfsvfs = arg; 379 380 zfsvfs->z_vscan = newval; 381 } 382 383 static void 384 acl_mode_changed_cb(void *arg, uint64_t newval) 385 { 386 zfsvfs_t *zfsvfs = arg; 387 388 zfsvfs->z_acl_mode = newval; 389 } 390 391 static void 392 acl_inherit_changed_cb(void *arg, uint64_t newval) 393 { 394 zfsvfs_t *zfsvfs = arg; 395 396 zfsvfs->z_acl_inherit = newval; 397 } 398 399 static int 400 zfs_register_callbacks(vfs_t *vfsp) 401 { 402 struct dsl_dataset *ds = NULL; 403 objset_t *os = NULL; 404 zfsvfs_t *zfsvfs = NULL; 405 uint64_t nbmand; 406 int readonly, do_readonly = B_FALSE; 407 int setuid, do_setuid = B_FALSE; 408 int exec, do_exec = B_FALSE; 409 int devices, do_devices = B_FALSE; 410 int xattr, do_xattr = B_FALSE; 411 int atime, do_atime = B_FALSE; 412 int error = 0; 413 414 ASSERT(vfsp); 415 zfsvfs = vfsp->vfs_data; 416 ASSERT(zfsvfs); 417 os = zfsvfs->z_os; 418 419 /* 420 * The act of registering our callbacks will destroy any mount 421 * options we may have. In order to enable temporary overrides 422 * of mount options, we stash away the current values and 423 * restore them after we register the callbacks. 424 */ 425 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 426 readonly = B_TRUE; 427 do_readonly = B_TRUE; 428 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 429 readonly = B_FALSE; 430 do_readonly = B_TRUE; 431 } 432 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 433 devices = B_FALSE; 434 setuid = B_FALSE; 435 do_devices = B_TRUE; 436 do_setuid = B_TRUE; 437 } else { 438 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 439 devices = B_FALSE; 440 do_devices = B_TRUE; 441 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 442 devices = B_TRUE; 443 do_devices = B_TRUE; 444 } 445 446 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 447 setuid = B_FALSE; 448 do_setuid = B_TRUE; 449 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 450 setuid = B_TRUE; 451 do_setuid = B_TRUE; 452 } 453 } 454 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 455 exec = B_FALSE; 456 do_exec = B_TRUE; 457 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 458 exec = B_TRUE; 459 do_exec = B_TRUE; 460 } 461 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 462 xattr = B_FALSE; 463 do_xattr = B_TRUE; 464 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 465 xattr = B_TRUE; 466 do_xattr = B_TRUE; 467 } 468 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 469 atime = B_FALSE; 470 do_atime = B_TRUE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 472 atime = B_TRUE; 473 do_atime = B_TRUE; 474 } 475 476 /* 477 * nbmand is a special property. It can only be changed at 478 * mount time. 479 * 480 * This is weird, but it is documented to only be changeable 481 * at mount time. 482 */ 483 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 484 nbmand = B_FALSE; 485 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 486 nbmand = B_TRUE; 487 } else { 488 char osname[MAXNAMELEN]; 489 490 dmu_objset_name(os, osname); 491 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 492 NULL)) { 493 return (error); 494 } 495 } 496 497 /* 498 * Register property callbacks. 499 * 500 * It would probably be fine to just check for i/o error from 501 * the first prop_register(), but I guess I like to go 502 * overboard... 503 */ 504 ds = dmu_objset_ds(os); 505 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "xattr", xattr_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "recordsize", blksz_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "readonly", readonly_changed_cb, zfsvfs); 512 error = error ? error : dsl_prop_register(ds, 513 "devices", devices_changed_cb, zfsvfs); 514 error = error ? error : dsl_prop_register(ds, 515 "setuid", setuid_changed_cb, zfsvfs); 516 error = error ? error : dsl_prop_register(ds, 517 "exec", exec_changed_cb, zfsvfs); 518 error = error ? error : dsl_prop_register(ds, 519 "snapdir", snapdir_changed_cb, zfsvfs); 520 error = error ? error : dsl_prop_register(ds, 521 "aclmode", acl_mode_changed_cb, zfsvfs); 522 error = error ? error : dsl_prop_register(ds, 523 "aclinherit", acl_inherit_changed_cb, zfsvfs); 524 error = error ? error : dsl_prop_register(ds, 525 "vscan", vscan_changed_cb, zfsvfs); 526 if (error) 527 goto unregister; 528 529 /* 530 * Invoke our callbacks to restore temporary mount options. 531 */ 532 if (do_readonly) 533 readonly_changed_cb(zfsvfs, readonly); 534 if (do_setuid) 535 setuid_changed_cb(zfsvfs, setuid); 536 if (do_exec) 537 exec_changed_cb(zfsvfs, exec); 538 if (do_devices) 539 devices_changed_cb(zfsvfs, devices); 540 if (do_xattr) 541 xattr_changed_cb(zfsvfs, xattr); 542 if (do_atime) 543 atime_changed_cb(zfsvfs, atime); 544 545 nbmand_changed_cb(zfsvfs, nbmand); 546 547 return (0); 548 549 unregister: 550 /* 551 * We may attempt to unregister some callbacks that are not 552 * registered, but this is OK; it will simply return ENOMSG, 553 * which we will ignore. 554 */ 555 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 556 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 557 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 558 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 559 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 560 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 561 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 562 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 563 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 564 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 565 zfsvfs); 566 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 567 return (error); 568 569 } 570 571 static void 572 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid, 573 int64_t delta, dmu_tx_t *tx) 574 { 575 uint64_t used = 0; 576 char buf[32]; 577 int err; 578 uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 579 580 if (delta == 0) 581 return; 582 583 (void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid); 584 err = zap_lookup(os, obj, buf, 8, 1, &used); 585 ASSERT(err == 0 || err == ENOENT); 586 /* no underflow/overflow */ 587 ASSERT(delta > 0 || used >= -delta); 588 ASSERT(delta < 0 || used + delta > used); 589 used += delta; 590 if (used == 0) 591 err = zap_remove(os, obj, buf, tx); 592 else 593 err = zap_update(os, obj, buf, 8, 1, &used, tx); 594 ASSERT(err == 0); 595 } 596 597 static void 598 zfs_space_delta_cb(objset_t *os, dmu_object_type_t bonustype, 599 void *oldbonus, void *newbonus, 600 uint64_t oldused, uint64_t newused, dmu_tx_t *tx) 601 { 602 znode_phys_t *oldznp = oldbonus; 603 znode_phys_t *newznp = newbonus; 604 605 if (bonustype != DMU_OT_ZNODE) 606 return; 607 608 /* We charge 512 for the dnode (if it's allocated). */ 609 if (oldznp->zp_gen != 0) 610 oldused += DNODE_SIZE; 611 if (newznp->zp_gen != 0) 612 newused += DNODE_SIZE; 613 614 if (oldznp->zp_uid == newznp->zp_uid) { 615 uidacct(os, B_FALSE, oldznp->zp_uid, newused-oldused, tx); 616 } else { 617 uidacct(os, B_FALSE, oldznp->zp_uid, -oldused, tx); 618 uidacct(os, B_FALSE, newznp->zp_uid, newused, tx); 619 } 620 621 if (oldznp->zp_gid == newznp->zp_gid) { 622 uidacct(os, B_TRUE, oldznp->zp_gid, newused-oldused, tx); 623 } else { 624 uidacct(os, B_TRUE, oldznp->zp_gid, -oldused, tx); 625 uidacct(os, B_TRUE, newznp->zp_gid, newused, tx); 626 } 627 } 628 629 static void 630 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 631 char *domainbuf, int buflen, uid_t *ridp) 632 { 633 extern uint64_t strtonum(const char *str, char **nptr); 634 uint64_t fuid; 635 const char *domain; 636 637 fuid = strtonum(fuidstr, NULL); 638 639 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 640 if (domain) 641 (void) strlcpy(domainbuf, domain, buflen); 642 else 643 domainbuf[0] = '\0'; 644 *ridp = FUID_RID(fuid); 645 } 646 647 static uint64_t 648 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 649 { 650 switch (type) { 651 case ZFS_PROP_USERUSED: 652 return (DMU_USERUSED_OBJECT); 653 case ZFS_PROP_GROUPUSED: 654 return (DMU_GROUPUSED_OBJECT); 655 case ZFS_PROP_USERQUOTA: 656 return (zfsvfs->z_userquota_obj); 657 case ZFS_PROP_GROUPQUOTA: 658 return (zfsvfs->z_groupquota_obj); 659 } 660 return (0); 661 } 662 663 int 664 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 665 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 666 { 667 int error; 668 zap_cursor_t zc; 669 zap_attribute_t za; 670 zfs_useracct_t *buf = vbuf; 671 uint64_t obj; 672 673 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 674 return (ENOTSUP); 675 676 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 677 if (obj == 0) { 678 *bufsizep = 0; 679 return (0); 680 } 681 682 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 683 (error = zap_cursor_retrieve(&zc, &za)) == 0; 684 zap_cursor_advance(&zc)) { 685 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 686 *bufsizep) 687 break; 688 689 fuidstr_to_sid(zfsvfs, za.za_name, 690 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 691 692 buf->zu_space = za.za_first_integer; 693 buf++; 694 } 695 if (error == ENOENT) 696 error = 0; 697 698 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 699 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 700 *cookiep = zap_cursor_serialize(&zc); 701 zap_cursor_fini(&zc); 702 return (error); 703 } 704 705 /* 706 * buf must be big enough (eg, 32 bytes) 707 */ 708 static int 709 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 710 char *buf, boolean_t addok) 711 { 712 uint64_t fuid; 713 int domainid = 0; 714 715 if (domain && domain[0]) { 716 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 717 if (domainid == -1) 718 return (ENOENT); 719 } 720 fuid = FUID_ENCODE(domainid, rid); 721 (void) sprintf(buf, "%llx", (longlong_t)fuid); 722 return (0); 723 } 724 725 int 726 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 727 const char *domain, uint64_t rid, uint64_t *valp) 728 { 729 char buf[32]; 730 int err; 731 uint64_t obj; 732 733 *valp = 0; 734 735 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 736 return (ENOTSUP); 737 738 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 739 if (obj == 0) 740 return (0); 741 742 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 743 if (err) 744 return (err); 745 746 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 747 if (err == ENOENT) 748 err = 0; 749 return (err); 750 } 751 752 int 753 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 754 const char *domain, uint64_t rid, uint64_t quota) 755 { 756 char buf[32]; 757 int err; 758 dmu_tx_t *tx; 759 uint64_t *objp; 760 boolean_t fuid_dirtied; 761 762 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 763 return (EINVAL); 764 765 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 766 return (ENOTSUP); 767 768 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 769 &zfsvfs->z_groupquota_obj; 770 771 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 772 if (err) 773 return (err); 774 fuid_dirtied = zfsvfs->z_fuid_dirty; 775 776 tx = dmu_tx_create(zfsvfs->z_os); 777 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 778 if (*objp == 0) { 779 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 780 zfs_userquota_prop_prefixes[type]); 781 } 782 if (fuid_dirtied) 783 zfs_fuid_txhold(zfsvfs, tx); 784 err = dmu_tx_assign(tx, TXG_WAIT); 785 if (err) { 786 dmu_tx_abort(tx); 787 return (err); 788 } 789 790 mutex_enter(&zfsvfs->z_lock); 791 if (*objp == 0) { 792 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 793 DMU_OT_NONE, 0, tx); 794 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 795 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 796 } 797 mutex_exit(&zfsvfs->z_lock); 798 799 if (quota == 0) { 800 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 801 if (err == ENOENT) 802 err = 0; 803 } else { 804 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 805 } 806 ASSERT(err == 0); 807 if (fuid_dirtied) 808 zfs_fuid_sync(zfsvfs, tx); 809 dmu_tx_commit(tx); 810 return (err); 811 } 812 813 boolean_t 814 zfs_usergroup_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 815 { 816 char buf[32]; 817 uint64_t used, quota, usedobj, quotaobj; 818 int err; 819 820 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 821 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 822 823 if (quotaobj == 0 || zfsvfs->z_replay) 824 return (B_FALSE); 825 826 (void) sprintf(buf, "%llx", (longlong_t)fuid); 827 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 828 if (err != 0) 829 return (B_FALSE); 830 831 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 832 if (err != 0) 833 return (B_FALSE); 834 return (used >= quota); 835 } 836 837 int 838 zfsvfs_create(const char *osname, zfsvfs_t **zvp) 839 { 840 objset_t *os; 841 zfsvfs_t *zfsvfs; 842 uint64_t zval; 843 int i, error; 844 845 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 846 847 /* 848 * We claim to always be readonly so we can open snapshots; 849 * other ZPL code will prevent us from writing to snapshots. 850 */ 851 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 852 if (error) { 853 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 854 return (error); 855 } 856 857 /* 858 * Initialize the zfs-specific filesystem structure. 859 * Should probably make this a kmem cache, shuffle fields, 860 * and just bzero up to z_hold_mtx[]. 861 */ 862 zfsvfs->z_vfs = NULL; 863 zfsvfs->z_parent = zfsvfs; 864 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 865 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 866 zfsvfs->z_os = os; 867 868 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 869 if (error) { 870 goto out; 871 } else if (zfsvfs->z_version > ZPL_VERSION) { 872 (void) printf("Mismatched versions: File system " 873 "is version %llu on-disk format, which is " 874 "incompatible with this software version %lld!", 875 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 876 error = ENOTSUP; 877 goto out; 878 } 879 880 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 881 goto out; 882 zfsvfs->z_norm = (int)zval; 883 884 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 885 goto out; 886 zfsvfs->z_utf8 = (zval != 0); 887 888 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 889 goto out; 890 zfsvfs->z_case = (uint_t)zval; 891 892 /* 893 * Fold case on file systems that are always or sometimes case 894 * insensitive. 895 */ 896 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 897 zfsvfs->z_case == ZFS_CASE_MIXED) 898 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 899 900 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 901 902 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 903 &zfsvfs->z_root); 904 if (error) 905 goto out; 906 ASSERT(zfsvfs->z_root != 0); 907 908 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 909 &zfsvfs->z_unlinkedobj); 910 if (error) 911 goto out; 912 913 error = zap_lookup(os, MASTER_NODE_OBJ, 914 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 915 8, 1, &zfsvfs->z_userquota_obj); 916 if (error && error != ENOENT) 917 goto out; 918 919 error = zap_lookup(os, MASTER_NODE_OBJ, 920 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 921 8, 1, &zfsvfs->z_groupquota_obj); 922 if (error && error != ENOENT) 923 goto out; 924 925 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 926 &zfsvfs->z_fuid_obj); 927 if (error && error != ENOENT) 928 goto out; 929 930 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 931 &zfsvfs->z_shares_dir); 932 if (error && error != ENOENT) 933 goto out; 934 935 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 936 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 937 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 938 offsetof(znode_t, z_link_node)); 939 rrw_init(&zfsvfs->z_teardown_lock); 940 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 941 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 942 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 943 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 944 945 *zvp = zfsvfs; 946 return (0); 947 948 out: 949 dmu_objset_disown(os, zfsvfs); 950 *zvp = NULL; 951 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 952 return (error); 953 } 954 955 static int 956 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 957 { 958 int error; 959 960 error = zfs_register_callbacks(zfsvfs->z_vfs); 961 if (error) 962 return (error); 963 964 /* 965 * Set the objset user_ptr to track its zfsvfs. 966 */ 967 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 968 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 969 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 970 971 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 972 if (zil_disable) { 973 zil_destroy(zfsvfs->z_log, 0); 974 zfsvfs->z_log = NULL; 975 } 976 977 /* 978 * If we are not mounting (ie: online recv), then we don't 979 * have to worry about replaying the log as we blocked all 980 * operations out since we closed the ZIL. 981 */ 982 if (mounting) { 983 boolean_t readonly; 984 985 /* 986 * During replay we remove the read only flag to 987 * allow replays to succeed. 988 */ 989 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 990 if (readonly != 0) 991 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 992 else 993 zfs_unlinked_drain(zfsvfs); 994 995 if (zfsvfs->z_log) { 996 /* 997 * Parse and replay the intent log. 998 * 999 * Because of ziltest, this must be done after 1000 * zfs_unlinked_drain(). (Further note: ziltest 1001 * doesn't use readonly mounts, where 1002 * zfs_unlinked_drain() isn't called.) This is because 1003 * ziltest causes spa_sync() to think it's committed, 1004 * but actually it is not, so the intent log contains 1005 * many txg's worth of changes. 1006 * 1007 * In particular, if object N is in the unlinked set in 1008 * the last txg to actually sync, then it could be 1009 * actually freed in a later txg and then reallocated 1010 * in a yet later txg. This would write a "create 1011 * object N" record to the intent log. Normally, this 1012 * would be fine because the spa_sync() would have 1013 * written out the fact that object N is free, before 1014 * we could write the "create object N" intent log 1015 * record. 1016 * 1017 * But when we are in ziltest mode, we advance the "open 1018 * txg" without actually spa_sync()-ing the changes to 1019 * disk. So we would see that object N is still 1020 * allocated and in the unlinked set, and there is an 1021 * intent log record saying to allocate it. 1022 */ 1023 zfsvfs->z_replay = B_TRUE; 1024 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 1025 zfsvfs->z_replay = B_FALSE; 1026 } 1027 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1028 } 1029 1030 return (0); 1031 } 1032 1033 void 1034 zfsvfs_free(zfsvfs_t *zfsvfs) 1035 { 1036 int i; 1037 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1038 1039 /* 1040 * This is a barrier to prevent the filesystem from going away in 1041 * zfs_znode_move() until we can safely ensure that the filesystem is 1042 * not unmounted. We consider the filesystem valid before the barrier 1043 * and invalid after the barrier. 1044 */ 1045 rw_enter(&zfsvfs_lock, RW_READER); 1046 rw_exit(&zfsvfs_lock); 1047 1048 zfs_fuid_destroy(zfsvfs); 1049 1050 mutex_destroy(&zfsvfs->z_znodes_lock); 1051 mutex_destroy(&zfsvfs->z_lock); 1052 list_destroy(&zfsvfs->z_all_znodes); 1053 rrw_destroy(&zfsvfs->z_teardown_lock); 1054 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1055 rw_destroy(&zfsvfs->z_fuid_lock); 1056 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1057 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1058 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1059 } 1060 1061 static void 1062 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1063 { 1064 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1065 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) { 1066 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1067 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1068 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1069 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1070 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1071 } 1072 } 1073 1074 static int 1075 zfs_domount(vfs_t *vfsp, char *osname) 1076 { 1077 dev_t mount_dev; 1078 uint64_t recordsize, fsid_guid; 1079 int error = 0; 1080 zfsvfs_t *zfsvfs; 1081 1082 ASSERT(vfsp); 1083 ASSERT(osname); 1084 1085 error = zfsvfs_create(osname, &zfsvfs); 1086 if (error) 1087 return (error); 1088 zfsvfs->z_vfs = vfsp; 1089 1090 /* Initialize the generic filesystem structure. */ 1091 vfsp->vfs_bcount = 0; 1092 vfsp->vfs_data = NULL; 1093 1094 if (zfs_create_unique_device(&mount_dev) == -1) { 1095 error = ENODEV; 1096 goto out; 1097 } 1098 ASSERT(vfs_devismounted(mount_dev) == 0); 1099 1100 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1101 NULL)) 1102 goto out; 1103 1104 vfsp->vfs_dev = mount_dev; 1105 vfsp->vfs_fstype = zfsfstype; 1106 vfsp->vfs_bsize = recordsize; 1107 vfsp->vfs_flag |= VFS_NOTRUNC; 1108 vfsp->vfs_data = zfsvfs; 1109 1110 /* 1111 * The fsid is 64 bits, composed of an 8-bit fs type, which 1112 * separates our fsid from any other filesystem types, and a 1113 * 56-bit objset unique ID. The objset unique ID is unique to 1114 * all objsets open on this system, provided by unique_create(). 1115 * The 8-bit fs type must be put in the low bits of fsid[1] 1116 * because that's where other Solaris filesystems put it. 1117 */ 1118 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1119 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1120 vfsp->vfs_fsid.val[0] = fsid_guid; 1121 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1122 zfsfstype & 0xFF; 1123 1124 /* 1125 * Set features for file system. 1126 */ 1127 zfs_set_fuid_feature(zfsvfs); 1128 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1129 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1130 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1131 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1132 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1133 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1134 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1135 } 1136 1137 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1138 uint64_t pval; 1139 1140 atime_changed_cb(zfsvfs, B_FALSE); 1141 readonly_changed_cb(zfsvfs, B_TRUE); 1142 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1143 goto out; 1144 xattr_changed_cb(zfsvfs, pval); 1145 zfsvfs->z_issnap = B_TRUE; 1146 1147 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1148 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1149 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1150 } else { 1151 error = zfsvfs_setup(zfsvfs, B_TRUE); 1152 } 1153 1154 if (!zfsvfs->z_issnap) 1155 zfsctl_create(zfsvfs); 1156 out: 1157 if (error) { 1158 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1159 zfsvfs_free(zfsvfs); 1160 } else { 1161 atomic_add_32(&zfs_active_fs_count, 1); 1162 } 1163 1164 return (error); 1165 } 1166 1167 void 1168 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1169 { 1170 objset_t *os = zfsvfs->z_os; 1171 struct dsl_dataset *ds; 1172 1173 /* 1174 * Unregister properties. 1175 */ 1176 if (!dmu_objset_is_snapshot(os)) { 1177 ds = dmu_objset_ds(os); 1178 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1179 zfsvfs) == 0); 1180 1181 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1182 zfsvfs) == 0); 1183 1184 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1185 zfsvfs) == 0); 1186 1187 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1188 zfsvfs) == 0); 1189 1190 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1191 zfsvfs) == 0); 1192 1193 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1194 zfsvfs) == 0); 1195 1196 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1197 zfsvfs) == 0); 1198 1199 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1200 zfsvfs) == 0); 1201 1202 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 1203 zfsvfs) == 0); 1204 1205 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1206 acl_inherit_changed_cb, zfsvfs) == 0); 1207 1208 VERIFY(dsl_prop_unregister(ds, "vscan", 1209 vscan_changed_cb, zfsvfs) == 0); 1210 } 1211 } 1212 1213 /* 1214 * Convert a decimal digit string to a uint64_t integer. 1215 */ 1216 static int 1217 str_to_uint64(char *str, uint64_t *objnum) 1218 { 1219 uint64_t num = 0; 1220 1221 while (*str) { 1222 if (*str < '0' || *str > '9') 1223 return (EINVAL); 1224 1225 num = num*10 + *str++ - '0'; 1226 } 1227 1228 *objnum = num; 1229 return (0); 1230 } 1231 1232 /* 1233 * The boot path passed from the boot loader is in the form of 1234 * "rootpool-name/root-filesystem-object-number'. Convert this 1235 * string to a dataset name: "rootpool-name/root-filesystem-name". 1236 */ 1237 static int 1238 zfs_parse_bootfs(char *bpath, char *outpath) 1239 { 1240 char *slashp; 1241 uint64_t objnum; 1242 int error; 1243 1244 if (*bpath == 0 || *bpath == '/') 1245 return (EINVAL); 1246 1247 (void) strcpy(outpath, bpath); 1248 1249 slashp = strchr(bpath, '/'); 1250 1251 /* if no '/', just return the pool name */ 1252 if (slashp == NULL) { 1253 return (0); 1254 } 1255 1256 /* if not a number, just return the root dataset name */ 1257 if (str_to_uint64(slashp+1, &objnum)) { 1258 return (0); 1259 } 1260 1261 *slashp = '\0'; 1262 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1263 *slashp = '/'; 1264 1265 return (error); 1266 } 1267 1268 static int 1269 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1270 { 1271 int error = 0; 1272 static int zfsrootdone = 0; 1273 zfsvfs_t *zfsvfs = NULL; 1274 znode_t *zp = NULL; 1275 vnode_t *vp = NULL; 1276 char *zfs_bootfs; 1277 char *zfs_devid; 1278 1279 ASSERT(vfsp); 1280 1281 /* 1282 * The filesystem that we mount as root is defined in the 1283 * boot property "zfs-bootfs" with a format of 1284 * "poolname/root-dataset-objnum". 1285 */ 1286 if (why == ROOT_INIT) { 1287 if (zfsrootdone++) 1288 return (EBUSY); 1289 /* 1290 * the process of doing a spa_load will require the 1291 * clock to be set before we could (for example) do 1292 * something better by looking at the timestamp on 1293 * an uberblock, so just set it to -1. 1294 */ 1295 clkset(-1); 1296 1297 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1298 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1299 "bootfs name"); 1300 return (EINVAL); 1301 } 1302 zfs_devid = spa_get_bootprop("diskdevid"); 1303 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1304 if (zfs_devid) 1305 spa_free_bootprop(zfs_devid); 1306 if (error) { 1307 spa_free_bootprop(zfs_bootfs); 1308 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1309 error); 1310 return (error); 1311 } 1312 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1313 spa_free_bootprop(zfs_bootfs); 1314 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1315 error); 1316 return (error); 1317 } 1318 1319 spa_free_bootprop(zfs_bootfs); 1320 1321 if (error = vfs_lock(vfsp)) 1322 return (error); 1323 1324 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1325 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1326 goto out; 1327 } 1328 1329 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1330 ASSERT(zfsvfs); 1331 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1332 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1333 goto out; 1334 } 1335 1336 vp = ZTOV(zp); 1337 mutex_enter(&vp->v_lock); 1338 vp->v_flag |= VROOT; 1339 mutex_exit(&vp->v_lock); 1340 rootvp = vp; 1341 1342 /* 1343 * Leave rootvp held. The root file system is never unmounted. 1344 */ 1345 1346 vfs_add((struct vnode *)0, vfsp, 1347 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1348 out: 1349 vfs_unlock(vfsp); 1350 return (error); 1351 } else if (why == ROOT_REMOUNT) { 1352 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1353 vfsp->vfs_flag |= VFS_REMOUNT; 1354 1355 /* refresh mount options */ 1356 zfs_unregister_callbacks(vfsp->vfs_data); 1357 return (zfs_register_callbacks(vfsp)); 1358 1359 } else if (why == ROOT_UNMOUNT) { 1360 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1361 (void) zfs_sync(vfsp, 0, 0); 1362 return (0); 1363 } 1364 1365 /* 1366 * if "why" is equal to anything else other than ROOT_INIT, 1367 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1368 */ 1369 return (ENOTSUP); 1370 } 1371 1372 /*ARGSUSED*/ 1373 static int 1374 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1375 { 1376 char *osname; 1377 pathname_t spn; 1378 int error = 0; 1379 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1380 UIO_SYSSPACE : UIO_USERSPACE; 1381 int canwrite; 1382 1383 if (mvp->v_type != VDIR) 1384 return (ENOTDIR); 1385 1386 mutex_enter(&mvp->v_lock); 1387 if ((uap->flags & MS_REMOUNT) == 0 && 1388 (uap->flags & MS_OVERLAY) == 0 && 1389 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1390 mutex_exit(&mvp->v_lock); 1391 return (EBUSY); 1392 } 1393 mutex_exit(&mvp->v_lock); 1394 1395 /* 1396 * ZFS does not support passing unparsed data in via MS_DATA. 1397 * Users should use the MS_OPTIONSTR interface; this means 1398 * that all option parsing is already done and the options struct 1399 * can be interrogated. 1400 */ 1401 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1402 return (EINVAL); 1403 1404 /* 1405 * Get the objset name (the "special" mount argument). 1406 */ 1407 if (error = pn_get(uap->spec, fromspace, &spn)) 1408 return (error); 1409 1410 osname = spn.pn_path; 1411 1412 /* 1413 * Check for mount privilege? 1414 * 1415 * If we don't have privilege then see if 1416 * we have local permission to allow it 1417 */ 1418 error = secpolicy_fs_mount(cr, mvp, vfsp); 1419 if (error) { 1420 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 1421 if (error == 0) { 1422 vattr_t vattr; 1423 1424 /* 1425 * Make sure user is the owner of the mount point 1426 * or has sufficient privileges. 1427 */ 1428 1429 vattr.va_mask = AT_UID; 1430 1431 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1432 goto out; 1433 } 1434 1435 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1436 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1437 error = EPERM; 1438 goto out; 1439 } 1440 1441 secpolicy_fs_mount_clearopts(cr, vfsp); 1442 } else { 1443 goto out; 1444 } 1445 } 1446 1447 /* 1448 * Refuse to mount a filesystem if we are in a local zone and the 1449 * dataset is not visible. 1450 */ 1451 if (!INGLOBALZONE(curproc) && 1452 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1453 error = EPERM; 1454 goto out; 1455 } 1456 1457 /* 1458 * When doing a remount, we simply refresh our temporary properties 1459 * according to those options set in the current VFS options. 1460 */ 1461 if (uap->flags & MS_REMOUNT) { 1462 /* refresh mount options */ 1463 zfs_unregister_callbacks(vfsp->vfs_data); 1464 error = zfs_register_callbacks(vfsp); 1465 goto out; 1466 } 1467 1468 error = zfs_domount(vfsp, osname); 1469 1470 /* 1471 * Add an extra VFS_HOLD on our parent vfs so that it can't 1472 * disappear due to a forced unmount. 1473 */ 1474 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1475 VFS_HOLD(mvp->v_vfsp); 1476 1477 out: 1478 pn_free(&spn); 1479 return (error); 1480 } 1481 1482 static int 1483 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1484 { 1485 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1486 dev32_t d32; 1487 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1488 1489 ZFS_ENTER(zfsvfs); 1490 1491 dmu_objset_space(zfsvfs->z_os, 1492 &refdbytes, &availbytes, &usedobjs, &availobjs); 1493 1494 /* 1495 * The underlying storage pool actually uses multiple block sizes. 1496 * We report the fragsize as the smallest block size we support, 1497 * and we report our blocksize as the filesystem's maximum blocksize. 1498 */ 1499 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1500 statp->f_bsize = zfsvfs->z_max_blksz; 1501 1502 /* 1503 * The following report "total" blocks of various kinds in the 1504 * file system, but reported in terms of f_frsize - the 1505 * "fragment" size. 1506 */ 1507 1508 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1509 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1510 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1511 1512 /* 1513 * statvfs() should really be called statufs(), because it assumes 1514 * static metadata. ZFS doesn't preallocate files, so the best 1515 * we can do is report the max that could possibly fit in f_files, 1516 * and that minus the number actually used in f_ffree. 1517 * For f_ffree, report the smaller of the number of object available 1518 * and the number of blocks (each object will take at least a block). 1519 */ 1520 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1521 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1522 statp->f_files = statp->f_ffree + usedobjs; 1523 1524 (void) cmpldev(&d32, vfsp->vfs_dev); 1525 statp->f_fsid = d32; 1526 1527 /* 1528 * We're a zfs filesystem. 1529 */ 1530 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1531 1532 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1533 1534 statp->f_namemax = ZFS_MAXNAMELEN; 1535 1536 /* 1537 * We have all of 32 characters to stuff a string here. 1538 * Is there anything useful we could/should provide? 1539 */ 1540 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1541 1542 ZFS_EXIT(zfsvfs); 1543 return (0); 1544 } 1545 1546 static int 1547 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1548 { 1549 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1550 znode_t *rootzp; 1551 int error; 1552 1553 ZFS_ENTER(zfsvfs); 1554 1555 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1556 if (error == 0) 1557 *vpp = ZTOV(rootzp); 1558 1559 ZFS_EXIT(zfsvfs); 1560 return (error); 1561 } 1562 1563 /* 1564 * Teardown the zfsvfs::z_os. 1565 * 1566 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1567 * and 'z_teardown_inactive_lock' held. 1568 */ 1569 static int 1570 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1571 { 1572 znode_t *zp; 1573 1574 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1575 1576 if (!unmounting) { 1577 /* 1578 * We purge the parent filesystem's vfsp as the parent 1579 * filesystem and all of its snapshots have their vnode's 1580 * v_vfsp set to the parent's filesystem's vfsp. Note, 1581 * 'z_parent' is self referential for non-snapshots. 1582 */ 1583 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1584 } 1585 1586 /* 1587 * Close the zil. NB: Can't close the zil while zfs_inactive 1588 * threads are blocked as zil_close can call zfs_inactive. 1589 */ 1590 if (zfsvfs->z_log) { 1591 zil_close(zfsvfs->z_log); 1592 zfsvfs->z_log = NULL; 1593 } 1594 1595 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1596 1597 /* 1598 * If we are not unmounting (ie: online recv) and someone already 1599 * unmounted this file system while we were doing the switcheroo, 1600 * or a reopen of z_os failed then just bail out now. 1601 */ 1602 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1603 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1604 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1605 return (EIO); 1606 } 1607 1608 /* 1609 * At this point there are no vops active, and any new vops will 1610 * fail with EIO since we have z_teardown_lock for writer (only 1611 * relavent for forced unmount). 1612 * 1613 * Release all holds on dbufs. 1614 */ 1615 mutex_enter(&zfsvfs->z_znodes_lock); 1616 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1617 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1618 if (zp->z_dbuf) { 1619 ASSERT(ZTOV(zp)->v_count > 0); 1620 zfs_znode_dmu_fini(zp); 1621 } 1622 mutex_exit(&zfsvfs->z_znodes_lock); 1623 1624 /* 1625 * If we are unmounting, set the unmounted flag and let new vops 1626 * unblock. zfs_inactive will have the unmounted behavior, and all 1627 * other vops will fail with EIO. 1628 */ 1629 if (unmounting) { 1630 zfsvfs->z_unmounted = B_TRUE; 1631 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1632 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1633 } 1634 1635 /* 1636 * z_os will be NULL if there was an error in attempting to reopen 1637 * zfsvfs, so just return as the properties had already been 1638 * unregistered and cached data had been evicted before. 1639 */ 1640 if (zfsvfs->z_os == NULL) 1641 return (0); 1642 1643 /* 1644 * Unregister properties. 1645 */ 1646 zfs_unregister_callbacks(zfsvfs); 1647 1648 /* 1649 * Evict cached data 1650 */ 1651 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1652 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1653 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1654 } 1655 1656 return (0); 1657 } 1658 1659 /*ARGSUSED*/ 1660 static int 1661 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1662 { 1663 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1664 objset_t *os; 1665 int ret; 1666 1667 ret = secpolicy_fs_unmount(cr, vfsp); 1668 if (ret) { 1669 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1670 ZFS_DELEG_PERM_MOUNT, cr); 1671 if (ret) 1672 return (ret); 1673 } 1674 1675 /* 1676 * We purge the parent filesystem's vfsp as the parent filesystem 1677 * and all of its snapshots have their vnode's v_vfsp set to the 1678 * parent's filesystem's vfsp. Note, 'z_parent' is self 1679 * referential for non-snapshots. 1680 */ 1681 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1682 1683 /* 1684 * Unmount any snapshots mounted under .zfs before unmounting the 1685 * dataset itself. 1686 */ 1687 if (zfsvfs->z_ctldir != NULL && 1688 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1689 return (ret); 1690 } 1691 1692 if (!(fflag & MS_FORCE)) { 1693 /* 1694 * Check the number of active vnodes in the file system. 1695 * Our count is maintained in the vfs structure, but the 1696 * number is off by 1 to indicate a hold on the vfs 1697 * structure itself. 1698 * 1699 * The '.zfs' directory maintains a reference of its 1700 * own, and any active references underneath are 1701 * reflected in the vnode count. 1702 */ 1703 if (zfsvfs->z_ctldir == NULL) { 1704 if (vfsp->vfs_count > 1) 1705 return (EBUSY); 1706 } else { 1707 if (vfsp->vfs_count > 2 || 1708 zfsvfs->z_ctldir->v_count > 1) 1709 return (EBUSY); 1710 } 1711 } 1712 1713 vfsp->vfs_flag |= VFS_UNMOUNTED; 1714 1715 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1716 os = zfsvfs->z_os; 1717 1718 /* 1719 * z_os will be NULL if there was an error in 1720 * attempting to reopen zfsvfs. 1721 */ 1722 if (os != NULL) { 1723 /* 1724 * Unset the objset user_ptr. 1725 */ 1726 mutex_enter(&os->os_user_ptr_lock); 1727 dmu_objset_set_user(os, NULL); 1728 mutex_exit(&os->os_user_ptr_lock); 1729 1730 /* 1731 * Finally release the objset 1732 */ 1733 dmu_objset_disown(os, zfsvfs); 1734 } 1735 1736 /* 1737 * We can now safely destroy the '.zfs' directory node. 1738 */ 1739 if (zfsvfs->z_ctldir != NULL) 1740 zfsctl_destroy(zfsvfs); 1741 1742 return (0); 1743 } 1744 1745 static int 1746 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1747 { 1748 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1749 znode_t *zp; 1750 uint64_t object = 0; 1751 uint64_t fid_gen = 0; 1752 uint64_t gen_mask; 1753 uint64_t zp_gen; 1754 int i, err; 1755 1756 *vpp = NULL; 1757 1758 ZFS_ENTER(zfsvfs); 1759 1760 if (fidp->fid_len == LONG_FID_LEN) { 1761 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1762 uint64_t objsetid = 0; 1763 uint64_t setgen = 0; 1764 1765 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1766 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1767 1768 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1769 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1770 1771 ZFS_EXIT(zfsvfs); 1772 1773 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1774 if (err) 1775 return (EINVAL); 1776 ZFS_ENTER(zfsvfs); 1777 } 1778 1779 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1780 zfid_short_t *zfid = (zfid_short_t *)fidp; 1781 1782 for (i = 0; i < sizeof (zfid->zf_object); i++) 1783 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1784 1785 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1786 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1787 } else { 1788 ZFS_EXIT(zfsvfs); 1789 return (EINVAL); 1790 } 1791 1792 /* A zero fid_gen means we are in the .zfs control directories */ 1793 if (fid_gen == 0 && 1794 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1795 *vpp = zfsvfs->z_ctldir; 1796 ASSERT(*vpp != NULL); 1797 if (object == ZFSCTL_INO_SNAPDIR) { 1798 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1799 0, NULL, NULL, NULL, NULL, NULL) == 0); 1800 } else { 1801 VN_HOLD(*vpp); 1802 } 1803 ZFS_EXIT(zfsvfs); 1804 return (0); 1805 } 1806 1807 gen_mask = -1ULL >> (64 - 8 * i); 1808 1809 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1810 if (err = zfs_zget(zfsvfs, object, &zp)) { 1811 ZFS_EXIT(zfsvfs); 1812 return (err); 1813 } 1814 zp_gen = zp->z_phys->zp_gen & gen_mask; 1815 if (zp_gen == 0) 1816 zp_gen = 1; 1817 if (zp->z_unlinked || zp_gen != fid_gen) { 1818 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1819 VN_RELE(ZTOV(zp)); 1820 ZFS_EXIT(zfsvfs); 1821 return (EINVAL); 1822 } 1823 1824 *vpp = ZTOV(zp); 1825 ZFS_EXIT(zfsvfs); 1826 return (0); 1827 } 1828 1829 /* 1830 * Block out VOPs and close zfsvfs_t::z_os 1831 * 1832 * Note, if successful, then we return with the 'z_teardown_lock' and 1833 * 'z_teardown_inactive_lock' write held. 1834 */ 1835 int 1836 zfs_suspend_fs(zfsvfs_t *zfsvfs) 1837 { 1838 int error; 1839 1840 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1841 return (error); 1842 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1843 1844 return (0); 1845 } 1846 1847 /* 1848 * Reopen zfsvfs_t::z_os and release VOPs. 1849 */ 1850 int 1851 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 1852 { 1853 int err; 1854 1855 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1856 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1857 1858 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs, 1859 &zfsvfs->z_os); 1860 if (err) { 1861 zfsvfs->z_os = NULL; 1862 } else { 1863 znode_t *zp; 1864 1865 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1866 1867 /* 1868 * Attempt to re-establish all the active znodes with 1869 * their dbufs. If a zfs_rezget() fails, then we'll let 1870 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1871 * when they try to use their znode. 1872 */ 1873 mutex_enter(&zfsvfs->z_znodes_lock); 1874 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1875 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1876 (void) zfs_rezget(zp); 1877 } 1878 mutex_exit(&zfsvfs->z_znodes_lock); 1879 1880 } 1881 1882 /* release the VOPs */ 1883 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1884 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1885 1886 if (err) { 1887 /* 1888 * Since we couldn't reopen zfsvfs::z_os, force 1889 * unmount this file system. 1890 */ 1891 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1892 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1893 } 1894 return (err); 1895 } 1896 1897 static void 1898 zfs_freevfs(vfs_t *vfsp) 1899 { 1900 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1901 1902 /* 1903 * If this is a snapshot, we have an extra VFS_HOLD on our parent 1904 * from zfs_mount(). Release it here. 1905 */ 1906 if (zfsvfs->z_issnap) 1907 VFS_RELE(zfsvfs->z_parent->z_vfs); 1908 1909 zfsvfs_free(zfsvfs); 1910 1911 atomic_add_32(&zfs_active_fs_count, -1); 1912 } 1913 1914 /* 1915 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1916 * so we can't safely do any non-idempotent initialization here. 1917 * Leave that to zfs_init() and zfs_fini(), which are called 1918 * from the module's _init() and _fini() entry points. 1919 */ 1920 /*ARGSUSED*/ 1921 static int 1922 zfs_vfsinit(int fstype, char *name) 1923 { 1924 int error; 1925 1926 zfsfstype = fstype; 1927 1928 /* 1929 * Setup vfsops and vnodeops tables. 1930 */ 1931 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1932 if (error != 0) { 1933 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1934 } 1935 1936 error = zfs_create_op_tables(); 1937 if (error) { 1938 zfs_remove_op_tables(); 1939 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1940 (void) vfs_freevfsops_by_type(zfsfstype); 1941 return (error); 1942 } 1943 1944 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1945 1946 /* 1947 * Unique major number for all zfs mounts. 1948 * If we run out of 32-bit minors, we'll getudev() another major. 1949 */ 1950 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1951 zfs_minor = ZFS_MIN_MINOR; 1952 1953 return (0); 1954 } 1955 1956 void 1957 zfs_init(void) 1958 { 1959 /* 1960 * Initialize .zfs directory structures 1961 */ 1962 zfsctl_init(); 1963 1964 /* 1965 * Initialize znode cache, vnode ops, etc... 1966 */ 1967 zfs_znode_init(); 1968 1969 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 1970 } 1971 1972 void 1973 zfs_fini(void) 1974 { 1975 zfsctl_fini(); 1976 zfs_znode_fini(); 1977 } 1978 1979 int 1980 zfs_busy(void) 1981 { 1982 return (zfs_active_fs_count != 0); 1983 } 1984 1985 int 1986 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 1987 { 1988 int error; 1989 objset_t *os = zfsvfs->z_os; 1990 dmu_tx_t *tx; 1991 1992 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1993 return (EINVAL); 1994 1995 if (newvers < zfsvfs->z_version) 1996 return (EINVAL); 1997 1998 tx = dmu_tx_create(os); 1999 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2000 error = dmu_tx_assign(tx, TXG_WAIT); 2001 if (error) { 2002 dmu_tx_abort(tx); 2003 return (error); 2004 } 2005 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2006 8, 1, &newvers, tx); 2007 2008 if (error) { 2009 dmu_tx_commit(tx); 2010 return (error); 2011 } 2012 2013 spa_history_internal_log(LOG_DS_UPGRADE, 2014 dmu_objset_spa(os), tx, CRED(), 2015 "oldver=%llu newver=%llu dataset = %llu", 2016 zfsvfs->z_version, newvers, dmu_objset_id(os)); 2017 2018 dmu_tx_commit(tx); 2019 2020 zfsvfs->z_version = newvers; 2021 2022 if (zfsvfs->z_version >= ZPL_VERSION_FUID) 2023 zfs_set_fuid_feature(zfsvfs); 2024 2025 return (0); 2026 } 2027 2028 /* 2029 * Read a property stored within the master node. 2030 */ 2031 int 2032 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2033 { 2034 const char *pname; 2035 int error = ENOENT; 2036 2037 /* 2038 * Look up the file system's value for the property. For the 2039 * version property, we look up a slightly different string. 2040 */ 2041 if (prop == ZFS_PROP_VERSION) 2042 pname = ZPL_VERSION_STR; 2043 else 2044 pname = zfs_prop_to_name(prop); 2045 2046 if (os != NULL) 2047 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2048 2049 if (error == ENOENT) { 2050 /* No value set, use the default value */ 2051 switch (prop) { 2052 case ZFS_PROP_VERSION: 2053 *value = ZPL_VERSION; 2054 break; 2055 case ZFS_PROP_NORMALIZE: 2056 case ZFS_PROP_UTF8ONLY: 2057 *value = 0; 2058 break; 2059 case ZFS_PROP_CASE: 2060 *value = ZFS_CASE_SENSITIVE; 2061 break; 2062 default: 2063 return (error); 2064 } 2065 error = 0; 2066 } 2067 return (error); 2068 } 2069 2070 static vfsdef_t vfw = { 2071 VFSDEF_VERSION, 2072 MNTTYPE_ZFS, 2073 zfs_vfsinit, 2074 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2075 VSW_XID, 2076 &zfs_mntopts 2077 }; 2078 2079 struct modlfs zfs_modlfs = { 2080 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2081 }; 2082