1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 */ 25 26 #include <sys/zio.h> 27 #include <sys/spa.h> 28 #include <sys/dmu.h> 29 #include <sys/zfs_context.h> 30 #include <sys/zap.h> 31 #include <sys/refcount.h> 32 #include <sys/zap_impl.h> 33 #include <sys/zap_leaf.h> 34 #include <sys/avl.h> 35 #include <sys/arc.h> 36 #include <sys/dmu_objset.h> 37 38 #ifdef _KERNEL 39 #include <sys/sunddi.h> 40 #endif 41 42 extern inline mzap_phys_t *zap_m_phys(zap_t *zap); 43 44 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags); 45 46 uint64_t 47 zap_getflags(zap_t *zap) 48 { 49 if (zap->zap_ismicro) 50 return (0); 51 return (zap_f_phys(zap)->zap_flags); 52 } 53 54 int 55 zap_hashbits(zap_t *zap) 56 { 57 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 58 return (48); 59 else 60 return (28); 61 } 62 63 uint32_t 64 zap_maxcd(zap_t *zap) 65 { 66 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 67 return ((1<<16)-1); 68 else 69 return (-1U); 70 } 71 72 static uint64_t 73 zap_hash(zap_name_t *zn) 74 { 75 zap_t *zap = zn->zn_zap; 76 uint64_t h = 0; 77 78 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) { 79 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY); 80 h = *(uint64_t *)zn->zn_key_orig; 81 } else { 82 h = zap->zap_salt; 83 ASSERT(h != 0); 84 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 85 86 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 87 int i; 88 const uint64_t *wp = zn->zn_key_norm; 89 90 ASSERT(zn->zn_key_intlen == 8); 91 for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) { 92 int j; 93 uint64_t word = *wp; 94 95 for (j = 0; j < zn->zn_key_intlen; j++) { 96 h = (h >> 8) ^ 97 zfs_crc64_table[(h ^ word) & 0xFF]; 98 word >>= NBBY; 99 } 100 } 101 } else { 102 int i, len; 103 const uint8_t *cp = zn->zn_key_norm; 104 105 /* 106 * We previously stored the terminating null on 107 * disk, but didn't hash it, so we need to 108 * continue to not hash it. (The 109 * zn_key_*_numints includes the terminating 110 * null for non-binary keys.) 111 */ 112 len = zn->zn_key_norm_numints - 1; 113 114 ASSERT(zn->zn_key_intlen == 1); 115 for (i = 0; i < len; cp++, i++) { 116 h = (h >> 8) ^ 117 zfs_crc64_table[(h ^ *cp) & 0xFF]; 118 } 119 } 120 } 121 /* 122 * Don't use all 64 bits, since we need some in the cookie for 123 * the collision differentiator. We MUST use the high bits, 124 * since those are the ones that we first pay attention to when 125 * chosing the bucket. 126 */ 127 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1); 128 129 return (h); 130 } 131 132 static int 133 zap_normalize(zap_t *zap, const char *name, char *namenorm) 134 { 135 size_t inlen, outlen; 136 int err; 137 138 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY)); 139 140 inlen = strlen(name) + 1; 141 outlen = ZAP_MAXNAMELEN; 142 143 err = 0; 144 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, 145 zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL | 146 U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err); 147 148 return (err); 149 } 150 151 boolean_t 152 zap_match(zap_name_t *zn, const char *matchname) 153 { 154 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY)); 155 156 if (zn->zn_matchtype == MT_FIRST) { 157 char norm[ZAP_MAXNAMELEN]; 158 159 if (zap_normalize(zn->zn_zap, matchname, norm) != 0) 160 return (B_FALSE); 161 162 return (strcmp(zn->zn_key_norm, norm) == 0); 163 } else { 164 /* MT_BEST or MT_EXACT */ 165 return (strcmp(zn->zn_key_orig, matchname) == 0); 166 } 167 } 168 169 void 170 zap_name_free(zap_name_t *zn) 171 { 172 kmem_free(zn, sizeof (zap_name_t)); 173 } 174 175 zap_name_t * 176 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt) 177 { 178 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 179 180 zn->zn_zap = zap; 181 zn->zn_key_intlen = sizeof (*key); 182 zn->zn_key_orig = key; 183 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1; 184 zn->zn_matchtype = mt; 185 if (zap->zap_normflags) { 186 if (zap_normalize(zap, key, zn->zn_normbuf) != 0) { 187 zap_name_free(zn); 188 return (NULL); 189 } 190 zn->zn_key_norm = zn->zn_normbuf; 191 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; 192 } else { 193 if (mt != MT_EXACT) { 194 zap_name_free(zn); 195 return (NULL); 196 } 197 zn->zn_key_norm = zn->zn_key_orig; 198 zn->zn_key_norm_numints = zn->zn_key_orig_numints; 199 } 200 201 zn->zn_hash = zap_hash(zn); 202 return (zn); 203 } 204 205 zap_name_t * 206 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints) 207 { 208 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 209 210 ASSERT(zap->zap_normflags == 0); 211 zn->zn_zap = zap; 212 zn->zn_key_intlen = sizeof (*key); 213 zn->zn_key_orig = zn->zn_key_norm = key; 214 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints; 215 zn->zn_matchtype = MT_EXACT; 216 217 zn->zn_hash = zap_hash(zn); 218 return (zn); 219 } 220 221 static void 222 mzap_byteswap(mzap_phys_t *buf, size_t size) 223 { 224 int i, max; 225 buf->mz_block_type = BSWAP_64(buf->mz_block_type); 226 buf->mz_salt = BSWAP_64(buf->mz_salt); 227 buf->mz_normflags = BSWAP_64(buf->mz_normflags); 228 max = (size / MZAP_ENT_LEN) - 1; 229 for (i = 0; i < max; i++) { 230 buf->mz_chunk[i].mze_value = 231 BSWAP_64(buf->mz_chunk[i].mze_value); 232 buf->mz_chunk[i].mze_cd = 233 BSWAP_32(buf->mz_chunk[i].mze_cd); 234 } 235 } 236 237 void 238 zap_byteswap(void *buf, size_t size) 239 { 240 uint64_t block_type; 241 242 block_type = *(uint64_t *)buf; 243 244 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { 245 /* ASSERT(magic == ZAP_LEAF_MAGIC); */ 246 mzap_byteswap(buf, size); 247 } else { 248 fzap_byteswap(buf, size); 249 } 250 } 251 252 static int 253 mze_compare(const void *arg1, const void *arg2) 254 { 255 const mzap_ent_t *mze1 = arg1; 256 const mzap_ent_t *mze2 = arg2; 257 258 if (mze1->mze_hash > mze2->mze_hash) 259 return (+1); 260 if (mze1->mze_hash < mze2->mze_hash) 261 return (-1); 262 if (mze1->mze_cd > mze2->mze_cd) 263 return (+1); 264 if (mze1->mze_cd < mze2->mze_cd) 265 return (-1); 266 return (0); 267 } 268 269 static void 270 mze_insert(zap_t *zap, int chunkid, uint64_t hash) 271 { 272 mzap_ent_t *mze; 273 274 ASSERT(zap->zap_ismicro); 275 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 276 277 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP); 278 mze->mze_chunkid = chunkid; 279 mze->mze_hash = hash; 280 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd; 281 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0); 282 avl_add(&zap->zap_m.zap_avl, mze); 283 } 284 285 static mzap_ent_t * 286 mze_find(zap_name_t *zn) 287 { 288 mzap_ent_t mze_tofind; 289 mzap_ent_t *mze; 290 avl_index_t idx; 291 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl; 292 293 ASSERT(zn->zn_zap->zap_ismicro); 294 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); 295 296 mze_tofind.mze_hash = zn->zn_hash; 297 mze_tofind.mze_cd = 0; 298 299 again: 300 mze = avl_find(avl, &mze_tofind, &idx); 301 if (mze == NULL) 302 mze = avl_nearest(avl, idx, AVL_AFTER); 303 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) { 304 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd); 305 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name)) 306 return (mze); 307 } 308 if (zn->zn_matchtype == MT_BEST) { 309 zn->zn_matchtype = MT_FIRST; 310 goto again; 311 } 312 return (NULL); 313 } 314 315 static uint32_t 316 mze_find_unused_cd(zap_t *zap, uint64_t hash) 317 { 318 mzap_ent_t mze_tofind; 319 mzap_ent_t *mze; 320 avl_index_t idx; 321 avl_tree_t *avl = &zap->zap_m.zap_avl; 322 uint32_t cd; 323 324 ASSERT(zap->zap_ismicro); 325 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 326 327 mze_tofind.mze_hash = hash; 328 mze_tofind.mze_cd = 0; 329 330 cd = 0; 331 for (mze = avl_find(avl, &mze_tofind, &idx); 332 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { 333 if (mze->mze_cd != cd) 334 break; 335 cd++; 336 } 337 338 return (cd); 339 } 340 341 static void 342 mze_remove(zap_t *zap, mzap_ent_t *mze) 343 { 344 ASSERT(zap->zap_ismicro); 345 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 346 347 avl_remove(&zap->zap_m.zap_avl, mze); 348 kmem_free(mze, sizeof (mzap_ent_t)); 349 } 350 351 static void 352 mze_destroy(zap_t *zap) 353 { 354 mzap_ent_t *mze; 355 void *avlcookie = NULL; 356 357 while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)) 358 kmem_free(mze, sizeof (mzap_ent_t)); 359 avl_destroy(&zap->zap_m.zap_avl); 360 } 361 362 static zap_t * 363 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) 364 { 365 zap_t *winner; 366 zap_t *zap; 367 int i; 368 369 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); 370 371 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); 372 rw_init(&zap->zap_rwlock, 0, 0, 0); 373 rw_enter(&zap->zap_rwlock, RW_WRITER); 374 zap->zap_objset = os; 375 zap->zap_object = obj; 376 zap->zap_dbuf = db; 377 378 if (*(uint64_t *)db->db_data != ZBT_MICRO) { 379 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); 380 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1; 381 } else { 382 zap->zap_ismicro = TRUE; 383 } 384 385 /* 386 * Make sure that zap_ismicro is set before we let others see 387 * it, because zap_lockdir() checks zap_ismicro without the lock 388 * held. 389 */ 390 winner = dmu_buf_set_user(db, zap, zap_evict); 391 392 if (winner != NULL) { 393 rw_exit(&zap->zap_rwlock); 394 rw_destroy(&zap->zap_rwlock); 395 if (!zap->zap_ismicro) 396 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 397 kmem_free(zap, sizeof (zap_t)); 398 return (winner); 399 } 400 401 if (zap->zap_ismicro) { 402 zap->zap_salt = zap_m_phys(zap)->mz_salt; 403 zap->zap_normflags = zap_m_phys(zap)->mz_normflags; 404 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; 405 avl_create(&zap->zap_m.zap_avl, mze_compare, 406 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node)); 407 408 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 409 mzap_ent_phys_t *mze = 410 &zap_m_phys(zap)->mz_chunk[i]; 411 if (mze->mze_name[0]) { 412 zap_name_t *zn; 413 414 zap->zap_m.zap_num_entries++; 415 zn = zap_name_alloc(zap, mze->mze_name, 416 MT_EXACT); 417 mze_insert(zap, i, zn->zn_hash); 418 zap_name_free(zn); 419 } 420 } 421 } else { 422 zap->zap_salt = zap_f_phys(zap)->zap_salt; 423 zap->zap_normflags = zap_f_phys(zap)->zap_normflags; 424 425 ASSERT3U(sizeof (struct zap_leaf_header), ==, 426 2*ZAP_LEAF_CHUNKSIZE); 427 428 /* 429 * The embedded pointer table should not overlap the 430 * other members. 431 */ 432 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, 433 &zap_f_phys(zap)->zap_salt); 434 435 /* 436 * The embedded pointer table should end at the end of 437 * the block 438 */ 439 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 440 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) - 441 (uintptr_t)zap_f_phys(zap), ==, 442 zap->zap_dbuf->db_size); 443 } 444 rw_exit(&zap->zap_rwlock); 445 return (zap); 446 } 447 448 int 449 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, 450 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) 451 { 452 zap_t *zap; 453 dmu_buf_t *db; 454 krw_t lt; 455 int err; 456 457 *zapp = NULL; 458 459 err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH); 460 if (err) 461 return (err); 462 463 #ifdef ZFS_DEBUG 464 { 465 dmu_object_info_t doi; 466 dmu_object_info_from_db(db, &doi); 467 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 468 } 469 #endif 470 471 zap = dmu_buf_get_user(db); 472 if (zap == NULL) 473 zap = mzap_open(os, obj, db); 474 475 /* 476 * We're checking zap_ismicro without the lock held, in order to 477 * tell what type of lock we want. Once we have some sort of 478 * lock, see if it really is the right type. In practice this 479 * can only be different if it was upgraded from micro to fat, 480 * and micro wanted WRITER but fat only needs READER. 481 */ 482 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; 483 rw_enter(&zap->zap_rwlock, lt); 484 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { 485 /* it was upgraded, now we only need reader */ 486 ASSERT(lt == RW_WRITER); 487 ASSERT(RW_READER == 488 (!zap->zap_ismicro && fatreader) ? RW_READER : lti); 489 rw_downgrade(&zap->zap_rwlock); 490 lt = RW_READER; 491 } 492 493 zap->zap_objset = os; 494 495 if (lt == RW_WRITER) 496 dmu_buf_will_dirty(db, tx); 497 498 ASSERT3P(zap->zap_dbuf, ==, db); 499 500 ASSERT(!zap->zap_ismicro || 501 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); 502 if (zap->zap_ismicro && tx && adding && 503 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { 504 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; 505 if (newsz > MZAP_MAX_BLKSZ) { 506 dprintf("upgrading obj %llu: num_entries=%u\n", 507 obj, zap->zap_m.zap_num_entries); 508 *zapp = zap; 509 return (mzap_upgrade(zapp, tx, 0)); 510 } 511 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx); 512 ASSERT0(err); 513 zap->zap_m.zap_num_chunks = 514 db->db_size / MZAP_ENT_LEN - 1; 515 } 516 517 *zapp = zap; 518 return (0); 519 } 520 521 void 522 zap_unlockdir(zap_t *zap) 523 { 524 rw_exit(&zap->zap_rwlock); 525 dmu_buf_rele(zap->zap_dbuf, NULL); 526 } 527 528 static int 529 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags) 530 { 531 mzap_phys_t *mzp; 532 int i, sz, nchunks; 533 int err = 0; 534 zap_t *zap = *zapp; 535 536 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 537 538 sz = zap->zap_dbuf->db_size; 539 mzp = kmem_alloc(sz, KM_SLEEP); 540 bcopy(zap->zap_dbuf->db_data, mzp, sz); 541 nchunks = zap->zap_m.zap_num_chunks; 542 543 if (!flags) { 544 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 545 1ULL << fzap_default_block_shift, 0, tx); 546 if (err) { 547 kmem_free(mzp, sz); 548 return (err); 549 } 550 } 551 552 dprintf("upgrading obj=%llu with %u chunks\n", 553 zap->zap_object, nchunks); 554 /* XXX destroy the avl later, so we can use the stored hash value */ 555 mze_destroy(zap); 556 557 fzap_upgrade(zap, tx, flags); 558 559 for (i = 0; i < nchunks; i++) { 560 mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; 561 zap_name_t *zn; 562 if (mze->mze_name[0] == 0) 563 continue; 564 dprintf("adding %s=%llu\n", 565 mze->mze_name, mze->mze_value); 566 zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT); 567 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx); 568 zap = zn->zn_zap; /* fzap_add_cd() may change zap */ 569 zap_name_free(zn); 570 if (err) 571 break; 572 } 573 kmem_free(mzp, sz); 574 *zapp = zap; 575 return (err); 576 } 577 578 void 579 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags, 580 dmu_tx_t *tx) 581 { 582 dmu_buf_t *db; 583 mzap_phys_t *zp; 584 585 VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH)); 586 587 #ifdef ZFS_DEBUG 588 { 589 dmu_object_info_t doi; 590 dmu_object_info_from_db(db, &doi); 591 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 592 } 593 #endif 594 595 dmu_buf_will_dirty(db, tx); 596 zp = db->db_data; 597 zp->mz_block_type = ZBT_MICRO; 598 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL; 599 zp->mz_normflags = normflags; 600 dmu_buf_rele(db, FTAG); 601 602 if (flags != 0) { 603 zap_t *zap; 604 /* Only fat zap supports flags; upgrade immediately. */ 605 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER, 606 B_FALSE, B_FALSE, &zap)); 607 VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags)); 608 zap_unlockdir(zap); 609 } 610 } 611 612 int 613 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, 614 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 615 { 616 return (zap_create_claim_norm(os, obj, 617 0, ot, bonustype, bonuslen, tx)); 618 } 619 620 int 621 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, 622 dmu_object_type_t ot, 623 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 624 { 625 int err; 626 627 err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx); 628 if (err != 0) 629 return (err); 630 mzap_create_impl(os, obj, normflags, 0, tx); 631 return (0); 632 } 633 634 uint64_t 635 zap_create(objset_t *os, dmu_object_type_t ot, 636 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 637 { 638 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); 639 } 640 641 uint64_t 642 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, 643 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 644 { 645 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 646 647 mzap_create_impl(os, obj, normflags, 0, tx); 648 return (obj); 649 } 650 651 uint64_t 652 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, 653 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 654 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 655 { 656 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 657 658 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT && 659 leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT && 660 indirect_blockshift >= SPA_MINBLOCKSHIFT && 661 indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT); 662 663 VERIFY(dmu_object_set_blocksize(os, obj, 664 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0); 665 666 mzap_create_impl(os, obj, normflags, flags, tx); 667 return (obj); 668 } 669 670 int 671 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) 672 { 673 /* 674 * dmu_object_free will free the object number and free the 675 * data. Freeing the data will cause our pageout function to be 676 * called, which will destroy our data (zap_leaf_t's and zap_t). 677 */ 678 679 return (dmu_object_free(os, zapobj, tx)); 680 } 681 682 _NOTE(ARGSUSED(0)) 683 void 684 zap_evict(dmu_buf_t *db, void *vzap) 685 { 686 zap_t *zap = vzap; 687 688 rw_destroy(&zap->zap_rwlock); 689 690 if (zap->zap_ismicro) 691 mze_destroy(zap); 692 else 693 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 694 695 kmem_free(zap, sizeof (zap_t)); 696 } 697 698 int 699 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) 700 { 701 zap_t *zap; 702 int err; 703 704 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 705 if (err) 706 return (err); 707 if (!zap->zap_ismicro) { 708 err = fzap_count(zap, count); 709 } else { 710 *count = zap->zap_m.zap_num_entries; 711 } 712 zap_unlockdir(zap); 713 return (err); 714 } 715 716 /* 717 * zn may be NULL; if not specified, it will be computed if needed. 718 * See also the comment above zap_entry_normalization_conflict(). 719 */ 720 static boolean_t 721 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze) 722 { 723 mzap_ent_t *other; 724 int direction = AVL_BEFORE; 725 boolean_t allocdzn = B_FALSE; 726 727 if (zap->zap_normflags == 0) 728 return (B_FALSE); 729 730 again: 731 for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction); 732 other && other->mze_hash == mze->mze_hash; 733 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) { 734 735 if (zn == NULL) { 736 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name, 737 MT_FIRST); 738 allocdzn = B_TRUE; 739 } 740 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) { 741 if (allocdzn) 742 zap_name_free(zn); 743 return (B_TRUE); 744 } 745 } 746 747 if (direction == AVL_BEFORE) { 748 direction = AVL_AFTER; 749 goto again; 750 } 751 752 if (allocdzn) 753 zap_name_free(zn); 754 return (B_FALSE); 755 } 756 757 /* 758 * Routines for manipulating attributes. 759 */ 760 761 int 762 zap_lookup(objset_t *os, uint64_t zapobj, const char *name, 763 uint64_t integer_size, uint64_t num_integers, void *buf) 764 { 765 return (zap_lookup_norm(os, zapobj, name, integer_size, 766 num_integers, buf, MT_EXACT, NULL, 0, NULL)); 767 } 768 769 int 770 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, 771 uint64_t integer_size, uint64_t num_integers, void *buf, 772 matchtype_t mt, char *realname, int rn_len, 773 boolean_t *ncp) 774 { 775 zap_t *zap; 776 int err; 777 mzap_ent_t *mze; 778 zap_name_t *zn; 779 780 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 781 if (err) 782 return (err); 783 zn = zap_name_alloc(zap, name, mt); 784 if (zn == NULL) { 785 zap_unlockdir(zap); 786 return (SET_ERROR(ENOTSUP)); 787 } 788 789 if (!zap->zap_ismicro) { 790 err = fzap_lookup(zn, integer_size, num_integers, buf, 791 realname, rn_len, ncp); 792 } else { 793 mze = mze_find(zn); 794 if (mze == NULL) { 795 err = SET_ERROR(ENOENT); 796 } else { 797 if (num_integers < 1) { 798 err = SET_ERROR(EOVERFLOW); 799 } else if (integer_size != 8) { 800 err = SET_ERROR(EINVAL); 801 } else { 802 *(uint64_t *)buf = 803 MZE_PHYS(zap, mze)->mze_value; 804 (void) strlcpy(realname, 805 MZE_PHYS(zap, mze)->mze_name, rn_len); 806 if (ncp) { 807 *ncp = mzap_normalization_conflict(zap, 808 zn, mze); 809 } 810 } 811 } 812 } 813 zap_name_free(zn); 814 zap_unlockdir(zap); 815 return (err); 816 } 817 818 int 819 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 820 int key_numints) 821 { 822 zap_t *zap; 823 int err; 824 zap_name_t *zn; 825 826 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 827 if (err) 828 return (err); 829 zn = zap_name_alloc_uint64(zap, key, key_numints); 830 if (zn == NULL) { 831 zap_unlockdir(zap); 832 return (SET_ERROR(ENOTSUP)); 833 } 834 835 fzap_prefetch(zn); 836 zap_name_free(zn); 837 zap_unlockdir(zap); 838 return (err); 839 } 840 841 int 842 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 843 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf) 844 { 845 zap_t *zap; 846 int err; 847 zap_name_t *zn; 848 849 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 850 if (err) 851 return (err); 852 zn = zap_name_alloc_uint64(zap, key, key_numints); 853 if (zn == NULL) { 854 zap_unlockdir(zap); 855 return (SET_ERROR(ENOTSUP)); 856 } 857 858 err = fzap_lookup(zn, integer_size, num_integers, buf, 859 NULL, 0, NULL); 860 zap_name_free(zn); 861 zap_unlockdir(zap); 862 return (err); 863 } 864 865 int 866 zap_contains(objset_t *os, uint64_t zapobj, const char *name) 867 { 868 int err = zap_lookup_norm(os, zapobj, name, 0, 869 0, NULL, MT_EXACT, NULL, 0, NULL); 870 if (err == EOVERFLOW || err == EINVAL) 871 err = 0; /* found, but skipped reading the value */ 872 return (err); 873 } 874 875 int 876 zap_length(objset_t *os, uint64_t zapobj, const char *name, 877 uint64_t *integer_size, uint64_t *num_integers) 878 { 879 zap_t *zap; 880 int err; 881 mzap_ent_t *mze; 882 zap_name_t *zn; 883 884 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 885 if (err) 886 return (err); 887 zn = zap_name_alloc(zap, name, MT_EXACT); 888 if (zn == NULL) { 889 zap_unlockdir(zap); 890 return (SET_ERROR(ENOTSUP)); 891 } 892 if (!zap->zap_ismicro) { 893 err = fzap_length(zn, integer_size, num_integers); 894 } else { 895 mze = mze_find(zn); 896 if (mze == NULL) { 897 err = SET_ERROR(ENOENT); 898 } else { 899 if (integer_size) 900 *integer_size = 8; 901 if (num_integers) 902 *num_integers = 1; 903 } 904 } 905 zap_name_free(zn); 906 zap_unlockdir(zap); 907 return (err); 908 } 909 910 int 911 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 912 int key_numints, uint64_t *integer_size, uint64_t *num_integers) 913 { 914 zap_t *zap; 915 int err; 916 zap_name_t *zn; 917 918 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 919 if (err) 920 return (err); 921 zn = zap_name_alloc_uint64(zap, key, key_numints); 922 if (zn == NULL) { 923 zap_unlockdir(zap); 924 return (SET_ERROR(ENOTSUP)); 925 } 926 err = fzap_length(zn, integer_size, num_integers); 927 zap_name_free(zn); 928 zap_unlockdir(zap); 929 return (err); 930 } 931 932 static void 933 mzap_addent(zap_name_t *zn, uint64_t value) 934 { 935 int i; 936 zap_t *zap = zn->zn_zap; 937 int start = zap->zap_m.zap_alloc_next; 938 uint32_t cd; 939 940 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 941 942 #ifdef ZFS_DEBUG 943 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 944 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 945 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0); 946 } 947 #endif 948 949 cd = mze_find_unused_cd(zap, zn->zn_hash); 950 /* given the limited size of the microzap, this can't happen */ 951 ASSERT(cd < zap_maxcd(zap)); 952 953 again: 954 for (i = start; i < zap->zap_m.zap_num_chunks; i++) { 955 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 956 if (mze->mze_name[0] == 0) { 957 mze->mze_value = value; 958 mze->mze_cd = cd; 959 (void) strcpy(mze->mze_name, zn->zn_key_orig); 960 zap->zap_m.zap_num_entries++; 961 zap->zap_m.zap_alloc_next = i+1; 962 if (zap->zap_m.zap_alloc_next == 963 zap->zap_m.zap_num_chunks) 964 zap->zap_m.zap_alloc_next = 0; 965 mze_insert(zap, i, zn->zn_hash); 966 return; 967 } 968 } 969 if (start != 0) { 970 start = 0; 971 goto again; 972 } 973 ASSERT(!"out of entries!"); 974 } 975 976 int 977 zap_add(objset_t *os, uint64_t zapobj, const char *key, 978 int integer_size, uint64_t num_integers, 979 const void *val, dmu_tx_t *tx) 980 { 981 zap_t *zap; 982 int err; 983 mzap_ent_t *mze; 984 const uint64_t *intval = val; 985 zap_name_t *zn; 986 987 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 988 if (err) 989 return (err); 990 zn = zap_name_alloc(zap, key, MT_EXACT); 991 if (zn == NULL) { 992 zap_unlockdir(zap); 993 return (SET_ERROR(ENOTSUP)); 994 } 995 if (!zap->zap_ismicro) { 996 err = fzap_add(zn, integer_size, num_integers, val, tx); 997 zap = zn->zn_zap; /* fzap_add() may change zap */ 998 } else if (integer_size != 8 || num_integers != 1 || 999 strlen(key) >= MZAP_NAME_LEN) { 1000 err = mzap_upgrade(&zn->zn_zap, tx, 0); 1001 if (err == 0) 1002 err = fzap_add(zn, integer_size, num_integers, val, tx); 1003 zap = zn->zn_zap; /* fzap_add() may change zap */ 1004 } else { 1005 mze = mze_find(zn); 1006 if (mze != NULL) { 1007 err = SET_ERROR(EEXIST); 1008 } else { 1009 mzap_addent(zn, *intval); 1010 } 1011 } 1012 ASSERT(zap == zn->zn_zap); 1013 zap_name_free(zn); 1014 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1015 zap_unlockdir(zap); 1016 return (err); 1017 } 1018 1019 int 1020 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1021 int key_numints, int integer_size, uint64_t num_integers, 1022 const void *val, dmu_tx_t *tx) 1023 { 1024 zap_t *zap; 1025 int err; 1026 zap_name_t *zn; 1027 1028 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1029 if (err) 1030 return (err); 1031 zn = zap_name_alloc_uint64(zap, key, key_numints); 1032 if (zn == NULL) { 1033 zap_unlockdir(zap); 1034 return (SET_ERROR(ENOTSUP)); 1035 } 1036 err = fzap_add(zn, integer_size, num_integers, val, tx); 1037 zap = zn->zn_zap; /* fzap_add() may change zap */ 1038 zap_name_free(zn); 1039 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1040 zap_unlockdir(zap); 1041 return (err); 1042 } 1043 1044 int 1045 zap_update(objset_t *os, uint64_t zapobj, const char *name, 1046 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1047 { 1048 zap_t *zap; 1049 mzap_ent_t *mze; 1050 uint64_t oldval; 1051 const uint64_t *intval = val; 1052 zap_name_t *zn; 1053 int err; 1054 1055 #ifdef ZFS_DEBUG 1056 /* 1057 * If there is an old value, it shouldn't change across the 1058 * lockdir (eg, due to bprewrite's xlation). 1059 */ 1060 if (integer_size == 8 && num_integers == 1) 1061 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval); 1062 #endif 1063 1064 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1065 if (err) 1066 return (err); 1067 zn = zap_name_alloc(zap, name, MT_EXACT); 1068 if (zn == NULL) { 1069 zap_unlockdir(zap); 1070 return (SET_ERROR(ENOTSUP)); 1071 } 1072 if (!zap->zap_ismicro) { 1073 err = fzap_update(zn, integer_size, num_integers, val, tx); 1074 zap = zn->zn_zap; /* fzap_update() may change zap */ 1075 } else if (integer_size != 8 || num_integers != 1 || 1076 strlen(name) >= MZAP_NAME_LEN) { 1077 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 1078 zapobj, integer_size, num_integers, name); 1079 err = mzap_upgrade(&zn->zn_zap, tx, 0); 1080 if (err == 0) 1081 err = fzap_update(zn, integer_size, num_integers, 1082 val, tx); 1083 zap = zn->zn_zap; /* fzap_update() may change zap */ 1084 } else { 1085 mze = mze_find(zn); 1086 if (mze != NULL) { 1087 ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval); 1088 MZE_PHYS(zap, mze)->mze_value = *intval; 1089 } else { 1090 mzap_addent(zn, *intval); 1091 } 1092 } 1093 ASSERT(zap == zn->zn_zap); 1094 zap_name_free(zn); 1095 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1096 zap_unlockdir(zap); 1097 return (err); 1098 } 1099 1100 int 1101 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1102 int key_numints, 1103 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1104 { 1105 zap_t *zap; 1106 zap_name_t *zn; 1107 int err; 1108 1109 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1110 if (err) 1111 return (err); 1112 zn = zap_name_alloc_uint64(zap, key, key_numints); 1113 if (zn == NULL) { 1114 zap_unlockdir(zap); 1115 return (SET_ERROR(ENOTSUP)); 1116 } 1117 err = fzap_update(zn, integer_size, num_integers, val, tx); 1118 zap = zn->zn_zap; /* fzap_update() may change zap */ 1119 zap_name_free(zn); 1120 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1121 zap_unlockdir(zap); 1122 return (err); 1123 } 1124 1125 int 1126 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) 1127 { 1128 return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx)); 1129 } 1130 1131 int 1132 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, 1133 matchtype_t mt, dmu_tx_t *tx) 1134 { 1135 zap_t *zap; 1136 int err; 1137 mzap_ent_t *mze; 1138 zap_name_t *zn; 1139 1140 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); 1141 if (err) 1142 return (err); 1143 zn = zap_name_alloc(zap, name, mt); 1144 if (zn == NULL) { 1145 zap_unlockdir(zap); 1146 return (SET_ERROR(ENOTSUP)); 1147 } 1148 if (!zap->zap_ismicro) { 1149 err = fzap_remove(zn, tx); 1150 } else { 1151 mze = mze_find(zn); 1152 if (mze == NULL) { 1153 err = SET_ERROR(ENOENT); 1154 } else { 1155 zap->zap_m.zap_num_entries--; 1156 bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid], 1157 sizeof (mzap_ent_phys_t)); 1158 mze_remove(zap, mze); 1159 } 1160 } 1161 zap_name_free(zn); 1162 zap_unlockdir(zap); 1163 return (err); 1164 } 1165 1166 int 1167 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1168 int key_numints, dmu_tx_t *tx) 1169 { 1170 zap_t *zap; 1171 int err; 1172 zap_name_t *zn; 1173 1174 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); 1175 if (err) 1176 return (err); 1177 zn = zap_name_alloc_uint64(zap, key, key_numints); 1178 if (zn == NULL) { 1179 zap_unlockdir(zap); 1180 return (SET_ERROR(ENOTSUP)); 1181 } 1182 err = fzap_remove(zn, tx); 1183 zap_name_free(zn); 1184 zap_unlockdir(zap); 1185 return (err); 1186 } 1187 1188 /* 1189 * Routines for iterating over the attributes. 1190 */ 1191 1192 void 1193 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 1194 uint64_t serialized) 1195 { 1196 zc->zc_objset = os; 1197 zc->zc_zap = NULL; 1198 zc->zc_leaf = NULL; 1199 zc->zc_zapobj = zapobj; 1200 zc->zc_serialized = serialized; 1201 zc->zc_hash = 0; 1202 zc->zc_cd = 0; 1203 } 1204 1205 void 1206 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 1207 { 1208 zap_cursor_init_serialized(zc, os, zapobj, 0); 1209 } 1210 1211 void 1212 zap_cursor_fini(zap_cursor_t *zc) 1213 { 1214 if (zc->zc_zap) { 1215 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1216 zap_unlockdir(zc->zc_zap); 1217 zc->zc_zap = NULL; 1218 } 1219 if (zc->zc_leaf) { 1220 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1221 zap_put_leaf(zc->zc_leaf); 1222 zc->zc_leaf = NULL; 1223 } 1224 zc->zc_objset = NULL; 1225 } 1226 1227 uint64_t 1228 zap_cursor_serialize(zap_cursor_t *zc) 1229 { 1230 if (zc->zc_hash == -1ULL) 1231 return (-1ULL); 1232 if (zc->zc_zap == NULL) 1233 return (zc->zc_serialized); 1234 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0); 1235 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap)); 1236 1237 /* 1238 * We want to keep the high 32 bits of the cursor zero if we can, so 1239 * that 32-bit programs can access this. So usually use a small 1240 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits 1241 * of the cursor. 1242 * 1243 * [ collision differentiator | zap_hashbits()-bit hash value ] 1244 */ 1245 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) | 1246 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap))); 1247 } 1248 1249 int 1250 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) 1251 { 1252 int err; 1253 avl_index_t idx; 1254 mzap_ent_t mze_tofind; 1255 mzap_ent_t *mze; 1256 1257 if (zc->zc_hash == -1ULL) 1258 return (SET_ERROR(ENOENT)); 1259 1260 if (zc->zc_zap == NULL) { 1261 int hb; 1262 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 1263 RW_READER, TRUE, FALSE, &zc->zc_zap); 1264 if (err) 1265 return (err); 1266 1267 /* 1268 * To support zap_cursor_init_serialized, advance, retrieve, 1269 * we must add to the existing zc_cd, which may already 1270 * be 1 due to the zap_cursor_advance. 1271 */ 1272 ASSERT(zc->zc_hash == 0); 1273 hb = zap_hashbits(zc->zc_zap); 1274 zc->zc_hash = zc->zc_serialized << (64 - hb); 1275 zc->zc_cd += zc->zc_serialized >> hb; 1276 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */ 1277 zc->zc_cd = 0; 1278 } else { 1279 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1280 } 1281 if (!zc->zc_zap->zap_ismicro) { 1282 err = fzap_cursor_retrieve(zc->zc_zap, zc, za); 1283 } else { 1284 mze_tofind.mze_hash = zc->zc_hash; 1285 mze_tofind.mze_cd = zc->zc_cd; 1286 1287 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx); 1288 if (mze == NULL) { 1289 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl, 1290 idx, AVL_AFTER); 1291 } 1292 if (mze) { 1293 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze); 1294 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd); 1295 za->za_normalization_conflict = 1296 mzap_normalization_conflict(zc->zc_zap, NULL, mze); 1297 za->za_integer_length = 8; 1298 za->za_num_integers = 1; 1299 za->za_first_integer = mzep->mze_value; 1300 (void) strcpy(za->za_name, mzep->mze_name); 1301 zc->zc_hash = mze->mze_hash; 1302 zc->zc_cd = mze->mze_cd; 1303 err = 0; 1304 } else { 1305 zc->zc_hash = -1ULL; 1306 err = SET_ERROR(ENOENT); 1307 } 1308 } 1309 rw_exit(&zc->zc_zap->zap_rwlock); 1310 return (err); 1311 } 1312 1313 void 1314 zap_cursor_advance(zap_cursor_t *zc) 1315 { 1316 if (zc->zc_hash == -1ULL) 1317 return; 1318 zc->zc_cd++; 1319 } 1320 1321 int 1322 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) 1323 { 1324 int err; 1325 zap_t *zap; 1326 1327 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 1328 if (err) 1329 return (err); 1330 1331 bzero(zs, sizeof (zap_stats_t)); 1332 1333 if (zap->zap_ismicro) { 1334 zs->zs_blocksize = zap->zap_dbuf->db_size; 1335 zs->zs_num_entries = zap->zap_m.zap_num_entries; 1336 zs->zs_num_blocks = 1; 1337 } else { 1338 fzap_get_stats(zap, zs); 1339 } 1340 zap_unlockdir(zap); 1341 return (0); 1342 } 1343 1344 int 1345 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add, 1346 uint64_t *towrite, uint64_t *tooverwrite) 1347 { 1348 zap_t *zap; 1349 int err = 0; 1350 1351 /* 1352 * Since, we don't have a name, we cannot figure out which blocks will 1353 * be affected in this operation. So, account for the worst case : 1354 * - 3 blocks overwritten: target leaf, ptrtbl block, header block 1355 * - 4 new blocks written if adding: 1356 * - 2 blocks for possibly split leaves, 1357 * - 2 grown ptrtbl blocks 1358 * 1359 * This also accomodates the case where an add operation to a fairly 1360 * large microzap results in a promotion to fatzap. 1361 */ 1362 if (name == NULL) { 1363 *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE; 1364 return (err); 1365 } 1366 1367 /* 1368 * We lock the zap with adding == FALSE. Because, if we pass 1369 * the actual value of add, it could trigger a mzap_upgrade(). 1370 * At present we are just evaluating the possibility of this operation 1371 * and hence we donot want to trigger an upgrade. 1372 */ 1373 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 1374 if (err) 1375 return (err); 1376 1377 if (!zap->zap_ismicro) { 1378 zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT); 1379 if (zn) { 1380 err = fzap_count_write(zn, add, towrite, 1381 tooverwrite); 1382 zap_name_free(zn); 1383 } else { 1384 /* 1385 * We treat this case as similar to (name == NULL) 1386 */ 1387 *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE; 1388 } 1389 } else { 1390 /* 1391 * We are here if (name != NULL) and this is a micro-zap. 1392 * We account for the header block depending on whether it 1393 * is freeable. 1394 * 1395 * Incase of an add-operation it is hard to find out 1396 * if this add will promote this microzap to fatzap. 1397 * Hence, we consider the worst case and account for the 1398 * blocks assuming this microzap would be promoted to a 1399 * fatzap. 1400 * 1401 * 1 block overwritten : header block 1402 * 4 new blocks written : 2 new split leaf, 2 grown 1403 * ptrtbl blocks 1404 */ 1405 if (dmu_buf_freeable(zap->zap_dbuf)) 1406 *tooverwrite += MZAP_MAX_BLKSZ; 1407 else 1408 *towrite += MZAP_MAX_BLKSZ; 1409 1410 if (add) { 1411 *towrite += 4 * MZAP_MAX_BLKSZ; 1412 } 1413 } 1414 1415 zap_unlockdir(zap); 1416 return (err); 1417 } 1418