xref: /titanic_51/usr/src/uts/common/fs/zfs/zfs_ctldir.c (revision 25f476773dea2a0ee593dcf662a38d5f02487196)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * ZFS control directory (a.k.a. ".zfs")
30  *
31  * This directory provides a common location for all ZFS meta-objects.
32  * Currently, this is only the 'snapshot' directory, but this may expand in the
33  * future.  The elements are built using the GFS primitives, as the hierarchy
34  * does not actually exist on disk.
35  *
36  * For 'snapshot', we don't want to have all snapshots always mounted, because
37  * this would take up a huge amount of space in /etc/mnttab.  We have three
38  * types of objects:
39  *
40  * 	ctldir ------> snapshotdir -------> snapshot
41  *                                             |
42  *                                             |
43  *                                             V
44  *                                         mounted fs
45  *
46  * The 'snapshot' node contains just enough information to lookup '..' and act
47  * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
48  * perform an automount of the underlying filesystem and return the
49  * corresponding vnode.
50  *
51  * All mounts are handled automatically by the kernel, but unmounts are
52  * (currently) handled from user land.  The main reason is that there is no
53  * reliable way to auto-unmount the filesystem when it's "no longer in use".
54  * When the user unmounts a filesystem, we call zfsctl_unmount(), which
55  * unmounts any snapshots within the snapshot directory.
56  *
57  * The '.zfs', '.zfs/snapshot', and all directories created under
58  * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and
59  * share the same vfs_t as the head filesystem (what '.zfs' lives under).
60  *
61  * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>'
62  * (ie: snapshots) are ZFS nodes and have their own unique vfs_t.
63  * However, vnodes within these mounted on file systems have their v_vfsp
64  * fields set to the head filesystem to make NFS happy (see
65  * zfsctl_snapdir_lookup()).
66  */
67 
68 #include <fs/fs_subr.h>
69 #include <sys/zfs_ctldir.h>
70 #include <sys/zfs_ioctl.h>
71 #include <sys/zfs_vfsops.h>
72 #include <sys/vfs_opreg.h>
73 #include <sys/gfs.h>
74 #include <sys/stat.h>
75 #include <sys/dmu.h>
76 #include <sys/dsl_deleg.h>
77 #include <sys/mount.h>
78 
79 typedef struct {
80 	char		*se_name;
81 	vnode_t		*se_root;
82 	avl_node_t	se_node;
83 } zfs_snapentry_t;
84 
85 static int
86 snapentry_compare(const void *a, const void *b)
87 {
88 	const zfs_snapentry_t *sa = a;
89 	const zfs_snapentry_t *sb = b;
90 	int ret = strcmp(sa->se_name, sb->se_name);
91 
92 	if (ret < 0)
93 		return (-1);
94 	else if (ret > 0)
95 		return (1);
96 	else
97 		return (0);
98 }
99 
100 vnodeops_t *zfsctl_ops_root;
101 vnodeops_t *zfsctl_ops_snapdir;
102 vnodeops_t *zfsctl_ops_snapshot;
103 
104 static const fs_operation_def_t zfsctl_tops_root[];
105 static const fs_operation_def_t zfsctl_tops_snapdir[];
106 static const fs_operation_def_t zfsctl_tops_snapshot[];
107 
108 static vnode_t *zfsctl_mknode_snapdir(vnode_t *);
109 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset);
110 
111 static gfs_opsvec_t zfsctl_opsvec[] = {
112 	{ ".zfs", zfsctl_tops_root, &zfsctl_ops_root },
113 	{ ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir },
114 	{ ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot },
115 	{ NULL }
116 };
117 
118 typedef struct zfsctl_node {
119 	gfs_dir_t	zc_gfs_private;
120 	uint64_t	zc_id;
121 	timestruc_t	zc_cmtime;	/* ctime and mtime, always the same */
122 } zfsctl_node_t;
123 
124 typedef struct zfsctl_snapdir {
125 	zfsctl_node_t	sd_node;
126 	kmutex_t	sd_lock;
127 	avl_tree_t	sd_snaps;
128 } zfsctl_snapdir_t;
129 
130 /*
131  * Root directory elements.  We have only a single static entry, 'snapshot'.
132  */
133 static gfs_dirent_t zfsctl_root_entries[] = {
134 	{ "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE },
135 	{ NULL }
136 };
137 
138 /* include . and .. in the calculation */
139 #define	NROOT_ENTRIES	((sizeof (zfsctl_root_entries) / \
140     sizeof (gfs_dirent_t)) + 1)
141 
142 
143 /*
144  * Initialize the various GFS pieces we'll need to create and manipulate .zfs
145  * directories.  This is called from the ZFS init routine, and initializes the
146  * vnode ops vectors that we'll be using.
147  */
148 void
149 zfsctl_init(void)
150 {
151 	VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0);
152 }
153 
154 void
155 zfsctl_fini(void)
156 {
157 	/*
158 	 * Remove vfsctl vnode ops
159 	 */
160 	if (zfsctl_ops_root)
161 		vn_freevnodeops(zfsctl_ops_root);
162 	if (zfsctl_ops_snapdir)
163 		vn_freevnodeops(zfsctl_ops_snapdir);
164 	if (zfsctl_ops_snapshot)
165 		vn_freevnodeops(zfsctl_ops_snapshot);
166 
167 	zfsctl_ops_root = NULL;
168 	zfsctl_ops_snapdir = NULL;
169 	zfsctl_ops_snapshot = NULL;
170 }
171 
172 /*
173  * Return the inode number associated with the 'snapshot' directory.
174  */
175 /* ARGSUSED */
176 static ino64_t
177 zfsctl_root_inode_cb(vnode_t *vp, int index)
178 {
179 	ASSERT(index == 0);
180 	return (ZFSCTL_INO_SNAPDIR);
181 }
182 
183 /*
184  * Create the '.zfs' directory.  This directory is cached as part of the VFS
185  * structure.  This results in a hold on the vfs_t.  The code in zfs_umount()
186  * therefore checks against a vfs_count of 2 instead of 1.  This reference
187  * is removed when the ctldir is destroyed in the unmount.
188  */
189 void
190 zfsctl_create(zfsvfs_t *zfsvfs)
191 {
192 	vnode_t *vp, *rvp;
193 	zfsctl_node_t *zcp;
194 
195 	ASSERT(zfsvfs->z_ctldir == NULL);
196 
197 	vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs,
198 	    zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries,
199 	    zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL);
200 	zcp = vp->v_data;
201 	zcp->zc_id = ZFSCTL_INO_ROOT;
202 
203 	VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0);
204 	ZFS_TIME_DECODE(&zcp->zc_cmtime, VTOZ(rvp)->z_phys->zp_crtime);
205 	VN_RELE(rvp);
206 
207 	/*
208 	 * We're only faking the fact that we have a root of a filesystem for
209 	 * the sake of the GFS interfaces.  Undo the flag manipulation it did
210 	 * for us.
211 	 */
212 	vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT);
213 
214 	zfsvfs->z_ctldir = vp;
215 }
216 
217 /*
218  * Destroy the '.zfs' directory.  Only called when the filesystem is unmounted.
219  * There might still be more references if we were force unmounted, but only
220  * new zfs_inactive() calls can occur and they don't reference .zfs
221  */
222 void
223 zfsctl_destroy(zfsvfs_t *zfsvfs)
224 {
225 	VN_RELE(zfsvfs->z_ctldir);
226 	zfsvfs->z_ctldir = NULL;
227 }
228 
229 /*
230  * Given a root znode, retrieve the associated .zfs directory.
231  * Add a hold to the vnode and return it.
232  */
233 vnode_t *
234 zfsctl_root(znode_t *zp)
235 {
236 	ASSERT(zfs_has_ctldir(zp));
237 	VN_HOLD(zp->z_zfsvfs->z_ctldir);
238 	return (zp->z_zfsvfs->z_ctldir);
239 }
240 
241 /*
242  * Common open routine.  Disallow any write access.
243  */
244 /* ARGSUSED */
245 static int
246 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr)
247 {
248 	if (flags & FWRITE)
249 		return (EACCES);
250 
251 	return (0);
252 }
253 
254 /*
255  * Common close routine.  Nothing to do here.
256  */
257 /* ARGSUSED */
258 static int
259 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off,
260     cred_t *cr)
261 {
262 	return (0);
263 }
264 
265 /*
266  * Common access routine.  Disallow writes.
267  */
268 /* ARGSUSED */
269 static int
270 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr)
271 {
272 	if (mode & VWRITE)
273 		return (EACCES);
274 
275 	return (0);
276 }
277 
278 /*
279  * Common getattr function.  Fill in basic information.
280  */
281 static void
282 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap)
283 {
284 	zfsctl_node_t	*zcp = vp->v_data;
285 	timestruc_t	now;
286 
287 	vap->va_uid = 0;
288 	vap->va_gid = 0;
289 	vap->va_rdev = 0;
290 	/*
291 	 * We are a purly virtual object, so we have no
292 	 * blocksize or allocated blocks.
293 	 */
294 	vap->va_blksize = 0;
295 	vap->va_nblocks = 0;
296 	vap->va_seq = 0;
297 	vap->va_fsid = vp->v_vfsp->vfs_dev;
298 	vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP |
299 	    S_IROTH | S_IXOTH;
300 	vap->va_type = VDIR;
301 	/*
302 	 * We live in the now (for atime).
303 	 */
304 	gethrestime(&now);
305 	vap->va_atime = now;
306 	vap->va_mtime = vap->va_ctime = zcp->zc_cmtime;
307 }
308 
309 static int
310 zfsctl_common_fid(vnode_t *vp, fid_t *fidp)
311 {
312 	zfsvfs_t	*zfsvfs = vp->v_vfsp->vfs_data;
313 	zfsctl_node_t	*zcp = vp->v_data;
314 	uint64_t	object = zcp->zc_id;
315 	zfid_short_t	*zfid;
316 	int		i;
317 
318 	ZFS_ENTER(zfsvfs);
319 
320 	if (fidp->fid_len < SHORT_FID_LEN) {
321 		fidp->fid_len = SHORT_FID_LEN;
322 		ZFS_EXIT(zfsvfs);
323 		return (ENOSPC);
324 	}
325 
326 	zfid = (zfid_short_t *)fidp;
327 
328 	zfid->zf_len = SHORT_FID_LEN;
329 
330 	for (i = 0; i < sizeof (zfid->zf_object); i++)
331 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
332 
333 	/* .zfs znodes always have a generation number of 0 */
334 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
335 		zfid->zf_gen[i] = 0;
336 
337 	ZFS_EXIT(zfsvfs);
338 	return (0);
339 }
340 
341 /*
342  * .zfs inode namespace
343  *
344  * We need to generate unique inode numbers for all files and directories
345  * within the .zfs pseudo-filesystem.  We use the following scheme:
346  *
347  * 	ENTRY			ZFSCTL_INODE
348  * 	.zfs			1
349  * 	.zfs/snapshot		2
350  * 	.zfs/snapshot/<snap>	objectid(snap)
351  */
352 
353 #define	ZFSCTL_INO_SNAP(id)	(id)
354 
355 /*
356  * Get root directory attributes.
357  */
358 /* ARGSUSED */
359 static int
360 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr)
361 {
362 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
363 
364 	ZFS_ENTER(zfsvfs);
365 	vap->va_nodeid = ZFSCTL_INO_ROOT;
366 	vap->va_nlink = vap->va_size = NROOT_ENTRIES;
367 
368 	zfsctl_common_getattr(vp, vap);
369 	ZFS_EXIT(zfsvfs);
370 
371 	return (0);
372 }
373 
374 /*
375  * Special case the handling of "..".
376  */
377 /* ARGSUSED */
378 int
379 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
380     int flags, vnode_t *rdir, cred_t *cr)
381 {
382 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
383 	int err;
384 
385 	ZFS_ENTER(zfsvfs);
386 
387 	if (strcmp(nm, "..") == 0) {
388 		err = VFS_ROOT(dvp->v_vfsp, vpp);
389 	} else {
390 		err = gfs_dir_lookup(dvp, nm, vpp);
391 	}
392 
393 	ZFS_EXIT(zfsvfs);
394 
395 	return (err);
396 }
397 
398 static const fs_operation_def_t zfsctl_tops_root[] = {
399 	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
400 	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
401 	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
402 	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_root_getattr }	},
403 	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
404 	{ VOPNAME_READDIR,	{ .vop_readdir = gfs_vop_readdir } 	},
405 	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_root_lookup }	},
406 	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
407 	{ VOPNAME_INACTIVE,	{ .vop_inactive = gfs_vop_inactive }	},
408 	{ VOPNAME_FID,		{ .vop_fid = zfsctl_common_fid	}	},
409 	{ NULL }
410 };
411 
412 static int
413 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname)
414 {
415 	objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
416 
417 	dmu_objset_name(os, zname);
418 	if (strlen(zname) + 1 + strlen(name) >= len)
419 		return (ENAMETOOLONG);
420 	(void) strcat(zname, "@");
421 	(void) strcat(zname, name);
422 	return (0);
423 }
424 
425 int
426 zfsctl_unmount_snap(vnode_t *dvp, const char *name, int force, cred_t *cr)
427 {
428 	zfsctl_snapdir_t *sdp = dvp->v_data;
429 	zfs_snapentry_t search, *sep;
430 	avl_index_t where;
431 	int err;
432 
433 	ASSERT(MUTEX_HELD(&sdp->sd_lock));
434 
435 	search.se_name = (char *)name;
436 	if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL)
437 		return (ENOENT);
438 
439 	ASSERT(vn_ismntpt(sep->se_root));
440 
441 	/* this will be dropped by dounmount() */
442 	if ((err = vn_vfswlock(sep->se_root)) != 0)
443 		return (err);
444 
445 	VN_HOLD(sep->se_root);
446 	err = dounmount(vn_mountedvfs(sep->se_root), force, kcred);
447 	if (err) {
448 		VN_RELE(sep->se_root);
449 		return (err);
450 	}
451 	ASSERT(sep->se_root->v_count == 1);
452 	gfs_vop_inactive(sep->se_root, cr);
453 
454 	avl_remove(&sdp->sd_snaps, sep);
455 	kmem_free(sep->se_name, strlen(sep->se_name) + 1);
456 	kmem_free(sep, sizeof (zfs_snapentry_t));
457 
458 	return (0);
459 }
460 
461 
462 static void
463 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm)
464 {
465 	avl_index_t where;
466 	vfs_t *vfsp;
467 	refstr_t *pathref;
468 	char newpath[MAXNAMELEN];
469 	char *tail;
470 
471 	ASSERT(MUTEX_HELD(&sdp->sd_lock));
472 	ASSERT(sep != NULL);
473 
474 	vfsp = vn_mountedvfs(sep->se_root);
475 	ASSERT(vfsp != NULL);
476 
477 	vfs_lock_wait(vfsp);
478 
479 	/*
480 	 * Change the name in the AVL tree.
481 	 */
482 	avl_remove(&sdp->sd_snaps, sep);
483 	kmem_free(sep->se_name, strlen(sep->se_name) + 1);
484 	sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
485 	(void) strcpy(sep->se_name, nm);
486 	VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL);
487 	avl_insert(&sdp->sd_snaps, sep, where);
488 
489 	/*
490 	 * Change the current mountpoint info:
491 	 * 	- update the tail of the mntpoint path
492 	 *	- update the tail of the resource path
493 	 */
494 	pathref = vfs_getmntpoint(vfsp);
495 	(void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
496 	VERIFY((tail = strrchr(newpath, '/')) != NULL);
497 	*(tail+1) = '\0';
498 	ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
499 	(void) strcat(newpath, nm);
500 	refstr_rele(pathref);
501 	vfs_setmntpoint(vfsp, newpath);
502 
503 	pathref = vfs_getresource(vfsp);
504 	(void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
505 	VERIFY((tail = strrchr(newpath, '@')) != NULL);
506 	*(tail+1) = '\0';
507 	ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
508 	(void) strcat(newpath, nm);
509 	refstr_rele(pathref);
510 	vfs_setresource(vfsp, newpath);
511 
512 	vfs_unlock(vfsp);
513 }
514 
515 static int
516 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm,
517     cred_t *cr)
518 {
519 	zfsctl_snapdir_t *sdp = sdvp->v_data;
520 	zfs_snapentry_t search, *sep;
521 	avl_index_t where;
522 	char from[MAXNAMELEN], to[MAXNAMELEN];
523 	int err;
524 
525 	err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from);
526 	if (err)
527 		return (err);
528 
529 	err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to);
530 	if (err)
531 		return (err);
532 
533 	if (err = zfs_secpolicy_rename_perms(from, to, cr))
534 		return (err);
535 	/*
536 	 * Cannot move snapshots out of the snapdir.
537 	 */
538 	if (sdvp != tdvp)
539 		return (EINVAL);
540 
541 	if (strcmp(snm, tnm) == 0)
542 		return (0);
543 
544 	mutex_enter(&sdp->sd_lock);
545 
546 	search.se_name = (char *)snm;
547 	if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) {
548 		mutex_exit(&sdp->sd_lock);
549 		return (ENOENT);
550 	}
551 
552 	err = dmu_objset_rename(from, to, B_FALSE);
553 	if (err == 0)
554 		zfsctl_rename_snap(sdp, sep, tnm);
555 
556 	mutex_exit(&sdp->sd_lock);
557 
558 	return (err);
559 }
560 
561 /* ARGSUSED */
562 static int
563 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr)
564 {
565 	zfsctl_snapdir_t *sdp = dvp->v_data;
566 	char snapname[MAXNAMELEN];
567 	int err;
568 
569 	err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname);
570 	if (err)
571 		return (err);
572 
573 	if (err = zfs_secpolicy_destroy_perms(snapname, cr))
574 		return (err);
575 
576 	mutex_enter(&sdp->sd_lock);
577 
578 	err = zfsctl_unmount_snap(dvp, name, MS_FORCE, cr);
579 	if (err) {
580 		mutex_exit(&sdp->sd_lock);
581 		return (err);
582 	}
583 
584 	err = dmu_objset_destroy(snapname);
585 
586 	mutex_exit(&sdp->sd_lock);
587 
588 	return (err);
589 }
590 
591 /*
592  * This creates a snapshot under '.zfs/snapshot'.
593  */
594 /* ARGSUSED */
595 static int
596 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t  **vpp,
597     cred_t *cr)
598 {
599 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
600 	char name[MAXNAMELEN];
601 	int err;
602 	static enum symfollow follow = NO_FOLLOW;
603 	static enum uio_seg seg = UIO_SYSSPACE;
604 
605 	dmu_objset_name(zfsvfs->z_os, name);
606 
607 	*vpp = NULL;
608 
609 	err = zfs_secpolicy_snapshot_perms(name, cr);
610 	if (err)
611 		return (err);
612 
613 	if (err == 0) {
614 		err = dmu_objset_snapshot(name, dirname, B_FALSE);
615 		if (err)
616 			return (err);
617 		err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp);
618 	}
619 
620 	return (err);
621 }
622 
623 /*
624  * Lookup entry point for the 'snapshot' directory.  Try to open the
625  * snapshot if it exist, creating the pseudo filesystem vnode as necessary.
626  * Perform a mount of the associated dataset on top of the vnode.
627  */
628 /* ARGSUSED */
629 static int
630 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
631     int flags, vnode_t *rdir, cred_t *cr)
632 {
633 	zfsctl_snapdir_t *sdp = dvp->v_data;
634 	objset_t *snap;
635 	char snapname[MAXNAMELEN];
636 	char *mountpoint;
637 	zfs_snapentry_t *sep, search;
638 	struct mounta margs;
639 	vfs_t *vfsp;
640 	size_t mountpoint_len;
641 	avl_index_t where;
642 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
643 	int err;
644 
645 	ASSERT(dvp->v_type == VDIR);
646 
647 	if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0)
648 		return (0);
649 
650 	/*
651 	 * If we get a recursive call, that means we got called
652 	 * from the domount() code while it was trying to look up the
653 	 * spec (which looks like a local path for zfs).  We need to
654 	 * add some flag to domount() to tell it not to do this lookup.
655 	 */
656 	if (MUTEX_HELD(&sdp->sd_lock))
657 		return (ENOENT);
658 
659 	ZFS_ENTER(zfsvfs);
660 
661 	mutex_enter(&sdp->sd_lock);
662 	search.se_name = (char *)nm;
663 	if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) {
664 		*vpp = sep->se_root;
665 		VN_HOLD(*vpp);
666 		err = traverse(vpp);
667 		if (err) {
668 			VN_RELE(*vpp);
669 			*vpp = NULL;
670 		} else if (*vpp == sep->se_root) {
671 			/*
672 			 * The snapshot was unmounted behind our backs,
673 			 * try to remount it.
674 			 */
675 			goto domount;
676 		}
677 		mutex_exit(&sdp->sd_lock);
678 		ZFS_EXIT(zfsvfs);
679 		return (err);
680 	}
681 
682 	/*
683 	 * The requested snapshot is not currently mounted, look it up.
684 	 */
685 	err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname);
686 	if (err) {
687 		mutex_exit(&sdp->sd_lock);
688 		ZFS_EXIT(zfsvfs);
689 		return (err);
690 	}
691 	if (dmu_objset_open(snapname, DMU_OST_ZFS,
692 	    DS_MODE_STANDARD | DS_MODE_READONLY, &snap) != 0) {
693 		mutex_exit(&sdp->sd_lock);
694 		ZFS_EXIT(zfsvfs);
695 		return (ENOENT);
696 	}
697 
698 	sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP);
699 	sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
700 	(void) strcpy(sep->se_name, nm);
701 	*vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap));
702 	avl_insert(&sdp->sd_snaps, sep, where);
703 
704 	dmu_objset_close(snap);
705 domount:
706 	mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) +
707 	    strlen("/.zfs/snapshot/") + strlen(nm) + 1;
708 	mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP);
709 	(void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s",
710 	    refstr_value(dvp->v_vfsp->vfs_mntpt), nm);
711 
712 	margs.spec = snapname;
713 	margs.dir = mountpoint;
714 	margs.flags = MS_SYSSPACE | MS_NOMNTTAB;
715 	margs.fstype = "zfs";
716 	margs.dataptr = NULL;
717 	margs.datalen = 0;
718 	margs.optptr = NULL;
719 	margs.optlen = 0;
720 
721 	err = domount("zfs", &margs, *vpp, kcred, &vfsp);
722 	kmem_free(mountpoint, mountpoint_len);
723 
724 	if (err == 0) {
725 		/*
726 		 * Return the mounted root rather than the covered mount point.
727 		 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns
728 		 * the ZFS vnode mounted on top of the GFS node.  This ZFS
729 		 * vnode is the root the newly created vfsp.
730 		 */
731 		VFS_RELE(vfsp);
732 		err = traverse(vpp);
733 	}
734 
735 	if (err == 0) {
736 		/*
737 		 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>.
738 		 *
739 		 * This is where we lie about our v_vfsp in order to
740 		 * make .zfs/snapshot/<snapname> accessible over NFS
741 		 * without requiring manual mounts of <snapname>.
742 		 */
743 		ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs);
744 		VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs;
745 		(*vpp)->v_vfsp = zfsvfs->z_vfs;
746 		(*vpp)->v_flag &= ~VROOT;
747 	}
748 	mutex_exit(&sdp->sd_lock);
749 	ZFS_EXIT(zfsvfs);
750 
751 	/*
752 	 * If we had an error, drop our hold on the vnode and
753 	 * zfsctl_snapshot_inactive() will clean up.
754 	 */
755 	if (err) {
756 		VN_RELE(*vpp);
757 		*vpp = NULL;
758 	}
759 	return (err);
760 }
761 
762 /* ARGSUSED */
763 static int
764 zfsctl_snapdir_readdir_cb(vnode_t *vp, struct dirent64 *dp, int *eofp,
765     offset_t *offp, offset_t *nextp, void *data)
766 {
767 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
768 	char snapname[MAXNAMELEN];
769 	uint64_t id, cookie;
770 
771 	ZFS_ENTER(zfsvfs);
772 
773 	cookie = *offp;
774 	if (dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id,
775 	    &cookie) == ENOENT) {
776 		*eofp = 1;
777 		ZFS_EXIT(zfsvfs);
778 		return (0);
779 	}
780 
781 	(void) strcpy(dp->d_name, snapname);
782 	dp->d_ino = ZFSCTL_INO_SNAP(id);
783 	*nextp = cookie;
784 
785 	ZFS_EXIT(zfsvfs);
786 
787 	return (0);
788 }
789 
790 /*
791  * pvp is the '.zfs' directory (zfsctl_node_t).
792  * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t).
793  *
794  * This function is the callback to create a GFS vnode for '.zfs/snapshot'
795  * when a lookup is performed on .zfs for "snapshot".
796  */
797 vnode_t *
798 zfsctl_mknode_snapdir(vnode_t *pvp)
799 {
800 	vnode_t *vp;
801 	zfsctl_snapdir_t *sdp;
802 
803 	vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp,
804 	    zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN,
805 	    zfsctl_snapdir_readdir_cb, NULL);
806 	sdp = vp->v_data;
807 	sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR;
808 	sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime;
809 	mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
810 	avl_create(&sdp->sd_snaps, snapentry_compare,
811 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node));
812 	return (vp);
813 }
814 
815 /* ARGSUSED */
816 static int
817 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr)
818 {
819 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
820 	zfsctl_snapdir_t *sdp = vp->v_data;
821 
822 	ZFS_ENTER(zfsvfs);
823 	zfsctl_common_getattr(vp, vap);
824 	vap->va_nodeid = gfs_file_inode(vp);
825 	vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2;
826 	ZFS_EXIT(zfsvfs);
827 
828 	return (0);
829 }
830 
831 /* ARGSUSED */
832 static void
833 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr)
834 {
835 	zfsctl_snapdir_t *sdp = vp->v_data;
836 	void *private;
837 
838 	private = gfs_dir_inactive(vp);
839 	if (private != NULL) {
840 		ASSERT(avl_numnodes(&sdp->sd_snaps) == 0);
841 		mutex_destroy(&sdp->sd_lock);
842 		avl_destroy(&sdp->sd_snaps);
843 		kmem_free(private, sizeof (zfsctl_snapdir_t));
844 	}
845 }
846 
847 static const fs_operation_def_t zfsctl_tops_snapdir[] = {
848 	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
849 	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
850 	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
851 	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_snapdir_getattr } },
852 	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
853 	{ VOPNAME_RENAME,	{ .vop_rename = zfsctl_snapdir_rename }	},
854 	{ VOPNAME_RMDIR,	{ .vop_rmdir = zfsctl_snapdir_remove }	},
855 	{ VOPNAME_MKDIR,	{ .vop_mkdir = zfsctl_snapdir_mkdir }	},
856 	{ VOPNAME_READDIR,	{ .vop_readdir = gfs_vop_readdir }	},
857 	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_snapdir_lookup }	},
858 	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
859 	{ VOPNAME_INACTIVE,	{ .vop_inactive = zfsctl_snapdir_inactive } },
860 	{ VOPNAME_FID,		{ .vop_fid = zfsctl_common_fid }	},
861 	{ NULL }
862 };
863 
864 /*
865  * pvp is the GFS vnode '.zfs/snapshot'.
866  *
867  * This creates a GFS node under '.zfs/snapshot' representing each
868  * snapshot.  This newly created GFS node is what we mount snapshot
869  * vfs_t's ontop of.
870  */
871 static vnode_t *
872 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset)
873 {
874 	vnode_t *vp;
875 	zfsctl_node_t *zcp;
876 
877 	vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,
878 	    zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL);
879 	zcp = vp->v_data;
880 	zcp->zc_id = objset;
881 
882 	return (vp);
883 }
884 
885 static void
886 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr)
887 {
888 	zfsctl_snapdir_t *sdp;
889 	zfs_snapentry_t *sep, *next;
890 	vnode_t *dvp;
891 
892 	VERIFY(gfs_dir_lookup(vp, "..", &dvp) == 0);
893 	sdp = dvp->v_data;
894 
895 	mutex_enter(&sdp->sd_lock);
896 
897 	if (vp->v_count > 1) {
898 		mutex_exit(&sdp->sd_lock);
899 		return;
900 	}
901 	ASSERT(!vn_ismntpt(vp));
902 
903 	sep = avl_first(&sdp->sd_snaps);
904 	while (sep != NULL) {
905 		next = AVL_NEXT(&sdp->sd_snaps, sep);
906 
907 		if (sep->se_root == vp) {
908 			avl_remove(&sdp->sd_snaps, sep);
909 			kmem_free(sep->se_name, strlen(sep->se_name) + 1);
910 			kmem_free(sep, sizeof (zfs_snapentry_t));
911 			break;
912 		}
913 		sep = next;
914 	}
915 	ASSERT(sep != NULL);
916 
917 	mutex_exit(&sdp->sd_lock);
918 	VN_RELE(dvp);
919 
920 	/*
921 	 * Dispose of the vnode for the snapshot mount point.
922 	 * This is safe to do because once this entry has been removed
923 	 * from the AVL tree, it can't be found again, so cannot become
924 	 * "active".  If we lookup the same name again we will end up
925 	 * creating a new vnode.
926 	 */
927 	gfs_vop_inactive(vp, cr);
928 }
929 
930 
931 /*
932  * These VP's should never see the light of day.  They should always
933  * be covered.
934  */
935 static const fs_operation_def_t zfsctl_tops_snapshot[] = {
936 	VOPNAME_INACTIVE, { .vop_inactive =  zfsctl_snapshot_inactive },
937 	NULL, NULL
938 };
939 
940 int
941 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
942 {
943 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
944 	vnode_t *dvp, *vp;
945 	zfsctl_snapdir_t *sdp;
946 	zfsctl_node_t *zcp;
947 	zfs_snapentry_t *sep;
948 	int error;
949 
950 	ASSERT(zfsvfs->z_ctldir != NULL);
951 	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
952 	    NULL, 0, NULL, kcred);
953 	if (error != 0)
954 		return (error);
955 	sdp = dvp->v_data;
956 
957 	mutex_enter(&sdp->sd_lock);
958 	sep = avl_first(&sdp->sd_snaps);
959 	while (sep != NULL) {
960 		vp = sep->se_root;
961 		zcp = vp->v_data;
962 		if (zcp->zc_id == objsetid)
963 			break;
964 
965 		sep = AVL_NEXT(&sdp->sd_snaps, sep);
966 	}
967 
968 	if (sep != NULL) {
969 		VN_HOLD(vp);
970 		/*
971 		 * Return the mounted root rather than the covered mount point.
972 		 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid>
973 		 * and returns the ZFS vnode mounted on top of the GFS node.
974 		 * This ZFS vnode is the root of the vfs for objset 'objsetid'.
975 		 */
976 		error = traverse(&vp);
977 		if (error == 0) {
978 			if (vp == sep->se_root)
979 				error = EINVAL;
980 			else
981 				*zfsvfsp = VTOZ(vp)->z_zfsvfs;
982 		}
983 		mutex_exit(&sdp->sd_lock);
984 		VN_RELE(vp);
985 	} else {
986 		error = EINVAL;
987 		mutex_exit(&sdp->sd_lock);
988 	}
989 
990 	VN_RELE(dvp);
991 
992 	return (error);
993 }
994 
995 /*
996  * Unmount any snapshots for the given filesystem.  This is called from
997  * zfs_umount() - if we have a ctldir, then go through and unmount all the
998  * snapshots.
999  */
1000 int
1001 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
1002 {
1003 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1004 	vnode_t *dvp, *svp;
1005 	zfsctl_snapdir_t *sdp;
1006 	zfs_snapentry_t *sep, *next;
1007 	int error;
1008 
1009 	ASSERT(zfsvfs->z_ctldir != NULL);
1010 	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1011 	    NULL, 0, NULL, cr);
1012 	if (error != 0)
1013 		return (error);
1014 	sdp = dvp->v_data;
1015 
1016 	mutex_enter(&sdp->sd_lock);
1017 
1018 	sep = avl_first(&sdp->sd_snaps);
1019 	while (sep != NULL) {
1020 		svp = sep->se_root;
1021 		next = AVL_NEXT(&sdp->sd_snaps, sep);
1022 
1023 		/*
1024 		 * If this snapshot is not mounted, then it must
1025 		 * have just been unmounted by somebody else, and
1026 		 * will be cleaned up by zfsctl_snapdir_inactive().
1027 		 */
1028 		if (vn_ismntpt(svp)) {
1029 			if ((error = vn_vfswlock(svp)) != 0)
1030 				goto out;
1031 
1032 			VN_HOLD(svp);
1033 			error = dounmount(vn_mountedvfs(svp), fflags, cr);
1034 			if (error) {
1035 				VN_RELE(svp);
1036 				goto out;
1037 			}
1038 
1039 			avl_remove(&sdp->sd_snaps, sep);
1040 			kmem_free(sep->se_name, strlen(sep->se_name) + 1);
1041 			kmem_free(sep, sizeof (zfs_snapentry_t));
1042 
1043 			/*
1044 			 * We can't use VN_RELE(), as that will try to
1045 			 * invoke zfsctl_snapdir_inactive(), and that
1046 			 * would lead to an attempt to re-grab the sd_lock.
1047 			 */
1048 			ASSERT3U(svp->v_count, ==, 1);
1049 			gfs_vop_inactive(svp, cr);
1050 		}
1051 		sep = next;
1052 	}
1053 out:
1054 	mutex_exit(&sdp->sd_lock);
1055 	VN_RELE(dvp);
1056 
1057 	return (error);
1058 }
1059