1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/spa.h> 27 #include <sys/spa_impl.h> 28 #include <sys/vdev.h> 29 #include <sys/vdev_impl.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/fm/protocol.h> 35 #include <sys/fm/util.h> 36 #include <sys/sysevent.h> 37 38 /* 39 * This general routine is responsible for generating all the different ZFS 40 * ereports. The payload is dependent on the class, and which arguments are 41 * supplied to the function: 42 * 43 * EREPORT POOL VDEV IO 44 * block X X X 45 * data X X 46 * device X X 47 * pool X 48 * 49 * If we are in a loading state, all errors are chained together by the same 50 * SPA-wide ENA (Error Numeric Association). 51 * 52 * For isolated I/O requests, we get the ENA from the zio_t. The propagation 53 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want 54 * to chain together all ereports associated with a logical piece of data. For 55 * read I/Os, there are basically three 'types' of I/O, which form a roughly 56 * layered diagram: 57 * 58 * +---------------+ 59 * | Aggregate I/O | No associated logical data or device 60 * +---------------+ 61 * | 62 * V 63 * +---------------+ Reads associated with a piece of logical data. 64 * | Read I/O | This includes reads on behalf of RAID-Z, 65 * +---------------+ mirrors, gang blocks, retries, etc. 66 * | 67 * V 68 * +---------------+ Reads associated with a particular device, but 69 * | Physical I/O | no logical data. Issued as part of vdev caching 70 * +---------------+ and I/O aggregation. 71 * 72 * Note that 'physical I/O' here is not the same terminology as used in the rest 73 * of ZIO. Typically, 'physical I/O' simply means that there is no attached 74 * blockpointer. But I/O with no associated block pointer can still be related 75 * to a logical piece of data (i.e. RAID-Z requests). 76 * 77 * Purely physical I/O always have unique ENAs. They are not related to a 78 * particular piece of logical data, and therefore cannot be chained together. 79 * We still generate an ereport, but the DE doesn't correlate it with any 80 * logical piece of data. When such an I/O fails, the delegated I/O requests 81 * will issue a retry, which will trigger the 'real' ereport with the correct 82 * ENA. 83 * 84 * We keep track of the ENA for a ZIO chain through the 'io_logical' member. 85 * When a new logical I/O is issued, we set this to point to itself. Child I/Os 86 * then inherit this pointer, so that when it is first set subsequent failures 87 * will use the same ENA. For vdev cache fill and queue aggregation I/O, 88 * this pointer is set to NULL, and no ereport will be generated (since it 89 * doesn't actually correspond to any particular device or piece of data, 90 * and the caller will always retry without caching or queueing anyway). 91 * 92 * For checksum errors, we want to include more information about the actual 93 * error which occurs. Accordingly, we build an ereport when the error is 94 * noticed, but instead of sending it in immediately, we hang it off of the 95 * io_cksum_report field of the logical IO. When the logical IO completes 96 * (successfully or not), zfs_ereport_finish_checksum() is called with the 97 * good and bad versions of the buffer (if available), and we annotate the 98 * ereport with information about the differences. 99 */ 100 #ifdef _KERNEL 101 static void 102 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out, 103 const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio, 104 uint64_t stateoroffset, uint64_t size) 105 { 106 nvlist_t *ereport, *detector; 107 108 uint64_t ena; 109 char class[64]; 110 111 /* 112 * If we are doing a spa_tryimport(), ignore errors. 113 */ 114 if (spa->spa_load_state == SPA_LOAD_TRYIMPORT) 115 return; 116 117 /* 118 * If we are in the middle of opening a pool, and the previous attempt 119 * failed, don't bother logging any new ereports - we're just going to 120 * get the same diagnosis anyway. 121 */ 122 if (spa->spa_load_state != SPA_LOAD_NONE && 123 spa->spa_last_open_failed) 124 return; 125 126 if (zio != NULL) { 127 /* 128 * If this is not a read or write zio, ignore the error. This 129 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails. 130 */ 131 if (zio->io_type != ZIO_TYPE_READ && 132 zio->io_type != ZIO_TYPE_WRITE) 133 return; 134 135 /* 136 * Ignore any errors from speculative I/Os, as failure is an 137 * expected result. 138 */ 139 if (zio->io_flags & ZIO_FLAG_SPECULATIVE) 140 return; 141 142 /* 143 * If this I/O is not a retry I/O, don't post an ereport. 144 * Otherwise, we risk making bad diagnoses based on B_FAILFAST 145 * I/Os. 146 */ 147 if (zio->io_error == EIO && 148 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 149 return; 150 151 if (vd != NULL) { 152 /* 153 * If the vdev has already been marked as failing due 154 * to a failed probe, then ignore any subsequent I/O 155 * errors, as the DE will automatically fault the vdev 156 * on the first such failure. This also catches cases 157 * where vdev_remove_wanted is set and the device has 158 * not yet been asynchronously placed into the REMOVED 159 * state. 160 */ 161 if (zio->io_vd == vd && !vdev_accessible(vd, zio)) 162 return; 163 164 /* 165 * Ignore checksum errors for reads from DTL regions of 166 * leaf vdevs. 167 */ 168 if (zio->io_type == ZIO_TYPE_READ && 169 zio->io_error == ECKSUM && 170 vd->vdev_ops->vdev_op_leaf && 171 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1)) 172 return; 173 } 174 } 175 176 /* 177 * For probe failure, we want to avoid posting ereports if we've 178 * already removed the device in the meantime. 179 */ 180 if (vd != NULL && 181 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 && 182 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED)) 183 return; 184 185 if ((ereport = fm_nvlist_create(NULL)) == NULL) 186 return; 187 188 if ((detector = fm_nvlist_create(NULL)) == NULL) { 189 fm_nvlist_destroy(ereport, FM_NVA_FREE); 190 return; 191 } 192 193 /* 194 * Serialize ereport generation 195 */ 196 mutex_enter(&spa->spa_errlist_lock); 197 198 /* 199 * Determine the ENA to use for this event. If we are in a loading 200 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use 201 * a root zio-wide ENA. Otherwise, simply use a unique ENA. 202 */ 203 if (spa->spa_load_state != SPA_LOAD_NONE) { 204 if (spa->spa_ena == 0) 205 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1); 206 ena = spa->spa_ena; 207 } else if (zio != NULL && zio->io_logical != NULL) { 208 if (zio->io_logical->io_ena == 0) 209 zio->io_logical->io_ena = 210 fm_ena_generate(0, FM_ENA_FMT1); 211 ena = zio->io_logical->io_ena; 212 } else { 213 ena = fm_ena_generate(0, FM_ENA_FMT1); 214 } 215 216 /* 217 * Construct the full class, detector, and other standard FMA fields. 218 */ 219 (void) snprintf(class, sizeof (class), "%s.%s", 220 ZFS_ERROR_CLASS, subclass); 221 222 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa), 223 vd != NULL ? vd->vdev_guid : 0); 224 225 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL); 226 227 /* 228 * Construct the per-ereport payload, depending on which parameters are 229 * passed in. 230 */ 231 232 /* 233 * Generic payload members common to all ereports. 234 */ 235 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL, 236 DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, 237 DATA_TYPE_UINT64, spa_guid(spa), 238 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32, 239 spa->spa_load_state, NULL); 240 241 if (spa != NULL) { 242 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, 243 DATA_TYPE_STRING, 244 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ? 245 FM_EREPORT_FAILMODE_WAIT : 246 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ? 247 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC, 248 NULL); 249 } 250 251 if (vd != NULL) { 252 vdev_t *pvd = vd->vdev_parent; 253 254 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 255 DATA_TYPE_UINT64, vd->vdev_guid, 256 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 257 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL); 258 if (vd->vdev_path != NULL) 259 fm_payload_set(ereport, 260 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, 261 DATA_TYPE_STRING, vd->vdev_path, NULL); 262 if (vd->vdev_devid != NULL) 263 fm_payload_set(ereport, 264 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, 265 DATA_TYPE_STRING, vd->vdev_devid, NULL); 266 if (vd->vdev_fru != NULL) 267 fm_payload_set(ereport, 268 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, 269 DATA_TYPE_STRING, vd->vdev_fru, NULL); 270 271 if (pvd != NULL) { 272 fm_payload_set(ereport, 273 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, 274 DATA_TYPE_UINT64, pvd->vdev_guid, 275 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE, 276 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type, 277 NULL); 278 if (pvd->vdev_path) 279 fm_payload_set(ereport, 280 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH, 281 DATA_TYPE_STRING, pvd->vdev_path, NULL); 282 if (pvd->vdev_devid) 283 fm_payload_set(ereport, 284 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID, 285 DATA_TYPE_STRING, pvd->vdev_devid, NULL); 286 } 287 } 288 289 if (zio != NULL) { 290 /* 291 * Payload common to all I/Os. 292 */ 293 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR, 294 DATA_TYPE_INT32, zio->io_error, NULL); 295 296 /* 297 * If the 'size' parameter is non-zero, it indicates this is a 298 * RAID-Z or other I/O where the physical offset and length are 299 * provided for us, instead of within the zio_t. 300 */ 301 if (vd != NULL) { 302 if (size) 303 fm_payload_set(ereport, 304 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 305 DATA_TYPE_UINT64, stateoroffset, 306 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 307 DATA_TYPE_UINT64, size, NULL); 308 else 309 fm_payload_set(ereport, 310 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 311 DATA_TYPE_UINT64, zio->io_offset, 312 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 313 DATA_TYPE_UINT64, zio->io_size, NULL); 314 } 315 316 /* 317 * Payload for I/Os with corresponding logical information. 318 */ 319 if (zio->io_logical != NULL) 320 fm_payload_set(ereport, 321 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET, 322 DATA_TYPE_UINT64, 323 zio->io_logical->io_bookmark.zb_objset, 324 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT, 325 DATA_TYPE_UINT64, 326 zio->io_logical->io_bookmark.zb_object, 327 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL, 328 DATA_TYPE_INT64, 329 zio->io_logical->io_bookmark.zb_level, 330 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID, 331 DATA_TYPE_UINT64, 332 zio->io_logical->io_bookmark.zb_blkid, NULL); 333 } else if (vd != NULL) { 334 /* 335 * If we have a vdev but no zio, this is a device fault, and the 336 * 'stateoroffset' parameter indicates the previous state of the 337 * vdev. 338 */ 339 fm_payload_set(ereport, 340 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE, 341 DATA_TYPE_UINT64, stateoroffset, NULL); 342 } 343 mutex_exit(&spa->spa_errlist_lock); 344 345 *ereport_out = ereport; 346 *detector_out = detector; 347 } 348 349 /* if it's <= 128 bytes, save the corruption directly */ 350 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t)) 351 352 #define MAX_RANGES 16 353 354 typedef struct zfs_ecksum_info { 355 /* histograms of set and cleared bits by bit number in a 64-bit word */ 356 uint16_t zei_histogram_set[sizeof (uint64_t) * NBBY]; 357 uint16_t zei_histogram_cleared[sizeof (uint64_t) * NBBY]; 358 359 /* inline arrays of bits set and cleared. */ 360 uint64_t zei_bits_set[ZFM_MAX_INLINE]; 361 uint64_t zei_bits_cleared[ZFM_MAX_INLINE]; 362 363 /* 364 * for each range, the number of bits set and cleared. The Hamming 365 * distance between the good and bad buffers is the sum of them all. 366 */ 367 uint32_t zei_range_sets[MAX_RANGES]; 368 uint32_t zei_range_clears[MAX_RANGES]; 369 370 struct zei_ranges { 371 uint32_t zr_start; 372 uint32_t zr_end; 373 } zei_ranges[MAX_RANGES]; 374 375 size_t zei_range_count; 376 uint32_t zei_mingap; 377 uint32_t zei_allowed_mingap; 378 379 } zfs_ecksum_info_t; 380 381 static void 382 update_histogram(uint64_t value_arg, uint16_t *hist, uint32_t *count) 383 { 384 size_t i; 385 size_t bits = 0; 386 uint64_t value = BE_64(value_arg); 387 388 /* We store the bits in big-endian (largest-first) order */ 389 for (i = 0; i < 64; i++) { 390 if (value & (1ull << i)) { 391 hist[63 - i]++; 392 ++bits; 393 } 394 } 395 /* update the count of bits changed */ 396 *count += bits; 397 } 398 399 /* 400 * We've now filled up the range array, and need to increase "mingap" and 401 * shrink the range list accordingly. zei_mingap is always the smallest 402 * distance between array entries, so we set the new_allowed_gap to be 403 * one greater than that. We then go through the list, joining together 404 * any ranges which are closer than the new_allowed_gap. 405 * 406 * By construction, there will be at least one. We also update zei_mingap 407 * to the new smallest gap, to prepare for our next invocation. 408 */ 409 static void 410 shrink_ranges(zfs_ecksum_info_t *eip) 411 { 412 uint32_t mingap = UINT32_MAX; 413 uint32_t new_allowed_gap = eip->zei_mingap + 1; 414 415 size_t idx, output; 416 size_t max = eip->zei_range_count; 417 418 struct zei_ranges *r = eip->zei_ranges; 419 420 ASSERT3U(eip->zei_range_count, >, 0); 421 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES); 422 423 output = idx = 0; 424 while (idx < max - 1) { 425 uint32_t start = r[idx].zr_start; 426 uint32_t end = r[idx].zr_end; 427 428 while (idx < max - 1) { 429 idx++; 430 431 uint32_t nstart = r[idx].zr_start; 432 uint32_t nend = r[idx].zr_end; 433 434 uint32_t gap = nstart - end; 435 if (gap < new_allowed_gap) { 436 end = nend; 437 continue; 438 } 439 if (gap < mingap) 440 mingap = gap; 441 break; 442 } 443 r[output].zr_start = start; 444 r[output].zr_end = end; 445 output++; 446 } 447 ASSERT3U(output, <, eip->zei_range_count); 448 eip->zei_range_count = output; 449 eip->zei_mingap = mingap; 450 eip->zei_allowed_mingap = new_allowed_gap; 451 } 452 453 static void 454 add_range(zfs_ecksum_info_t *eip, int start, int end) 455 { 456 struct zei_ranges *r = eip->zei_ranges; 457 size_t count = eip->zei_range_count; 458 459 if (count >= MAX_RANGES) { 460 shrink_ranges(eip); 461 count = eip->zei_range_count; 462 } 463 if (count == 0) { 464 eip->zei_mingap = UINT32_MAX; 465 eip->zei_allowed_mingap = 1; 466 } else { 467 int gap = start - r[count - 1].zr_end; 468 469 if (gap < eip->zei_allowed_mingap) { 470 r[count - 1].zr_end = end; 471 return; 472 } 473 if (gap < eip->zei_mingap) 474 eip->zei_mingap = gap; 475 } 476 r[count].zr_start = start; 477 r[count].zr_end = end; 478 eip->zei_range_count++; 479 } 480 481 static size_t 482 range_total_size(zfs_ecksum_info_t *eip) 483 { 484 struct zei_ranges *r = eip->zei_ranges; 485 size_t count = eip->zei_range_count; 486 size_t result = 0; 487 size_t idx; 488 489 for (idx = 0; idx < count; idx++) 490 result += (r[idx].zr_end - r[idx].zr_start); 491 492 return (result); 493 } 494 495 static zfs_ecksum_info_t * 496 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info, 497 const uint8_t *goodbuf, const uint8_t *badbuf, size_t size, 498 boolean_t drop_if_identical) 499 { 500 const uint64_t *good = (const uint64_t *)goodbuf; 501 const uint64_t *bad = (const uint64_t *)badbuf; 502 503 uint64_t allset = 0; 504 uint64_t allcleared = 0; 505 506 size_t nui64s = size / sizeof (uint64_t); 507 508 size_t inline_size; 509 int no_inline = 0; 510 size_t idx; 511 size_t range; 512 513 size_t offset = 0; 514 ssize_t start = -1; 515 516 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP); 517 518 /* don't do any annotation for injected checksum errors */ 519 if (info != NULL && info->zbc_injected) 520 return (eip); 521 522 if (info != NULL && info->zbc_has_cksum) { 523 fm_payload_set(ereport, 524 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED, 525 DATA_TYPE_UINT64_ARRAY, 526 sizeof (info->zbc_expected) / sizeof (uint64_t), 527 (uint64_t *)&info->zbc_expected, 528 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL, 529 DATA_TYPE_UINT64_ARRAY, 530 sizeof (info->zbc_actual) / sizeof (uint64_t), 531 (uint64_t *)&info->zbc_actual, 532 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO, 533 DATA_TYPE_STRING, 534 info->zbc_checksum_name, 535 NULL); 536 537 if (info->zbc_byteswapped) { 538 fm_payload_set(ereport, 539 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP, 540 DATA_TYPE_BOOLEAN, 1, 541 NULL); 542 } 543 } 544 545 if (badbuf == NULL || goodbuf == NULL) 546 return (eip); 547 548 ASSERT3U(nui64s, <=, UINT16_MAX); 549 ASSERT3U(size, ==, nui64s * sizeof (uint64_t)); 550 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 551 ASSERT3U(size, <=, UINT32_MAX); 552 553 /* build up the range list by comparing the two buffers. */ 554 for (idx = 0; idx < nui64s; idx++) { 555 if (good[idx] == bad[idx]) { 556 if (start == -1) 557 continue; 558 559 add_range(eip, start, idx); 560 start = -1; 561 } else { 562 if (start != -1) 563 continue; 564 565 start = idx; 566 } 567 } 568 if (start != -1) 569 add_range(eip, start, idx); 570 571 /* See if it will fit in our inline buffers */ 572 inline_size = range_total_size(eip); 573 if (inline_size > ZFM_MAX_INLINE) 574 no_inline = 1; 575 576 /* 577 * If there is no change and we want to drop if the buffers are 578 * identical, do so. 579 */ 580 if (inline_size == 0 && drop_if_identical) { 581 kmem_free(eip, sizeof (*eip)); 582 return (NULL); 583 } 584 585 /* 586 * Now walk through the ranges, filling in the details of the 587 * differences. Also convert our uint64_t-array offsets to byte 588 * offsets. 589 */ 590 for (range = 0; range < eip->zei_range_count; range++) { 591 size_t start = eip->zei_ranges[range].zr_start; 592 size_t end = eip->zei_ranges[range].zr_end; 593 594 for (idx = start; idx < end; idx++) { 595 uint64_t set, cleared; 596 597 // bits set in bad, but not in good 598 set = ((~good[idx]) & bad[idx]); 599 // bits set in good, but not in bad 600 cleared = (good[idx] & (~bad[idx])); 601 602 allset |= set; 603 allcleared |= cleared; 604 605 if (!no_inline) { 606 ASSERT3U(offset, <, inline_size); 607 eip->zei_bits_set[offset] = set; 608 eip->zei_bits_cleared[offset] = cleared; 609 offset++; 610 } 611 612 update_histogram(set, eip->zei_histogram_set, 613 &eip->zei_range_sets[range]); 614 update_histogram(cleared, eip->zei_histogram_cleared, 615 &eip->zei_range_clears[range]); 616 } 617 618 /* convert to byte offsets */ 619 eip->zei_ranges[range].zr_start *= sizeof (uint64_t); 620 eip->zei_ranges[range].zr_end *= sizeof (uint64_t); 621 } 622 eip->zei_allowed_mingap *= sizeof (uint64_t); 623 inline_size *= sizeof (uint64_t); 624 625 /* fill in ereport */ 626 fm_payload_set(ereport, 627 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES, 628 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count, 629 (uint32_t *)eip->zei_ranges, 630 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP, 631 DATA_TYPE_UINT32, eip->zei_allowed_mingap, 632 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS, 633 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets, 634 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS, 635 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears, 636 NULL); 637 638 if (!no_inline) { 639 fm_payload_set(ereport, 640 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS, 641 DATA_TYPE_UINT8_ARRAY, 642 inline_size, (uint8_t *)eip->zei_bits_set, 643 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS, 644 DATA_TYPE_UINT8_ARRAY, 645 inline_size, (uint8_t *)eip->zei_bits_cleared, 646 NULL); 647 } else { 648 fm_payload_set(ereport, 649 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM, 650 DATA_TYPE_UINT16_ARRAY, 651 NBBY * sizeof (uint64_t), eip->zei_histogram_set, 652 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM, 653 DATA_TYPE_UINT16_ARRAY, 654 NBBY * sizeof (uint64_t), eip->zei_histogram_cleared, 655 NULL); 656 } 657 return (eip); 658 } 659 #endif 660 661 void 662 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio, 663 uint64_t stateoroffset, uint64_t size) 664 { 665 #ifdef _KERNEL 666 nvlist_t *ereport = NULL; 667 nvlist_t *detector = NULL; 668 669 zfs_ereport_start(&ereport, &detector, 670 subclass, spa, vd, zio, stateoroffset, size); 671 672 if (ereport == NULL) 673 return; 674 675 fm_ereport_post(ereport, EVCH_SLEEP); 676 677 fm_nvlist_destroy(ereport, FM_NVA_FREE); 678 fm_nvlist_destroy(detector, FM_NVA_FREE); 679 #endif 680 } 681 682 void 683 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, 684 struct zio *zio, uint64_t offset, uint64_t length, void *arg, 685 zio_bad_cksum_t *info) 686 { 687 zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_SLEEP); 688 689 if (zio->io_vsd != NULL) 690 zio->io_vsd_ops->vsd_cksum_report(zio, report, arg); 691 else 692 zio_vsd_default_cksum_report(zio, report, arg); 693 694 /* copy the checksum failure information if it was provided */ 695 if (info != NULL) { 696 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP); 697 bcopy(info, report->zcr_ckinfo, sizeof (*info)); 698 } 699 700 report->zcr_length = length; 701 702 #ifdef _KERNEL 703 zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector, 704 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length); 705 706 if (report->zcr_ereport == NULL) { 707 report->zcr_free(report->zcr_cbdata, report->zcr_cbinfo); 708 kmem_free(report, sizeof (*report)); 709 return; 710 } 711 #endif 712 713 mutex_enter(&spa->spa_errlist_lock); 714 report->zcr_next = zio->io_logical->io_cksum_report; 715 zio->io_logical->io_cksum_report = report; 716 mutex_exit(&spa->spa_errlist_lock); 717 } 718 719 void 720 zfs_ereport_finish_checksum(zio_cksum_report_t *report, 721 const void *good_data, const void *bad_data, boolean_t drop_if_identical) 722 { 723 #ifdef _KERNEL 724 zfs_ecksum_info_t *info = NULL; 725 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo, 726 good_data, bad_data, report->zcr_length, drop_if_identical); 727 728 if (info != NULL) 729 fm_ereport_post(report->zcr_ereport, EVCH_SLEEP); 730 731 fm_nvlist_destroy(report->zcr_ereport, FM_NVA_FREE); 732 fm_nvlist_destroy(report->zcr_detector, FM_NVA_FREE); 733 report->zcr_ereport = report->zcr_detector = NULL; 734 735 if (info != NULL) 736 kmem_free(info, sizeof (*info)); 737 #endif 738 } 739 740 void 741 zfs_ereport_free_checksum(zio_cksum_report_t *rpt) 742 { 743 #ifdef _KERNEL 744 if (rpt->zcr_ereport != NULL) { 745 fm_nvlist_destroy(rpt->zcr_ereport, 746 FM_NVA_FREE); 747 fm_nvlist_destroy(rpt->zcr_detector, 748 FM_NVA_FREE); 749 } 750 #endif 751 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo); 752 753 if (rpt->zcr_ckinfo != NULL) 754 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo)); 755 756 kmem_free(rpt, sizeof (*rpt)); 757 } 758 759 void 760 zfs_ereport_send_interim_checksum(zio_cksum_report_t *report) 761 { 762 #ifdef _KERNEL 763 fm_ereport_post(report->zcr_ereport, EVCH_SLEEP); 764 #endif 765 } 766 767 void 768 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, 769 struct zio *zio, uint64_t offset, uint64_t length, 770 const void *good_data, const void *bad_data, zio_bad_cksum_t *zbc) 771 { 772 #ifdef _KERNEL 773 nvlist_t *ereport = NULL; 774 nvlist_t *detector = NULL; 775 zfs_ecksum_info_t *info; 776 777 zfs_ereport_start(&ereport, &detector, 778 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length); 779 780 if (ereport == NULL) 781 return; 782 783 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length, 784 B_FALSE); 785 786 if (info != NULL) 787 fm_ereport_post(ereport, EVCH_SLEEP); 788 789 fm_nvlist_destroy(ereport, FM_NVA_FREE); 790 fm_nvlist_destroy(detector, FM_NVA_FREE); 791 792 if (info != NULL) 793 kmem_free(info, sizeof (*info)); 794 #endif 795 } 796 797 static void 798 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name) 799 { 800 #ifdef _KERNEL 801 nvlist_t *resource; 802 char class[64]; 803 804 if (spa->spa_load_state == SPA_LOAD_TRYIMPORT) 805 return; 806 807 if ((resource = fm_nvlist_create(NULL)) == NULL) 808 return; 809 810 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE, 811 ZFS_ERROR_CLASS, name); 812 VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0); 813 VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0); 814 VERIFY(nvlist_add_uint64(resource, 815 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0); 816 if (vd) 817 VERIFY(nvlist_add_uint64(resource, 818 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0); 819 820 fm_ereport_post(resource, EVCH_SLEEP); 821 822 fm_nvlist_destroy(resource, FM_NVA_FREE); 823 #endif 824 } 825 826 /* 827 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev 828 * has been removed from the system. This will cause the DE to ignore any 829 * recent I/O errors, inferring that they are due to the asynchronous device 830 * removal. 831 */ 832 void 833 zfs_post_remove(spa_t *spa, vdev_t *vd) 834 { 835 zfs_post_common(spa, vd, FM_RESOURCE_REMOVED); 836 } 837 838 /* 839 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool 840 * has the 'autoreplace' property set, and therefore any broken vdevs will be 841 * handled by higher level logic, and no vdev fault should be generated. 842 */ 843 void 844 zfs_post_autoreplace(spa_t *spa, vdev_t *vd) 845 { 846 zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE); 847 } 848 849 /* 850 * The 'resource.fs.zfs.statechange' event is an internal signal that the 851 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will 852 * cause the retire agent to repair any outstanding fault management cases 853 * open because the device was not found (fault.fs.zfs.device). 854 */ 855 void 856 zfs_post_state_change(spa_t *spa, vdev_t *vd) 857 { 858 zfs_post_common(spa, vd, FM_RESOURCE_STATECHANGE); 859 } 860