xref: /titanic_51/usr/src/uts/common/fs/zfs/zfs_fuid.c (revision 7b1f684a14f99a2b9b1b2561f484ff648eff6d9b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/sunddi.h>
28 #include <sys/dmu.h>
29 #include <sys/avl.h>
30 #include <sys/zap.h>
31 #include <sys/refcount.h>
32 #include <sys/nvpair.h>
33 #ifdef _KERNEL
34 #include <sys/kidmap.h>
35 #include <sys/sid.h>
36 #include <sys/zfs_vfsops.h>
37 #include <sys/zfs_znode.h>
38 #endif
39 #include <sys/zfs_fuid.h>
40 
41 /*
42  * FUID Domain table(s).
43  *
44  * The FUID table is stored as a packed nvlist of an array
45  * of nvlists which contain an index, domain string and offset
46  *
47  * During file system initialization the nvlist(s) are read and
48  * two AVL trees are created.  One tree is keyed by the index number
49  * and the other by the domain string.  Nodes are never removed from
50  * trees, but new entries may be added.  If a new entry is added then the
51  * on-disk packed nvlist will also be updated.
52  */
53 
54 #define	FUID_IDX	"fuid_idx"
55 #define	FUID_DOMAIN	"fuid_domain"
56 #define	FUID_OFFSET	"fuid_offset"
57 #define	FUID_NVP_ARRAY	"fuid_nvlist"
58 
59 typedef struct fuid_domain {
60 	avl_node_t	f_domnode;
61 	avl_node_t	f_idxnode;
62 	ksiddomain_t	*f_ksid;
63 	uint64_t	f_idx;
64 } fuid_domain_t;
65 
66 /*
67  * Compare two indexes.
68  */
69 static int
70 idx_compare(const void *arg1, const void *arg2)
71 {
72 	const fuid_domain_t *node1 = arg1;
73 	const fuid_domain_t *node2 = arg2;
74 
75 	if (node1->f_idx < node2->f_idx)
76 		return (-1);
77 	else if (node1->f_idx > node2->f_idx)
78 		return (1);
79 	return (0);
80 }
81 
82 /*
83  * Compare two domain strings.
84  */
85 static int
86 domain_compare(const void *arg1, const void *arg2)
87 {
88 	const fuid_domain_t *node1 = arg1;
89 	const fuid_domain_t *node2 = arg2;
90 	int val;
91 
92 	val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
93 	if (val == 0)
94 		return (0);
95 	return (val > 0 ? 1 : -1);
96 }
97 
98 /*
99  * load initial fuid domain and idx trees.  This function is used by
100  * both the kernel and zdb.
101  */
102 uint64_t
103 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
104     avl_tree_t *domain_tree)
105 {
106 	dmu_buf_t *db;
107 	uint64_t fuid_size;
108 
109 	avl_create(idx_tree, idx_compare,
110 	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
111 	avl_create(domain_tree, domain_compare,
112 	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
113 
114 	VERIFY(0 == dmu_bonus_hold(os, fuid_obj, FTAG, &db));
115 	fuid_size = *(uint64_t *)db->db_data;
116 	dmu_buf_rele(db, FTAG);
117 
118 	if (fuid_size)  {
119 		nvlist_t **fuidnvp;
120 		nvlist_t *nvp = NULL;
121 		uint_t count;
122 		char *packed;
123 		int i;
124 
125 		packed = kmem_alloc(fuid_size, KM_SLEEP);
126 		VERIFY(dmu_read(os, fuid_obj, 0, fuid_size, packed) == 0);
127 		VERIFY(nvlist_unpack(packed, fuid_size,
128 		    &nvp, 0) == 0);
129 		VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
130 		    &fuidnvp, &count) == 0);
131 
132 		for (i = 0; i != count; i++) {
133 			fuid_domain_t *domnode;
134 			char *domain;
135 			uint64_t idx;
136 
137 			VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
138 			    &domain) == 0);
139 			VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
140 			    &idx) == 0);
141 
142 			domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
143 
144 			domnode->f_idx = idx;
145 			domnode->f_ksid = ksid_lookupdomain(domain);
146 			avl_add(idx_tree, domnode);
147 			avl_add(domain_tree, domnode);
148 		}
149 		nvlist_free(nvp);
150 		kmem_free(packed, fuid_size);
151 	}
152 	return (fuid_size);
153 }
154 
155 void
156 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
157 {
158 	fuid_domain_t *domnode;
159 	void *cookie;
160 
161 	cookie = NULL;
162 	while (domnode = avl_destroy_nodes(domain_tree, &cookie))
163 		ksiddomain_rele(domnode->f_ksid);
164 
165 	avl_destroy(domain_tree);
166 	cookie = NULL;
167 	while (domnode = avl_destroy_nodes(idx_tree, &cookie))
168 		kmem_free(domnode, sizeof (fuid_domain_t));
169 	avl_destroy(idx_tree);
170 }
171 
172 char *
173 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
174 {
175 	fuid_domain_t searchnode, *findnode;
176 	avl_index_t loc;
177 
178 	searchnode.f_idx = idx;
179 
180 	findnode = avl_find(idx_tree, &searchnode, &loc);
181 
182 	return (findnode->f_ksid->kd_name);
183 }
184 
185 #ifdef _KERNEL
186 /*
187  * Load the fuid table(s) into memory.
188  */
189 static void
190 zfs_fuid_init(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
191 {
192 	int error = 0;
193 
194 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
195 
196 	if (zfsvfs->z_fuid_loaded) {
197 		rw_exit(&zfsvfs->z_fuid_lock);
198 		return;
199 	}
200 
201 	if (zfsvfs->z_fuid_obj == 0) {
202 
203 		/* first make sure we need to allocate object */
204 
205 		error = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
206 		    ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
207 		if (error == ENOENT && tx != NULL) {
208 			zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
209 			    DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
210 			    sizeof (uint64_t), tx);
211 			VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
212 			    ZFS_FUID_TABLES, sizeof (uint64_t), 1,
213 			    &zfsvfs->z_fuid_obj, tx) == 0);
214 		}
215 	}
216 
217 	zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
218 	    zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
219 
220 	zfsvfs->z_fuid_loaded = B_TRUE;
221 	rw_exit(&zfsvfs->z_fuid_lock);
222 }
223 
224 /*
225  * Query domain table for a given domain.
226  *
227  * If domain isn't found it is added to AVL trees and
228  * the results are pushed out to disk.
229  */
230 int
231 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, char **retdomain,
232     dmu_tx_t *tx)
233 {
234 	fuid_domain_t searchnode, *findnode;
235 	avl_index_t loc;
236 	krw_t rw = RW_READER;
237 
238 	/*
239 	 * If the dummy "nobody" domain then return an index of 0
240 	 * to cause the created FUID to be a standard POSIX id
241 	 * for the user nobody.
242 	 */
243 	if (domain[0] == '\0') {
244 		*retdomain = "";
245 		return (0);
246 	}
247 
248 	searchnode.f_ksid = ksid_lookupdomain(domain);
249 	if (retdomain) {
250 		*retdomain = searchnode.f_ksid->kd_name;
251 	}
252 	if (!zfsvfs->z_fuid_loaded)
253 		zfs_fuid_init(zfsvfs, tx);
254 
255 retry:
256 	rw_enter(&zfsvfs->z_fuid_lock, rw);
257 	findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
258 
259 	if (findnode) {
260 		rw_exit(&zfsvfs->z_fuid_lock);
261 		ksiddomain_rele(searchnode.f_ksid);
262 		return (findnode->f_idx);
263 	} else {
264 		fuid_domain_t *domnode;
265 		nvlist_t *nvp;
266 		nvlist_t **fuids;
267 		uint64_t retidx;
268 		size_t nvsize = 0;
269 		char *packed;
270 		dmu_buf_t *db;
271 		int i = 0;
272 
273 		if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
274 			rw_exit(&zfsvfs->z_fuid_lock);
275 			rw = RW_WRITER;
276 			goto retry;
277 		}
278 
279 		domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
280 		domnode->f_ksid = searchnode.f_ksid;
281 
282 		retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
283 
284 		avl_add(&zfsvfs->z_fuid_domain, domnode);
285 		avl_add(&zfsvfs->z_fuid_idx, domnode);
286 		/*
287 		 * Now resync the on-disk nvlist.
288 		 */
289 		VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
290 
291 		domnode = avl_first(&zfsvfs->z_fuid_domain);
292 		fuids = kmem_alloc(retidx * sizeof (void *), KM_SLEEP);
293 		while (domnode) {
294 			VERIFY(nvlist_alloc(&fuids[i],
295 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
296 			VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
297 			    domnode->f_idx) == 0);
298 			VERIFY(nvlist_add_uint64(fuids[i],
299 			    FUID_OFFSET, 0) == 0);
300 			VERIFY(nvlist_add_string(fuids[i++], FUID_DOMAIN,
301 			    domnode->f_ksid->kd_name) == 0);
302 			domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode);
303 		}
304 		VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
305 		    fuids, retidx) == 0);
306 		for (i = 0; i != retidx; i++)
307 			nvlist_free(fuids[i]);
308 		kmem_free(fuids, retidx * sizeof (void *));
309 		VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
310 		packed = kmem_alloc(nvsize, KM_SLEEP);
311 		VERIFY(nvlist_pack(nvp, &packed, &nvsize,
312 		    NV_ENCODE_XDR, KM_SLEEP) == 0);
313 		nvlist_free(nvp);
314 		zfsvfs->z_fuid_size = nvsize;
315 		dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
316 		    zfsvfs->z_fuid_size, packed, tx);
317 		kmem_free(packed, zfsvfs->z_fuid_size);
318 		VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
319 		    FTAG, &db));
320 		dmu_buf_will_dirty(db, tx);
321 		*(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
322 		dmu_buf_rele(db, FTAG);
323 
324 		rw_exit(&zfsvfs->z_fuid_lock);
325 		return (retidx);
326 	}
327 }
328 
329 /*
330  * Query domain table by index, returning domain string
331  *
332  * Returns a pointer from an avl node of the domain string.
333  *
334  */
335 static char *
336 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
337 {
338 	char *domain;
339 
340 	if (idx == 0 || !zfsvfs->z_use_fuids)
341 		return (NULL);
342 
343 	if (!zfsvfs->z_fuid_loaded)
344 		zfs_fuid_init(zfsvfs, NULL);
345 
346 	rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
347 	domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
348 	rw_exit(&zfsvfs->z_fuid_lock);
349 
350 	ASSERT(domain);
351 	return (domain);
352 }
353 
354 void
355 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
356 {
357 	*uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_uid,
358 	    cr, ZFS_OWNER);
359 	*gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_gid,
360 	    cr, ZFS_GROUP);
361 }
362 
363 uid_t
364 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
365     cred_t *cr, zfs_fuid_type_t type)
366 {
367 	uint32_t index = FUID_INDEX(fuid);
368 	char *domain;
369 	uid_t id;
370 
371 	if (index == 0)
372 		return (fuid);
373 
374 	domain = zfs_fuid_find_by_idx(zfsvfs, index);
375 	ASSERT(domain != NULL);
376 
377 	if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
378 		(void) kidmap_getuidbysid(crgetzone(cr), domain,
379 		    FUID_RID(fuid), &id);
380 	} else {
381 		(void) kidmap_getgidbysid(crgetzone(cr), domain,
382 		    FUID_RID(fuid), &id);
383 	}
384 	return (id);
385 }
386 
387 /*
388  * Add a FUID node to the list of fuid's being created for this
389  * ACL
390  *
391  * If ACL has multiple domains, then keep only one copy of each unique
392  * domain.
393  */
394 static void
395 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
396     uint64_t idx, uint64_t id, zfs_fuid_type_t type)
397 {
398 	zfs_fuid_t *fuid;
399 	zfs_fuid_domain_t *fuid_domain;
400 	zfs_fuid_info_t *fuidp;
401 	uint64_t fuididx;
402 	boolean_t found = B_FALSE;
403 
404 	if (*fuidpp == NULL)
405 		*fuidpp = zfs_fuid_info_alloc();
406 
407 	fuidp = *fuidpp;
408 	/*
409 	 * First find fuid domain index in linked list
410 	 *
411 	 * If one isn't found then create an entry.
412 	 */
413 
414 	for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
415 	    fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
416 	    fuid_domain), fuididx++) {
417 		if (idx == fuid_domain->z_domidx) {
418 			found = B_TRUE;
419 			break;
420 		}
421 	}
422 
423 	if (!found) {
424 		fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
425 		fuid_domain->z_domain = domain;
426 		fuid_domain->z_domidx = idx;
427 		list_insert_tail(&fuidp->z_domains, fuid_domain);
428 		fuidp->z_domain_str_sz += strlen(domain) + 1;
429 		fuidp->z_domain_cnt++;
430 	}
431 
432 	if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
433 		/*
434 		 * Now allocate fuid entry and add it on the end of the list
435 		 */
436 
437 		fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
438 		fuid->z_id = id;
439 		fuid->z_domidx = idx;
440 		fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
441 
442 		list_insert_tail(&fuidp->z_fuids, fuid);
443 		fuidp->z_fuid_cnt++;
444 	} else {
445 		if (type == ZFS_OWNER)
446 			fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
447 		else
448 			fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
449 	}
450 }
451 
452 /*
453  * Create a file system FUID, based on information in the users cred
454  */
455 uint64_t
456 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
457     dmu_tx_t *tx, cred_t *cr, zfs_fuid_info_t **fuidp)
458 {
459 	uint64_t	idx;
460 	ksid_t		*ksid;
461 	uint32_t	rid;
462 	char 		*kdomain;
463 	const char	*domain;
464 	uid_t		id;
465 
466 	VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
467 
468 	if (type == ZFS_OWNER)
469 		id = crgetuid(cr);
470 	else
471 		id = crgetgid(cr);
472 
473 	if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id))
474 		return ((uint64_t)id);
475 
476 	ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
477 
478 	VERIFY(ksid != NULL);
479 	rid = ksid_getrid(ksid);
480 	domain = ksid_getdomain(ksid);
481 
482 	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx);
483 
484 	zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
485 
486 	return (FUID_ENCODE(idx, rid));
487 }
488 
489 /*
490  * Create a file system FUID for an ACL ace
491  * or a chown/chgrp of the file.
492  * This is similar to zfs_fuid_create_cred, except that
493  * we can't find the domain + rid information in the
494  * cred.  Instead we have to query Winchester for the
495  * domain and rid.
496  *
497  * During replay operations the domain+rid information is
498  * found in the zfs_fuid_info_t that the replay code has
499  * attached to the zfsvfs of the file system.
500  */
501 uint64_t
502 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
503     zfs_fuid_type_t type, dmu_tx_t *tx, zfs_fuid_info_t **fuidpp)
504 {
505 	const char *domain;
506 	char *kdomain;
507 	uint32_t fuid_idx = FUID_INDEX(id);
508 	uint32_t rid;
509 	idmap_stat status;
510 	uint64_t idx;
511 	boolean_t is_replay = (zfsvfs->z_assign >= TXG_INITIAL);
512 	zfs_fuid_t *zfuid = NULL;
513 	zfs_fuid_info_t *fuidp;
514 
515 	/*
516 	 * If POSIX ID, or entry is already a FUID then
517 	 * just return the id
518 	 *
519 	 * We may also be handed an already FUID'ized id via
520 	 * chmod.
521 	 */
522 
523 	if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
524 		return (id);
525 
526 	if (is_replay) {
527 		fuidp = zfsvfs->z_fuid_replay;
528 
529 		/*
530 		 * If we are passed an ephemeral id, but no
531 		 * fuid_info was logged then return NOBODY.
532 		 * This is most likely a result of idmap service
533 		 * not being available.
534 		 */
535 		if (fuidp == NULL)
536 			return (UID_NOBODY);
537 
538 		switch (type) {
539 		case ZFS_ACE_USER:
540 		case ZFS_ACE_GROUP:
541 			zfuid = list_head(&fuidp->z_fuids);
542 			rid = FUID_RID(zfuid->z_logfuid);
543 			idx = FUID_INDEX(zfuid->z_logfuid);
544 			break;
545 		case ZFS_OWNER:
546 			rid = FUID_RID(fuidp->z_fuid_owner);
547 			idx = FUID_INDEX(fuidp->z_fuid_owner);
548 			break;
549 		case ZFS_GROUP:
550 			rid = FUID_RID(fuidp->z_fuid_group);
551 			idx = FUID_INDEX(fuidp->z_fuid_group);
552 			break;
553 		};
554 		domain = fuidp->z_domain_table[idx -1];
555 	} else {
556 		if (type == ZFS_OWNER || type == ZFS_ACE_USER)
557 			status = kidmap_getsidbyuid(crgetzone(cr), id,
558 			    &domain, &rid);
559 		else
560 			status = kidmap_getsidbygid(crgetzone(cr), id,
561 			    &domain, &rid);
562 
563 		if (status != 0) {
564 			/*
565 			 * When returning nobody we will need to
566 			 * make a dummy fuid table entry for logging
567 			 * purposes.
568 			 */
569 			rid = UID_NOBODY;
570 			domain = "";
571 		}
572 	}
573 
574 	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx);
575 
576 	if (!is_replay)
577 		zfs_fuid_node_add(fuidpp, kdomain, rid, idx, id, type);
578 	else if (zfuid != NULL) {
579 		list_remove(&fuidp->z_fuids, zfuid);
580 		kmem_free(zfuid, sizeof (zfs_fuid_t));
581 	}
582 	return (FUID_ENCODE(idx, rid));
583 }
584 
585 void
586 zfs_fuid_destroy(zfsvfs_t *zfsvfs)
587 {
588 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
589 	if (!zfsvfs->z_fuid_loaded) {
590 		rw_exit(&zfsvfs->z_fuid_lock);
591 		return;
592 	}
593 	zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
594 	rw_exit(&zfsvfs->z_fuid_lock);
595 }
596 
597 /*
598  * Allocate zfs_fuid_info for tracking FUIDs created during
599  * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
600  */
601 zfs_fuid_info_t *
602 zfs_fuid_info_alloc(void)
603 {
604 	zfs_fuid_info_t *fuidp;
605 
606 	fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
607 	list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
608 	    offsetof(zfs_fuid_domain_t, z_next));
609 	list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
610 	    offsetof(zfs_fuid_t, z_next));
611 	return (fuidp);
612 }
613 
614 /*
615  * Release all memory associated with zfs_fuid_info_t
616  */
617 void
618 zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
619 {
620 	zfs_fuid_t *zfuid;
621 	zfs_fuid_domain_t *zdomain;
622 
623 	while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
624 		list_remove(&fuidp->z_fuids, zfuid);
625 		kmem_free(zfuid, sizeof (zfs_fuid_t));
626 	}
627 
628 	if (fuidp->z_domain_table != NULL)
629 		kmem_free(fuidp->z_domain_table,
630 		    (sizeof (char **)) * fuidp->z_domain_cnt);
631 
632 	while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
633 		list_remove(&fuidp->z_domains, zdomain);
634 		kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
635 	}
636 
637 	kmem_free(fuidp, sizeof (zfs_fuid_info_t));
638 }
639 
640 /*
641  * Check to see if id is a groupmember.  If cred
642  * has ksid info then sidlist is checked first
643  * and if still not found then POSIX groups are checked
644  *
645  * Will use a straight FUID compare when possible.
646  */
647 boolean_t
648 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
649 {
650 	ksid_t		*ksid = crgetsid(cr, KSID_GROUP);
651 	uid_t		gid;
652 
653 	if (ksid) {
654 		int 		i;
655 		ksid_t		*ksid_groups;
656 		ksidlist_t	*ksidlist = crgetsidlist(cr);
657 		uint32_t	idx = FUID_INDEX(id);
658 		uint32_t	rid = FUID_RID(id);
659 
660 		ASSERT(ksidlist);
661 		ksid_groups = ksidlist->ksl_sids;
662 
663 		for (i = 0; i != ksidlist->ksl_nsid; i++) {
664 			if (idx == 0) {
665 				if (id != IDMAP_WK_CREATOR_GROUP_GID &&
666 				    id == ksid_groups[i].ks_id) {
667 					return (B_TRUE);
668 				}
669 			} else {
670 				char *domain;
671 
672 				domain = zfs_fuid_find_by_idx(zfsvfs, idx);
673 				ASSERT(domain != NULL);
674 
675 				if (strcmp(domain,
676 				    IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
677 					return (B_FALSE);
678 
679 				if ((strcmp(domain,
680 				    ksid_groups[i].ks_domain->kd_name) == 0) &&
681 				    rid == ksid_groups[i].ks_rid)
682 					return (B_TRUE);
683 			}
684 		}
685 	}
686 
687 	/*
688 	 * Not found in ksidlist, check posix groups
689 	 */
690 	gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
691 	return (groupmember(gid, cr));
692 }
693 #endif
694