xref: /titanic_51/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision 55da60b91d96984f12de050ce428373ea25c7f35)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /* Portions Copyright 2010 Robert Milkowski */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/mntent.h>
37 #include <sys/mount.h>
38 #include <sys/cmn_err.h>
39 #include "fs/fs_subr.h"
40 #include <sys/zfs_znode.h>
41 #include <sys/zfs_dir.h>
42 #include <sys/zil.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/dmu.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dsl_dataset.h>
47 #include <sys/dsl_deleg.h>
48 #include <sys/spa.h>
49 #include <sys/zap.h>
50 #include <sys/sa.h>
51 #include <sys/varargs.h>
52 #include <sys/policy.h>
53 #include <sys/atomic.h>
54 #include <sys/mkdev.h>
55 #include <sys/modctl.h>
56 #include <sys/refstr.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/zfs_ctldir.h>
59 #include <sys/zfs_fuid.h>
60 #include <sys/bootconf.h>
61 #include <sys/sunddi.h>
62 #include <sys/dnlc.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/spa_boot.h>
65 #include <sys/sa.h>
66 #include "zfs_comutil.h"
67 
68 int zfsfstype;
69 vfsops_t *zfs_vfsops = NULL;
70 static major_t zfs_major;
71 static minor_t zfs_minor;
72 static kmutex_t	zfs_dev_mtx;
73 
74 extern int sys_shutdown;
75 
76 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
77 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
78 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
79 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
80 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
81 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
82 static void zfs_freevfs(vfs_t *vfsp);
83 
84 static const fs_operation_def_t zfs_vfsops_template[] = {
85 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
86 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
87 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
88 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
89 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
90 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
91 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
92 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
93 	NULL,			NULL
94 };
95 
96 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
97 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
98 	NULL,			NULL
99 };
100 
101 /*
102  * We need to keep a count of active fs's.
103  * This is necessary to prevent our module
104  * from being unloaded after a umount -f
105  */
106 static uint32_t	zfs_active_fs_count = 0;
107 
108 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
109 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
110 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
111 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
112 
113 /*
114  * MO_DEFAULT is not used since the default value is determined
115  * by the equivalent property.
116  */
117 static mntopt_t mntopts[] = {
118 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
119 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
120 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
121 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
122 };
123 
124 static mntopts_t zfs_mntopts = {
125 	sizeof (mntopts) / sizeof (mntopt_t),
126 	mntopts
127 };
128 
129 /*ARGSUSED*/
130 int
131 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
132 {
133 	/*
134 	 * Data integrity is job one.  We don't want a compromised kernel
135 	 * writing to the storage pool, so we never sync during panic.
136 	 */
137 	if (panicstr)
138 		return (0);
139 
140 	/*
141 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
142 	 * to sync metadata, which they would otherwise cache indefinitely.
143 	 * Semantically, the only requirement is that the sync be initiated.
144 	 * The DMU syncs out txgs frequently, so there's nothing to do.
145 	 */
146 	if (flag & SYNC_ATTR)
147 		return (0);
148 
149 	if (vfsp != NULL) {
150 		/*
151 		 * Sync a specific filesystem.
152 		 */
153 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
154 		dsl_pool_t *dp;
155 
156 		ZFS_ENTER(zfsvfs);
157 		dp = dmu_objset_pool(zfsvfs->z_os);
158 
159 		/*
160 		 * If the system is shutting down, then skip any
161 		 * filesystems which may exist on a suspended pool.
162 		 */
163 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
164 			ZFS_EXIT(zfsvfs);
165 			return (0);
166 		}
167 
168 		if (zfsvfs->z_log != NULL)
169 			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
170 
171 		ZFS_EXIT(zfsvfs);
172 	} else {
173 		/*
174 		 * Sync all ZFS filesystems.  This is what happens when you
175 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
176 		 * request by waiting for all pools to commit all dirty data.
177 		 */
178 		spa_sync_allpools();
179 	}
180 
181 	return (0);
182 }
183 
184 static int
185 zfs_create_unique_device(dev_t *dev)
186 {
187 	major_t new_major;
188 
189 	do {
190 		ASSERT3U(zfs_minor, <=, MAXMIN32);
191 		minor_t start = zfs_minor;
192 		do {
193 			mutex_enter(&zfs_dev_mtx);
194 			if (zfs_minor >= MAXMIN32) {
195 				/*
196 				 * If we're still using the real major
197 				 * keep out of /dev/zfs and /dev/zvol minor
198 				 * number space.  If we're using a getudev()'ed
199 				 * major number, we can use all of its minors.
200 				 */
201 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
202 					zfs_minor = ZFS_MIN_MINOR;
203 				else
204 					zfs_minor = 0;
205 			} else {
206 				zfs_minor++;
207 			}
208 			*dev = makedevice(zfs_major, zfs_minor);
209 			mutex_exit(&zfs_dev_mtx);
210 		} while (vfs_devismounted(*dev) && zfs_minor != start);
211 		if (zfs_minor == start) {
212 			/*
213 			 * We are using all ~262,000 minor numbers for the
214 			 * current major number.  Create a new major number.
215 			 */
216 			if ((new_major = getudev()) == (major_t)-1) {
217 				cmn_err(CE_WARN,
218 				    "zfs_mount: Can't get unique major "
219 				    "device number.");
220 				return (-1);
221 			}
222 			mutex_enter(&zfs_dev_mtx);
223 			zfs_major = new_major;
224 			zfs_minor = 0;
225 
226 			mutex_exit(&zfs_dev_mtx);
227 		} else {
228 			break;
229 		}
230 		/* CONSTANTCONDITION */
231 	} while (1);
232 
233 	return (0);
234 }
235 
236 static void
237 atime_changed_cb(void *arg, uint64_t newval)
238 {
239 	zfsvfs_t *zfsvfs = arg;
240 
241 	if (newval == TRUE) {
242 		zfsvfs->z_atime = TRUE;
243 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
244 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
245 	} else {
246 		zfsvfs->z_atime = FALSE;
247 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
248 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
249 	}
250 }
251 
252 static void
253 xattr_changed_cb(void *arg, uint64_t newval)
254 {
255 	zfsvfs_t *zfsvfs = arg;
256 
257 	if (newval == TRUE) {
258 		/* XXX locking on vfs_flag? */
259 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
260 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
261 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
262 	} else {
263 		/* XXX locking on vfs_flag? */
264 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
265 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
266 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
267 	}
268 }
269 
270 static void
271 blksz_changed_cb(void *arg, uint64_t newval)
272 {
273 	zfsvfs_t *zfsvfs = arg;
274 
275 	if (newval < SPA_MINBLOCKSIZE ||
276 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
277 		newval = SPA_MAXBLOCKSIZE;
278 
279 	zfsvfs->z_max_blksz = newval;
280 	zfsvfs->z_vfs->vfs_bsize = newval;
281 }
282 
283 static void
284 readonly_changed_cb(void *arg, uint64_t newval)
285 {
286 	zfsvfs_t *zfsvfs = arg;
287 
288 	if (newval) {
289 		/* XXX locking on vfs_flag? */
290 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
291 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
292 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
293 	} else {
294 		/* XXX locking on vfs_flag? */
295 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
296 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
297 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
298 	}
299 }
300 
301 static void
302 devices_changed_cb(void *arg, uint64_t newval)
303 {
304 	zfsvfs_t *zfsvfs = arg;
305 
306 	if (newval == FALSE) {
307 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
308 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
309 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
310 	} else {
311 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
312 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
313 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
314 	}
315 }
316 
317 static void
318 setuid_changed_cb(void *arg, uint64_t newval)
319 {
320 	zfsvfs_t *zfsvfs = arg;
321 
322 	if (newval == FALSE) {
323 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
324 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
325 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
326 	} else {
327 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
328 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
329 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
330 	}
331 }
332 
333 static void
334 exec_changed_cb(void *arg, uint64_t newval)
335 {
336 	zfsvfs_t *zfsvfs = arg;
337 
338 	if (newval == FALSE) {
339 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
340 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
341 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
342 	} else {
343 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
344 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
345 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
346 	}
347 }
348 
349 /*
350  * The nbmand mount option can be changed at mount time.
351  * We can't allow it to be toggled on live file systems or incorrect
352  * behavior may be seen from cifs clients
353  *
354  * This property isn't registered via dsl_prop_register(), but this callback
355  * will be called when a file system is first mounted
356  */
357 static void
358 nbmand_changed_cb(void *arg, uint64_t newval)
359 {
360 	zfsvfs_t *zfsvfs = arg;
361 	if (newval == FALSE) {
362 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
363 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
364 	} else {
365 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
366 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
367 	}
368 }
369 
370 static void
371 snapdir_changed_cb(void *arg, uint64_t newval)
372 {
373 	zfsvfs_t *zfsvfs = arg;
374 
375 	zfsvfs->z_show_ctldir = newval;
376 }
377 
378 static void
379 vscan_changed_cb(void *arg, uint64_t newval)
380 {
381 	zfsvfs_t *zfsvfs = arg;
382 
383 	zfsvfs->z_vscan = newval;
384 }
385 
386 static void
387 acl_inherit_changed_cb(void *arg, uint64_t newval)
388 {
389 	zfsvfs_t *zfsvfs = arg;
390 
391 	zfsvfs->z_acl_inherit = newval;
392 }
393 
394 static int
395 zfs_register_callbacks(vfs_t *vfsp)
396 {
397 	struct dsl_dataset *ds = NULL;
398 	objset_t *os = NULL;
399 	zfsvfs_t *zfsvfs = NULL;
400 	uint64_t nbmand;
401 	int readonly, do_readonly = B_FALSE;
402 	int setuid, do_setuid = B_FALSE;
403 	int exec, do_exec = B_FALSE;
404 	int devices, do_devices = B_FALSE;
405 	int xattr, do_xattr = B_FALSE;
406 	int atime, do_atime = B_FALSE;
407 	int error = 0;
408 
409 	ASSERT(vfsp);
410 	zfsvfs = vfsp->vfs_data;
411 	ASSERT(zfsvfs);
412 	os = zfsvfs->z_os;
413 
414 	/*
415 	 * The act of registering our callbacks will destroy any mount
416 	 * options we may have.  In order to enable temporary overrides
417 	 * of mount options, we stash away the current values and
418 	 * restore them after we register the callbacks.
419 	 */
420 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
421 		readonly = B_TRUE;
422 		do_readonly = B_TRUE;
423 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
424 		readonly = B_FALSE;
425 		do_readonly = B_TRUE;
426 	}
427 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
428 		devices = B_FALSE;
429 		setuid = B_FALSE;
430 		do_devices = B_TRUE;
431 		do_setuid = B_TRUE;
432 	} else {
433 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
434 			devices = B_FALSE;
435 			do_devices = B_TRUE;
436 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
437 			devices = B_TRUE;
438 			do_devices = B_TRUE;
439 		}
440 
441 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
442 			setuid = B_FALSE;
443 			do_setuid = B_TRUE;
444 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
445 			setuid = B_TRUE;
446 			do_setuid = B_TRUE;
447 		}
448 	}
449 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
450 		exec = B_FALSE;
451 		do_exec = B_TRUE;
452 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
453 		exec = B_TRUE;
454 		do_exec = B_TRUE;
455 	}
456 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
457 		xattr = B_FALSE;
458 		do_xattr = B_TRUE;
459 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
460 		xattr = B_TRUE;
461 		do_xattr = B_TRUE;
462 	}
463 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
464 		atime = B_FALSE;
465 		do_atime = B_TRUE;
466 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
467 		atime = B_TRUE;
468 		do_atime = B_TRUE;
469 	}
470 
471 	/*
472 	 * nbmand is a special property.  It can only be changed at
473 	 * mount time.
474 	 *
475 	 * This is weird, but it is documented to only be changeable
476 	 * at mount time.
477 	 */
478 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
479 		nbmand = B_FALSE;
480 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
481 		nbmand = B_TRUE;
482 	} else {
483 		char osname[MAXNAMELEN];
484 
485 		dmu_objset_name(os, osname);
486 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
487 		    NULL)) {
488 			return (error);
489 		}
490 	}
491 
492 	/*
493 	 * Register property callbacks.
494 	 *
495 	 * It would probably be fine to just check for i/o error from
496 	 * the first prop_register(), but I guess I like to go
497 	 * overboard...
498 	 */
499 	ds = dmu_objset_ds(os);
500 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
501 	error = error ? error : dsl_prop_register(ds,
502 	    "xattr", xattr_changed_cb, zfsvfs);
503 	error = error ? error : dsl_prop_register(ds,
504 	    "recordsize", blksz_changed_cb, zfsvfs);
505 	error = error ? error : dsl_prop_register(ds,
506 	    "readonly", readonly_changed_cb, zfsvfs);
507 	error = error ? error : dsl_prop_register(ds,
508 	    "devices", devices_changed_cb, zfsvfs);
509 	error = error ? error : dsl_prop_register(ds,
510 	    "setuid", setuid_changed_cb, zfsvfs);
511 	error = error ? error : dsl_prop_register(ds,
512 	    "exec", exec_changed_cb, zfsvfs);
513 	error = error ? error : dsl_prop_register(ds,
514 	    "snapdir", snapdir_changed_cb, zfsvfs);
515 	error = error ? error : dsl_prop_register(ds,
516 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
517 	error = error ? error : dsl_prop_register(ds,
518 	    "vscan", vscan_changed_cb, zfsvfs);
519 	if (error)
520 		goto unregister;
521 
522 	/*
523 	 * Invoke our callbacks to restore temporary mount options.
524 	 */
525 	if (do_readonly)
526 		readonly_changed_cb(zfsvfs, readonly);
527 	if (do_setuid)
528 		setuid_changed_cb(zfsvfs, setuid);
529 	if (do_exec)
530 		exec_changed_cb(zfsvfs, exec);
531 	if (do_devices)
532 		devices_changed_cb(zfsvfs, devices);
533 	if (do_xattr)
534 		xattr_changed_cb(zfsvfs, xattr);
535 	if (do_atime)
536 		atime_changed_cb(zfsvfs, atime);
537 
538 	nbmand_changed_cb(zfsvfs, nbmand);
539 
540 	return (0);
541 
542 unregister:
543 	/*
544 	 * We may attempt to unregister some callbacks that are not
545 	 * registered, but this is OK; it will simply return ENOMSG,
546 	 * which we will ignore.
547 	 */
548 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
549 	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
550 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
551 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
552 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
553 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
554 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
555 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
556 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
557 	    zfsvfs);
558 	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
559 	return (error);
560 
561 }
562 
563 static void
564 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid,
565     int64_t delta, dmu_tx_t *tx)
566 {
567 	uint64_t used = 0;
568 	char buf[32];
569 	int err;
570 	uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
571 
572 	if (delta == 0)
573 		return;
574 
575 	(void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid);
576 	err = zap_lookup(os, obj, buf, 8, 1, &used);
577 
578 	ASSERT(err == 0 || err == ENOENT);
579 	/* no underflow/overflow */
580 	ASSERT(delta > 0 || used >= -delta);
581 	ASSERT(delta < 0 || used + delta > used);
582 	used += delta;
583 	if (used == 0)
584 		err = zap_remove(os, obj, buf, tx);
585 	else
586 		err = zap_update(os, obj, buf, 8, 1, &used, tx);
587 	ASSERT(err == 0);
588 
589 }
590 
591 static int
592 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
593     uint64_t *userp, uint64_t *groupp)
594 {
595 	znode_phys_t *znp = data;
596 	int error = 0;
597 
598 	/*
599 	 * Is it a valid type of object to track?
600 	 */
601 	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
602 		return (ENOENT);
603 
604 	/*
605 	 * If we have a NULL data pointer
606 	 * then assume the id's aren't changing and
607 	 * return EEXIST to the dmu to let it know to
608 	 * use the same ids
609 	 */
610 	if (data == NULL)
611 		return (EEXIST);
612 
613 	if (bonustype == DMU_OT_ZNODE) {
614 		*userp = znp->zp_uid;
615 		*groupp = znp->zp_gid;
616 	} else {
617 		int hdrsize;
618 
619 		ASSERT(bonustype == DMU_OT_SA);
620 		hdrsize = sa_hdrsize(data);
621 
622 		if (hdrsize != 0) {
623 			*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
624 			    SA_UID_OFFSET));
625 			*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
626 			    SA_GID_OFFSET));
627 		} else {
628 			/*
629 			 * This should only happen for newly created
630 			 * files that haven't had the znode data filled
631 			 * in yet.
632 			 */
633 			*userp = 0;
634 			*groupp = 0;
635 		}
636 	}
637 	return (error);
638 }
639 
640 static void
641 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
642     char *domainbuf, int buflen, uid_t *ridp)
643 {
644 	uint64_t fuid;
645 	const char *domain;
646 
647 	fuid = strtonum(fuidstr, NULL);
648 
649 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
650 	if (domain)
651 		(void) strlcpy(domainbuf, domain, buflen);
652 	else
653 		domainbuf[0] = '\0';
654 	*ridp = FUID_RID(fuid);
655 }
656 
657 static uint64_t
658 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
659 {
660 	switch (type) {
661 	case ZFS_PROP_USERUSED:
662 		return (DMU_USERUSED_OBJECT);
663 	case ZFS_PROP_GROUPUSED:
664 		return (DMU_GROUPUSED_OBJECT);
665 	case ZFS_PROP_USERQUOTA:
666 		return (zfsvfs->z_userquota_obj);
667 	case ZFS_PROP_GROUPQUOTA:
668 		return (zfsvfs->z_groupquota_obj);
669 	}
670 	return (0);
671 }
672 
673 int
674 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
675     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
676 {
677 	int error;
678 	zap_cursor_t zc;
679 	zap_attribute_t za;
680 	zfs_useracct_t *buf = vbuf;
681 	uint64_t obj;
682 
683 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
684 		return (ENOTSUP);
685 
686 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
687 	if (obj == 0) {
688 		*bufsizep = 0;
689 		return (0);
690 	}
691 
692 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
693 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
694 	    zap_cursor_advance(&zc)) {
695 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
696 		    *bufsizep)
697 			break;
698 
699 		fuidstr_to_sid(zfsvfs, za.za_name,
700 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
701 
702 		buf->zu_space = za.za_first_integer;
703 		buf++;
704 	}
705 	if (error == ENOENT)
706 		error = 0;
707 
708 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
709 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
710 	*cookiep = zap_cursor_serialize(&zc);
711 	zap_cursor_fini(&zc);
712 	return (error);
713 }
714 
715 /*
716  * buf must be big enough (eg, 32 bytes)
717  */
718 static int
719 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
720     char *buf, boolean_t addok)
721 {
722 	uint64_t fuid;
723 	int domainid = 0;
724 
725 	if (domain && domain[0]) {
726 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
727 		if (domainid == -1)
728 			return (ENOENT);
729 	}
730 	fuid = FUID_ENCODE(domainid, rid);
731 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
732 	return (0);
733 }
734 
735 int
736 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
737     const char *domain, uint64_t rid, uint64_t *valp)
738 {
739 	char buf[32];
740 	int err;
741 	uint64_t obj;
742 
743 	*valp = 0;
744 
745 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
746 		return (ENOTSUP);
747 
748 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
749 	if (obj == 0)
750 		return (0);
751 
752 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
753 	if (err)
754 		return (err);
755 
756 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
757 	if (err == ENOENT)
758 		err = 0;
759 	return (err);
760 }
761 
762 int
763 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
764     const char *domain, uint64_t rid, uint64_t quota)
765 {
766 	char buf[32];
767 	int err;
768 	dmu_tx_t *tx;
769 	uint64_t *objp;
770 	boolean_t fuid_dirtied;
771 
772 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
773 		return (EINVAL);
774 
775 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
776 		return (ENOTSUP);
777 
778 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
779 	    &zfsvfs->z_groupquota_obj;
780 
781 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
782 	if (err)
783 		return (err);
784 	fuid_dirtied = zfsvfs->z_fuid_dirty;
785 
786 	tx = dmu_tx_create(zfsvfs->z_os);
787 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
788 	if (*objp == 0) {
789 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
790 		    zfs_userquota_prop_prefixes[type]);
791 	}
792 	if (fuid_dirtied)
793 		zfs_fuid_txhold(zfsvfs, tx);
794 	err = dmu_tx_assign(tx, TXG_WAIT);
795 	if (err) {
796 		dmu_tx_abort(tx);
797 		return (err);
798 	}
799 
800 	mutex_enter(&zfsvfs->z_lock);
801 	if (*objp == 0) {
802 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
803 		    DMU_OT_NONE, 0, tx);
804 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
805 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
806 	}
807 	mutex_exit(&zfsvfs->z_lock);
808 
809 	if (quota == 0) {
810 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
811 		if (err == ENOENT)
812 			err = 0;
813 	} else {
814 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
815 	}
816 	ASSERT(err == 0);
817 	if (fuid_dirtied)
818 		zfs_fuid_sync(zfsvfs, tx);
819 	dmu_tx_commit(tx);
820 	return (err);
821 }
822 
823 boolean_t
824 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
825 {
826 	char buf[32];
827 	uint64_t used, quota, usedobj, quotaobj;
828 	int err;
829 
830 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
831 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
832 
833 	if (quotaobj == 0 || zfsvfs->z_replay)
834 		return (B_FALSE);
835 
836 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
837 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
838 	if (err != 0)
839 		return (B_FALSE);
840 
841 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
842 	if (err != 0)
843 		return (B_FALSE);
844 	return (used >= quota);
845 }
846 
847 boolean_t
848 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
849 {
850 	uint64_t fuid;
851 	uint64_t quotaobj;
852 	uid_t id;
853 
854 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
855 
856 	id = isgroup ? zp->z_gid : zp->z_uid;
857 
858 	if (quotaobj == 0 || zfsvfs->z_replay)
859 		return (B_FALSE);
860 
861 	if (IS_EPHEMERAL(id)) {
862 		VERIFY(0 == sa_lookup(zp->z_sa_hdl,
863 		    isgroup ? SA_ZPL_GID(zfsvfs) : SA_ZPL_UID(zfsvfs),
864 		    &fuid, sizeof (fuid)));
865 	} else {
866 		fuid = (uint64_t)id;
867 	}
868 
869 	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
870 }
871 
872 int
873 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
874 {
875 	objset_t *os;
876 	zfsvfs_t *zfsvfs;
877 	uint64_t zval;
878 	int i, error;
879 	uint64_t sa_obj;
880 
881 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
882 
883 	/*
884 	 * We claim to always be readonly so we can open snapshots;
885 	 * other ZPL code will prevent us from writing to snapshots.
886 	 */
887 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
888 	if (error) {
889 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
890 		return (error);
891 	}
892 
893 	/*
894 	 * Initialize the zfs-specific filesystem structure.
895 	 * Should probably make this a kmem cache, shuffle fields,
896 	 * and just bzero up to z_hold_mtx[].
897 	 */
898 	zfsvfs->z_vfs = NULL;
899 	zfsvfs->z_parent = zfsvfs;
900 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
901 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
902 	zfsvfs->z_os = os;
903 
904 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
905 	if (error) {
906 		goto out;
907 	} else if (zfsvfs->z_version >
908 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
909 		(void) printf("Can't mount a version %lld file system "
910 		    "on a version %lld pool\n. Pool must be upgraded to mount "
911 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
912 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
913 		error = ENOTSUP;
914 		goto out;
915 	}
916 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
917 		goto out;
918 	zfsvfs->z_norm = (int)zval;
919 
920 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
921 		goto out;
922 	zfsvfs->z_utf8 = (zval != 0);
923 
924 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
925 		goto out;
926 	zfsvfs->z_case = (uint_t)zval;
927 
928 	/*
929 	 * Fold case on file systems that are always or sometimes case
930 	 * insensitive.
931 	 */
932 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
933 	    zfsvfs->z_case == ZFS_CASE_MIXED)
934 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
935 
936 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
937 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
938 
939 	if (zfsvfs->z_use_sa) {
940 		/* should either have both of these objects or none */
941 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
942 		    &sa_obj);
943 		if (error)
944 			return (error);
945 	} else {
946 		/*
947 		 * Pre SA versions file systems should never touch
948 		 * either the attribute registration or layout objects.
949 		 */
950 		sa_obj = 0;
951 	}
952 
953 	zfsvfs->z_attr_table = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END);
954 
955 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
956 		sa_register_update_callback(os, zfs_sa_upgrade);
957 
958 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
959 	    &zfsvfs->z_root);
960 	if (error)
961 		goto out;
962 	ASSERT(zfsvfs->z_root != 0);
963 
964 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
965 	    &zfsvfs->z_unlinkedobj);
966 	if (error)
967 		goto out;
968 
969 	error = zap_lookup(os, MASTER_NODE_OBJ,
970 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
971 	    8, 1, &zfsvfs->z_userquota_obj);
972 	if (error && error != ENOENT)
973 		goto out;
974 
975 	error = zap_lookup(os, MASTER_NODE_OBJ,
976 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
977 	    8, 1, &zfsvfs->z_groupquota_obj);
978 	if (error && error != ENOENT)
979 		goto out;
980 
981 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
982 	    &zfsvfs->z_fuid_obj);
983 	if (error && error != ENOENT)
984 		goto out;
985 
986 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
987 	    &zfsvfs->z_shares_dir);
988 	if (error && error != ENOENT)
989 		goto out;
990 
991 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
992 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
993 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
994 	    offsetof(znode_t, z_link_node));
995 	rrw_init(&zfsvfs->z_teardown_lock);
996 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
997 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
998 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
999 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1000 
1001 	*zfvp = zfsvfs;
1002 	return (0);
1003 
1004 out:
1005 	dmu_objset_disown(os, zfsvfs);
1006 	*zfvp = NULL;
1007 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1008 	return (error);
1009 }
1010 
1011 static int
1012 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1013 {
1014 	int error;
1015 
1016 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1017 	if (error)
1018 		return (error);
1019 
1020 	/*
1021 	 * Set the objset user_ptr to track its zfsvfs.
1022 	 */
1023 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1024 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1025 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1026 
1027 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1028 
1029 	/*
1030 	 * If we are not mounting (ie: online recv), then we don't
1031 	 * have to worry about replaying the log as we blocked all
1032 	 * operations out since we closed the ZIL.
1033 	 */
1034 	if (mounting) {
1035 		boolean_t readonly;
1036 
1037 		/*
1038 		 * During replay we remove the read only flag to
1039 		 * allow replays to succeed.
1040 		 */
1041 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1042 		if (readonly != 0)
1043 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1044 		else
1045 			zfs_unlinked_drain(zfsvfs);
1046 
1047 		/*
1048 		 * Parse and replay the intent log.
1049 		 *
1050 		 * Because of ziltest, this must be done after
1051 		 * zfs_unlinked_drain().  (Further note: ziltest
1052 		 * doesn't use readonly mounts, where
1053 		 * zfs_unlinked_drain() isn't called.)  This is because
1054 		 * ziltest causes spa_sync() to think it's committed,
1055 		 * but actually it is not, so the intent log contains
1056 		 * many txg's worth of changes.
1057 		 *
1058 		 * In particular, if object N is in the unlinked set in
1059 		 * the last txg to actually sync, then it could be
1060 		 * actually freed in a later txg and then reallocated
1061 		 * in a yet later txg.  This would write a "create
1062 		 * object N" record to the intent log.  Normally, this
1063 		 * would be fine because the spa_sync() would have
1064 		 * written out the fact that object N is free, before
1065 		 * we could write the "create object N" intent log
1066 		 * record.
1067 		 *
1068 		 * But when we are in ziltest mode, we advance the "open
1069 		 * txg" without actually spa_sync()-ing the changes to
1070 		 * disk.  So we would see that object N is still
1071 		 * allocated and in the unlinked set, and there is an
1072 		 * intent log record saying to allocate it.
1073 		 */
1074 		if (zil_replay_disable) {
1075 			zil_destroy(zfsvfs->z_log, B_FALSE);
1076 		} else {
1077 			zfsvfs->z_replay = B_TRUE;
1078 			zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector);
1079 			zfsvfs->z_replay = B_FALSE;
1080 		}
1081 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1082 	}
1083 
1084 	return (0);
1085 }
1086 
1087 void
1088 zfsvfs_free(zfsvfs_t *zfsvfs)
1089 {
1090 	int i;
1091 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1092 
1093 	/*
1094 	 * This is a barrier to prevent the filesystem from going away in
1095 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1096 	 * not unmounted. We consider the filesystem valid before the barrier
1097 	 * and invalid after the barrier.
1098 	 */
1099 	rw_enter(&zfsvfs_lock, RW_READER);
1100 	rw_exit(&zfsvfs_lock);
1101 
1102 	zfs_fuid_destroy(zfsvfs);
1103 
1104 	mutex_destroy(&zfsvfs->z_znodes_lock);
1105 	mutex_destroy(&zfsvfs->z_lock);
1106 	list_destroy(&zfsvfs->z_all_znodes);
1107 	rrw_destroy(&zfsvfs->z_teardown_lock);
1108 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1109 	rw_destroy(&zfsvfs->z_fuid_lock);
1110 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1111 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1112 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1113 }
1114 
1115 static void
1116 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1117 {
1118 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1119 	if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
1120 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1121 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1122 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1123 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1124 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1125 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1126 	}
1127 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1128 }
1129 
1130 static int
1131 zfs_domount(vfs_t *vfsp, char *osname)
1132 {
1133 	dev_t mount_dev;
1134 	uint64_t recordsize, fsid_guid;
1135 	int error = 0;
1136 	zfsvfs_t *zfsvfs;
1137 
1138 	ASSERT(vfsp);
1139 	ASSERT(osname);
1140 
1141 	error = zfsvfs_create(osname, &zfsvfs);
1142 	if (error)
1143 		return (error);
1144 	zfsvfs->z_vfs = vfsp;
1145 
1146 	/* Initialize the generic filesystem structure. */
1147 	vfsp->vfs_bcount = 0;
1148 	vfsp->vfs_data = NULL;
1149 
1150 	if (zfs_create_unique_device(&mount_dev) == -1) {
1151 		error = ENODEV;
1152 		goto out;
1153 	}
1154 	ASSERT(vfs_devismounted(mount_dev) == 0);
1155 
1156 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1157 	    NULL))
1158 		goto out;
1159 
1160 	vfsp->vfs_dev = mount_dev;
1161 	vfsp->vfs_fstype = zfsfstype;
1162 	vfsp->vfs_bsize = recordsize;
1163 	vfsp->vfs_flag |= VFS_NOTRUNC;
1164 	vfsp->vfs_data = zfsvfs;
1165 
1166 	/*
1167 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1168 	 * separates our fsid from any other filesystem types, and a
1169 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1170 	 * all objsets open on this system, provided by unique_create().
1171 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1172 	 * because that's where other Solaris filesystems put it.
1173 	 */
1174 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1175 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1176 	vfsp->vfs_fsid.val[0] = fsid_guid;
1177 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1178 	    zfsfstype & 0xFF;
1179 
1180 	/*
1181 	 * Set features for file system.
1182 	 */
1183 	zfs_set_fuid_feature(zfsvfs);
1184 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1185 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1186 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1187 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1188 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1189 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1190 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1191 	}
1192 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1193 
1194 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1195 		uint64_t pval;
1196 
1197 		atime_changed_cb(zfsvfs, B_FALSE);
1198 		readonly_changed_cb(zfsvfs, B_TRUE);
1199 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1200 			goto out;
1201 		xattr_changed_cb(zfsvfs, pval);
1202 		zfsvfs->z_issnap = B_TRUE;
1203 
1204 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1205 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1206 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1207 	} else {
1208 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1209 	}
1210 
1211 	if (!zfsvfs->z_issnap)
1212 		zfsctl_create(zfsvfs);
1213 out:
1214 	if (error) {
1215 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1216 		zfsvfs_free(zfsvfs);
1217 	} else {
1218 		atomic_add_32(&zfs_active_fs_count, 1);
1219 	}
1220 
1221 	return (error);
1222 }
1223 
1224 void
1225 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1226 {
1227 	objset_t *os = zfsvfs->z_os;
1228 	struct dsl_dataset *ds;
1229 
1230 	/*
1231 	 * Unregister properties.
1232 	 */
1233 	if (!dmu_objset_is_snapshot(os)) {
1234 		ds = dmu_objset_ds(os);
1235 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1236 		    zfsvfs) == 0);
1237 
1238 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1239 		    zfsvfs) == 0);
1240 
1241 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1242 		    zfsvfs) == 0);
1243 
1244 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1245 		    zfsvfs) == 0);
1246 
1247 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1248 		    zfsvfs) == 0);
1249 
1250 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1251 		    zfsvfs) == 0);
1252 
1253 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1254 		    zfsvfs) == 0);
1255 
1256 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1257 		    zfsvfs) == 0);
1258 
1259 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1260 		    acl_inherit_changed_cb, zfsvfs) == 0);
1261 
1262 		VERIFY(dsl_prop_unregister(ds, "vscan",
1263 		    vscan_changed_cb, zfsvfs) == 0);
1264 	}
1265 }
1266 
1267 /*
1268  * Convert a decimal digit string to a uint64_t integer.
1269  */
1270 static int
1271 str_to_uint64(char *str, uint64_t *objnum)
1272 {
1273 	uint64_t num = 0;
1274 
1275 	while (*str) {
1276 		if (*str < '0' || *str > '9')
1277 			return (EINVAL);
1278 
1279 		num = num*10 + *str++ - '0';
1280 	}
1281 
1282 	*objnum = num;
1283 	return (0);
1284 }
1285 
1286 /*
1287  * The boot path passed from the boot loader is in the form of
1288  * "rootpool-name/root-filesystem-object-number'. Convert this
1289  * string to a dataset name: "rootpool-name/root-filesystem-name".
1290  */
1291 static int
1292 zfs_parse_bootfs(char *bpath, char *outpath)
1293 {
1294 	char *slashp;
1295 	uint64_t objnum;
1296 	int error;
1297 
1298 	if (*bpath == 0 || *bpath == '/')
1299 		return (EINVAL);
1300 
1301 	(void) strcpy(outpath, bpath);
1302 
1303 	slashp = strchr(bpath, '/');
1304 
1305 	/* if no '/', just return the pool name */
1306 	if (slashp == NULL) {
1307 		return (0);
1308 	}
1309 
1310 	/* if not a number, just return the root dataset name */
1311 	if (str_to_uint64(slashp+1, &objnum)) {
1312 		return (0);
1313 	}
1314 
1315 	*slashp = '\0';
1316 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1317 	*slashp = '/';
1318 
1319 	return (error);
1320 }
1321 
1322 /*
1323  * zfs_check_global_label:
1324  *	Check that the hex label string is appropriate for the dataset
1325  *	being mounted into the global_zone proper.
1326  *
1327  *	Return an error if the hex label string is not default or
1328  *	admin_low/admin_high.  For admin_low labels, the corresponding
1329  *	dataset must be readonly.
1330  */
1331 int
1332 zfs_check_global_label(const char *dsname, const char *hexsl)
1333 {
1334 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1335 		return (0);
1336 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1337 		return (0);
1338 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1339 		/* must be readonly */
1340 		uint64_t rdonly;
1341 
1342 		if (dsl_prop_get_integer(dsname,
1343 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1344 			return (EACCES);
1345 		return (rdonly ? 0 : EACCES);
1346 	}
1347 	return (EACCES);
1348 }
1349 
1350 /*
1351  * zfs_mount_label_policy:
1352  *	Determine whether the mount is allowed according to MAC check.
1353  *	by comparing (where appropriate) label of the dataset against
1354  *	the label of the zone being mounted into.  If the dataset has
1355  *	no label, create one.
1356  *
1357  *	Returns:
1358  *		 0 :	access allowed
1359  *		>0 :	error code, such as EACCES
1360  */
1361 static int
1362 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1363 {
1364 	int		error, retv;
1365 	zone_t		*mntzone = NULL;
1366 	ts_label_t	*mnt_tsl;
1367 	bslabel_t	*mnt_sl;
1368 	bslabel_t	ds_sl;
1369 	char		ds_hexsl[MAXNAMELEN];
1370 
1371 	retv = EACCES;				/* assume the worst */
1372 
1373 	/*
1374 	 * Start by getting the dataset label if it exists.
1375 	 */
1376 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1377 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1378 	if (error)
1379 		return (EACCES);
1380 
1381 	/*
1382 	 * If labeling is NOT enabled, then disallow the mount of datasets
1383 	 * which have a non-default label already.  No other label checks
1384 	 * are needed.
1385 	 */
1386 	if (!is_system_labeled()) {
1387 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1388 			return (0);
1389 		return (EACCES);
1390 	}
1391 
1392 	/*
1393 	 * Get the label of the mountpoint.  If mounting into the global
1394 	 * zone (i.e. mountpoint is not within an active zone and the
1395 	 * zoned property is off), the label must be default or
1396 	 * admin_low/admin_high only; no other checks are needed.
1397 	 */
1398 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1399 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1400 		uint64_t zoned;
1401 
1402 		zone_rele(mntzone);
1403 
1404 		if (dsl_prop_get_integer(osname,
1405 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1406 			return (EACCES);
1407 		if (!zoned)
1408 			return (zfs_check_global_label(osname, ds_hexsl));
1409 		else
1410 			/*
1411 			 * This is the case of a zone dataset being mounted
1412 			 * initially, before the zone has been fully created;
1413 			 * allow this mount into global zone.
1414 			 */
1415 			return (0);
1416 	}
1417 
1418 	mnt_tsl = mntzone->zone_slabel;
1419 	ASSERT(mnt_tsl != NULL);
1420 	label_hold(mnt_tsl);
1421 	mnt_sl = label2bslabel(mnt_tsl);
1422 
1423 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1424 		/*
1425 		 * The dataset doesn't have a real label, so fabricate one.
1426 		 */
1427 		char *str = NULL;
1428 
1429 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1430 		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1431 		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1432 			retv = 0;
1433 		if (str != NULL)
1434 			kmem_free(str, strlen(str) + 1);
1435 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1436 		/*
1437 		 * Now compare labels to complete the MAC check.  If the
1438 		 * labels are equal then allow access.  If the mountpoint
1439 		 * label dominates the dataset label, allow readonly access.
1440 		 * Otherwise, access is denied.
1441 		 */
1442 		if (blequal(mnt_sl, &ds_sl))
1443 			retv = 0;
1444 		else if (bldominates(mnt_sl, &ds_sl)) {
1445 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1446 			retv = 0;
1447 		}
1448 	}
1449 
1450 	label_rele(mnt_tsl);
1451 	zone_rele(mntzone);
1452 	return (retv);
1453 }
1454 
1455 static int
1456 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1457 {
1458 	int error = 0;
1459 	static int zfsrootdone = 0;
1460 	zfsvfs_t *zfsvfs = NULL;
1461 	znode_t *zp = NULL;
1462 	vnode_t *vp = NULL;
1463 	char *zfs_bootfs;
1464 	char *zfs_devid;
1465 
1466 	ASSERT(vfsp);
1467 
1468 	/*
1469 	 * The filesystem that we mount as root is defined in the
1470 	 * boot property "zfs-bootfs" with a format of
1471 	 * "poolname/root-dataset-objnum".
1472 	 */
1473 	if (why == ROOT_INIT) {
1474 		if (zfsrootdone++)
1475 			return (EBUSY);
1476 		/*
1477 		 * the process of doing a spa_load will require the
1478 		 * clock to be set before we could (for example) do
1479 		 * something better by looking at the timestamp on
1480 		 * an uberblock, so just set it to -1.
1481 		 */
1482 		clkset(-1);
1483 
1484 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1485 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1486 			    "bootfs name");
1487 			return (EINVAL);
1488 		}
1489 		zfs_devid = spa_get_bootprop("diskdevid");
1490 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1491 		if (zfs_devid)
1492 			spa_free_bootprop(zfs_devid);
1493 		if (error) {
1494 			spa_free_bootprop(zfs_bootfs);
1495 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1496 			    error);
1497 			return (error);
1498 		}
1499 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1500 			spa_free_bootprop(zfs_bootfs);
1501 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1502 			    error);
1503 			return (error);
1504 		}
1505 
1506 		spa_free_bootprop(zfs_bootfs);
1507 
1508 		if (error = vfs_lock(vfsp))
1509 			return (error);
1510 
1511 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1512 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1513 			goto out;
1514 		}
1515 
1516 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1517 		ASSERT(zfsvfs);
1518 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1519 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1520 			goto out;
1521 		}
1522 
1523 		vp = ZTOV(zp);
1524 		mutex_enter(&vp->v_lock);
1525 		vp->v_flag |= VROOT;
1526 		mutex_exit(&vp->v_lock);
1527 		rootvp = vp;
1528 
1529 		/*
1530 		 * Leave rootvp held.  The root file system is never unmounted.
1531 		 */
1532 
1533 		vfs_add((struct vnode *)0, vfsp,
1534 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1535 out:
1536 		vfs_unlock(vfsp);
1537 		return (error);
1538 	} else if (why == ROOT_REMOUNT) {
1539 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1540 		vfsp->vfs_flag |= VFS_REMOUNT;
1541 
1542 		/* refresh mount options */
1543 		zfs_unregister_callbacks(vfsp->vfs_data);
1544 		return (zfs_register_callbacks(vfsp));
1545 
1546 	} else if (why == ROOT_UNMOUNT) {
1547 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1548 		(void) zfs_sync(vfsp, 0, 0);
1549 		return (0);
1550 	}
1551 
1552 	/*
1553 	 * if "why" is equal to anything else other than ROOT_INIT,
1554 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1555 	 */
1556 	return (ENOTSUP);
1557 }
1558 
1559 /*ARGSUSED*/
1560 static int
1561 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1562 {
1563 	char		*osname;
1564 	pathname_t	spn;
1565 	int		error = 0;
1566 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1567 	    UIO_SYSSPACE : UIO_USERSPACE;
1568 	int		canwrite;
1569 
1570 	if (mvp->v_type != VDIR)
1571 		return (ENOTDIR);
1572 
1573 	mutex_enter(&mvp->v_lock);
1574 	if ((uap->flags & MS_REMOUNT) == 0 &&
1575 	    (uap->flags & MS_OVERLAY) == 0 &&
1576 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1577 		mutex_exit(&mvp->v_lock);
1578 		return (EBUSY);
1579 	}
1580 	mutex_exit(&mvp->v_lock);
1581 
1582 	/*
1583 	 * ZFS does not support passing unparsed data in via MS_DATA.
1584 	 * Users should use the MS_OPTIONSTR interface; this means
1585 	 * that all option parsing is already done and the options struct
1586 	 * can be interrogated.
1587 	 */
1588 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1589 		return (EINVAL);
1590 
1591 	/*
1592 	 * Get the objset name (the "special" mount argument).
1593 	 */
1594 	if (error = pn_get(uap->spec, fromspace, &spn))
1595 		return (error);
1596 
1597 	osname = spn.pn_path;
1598 
1599 	/*
1600 	 * Check for mount privilege?
1601 	 *
1602 	 * If we don't have privilege then see if
1603 	 * we have local permission to allow it
1604 	 */
1605 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1606 	if (error) {
1607 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1608 			vattr_t		vattr;
1609 
1610 			/*
1611 			 * Make sure user is the owner of the mount point
1612 			 * or has sufficient privileges.
1613 			 */
1614 
1615 			vattr.va_mask = AT_UID;
1616 
1617 			if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1618 				goto out;
1619 			}
1620 
1621 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1622 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1623 				goto out;
1624 			}
1625 			secpolicy_fs_mount_clearopts(cr, vfsp);
1626 		} else {
1627 			goto out;
1628 		}
1629 	}
1630 
1631 	/*
1632 	 * Refuse to mount a filesystem if we are in a local zone and the
1633 	 * dataset is not visible.
1634 	 */
1635 	if (!INGLOBALZONE(curproc) &&
1636 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1637 		error = EPERM;
1638 		goto out;
1639 	}
1640 
1641 	error = zfs_mount_label_policy(vfsp, osname);
1642 	if (error)
1643 		goto out;
1644 
1645 	/*
1646 	 * When doing a remount, we simply refresh our temporary properties
1647 	 * according to those options set in the current VFS options.
1648 	 */
1649 	if (uap->flags & MS_REMOUNT) {
1650 		/* refresh mount options */
1651 		zfs_unregister_callbacks(vfsp->vfs_data);
1652 		error = zfs_register_callbacks(vfsp);
1653 		goto out;
1654 	}
1655 
1656 	error = zfs_domount(vfsp, osname);
1657 
1658 	/*
1659 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1660 	 * disappear due to a forced unmount.
1661 	 */
1662 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1663 		VFS_HOLD(mvp->v_vfsp);
1664 
1665 out:
1666 	pn_free(&spn);
1667 	return (error);
1668 }
1669 
1670 static int
1671 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1672 {
1673 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1674 	dev32_t d32;
1675 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1676 
1677 	ZFS_ENTER(zfsvfs);
1678 
1679 	dmu_objset_space(zfsvfs->z_os,
1680 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1681 
1682 	/*
1683 	 * The underlying storage pool actually uses multiple block sizes.
1684 	 * We report the fragsize as the smallest block size we support,
1685 	 * and we report our blocksize as the filesystem's maximum blocksize.
1686 	 */
1687 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1688 	statp->f_bsize = zfsvfs->z_max_blksz;
1689 
1690 	/*
1691 	 * The following report "total" blocks of various kinds in the
1692 	 * file system, but reported in terms of f_frsize - the
1693 	 * "fragment" size.
1694 	 */
1695 
1696 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1697 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1698 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1699 
1700 	/*
1701 	 * statvfs() should really be called statufs(), because it assumes
1702 	 * static metadata.  ZFS doesn't preallocate files, so the best
1703 	 * we can do is report the max that could possibly fit in f_files,
1704 	 * and that minus the number actually used in f_ffree.
1705 	 * For f_ffree, report the smaller of the number of object available
1706 	 * and the number of blocks (each object will take at least a block).
1707 	 */
1708 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1709 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1710 	statp->f_files = statp->f_ffree + usedobjs;
1711 
1712 	(void) cmpldev(&d32, vfsp->vfs_dev);
1713 	statp->f_fsid = d32;
1714 
1715 	/*
1716 	 * We're a zfs filesystem.
1717 	 */
1718 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1719 
1720 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1721 
1722 	statp->f_namemax = ZFS_MAXNAMELEN;
1723 
1724 	/*
1725 	 * We have all of 32 characters to stuff a string here.
1726 	 * Is there anything useful we could/should provide?
1727 	 */
1728 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1729 
1730 	ZFS_EXIT(zfsvfs);
1731 	return (0);
1732 }
1733 
1734 static int
1735 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1736 {
1737 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1738 	znode_t *rootzp;
1739 	int error;
1740 
1741 	ZFS_ENTER(zfsvfs);
1742 
1743 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1744 	if (error == 0)
1745 		*vpp = ZTOV(rootzp);
1746 
1747 	ZFS_EXIT(zfsvfs);
1748 	return (error);
1749 }
1750 
1751 /*
1752  * Teardown the zfsvfs::z_os.
1753  *
1754  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1755  * and 'z_teardown_inactive_lock' held.
1756  */
1757 static int
1758 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1759 {
1760 	znode_t	*zp;
1761 
1762 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1763 
1764 	if (!unmounting) {
1765 		/*
1766 		 * We purge the parent filesystem's vfsp as the parent
1767 		 * filesystem and all of its snapshots have their vnode's
1768 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1769 		 * 'z_parent' is self referential for non-snapshots.
1770 		 */
1771 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1772 	}
1773 
1774 	/*
1775 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1776 	 * threads are blocked as zil_close can call zfs_inactive.
1777 	 */
1778 	if (zfsvfs->z_log) {
1779 		zil_close(zfsvfs->z_log);
1780 		zfsvfs->z_log = NULL;
1781 	}
1782 
1783 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1784 
1785 	/*
1786 	 * If we are not unmounting (ie: online recv) and someone already
1787 	 * unmounted this file system while we were doing the switcheroo,
1788 	 * or a reopen of z_os failed then just bail out now.
1789 	 */
1790 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1791 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1792 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1793 		return (EIO);
1794 	}
1795 
1796 	/*
1797 	 * At this point there are no vops active, and any new vops will
1798 	 * fail with EIO since we have z_teardown_lock for writer (only
1799 	 * relavent for forced unmount).
1800 	 *
1801 	 * Release all holds on dbufs.
1802 	 */
1803 	mutex_enter(&zfsvfs->z_znodes_lock);
1804 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1805 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1806 		if (zp->z_sa_hdl) {
1807 			ASSERT(ZTOV(zp)->v_count > 0);
1808 			zfs_znode_dmu_fini(zp);
1809 		}
1810 	mutex_exit(&zfsvfs->z_znodes_lock);
1811 
1812 	/*
1813 	 * If we are unmounting, set the unmounted flag and let new vops
1814 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1815 	 * other vops will fail with EIO.
1816 	 */
1817 	if (unmounting) {
1818 		zfsvfs->z_unmounted = B_TRUE;
1819 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1820 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1821 	}
1822 
1823 	/*
1824 	 * z_os will be NULL if there was an error in attempting to reopen
1825 	 * zfsvfs, so just return as the properties had already been
1826 	 * unregistered and cached data had been evicted before.
1827 	 */
1828 	if (zfsvfs->z_os == NULL)
1829 		return (0);
1830 
1831 	/*
1832 	 * Unregister properties.
1833 	 */
1834 	zfs_unregister_callbacks(zfsvfs);
1835 
1836 	/*
1837 	 * Evict cached data
1838 	 */
1839 	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
1840 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1841 		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1842 	}
1843 
1844 	return (0);
1845 }
1846 
1847 /*ARGSUSED*/
1848 static int
1849 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1850 {
1851 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1852 	objset_t *os;
1853 	int ret;
1854 
1855 	ret = secpolicy_fs_unmount(cr, vfsp);
1856 	if (ret) {
1857 		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1858 		    ZFS_DELEG_PERM_MOUNT, cr))
1859 			return (ret);
1860 	}
1861 
1862 	/*
1863 	 * We purge the parent filesystem's vfsp as the parent filesystem
1864 	 * and all of its snapshots have their vnode's v_vfsp set to the
1865 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1866 	 * referential for non-snapshots.
1867 	 */
1868 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1869 
1870 	/*
1871 	 * Unmount any snapshots mounted under .zfs before unmounting the
1872 	 * dataset itself.
1873 	 */
1874 	if (zfsvfs->z_ctldir != NULL &&
1875 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1876 		return (ret);
1877 	}
1878 
1879 	if (!(fflag & MS_FORCE)) {
1880 		/*
1881 		 * Check the number of active vnodes in the file system.
1882 		 * Our count is maintained in the vfs structure, but the
1883 		 * number is off by 1 to indicate a hold on the vfs
1884 		 * structure itself.
1885 		 *
1886 		 * The '.zfs' directory maintains a reference of its
1887 		 * own, and any active references underneath are
1888 		 * reflected in the vnode count.
1889 		 */
1890 		if (zfsvfs->z_ctldir == NULL) {
1891 			if (vfsp->vfs_count > 1)
1892 				return (EBUSY);
1893 		} else {
1894 			if (vfsp->vfs_count > 2 ||
1895 			    zfsvfs->z_ctldir->v_count > 1)
1896 				return (EBUSY);
1897 		}
1898 	}
1899 
1900 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1901 
1902 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1903 	os = zfsvfs->z_os;
1904 
1905 	/*
1906 	 * z_os will be NULL if there was an error in
1907 	 * attempting to reopen zfsvfs.
1908 	 */
1909 	if (os != NULL) {
1910 		/*
1911 		 * Unset the objset user_ptr.
1912 		 */
1913 		mutex_enter(&os->os_user_ptr_lock);
1914 		dmu_objset_set_user(os, NULL);
1915 		mutex_exit(&os->os_user_ptr_lock);
1916 
1917 		/*
1918 		 * Finally release the objset
1919 		 */
1920 		dmu_objset_disown(os, zfsvfs);
1921 	}
1922 
1923 	/*
1924 	 * We can now safely destroy the '.zfs' directory node.
1925 	 */
1926 	if (zfsvfs->z_ctldir != NULL)
1927 		zfsctl_destroy(zfsvfs);
1928 
1929 	return (0);
1930 }
1931 
1932 static int
1933 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1934 {
1935 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1936 	znode_t		*zp;
1937 	uint64_t	object = 0;
1938 	uint64_t	fid_gen = 0;
1939 	uint64_t	gen_mask;
1940 	uint64_t	zp_gen;
1941 	int 		i, err;
1942 
1943 	*vpp = NULL;
1944 
1945 	ZFS_ENTER(zfsvfs);
1946 
1947 	if (fidp->fid_len == LONG_FID_LEN) {
1948 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1949 		uint64_t	objsetid = 0;
1950 		uint64_t	setgen = 0;
1951 
1952 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1953 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1954 
1955 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1956 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1957 
1958 		ZFS_EXIT(zfsvfs);
1959 
1960 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1961 		if (err)
1962 			return (EINVAL);
1963 		ZFS_ENTER(zfsvfs);
1964 	}
1965 
1966 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1967 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1968 
1969 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1970 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1971 
1972 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1973 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1974 	} else {
1975 		ZFS_EXIT(zfsvfs);
1976 		return (EINVAL);
1977 	}
1978 
1979 	/* A zero fid_gen means we are in the .zfs control directories */
1980 	if (fid_gen == 0 &&
1981 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1982 		*vpp = zfsvfs->z_ctldir;
1983 		ASSERT(*vpp != NULL);
1984 		if (object == ZFSCTL_INO_SNAPDIR) {
1985 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1986 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1987 		} else {
1988 			VN_HOLD(*vpp);
1989 		}
1990 		ZFS_EXIT(zfsvfs);
1991 		return (0);
1992 	}
1993 
1994 	gen_mask = -1ULL >> (64 - 8 * i);
1995 
1996 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1997 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1998 		ZFS_EXIT(zfsvfs);
1999 		return (err);
2000 	}
2001 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2002 	    sizeof (uint64_t));
2003 	zp_gen = zp_gen & gen_mask;
2004 	if (zp_gen == 0)
2005 		zp_gen = 1;
2006 	if (zp->z_unlinked || zp_gen != fid_gen) {
2007 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2008 		VN_RELE(ZTOV(zp));
2009 		ZFS_EXIT(zfsvfs);
2010 		return (EINVAL);
2011 	}
2012 
2013 	*vpp = ZTOV(zp);
2014 	ZFS_EXIT(zfsvfs);
2015 	return (0);
2016 }
2017 
2018 /*
2019  * Block out VOPs and close zfsvfs_t::z_os
2020  *
2021  * Note, if successful, then we return with the 'z_teardown_lock' and
2022  * 'z_teardown_inactive_lock' write held.
2023  */
2024 int
2025 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2026 {
2027 	int error;
2028 
2029 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2030 		return (error);
2031 	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2032 
2033 	return (0);
2034 }
2035 
2036 /*
2037  * Reopen zfsvfs_t::z_os and release VOPs.
2038  */
2039 int
2040 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2041 {
2042 	int err, err2;
2043 
2044 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2045 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2046 
2047 	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2048 	    &zfsvfs->z_os);
2049 	if (err) {
2050 		zfsvfs->z_os = NULL;
2051 	} else {
2052 		znode_t *zp;
2053 		uint64_t sa_obj = 0;
2054 
2055 		err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2056 		    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2057 
2058 		if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA)
2059 			goto bail;
2060 
2061 
2062 		zfsvfs->z_attr_table = sa_setup(zfsvfs->z_os, sa_obj,
2063 		    zfs_attr_table,  ZPL_END);
2064 
2065 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2066 
2067 		/*
2068 		 * Attempt to re-establish all the active znodes with
2069 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
2070 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2071 		 * when they try to use their znode.
2072 		 */
2073 		mutex_enter(&zfsvfs->z_znodes_lock);
2074 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2075 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2076 			(void) zfs_rezget(zp);
2077 		}
2078 		mutex_exit(&zfsvfs->z_znodes_lock);
2079 
2080 	}
2081 
2082 bail:
2083 	/* release the VOPs */
2084 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2085 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2086 
2087 	if (err) {
2088 		/*
2089 		 * Since we couldn't reopen zfsvfs::z_os, force
2090 		 * unmount this file system.
2091 		 */
2092 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2093 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2094 	}
2095 	return (err);
2096 }
2097 
2098 static void
2099 zfs_freevfs(vfs_t *vfsp)
2100 {
2101 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2102 
2103 	/*
2104 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2105 	 * from zfs_mount().  Release it here.  If we came through
2106 	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2107 	 * skip the VFS_RELE for rootvfs.
2108 	 */
2109 	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2110 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2111 
2112 	zfsvfs_free(zfsvfs);
2113 
2114 	atomic_add_32(&zfs_active_fs_count, -1);
2115 }
2116 
2117 /*
2118  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2119  * so we can't safely do any non-idempotent initialization here.
2120  * Leave that to zfs_init() and zfs_fini(), which are called
2121  * from the module's _init() and _fini() entry points.
2122  */
2123 /*ARGSUSED*/
2124 static int
2125 zfs_vfsinit(int fstype, char *name)
2126 {
2127 	int error;
2128 
2129 	zfsfstype = fstype;
2130 
2131 	/*
2132 	 * Setup vfsops and vnodeops tables.
2133 	 */
2134 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2135 	if (error != 0) {
2136 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2137 	}
2138 
2139 	error = zfs_create_op_tables();
2140 	if (error) {
2141 		zfs_remove_op_tables();
2142 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2143 		(void) vfs_freevfsops_by_type(zfsfstype);
2144 		return (error);
2145 	}
2146 
2147 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2148 
2149 	/*
2150 	 * Unique major number for all zfs mounts.
2151 	 * If we run out of 32-bit minors, we'll getudev() another major.
2152 	 */
2153 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2154 	zfs_minor = ZFS_MIN_MINOR;
2155 
2156 	return (0);
2157 }
2158 
2159 void
2160 zfs_init(void)
2161 {
2162 	/*
2163 	 * Initialize .zfs directory structures
2164 	 */
2165 	zfsctl_init();
2166 
2167 	/*
2168 	 * Initialize znode cache, vnode ops, etc...
2169 	 */
2170 	zfs_znode_init();
2171 
2172 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2173 }
2174 
2175 void
2176 zfs_fini(void)
2177 {
2178 	zfsctl_fini();
2179 	zfs_znode_fini();
2180 }
2181 
2182 int
2183 zfs_busy(void)
2184 {
2185 	return (zfs_active_fs_count != 0);
2186 }
2187 
2188 int
2189 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2190 {
2191 	int error;
2192 	objset_t *os = zfsvfs->z_os;
2193 	dmu_tx_t *tx;
2194 
2195 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2196 		return (EINVAL);
2197 
2198 	if (newvers < zfsvfs->z_version)
2199 		return (EINVAL);
2200 
2201 	if (zfs_spa_version_map(newvers) >
2202 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2203 		return (ENOTSUP);
2204 
2205 	tx = dmu_tx_create(os);
2206 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2207 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2208 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2209 		    ZFS_SA_ATTRS);
2210 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2211 	}
2212 	error = dmu_tx_assign(tx, TXG_WAIT);
2213 	if (error) {
2214 		dmu_tx_abort(tx);
2215 		return (error);
2216 	}
2217 
2218 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2219 	    8, 1, &newvers, tx);
2220 
2221 	if (error) {
2222 		dmu_tx_commit(tx);
2223 		return (error);
2224 	}
2225 
2226 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2227 		uint64_t sa_obj;
2228 
2229 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2230 		    SPA_VERSION_SA);
2231 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2232 		    DMU_OT_NONE, 0, tx);
2233 
2234 		error = zap_add(os, MASTER_NODE_OBJ,
2235 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2236 		ASSERT3U(error, ==, 0);
2237 
2238 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2239 		sa_register_update_callback(os, zfs_sa_upgrade);
2240 	}
2241 
2242 	spa_history_internal_log(LOG_DS_UPGRADE,
2243 	    dmu_objset_spa(os), tx, CRED(),
2244 	    "oldver=%llu newver=%llu dataset = %llu",
2245 	    zfsvfs->z_version, newvers, dmu_objset_id(os));
2246 
2247 	dmu_tx_commit(tx);
2248 
2249 	zfsvfs->z_version = newvers;
2250 
2251 	if (zfsvfs->z_version >= ZPL_VERSION_FUID)
2252 		zfs_set_fuid_feature(zfsvfs);
2253 
2254 	return (0);
2255 }
2256 
2257 /*
2258  * Read a property stored within the master node.
2259  */
2260 int
2261 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2262 {
2263 	const char *pname;
2264 	int error = ENOENT;
2265 
2266 	/*
2267 	 * Look up the file system's value for the property.  For the
2268 	 * version property, we look up a slightly different string.
2269 	 */
2270 	if (prop == ZFS_PROP_VERSION)
2271 		pname = ZPL_VERSION_STR;
2272 	else
2273 		pname = zfs_prop_to_name(prop);
2274 
2275 	if (os != NULL)
2276 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2277 
2278 	if (error == ENOENT) {
2279 		/* No value set, use the default value */
2280 		switch (prop) {
2281 		case ZFS_PROP_VERSION:
2282 			*value = ZPL_VERSION;
2283 			break;
2284 		case ZFS_PROP_NORMALIZE:
2285 		case ZFS_PROP_UTF8ONLY:
2286 			*value = 0;
2287 			break;
2288 		case ZFS_PROP_CASE:
2289 			*value = ZFS_CASE_SENSITIVE;
2290 			break;
2291 		default:
2292 			return (error);
2293 		}
2294 		error = 0;
2295 	}
2296 	return (error);
2297 }
2298 
2299 static vfsdef_t vfw = {
2300 	VFSDEF_VERSION,
2301 	MNTTYPE_ZFS,
2302 	zfs_vfsinit,
2303 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2304 	    VSW_XID,
2305 	&zfs_mntopts
2306 };
2307 
2308 struct modlfs zfs_modlfs = {
2309 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2310 };
2311