xref: /titanic_51/usr/src/uts/common/fs/zfs/zfs_rlock.c (revision 9c94f155585ea35e938fea603bc227c685223abd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * This file contains the code to implement file range locking in
28  * ZFS, although there isn't much specific to ZFS (all that comes to mind
29  * support for growing the blocksize).
30  *
31  * Interface
32  * ---------
33  * Defined in zfs_rlock.h but essentially:
34  *	rl = zfs_range_lock(zp, off, len, lock_type);
35  *	zfs_range_unlock(rl);
36  *	zfs_range_reduce(rl, off, len);
37  *
38  * AVL tree
39  * --------
40  * An AVL tree is used to maintain the state of the existing ranges
41  * that are locked for exclusive (writer) or shared (reader) use.
42  * The starting range offset is used for searching and sorting the tree.
43  *
44  * Common case
45  * -----------
46  * The (hopefully) usual case is of no overlaps or contention for
47  * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree
48  * searched that finds no overlap, and *this* rl_t is placed in the tree.
49  *
50  * Overlaps/Reference counting/Proxy locks
51  * ---------------------------------------
52  * The avl code only allows one node at a particular offset. Also it's very
53  * inefficient to search through all previous entries looking for overlaps
54  * (because the very 1st in the ordered list might be at offset 0 but
55  * cover the whole file).
56  * So this implementation uses reference counts and proxy range locks.
57  * Firstly, only reader locks use reference counts and proxy locks,
58  * because writer locks are exclusive.
59  * When a reader lock overlaps with another then a proxy lock is created
60  * for that range and replaces the original lock. If the overlap
61  * is exact then the reference count of the proxy is simply incremented.
62  * Otherwise, the proxy lock is split into smaller lock ranges and
63  * new proxy locks created for non overlapping ranges.
64  * The reference counts are adjusted accordingly.
65  * Meanwhile, the orginal lock is kept around (this is the callers handle)
66  * and its offset and length are used when releasing the lock.
67  *
68  * Thread coordination
69  * -------------------
70  * In order to make wakeups efficient and to ensure multiple continuous
71  * readers on a range don't starve a writer for the same range lock,
72  * two condition variables are allocated in each rl_t.
73  * If a writer (or reader) can't get a range it initialises the writer
74  * (or reader) cv; sets a flag saying there's a writer (or reader) waiting;
75  * and waits on that cv. When a thread unlocks that range it wakes up all
76  * writers then all readers before destroying the lock.
77  *
78  * Append mode writes
79  * ------------------
80  * Append mode writes need to lock a range at the end of a file.
81  * The offset of the end of the file is determined under the
82  * range locking mutex, and the lock type converted from RL_APPEND to
83  * RL_WRITER and the range locked.
84  *
85  * Grow block handling
86  * -------------------
87  * ZFS supports multiple block sizes currently upto 128K. The smallest
88  * block size is used for the file which is grown as needed. During this
89  * growth all other writers and readers must be excluded.
90  * So if the block size needs to be grown then the whole file is
91  * exclusively locked, then later the caller will reduce the lock
92  * range to just the range to be written using zfs_reduce_range.
93  */
94 
95 #include <sys/zfs_rlock.h>
96 
97 /*
98  * Check if a write lock can be grabbed, or wait and recheck until available.
99  */
100 static void
101 zfs_range_lock_writer(znode_t *zp, rl_t *new)
102 {
103 	avl_tree_t *tree = &zp->z_range_avl;
104 	rl_t *rl;
105 	avl_index_t where;
106 	uint64_t end_size;
107 	uint64_t off = new->r_off;
108 	uint64_t len = new->r_len;
109 
110 	for (;;) {
111 		/*
112 		 * Range locking is also used by zvol and uses a
113 		 * dummied up znode. However, for zvol, we don't need to
114 		 * append or grow blocksize, and besides we don't have
115 		 * a z_phys or z_zfsvfs - so skip that processing.
116 		 *
117 		 * Yes, this is ugly, and would be solved by not handling
118 		 * grow or append in range lock code. If that was done then
119 		 * we could make the range locking code generically available
120 		 * to other non-zfs consumers.
121 		 */
122 		if (zp->z_vnode) { /* caller is ZPL */
123 			/*
124 			 * If in append mode pick up the current end of file.
125 			 * This is done under z_range_lock to avoid races.
126 			 */
127 			if (new->r_type == RL_APPEND)
128 				new->r_off = zp->z_phys->zp_size;
129 
130 			/*
131 			 * If we need to grow the block size then grab the whole
132 			 * file range. This is also done under z_range_lock to
133 			 * avoid races.
134 			 */
135 			end_size = MAX(zp->z_phys->zp_size, new->r_off + len);
136 			if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
137 			    zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) {
138 				new->r_off = 0;
139 				new->r_len = UINT64_MAX;
140 			}
141 		}
142 
143 		/*
144 		 * First check for the usual case of no locks
145 		 */
146 		if (avl_numnodes(tree) == 0) {
147 			new->r_type = RL_WRITER; /* convert to writer */
148 			avl_add(tree, new);
149 			return;
150 		}
151 
152 		/*
153 		 * Look for any locks in the range.
154 		 */
155 		rl = avl_find(tree, new, &where);
156 		if (rl)
157 			goto wait; /* already locked at same offset */
158 
159 		rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
160 		if (rl && (rl->r_off < new->r_off + new->r_len))
161 			goto wait;
162 
163 		rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
164 		if (rl && rl->r_off + rl->r_len > new->r_off)
165 			goto wait;
166 
167 		new->r_type = RL_WRITER; /* convert possible RL_APPEND */
168 		avl_insert(tree, new, where);
169 		return;
170 wait:
171 		if (!rl->r_write_wanted) {
172 			cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL);
173 			rl->r_write_wanted = B_TRUE;
174 		}
175 		cv_wait(&rl->r_wr_cv, &zp->z_range_lock);
176 
177 		/* reset to original */
178 		new->r_off = off;
179 		new->r_len = len;
180 	}
181 }
182 
183 /*
184  * If this is an original (non-proxy) lock then replace it by
185  * a proxy and return the proxy.
186  */
187 static rl_t *
188 zfs_range_proxify(avl_tree_t *tree, rl_t *rl)
189 {
190 	rl_t *proxy;
191 
192 	if (rl->r_proxy)
193 		return (rl); /* already a proxy */
194 
195 	ASSERT3U(rl->r_cnt, ==, 1);
196 	ASSERT(rl->r_write_wanted == B_FALSE);
197 	ASSERT(rl->r_read_wanted == B_FALSE);
198 	avl_remove(tree, rl);
199 	rl->r_cnt = 0;
200 
201 	/* create a proxy range lock */
202 	proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP);
203 	proxy->r_off = rl->r_off;
204 	proxy->r_len = rl->r_len;
205 	proxy->r_cnt = 1;
206 	proxy->r_type = RL_READER;
207 	proxy->r_proxy = B_TRUE;
208 	proxy->r_write_wanted = B_FALSE;
209 	proxy->r_read_wanted = B_FALSE;
210 	avl_add(tree, proxy);
211 
212 	return (proxy);
213 }
214 
215 /*
216  * Split the range lock at the supplied offset
217  * returning the *front* proxy.
218  */
219 static rl_t *
220 zfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off)
221 {
222 	rl_t *front, *rear;
223 
224 	ASSERT3U(rl->r_len, >, 1);
225 	ASSERT3U(off, >, rl->r_off);
226 	ASSERT3U(off, <, rl->r_off + rl->r_len);
227 	ASSERT(rl->r_write_wanted == B_FALSE);
228 	ASSERT(rl->r_read_wanted == B_FALSE);
229 
230 	/* create the rear proxy range lock */
231 	rear = kmem_alloc(sizeof (rl_t), KM_SLEEP);
232 	rear->r_off = off;
233 	rear->r_len = rl->r_off + rl->r_len - off;
234 	rear->r_cnt = rl->r_cnt;
235 	rear->r_type = RL_READER;
236 	rear->r_proxy = B_TRUE;
237 	rear->r_write_wanted = B_FALSE;
238 	rear->r_read_wanted = B_FALSE;
239 
240 	front = zfs_range_proxify(tree, rl);
241 	front->r_len = off - rl->r_off;
242 
243 	avl_insert_here(tree, rear, front, AVL_AFTER);
244 	return (front);
245 }
246 
247 /*
248  * Create and add a new proxy range lock for the supplied range.
249  */
250 static void
251 zfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len)
252 {
253 	rl_t *rl;
254 
255 	ASSERT(len);
256 	rl = kmem_alloc(sizeof (rl_t), KM_SLEEP);
257 	rl->r_off = off;
258 	rl->r_len = len;
259 	rl->r_cnt = 1;
260 	rl->r_type = RL_READER;
261 	rl->r_proxy = B_TRUE;
262 	rl->r_write_wanted = B_FALSE;
263 	rl->r_read_wanted = B_FALSE;
264 	avl_add(tree, rl);
265 }
266 
267 static void
268 zfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where)
269 {
270 	rl_t *next;
271 	uint64_t off = new->r_off;
272 	uint64_t len = new->r_len;
273 
274 	/*
275 	 * prev arrives either:
276 	 * - pointing to an entry at the same offset
277 	 * - pointing to the entry with the closest previous offset whose
278 	 *   range may overlap with the new range
279 	 * - null, if there were no ranges starting before the new one
280 	 */
281 	if (prev) {
282 		if (prev->r_off + prev->r_len <= off) {
283 			prev = NULL;
284 		} else if (prev->r_off != off) {
285 			/*
286 			 * convert to proxy if needed then
287 			 * split this entry and bump ref count
288 			 */
289 			prev = zfs_range_split(tree, prev, off);
290 			prev = AVL_NEXT(tree, prev); /* move to rear range */
291 		}
292 	}
293 	ASSERT((prev == NULL) || (prev->r_off == off));
294 
295 	if (prev)
296 		next = prev;
297 	else
298 		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
299 
300 	if (next == NULL || off + len <= next->r_off) {
301 		/* no overlaps, use the original new rl_t in the tree */
302 		avl_insert(tree, new, where);
303 		return;
304 	}
305 
306 	if (off < next->r_off) {
307 		/* Add a proxy for initial range before the overlap */
308 		zfs_range_new_proxy(tree, off, next->r_off - off);
309 	}
310 
311 	new->r_cnt = 0; /* will use proxies in tree */
312 	/*
313 	 * We now search forward through the ranges, until we go past the end
314 	 * of the new range. For each entry we make it a proxy if it
315 	 * isn't already, then bump its reference count. If there's any
316 	 * gaps between the ranges then we create a new proxy range.
317 	 */
318 	for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) {
319 		if (off + len <= next->r_off)
320 			break;
321 		if (prev && prev->r_off + prev->r_len < next->r_off) {
322 			/* there's a gap */
323 			ASSERT3U(next->r_off, >, prev->r_off + prev->r_len);
324 			zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
325 			    next->r_off - (prev->r_off + prev->r_len));
326 		}
327 		if (off + len == next->r_off + next->r_len) {
328 			/* exact overlap with end */
329 			next = zfs_range_proxify(tree, next);
330 			next->r_cnt++;
331 			return;
332 		}
333 		if (off + len < next->r_off + next->r_len) {
334 			/* new range ends in the middle of this block */
335 			next = zfs_range_split(tree, next, off + len);
336 			next->r_cnt++;
337 			return;
338 		}
339 		ASSERT3U(off + len, >, next->r_off + next->r_len);
340 		next = zfs_range_proxify(tree, next);
341 		next->r_cnt++;
342 	}
343 
344 	/* Add the remaining end range. */
345 	zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
346 	    (off + len) - (prev->r_off + prev->r_len));
347 }
348 
349 /*
350  * Check if a reader lock can be grabbed, or wait and recheck until available.
351  */
352 static void
353 zfs_range_lock_reader(znode_t *zp, rl_t *new)
354 {
355 	avl_tree_t *tree = &zp->z_range_avl;
356 	rl_t *prev, *next;
357 	avl_index_t where;
358 	uint64_t off = new->r_off;
359 	uint64_t len = new->r_len;
360 
361 	/*
362 	 * Look for any writer locks in the range.
363 	 */
364 retry:
365 	prev = avl_find(tree, new, &where);
366 	if (prev == NULL)
367 		prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
368 
369 	/*
370 	 * Check the previous range for a writer lock overlap.
371 	 */
372 	if (prev && (off < prev->r_off + prev->r_len)) {
373 		if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) {
374 			if (!prev->r_read_wanted) {
375 				cv_init(&prev->r_rd_cv, NULL, CV_DEFAULT, NULL);
376 				prev->r_read_wanted = B_TRUE;
377 			}
378 			cv_wait(&prev->r_rd_cv, &zp->z_range_lock);
379 			goto retry;
380 		}
381 		if (off + len < prev->r_off + prev->r_len)
382 			goto got_lock;
383 	}
384 
385 	/*
386 	 * Search through the following ranges to see if there's
387 	 * write lock any overlap.
388 	 */
389 	if (prev)
390 		next = AVL_NEXT(tree, prev);
391 	else
392 		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
393 	for (; next; next = AVL_NEXT(tree, next)) {
394 		if (off + len <= next->r_off)
395 			goto got_lock;
396 		if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) {
397 			if (!next->r_read_wanted) {
398 				cv_init(&next->r_rd_cv, NULL, CV_DEFAULT, NULL);
399 				next->r_read_wanted = B_TRUE;
400 			}
401 			cv_wait(&next->r_rd_cv, &zp->z_range_lock);
402 			goto retry;
403 		}
404 		if (off + len <= next->r_off + next->r_len)
405 			goto got_lock;
406 	}
407 
408 got_lock:
409 	/*
410 	 * Add the read lock, which may involve splitting existing
411 	 * locks and bumping ref counts (r_cnt).
412 	 */
413 	zfs_range_add_reader(tree, new, prev, where);
414 }
415 
416 /*
417  * Lock a range (offset, length) as either shared (RL_READER)
418  * or exclusive (RL_WRITER). Returns the range lock structure
419  * for later unlocking or reduce range (if entire file
420  * previously locked as RL_WRITER).
421  */
422 rl_t *
423 zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type)
424 {
425 	rl_t *new;
426 
427 	ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND);
428 
429 	new = kmem_alloc(sizeof (rl_t), KM_SLEEP);
430 	new->r_zp = zp;
431 	new->r_off = off;
432 	if (len + off < off)	/* overflow */
433 		len = UINT64_MAX - off;
434 	new->r_len = len;
435 	new->r_cnt = 1; /* assume it's going to be in the tree */
436 	new->r_type = type;
437 	new->r_proxy = B_FALSE;
438 	new->r_write_wanted = B_FALSE;
439 	new->r_read_wanted = B_FALSE;
440 
441 	mutex_enter(&zp->z_range_lock);
442 	if (type == RL_READER) {
443 		/*
444 		 * First check for the usual case of no locks
445 		 */
446 		if (avl_numnodes(&zp->z_range_avl) == 0)
447 			avl_add(&zp->z_range_avl, new);
448 		else
449 			zfs_range_lock_reader(zp, new);
450 	} else
451 		zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */
452 	mutex_exit(&zp->z_range_lock);
453 	return (new);
454 }
455 
456 /*
457  * Unlock a reader lock
458  */
459 static void
460 zfs_range_unlock_reader(znode_t *zp, rl_t *remove)
461 {
462 	avl_tree_t *tree = &zp->z_range_avl;
463 	rl_t *rl, *next;
464 	uint64_t len;
465 
466 	/*
467 	 * The common case is when the remove entry is in the tree
468 	 * (cnt == 1) meaning there's been no other reader locks overlapping
469 	 * with this one. Otherwise the remove entry will have been
470 	 * removed from the tree and replaced by proxies (one or
471 	 * more ranges mapping to the entire range).
472 	 */
473 	if (remove->r_cnt == 1) {
474 		avl_remove(tree, remove);
475 		if (remove->r_write_wanted) {
476 			cv_broadcast(&remove->r_wr_cv);
477 			cv_destroy(&remove->r_wr_cv);
478 		}
479 		if (remove->r_read_wanted) {
480 			cv_broadcast(&remove->r_rd_cv);
481 			cv_destroy(&remove->r_rd_cv);
482 		}
483 	} else {
484 		ASSERT3U(remove->r_cnt, ==, 0);
485 		ASSERT3U(remove->r_write_wanted, ==, 0);
486 		ASSERT3U(remove->r_read_wanted, ==, 0);
487 		/*
488 		 * Find start proxy representing this reader lock,
489 		 * then decrement ref count on all proxies
490 		 * that make up this range, freeing them as needed.
491 		 */
492 		rl = avl_find(tree, remove, NULL);
493 		ASSERT(rl);
494 		ASSERT(rl->r_cnt);
495 		ASSERT(rl->r_type == RL_READER);
496 		for (len = remove->r_len; len != 0; rl = next) {
497 			len -= rl->r_len;
498 			if (len) {
499 				next = AVL_NEXT(tree, rl);
500 				ASSERT(next);
501 				ASSERT(rl->r_off + rl->r_len == next->r_off);
502 				ASSERT(next->r_cnt);
503 				ASSERT(next->r_type == RL_READER);
504 			}
505 			rl->r_cnt--;
506 			if (rl->r_cnt == 0) {
507 				avl_remove(tree, rl);
508 				if (rl->r_write_wanted) {
509 					cv_broadcast(&rl->r_wr_cv);
510 					cv_destroy(&rl->r_wr_cv);
511 				}
512 				if (rl->r_read_wanted) {
513 					cv_broadcast(&rl->r_rd_cv);
514 					cv_destroy(&rl->r_rd_cv);
515 				}
516 				kmem_free(rl, sizeof (rl_t));
517 			}
518 		}
519 	}
520 	kmem_free(remove, sizeof (rl_t));
521 }
522 
523 /*
524  * Unlock range and destroy range lock structure.
525  */
526 void
527 zfs_range_unlock(rl_t *rl)
528 {
529 	znode_t *zp = rl->r_zp;
530 
531 	ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER);
532 	ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0);
533 	ASSERT(!rl->r_proxy);
534 
535 	mutex_enter(&zp->z_range_lock);
536 	if (rl->r_type == RL_WRITER) {
537 		/* writer locks can't be shared or split */
538 		avl_remove(&zp->z_range_avl, rl);
539 		mutex_exit(&zp->z_range_lock);
540 		if (rl->r_write_wanted) {
541 			cv_broadcast(&rl->r_wr_cv);
542 			cv_destroy(&rl->r_wr_cv);
543 		}
544 		if (rl->r_read_wanted) {
545 			cv_broadcast(&rl->r_rd_cv);
546 			cv_destroy(&rl->r_rd_cv);
547 		}
548 		kmem_free(rl, sizeof (rl_t));
549 	} else {
550 		/*
551 		 * lock may be shared, let zfs_range_unlock_reader()
552 		 * release the lock and free the rl_t
553 		 */
554 		zfs_range_unlock_reader(zp, rl);
555 		mutex_exit(&zp->z_range_lock);
556 	}
557 }
558 
559 /*
560  * Reduce range locked as RL_WRITER from whole file to specified range.
561  * Asserts the whole file is exclusivly locked and so there's only one
562  * entry in the tree.
563  */
564 void
565 zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len)
566 {
567 	znode_t *zp = rl->r_zp;
568 
569 	/* Ensure there are no other locks */
570 	ASSERT(avl_numnodes(&zp->z_range_avl) == 1);
571 	ASSERT(rl->r_off == 0);
572 	ASSERT(rl->r_type == RL_WRITER);
573 	ASSERT(!rl->r_proxy);
574 	ASSERT3U(rl->r_len, ==, UINT64_MAX);
575 	ASSERT3U(rl->r_cnt, ==, 1);
576 
577 	mutex_enter(&zp->z_range_lock);
578 	rl->r_off = off;
579 	rl->r_len = len;
580 	mutex_exit(&zp->z_range_lock);
581 	if (rl->r_write_wanted)
582 		cv_broadcast(&rl->r_wr_cv);
583 	if (rl->r_read_wanted)
584 		cv_broadcast(&rl->r_rd_cv);
585 }
586 
587 /*
588  * AVL comparison function used to order range locks
589  * Locks are ordered on the start offset of the range.
590  */
591 int
592 zfs_range_compare(const void *arg1, const void *arg2)
593 {
594 	const rl_t *rl1 = arg1;
595 	const rl_t *rl2 = arg2;
596 
597 	if (rl1->r_off > rl2->r_off)
598 		return (1);
599 	if (rl1->r_off < rl2->r_off)
600 		return (-1);
601 	return (0);
602 }
603