1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 */ 26 27 /* Portions Copyright 2010 Robert Milkowski */ 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/kmem.h> 34 #include <sys/pathname.h> 35 #include <sys/vnode.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/mntent.h> 39 #include <sys/mount.h> 40 #include <sys/cmn_err.h> 41 #include "fs/fs_subr.h" 42 #include <sys/zfs_znode.h> 43 #include <sys/zfs_dir.h> 44 #include <sys/zil.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/dmu.h> 47 #include <sys/dsl_prop.h> 48 #include <sys/dsl_dataset.h> 49 #include <sys/dsl_deleg.h> 50 #include <sys/spa.h> 51 #include <sys/zap.h> 52 #include <sys/sa.h> 53 #include <sys/sa_impl.h> 54 #include <sys/varargs.h> 55 #include <sys/policy.h> 56 #include <sys/atomic.h> 57 #include <sys/mkdev.h> 58 #include <sys/modctl.h> 59 #include <sys/refstr.h> 60 #include <sys/zfs_ioctl.h> 61 #include <sys/zfs_ctldir.h> 62 #include <sys/zfs_fuid.h> 63 #include <sys/bootconf.h> 64 #include <sys/sunddi.h> 65 #include <sys/dnlc.h> 66 #include <sys/dmu_objset.h> 67 #include <sys/spa_boot.h> 68 #include <sys/zfs_events.h> 69 #include "zfs_comutil.h" 70 71 int zfsfstype; 72 vfsops_t *zfs_vfsops = NULL; 73 static major_t zfs_major; 74 static minor_t zfs_minor; 75 static kmutex_t zfs_dev_mtx; 76 77 extern int sys_shutdown; 78 79 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 80 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 81 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 82 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 83 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 84 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 85 static void zfs_freevfs(vfs_t *vfsp); 86 87 static const fs_operation_def_t zfs_vfsops_template[] = { 88 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 89 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 90 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 91 VFSNAME_ROOT, { .vfs_root = zfs_root }, 92 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 93 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 94 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 95 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 96 NULL, NULL 97 }; 98 99 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 100 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 101 NULL, NULL 102 }; 103 104 /* 105 * We need to keep a count of active fs's. 106 * This is necessary to prevent our module 107 * from being unloaded after a umount -f 108 */ 109 static uint32_t zfs_active_fs_count = 0; 110 111 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 112 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 113 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 114 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 115 116 /* 117 * MO_DEFAULT is not used since the default value is determined 118 * by the equivalent property. 119 */ 120 static mntopt_t mntopts[] = { 121 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 122 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 123 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 124 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 125 }; 126 127 static mntopts_t zfs_mntopts = { 128 sizeof (mntopts) / sizeof (mntopt_t), 129 mntopts 130 }; 131 132 /*ARGSUSED*/ 133 int 134 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 135 { 136 /* 137 * Data integrity is job one. We don't want a compromised kernel 138 * writing to the storage pool, so we never sync during panic. 139 */ 140 if (panicstr) 141 return (0); 142 143 /* 144 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 145 * to sync metadata, which they would otherwise cache indefinitely. 146 * Semantically, the only requirement is that the sync be initiated. 147 * The DMU syncs out txgs frequently, so there's nothing to do. 148 */ 149 if (flag & SYNC_ATTR) 150 return (0); 151 152 if (vfsp != NULL) { 153 /* 154 * Sync a specific filesystem. 155 */ 156 zfsvfs_t *zfsvfs = vfsp->vfs_data; 157 dsl_pool_t *dp; 158 159 ZFS_ENTER(zfsvfs); 160 dp = dmu_objset_pool(zfsvfs->z_os); 161 162 /* 163 * If the system is shutting down, then skip any 164 * filesystems which may exist on a suspended pool. 165 */ 166 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 167 ZFS_EXIT(zfsvfs); 168 return (0); 169 } 170 171 if (zfsvfs->z_log != NULL) 172 zil_commit(zfsvfs->z_log, 0); 173 174 ZFS_EXIT(zfsvfs); 175 } else { 176 /* 177 * Sync all ZFS filesystems. This is what happens when you 178 * run sync(1M). Unlike other filesystems, ZFS honors the 179 * request by waiting for all pools to commit all dirty data. 180 */ 181 spa_sync_allpools(); 182 } 183 184 return (0); 185 } 186 187 static int 188 zfs_create_unique_device(dev_t *dev) 189 { 190 major_t new_major; 191 192 do { 193 ASSERT3U(zfs_minor, <=, MAXMIN32); 194 minor_t start = zfs_minor; 195 do { 196 mutex_enter(&zfs_dev_mtx); 197 if (zfs_minor >= MAXMIN32) { 198 /* 199 * If we're still using the real major 200 * keep out of /dev/zfs and /dev/zvol minor 201 * number space. If we're using a getudev()'ed 202 * major number, we can use all of its minors. 203 */ 204 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 205 zfs_minor = ZFS_MIN_MINOR; 206 else 207 zfs_minor = 0; 208 } else { 209 zfs_minor++; 210 } 211 *dev = makedevice(zfs_major, zfs_minor); 212 mutex_exit(&zfs_dev_mtx); 213 } while (vfs_devismounted(*dev) && zfs_minor != start); 214 if (zfs_minor == start) { 215 /* 216 * We are using all ~262,000 minor numbers for the 217 * current major number. Create a new major number. 218 */ 219 if ((new_major = getudev()) == (major_t)-1) { 220 cmn_err(CE_WARN, 221 "zfs_mount: Can't get unique major " 222 "device number."); 223 return (-1); 224 } 225 mutex_enter(&zfs_dev_mtx); 226 zfs_major = new_major; 227 zfs_minor = 0; 228 229 mutex_exit(&zfs_dev_mtx); 230 } else { 231 break; 232 } 233 /* CONSTANTCONDITION */ 234 } while (1); 235 236 return (0); 237 } 238 239 static void 240 atime_changed_cb(void *arg, uint64_t newval) 241 { 242 zfsvfs_t *zfsvfs = arg; 243 244 if (newval == TRUE) { 245 zfsvfs->z_atime = TRUE; 246 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 247 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 248 } else { 249 zfsvfs->z_atime = FALSE; 250 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 251 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 252 } 253 } 254 255 static void 256 xattr_changed_cb(void *arg, uint64_t newval) 257 { 258 zfsvfs_t *zfsvfs = arg; 259 260 if (newval == TRUE) { 261 /* XXX locking on vfs_flag? */ 262 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 263 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 264 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 265 } else { 266 /* XXX locking on vfs_flag? */ 267 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 268 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 269 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 270 } 271 } 272 273 static void 274 blksz_changed_cb(void *arg, uint64_t newval) 275 { 276 zfsvfs_t *zfsvfs = arg; 277 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); 278 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); 279 ASSERT(ISP2(newval)); 280 281 zfsvfs->z_max_blksz = newval; 282 zfsvfs->z_vfs->vfs_bsize = newval; 283 } 284 285 static void 286 readonly_changed_cb(void *arg, uint64_t newval) 287 { 288 zfsvfs_t *zfsvfs = arg; 289 290 if (newval) { 291 /* XXX locking on vfs_flag? */ 292 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 295 } else { 296 /* XXX locking on vfs_flag? */ 297 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 298 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 299 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 300 } 301 } 302 303 static void 304 devices_changed_cb(void *arg, uint64_t newval) 305 { 306 zfsvfs_t *zfsvfs = arg; 307 308 if (newval == FALSE) { 309 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 310 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 311 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 312 } else { 313 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 314 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 315 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 316 } 317 } 318 319 static void 320 setuid_changed_cb(void *arg, uint64_t newval) 321 { 322 zfsvfs_t *zfsvfs = arg; 323 324 if (newval == FALSE) { 325 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 326 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 327 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 328 } else { 329 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 330 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 331 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 332 } 333 } 334 335 static void 336 exec_changed_cb(void *arg, uint64_t newval) 337 { 338 zfsvfs_t *zfsvfs = arg; 339 340 if (newval == FALSE) { 341 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 342 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 343 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 344 } else { 345 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 346 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 347 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 348 } 349 } 350 351 /* 352 * The nbmand mount option can be changed at mount time. 353 * We can't allow it to be toggled on live file systems or incorrect 354 * behavior may be seen from cifs clients 355 * 356 * This property isn't registered via dsl_prop_register(), but this callback 357 * will be called when a file system is first mounted 358 */ 359 static void 360 nbmand_changed_cb(void *arg, uint64_t newval) 361 { 362 zfsvfs_t *zfsvfs = arg; 363 if (newval == FALSE) { 364 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 365 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 366 } else { 367 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 368 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 369 } 370 } 371 372 static void 373 snapdir_changed_cb(void *arg, uint64_t newval) 374 { 375 zfsvfs_t *zfsvfs = arg; 376 377 zfsvfs->z_show_ctldir = newval; 378 } 379 380 static void 381 vscan_changed_cb(void *arg, uint64_t newval) 382 { 383 zfsvfs_t *zfsvfs = arg; 384 385 zfsvfs->z_vscan = newval; 386 } 387 388 static void 389 acl_mode_changed_cb(void *arg, uint64_t newval) 390 { 391 zfsvfs_t *zfsvfs = arg; 392 393 zfsvfs->z_acl_mode = newval; 394 } 395 396 static void 397 acl_inherit_changed_cb(void *arg, uint64_t newval) 398 { 399 zfsvfs_t *zfsvfs = arg; 400 401 zfsvfs->z_acl_inherit = newval; 402 } 403 404 static int 405 zfs_register_callbacks(vfs_t *vfsp) 406 { 407 struct dsl_dataset *ds = NULL; 408 objset_t *os = NULL; 409 zfsvfs_t *zfsvfs = NULL; 410 uint64_t nbmand; 411 boolean_t readonly = B_FALSE; 412 boolean_t do_readonly = B_FALSE; 413 boolean_t setuid = B_FALSE; 414 boolean_t do_setuid = B_FALSE; 415 boolean_t exec = B_FALSE; 416 boolean_t do_exec = B_FALSE; 417 boolean_t devices = B_FALSE; 418 boolean_t do_devices = B_FALSE; 419 boolean_t xattr = B_FALSE; 420 boolean_t do_xattr = B_FALSE; 421 boolean_t atime = B_FALSE; 422 boolean_t do_atime = B_FALSE; 423 int error = 0; 424 425 ASSERT(vfsp); 426 zfsvfs = vfsp->vfs_data; 427 ASSERT(zfsvfs); 428 os = zfsvfs->z_os; 429 430 /* 431 * The act of registering our callbacks will destroy any mount 432 * options we may have. In order to enable temporary overrides 433 * of mount options, we stash away the current values and 434 * restore them after we register the callbacks. 435 */ 436 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || 437 !spa_writeable(dmu_objset_spa(os))) { 438 readonly = B_TRUE; 439 do_readonly = B_TRUE; 440 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 441 readonly = B_FALSE; 442 do_readonly = B_TRUE; 443 } 444 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 445 devices = B_FALSE; 446 setuid = B_FALSE; 447 do_devices = B_TRUE; 448 do_setuid = B_TRUE; 449 } else { 450 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 451 devices = B_FALSE; 452 do_devices = B_TRUE; 453 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 454 devices = B_TRUE; 455 do_devices = B_TRUE; 456 } 457 458 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 459 setuid = B_FALSE; 460 do_setuid = B_TRUE; 461 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 462 setuid = B_TRUE; 463 do_setuid = B_TRUE; 464 } 465 } 466 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 467 exec = B_FALSE; 468 do_exec = B_TRUE; 469 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 470 exec = B_TRUE; 471 do_exec = B_TRUE; 472 } 473 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 474 xattr = B_FALSE; 475 do_xattr = B_TRUE; 476 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 477 xattr = B_TRUE; 478 do_xattr = B_TRUE; 479 } 480 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 481 atime = B_FALSE; 482 do_atime = B_TRUE; 483 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 484 atime = B_TRUE; 485 do_atime = B_TRUE; 486 } 487 488 /* 489 * nbmand is a special property. It can only be changed at 490 * mount time. 491 * 492 * This is weird, but it is documented to only be changeable 493 * at mount time. 494 */ 495 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 496 nbmand = B_FALSE; 497 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 498 nbmand = B_TRUE; 499 } else { 500 char osname[MAXNAMELEN]; 501 502 dmu_objset_name(os, osname); 503 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 504 NULL)) { 505 return (error); 506 } 507 } 508 509 /* 510 * Register property callbacks. 511 * 512 * It would probably be fine to just check for i/o error from 513 * the first prop_register(), but I guess I like to go 514 * overboard... 515 */ 516 ds = dmu_objset_ds(os); 517 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 518 error = dsl_prop_register(ds, 519 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 520 error = error ? error : dsl_prop_register(ds, 521 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 522 error = error ? error : dsl_prop_register(ds, 523 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 524 error = error ? error : dsl_prop_register(ds, 525 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 526 error = error ? error : dsl_prop_register(ds, 527 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 528 error = error ? error : dsl_prop_register(ds, 529 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 530 error = error ? error : dsl_prop_register(ds, 531 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 532 error = error ? error : dsl_prop_register(ds, 533 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 534 error = error ? error : dsl_prop_register(ds, 535 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 536 error = error ? error : dsl_prop_register(ds, 537 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 538 zfsvfs); 539 error = error ? error : dsl_prop_register(ds, 540 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); 541 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 542 if (error) 543 goto unregister; 544 545 /* 546 * Invoke our callbacks to restore temporary mount options. 547 */ 548 if (do_readonly) 549 readonly_changed_cb(zfsvfs, readonly); 550 if (do_setuid) 551 setuid_changed_cb(zfsvfs, setuid); 552 if (do_exec) 553 exec_changed_cb(zfsvfs, exec); 554 if (do_devices) 555 devices_changed_cb(zfsvfs, devices); 556 if (do_xattr) 557 xattr_changed_cb(zfsvfs, xattr); 558 if (do_atime) 559 atime_changed_cb(zfsvfs, atime); 560 561 nbmand_changed_cb(zfsvfs, nbmand); 562 563 return (0); 564 565 unregister: 566 dsl_prop_unregister_all(ds, zfsvfs); 567 return (error); 568 } 569 570 static int 571 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 572 uint64_t *userp, uint64_t *groupp) 573 { 574 /* 575 * Is it a valid type of object to track? 576 */ 577 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 578 return (SET_ERROR(ENOENT)); 579 580 /* 581 * If we have a NULL data pointer 582 * then assume the id's aren't changing and 583 * return EEXIST to the dmu to let it know to 584 * use the same ids 585 */ 586 if (data == NULL) 587 return (SET_ERROR(EEXIST)); 588 589 if (bonustype == DMU_OT_ZNODE) { 590 znode_phys_t *znp = data; 591 *userp = znp->zp_uid; 592 *groupp = znp->zp_gid; 593 } else { 594 int hdrsize; 595 sa_hdr_phys_t *sap = data; 596 sa_hdr_phys_t sa = *sap; 597 boolean_t swap = B_FALSE; 598 599 ASSERT(bonustype == DMU_OT_SA); 600 601 if (sa.sa_magic == 0) { 602 /* 603 * This should only happen for newly created 604 * files that haven't had the znode data filled 605 * in yet. 606 */ 607 *userp = 0; 608 *groupp = 0; 609 return (0); 610 } 611 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) { 612 sa.sa_magic = SA_MAGIC; 613 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info); 614 swap = B_TRUE; 615 } else { 616 VERIFY3U(sa.sa_magic, ==, SA_MAGIC); 617 } 618 619 hdrsize = sa_hdrsize(&sa); 620 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t)); 621 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 622 SA_UID_OFFSET)); 623 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 624 SA_GID_OFFSET)); 625 if (swap) { 626 *userp = BSWAP_64(*userp); 627 *groupp = BSWAP_64(*groupp); 628 } 629 } 630 return (0); 631 } 632 633 static void 634 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 635 char *domainbuf, int buflen, uid_t *ridp) 636 { 637 uint64_t fuid; 638 const char *domain; 639 640 fuid = strtonum(fuidstr, NULL); 641 642 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 643 if (domain) 644 (void) strlcpy(domainbuf, domain, buflen); 645 else 646 domainbuf[0] = '\0'; 647 *ridp = FUID_RID(fuid); 648 } 649 650 static uint64_t 651 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 652 { 653 switch (type) { 654 case ZFS_PROP_USERUSED: 655 return (DMU_USERUSED_OBJECT); 656 case ZFS_PROP_GROUPUSED: 657 return (DMU_GROUPUSED_OBJECT); 658 case ZFS_PROP_USERQUOTA: 659 return (zfsvfs->z_userquota_obj); 660 case ZFS_PROP_GROUPQUOTA: 661 return (zfsvfs->z_groupquota_obj); 662 } 663 return (0); 664 } 665 666 int 667 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 668 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 669 { 670 int error; 671 zap_cursor_t zc; 672 zap_attribute_t za; 673 zfs_useracct_t *buf = vbuf; 674 uint64_t obj; 675 676 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 677 return (SET_ERROR(ENOTSUP)); 678 679 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 680 if (obj == 0) { 681 *bufsizep = 0; 682 return (0); 683 } 684 685 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 686 (error = zap_cursor_retrieve(&zc, &za)) == 0; 687 zap_cursor_advance(&zc)) { 688 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 689 *bufsizep) 690 break; 691 692 fuidstr_to_sid(zfsvfs, za.za_name, 693 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 694 695 buf->zu_space = za.za_first_integer; 696 buf++; 697 } 698 if (error == ENOENT) 699 error = 0; 700 701 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 702 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 703 *cookiep = zap_cursor_serialize(&zc); 704 zap_cursor_fini(&zc); 705 return (error); 706 } 707 708 /* 709 * buf must be big enough (eg, 32 bytes) 710 */ 711 static int 712 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 713 char *buf, boolean_t addok) 714 { 715 uint64_t fuid; 716 int domainid = 0; 717 718 if (domain && domain[0]) { 719 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 720 if (domainid == -1) 721 return (SET_ERROR(ENOENT)); 722 } 723 fuid = FUID_ENCODE(domainid, rid); 724 (void) sprintf(buf, "%llx", (longlong_t)fuid); 725 return (0); 726 } 727 728 int 729 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 730 const char *domain, uint64_t rid, uint64_t *valp) 731 { 732 char buf[32]; 733 int err; 734 uint64_t obj; 735 736 *valp = 0; 737 738 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 739 return (SET_ERROR(ENOTSUP)); 740 741 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 742 if (obj == 0) 743 return (0); 744 745 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 746 if (err) 747 return (err); 748 749 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 750 if (err == ENOENT) 751 err = 0; 752 return (err); 753 } 754 755 int 756 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 757 const char *domain, uint64_t rid, uint64_t quota) 758 { 759 char buf[32]; 760 int err; 761 dmu_tx_t *tx; 762 uint64_t *objp; 763 boolean_t fuid_dirtied; 764 765 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 766 return (SET_ERROR(EINVAL)); 767 768 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 769 return (SET_ERROR(ENOTSUP)); 770 771 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 772 &zfsvfs->z_groupquota_obj; 773 774 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 775 if (err) 776 return (err); 777 fuid_dirtied = zfsvfs->z_fuid_dirty; 778 779 tx = dmu_tx_create(zfsvfs->z_os); 780 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 781 if (*objp == 0) { 782 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 783 zfs_userquota_prop_prefixes[type]); 784 } 785 if (fuid_dirtied) 786 zfs_fuid_txhold(zfsvfs, tx); 787 err = dmu_tx_assign(tx, TXG_WAIT); 788 if (err) { 789 dmu_tx_abort(tx); 790 return (err); 791 } 792 793 mutex_enter(&zfsvfs->z_lock); 794 if (*objp == 0) { 795 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 796 DMU_OT_NONE, 0, tx); 797 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 798 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 799 } 800 mutex_exit(&zfsvfs->z_lock); 801 802 if (quota == 0) { 803 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 804 if (err == ENOENT) 805 err = 0; 806 } else { 807 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 808 } 809 ASSERT(err == 0); 810 if (fuid_dirtied) 811 zfs_fuid_sync(zfsvfs, tx); 812 dmu_tx_commit(tx); 813 return (err); 814 } 815 816 boolean_t 817 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 818 { 819 char buf[32]; 820 uint64_t used, quota, usedobj, quotaobj; 821 int err; 822 823 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 824 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 825 826 if (quotaobj == 0 || zfsvfs->z_replay) 827 return (B_FALSE); 828 829 (void) sprintf(buf, "%llx", (longlong_t)fuid); 830 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 831 if (err != 0) 832 return (B_FALSE); 833 834 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 835 if (err != 0) 836 return (B_FALSE); 837 return (used >= quota); 838 } 839 840 boolean_t 841 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 842 { 843 uint64_t fuid; 844 uint64_t quotaobj; 845 846 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 847 848 fuid = isgroup ? zp->z_gid : zp->z_uid; 849 850 if (quotaobj == 0 || zfsvfs->z_replay) 851 return (B_FALSE); 852 853 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 854 } 855 856 int 857 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 858 { 859 objset_t *os; 860 zfsvfs_t *zfsvfs; 861 uint64_t zval; 862 int i, error; 863 uint64_t sa_obj; 864 865 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 866 867 /* 868 * We claim to always be readonly so we can open snapshots; 869 * other ZPL code will prevent us from writing to snapshots. 870 */ 871 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 872 if (error) { 873 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 874 return (error); 875 } 876 877 /* 878 * Initialize the zfs-specific filesystem structure. 879 * Should probably make this a kmem cache, shuffle fields, 880 * and just bzero up to z_hold_mtx[]. 881 */ 882 zfsvfs->z_vfs = NULL; 883 zfsvfs->z_parent = zfsvfs; 884 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; 885 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 886 zfsvfs->z_os = os; 887 888 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 889 if (error) { 890 goto out; 891 } else if (zfsvfs->z_version > 892 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 893 (void) printf("Can't mount a version %lld file system " 894 "on a version %lld pool\n. Pool must be upgraded to mount " 895 "this file system.", (u_longlong_t)zfsvfs->z_version, 896 (u_longlong_t)spa_version(dmu_objset_spa(os))); 897 error = SET_ERROR(ENOTSUP); 898 goto out; 899 } 900 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 901 goto out; 902 zfsvfs->z_norm = (int)zval; 903 904 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 905 goto out; 906 zfsvfs->z_utf8 = (zval != 0); 907 908 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 909 goto out; 910 zfsvfs->z_case = (uint_t)zval; 911 912 /* 913 * Fold case on file systems that are always or sometimes case 914 * insensitive. 915 */ 916 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 917 zfsvfs->z_case == ZFS_CASE_MIXED) 918 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 919 920 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 921 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 922 923 if (zfsvfs->z_use_sa) { 924 /* should either have both of these objects or none */ 925 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 926 &sa_obj); 927 if (error) 928 goto out; 929 } else { 930 /* 931 * Pre SA versions file systems should never touch 932 * either the attribute registration or layout objects. 933 */ 934 sa_obj = 0; 935 } 936 937 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 938 &zfsvfs->z_attr_table); 939 if (error) 940 goto out; 941 942 if (zfsvfs->z_version >= ZPL_VERSION_SA) 943 sa_register_update_callback(os, zfs_sa_upgrade); 944 945 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 946 &zfsvfs->z_root); 947 if (error) 948 goto out; 949 ASSERT(zfsvfs->z_root != 0); 950 951 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 952 &zfsvfs->z_unlinkedobj); 953 if (error) 954 goto out; 955 956 error = zap_lookup(os, MASTER_NODE_OBJ, 957 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 958 8, 1, &zfsvfs->z_userquota_obj); 959 if (error && error != ENOENT) 960 goto out; 961 962 error = zap_lookup(os, MASTER_NODE_OBJ, 963 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 964 8, 1, &zfsvfs->z_groupquota_obj); 965 if (error && error != ENOENT) 966 goto out; 967 968 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 969 &zfsvfs->z_fuid_obj); 970 if (error && error != ENOENT) 971 goto out; 972 973 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 974 &zfsvfs->z_shares_dir); 975 if (error && error != ENOENT) 976 goto out; 977 978 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 979 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 980 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 981 offsetof(znode_t, z_link_node)); 982 rrm_init(&zfsvfs->z_teardown_lock, B_FALSE); 983 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 984 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 985 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 986 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 987 988 *zfvp = zfsvfs; 989 return (0); 990 991 out: 992 dmu_objset_disown(os, zfsvfs); 993 *zfvp = NULL; 994 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 995 return (error); 996 } 997 998 static int 999 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 1000 { 1001 int error; 1002 1003 error = zfs_register_callbacks(zfsvfs->z_vfs); 1004 if (error) 1005 return (error); 1006 1007 /* 1008 * Set the objset user_ptr to track its zfsvfs. 1009 */ 1010 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1011 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1012 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1013 1014 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1015 1016 /* 1017 * If we are not mounting (ie: online recv), then we don't 1018 * have to worry about replaying the log as we blocked all 1019 * operations out since we closed the ZIL. 1020 */ 1021 if (mounting) { 1022 boolean_t readonly; 1023 1024 /* 1025 * During replay we remove the read only flag to 1026 * allow replays to succeed. 1027 */ 1028 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1029 if (readonly != 0) 1030 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1031 else 1032 zfs_unlinked_drain(zfsvfs); 1033 1034 /* 1035 * Parse and replay the intent log. 1036 * 1037 * Because of ziltest, this must be done after 1038 * zfs_unlinked_drain(). (Further note: ziltest 1039 * doesn't use readonly mounts, where 1040 * zfs_unlinked_drain() isn't called.) This is because 1041 * ziltest causes spa_sync() to think it's committed, 1042 * but actually it is not, so the intent log contains 1043 * many txg's worth of changes. 1044 * 1045 * In particular, if object N is in the unlinked set in 1046 * the last txg to actually sync, then it could be 1047 * actually freed in a later txg and then reallocated 1048 * in a yet later txg. This would write a "create 1049 * object N" record to the intent log. Normally, this 1050 * would be fine because the spa_sync() would have 1051 * written out the fact that object N is free, before 1052 * we could write the "create object N" intent log 1053 * record. 1054 * 1055 * But when we are in ziltest mode, we advance the "open 1056 * txg" without actually spa_sync()-ing the changes to 1057 * disk. So we would see that object N is still 1058 * allocated and in the unlinked set, and there is an 1059 * intent log record saying to allocate it. 1060 */ 1061 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 1062 if (zil_replay_disable) { 1063 zil_destroy(zfsvfs->z_log, B_FALSE); 1064 } else { 1065 zfsvfs->z_replay = B_TRUE; 1066 zil_replay(zfsvfs->z_os, zfsvfs, 1067 zfs_replay_vector); 1068 zfsvfs->z_replay = B_FALSE; 1069 } 1070 } 1071 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1072 } 1073 1074 return (0); 1075 } 1076 1077 void 1078 zfsvfs_free(zfsvfs_t *zfsvfs) 1079 { 1080 int i; 1081 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1082 1083 /* 1084 * This is a barrier to prevent the filesystem from going away in 1085 * zfs_znode_move() until we can safely ensure that the filesystem is 1086 * not unmounted. We consider the filesystem valid before the barrier 1087 * and invalid after the barrier. 1088 */ 1089 rw_enter(&zfsvfs_lock, RW_READER); 1090 rw_exit(&zfsvfs_lock); 1091 1092 zfs_fuid_destroy(zfsvfs); 1093 1094 mutex_destroy(&zfsvfs->z_znodes_lock); 1095 mutex_destroy(&zfsvfs->z_lock); 1096 list_destroy(&zfsvfs->z_all_znodes); 1097 rrm_destroy(&zfsvfs->z_teardown_lock); 1098 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1099 rw_destroy(&zfsvfs->z_fuid_lock); 1100 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1101 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1102 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1103 } 1104 1105 static void 1106 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1107 { 1108 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1109 if (zfsvfs->z_vfs) { 1110 if (zfsvfs->z_use_fuids) { 1111 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1112 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1113 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1114 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1115 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1116 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1117 } else { 1118 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1119 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1120 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1121 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1122 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1123 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1124 } 1125 } 1126 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1127 } 1128 1129 static int 1130 zfs_domount(vfs_t *vfsp, char *osname) 1131 { 1132 dev_t mount_dev; 1133 uint64_t recordsize, fsid_guid; 1134 int error = 0; 1135 zfsvfs_t *zfsvfs; 1136 1137 ASSERT(vfsp); 1138 ASSERT(osname); 1139 1140 error = zfsvfs_create(osname, &zfsvfs); 1141 if (error) 1142 return (error); 1143 zfsvfs->z_vfs = vfsp; 1144 1145 /* Initialize the generic filesystem structure. */ 1146 vfsp->vfs_bcount = 0; 1147 vfsp->vfs_data = NULL; 1148 1149 if (zfs_create_unique_device(&mount_dev) == -1) { 1150 error = SET_ERROR(ENODEV); 1151 goto out; 1152 } 1153 ASSERT(vfs_devismounted(mount_dev) == 0); 1154 1155 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1156 NULL)) 1157 goto out; 1158 1159 vfsp->vfs_dev = mount_dev; 1160 vfsp->vfs_fstype = zfsfstype; 1161 vfsp->vfs_bsize = recordsize; 1162 vfsp->vfs_flag |= VFS_NOTRUNC; 1163 vfsp->vfs_data = zfsvfs; 1164 1165 /* 1166 * The fsid is 64 bits, composed of an 8-bit fs type, which 1167 * separates our fsid from any other filesystem types, and a 1168 * 56-bit objset unique ID. The objset unique ID is unique to 1169 * all objsets open on this system, provided by unique_create(). 1170 * The 8-bit fs type must be put in the low bits of fsid[1] 1171 * because that's where other Solaris filesystems put it. 1172 */ 1173 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1174 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1175 vfsp->vfs_fsid.val[0] = fsid_guid; 1176 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1177 zfsfstype & 0xFF; 1178 1179 /* 1180 * Set features for file system. 1181 */ 1182 zfs_set_fuid_feature(zfsvfs); 1183 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1184 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1185 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1186 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1187 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1188 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1189 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1190 } 1191 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1192 1193 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1194 uint64_t pval; 1195 1196 atime_changed_cb(zfsvfs, B_FALSE); 1197 readonly_changed_cb(zfsvfs, B_TRUE); 1198 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1199 goto out; 1200 xattr_changed_cb(zfsvfs, pval); 1201 zfsvfs->z_issnap = B_TRUE; 1202 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1203 1204 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1205 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1206 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1207 } else { 1208 error = zfsvfs_setup(zfsvfs, B_TRUE); 1209 } 1210 1211 if (!zfsvfs->z_issnap) 1212 zfsctl_create(zfsvfs); 1213 out: 1214 if (error) { 1215 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1216 zfsvfs_free(zfsvfs); 1217 } else { 1218 atomic_inc_32(&zfs_active_fs_count); 1219 } 1220 1221 return (error); 1222 } 1223 1224 void 1225 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1226 { 1227 objset_t *os = zfsvfs->z_os; 1228 1229 if (!dmu_objset_is_snapshot(os)) 1230 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); 1231 } 1232 1233 /* 1234 * Convert a decimal digit string to a uint64_t integer. 1235 */ 1236 static int 1237 str_to_uint64(char *str, uint64_t *objnum) 1238 { 1239 uint64_t num = 0; 1240 1241 while (*str) { 1242 if (*str < '0' || *str > '9') 1243 return (SET_ERROR(EINVAL)); 1244 1245 num = num*10 + *str++ - '0'; 1246 } 1247 1248 *objnum = num; 1249 return (0); 1250 } 1251 1252 /* 1253 * The boot path passed from the boot loader is in the form of 1254 * "rootpool-name/root-filesystem-object-number'. Convert this 1255 * string to a dataset name: "rootpool-name/root-filesystem-name". 1256 */ 1257 static int 1258 zfs_parse_bootfs(char *bpath, char *outpath) 1259 { 1260 char *slashp; 1261 uint64_t objnum; 1262 int error; 1263 1264 if (*bpath == 0 || *bpath == '/') 1265 return (SET_ERROR(EINVAL)); 1266 1267 (void) strcpy(outpath, bpath); 1268 1269 slashp = strchr(bpath, '/'); 1270 1271 /* if no '/', just return the pool name */ 1272 if (slashp == NULL) { 1273 return (0); 1274 } 1275 1276 /* if not a number, just return the root dataset name */ 1277 if (str_to_uint64(slashp+1, &objnum)) { 1278 return (0); 1279 } 1280 1281 *slashp = '\0'; 1282 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1283 *slashp = '/'; 1284 1285 return (error); 1286 } 1287 1288 /* 1289 * Check that the hex label string is appropriate for the dataset being 1290 * mounted into the global_zone proper. 1291 * 1292 * Return an error if the hex label string is not default or 1293 * admin_low/admin_high. For admin_low labels, the corresponding 1294 * dataset must be readonly. 1295 */ 1296 int 1297 zfs_check_global_label(const char *dsname, const char *hexsl) 1298 { 1299 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1300 return (0); 1301 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1302 return (0); 1303 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1304 /* must be readonly */ 1305 uint64_t rdonly; 1306 1307 if (dsl_prop_get_integer(dsname, 1308 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1309 return (SET_ERROR(EACCES)); 1310 return (rdonly ? 0 : EACCES); 1311 } 1312 return (SET_ERROR(EACCES)); 1313 } 1314 1315 /* 1316 * Determine whether the mount is allowed according to MAC check. 1317 * by comparing (where appropriate) label of the dataset against 1318 * the label of the zone being mounted into. If the dataset has 1319 * no label, create one. 1320 * 1321 * Returns 0 if access allowed, error otherwise (e.g. EACCES) 1322 */ 1323 static int 1324 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1325 { 1326 int error, retv; 1327 zone_t *mntzone = NULL; 1328 ts_label_t *mnt_tsl; 1329 bslabel_t *mnt_sl; 1330 bslabel_t ds_sl; 1331 char ds_hexsl[MAXNAMELEN]; 1332 1333 retv = EACCES; /* assume the worst */ 1334 1335 /* 1336 * Start by getting the dataset label if it exists. 1337 */ 1338 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1339 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1340 if (error) 1341 return (SET_ERROR(EACCES)); 1342 1343 /* 1344 * If labeling is NOT enabled, then disallow the mount of datasets 1345 * which have a non-default label already. No other label checks 1346 * are needed. 1347 */ 1348 if (!is_system_labeled()) { 1349 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1350 return (0); 1351 return (SET_ERROR(EACCES)); 1352 } 1353 1354 /* 1355 * Get the label of the mountpoint. If mounting into the global 1356 * zone (i.e. mountpoint is not within an active zone and the 1357 * zoned property is off), the label must be default or 1358 * admin_low/admin_high only; no other checks are needed. 1359 */ 1360 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1361 if (mntzone->zone_id == GLOBAL_ZONEID) { 1362 uint64_t zoned; 1363 1364 zone_rele(mntzone); 1365 1366 if (dsl_prop_get_integer(osname, 1367 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1368 return (SET_ERROR(EACCES)); 1369 if (!zoned) 1370 return (zfs_check_global_label(osname, ds_hexsl)); 1371 else 1372 /* 1373 * This is the case of a zone dataset being mounted 1374 * initially, before the zone has been fully created; 1375 * allow this mount into global zone. 1376 */ 1377 return (0); 1378 } 1379 1380 mnt_tsl = mntzone->zone_slabel; 1381 ASSERT(mnt_tsl != NULL); 1382 label_hold(mnt_tsl); 1383 mnt_sl = label2bslabel(mnt_tsl); 1384 1385 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1386 /* 1387 * The dataset doesn't have a real label, so fabricate one. 1388 */ 1389 char *str = NULL; 1390 1391 if (l_to_str_internal(mnt_sl, &str) == 0 && 1392 dsl_prop_set_string(osname, 1393 zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1394 ZPROP_SRC_LOCAL, str) == 0) 1395 retv = 0; 1396 if (str != NULL) 1397 kmem_free(str, strlen(str) + 1); 1398 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1399 /* 1400 * Now compare labels to complete the MAC check. If the 1401 * labels are equal then allow access. If the mountpoint 1402 * label dominates the dataset label, allow readonly access. 1403 * Otherwise, access is denied. 1404 */ 1405 if (blequal(mnt_sl, &ds_sl)) 1406 retv = 0; 1407 else if (bldominates(mnt_sl, &ds_sl)) { 1408 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1409 retv = 0; 1410 } 1411 } 1412 1413 label_rele(mnt_tsl); 1414 zone_rele(mntzone); 1415 return (retv); 1416 } 1417 1418 static int 1419 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1420 { 1421 int error = 0; 1422 static int zfsrootdone = 0; 1423 zfsvfs_t *zfsvfs = NULL; 1424 znode_t *zp = NULL; 1425 vnode_t *vp = NULL; 1426 char *zfs_bootfs; 1427 char *zfs_devid; 1428 1429 ASSERT(vfsp); 1430 1431 /* 1432 * The filesystem that we mount as root is defined in the 1433 * boot property "zfs-bootfs" with a format of 1434 * "poolname/root-dataset-objnum". 1435 */ 1436 if (why == ROOT_INIT) { 1437 if (zfsrootdone++) 1438 return (SET_ERROR(EBUSY)); 1439 /* 1440 * the process of doing a spa_load will require the 1441 * clock to be set before we could (for example) do 1442 * something better by looking at the timestamp on 1443 * an uberblock, so just set it to -1. 1444 */ 1445 clkset(-1); 1446 1447 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1448 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1449 "bootfs name"); 1450 return (SET_ERROR(EINVAL)); 1451 } 1452 zfs_devid = spa_get_bootprop("diskdevid"); 1453 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1454 if (zfs_devid) 1455 spa_free_bootprop(zfs_devid); 1456 if (error) { 1457 spa_free_bootprop(zfs_bootfs); 1458 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1459 error); 1460 return (error); 1461 } 1462 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1463 spa_free_bootprop(zfs_bootfs); 1464 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1465 error); 1466 return (error); 1467 } 1468 1469 spa_free_bootprop(zfs_bootfs); 1470 1471 if (error = vfs_lock(vfsp)) 1472 return (error); 1473 1474 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1475 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1476 goto out; 1477 } 1478 1479 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1480 ASSERT(zfsvfs); 1481 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1482 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1483 goto out; 1484 } 1485 1486 vp = ZTOV(zp); 1487 mutex_enter(&vp->v_lock); 1488 vp->v_flag |= VROOT; 1489 mutex_exit(&vp->v_lock); 1490 rootvp = vp; 1491 1492 /* 1493 * Leave rootvp held. The root file system is never unmounted. 1494 */ 1495 1496 vfs_add((struct vnode *)0, vfsp, 1497 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1498 out: 1499 vfs_unlock(vfsp); 1500 return (error); 1501 } else if (why == ROOT_REMOUNT) { 1502 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1503 vfsp->vfs_flag |= VFS_REMOUNT; 1504 1505 /* refresh mount options */ 1506 zfs_unregister_callbacks(vfsp->vfs_data); 1507 return (zfs_register_callbacks(vfsp)); 1508 1509 } else if (why == ROOT_UNMOUNT) { 1510 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1511 (void) zfs_sync(vfsp, 0, 0); 1512 return (0); 1513 } 1514 1515 /* 1516 * if "why" is equal to anything else other than ROOT_INIT, 1517 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1518 */ 1519 return (SET_ERROR(ENOTSUP)); 1520 } 1521 1522 /*ARGSUSED*/ 1523 static int 1524 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1525 { 1526 char *osname; 1527 pathname_t spn; 1528 int error = 0; 1529 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1530 UIO_SYSSPACE : UIO_USERSPACE; 1531 int canwrite; 1532 1533 if (mvp->v_type != VDIR) 1534 return (SET_ERROR(ENOTDIR)); 1535 1536 mutex_enter(&mvp->v_lock); 1537 if ((uap->flags & MS_REMOUNT) == 0 && 1538 (uap->flags & MS_OVERLAY) == 0 && 1539 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1540 mutex_exit(&mvp->v_lock); 1541 return (SET_ERROR(EBUSY)); 1542 } 1543 mutex_exit(&mvp->v_lock); 1544 1545 /* 1546 * ZFS does not support passing unparsed data in via MS_DATA. 1547 * Users should use the MS_OPTIONSTR interface; this means 1548 * that all option parsing is already done and the options struct 1549 * can be interrogated. 1550 */ 1551 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1552 return (SET_ERROR(EINVAL)); 1553 1554 /* 1555 * Get the objset name (the "special" mount argument). 1556 */ 1557 if (error = pn_get(uap->spec, fromspace, &spn)) 1558 return (error); 1559 1560 osname = spn.pn_path; 1561 1562 /* 1563 * Check for mount privilege? 1564 * 1565 * If we don't have privilege then see if 1566 * we have local permission to allow it 1567 */ 1568 error = secpolicy_fs_mount(cr, mvp, vfsp); 1569 if (error) { 1570 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1571 vattr_t vattr; 1572 1573 /* 1574 * Make sure user is the owner of the mount point 1575 * or has sufficient privileges. 1576 */ 1577 1578 vattr.va_mask = AT_UID; 1579 1580 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1581 goto out; 1582 } 1583 1584 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1585 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1586 goto out; 1587 } 1588 secpolicy_fs_mount_clearopts(cr, vfsp); 1589 } else { 1590 goto out; 1591 } 1592 } 1593 1594 /* 1595 * Refuse to mount a filesystem if we are in a local zone and the 1596 * dataset is not visible. 1597 */ 1598 if (!INGLOBALZONE(curproc) && 1599 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1600 error = SET_ERROR(EPERM); 1601 goto out; 1602 } 1603 1604 error = zfs_mount_label_policy(vfsp, osname); 1605 if (error) 1606 goto out; 1607 1608 /* 1609 * When doing a remount, we simply refresh our temporary properties 1610 * according to those options set in the current VFS options. 1611 */ 1612 if (uap->flags & MS_REMOUNT) { 1613 /* refresh mount options */ 1614 zfs_unregister_callbacks(vfsp->vfs_data); 1615 error = zfs_register_callbacks(vfsp); 1616 goto out; 1617 } 1618 1619 error = zfs_domount(vfsp, osname); 1620 1621 /* 1622 * Add an extra VFS_HOLD on our parent vfs so that it can't 1623 * disappear due to a forced unmount. 1624 */ 1625 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1626 VFS_HOLD(mvp->v_vfsp); 1627 1628 out: 1629 if (error == 0) { 1630 rw_enter(&rz_zev_rwlock, RW_READER); 1631 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_zfs_mount) 1632 rz_zev_callbacks->rz_zev_zfs_mount(vfsp, mvp, osname, 1633 uap->flags & MS_REMOUNT ? B_TRUE : B_FALSE); 1634 rw_exit(&rz_zev_rwlock); 1635 } 1636 pn_free(&spn); 1637 return (error); 1638 } 1639 1640 static int 1641 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1642 { 1643 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1644 dev32_t d32; 1645 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1646 1647 ZFS_ENTER(zfsvfs); 1648 1649 dmu_objset_space(zfsvfs->z_os, 1650 &refdbytes, &availbytes, &usedobjs, &availobjs); 1651 1652 /* 1653 * The underlying storage pool actually uses multiple block sizes. 1654 * We report the fragsize as the smallest block size we support, 1655 * and we report our blocksize as the filesystem's maximum blocksize. 1656 */ 1657 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1658 statp->f_bsize = zfsvfs->z_max_blksz; 1659 1660 /* 1661 * The following report "total" blocks of various kinds in the 1662 * file system, but reported in terms of f_frsize - the 1663 * "fragment" size. 1664 */ 1665 1666 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1667 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1668 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1669 1670 /* 1671 * statvfs() should really be called statufs(), because it assumes 1672 * static metadata. ZFS doesn't preallocate files, so the best 1673 * we can do is report the max that could possibly fit in f_files, 1674 * and that minus the number actually used in f_ffree. 1675 * For f_ffree, report the smaller of the number of object available 1676 * and the number of blocks (each object will take at least a block). 1677 */ 1678 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1679 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1680 statp->f_files = statp->f_ffree + usedobjs; 1681 1682 (void) cmpldev(&d32, vfsp->vfs_dev); 1683 statp->f_fsid = d32; 1684 1685 /* 1686 * We're a zfs filesystem. 1687 */ 1688 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1689 1690 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1691 1692 statp->f_namemax = ZFS_MAXNAMELEN; 1693 1694 /* 1695 * We have all of 32 characters to stuff a string here. 1696 * Is there anything useful we could/should provide? 1697 */ 1698 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1699 1700 ZFS_EXIT(zfsvfs); 1701 return (0); 1702 } 1703 1704 static int 1705 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1706 { 1707 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1708 znode_t *rootzp; 1709 int error; 1710 1711 ZFS_ENTER(zfsvfs); 1712 1713 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1714 if (error == 0) 1715 *vpp = ZTOV(rootzp); 1716 1717 ZFS_EXIT(zfsvfs); 1718 return (error); 1719 } 1720 1721 /* 1722 * Teardown the zfsvfs::z_os. 1723 * 1724 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1725 * and 'z_teardown_inactive_lock' held. 1726 */ 1727 static int 1728 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1729 { 1730 znode_t *zp; 1731 1732 rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1733 1734 if (!unmounting) { 1735 /* 1736 * We purge the parent filesystem's vfsp as the parent 1737 * filesystem and all of its snapshots have their vnode's 1738 * v_vfsp set to the parent's filesystem's vfsp. Note, 1739 * 'z_parent' is self referential for non-snapshots. 1740 */ 1741 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1742 } 1743 1744 /* 1745 * Close the zil. NB: Can't close the zil while zfs_inactive 1746 * threads are blocked as zil_close can call zfs_inactive. 1747 */ 1748 if (zfsvfs->z_log) { 1749 zil_close(zfsvfs->z_log); 1750 zfsvfs->z_log = NULL; 1751 } 1752 1753 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1754 1755 /* 1756 * If we are not unmounting (ie: online recv) and someone already 1757 * unmounted this file system while we were doing the switcheroo, 1758 * or a reopen of z_os failed then just bail out now. 1759 */ 1760 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1761 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1762 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1763 return (SET_ERROR(EIO)); 1764 } 1765 1766 /* 1767 * At this point there are no vops active, and any new vops will 1768 * fail with EIO since we have z_teardown_lock for writer (only 1769 * relavent for forced unmount). 1770 * 1771 * Release all holds on dbufs. 1772 */ 1773 mutex_enter(&zfsvfs->z_znodes_lock); 1774 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1775 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1776 if (zp->z_sa_hdl) { 1777 ASSERT(ZTOV(zp)->v_count > 0); 1778 zfs_znode_dmu_fini(zp); 1779 } 1780 mutex_exit(&zfsvfs->z_znodes_lock); 1781 1782 /* 1783 * If we are unmounting, set the unmounted flag and let new vops 1784 * unblock. zfs_inactive will have the unmounted behavior, and all 1785 * other vops will fail with EIO. 1786 */ 1787 if (unmounting) { 1788 zfsvfs->z_unmounted = B_TRUE; 1789 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1790 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1791 } 1792 1793 /* 1794 * z_os will be NULL if there was an error in attempting to reopen 1795 * zfsvfs, so just return as the properties had already been 1796 * unregistered and cached data had been evicted before. 1797 */ 1798 if (zfsvfs->z_os == NULL) 1799 return (0); 1800 1801 /* 1802 * Unregister properties. 1803 */ 1804 zfs_unregister_callbacks(zfsvfs); 1805 1806 /* 1807 * Evict cached data 1808 */ 1809 if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) && 1810 !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) 1811 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1812 dmu_objset_evict_dbufs(zfsvfs->z_os); 1813 1814 return (0); 1815 } 1816 1817 /*ARGSUSED*/ 1818 static int 1819 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1820 { 1821 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1822 objset_t *os; 1823 int ret; 1824 1825 ret = secpolicy_fs_unmount(cr, vfsp); 1826 if (ret) { 1827 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1828 ZFS_DELEG_PERM_MOUNT, cr)) 1829 return (ret); 1830 } 1831 1832 /* 1833 * We purge the parent filesystem's vfsp as the parent filesystem 1834 * and all of its snapshots have their vnode's v_vfsp set to the 1835 * parent's filesystem's vfsp. Note, 'z_parent' is self 1836 * referential for non-snapshots. 1837 */ 1838 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1839 1840 /* 1841 * Unmount any snapshots mounted under .zfs before unmounting the 1842 * dataset itself. 1843 */ 1844 if (zfsvfs->z_ctldir != NULL && 1845 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1846 return (ret); 1847 } 1848 1849 if (!(fflag & MS_FORCE)) { 1850 /* 1851 * Check the number of active vnodes in the file system. 1852 * Our count is maintained in the vfs structure, but the 1853 * number is off by 1 to indicate a hold on the vfs 1854 * structure itself. 1855 * 1856 * The '.zfs' directory maintains a reference of its 1857 * own, and any active references underneath are 1858 * reflected in the vnode count. 1859 */ 1860 if (zfsvfs->z_ctldir == NULL) { 1861 if (vfsp->vfs_count > 1) 1862 return (SET_ERROR(EBUSY)); 1863 } else { 1864 if (vfsp->vfs_count > 2 || 1865 zfsvfs->z_ctldir->v_count > 1) 1866 return (SET_ERROR(EBUSY)); 1867 } 1868 } 1869 1870 vfsp->vfs_flag |= VFS_UNMOUNTED; 1871 1872 rw_enter(&rz_zev_rwlock, RW_READER); 1873 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_zfs_umount) 1874 rz_zev_callbacks->rz_zev_zfs_umount(vfsp); 1875 rw_exit(&rz_zev_rwlock); 1876 1877 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1878 os = zfsvfs->z_os; 1879 1880 /* 1881 * z_os will be NULL if there was an error in 1882 * attempting to reopen zfsvfs. 1883 */ 1884 if (os != NULL) { 1885 /* 1886 * Unset the objset user_ptr. 1887 */ 1888 mutex_enter(&os->os_user_ptr_lock); 1889 dmu_objset_set_user(os, NULL); 1890 mutex_exit(&os->os_user_ptr_lock); 1891 1892 /* 1893 * Finally release the objset 1894 */ 1895 dmu_objset_disown(os, zfsvfs); 1896 } 1897 1898 /* 1899 * We can now safely destroy the '.zfs' directory node. 1900 */ 1901 if (zfsvfs->z_ctldir != NULL) 1902 zfsctl_destroy(zfsvfs); 1903 1904 return (0); 1905 } 1906 1907 static int 1908 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1909 { 1910 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1911 znode_t *zp; 1912 uint64_t object = 0; 1913 uint64_t fid_gen = 0; 1914 uint64_t gen_mask; 1915 uint64_t zp_gen; 1916 int i, err; 1917 1918 *vpp = NULL; 1919 1920 ZFS_ENTER(zfsvfs); 1921 1922 if (fidp->fid_len == LONG_FID_LEN) { 1923 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1924 uint64_t objsetid = 0; 1925 uint64_t setgen = 0; 1926 1927 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1928 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1929 1930 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1931 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1932 1933 ZFS_EXIT(zfsvfs); 1934 1935 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1936 if (err) 1937 return (SET_ERROR(EINVAL)); 1938 ZFS_ENTER(zfsvfs); 1939 } 1940 1941 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1942 zfid_short_t *zfid = (zfid_short_t *)fidp; 1943 1944 for (i = 0; i < sizeof (zfid->zf_object); i++) 1945 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1946 1947 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1948 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1949 } else { 1950 ZFS_EXIT(zfsvfs); 1951 return (SET_ERROR(EINVAL)); 1952 } 1953 1954 /* A zero fid_gen means we are in the .zfs control directories */ 1955 if (fid_gen == 0 && 1956 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1957 *vpp = zfsvfs->z_ctldir; 1958 ASSERT(*vpp != NULL); 1959 if (object == ZFSCTL_INO_SNAPDIR) { 1960 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1961 0, NULL, NULL, NULL, NULL, NULL) == 0); 1962 } else { 1963 VN_HOLD(*vpp); 1964 } 1965 ZFS_EXIT(zfsvfs); 1966 return (0); 1967 } 1968 1969 gen_mask = -1ULL >> (64 - 8 * i); 1970 1971 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1972 if (err = zfs_zget(zfsvfs, object, &zp)) { 1973 ZFS_EXIT(zfsvfs); 1974 return (err); 1975 } 1976 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1977 sizeof (uint64_t)); 1978 zp_gen = zp_gen & gen_mask; 1979 if (zp_gen == 0) 1980 zp_gen = 1; 1981 if (zp->z_unlinked || zp_gen != fid_gen) { 1982 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1983 VN_RELE(ZTOV(zp)); 1984 ZFS_EXIT(zfsvfs); 1985 return (SET_ERROR(EINVAL)); 1986 } 1987 1988 *vpp = ZTOV(zp); 1989 ZFS_EXIT(zfsvfs); 1990 return (0); 1991 } 1992 1993 /* 1994 * Block out VOPs and close zfsvfs_t::z_os 1995 * 1996 * Note, if successful, then we return with the 'z_teardown_lock' and 1997 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying 1998 * dataset and objset intact so that they can be atomically handed off during 1999 * a subsequent rollback or recv operation and the resume thereafter. 2000 */ 2001 int 2002 zfs_suspend_fs(zfsvfs_t *zfsvfs) 2003 { 2004 int error; 2005 2006 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2007 return (error); 2008 2009 return (0); 2010 } 2011 2012 /* 2013 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset 2014 * is an invariant across any of the operations that can be performed while the 2015 * filesystem was suspended. Whether it succeeded or failed, the preconditions 2016 * are the same: the relevant objset and associated dataset are owned by 2017 * zfsvfs, held, and long held on entry. 2018 */ 2019 int 2020 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2021 { 2022 int err; 2023 znode_t *zp; 2024 uint64_t sa_obj = 0; 2025 2026 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2027 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2028 2029 /* 2030 * We already own this, so just hold and rele it to update the 2031 * objset_t, as the one we had before may have been evicted. 2032 */ 2033 VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os)); 2034 VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs); 2035 VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset)); 2036 dmu_objset_rele(zfsvfs->z_os, zfsvfs); 2037 2038 /* 2039 * Make sure version hasn't changed 2040 */ 2041 2042 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION, 2043 &zfsvfs->z_version); 2044 2045 if (err) 2046 goto bail; 2047 2048 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 2049 ZFS_SA_ATTRS, 8, 1, &sa_obj); 2050 2051 if (err && zfsvfs->z_version >= ZPL_VERSION_SA) 2052 goto bail; 2053 2054 if ((err = sa_setup(zfsvfs->z_os, sa_obj, 2055 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0) 2056 goto bail; 2057 2058 if (zfsvfs->z_version >= ZPL_VERSION_SA) 2059 sa_register_update_callback(zfsvfs->z_os, 2060 zfs_sa_upgrade); 2061 2062 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2063 2064 zfs_set_fuid_feature(zfsvfs); 2065 2066 /* 2067 * Attempt to re-establish all the active znodes with 2068 * their dbufs. If a zfs_rezget() fails, then we'll let 2069 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2070 * when they try to use their znode. 2071 */ 2072 mutex_enter(&zfsvfs->z_znodes_lock); 2073 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2074 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2075 (void) zfs_rezget(zp); 2076 } 2077 mutex_exit(&zfsvfs->z_znodes_lock); 2078 2079 bail: 2080 /* release the VOPs */ 2081 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2082 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 2083 2084 if (err) { 2085 /* 2086 * Since we couldn't setup the sa framework, try to force 2087 * unmount this file system. 2088 */ 2089 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2090 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2091 } 2092 return (err); 2093 } 2094 2095 static void 2096 zfs_freevfs(vfs_t *vfsp) 2097 { 2098 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2099 2100 /* 2101 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2102 * from zfs_mount(). Release it here. If we came through 2103 * zfs_mountroot() instead, we didn't grab an extra hold, so 2104 * skip the VFS_RELE for rootvfs. 2105 */ 2106 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2107 VFS_RELE(zfsvfs->z_parent->z_vfs); 2108 2109 zfsvfs_free(zfsvfs); 2110 2111 atomic_dec_32(&zfs_active_fs_count); 2112 } 2113 2114 /* 2115 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2116 * so we can't safely do any non-idempotent initialization here. 2117 * Leave that to zfs_init() and zfs_fini(), which are called 2118 * from the module's _init() and _fini() entry points. 2119 */ 2120 /*ARGSUSED*/ 2121 static int 2122 zfs_vfsinit(int fstype, char *name) 2123 { 2124 int error; 2125 2126 zfsfstype = fstype; 2127 2128 /* 2129 * Setup vfsops and vnodeops tables. 2130 */ 2131 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2132 if (error != 0) { 2133 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2134 } 2135 2136 error = zfs_create_op_tables(); 2137 if (error) { 2138 zfs_remove_op_tables(); 2139 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2140 (void) vfs_freevfsops_by_type(zfsfstype); 2141 return (error); 2142 } 2143 2144 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2145 2146 /* 2147 * Unique major number for all zfs mounts. 2148 * If we run out of 32-bit minors, we'll getudev() another major. 2149 */ 2150 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2151 zfs_minor = ZFS_MIN_MINOR; 2152 2153 return (0); 2154 } 2155 2156 void 2157 zfs_init(void) 2158 { 2159 /* 2160 * Initialize .zfs directory structures 2161 */ 2162 zfsctl_init(); 2163 2164 /* 2165 * Initialize znode cache, vnode ops, etc... 2166 */ 2167 zfs_znode_init(); 2168 2169 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2170 } 2171 2172 void 2173 zfs_fini(void) 2174 { 2175 zfsctl_fini(); 2176 zfs_znode_fini(); 2177 } 2178 2179 int 2180 zfs_busy(void) 2181 { 2182 return (zfs_active_fs_count != 0); 2183 } 2184 2185 int 2186 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2187 { 2188 int error; 2189 objset_t *os = zfsvfs->z_os; 2190 dmu_tx_t *tx; 2191 2192 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2193 return (SET_ERROR(EINVAL)); 2194 2195 if (newvers < zfsvfs->z_version) 2196 return (SET_ERROR(EINVAL)); 2197 2198 if (zfs_spa_version_map(newvers) > 2199 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2200 return (SET_ERROR(ENOTSUP)); 2201 2202 tx = dmu_tx_create(os); 2203 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2204 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2205 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2206 ZFS_SA_ATTRS); 2207 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2208 } 2209 error = dmu_tx_assign(tx, TXG_WAIT); 2210 if (error) { 2211 dmu_tx_abort(tx); 2212 return (error); 2213 } 2214 2215 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2216 8, 1, &newvers, tx); 2217 2218 if (error) { 2219 dmu_tx_commit(tx); 2220 return (error); 2221 } 2222 2223 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2224 uint64_t sa_obj; 2225 2226 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2227 SPA_VERSION_SA); 2228 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2229 DMU_OT_NONE, 0, tx); 2230 2231 error = zap_add(os, MASTER_NODE_OBJ, 2232 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2233 ASSERT0(error); 2234 2235 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2236 sa_register_update_callback(os, zfs_sa_upgrade); 2237 } 2238 2239 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2240 "from %llu to %llu", zfsvfs->z_version, newvers); 2241 2242 dmu_tx_commit(tx); 2243 2244 zfsvfs->z_version = newvers; 2245 2246 zfs_set_fuid_feature(zfsvfs); 2247 2248 return (0); 2249 } 2250 2251 /* 2252 * Read a property stored within the master node. 2253 */ 2254 int 2255 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2256 { 2257 const char *pname; 2258 int error = ENOENT; 2259 2260 /* 2261 * Look up the file system's value for the property. For the 2262 * version property, we look up a slightly different string. 2263 */ 2264 if (prop == ZFS_PROP_VERSION) 2265 pname = ZPL_VERSION_STR; 2266 else 2267 pname = zfs_prop_to_name(prop); 2268 2269 if (os != NULL) 2270 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2271 2272 if (error == ENOENT) { 2273 /* No value set, use the default value */ 2274 switch (prop) { 2275 case ZFS_PROP_VERSION: 2276 *value = ZPL_VERSION; 2277 break; 2278 case ZFS_PROP_NORMALIZE: 2279 case ZFS_PROP_UTF8ONLY: 2280 *value = 0; 2281 break; 2282 case ZFS_PROP_CASE: 2283 *value = ZFS_CASE_SENSITIVE; 2284 break; 2285 default: 2286 return (error); 2287 } 2288 error = 0; 2289 } 2290 return (error); 2291 } 2292 2293 static vfsdef_t vfw = { 2294 VFSDEF_VERSION, 2295 MNTTYPE_ZFS, 2296 zfs_vfsinit, 2297 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2298 VSW_XID|VSW_ZMOUNT, 2299 &zfs_mntopts 2300 }; 2301 2302 struct modlfs zfs_modlfs = { 2303 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2304 }; 2305