xref: /titanic_51/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision 39cd77a06f56f308333bd7b2d8aae1b1467be113)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /* Portions Copyright 2010 Robert Milkowski */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/mntent.h>
37 #include <sys/mount.h>
38 #include <sys/cmn_err.h>
39 #include "fs/fs_subr.h"
40 #include <sys/zfs_znode.h>
41 #include <sys/zfs_dir.h>
42 #include <sys/zil.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/dmu.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dsl_dataset.h>
47 #include <sys/dsl_deleg.h>
48 #include <sys/spa.h>
49 #include <sys/zap.h>
50 #include <sys/sa.h>
51 #include <sys/varargs.h>
52 #include <sys/policy.h>
53 #include <sys/atomic.h>
54 #include <sys/mkdev.h>
55 #include <sys/modctl.h>
56 #include <sys/refstr.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/zfs_ctldir.h>
59 #include <sys/zfs_fuid.h>
60 #include <sys/bootconf.h>
61 #include <sys/sunddi.h>
62 #include <sys/dnlc.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/spa_boot.h>
65 #include <sys/sa.h>
66 #include "zfs_comutil.h"
67 
68 int zfsfstype;
69 vfsops_t *zfs_vfsops = NULL;
70 static major_t zfs_major;
71 static minor_t zfs_minor;
72 static kmutex_t	zfs_dev_mtx;
73 
74 extern int sys_shutdown;
75 
76 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
77 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
78 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
79 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
80 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
81 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
82 static void zfs_freevfs(vfs_t *vfsp);
83 
84 static const fs_operation_def_t zfs_vfsops_template[] = {
85 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
86 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
87 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
88 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
89 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
90 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
91 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
92 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
93 	NULL,			NULL
94 };
95 
96 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
97 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
98 	NULL,			NULL
99 };
100 
101 /*
102  * We need to keep a count of active fs's.
103  * This is necessary to prevent our module
104  * from being unloaded after a umount -f
105  */
106 static uint32_t	zfs_active_fs_count = 0;
107 
108 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
109 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
110 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
111 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
112 
113 /*
114  * MO_DEFAULT is not used since the default value is determined
115  * by the equivalent property.
116  */
117 static mntopt_t mntopts[] = {
118 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
119 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
120 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
121 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
122 };
123 
124 static mntopts_t zfs_mntopts = {
125 	sizeof (mntopts) / sizeof (mntopt_t),
126 	mntopts
127 };
128 
129 /*ARGSUSED*/
130 int
131 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
132 {
133 	/*
134 	 * Data integrity is job one.  We don't want a compromised kernel
135 	 * writing to the storage pool, so we never sync during panic.
136 	 */
137 	if (panicstr)
138 		return (0);
139 
140 	/*
141 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
142 	 * to sync metadata, which they would otherwise cache indefinitely.
143 	 * Semantically, the only requirement is that the sync be initiated.
144 	 * The DMU syncs out txgs frequently, so there's nothing to do.
145 	 */
146 	if (flag & SYNC_ATTR)
147 		return (0);
148 
149 	if (vfsp != NULL) {
150 		/*
151 		 * Sync a specific filesystem.
152 		 */
153 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
154 		dsl_pool_t *dp;
155 
156 		ZFS_ENTER(zfsvfs);
157 		dp = dmu_objset_pool(zfsvfs->z_os);
158 
159 		/*
160 		 * If the system is shutting down, then skip any
161 		 * filesystems which may exist on a suspended pool.
162 		 */
163 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
164 			ZFS_EXIT(zfsvfs);
165 			return (0);
166 		}
167 
168 		if (zfsvfs->z_log != NULL)
169 			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
170 
171 		ZFS_EXIT(zfsvfs);
172 	} else {
173 		/*
174 		 * Sync all ZFS filesystems.  This is what happens when you
175 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
176 		 * request by waiting for all pools to commit all dirty data.
177 		 */
178 		spa_sync_allpools();
179 	}
180 
181 	return (0);
182 }
183 
184 static int
185 zfs_create_unique_device(dev_t *dev)
186 {
187 	major_t new_major;
188 
189 	do {
190 		ASSERT3U(zfs_minor, <=, MAXMIN32);
191 		minor_t start = zfs_minor;
192 		do {
193 			mutex_enter(&zfs_dev_mtx);
194 			if (zfs_minor >= MAXMIN32) {
195 				/*
196 				 * If we're still using the real major
197 				 * keep out of /dev/zfs and /dev/zvol minor
198 				 * number space.  If we're using a getudev()'ed
199 				 * major number, we can use all of its minors.
200 				 */
201 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
202 					zfs_minor = ZFS_MIN_MINOR;
203 				else
204 					zfs_minor = 0;
205 			} else {
206 				zfs_minor++;
207 			}
208 			*dev = makedevice(zfs_major, zfs_minor);
209 			mutex_exit(&zfs_dev_mtx);
210 		} while (vfs_devismounted(*dev) && zfs_minor != start);
211 		if (zfs_minor == start) {
212 			/*
213 			 * We are using all ~262,000 minor numbers for the
214 			 * current major number.  Create a new major number.
215 			 */
216 			if ((new_major = getudev()) == (major_t)-1) {
217 				cmn_err(CE_WARN,
218 				    "zfs_mount: Can't get unique major "
219 				    "device number.");
220 				return (-1);
221 			}
222 			mutex_enter(&zfs_dev_mtx);
223 			zfs_major = new_major;
224 			zfs_minor = 0;
225 
226 			mutex_exit(&zfs_dev_mtx);
227 		} else {
228 			break;
229 		}
230 		/* CONSTANTCONDITION */
231 	} while (1);
232 
233 	return (0);
234 }
235 
236 static void
237 atime_changed_cb(void *arg, uint64_t newval)
238 {
239 	zfsvfs_t *zfsvfs = arg;
240 
241 	if (newval == TRUE) {
242 		zfsvfs->z_atime = TRUE;
243 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
244 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
245 	} else {
246 		zfsvfs->z_atime = FALSE;
247 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
248 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
249 	}
250 }
251 
252 static void
253 xattr_changed_cb(void *arg, uint64_t newval)
254 {
255 	zfsvfs_t *zfsvfs = arg;
256 
257 	if (newval == TRUE) {
258 		/* XXX locking on vfs_flag? */
259 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
260 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
261 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
262 	} else {
263 		/* XXX locking on vfs_flag? */
264 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
265 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
266 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
267 	}
268 }
269 
270 static void
271 blksz_changed_cb(void *arg, uint64_t newval)
272 {
273 	zfsvfs_t *zfsvfs = arg;
274 
275 	if (newval < SPA_MINBLOCKSIZE ||
276 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
277 		newval = SPA_MAXBLOCKSIZE;
278 
279 	zfsvfs->z_max_blksz = newval;
280 	zfsvfs->z_vfs->vfs_bsize = newval;
281 }
282 
283 static void
284 readonly_changed_cb(void *arg, uint64_t newval)
285 {
286 	zfsvfs_t *zfsvfs = arg;
287 
288 	if (newval) {
289 		/* XXX locking on vfs_flag? */
290 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
291 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
292 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
293 	} else {
294 		/* XXX locking on vfs_flag? */
295 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
296 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
297 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
298 	}
299 }
300 
301 static void
302 devices_changed_cb(void *arg, uint64_t newval)
303 {
304 	zfsvfs_t *zfsvfs = arg;
305 
306 	if (newval == FALSE) {
307 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
308 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
309 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
310 	} else {
311 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
312 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
313 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
314 	}
315 }
316 
317 static void
318 setuid_changed_cb(void *arg, uint64_t newval)
319 {
320 	zfsvfs_t *zfsvfs = arg;
321 
322 	if (newval == FALSE) {
323 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
324 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
325 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
326 	} else {
327 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
328 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
329 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
330 	}
331 }
332 
333 static void
334 exec_changed_cb(void *arg, uint64_t newval)
335 {
336 	zfsvfs_t *zfsvfs = arg;
337 
338 	if (newval == FALSE) {
339 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
340 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
341 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
342 	} else {
343 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
344 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
345 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
346 	}
347 }
348 
349 /*
350  * The nbmand mount option can be changed at mount time.
351  * We can't allow it to be toggled on live file systems or incorrect
352  * behavior may be seen from cifs clients
353  *
354  * This property isn't registered via dsl_prop_register(), but this callback
355  * will be called when a file system is first mounted
356  */
357 static void
358 nbmand_changed_cb(void *arg, uint64_t newval)
359 {
360 	zfsvfs_t *zfsvfs = arg;
361 	if (newval == FALSE) {
362 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
363 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
364 	} else {
365 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
366 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
367 	}
368 }
369 
370 static void
371 snapdir_changed_cb(void *arg, uint64_t newval)
372 {
373 	zfsvfs_t *zfsvfs = arg;
374 
375 	zfsvfs->z_show_ctldir = newval;
376 }
377 
378 static void
379 vscan_changed_cb(void *arg, uint64_t newval)
380 {
381 	zfsvfs_t *zfsvfs = arg;
382 
383 	zfsvfs->z_vscan = newval;
384 }
385 
386 static void
387 acl_inherit_changed_cb(void *arg, uint64_t newval)
388 {
389 	zfsvfs_t *zfsvfs = arg;
390 
391 	zfsvfs->z_acl_inherit = newval;
392 }
393 
394 static int
395 zfs_register_callbacks(vfs_t *vfsp)
396 {
397 	struct dsl_dataset *ds = NULL;
398 	objset_t *os = NULL;
399 	zfsvfs_t *zfsvfs = NULL;
400 	uint64_t nbmand;
401 	int readonly, do_readonly = B_FALSE;
402 	int setuid, do_setuid = B_FALSE;
403 	int exec, do_exec = B_FALSE;
404 	int devices, do_devices = B_FALSE;
405 	int xattr, do_xattr = B_FALSE;
406 	int atime, do_atime = B_FALSE;
407 	int error = 0;
408 
409 	ASSERT(vfsp);
410 	zfsvfs = vfsp->vfs_data;
411 	ASSERT(zfsvfs);
412 	os = zfsvfs->z_os;
413 
414 	/*
415 	 * The act of registering our callbacks will destroy any mount
416 	 * options we may have.  In order to enable temporary overrides
417 	 * of mount options, we stash away the current values and
418 	 * restore them after we register the callbacks.
419 	 */
420 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
421 		readonly = B_TRUE;
422 		do_readonly = B_TRUE;
423 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
424 		readonly = B_FALSE;
425 		do_readonly = B_TRUE;
426 	}
427 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
428 		devices = B_FALSE;
429 		setuid = B_FALSE;
430 		do_devices = B_TRUE;
431 		do_setuid = B_TRUE;
432 	} else {
433 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
434 			devices = B_FALSE;
435 			do_devices = B_TRUE;
436 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
437 			devices = B_TRUE;
438 			do_devices = B_TRUE;
439 		}
440 
441 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
442 			setuid = B_FALSE;
443 			do_setuid = B_TRUE;
444 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
445 			setuid = B_TRUE;
446 			do_setuid = B_TRUE;
447 		}
448 	}
449 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
450 		exec = B_FALSE;
451 		do_exec = B_TRUE;
452 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
453 		exec = B_TRUE;
454 		do_exec = B_TRUE;
455 	}
456 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
457 		xattr = B_FALSE;
458 		do_xattr = B_TRUE;
459 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
460 		xattr = B_TRUE;
461 		do_xattr = B_TRUE;
462 	}
463 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
464 		atime = B_FALSE;
465 		do_atime = B_TRUE;
466 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
467 		atime = B_TRUE;
468 		do_atime = B_TRUE;
469 	}
470 
471 	/*
472 	 * nbmand is a special property.  It can only be changed at
473 	 * mount time.
474 	 *
475 	 * This is weird, but it is documented to only be changeable
476 	 * at mount time.
477 	 */
478 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
479 		nbmand = B_FALSE;
480 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
481 		nbmand = B_TRUE;
482 	} else {
483 		char osname[MAXNAMELEN];
484 
485 		dmu_objset_name(os, osname);
486 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
487 		    NULL)) {
488 			return (error);
489 		}
490 	}
491 
492 	/*
493 	 * Register property callbacks.
494 	 *
495 	 * It would probably be fine to just check for i/o error from
496 	 * the first prop_register(), but I guess I like to go
497 	 * overboard...
498 	 */
499 	ds = dmu_objset_ds(os);
500 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
501 	error = error ? error : dsl_prop_register(ds,
502 	    "xattr", xattr_changed_cb, zfsvfs);
503 	error = error ? error : dsl_prop_register(ds,
504 	    "recordsize", blksz_changed_cb, zfsvfs);
505 	error = error ? error : dsl_prop_register(ds,
506 	    "readonly", readonly_changed_cb, zfsvfs);
507 	error = error ? error : dsl_prop_register(ds,
508 	    "devices", devices_changed_cb, zfsvfs);
509 	error = error ? error : dsl_prop_register(ds,
510 	    "setuid", setuid_changed_cb, zfsvfs);
511 	error = error ? error : dsl_prop_register(ds,
512 	    "exec", exec_changed_cb, zfsvfs);
513 	error = error ? error : dsl_prop_register(ds,
514 	    "snapdir", snapdir_changed_cb, zfsvfs);
515 	error = error ? error : dsl_prop_register(ds,
516 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
517 	error = error ? error : dsl_prop_register(ds,
518 	    "vscan", vscan_changed_cb, zfsvfs);
519 	if (error)
520 		goto unregister;
521 
522 	/*
523 	 * Invoke our callbacks to restore temporary mount options.
524 	 */
525 	if (do_readonly)
526 		readonly_changed_cb(zfsvfs, readonly);
527 	if (do_setuid)
528 		setuid_changed_cb(zfsvfs, setuid);
529 	if (do_exec)
530 		exec_changed_cb(zfsvfs, exec);
531 	if (do_devices)
532 		devices_changed_cb(zfsvfs, devices);
533 	if (do_xattr)
534 		xattr_changed_cb(zfsvfs, xattr);
535 	if (do_atime)
536 		atime_changed_cb(zfsvfs, atime);
537 
538 	nbmand_changed_cb(zfsvfs, nbmand);
539 
540 	return (0);
541 
542 unregister:
543 	/*
544 	 * We may attempt to unregister some callbacks that are not
545 	 * registered, but this is OK; it will simply return ENOMSG,
546 	 * which we will ignore.
547 	 */
548 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
549 	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
550 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
551 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
552 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
553 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
554 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
555 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
556 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
557 	    zfsvfs);
558 	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
559 	return (error);
560 
561 }
562 
563 static int
564 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
565     uint64_t *userp, uint64_t *groupp)
566 {
567 	znode_phys_t *znp = data;
568 	int error = 0;
569 
570 	/*
571 	 * Is it a valid type of object to track?
572 	 */
573 	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
574 		return (ENOENT);
575 
576 	/*
577 	 * If we have a NULL data pointer
578 	 * then assume the id's aren't changing and
579 	 * return EEXIST to the dmu to let it know to
580 	 * use the same ids
581 	 */
582 	if (data == NULL)
583 		return (EEXIST);
584 
585 	if (bonustype == DMU_OT_ZNODE) {
586 		*userp = znp->zp_uid;
587 		*groupp = znp->zp_gid;
588 	} else {
589 		int hdrsize;
590 
591 		ASSERT(bonustype == DMU_OT_SA);
592 		hdrsize = sa_hdrsize(data);
593 
594 		if (hdrsize != 0) {
595 			*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
596 			    SA_UID_OFFSET));
597 			*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
598 			    SA_GID_OFFSET));
599 		} else {
600 			/*
601 			 * This should only happen for newly created
602 			 * files that haven't had the znode data filled
603 			 * in yet.
604 			 */
605 			*userp = 0;
606 			*groupp = 0;
607 		}
608 	}
609 	return (error);
610 }
611 
612 static void
613 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
614     char *domainbuf, int buflen, uid_t *ridp)
615 {
616 	uint64_t fuid;
617 	const char *domain;
618 
619 	fuid = strtonum(fuidstr, NULL);
620 
621 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
622 	if (domain)
623 		(void) strlcpy(domainbuf, domain, buflen);
624 	else
625 		domainbuf[0] = '\0';
626 	*ridp = FUID_RID(fuid);
627 }
628 
629 static uint64_t
630 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
631 {
632 	switch (type) {
633 	case ZFS_PROP_USERUSED:
634 		return (DMU_USERUSED_OBJECT);
635 	case ZFS_PROP_GROUPUSED:
636 		return (DMU_GROUPUSED_OBJECT);
637 	case ZFS_PROP_USERQUOTA:
638 		return (zfsvfs->z_userquota_obj);
639 	case ZFS_PROP_GROUPQUOTA:
640 		return (zfsvfs->z_groupquota_obj);
641 	}
642 	return (0);
643 }
644 
645 int
646 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
647     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
648 {
649 	int error;
650 	zap_cursor_t zc;
651 	zap_attribute_t za;
652 	zfs_useracct_t *buf = vbuf;
653 	uint64_t obj;
654 
655 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
656 		return (ENOTSUP);
657 
658 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
659 	if (obj == 0) {
660 		*bufsizep = 0;
661 		return (0);
662 	}
663 
664 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
665 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
666 	    zap_cursor_advance(&zc)) {
667 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
668 		    *bufsizep)
669 			break;
670 
671 		fuidstr_to_sid(zfsvfs, za.za_name,
672 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
673 
674 		buf->zu_space = za.za_first_integer;
675 		buf++;
676 	}
677 	if (error == ENOENT)
678 		error = 0;
679 
680 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
681 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
682 	*cookiep = zap_cursor_serialize(&zc);
683 	zap_cursor_fini(&zc);
684 	return (error);
685 }
686 
687 /*
688  * buf must be big enough (eg, 32 bytes)
689  */
690 static int
691 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
692     char *buf, boolean_t addok)
693 {
694 	uint64_t fuid;
695 	int domainid = 0;
696 
697 	if (domain && domain[0]) {
698 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
699 		if (domainid == -1)
700 			return (ENOENT);
701 	}
702 	fuid = FUID_ENCODE(domainid, rid);
703 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
704 	return (0);
705 }
706 
707 int
708 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
709     const char *domain, uint64_t rid, uint64_t *valp)
710 {
711 	char buf[32];
712 	int err;
713 	uint64_t obj;
714 
715 	*valp = 0;
716 
717 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
718 		return (ENOTSUP);
719 
720 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
721 	if (obj == 0)
722 		return (0);
723 
724 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
725 	if (err)
726 		return (err);
727 
728 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
729 	if (err == ENOENT)
730 		err = 0;
731 	return (err);
732 }
733 
734 int
735 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
736     const char *domain, uint64_t rid, uint64_t quota)
737 {
738 	char buf[32];
739 	int err;
740 	dmu_tx_t *tx;
741 	uint64_t *objp;
742 	boolean_t fuid_dirtied;
743 
744 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
745 		return (EINVAL);
746 
747 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
748 		return (ENOTSUP);
749 
750 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
751 	    &zfsvfs->z_groupquota_obj;
752 
753 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
754 	if (err)
755 		return (err);
756 	fuid_dirtied = zfsvfs->z_fuid_dirty;
757 
758 	tx = dmu_tx_create(zfsvfs->z_os);
759 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
760 	if (*objp == 0) {
761 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
762 		    zfs_userquota_prop_prefixes[type]);
763 	}
764 	if (fuid_dirtied)
765 		zfs_fuid_txhold(zfsvfs, tx);
766 	err = dmu_tx_assign(tx, TXG_WAIT);
767 	if (err) {
768 		dmu_tx_abort(tx);
769 		return (err);
770 	}
771 
772 	mutex_enter(&zfsvfs->z_lock);
773 	if (*objp == 0) {
774 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
775 		    DMU_OT_NONE, 0, tx);
776 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
777 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
778 	}
779 	mutex_exit(&zfsvfs->z_lock);
780 
781 	if (quota == 0) {
782 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
783 		if (err == ENOENT)
784 			err = 0;
785 	} else {
786 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
787 	}
788 	ASSERT(err == 0);
789 	if (fuid_dirtied)
790 		zfs_fuid_sync(zfsvfs, tx);
791 	dmu_tx_commit(tx);
792 	return (err);
793 }
794 
795 boolean_t
796 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
797 {
798 	char buf[32];
799 	uint64_t used, quota, usedobj, quotaobj;
800 	int err;
801 
802 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
803 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
804 
805 	if (quotaobj == 0 || zfsvfs->z_replay)
806 		return (B_FALSE);
807 
808 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
809 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
810 	if (err != 0)
811 		return (B_FALSE);
812 
813 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
814 	if (err != 0)
815 		return (B_FALSE);
816 	return (used >= quota);
817 }
818 
819 boolean_t
820 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
821 {
822 	uint64_t fuid;
823 	uint64_t quotaobj;
824 	uid_t id;
825 
826 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
827 
828 	id = isgroup ? zp->z_gid : zp->z_uid;
829 
830 	if (quotaobj == 0 || zfsvfs->z_replay)
831 		return (B_FALSE);
832 
833 	if (IS_EPHEMERAL(id)) {
834 		VERIFY(0 == sa_lookup(zp->z_sa_hdl,
835 		    isgroup ? SA_ZPL_GID(zfsvfs) : SA_ZPL_UID(zfsvfs),
836 		    &fuid, sizeof (fuid)));
837 	} else {
838 		fuid = (uint64_t)id;
839 	}
840 
841 	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
842 }
843 
844 int
845 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
846 {
847 	objset_t *os;
848 	zfsvfs_t *zfsvfs;
849 	uint64_t zval;
850 	int i, error;
851 	uint64_t sa_obj;
852 
853 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
854 
855 	/*
856 	 * We claim to always be readonly so we can open snapshots;
857 	 * other ZPL code will prevent us from writing to snapshots.
858 	 */
859 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
860 	if (error) {
861 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
862 		return (error);
863 	}
864 
865 	/*
866 	 * Initialize the zfs-specific filesystem structure.
867 	 * Should probably make this a kmem cache, shuffle fields,
868 	 * and just bzero up to z_hold_mtx[].
869 	 */
870 	zfsvfs->z_vfs = NULL;
871 	zfsvfs->z_parent = zfsvfs;
872 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
873 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
874 	zfsvfs->z_os = os;
875 
876 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
877 	if (error) {
878 		goto out;
879 	} else if (zfsvfs->z_version >
880 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
881 		(void) printf("Can't mount a version %lld file system "
882 		    "on a version %lld pool\n. Pool must be upgraded to mount "
883 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
884 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
885 		error = ENOTSUP;
886 		goto out;
887 	}
888 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
889 		goto out;
890 	zfsvfs->z_norm = (int)zval;
891 
892 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
893 		goto out;
894 	zfsvfs->z_utf8 = (zval != 0);
895 
896 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
897 		goto out;
898 	zfsvfs->z_case = (uint_t)zval;
899 
900 	/*
901 	 * Fold case on file systems that are always or sometimes case
902 	 * insensitive.
903 	 */
904 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
905 	    zfsvfs->z_case == ZFS_CASE_MIXED)
906 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
907 
908 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
909 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
910 
911 	if (zfsvfs->z_use_sa) {
912 		/* should either have both of these objects or none */
913 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
914 		    &sa_obj);
915 		if (error)
916 			return (error);
917 	} else {
918 		/*
919 		 * Pre SA versions file systems should never touch
920 		 * either the attribute registration or layout objects.
921 		 */
922 		sa_obj = 0;
923 	}
924 
925 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
926 	    &zfsvfs->z_attr_table);
927 	if (error)
928 		goto out;
929 
930 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
931 		sa_register_update_callback(os, zfs_sa_upgrade);
932 
933 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
934 	    &zfsvfs->z_root);
935 	if (error)
936 		goto out;
937 	ASSERT(zfsvfs->z_root != 0);
938 
939 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
940 	    &zfsvfs->z_unlinkedobj);
941 	if (error)
942 		goto out;
943 
944 	error = zap_lookup(os, MASTER_NODE_OBJ,
945 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
946 	    8, 1, &zfsvfs->z_userquota_obj);
947 	if (error && error != ENOENT)
948 		goto out;
949 
950 	error = zap_lookup(os, MASTER_NODE_OBJ,
951 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
952 	    8, 1, &zfsvfs->z_groupquota_obj);
953 	if (error && error != ENOENT)
954 		goto out;
955 
956 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
957 	    &zfsvfs->z_fuid_obj);
958 	if (error && error != ENOENT)
959 		goto out;
960 
961 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
962 	    &zfsvfs->z_shares_dir);
963 	if (error && error != ENOENT)
964 		goto out;
965 
966 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
967 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
968 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
969 	    offsetof(znode_t, z_link_node));
970 	rrw_init(&zfsvfs->z_teardown_lock);
971 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
972 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
973 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
974 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
975 
976 	*zfvp = zfsvfs;
977 	return (0);
978 
979 out:
980 	dmu_objset_disown(os, zfsvfs);
981 	*zfvp = NULL;
982 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
983 	return (error);
984 }
985 
986 static int
987 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
988 {
989 	int error;
990 
991 	error = zfs_register_callbacks(zfsvfs->z_vfs);
992 	if (error)
993 		return (error);
994 
995 	/*
996 	 * Set the objset user_ptr to track its zfsvfs.
997 	 */
998 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
999 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1000 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1001 
1002 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1003 
1004 	/*
1005 	 * If we are not mounting (ie: online recv), then we don't
1006 	 * have to worry about replaying the log as we blocked all
1007 	 * operations out since we closed the ZIL.
1008 	 */
1009 	if (mounting) {
1010 		boolean_t readonly;
1011 
1012 		/*
1013 		 * During replay we remove the read only flag to
1014 		 * allow replays to succeed.
1015 		 */
1016 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1017 		if (readonly != 0)
1018 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1019 		else
1020 			zfs_unlinked_drain(zfsvfs);
1021 
1022 		/*
1023 		 * Parse and replay the intent log.
1024 		 *
1025 		 * Because of ziltest, this must be done after
1026 		 * zfs_unlinked_drain().  (Further note: ziltest
1027 		 * doesn't use readonly mounts, where
1028 		 * zfs_unlinked_drain() isn't called.)  This is because
1029 		 * ziltest causes spa_sync() to think it's committed,
1030 		 * but actually it is not, so the intent log contains
1031 		 * many txg's worth of changes.
1032 		 *
1033 		 * In particular, if object N is in the unlinked set in
1034 		 * the last txg to actually sync, then it could be
1035 		 * actually freed in a later txg and then reallocated
1036 		 * in a yet later txg.  This would write a "create
1037 		 * object N" record to the intent log.  Normally, this
1038 		 * would be fine because the spa_sync() would have
1039 		 * written out the fact that object N is free, before
1040 		 * we could write the "create object N" intent log
1041 		 * record.
1042 		 *
1043 		 * But when we are in ziltest mode, we advance the "open
1044 		 * txg" without actually spa_sync()-ing the changes to
1045 		 * disk.  So we would see that object N is still
1046 		 * allocated and in the unlinked set, and there is an
1047 		 * intent log record saying to allocate it.
1048 		 */
1049 		if (zil_replay_disable) {
1050 			zil_destroy(zfsvfs->z_log, B_FALSE);
1051 		} else {
1052 			zfsvfs->z_replay = B_TRUE;
1053 			zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector);
1054 			zfsvfs->z_replay = B_FALSE;
1055 		}
1056 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1057 	}
1058 
1059 	return (0);
1060 }
1061 
1062 void
1063 zfsvfs_free(zfsvfs_t *zfsvfs)
1064 {
1065 	int i;
1066 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1067 
1068 	/*
1069 	 * This is a barrier to prevent the filesystem from going away in
1070 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1071 	 * not unmounted. We consider the filesystem valid before the barrier
1072 	 * and invalid after the barrier.
1073 	 */
1074 	rw_enter(&zfsvfs_lock, RW_READER);
1075 	rw_exit(&zfsvfs_lock);
1076 
1077 	zfs_fuid_destroy(zfsvfs);
1078 
1079 	mutex_destroy(&zfsvfs->z_znodes_lock);
1080 	mutex_destroy(&zfsvfs->z_lock);
1081 	list_destroy(&zfsvfs->z_all_znodes);
1082 	rrw_destroy(&zfsvfs->z_teardown_lock);
1083 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1084 	rw_destroy(&zfsvfs->z_fuid_lock);
1085 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1086 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1087 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1088 }
1089 
1090 static void
1091 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1092 {
1093 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1094 	if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
1095 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1096 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1097 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1098 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1099 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1100 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1101 	}
1102 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1103 }
1104 
1105 static int
1106 zfs_domount(vfs_t *vfsp, char *osname)
1107 {
1108 	dev_t mount_dev;
1109 	uint64_t recordsize, fsid_guid;
1110 	int error = 0;
1111 	zfsvfs_t *zfsvfs;
1112 
1113 	ASSERT(vfsp);
1114 	ASSERT(osname);
1115 
1116 	error = zfsvfs_create(osname, &zfsvfs);
1117 	if (error)
1118 		return (error);
1119 	zfsvfs->z_vfs = vfsp;
1120 
1121 	/* Initialize the generic filesystem structure. */
1122 	vfsp->vfs_bcount = 0;
1123 	vfsp->vfs_data = NULL;
1124 
1125 	if (zfs_create_unique_device(&mount_dev) == -1) {
1126 		error = ENODEV;
1127 		goto out;
1128 	}
1129 	ASSERT(vfs_devismounted(mount_dev) == 0);
1130 
1131 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1132 	    NULL))
1133 		goto out;
1134 
1135 	vfsp->vfs_dev = mount_dev;
1136 	vfsp->vfs_fstype = zfsfstype;
1137 	vfsp->vfs_bsize = recordsize;
1138 	vfsp->vfs_flag |= VFS_NOTRUNC;
1139 	vfsp->vfs_data = zfsvfs;
1140 
1141 	/*
1142 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1143 	 * separates our fsid from any other filesystem types, and a
1144 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1145 	 * all objsets open on this system, provided by unique_create().
1146 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1147 	 * because that's where other Solaris filesystems put it.
1148 	 */
1149 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1150 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1151 	vfsp->vfs_fsid.val[0] = fsid_guid;
1152 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1153 	    zfsfstype & 0xFF;
1154 
1155 	/*
1156 	 * Set features for file system.
1157 	 */
1158 	zfs_set_fuid_feature(zfsvfs);
1159 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1160 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1161 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1162 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1163 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1164 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1165 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1166 	}
1167 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1168 
1169 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1170 		uint64_t pval;
1171 
1172 		atime_changed_cb(zfsvfs, B_FALSE);
1173 		readonly_changed_cb(zfsvfs, B_TRUE);
1174 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1175 			goto out;
1176 		xattr_changed_cb(zfsvfs, pval);
1177 		zfsvfs->z_issnap = B_TRUE;
1178 
1179 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1180 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1181 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1182 	} else {
1183 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1184 	}
1185 
1186 	if (!zfsvfs->z_issnap)
1187 		zfsctl_create(zfsvfs);
1188 out:
1189 	if (error) {
1190 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1191 		zfsvfs_free(zfsvfs);
1192 	} else {
1193 		atomic_add_32(&zfs_active_fs_count, 1);
1194 	}
1195 
1196 	return (error);
1197 }
1198 
1199 void
1200 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1201 {
1202 	objset_t *os = zfsvfs->z_os;
1203 	struct dsl_dataset *ds;
1204 
1205 	/*
1206 	 * Unregister properties.
1207 	 */
1208 	if (!dmu_objset_is_snapshot(os)) {
1209 		ds = dmu_objset_ds(os);
1210 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1211 		    zfsvfs) == 0);
1212 
1213 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1214 		    zfsvfs) == 0);
1215 
1216 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1217 		    zfsvfs) == 0);
1218 
1219 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1220 		    zfsvfs) == 0);
1221 
1222 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1223 		    zfsvfs) == 0);
1224 
1225 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1226 		    zfsvfs) == 0);
1227 
1228 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1229 		    zfsvfs) == 0);
1230 
1231 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1232 		    zfsvfs) == 0);
1233 
1234 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1235 		    acl_inherit_changed_cb, zfsvfs) == 0);
1236 
1237 		VERIFY(dsl_prop_unregister(ds, "vscan",
1238 		    vscan_changed_cb, zfsvfs) == 0);
1239 	}
1240 }
1241 
1242 /*
1243  * Convert a decimal digit string to a uint64_t integer.
1244  */
1245 static int
1246 str_to_uint64(char *str, uint64_t *objnum)
1247 {
1248 	uint64_t num = 0;
1249 
1250 	while (*str) {
1251 		if (*str < '0' || *str > '9')
1252 			return (EINVAL);
1253 
1254 		num = num*10 + *str++ - '0';
1255 	}
1256 
1257 	*objnum = num;
1258 	return (0);
1259 }
1260 
1261 /*
1262  * The boot path passed from the boot loader is in the form of
1263  * "rootpool-name/root-filesystem-object-number'. Convert this
1264  * string to a dataset name: "rootpool-name/root-filesystem-name".
1265  */
1266 static int
1267 zfs_parse_bootfs(char *bpath, char *outpath)
1268 {
1269 	char *slashp;
1270 	uint64_t objnum;
1271 	int error;
1272 
1273 	if (*bpath == 0 || *bpath == '/')
1274 		return (EINVAL);
1275 
1276 	(void) strcpy(outpath, bpath);
1277 
1278 	slashp = strchr(bpath, '/');
1279 
1280 	/* if no '/', just return the pool name */
1281 	if (slashp == NULL) {
1282 		return (0);
1283 	}
1284 
1285 	/* if not a number, just return the root dataset name */
1286 	if (str_to_uint64(slashp+1, &objnum)) {
1287 		return (0);
1288 	}
1289 
1290 	*slashp = '\0';
1291 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1292 	*slashp = '/';
1293 
1294 	return (error);
1295 }
1296 
1297 /*
1298  * zfs_check_global_label:
1299  *	Check that the hex label string is appropriate for the dataset
1300  *	being mounted into the global_zone proper.
1301  *
1302  *	Return an error if the hex label string is not default or
1303  *	admin_low/admin_high.  For admin_low labels, the corresponding
1304  *	dataset must be readonly.
1305  */
1306 int
1307 zfs_check_global_label(const char *dsname, const char *hexsl)
1308 {
1309 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1310 		return (0);
1311 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1312 		return (0);
1313 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1314 		/* must be readonly */
1315 		uint64_t rdonly;
1316 
1317 		if (dsl_prop_get_integer(dsname,
1318 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1319 			return (EACCES);
1320 		return (rdonly ? 0 : EACCES);
1321 	}
1322 	return (EACCES);
1323 }
1324 
1325 /*
1326  * zfs_mount_label_policy:
1327  *	Determine whether the mount is allowed according to MAC check.
1328  *	by comparing (where appropriate) label of the dataset against
1329  *	the label of the zone being mounted into.  If the dataset has
1330  *	no label, create one.
1331  *
1332  *	Returns:
1333  *		 0 :	access allowed
1334  *		>0 :	error code, such as EACCES
1335  */
1336 static int
1337 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1338 {
1339 	int		error, retv;
1340 	zone_t		*mntzone = NULL;
1341 	ts_label_t	*mnt_tsl;
1342 	bslabel_t	*mnt_sl;
1343 	bslabel_t	ds_sl;
1344 	char		ds_hexsl[MAXNAMELEN];
1345 
1346 	retv = EACCES;				/* assume the worst */
1347 
1348 	/*
1349 	 * Start by getting the dataset label if it exists.
1350 	 */
1351 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1352 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1353 	if (error)
1354 		return (EACCES);
1355 
1356 	/*
1357 	 * If labeling is NOT enabled, then disallow the mount of datasets
1358 	 * which have a non-default label already.  No other label checks
1359 	 * are needed.
1360 	 */
1361 	if (!is_system_labeled()) {
1362 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1363 			return (0);
1364 		return (EACCES);
1365 	}
1366 
1367 	/*
1368 	 * Get the label of the mountpoint.  If mounting into the global
1369 	 * zone (i.e. mountpoint is not within an active zone and the
1370 	 * zoned property is off), the label must be default or
1371 	 * admin_low/admin_high only; no other checks are needed.
1372 	 */
1373 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1374 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1375 		uint64_t zoned;
1376 
1377 		zone_rele(mntzone);
1378 
1379 		if (dsl_prop_get_integer(osname,
1380 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1381 			return (EACCES);
1382 		if (!zoned)
1383 			return (zfs_check_global_label(osname, ds_hexsl));
1384 		else
1385 			/*
1386 			 * This is the case of a zone dataset being mounted
1387 			 * initially, before the zone has been fully created;
1388 			 * allow this mount into global zone.
1389 			 */
1390 			return (0);
1391 	}
1392 
1393 	mnt_tsl = mntzone->zone_slabel;
1394 	ASSERT(mnt_tsl != NULL);
1395 	label_hold(mnt_tsl);
1396 	mnt_sl = label2bslabel(mnt_tsl);
1397 
1398 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1399 		/*
1400 		 * The dataset doesn't have a real label, so fabricate one.
1401 		 */
1402 		char *str = NULL;
1403 
1404 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1405 		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1406 		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1407 			retv = 0;
1408 		if (str != NULL)
1409 			kmem_free(str, strlen(str) + 1);
1410 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1411 		/*
1412 		 * Now compare labels to complete the MAC check.  If the
1413 		 * labels are equal then allow access.  If the mountpoint
1414 		 * label dominates the dataset label, allow readonly access.
1415 		 * Otherwise, access is denied.
1416 		 */
1417 		if (blequal(mnt_sl, &ds_sl))
1418 			retv = 0;
1419 		else if (bldominates(mnt_sl, &ds_sl)) {
1420 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1421 			retv = 0;
1422 		}
1423 	}
1424 
1425 	label_rele(mnt_tsl);
1426 	zone_rele(mntzone);
1427 	return (retv);
1428 }
1429 
1430 static int
1431 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1432 {
1433 	int error = 0;
1434 	static int zfsrootdone = 0;
1435 	zfsvfs_t *zfsvfs = NULL;
1436 	znode_t *zp = NULL;
1437 	vnode_t *vp = NULL;
1438 	char *zfs_bootfs;
1439 	char *zfs_devid;
1440 
1441 	ASSERT(vfsp);
1442 
1443 	/*
1444 	 * The filesystem that we mount as root is defined in the
1445 	 * boot property "zfs-bootfs" with a format of
1446 	 * "poolname/root-dataset-objnum".
1447 	 */
1448 	if (why == ROOT_INIT) {
1449 		if (zfsrootdone++)
1450 			return (EBUSY);
1451 		/*
1452 		 * the process of doing a spa_load will require the
1453 		 * clock to be set before we could (for example) do
1454 		 * something better by looking at the timestamp on
1455 		 * an uberblock, so just set it to -1.
1456 		 */
1457 		clkset(-1);
1458 
1459 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1460 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1461 			    "bootfs name");
1462 			return (EINVAL);
1463 		}
1464 		zfs_devid = spa_get_bootprop("diskdevid");
1465 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1466 		if (zfs_devid)
1467 			spa_free_bootprop(zfs_devid);
1468 		if (error) {
1469 			spa_free_bootprop(zfs_bootfs);
1470 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1471 			    error);
1472 			return (error);
1473 		}
1474 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1475 			spa_free_bootprop(zfs_bootfs);
1476 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1477 			    error);
1478 			return (error);
1479 		}
1480 
1481 		spa_free_bootprop(zfs_bootfs);
1482 
1483 		if (error = vfs_lock(vfsp))
1484 			return (error);
1485 
1486 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1487 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1488 			goto out;
1489 		}
1490 
1491 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1492 		ASSERT(zfsvfs);
1493 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1494 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1495 			goto out;
1496 		}
1497 
1498 		vp = ZTOV(zp);
1499 		mutex_enter(&vp->v_lock);
1500 		vp->v_flag |= VROOT;
1501 		mutex_exit(&vp->v_lock);
1502 		rootvp = vp;
1503 
1504 		/*
1505 		 * Leave rootvp held.  The root file system is never unmounted.
1506 		 */
1507 
1508 		vfs_add((struct vnode *)0, vfsp,
1509 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1510 out:
1511 		vfs_unlock(vfsp);
1512 		return (error);
1513 	} else if (why == ROOT_REMOUNT) {
1514 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1515 		vfsp->vfs_flag |= VFS_REMOUNT;
1516 
1517 		/* refresh mount options */
1518 		zfs_unregister_callbacks(vfsp->vfs_data);
1519 		return (zfs_register_callbacks(vfsp));
1520 
1521 	} else if (why == ROOT_UNMOUNT) {
1522 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1523 		(void) zfs_sync(vfsp, 0, 0);
1524 		return (0);
1525 	}
1526 
1527 	/*
1528 	 * if "why" is equal to anything else other than ROOT_INIT,
1529 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1530 	 */
1531 	return (ENOTSUP);
1532 }
1533 
1534 /*ARGSUSED*/
1535 static int
1536 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1537 {
1538 	char		*osname;
1539 	pathname_t	spn;
1540 	int		error = 0;
1541 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1542 	    UIO_SYSSPACE : UIO_USERSPACE;
1543 	int		canwrite;
1544 
1545 	if (mvp->v_type != VDIR)
1546 		return (ENOTDIR);
1547 
1548 	mutex_enter(&mvp->v_lock);
1549 	if ((uap->flags & MS_REMOUNT) == 0 &&
1550 	    (uap->flags & MS_OVERLAY) == 0 &&
1551 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1552 		mutex_exit(&mvp->v_lock);
1553 		return (EBUSY);
1554 	}
1555 	mutex_exit(&mvp->v_lock);
1556 
1557 	/*
1558 	 * ZFS does not support passing unparsed data in via MS_DATA.
1559 	 * Users should use the MS_OPTIONSTR interface; this means
1560 	 * that all option parsing is already done and the options struct
1561 	 * can be interrogated.
1562 	 */
1563 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1564 		return (EINVAL);
1565 
1566 	/*
1567 	 * Get the objset name (the "special" mount argument).
1568 	 */
1569 	if (error = pn_get(uap->spec, fromspace, &spn))
1570 		return (error);
1571 
1572 	osname = spn.pn_path;
1573 
1574 	/*
1575 	 * Check for mount privilege?
1576 	 *
1577 	 * If we don't have privilege then see if
1578 	 * we have local permission to allow it
1579 	 */
1580 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1581 	if (error) {
1582 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1583 			vattr_t		vattr;
1584 
1585 			/*
1586 			 * Make sure user is the owner of the mount point
1587 			 * or has sufficient privileges.
1588 			 */
1589 
1590 			vattr.va_mask = AT_UID;
1591 
1592 			if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1593 				goto out;
1594 			}
1595 
1596 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1597 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1598 				goto out;
1599 			}
1600 			secpolicy_fs_mount_clearopts(cr, vfsp);
1601 		} else {
1602 			goto out;
1603 		}
1604 	}
1605 
1606 	/*
1607 	 * Refuse to mount a filesystem if we are in a local zone and the
1608 	 * dataset is not visible.
1609 	 */
1610 	if (!INGLOBALZONE(curproc) &&
1611 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1612 		error = EPERM;
1613 		goto out;
1614 	}
1615 
1616 	error = zfs_mount_label_policy(vfsp, osname);
1617 	if (error)
1618 		goto out;
1619 
1620 	/*
1621 	 * When doing a remount, we simply refresh our temporary properties
1622 	 * according to those options set in the current VFS options.
1623 	 */
1624 	if (uap->flags & MS_REMOUNT) {
1625 		/* refresh mount options */
1626 		zfs_unregister_callbacks(vfsp->vfs_data);
1627 		error = zfs_register_callbacks(vfsp);
1628 		goto out;
1629 	}
1630 
1631 	error = zfs_domount(vfsp, osname);
1632 
1633 	/*
1634 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1635 	 * disappear due to a forced unmount.
1636 	 */
1637 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1638 		VFS_HOLD(mvp->v_vfsp);
1639 
1640 out:
1641 	pn_free(&spn);
1642 	return (error);
1643 }
1644 
1645 static int
1646 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1647 {
1648 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1649 	dev32_t d32;
1650 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1651 
1652 	ZFS_ENTER(zfsvfs);
1653 
1654 	dmu_objset_space(zfsvfs->z_os,
1655 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1656 
1657 	/*
1658 	 * The underlying storage pool actually uses multiple block sizes.
1659 	 * We report the fragsize as the smallest block size we support,
1660 	 * and we report our blocksize as the filesystem's maximum blocksize.
1661 	 */
1662 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1663 	statp->f_bsize = zfsvfs->z_max_blksz;
1664 
1665 	/*
1666 	 * The following report "total" blocks of various kinds in the
1667 	 * file system, but reported in terms of f_frsize - the
1668 	 * "fragment" size.
1669 	 */
1670 
1671 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1672 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1673 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1674 
1675 	/*
1676 	 * statvfs() should really be called statufs(), because it assumes
1677 	 * static metadata.  ZFS doesn't preallocate files, so the best
1678 	 * we can do is report the max that could possibly fit in f_files,
1679 	 * and that minus the number actually used in f_ffree.
1680 	 * For f_ffree, report the smaller of the number of object available
1681 	 * and the number of blocks (each object will take at least a block).
1682 	 */
1683 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1684 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1685 	statp->f_files = statp->f_ffree + usedobjs;
1686 
1687 	(void) cmpldev(&d32, vfsp->vfs_dev);
1688 	statp->f_fsid = d32;
1689 
1690 	/*
1691 	 * We're a zfs filesystem.
1692 	 */
1693 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1694 
1695 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1696 
1697 	statp->f_namemax = ZFS_MAXNAMELEN;
1698 
1699 	/*
1700 	 * We have all of 32 characters to stuff a string here.
1701 	 * Is there anything useful we could/should provide?
1702 	 */
1703 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1704 
1705 	ZFS_EXIT(zfsvfs);
1706 	return (0);
1707 }
1708 
1709 static int
1710 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1711 {
1712 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1713 	znode_t *rootzp;
1714 	int error;
1715 
1716 	ZFS_ENTER(zfsvfs);
1717 
1718 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1719 	if (error == 0)
1720 		*vpp = ZTOV(rootzp);
1721 
1722 	ZFS_EXIT(zfsvfs);
1723 	return (error);
1724 }
1725 
1726 /*
1727  * Teardown the zfsvfs::z_os.
1728  *
1729  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1730  * and 'z_teardown_inactive_lock' held.
1731  */
1732 static int
1733 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1734 {
1735 	znode_t	*zp;
1736 
1737 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1738 
1739 	if (!unmounting) {
1740 		/*
1741 		 * We purge the parent filesystem's vfsp as the parent
1742 		 * filesystem and all of its snapshots have their vnode's
1743 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1744 		 * 'z_parent' is self referential for non-snapshots.
1745 		 */
1746 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1747 	}
1748 
1749 	/*
1750 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1751 	 * threads are blocked as zil_close can call zfs_inactive.
1752 	 */
1753 	if (zfsvfs->z_log) {
1754 		zil_close(zfsvfs->z_log);
1755 		zfsvfs->z_log = NULL;
1756 	}
1757 
1758 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1759 
1760 	/*
1761 	 * If we are not unmounting (ie: online recv) and someone already
1762 	 * unmounted this file system while we were doing the switcheroo,
1763 	 * or a reopen of z_os failed then just bail out now.
1764 	 */
1765 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1766 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1767 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1768 		return (EIO);
1769 	}
1770 
1771 	/*
1772 	 * At this point there are no vops active, and any new vops will
1773 	 * fail with EIO since we have z_teardown_lock for writer (only
1774 	 * relavent for forced unmount).
1775 	 *
1776 	 * Release all holds on dbufs.
1777 	 */
1778 	mutex_enter(&zfsvfs->z_znodes_lock);
1779 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1780 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1781 		if (zp->z_sa_hdl) {
1782 			ASSERT(ZTOV(zp)->v_count > 0);
1783 			zfs_znode_dmu_fini(zp);
1784 		}
1785 	mutex_exit(&zfsvfs->z_znodes_lock);
1786 
1787 	/*
1788 	 * If we are unmounting, set the unmounted flag and let new vops
1789 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1790 	 * other vops will fail with EIO.
1791 	 */
1792 	if (unmounting) {
1793 		zfsvfs->z_unmounted = B_TRUE;
1794 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1795 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1796 	}
1797 
1798 	/*
1799 	 * z_os will be NULL if there was an error in attempting to reopen
1800 	 * zfsvfs, so just return as the properties had already been
1801 	 * unregistered and cached data had been evicted before.
1802 	 */
1803 	if (zfsvfs->z_os == NULL)
1804 		return (0);
1805 
1806 	/*
1807 	 * Unregister properties.
1808 	 */
1809 	zfs_unregister_callbacks(zfsvfs);
1810 
1811 	/*
1812 	 * Evict cached data
1813 	 */
1814 	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
1815 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1816 		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1817 	}
1818 
1819 	return (0);
1820 }
1821 
1822 /*ARGSUSED*/
1823 static int
1824 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1825 {
1826 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1827 	objset_t *os;
1828 	int ret;
1829 
1830 	ret = secpolicy_fs_unmount(cr, vfsp);
1831 	if (ret) {
1832 		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1833 		    ZFS_DELEG_PERM_MOUNT, cr))
1834 			return (ret);
1835 	}
1836 
1837 	/*
1838 	 * We purge the parent filesystem's vfsp as the parent filesystem
1839 	 * and all of its snapshots have their vnode's v_vfsp set to the
1840 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1841 	 * referential for non-snapshots.
1842 	 */
1843 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1844 
1845 	/*
1846 	 * Unmount any snapshots mounted under .zfs before unmounting the
1847 	 * dataset itself.
1848 	 */
1849 	if (zfsvfs->z_ctldir != NULL &&
1850 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1851 		return (ret);
1852 	}
1853 
1854 	if (!(fflag & MS_FORCE)) {
1855 		/*
1856 		 * Check the number of active vnodes in the file system.
1857 		 * Our count is maintained in the vfs structure, but the
1858 		 * number is off by 1 to indicate a hold on the vfs
1859 		 * structure itself.
1860 		 *
1861 		 * The '.zfs' directory maintains a reference of its
1862 		 * own, and any active references underneath are
1863 		 * reflected in the vnode count.
1864 		 */
1865 		if (zfsvfs->z_ctldir == NULL) {
1866 			if (vfsp->vfs_count > 1)
1867 				return (EBUSY);
1868 		} else {
1869 			if (vfsp->vfs_count > 2 ||
1870 			    zfsvfs->z_ctldir->v_count > 1)
1871 				return (EBUSY);
1872 		}
1873 	}
1874 
1875 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1876 
1877 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1878 	os = zfsvfs->z_os;
1879 
1880 	/*
1881 	 * z_os will be NULL if there was an error in
1882 	 * attempting to reopen zfsvfs.
1883 	 */
1884 	if (os != NULL) {
1885 		/*
1886 		 * Unset the objset user_ptr.
1887 		 */
1888 		mutex_enter(&os->os_user_ptr_lock);
1889 		dmu_objset_set_user(os, NULL);
1890 		mutex_exit(&os->os_user_ptr_lock);
1891 
1892 		/*
1893 		 * Finally release the objset
1894 		 */
1895 		dmu_objset_disown(os, zfsvfs);
1896 	}
1897 
1898 	/*
1899 	 * We can now safely destroy the '.zfs' directory node.
1900 	 */
1901 	if (zfsvfs->z_ctldir != NULL)
1902 		zfsctl_destroy(zfsvfs);
1903 
1904 	return (0);
1905 }
1906 
1907 static int
1908 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1909 {
1910 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1911 	znode_t		*zp;
1912 	uint64_t	object = 0;
1913 	uint64_t	fid_gen = 0;
1914 	uint64_t	gen_mask;
1915 	uint64_t	zp_gen;
1916 	int 		i, err;
1917 
1918 	*vpp = NULL;
1919 
1920 	ZFS_ENTER(zfsvfs);
1921 
1922 	if (fidp->fid_len == LONG_FID_LEN) {
1923 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1924 		uint64_t	objsetid = 0;
1925 		uint64_t	setgen = 0;
1926 
1927 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1928 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1929 
1930 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1931 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1932 
1933 		ZFS_EXIT(zfsvfs);
1934 
1935 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1936 		if (err)
1937 			return (EINVAL);
1938 		ZFS_ENTER(zfsvfs);
1939 	}
1940 
1941 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1942 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1943 
1944 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1945 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1946 
1947 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1948 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1949 	} else {
1950 		ZFS_EXIT(zfsvfs);
1951 		return (EINVAL);
1952 	}
1953 
1954 	/* A zero fid_gen means we are in the .zfs control directories */
1955 	if (fid_gen == 0 &&
1956 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1957 		*vpp = zfsvfs->z_ctldir;
1958 		ASSERT(*vpp != NULL);
1959 		if (object == ZFSCTL_INO_SNAPDIR) {
1960 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1961 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1962 		} else {
1963 			VN_HOLD(*vpp);
1964 		}
1965 		ZFS_EXIT(zfsvfs);
1966 		return (0);
1967 	}
1968 
1969 	gen_mask = -1ULL >> (64 - 8 * i);
1970 
1971 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1972 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1973 		ZFS_EXIT(zfsvfs);
1974 		return (err);
1975 	}
1976 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1977 	    sizeof (uint64_t));
1978 	zp_gen = zp_gen & gen_mask;
1979 	if (zp_gen == 0)
1980 		zp_gen = 1;
1981 	if (zp->z_unlinked || zp_gen != fid_gen) {
1982 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1983 		VN_RELE(ZTOV(zp));
1984 		ZFS_EXIT(zfsvfs);
1985 		return (EINVAL);
1986 	}
1987 
1988 	*vpp = ZTOV(zp);
1989 	ZFS_EXIT(zfsvfs);
1990 	return (0);
1991 }
1992 
1993 /*
1994  * Block out VOPs and close zfsvfs_t::z_os
1995  *
1996  * Note, if successful, then we return with the 'z_teardown_lock' and
1997  * 'z_teardown_inactive_lock' write held.
1998  */
1999 int
2000 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2001 {
2002 	int error;
2003 
2004 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2005 		return (error);
2006 	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2007 
2008 	return (0);
2009 }
2010 
2011 /*
2012  * Reopen zfsvfs_t::z_os and release VOPs.
2013  */
2014 int
2015 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2016 {
2017 	int err, err2;
2018 
2019 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2020 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2021 
2022 	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2023 	    &zfsvfs->z_os);
2024 	if (err) {
2025 		zfsvfs->z_os = NULL;
2026 	} else {
2027 		znode_t *zp;
2028 		uint64_t sa_obj = 0;
2029 
2030 		err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2031 		    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2032 
2033 		if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA)
2034 			goto bail;
2035 
2036 
2037 		if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2038 		    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2039 			goto bail;
2040 
2041 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2042 
2043 		/*
2044 		 * Attempt to re-establish all the active znodes with
2045 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
2046 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2047 		 * when they try to use their znode.
2048 		 */
2049 		mutex_enter(&zfsvfs->z_znodes_lock);
2050 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2051 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2052 			(void) zfs_rezget(zp);
2053 		}
2054 		mutex_exit(&zfsvfs->z_znodes_lock);
2055 
2056 	}
2057 
2058 bail:
2059 	/* release the VOPs */
2060 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2061 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2062 
2063 	if (err) {
2064 		/*
2065 		 * Since we couldn't reopen zfsvfs::z_os, force
2066 		 * unmount this file system.
2067 		 */
2068 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2069 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2070 	}
2071 	return (err);
2072 }
2073 
2074 static void
2075 zfs_freevfs(vfs_t *vfsp)
2076 {
2077 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2078 
2079 	/*
2080 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2081 	 * from zfs_mount().  Release it here.  If we came through
2082 	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2083 	 * skip the VFS_RELE for rootvfs.
2084 	 */
2085 	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2086 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2087 
2088 	zfsvfs_free(zfsvfs);
2089 
2090 	atomic_add_32(&zfs_active_fs_count, -1);
2091 }
2092 
2093 /*
2094  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2095  * so we can't safely do any non-idempotent initialization here.
2096  * Leave that to zfs_init() and zfs_fini(), which are called
2097  * from the module's _init() and _fini() entry points.
2098  */
2099 /*ARGSUSED*/
2100 static int
2101 zfs_vfsinit(int fstype, char *name)
2102 {
2103 	int error;
2104 
2105 	zfsfstype = fstype;
2106 
2107 	/*
2108 	 * Setup vfsops and vnodeops tables.
2109 	 */
2110 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2111 	if (error != 0) {
2112 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2113 	}
2114 
2115 	error = zfs_create_op_tables();
2116 	if (error) {
2117 		zfs_remove_op_tables();
2118 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2119 		(void) vfs_freevfsops_by_type(zfsfstype);
2120 		return (error);
2121 	}
2122 
2123 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2124 
2125 	/*
2126 	 * Unique major number for all zfs mounts.
2127 	 * If we run out of 32-bit minors, we'll getudev() another major.
2128 	 */
2129 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2130 	zfs_minor = ZFS_MIN_MINOR;
2131 
2132 	return (0);
2133 }
2134 
2135 void
2136 zfs_init(void)
2137 {
2138 	/*
2139 	 * Initialize .zfs directory structures
2140 	 */
2141 	zfsctl_init();
2142 
2143 	/*
2144 	 * Initialize znode cache, vnode ops, etc...
2145 	 */
2146 	zfs_znode_init();
2147 
2148 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2149 }
2150 
2151 void
2152 zfs_fini(void)
2153 {
2154 	zfsctl_fini();
2155 	zfs_znode_fini();
2156 }
2157 
2158 int
2159 zfs_busy(void)
2160 {
2161 	return (zfs_active_fs_count != 0);
2162 }
2163 
2164 int
2165 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2166 {
2167 	int error;
2168 	objset_t *os = zfsvfs->z_os;
2169 	dmu_tx_t *tx;
2170 
2171 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2172 		return (EINVAL);
2173 
2174 	if (newvers < zfsvfs->z_version)
2175 		return (EINVAL);
2176 
2177 	if (zfs_spa_version_map(newvers) >
2178 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2179 		return (ENOTSUP);
2180 
2181 	tx = dmu_tx_create(os);
2182 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2183 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2184 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2185 		    ZFS_SA_ATTRS);
2186 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2187 	}
2188 	error = dmu_tx_assign(tx, TXG_WAIT);
2189 	if (error) {
2190 		dmu_tx_abort(tx);
2191 		return (error);
2192 	}
2193 
2194 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2195 	    8, 1, &newvers, tx);
2196 
2197 	if (error) {
2198 		dmu_tx_commit(tx);
2199 		return (error);
2200 	}
2201 
2202 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2203 		uint64_t sa_obj;
2204 
2205 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2206 		    SPA_VERSION_SA);
2207 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2208 		    DMU_OT_NONE, 0, tx);
2209 
2210 		error = zap_add(os, MASTER_NODE_OBJ,
2211 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2212 		ASSERT3U(error, ==, 0);
2213 
2214 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2215 		sa_register_update_callback(os, zfs_sa_upgrade);
2216 	}
2217 
2218 	spa_history_log_internal(LOG_DS_UPGRADE,
2219 	    dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
2220 	    zfsvfs->z_version, newvers, dmu_objset_id(os));
2221 
2222 	dmu_tx_commit(tx);
2223 
2224 	zfsvfs->z_version = newvers;
2225 
2226 	if (zfsvfs->z_version >= ZPL_VERSION_FUID)
2227 		zfs_set_fuid_feature(zfsvfs);
2228 
2229 	return (0);
2230 }
2231 
2232 /*
2233  * Read a property stored within the master node.
2234  */
2235 int
2236 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2237 {
2238 	const char *pname;
2239 	int error = ENOENT;
2240 
2241 	/*
2242 	 * Look up the file system's value for the property.  For the
2243 	 * version property, we look up a slightly different string.
2244 	 */
2245 	if (prop == ZFS_PROP_VERSION)
2246 		pname = ZPL_VERSION_STR;
2247 	else
2248 		pname = zfs_prop_to_name(prop);
2249 
2250 	if (os != NULL)
2251 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2252 
2253 	if (error == ENOENT) {
2254 		/* No value set, use the default value */
2255 		switch (prop) {
2256 		case ZFS_PROP_VERSION:
2257 			*value = ZPL_VERSION;
2258 			break;
2259 		case ZFS_PROP_NORMALIZE:
2260 		case ZFS_PROP_UTF8ONLY:
2261 			*value = 0;
2262 			break;
2263 		case ZFS_PROP_CASE:
2264 			*value = ZFS_CASE_SENSITIVE;
2265 			break;
2266 		default:
2267 			return (error);
2268 		}
2269 		error = 0;
2270 	}
2271 	return (error);
2272 }
2273 
2274 static vfsdef_t vfw = {
2275 	VFSDEF_VERSION,
2276 	MNTTYPE_ZFS,
2277 	zfs_vfsinit,
2278 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2279 	    VSW_XID,
2280 	&zfs_mntopts
2281 };
2282 
2283 struct modlfs zfs_modlfs = {
2284 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2285 };
2286