1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/pathname.h> 32 #include <sys/vnode.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/mntent.h> 36 #include <sys/mount.h> 37 #include <sys/cmn_err.h> 38 #include "fs/fs_subr.h" 39 #include <sys/zfs_znode.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/refstr.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa_boot.h> 63 64 int zfsfstype; 65 vfsops_t *zfs_vfsops = NULL; 66 static major_t zfs_major; 67 static minor_t zfs_minor; 68 static kmutex_t zfs_dev_mtx; 69 70 extern int sys_shutdown; 71 72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 78 static void zfs_freevfs(vfs_t *vfsp); 79 80 static const fs_operation_def_t zfs_vfsops_template[] = { 81 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 82 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 83 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 84 VFSNAME_ROOT, { .vfs_root = zfs_root }, 85 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 86 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 87 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 88 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 89 NULL, NULL 90 }; 91 92 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 94 NULL, NULL 95 }; 96 97 /* 98 * We need to keep a count of active fs's. 99 * This is necessary to prevent our module 100 * from being unloaded after a umount -f 101 */ 102 static uint32_t zfs_active_fs_count = 0; 103 104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 108 109 /* 110 * MO_DEFAULT is not used since the default value is determined 111 * by the equivalent property. 112 */ 113 static mntopt_t mntopts[] = { 114 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 115 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 116 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 117 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 118 }; 119 120 static mntopts_t zfs_mntopts = { 121 sizeof (mntopts) / sizeof (mntopt_t), 122 mntopts 123 }; 124 125 /*ARGSUSED*/ 126 int 127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 128 { 129 /* 130 * Data integrity is job one. We don't want a compromised kernel 131 * writing to the storage pool, so we never sync during panic. 132 */ 133 if (panicstr) 134 return (0); 135 136 /* 137 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 138 * to sync metadata, which they would otherwise cache indefinitely. 139 * Semantically, the only requirement is that the sync be initiated. 140 * The DMU syncs out txgs frequently, so there's nothing to do. 141 */ 142 if (flag & SYNC_ATTR) 143 return (0); 144 145 if (vfsp != NULL) { 146 /* 147 * Sync a specific filesystem. 148 */ 149 zfsvfs_t *zfsvfs = vfsp->vfs_data; 150 dsl_pool_t *dp; 151 152 ZFS_ENTER(zfsvfs); 153 dp = dmu_objset_pool(zfsvfs->z_os); 154 155 /* 156 * If the system is shutting down, then skip any 157 * filesystems which may exist on a suspended pool. 158 */ 159 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 160 ZFS_EXIT(zfsvfs); 161 return (0); 162 } 163 164 if (zfsvfs->z_log != NULL) 165 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 166 else 167 txg_wait_synced(dp, 0); 168 ZFS_EXIT(zfsvfs); 169 } else { 170 /* 171 * Sync all ZFS filesystems. This is what happens when you 172 * run sync(1M). Unlike other filesystems, ZFS honors the 173 * request by waiting for all pools to commit all dirty data. 174 */ 175 spa_sync_allpools(); 176 } 177 178 return (0); 179 } 180 181 static int 182 zfs_create_unique_device(dev_t *dev) 183 { 184 major_t new_major; 185 186 do { 187 ASSERT3U(zfs_minor, <=, MAXMIN32); 188 minor_t start = zfs_minor; 189 do { 190 mutex_enter(&zfs_dev_mtx); 191 if (zfs_minor >= MAXMIN32) { 192 /* 193 * If we're still using the real major 194 * keep out of /dev/zfs and /dev/zvol minor 195 * number space. If we're using a getudev()'ed 196 * major number, we can use all of its minors. 197 */ 198 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 199 zfs_minor = ZFS_MIN_MINOR; 200 else 201 zfs_minor = 0; 202 } else { 203 zfs_minor++; 204 } 205 *dev = makedevice(zfs_major, zfs_minor); 206 mutex_exit(&zfs_dev_mtx); 207 } while (vfs_devismounted(*dev) && zfs_minor != start); 208 if (zfs_minor == start) { 209 /* 210 * We are using all ~262,000 minor numbers for the 211 * current major number. Create a new major number. 212 */ 213 if ((new_major = getudev()) == (major_t)-1) { 214 cmn_err(CE_WARN, 215 "zfs_mount: Can't get unique major " 216 "device number."); 217 return (-1); 218 } 219 mutex_enter(&zfs_dev_mtx); 220 zfs_major = new_major; 221 zfs_minor = 0; 222 223 mutex_exit(&zfs_dev_mtx); 224 } else { 225 break; 226 } 227 /* CONSTANTCONDITION */ 228 } while (1); 229 230 return (0); 231 } 232 233 static void 234 atime_changed_cb(void *arg, uint64_t newval) 235 { 236 zfsvfs_t *zfsvfs = arg; 237 238 if (newval == TRUE) { 239 zfsvfs->z_atime = TRUE; 240 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 241 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 242 } else { 243 zfsvfs->z_atime = FALSE; 244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 246 } 247 } 248 249 static void 250 xattr_changed_cb(void *arg, uint64_t newval) 251 { 252 zfsvfs_t *zfsvfs = arg; 253 254 if (newval == TRUE) { 255 /* XXX locking on vfs_flag? */ 256 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 257 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 258 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 259 } else { 260 /* XXX locking on vfs_flag? */ 261 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 262 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 263 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 264 } 265 } 266 267 static void 268 blksz_changed_cb(void *arg, uint64_t newval) 269 { 270 zfsvfs_t *zfsvfs = arg; 271 272 if (newval < SPA_MINBLOCKSIZE || 273 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 274 newval = SPA_MAXBLOCKSIZE; 275 276 zfsvfs->z_max_blksz = newval; 277 zfsvfs->z_vfs->vfs_bsize = newval; 278 } 279 280 static void 281 readonly_changed_cb(void *arg, uint64_t newval) 282 { 283 zfsvfs_t *zfsvfs = arg; 284 285 if (newval) { 286 /* XXX locking on vfs_flag? */ 287 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 288 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 289 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 290 } else { 291 /* XXX locking on vfs_flag? */ 292 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 295 } 296 } 297 298 static void 299 devices_changed_cb(void *arg, uint64_t newval) 300 { 301 zfsvfs_t *zfsvfs = arg; 302 303 if (newval == FALSE) { 304 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 305 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 306 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 307 } else { 308 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 311 } 312 } 313 314 static void 315 setuid_changed_cb(void *arg, uint64_t newval) 316 { 317 zfsvfs_t *zfsvfs = arg; 318 319 if (newval == FALSE) { 320 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 321 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 322 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 323 } else { 324 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 327 } 328 } 329 330 static void 331 exec_changed_cb(void *arg, uint64_t newval) 332 { 333 zfsvfs_t *zfsvfs = arg; 334 335 if (newval == FALSE) { 336 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 337 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 338 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 339 } else { 340 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 343 } 344 } 345 346 /* 347 * The nbmand mount option can be changed at mount time. 348 * We can't allow it to be toggled on live file systems or incorrect 349 * behavior may be seen from cifs clients 350 * 351 * This property isn't registered via dsl_prop_register(), but this callback 352 * will be called when a file system is first mounted 353 */ 354 static void 355 nbmand_changed_cb(void *arg, uint64_t newval) 356 { 357 zfsvfs_t *zfsvfs = arg; 358 if (newval == FALSE) { 359 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 360 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 361 } else { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 364 } 365 } 366 367 static void 368 snapdir_changed_cb(void *arg, uint64_t newval) 369 { 370 zfsvfs_t *zfsvfs = arg; 371 372 zfsvfs->z_show_ctldir = newval; 373 } 374 375 static void 376 vscan_changed_cb(void *arg, uint64_t newval) 377 { 378 zfsvfs_t *zfsvfs = arg; 379 380 zfsvfs->z_vscan = newval; 381 } 382 383 static void 384 acl_mode_changed_cb(void *arg, uint64_t newval) 385 { 386 zfsvfs_t *zfsvfs = arg; 387 388 zfsvfs->z_acl_mode = newval; 389 } 390 391 static void 392 acl_inherit_changed_cb(void *arg, uint64_t newval) 393 { 394 zfsvfs_t *zfsvfs = arg; 395 396 zfsvfs->z_acl_inherit = newval; 397 } 398 399 static int 400 zfs_register_callbacks(vfs_t *vfsp) 401 { 402 struct dsl_dataset *ds = NULL; 403 objset_t *os = NULL; 404 zfsvfs_t *zfsvfs = NULL; 405 uint64_t nbmand; 406 int readonly, do_readonly = B_FALSE; 407 int setuid, do_setuid = B_FALSE; 408 int exec, do_exec = B_FALSE; 409 int devices, do_devices = B_FALSE; 410 int xattr, do_xattr = B_FALSE; 411 int atime, do_atime = B_FALSE; 412 int error = 0; 413 414 ASSERT(vfsp); 415 zfsvfs = vfsp->vfs_data; 416 ASSERT(zfsvfs); 417 os = zfsvfs->z_os; 418 419 /* 420 * The act of registering our callbacks will destroy any mount 421 * options we may have. In order to enable temporary overrides 422 * of mount options, we stash away the current values and 423 * restore them after we register the callbacks. 424 */ 425 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 426 readonly = B_TRUE; 427 do_readonly = B_TRUE; 428 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 429 readonly = B_FALSE; 430 do_readonly = B_TRUE; 431 } 432 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 433 devices = B_FALSE; 434 setuid = B_FALSE; 435 do_devices = B_TRUE; 436 do_setuid = B_TRUE; 437 } else { 438 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 439 devices = B_FALSE; 440 do_devices = B_TRUE; 441 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 442 devices = B_TRUE; 443 do_devices = B_TRUE; 444 } 445 446 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 447 setuid = B_FALSE; 448 do_setuid = B_TRUE; 449 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 450 setuid = B_TRUE; 451 do_setuid = B_TRUE; 452 } 453 } 454 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 455 exec = B_FALSE; 456 do_exec = B_TRUE; 457 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 458 exec = B_TRUE; 459 do_exec = B_TRUE; 460 } 461 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 462 xattr = B_FALSE; 463 do_xattr = B_TRUE; 464 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 465 xattr = B_TRUE; 466 do_xattr = B_TRUE; 467 } 468 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 469 atime = B_FALSE; 470 do_atime = B_TRUE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 472 atime = B_TRUE; 473 do_atime = B_TRUE; 474 } 475 476 /* 477 * nbmand is a special property. It can only be changed at 478 * mount time. 479 * 480 * This is weird, but it is documented to only be changeable 481 * at mount time. 482 */ 483 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 484 nbmand = B_FALSE; 485 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 486 nbmand = B_TRUE; 487 } else { 488 char osname[MAXNAMELEN]; 489 490 dmu_objset_name(os, osname); 491 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 492 NULL)) { 493 return (error); 494 } 495 } 496 497 /* 498 * Register property callbacks. 499 * 500 * It would probably be fine to just check for i/o error from 501 * the first prop_register(), but I guess I like to go 502 * overboard... 503 */ 504 ds = dmu_objset_ds(os); 505 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "xattr", xattr_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "recordsize", blksz_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "readonly", readonly_changed_cb, zfsvfs); 512 error = error ? error : dsl_prop_register(ds, 513 "devices", devices_changed_cb, zfsvfs); 514 error = error ? error : dsl_prop_register(ds, 515 "setuid", setuid_changed_cb, zfsvfs); 516 error = error ? error : dsl_prop_register(ds, 517 "exec", exec_changed_cb, zfsvfs); 518 error = error ? error : dsl_prop_register(ds, 519 "snapdir", snapdir_changed_cb, zfsvfs); 520 error = error ? error : dsl_prop_register(ds, 521 "aclmode", acl_mode_changed_cb, zfsvfs); 522 error = error ? error : dsl_prop_register(ds, 523 "aclinherit", acl_inherit_changed_cb, zfsvfs); 524 error = error ? error : dsl_prop_register(ds, 525 "vscan", vscan_changed_cb, zfsvfs); 526 if (error) 527 goto unregister; 528 529 /* 530 * Invoke our callbacks to restore temporary mount options. 531 */ 532 if (do_readonly) 533 readonly_changed_cb(zfsvfs, readonly); 534 if (do_setuid) 535 setuid_changed_cb(zfsvfs, setuid); 536 if (do_exec) 537 exec_changed_cb(zfsvfs, exec); 538 if (do_devices) 539 devices_changed_cb(zfsvfs, devices); 540 if (do_xattr) 541 xattr_changed_cb(zfsvfs, xattr); 542 if (do_atime) 543 atime_changed_cb(zfsvfs, atime); 544 545 nbmand_changed_cb(zfsvfs, nbmand); 546 547 return (0); 548 549 unregister: 550 /* 551 * We may attempt to unregister some callbacks that are not 552 * registered, but this is OK; it will simply return ENOMSG, 553 * which we will ignore. 554 */ 555 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 556 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 557 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 558 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 559 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 560 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 561 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 562 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 563 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 564 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 565 zfsvfs); 566 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 567 return (error); 568 569 } 570 571 static int 572 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 573 { 574 int error; 575 576 error = zfs_register_callbacks(zfsvfs->z_vfs); 577 if (error) 578 return (error); 579 580 /* 581 * Set the objset user_ptr to track its zfsvfs. 582 */ 583 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 584 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 585 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 586 587 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 588 if (zil_disable) { 589 zil_destroy(zfsvfs->z_log, 0); 590 zfsvfs->z_log = NULL; 591 } 592 593 /* 594 * If we are not mounting (ie: online recv), then we don't 595 * have to worry about replaying the log as we blocked all 596 * operations out since we closed the ZIL. 597 */ 598 if (mounting) { 599 boolean_t readonly; 600 601 /* 602 * During replay we remove the read only flag to 603 * allow replays to succeed. 604 */ 605 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 606 if (readonly != 0) 607 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 608 else 609 zfs_unlinked_drain(zfsvfs); 610 611 if (zfsvfs->z_log) { 612 /* 613 * Parse and replay the intent log. 614 * 615 * Because of ziltest, this must be done after 616 * zfs_unlinked_drain(). (Further note: ziltest 617 * doesn't use readonly mounts, where 618 * zfs_unlinked_drain() isn't called.) This is because 619 * ziltest causes spa_sync() to think it's committed, 620 * but actually it is not, so the intent log contains 621 * many txg's worth of changes. 622 * 623 * In particular, if object N is in the unlinked set in 624 * the last txg to actually sync, then it could be 625 * actually freed in a later txg and then reallocated 626 * in a yet later txg. This would write a "create 627 * object N" record to the intent log. Normally, this 628 * would be fine because the spa_sync() would have 629 * written out the fact that object N is free, before 630 * we could write the "create object N" intent log 631 * record. 632 * 633 * But when we are in ziltest mode, we advance the "open 634 * txg" without actually spa_sync()-ing the changes to 635 * disk. So we would see that object N is still 636 * allocated and in the unlinked set, and there is an 637 * intent log record saying to allocate it. 638 */ 639 zfsvfs->z_replay = B_TRUE; 640 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 641 zfsvfs->z_replay = B_FALSE; 642 } 643 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 644 } 645 646 return (0); 647 } 648 649 static void 650 zfs_freezfsvfs(zfsvfs_t *zfsvfs) 651 { 652 mutex_destroy(&zfsvfs->z_znodes_lock); 653 mutex_destroy(&zfsvfs->z_online_recv_lock); 654 mutex_destroy(&zfsvfs->z_lock); 655 list_destroy(&zfsvfs->z_all_znodes); 656 rrw_destroy(&zfsvfs->z_teardown_lock); 657 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 658 rw_destroy(&zfsvfs->z_fuid_lock); 659 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 660 } 661 662 static int 663 zfs_domount(vfs_t *vfsp, char *osname) 664 { 665 dev_t mount_dev; 666 uint64_t recordsize, readonly; 667 int error = 0; 668 int mode; 669 zfsvfs_t *zfsvfs; 670 znode_t *zp = NULL; 671 672 ASSERT(vfsp); 673 ASSERT(osname); 674 675 /* 676 * Initialize the zfs-specific filesystem structure. 677 * Should probably make this a kmem cache, shuffle fields, 678 * and just bzero up to z_hold_mtx[]. 679 */ 680 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 681 zfsvfs->z_vfs = vfsp; 682 zfsvfs->z_parent = zfsvfs; 683 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 684 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 685 zfsvfs->z_fuid_dirty = B_FALSE; 686 687 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 688 mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL); 689 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 690 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 691 offsetof(znode_t, z_link_node)); 692 rrw_init(&zfsvfs->z_teardown_lock); 693 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 694 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 695 696 /* Initialize the generic filesystem structure. */ 697 vfsp->vfs_bcount = 0; 698 vfsp->vfs_data = NULL; 699 700 if (zfs_create_unique_device(&mount_dev) == -1) { 701 error = ENODEV; 702 goto out; 703 } 704 ASSERT(vfs_devismounted(mount_dev) == 0); 705 706 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 707 NULL)) 708 goto out; 709 710 vfsp->vfs_dev = mount_dev; 711 vfsp->vfs_fstype = zfsfstype; 712 vfsp->vfs_bsize = recordsize; 713 vfsp->vfs_flag |= VFS_NOTRUNC; 714 vfsp->vfs_data = zfsvfs; 715 716 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 717 goto out; 718 719 mode = DS_MODE_OWNER; 720 if (readonly) 721 mode |= DS_MODE_READONLY; 722 723 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 724 if (error == EROFS) { 725 mode = DS_MODE_OWNER | DS_MODE_READONLY; 726 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 727 &zfsvfs->z_os); 728 } 729 730 if (error) 731 goto out; 732 733 if (error = zfs_init_fs(zfsvfs, &zp)) 734 goto out; 735 736 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 737 VN_RELE(ZTOV(zp)); 738 739 /* 740 * Set features for file system. 741 */ 742 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 743 if (zfsvfs->z_use_fuids) { 744 vfs_set_feature(vfsp, VFSFT_XVATTR); 745 vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS); 746 vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS); 747 vfs_set_feature(vfsp, VFSFT_ACLONCREATE); 748 } 749 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 750 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 751 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 752 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 753 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 754 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 755 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 756 } 757 758 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 759 uint64_t pval; 760 761 ASSERT(mode & DS_MODE_READONLY); 762 atime_changed_cb(zfsvfs, B_FALSE); 763 readonly_changed_cb(zfsvfs, B_TRUE); 764 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 765 goto out; 766 xattr_changed_cb(zfsvfs, pval); 767 zfsvfs->z_issnap = B_TRUE; 768 } else { 769 error = zfsvfs_setup(zfsvfs, B_TRUE); 770 } 771 772 if (!zfsvfs->z_issnap) 773 zfsctl_create(zfsvfs); 774 out: 775 if (error) { 776 if (zfsvfs->z_os) 777 dmu_objset_close(zfsvfs->z_os); 778 zfs_freezfsvfs(zfsvfs); 779 } else { 780 atomic_add_32(&zfs_active_fs_count, 1); 781 } 782 783 return (error); 784 } 785 786 void 787 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 788 { 789 objset_t *os = zfsvfs->z_os; 790 struct dsl_dataset *ds; 791 792 /* 793 * Unregister properties. 794 */ 795 if (!dmu_objset_is_snapshot(os)) { 796 ds = dmu_objset_ds(os); 797 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 798 zfsvfs) == 0); 799 800 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 801 zfsvfs) == 0); 802 803 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 804 zfsvfs) == 0); 805 806 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 807 zfsvfs) == 0); 808 809 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 810 zfsvfs) == 0); 811 812 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 813 zfsvfs) == 0); 814 815 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 816 zfsvfs) == 0); 817 818 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 819 zfsvfs) == 0); 820 821 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 822 zfsvfs) == 0); 823 824 VERIFY(dsl_prop_unregister(ds, "aclinherit", 825 acl_inherit_changed_cb, zfsvfs) == 0); 826 827 VERIFY(dsl_prop_unregister(ds, "vscan", 828 vscan_changed_cb, zfsvfs) == 0); 829 } 830 } 831 832 /* 833 * Convert a decimal digit string to a uint64_t integer. 834 */ 835 static int 836 str_to_uint64(char *str, uint64_t *objnum) 837 { 838 uint64_t num = 0; 839 840 while (*str) { 841 if (*str < '0' || *str > '9') 842 return (EINVAL); 843 844 num = num*10 + *str++ - '0'; 845 } 846 847 *objnum = num; 848 return (0); 849 } 850 851 /* 852 * The boot path passed from the boot loader is in the form of 853 * "rootpool-name/root-filesystem-object-number'. Convert this 854 * string to a dataset name: "rootpool-name/root-filesystem-name". 855 */ 856 static int 857 zfs_parse_bootfs(char *bpath, char *outpath) 858 { 859 char *slashp; 860 uint64_t objnum; 861 int error; 862 863 if (*bpath == 0 || *bpath == '/') 864 return (EINVAL); 865 866 (void) strcpy(outpath, bpath); 867 868 slashp = strchr(bpath, '/'); 869 870 /* if no '/', just return the pool name */ 871 if (slashp == NULL) { 872 return (0); 873 } 874 875 /* if not a number, just return the root dataset name */ 876 if (str_to_uint64(slashp+1, &objnum)) { 877 return (0); 878 } 879 880 *slashp = '\0'; 881 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 882 *slashp = '/'; 883 884 return (error); 885 } 886 887 static int 888 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 889 { 890 int error = 0; 891 static int zfsrootdone = 0; 892 zfsvfs_t *zfsvfs = NULL; 893 znode_t *zp = NULL; 894 vnode_t *vp = NULL; 895 char *zfs_bootfs; 896 char *zfs_devid; 897 898 ASSERT(vfsp); 899 900 /* 901 * The filesystem that we mount as root is defined in the 902 * boot property "zfs-bootfs" with a format of 903 * "poolname/root-dataset-objnum". 904 */ 905 if (why == ROOT_INIT) { 906 if (zfsrootdone++) 907 return (EBUSY); 908 /* 909 * the process of doing a spa_load will require the 910 * clock to be set before we could (for example) do 911 * something better by looking at the timestamp on 912 * an uberblock, so just set it to -1. 913 */ 914 clkset(-1); 915 916 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 917 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 918 "bootfs name"); 919 return (EINVAL); 920 } 921 zfs_devid = spa_get_bootprop("diskdevid"); 922 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 923 if (zfs_devid) 924 spa_free_bootprop(zfs_devid); 925 if (error) { 926 spa_free_bootprop(zfs_bootfs); 927 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 928 error); 929 return (error); 930 } 931 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 932 spa_free_bootprop(zfs_bootfs); 933 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 934 error); 935 return (error); 936 } 937 938 spa_free_bootprop(zfs_bootfs); 939 940 if (error = vfs_lock(vfsp)) 941 return (error); 942 943 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 944 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 945 goto out; 946 } 947 948 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 949 ASSERT(zfsvfs); 950 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 951 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 952 goto out; 953 } 954 955 vp = ZTOV(zp); 956 mutex_enter(&vp->v_lock); 957 vp->v_flag |= VROOT; 958 mutex_exit(&vp->v_lock); 959 rootvp = vp; 960 961 /* 962 * Leave rootvp held. The root file system is never unmounted. 963 */ 964 965 vfs_add((struct vnode *)0, vfsp, 966 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 967 out: 968 vfs_unlock(vfsp); 969 return (error); 970 } else if (why == ROOT_REMOUNT) { 971 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 972 vfsp->vfs_flag |= VFS_REMOUNT; 973 974 /* refresh mount options */ 975 zfs_unregister_callbacks(vfsp->vfs_data); 976 return (zfs_register_callbacks(vfsp)); 977 978 } else if (why == ROOT_UNMOUNT) { 979 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 980 (void) zfs_sync(vfsp, 0, 0); 981 return (0); 982 } 983 984 /* 985 * if "why" is equal to anything else other than ROOT_INIT, 986 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 987 */ 988 return (ENOTSUP); 989 } 990 991 /*ARGSUSED*/ 992 static int 993 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 994 { 995 char *osname; 996 pathname_t spn; 997 int error = 0; 998 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 999 UIO_SYSSPACE : UIO_USERSPACE; 1000 int canwrite; 1001 1002 if (mvp->v_type != VDIR) 1003 return (ENOTDIR); 1004 1005 mutex_enter(&mvp->v_lock); 1006 if ((uap->flags & MS_REMOUNT) == 0 && 1007 (uap->flags & MS_OVERLAY) == 0 && 1008 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1009 mutex_exit(&mvp->v_lock); 1010 return (EBUSY); 1011 } 1012 mutex_exit(&mvp->v_lock); 1013 1014 /* 1015 * ZFS does not support passing unparsed data in via MS_DATA. 1016 * Users should use the MS_OPTIONSTR interface; this means 1017 * that all option parsing is already done and the options struct 1018 * can be interrogated. 1019 */ 1020 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1021 return (EINVAL); 1022 1023 /* 1024 * Get the objset name (the "special" mount argument). 1025 */ 1026 if (error = pn_get(uap->spec, fromspace, &spn)) 1027 return (error); 1028 1029 osname = spn.pn_path; 1030 1031 /* 1032 * Check for mount privilege? 1033 * 1034 * If we don't have privilege then see if 1035 * we have local permission to allow it 1036 */ 1037 error = secpolicy_fs_mount(cr, mvp, vfsp); 1038 if (error) { 1039 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 1040 if (error == 0) { 1041 vattr_t vattr; 1042 1043 /* 1044 * Make sure user is the owner of the mount point 1045 * or has sufficient privileges. 1046 */ 1047 1048 vattr.va_mask = AT_UID; 1049 1050 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1051 goto out; 1052 } 1053 1054 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1055 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1056 error = EPERM; 1057 goto out; 1058 } 1059 1060 secpolicy_fs_mount_clearopts(cr, vfsp); 1061 } else { 1062 goto out; 1063 } 1064 } 1065 1066 /* 1067 * Refuse to mount a filesystem if we are in a local zone and the 1068 * dataset is not visible. 1069 */ 1070 if (!INGLOBALZONE(curproc) && 1071 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1072 error = EPERM; 1073 goto out; 1074 } 1075 1076 /* 1077 * When doing a remount, we simply refresh our temporary properties 1078 * according to those options set in the current VFS options. 1079 */ 1080 if (uap->flags & MS_REMOUNT) { 1081 /* refresh mount options */ 1082 zfs_unregister_callbacks(vfsp->vfs_data); 1083 error = zfs_register_callbacks(vfsp); 1084 goto out; 1085 } 1086 1087 error = zfs_domount(vfsp, osname); 1088 1089 /* 1090 * Add an extra VFS_HOLD on our parent vfs so that it can't 1091 * disappear due to a forced unmount. 1092 */ 1093 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1094 VFS_HOLD(mvp->v_vfsp); 1095 1096 out: 1097 pn_free(&spn); 1098 return (error); 1099 } 1100 1101 static int 1102 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1103 { 1104 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1105 dev32_t d32; 1106 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1107 1108 ZFS_ENTER(zfsvfs); 1109 1110 dmu_objset_space(zfsvfs->z_os, 1111 &refdbytes, &availbytes, &usedobjs, &availobjs); 1112 1113 /* 1114 * The underlying storage pool actually uses multiple block sizes. 1115 * We report the fragsize as the smallest block size we support, 1116 * and we report our blocksize as the filesystem's maximum blocksize. 1117 */ 1118 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1119 statp->f_bsize = zfsvfs->z_max_blksz; 1120 1121 /* 1122 * The following report "total" blocks of various kinds in the 1123 * file system, but reported in terms of f_frsize - the 1124 * "fragment" size. 1125 */ 1126 1127 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1128 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1129 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1130 1131 /* 1132 * statvfs() should really be called statufs(), because it assumes 1133 * static metadata. ZFS doesn't preallocate files, so the best 1134 * we can do is report the max that could possibly fit in f_files, 1135 * and that minus the number actually used in f_ffree. 1136 * For f_ffree, report the smaller of the number of object available 1137 * and the number of blocks (each object will take at least a block). 1138 */ 1139 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1140 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1141 statp->f_files = statp->f_ffree + usedobjs; 1142 1143 (void) cmpldev(&d32, vfsp->vfs_dev); 1144 statp->f_fsid = d32; 1145 1146 /* 1147 * We're a zfs filesystem. 1148 */ 1149 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1150 1151 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1152 1153 statp->f_namemax = ZFS_MAXNAMELEN; 1154 1155 /* 1156 * We have all of 32 characters to stuff a string here. 1157 * Is there anything useful we could/should provide? 1158 */ 1159 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1160 1161 ZFS_EXIT(zfsvfs); 1162 return (0); 1163 } 1164 1165 static int 1166 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1167 { 1168 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1169 znode_t *rootzp; 1170 int error; 1171 1172 ZFS_ENTER(zfsvfs); 1173 1174 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1175 if (error == 0) 1176 *vpp = ZTOV(rootzp); 1177 1178 ZFS_EXIT(zfsvfs); 1179 return (error); 1180 } 1181 1182 /* 1183 * Teardown the zfsvfs::z_os. 1184 * 1185 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1186 * and 'z_teardown_inactive_lock' held. 1187 */ 1188 static int 1189 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1190 { 1191 znode_t *zp; 1192 1193 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1194 1195 if (!unmounting) { 1196 /* 1197 * We purge the parent filesystem's vfsp as the parent 1198 * filesystem and all of its snapshots have their vnode's 1199 * v_vfsp set to the parent's filesystem's vfsp. Note, 1200 * 'z_parent' is self referential for non-snapshots. 1201 */ 1202 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1203 } 1204 1205 /* 1206 * Close the zil. NB: Can't close the zil while zfs_inactive 1207 * threads are blocked as zil_close can call zfs_inactive. 1208 */ 1209 if (zfsvfs->z_log) { 1210 zil_close(zfsvfs->z_log); 1211 zfsvfs->z_log = NULL; 1212 } 1213 1214 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1215 1216 /* 1217 * If we are not unmounting (ie: online recv) and someone already 1218 * unmounted this file system while we were doing the switcheroo, 1219 * or a reopen of z_os failed then just bail out now. 1220 */ 1221 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1222 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1223 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1224 return (EIO); 1225 } 1226 1227 /* 1228 * At this point there are no vops active, and any new vops will 1229 * fail with EIO since we have z_teardown_lock for writer (only 1230 * relavent for forced unmount). 1231 * 1232 * Release all holds on dbufs. 1233 */ 1234 mutex_enter(&zfsvfs->z_znodes_lock); 1235 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1236 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1237 if (zp->z_dbuf) { 1238 ASSERT(ZTOV(zp)->v_count > 0); 1239 zfs_znode_dmu_fini(zp); 1240 } 1241 mutex_exit(&zfsvfs->z_znodes_lock); 1242 1243 /* 1244 * If we are unmounting, set the unmounted flag and let new vops 1245 * unblock. zfs_inactive will have the unmounted behavior, and all 1246 * other vops will fail with EIO. 1247 */ 1248 if (unmounting) { 1249 zfsvfs->z_unmounted = B_TRUE; 1250 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1251 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1252 } 1253 1254 /* 1255 * z_os will be NULL if there was an error in attempting to reopen 1256 * zfsvfs, so just return as the properties had already been 1257 * unregistered and cached data had been evicted before. 1258 */ 1259 if (zfsvfs->z_os == NULL) 1260 return (0); 1261 1262 /* 1263 * Unregister properties. 1264 */ 1265 zfs_unregister_callbacks(zfsvfs); 1266 1267 /* 1268 * Evict cached data 1269 */ 1270 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1271 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1272 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1273 } 1274 1275 return (0); 1276 } 1277 1278 /*ARGSUSED*/ 1279 static int 1280 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1281 { 1282 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1283 objset_t *os; 1284 int ret; 1285 1286 ret = secpolicy_fs_unmount(cr, vfsp); 1287 if (ret) { 1288 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1289 ZFS_DELEG_PERM_MOUNT, cr); 1290 if (ret) 1291 return (ret); 1292 } 1293 1294 /* 1295 * We purge the parent filesystem's vfsp as the parent filesystem 1296 * and all of its snapshots have their vnode's v_vfsp set to the 1297 * parent's filesystem's vfsp. Note, 'z_parent' is self 1298 * referential for non-snapshots. 1299 */ 1300 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1301 1302 /* 1303 * Unmount any snapshots mounted under .zfs before unmounting the 1304 * dataset itself. 1305 */ 1306 if (zfsvfs->z_ctldir != NULL && 1307 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1308 return (ret); 1309 } 1310 1311 if (!(fflag & MS_FORCE)) { 1312 /* 1313 * Check the number of active vnodes in the file system. 1314 * Our count is maintained in the vfs structure, but the 1315 * number is off by 1 to indicate a hold on the vfs 1316 * structure itself. 1317 * 1318 * The '.zfs' directory maintains a reference of its 1319 * own, and any active references underneath are 1320 * reflected in the vnode count. 1321 */ 1322 if (zfsvfs->z_ctldir == NULL) { 1323 if (vfsp->vfs_count > 1) 1324 return (EBUSY); 1325 } else { 1326 if (vfsp->vfs_count > 2 || 1327 zfsvfs->z_ctldir->v_count > 1) 1328 return (EBUSY); 1329 } 1330 } 1331 1332 vfsp->vfs_flag |= VFS_UNMOUNTED; 1333 1334 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1335 os = zfsvfs->z_os; 1336 1337 /* 1338 * z_os will be NULL if there was an error in 1339 * attempting to reopen zfsvfs. 1340 */ 1341 if (os != NULL) { 1342 /* 1343 * Unset the objset user_ptr. 1344 */ 1345 mutex_enter(&os->os->os_user_ptr_lock); 1346 dmu_objset_set_user(os, NULL); 1347 mutex_exit(&os->os->os_user_ptr_lock); 1348 1349 /* 1350 * Finally release the objset 1351 */ 1352 dmu_objset_close(os); 1353 } 1354 1355 /* 1356 * We can now safely destroy the '.zfs' directory node. 1357 */ 1358 if (zfsvfs->z_ctldir != NULL) 1359 zfsctl_destroy(zfsvfs); 1360 1361 return (0); 1362 } 1363 1364 static int 1365 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1366 { 1367 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1368 znode_t *zp; 1369 uint64_t object = 0; 1370 uint64_t fid_gen = 0; 1371 uint64_t gen_mask; 1372 uint64_t zp_gen; 1373 int i, err; 1374 1375 *vpp = NULL; 1376 1377 ZFS_ENTER(zfsvfs); 1378 1379 if (fidp->fid_len == LONG_FID_LEN) { 1380 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1381 uint64_t objsetid = 0; 1382 uint64_t setgen = 0; 1383 1384 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1385 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1386 1387 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1388 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1389 1390 ZFS_EXIT(zfsvfs); 1391 1392 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1393 if (err) 1394 return (EINVAL); 1395 ZFS_ENTER(zfsvfs); 1396 } 1397 1398 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1399 zfid_short_t *zfid = (zfid_short_t *)fidp; 1400 1401 for (i = 0; i < sizeof (zfid->zf_object); i++) 1402 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1403 1404 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1405 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1406 } else { 1407 ZFS_EXIT(zfsvfs); 1408 return (EINVAL); 1409 } 1410 1411 /* A zero fid_gen means we are in the .zfs control directories */ 1412 if (fid_gen == 0 && 1413 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1414 *vpp = zfsvfs->z_ctldir; 1415 ASSERT(*vpp != NULL); 1416 if (object == ZFSCTL_INO_SNAPDIR) { 1417 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1418 0, NULL, NULL, NULL, NULL, NULL) == 0); 1419 } else { 1420 VN_HOLD(*vpp); 1421 } 1422 ZFS_EXIT(zfsvfs); 1423 return (0); 1424 } 1425 1426 gen_mask = -1ULL >> (64 - 8 * i); 1427 1428 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1429 if (err = zfs_zget(zfsvfs, object, &zp)) { 1430 ZFS_EXIT(zfsvfs); 1431 return (err); 1432 } 1433 zp_gen = zp->z_phys->zp_gen & gen_mask; 1434 if (zp_gen == 0) 1435 zp_gen = 1; 1436 if (zp->z_unlinked || zp_gen != fid_gen) { 1437 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1438 VN_RELE(ZTOV(zp)); 1439 ZFS_EXIT(zfsvfs); 1440 return (EINVAL); 1441 } 1442 1443 *vpp = ZTOV(zp); 1444 ZFS_EXIT(zfsvfs); 1445 return (0); 1446 } 1447 1448 /* 1449 * Block out VOPs and close zfsvfs_t::z_os 1450 * 1451 * Note, if successful, then we return with the 'z_teardown_lock' and 1452 * 'z_teardown_inactive_lock' write held. 1453 */ 1454 int 1455 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode) 1456 { 1457 int error; 1458 1459 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1460 return (error); 1461 1462 *mode = zfsvfs->z_os->os_mode; 1463 dmu_objset_name(zfsvfs->z_os, name); 1464 dmu_objset_close(zfsvfs->z_os); 1465 1466 return (0); 1467 } 1468 1469 /* 1470 * Reopen zfsvfs_t::z_os and release VOPs. 1471 */ 1472 int 1473 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) 1474 { 1475 int err; 1476 1477 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1478 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1479 1480 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 1481 if (err) { 1482 zfsvfs->z_os = NULL; 1483 } else { 1484 znode_t *zp; 1485 1486 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1487 1488 /* 1489 * Attempt to re-establish all the active znodes with 1490 * their dbufs. If a zfs_rezget() fails, then we'll let 1491 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1492 * when they try to use their znode. 1493 */ 1494 mutex_enter(&zfsvfs->z_znodes_lock); 1495 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1496 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1497 (void) zfs_rezget(zp); 1498 } 1499 mutex_exit(&zfsvfs->z_znodes_lock); 1500 1501 } 1502 1503 /* release the VOPs */ 1504 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1505 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1506 1507 if (err) { 1508 /* 1509 * Since we couldn't reopen zfsvfs::z_os, force 1510 * unmount this file system. 1511 */ 1512 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1513 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1514 } 1515 return (err); 1516 } 1517 1518 static void 1519 zfs_freevfs(vfs_t *vfsp) 1520 { 1521 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1522 int i; 1523 1524 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1525 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1526 1527 zfs_fuid_destroy(zfsvfs); 1528 1529 /* 1530 * If this is a snapshot, we have an extra VFS_HOLD on our parent 1531 * from zfs_mount(). Release it here. 1532 */ 1533 if (zfsvfs->z_issnap) 1534 VFS_RELE(zfsvfs->z_parent->z_vfs); 1535 1536 zfs_freezfsvfs(zfsvfs); 1537 1538 atomic_add_32(&zfs_active_fs_count, -1); 1539 } 1540 1541 /* 1542 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1543 * so we can't safely do any non-idempotent initialization here. 1544 * Leave that to zfs_init() and zfs_fini(), which are called 1545 * from the module's _init() and _fini() entry points. 1546 */ 1547 /*ARGSUSED*/ 1548 static int 1549 zfs_vfsinit(int fstype, char *name) 1550 { 1551 int error; 1552 1553 zfsfstype = fstype; 1554 1555 /* 1556 * Setup vfsops and vnodeops tables. 1557 */ 1558 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1559 if (error != 0) { 1560 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1561 } 1562 1563 error = zfs_create_op_tables(); 1564 if (error) { 1565 zfs_remove_op_tables(); 1566 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1567 (void) vfs_freevfsops_by_type(zfsfstype); 1568 return (error); 1569 } 1570 1571 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1572 1573 /* 1574 * Unique major number for all zfs mounts. 1575 * If we run out of 32-bit minors, we'll getudev() another major. 1576 */ 1577 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1578 zfs_minor = ZFS_MIN_MINOR; 1579 1580 return (0); 1581 } 1582 1583 void 1584 zfs_init(void) 1585 { 1586 /* 1587 * Initialize .zfs directory structures 1588 */ 1589 zfsctl_init(); 1590 1591 /* 1592 * Initialize znode cache, vnode ops, etc... 1593 */ 1594 zfs_znode_init(); 1595 } 1596 1597 void 1598 zfs_fini(void) 1599 { 1600 zfsctl_fini(); 1601 zfs_znode_fini(); 1602 } 1603 1604 int 1605 zfs_busy(void) 1606 { 1607 return (zfs_active_fs_count != 0); 1608 } 1609 1610 int 1611 zfs_set_version(const char *name, uint64_t newvers) 1612 { 1613 int error; 1614 objset_t *os; 1615 dmu_tx_t *tx; 1616 uint64_t curvers; 1617 1618 /* 1619 * XXX for now, require that the filesystem be unmounted. Would 1620 * be nice to find the zfsvfs_t and just update that if 1621 * possible. 1622 */ 1623 1624 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1625 return (EINVAL); 1626 1627 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_OWNER, &os); 1628 if (error) 1629 return (error); 1630 1631 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1632 8, 1, &curvers); 1633 if (error) 1634 goto out; 1635 if (newvers < curvers) { 1636 error = EINVAL; 1637 goto out; 1638 } 1639 1640 tx = dmu_tx_create(os); 1641 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1642 error = dmu_tx_assign(tx, TXG_WAIT); 1643 if (error) { 1644 dmu_tx_abort(tx); 1645 goto out; 1646 } 1647 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1648 &newvers, tx); 1649 1650 spa_history_internal_log(LOG_DS_UPGRADE, 1651 dmu_objset_spa(os), tx, CRED(), 1652 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1653 dmu_objset_id(os)); 1654 dmu_tx_commit(tx); 1655 1656 out: 1657 dmu_objset_close(os); 1658 return (error); 1659 } 1660 1661 /* 1662 * Read a property stored within the master node. 1663 */ 1664 int 1665 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 1666 { 1667 const char *pname; 1668 int error = ENOENT; 1669 1670 /* 1671 * Look up the file system's value for the property. For the 1672 * version property, we look up a slightly different string. 1673 */ 1674 if (prop == ZFS_PROP_VERSION) 1675 pname = ZPL_VERSION_STR; 1676 else 1677 pname = zfs_prop_to_name(prop); 1678 1679 if (os != NULL) 1680 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 1681 1682 if (error == ENOENT) { 1683 /* No value set, use the default value */ 1684 switch (prop) { 1685 case ZFS_PROP_VERSION: 1686 *value = ZPL_VERSION; 1687 break; 1688 case ZFS_PROP_NORMALIZE: 1689 case ZFS_PROP_UTF8ONLY: 1690 *value = 0; 1691 break; 1692 case ZFS_PROP_CASE: 1693 *value = ZFS_CASE_SENSITIVE; 1694 break; 1695 default: 1696 return (error); 1697 } 1698 error = 0; 1699 } 1700 return (error); 1701 } 1702 1703 static vfsdef_t vfw = { 1704 VFSDEF_VERSION, 1705 MNTTYPE_ZFS, 1706 zfs_vfsinit, 1707 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 1708 VSW_XID, 1709 &zfs_mntopts 1710 }; 1711 1712 struct modlfs zfs_modlfs = { 1713 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1714 }; 1715