xref: /titanic_51/usr/src/uts/common/fs/zfs/zap_micro.c (revision 81fd181a33bee65d5be7a49c6093bb13b382b172)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zio.h>
27 #include <sys/spa.h>
28 #include <sys/dmu.h>
29 #include <sys/zfs_context.h>
30 #include <sys/zap.h>
31 #include <sys/refcount.h>
32 #include <sys/zap_impl.h>
33 #include <sys/zap_leaf.h>
34 #include <sys/avl.h>
35 
36 #ifdef _KERNEL
37 #include <sys/sunddi.h>
38 #endif
39 
40 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
41 
42 uint64_t
43 zap_getflags(zap_t *zap)
44 {
45 	if (zap->zap_ismicro)
46 		return (0);
47 	return (zap->zap_u.zap_fat.zap_phys->zap_flags);
48 }
49 
50 int
51 zap_hashbits(zap_t *zap)
52 {
53 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
54 		return (48);
55 	else
56 		return (28);
57 }
58 
59 uint32_t
60 zap_maxcd(zap_t *zap)
61 {
62 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
63 		return ((1<<16)-1);
64 	else
65 		return (-1U);
66 }
67 
68 static uint64_t
69 zap_hash(zap_name_t *zn)
70 {
71 	zap_t *zap = zn->zn_zap;
72 	uint64_t h = 0;
73 
74 	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
75 		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
76 		h = *(uint64_t *)zn->zn_key_orig;
77 	} else {
78 		const uint8_t *cp = (const uint8_t *)zn->zn_key_norm;
79 		int i, len;
80 
81 		h = zap->zap_salt;
82 		ASSERT(h != 0);
83 		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
84 		len = zn->zn_key_norm_len;
85 
86 		/*
87 		 * Because we previously stored the terminating null on
88 		 * disk, but didn't hash it, we need to continue to not
89 		 * hash it.  (The zn_key_*_len includes the terminating
90 		 * null for non-binary keys.)
91 		 */
92 		if (!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY))
93 			len--;
94 
95 		for (i = 0; i < len; cp++, i++)
96 			h = (h >> 8) ^ zfs_crc64_table[(h ^ *cp) & 0xFF];
97 
98 	}
99 	/*
100 	 * Don't use all 64 bits, since we need some in the cookie for
101 	 * the collision differentiator.  We MUST use the high bits,
102 	 * since those are the ones that we first pay attention to when
103 	 * chosing the bucket.
104 	 */
105 	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
106 
107 	return (h);
108 }
109 
110 static int
111 zap_normalize(zap_t *zap, const char *name, char *namenorm)
112 {
113 	size_t inlen, outlen;
114 	int err;
115 
116 	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
117 
118 	inlen = strlen(name) + 1;
119 	outlen = ZAP_MAXNAMELEN;
120 
121 	err = 0;
122 	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
123 	    zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
124 	    U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
125 
126 	return (err);
127 }
128 
129 boolean_t
130 zap_match(zap_name_t *zn, const char *matchname)
131 {
132 	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
133 
134 	if (zn->zn_matchtype == MT_FIRST) {
135 		char norm[ZAP_MAXNAMELEN];
136 
137 		if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
138 			return (B_FALSE);
139 
140 		return (strcmp(zn->zn_key_norm, norm) == 0);
141 	} else {
142 		/* MT_BEST or MT_EXACT */
143 		return (strcmp(zn->zn_key_orig, matchname) == 0);
144 	}
145 }
146 
147 void
148 zap_name_free(zap_name_t *zn)
149 {
150 	kmem_free(zn, sizeof (zap_name_t));
151 }
152 
153 zap_name_t *
154 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
155 {
156 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
157 
158 	zn->zn_zap = zap;
159 	zn->zn_key_intlen = sizeof (*key);
160 	zn->zn_key_orig = key;
161 	zn->zn_key_orig_len = strlen(zn->zn_key_orig) + 1;
162 	zn->zn_matchtype = mt;
163 	if (zap->zap_normflags) {
164 		if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
165 			zap_name_free(zn);
166 			return (NULL);
167 		}
168 		zn->zn_key_norm = zn->zn_normbuf;
169 		zn->zn_key_norm_len = strlen(zn->zn_key_norm) + 1;
170 	} else {
171 		if (mt != MT_EXACT) {
172 			zap_name_free(zn);
173 			return (NULL);
174 		}
175 		zn->zn_key_norm = zn->zn_key_orig;
176 		zn->zn_key_norm_len = zn->zn_key_orig_len;
177 	}
178 
179 	zn->zn_hash = zap_hash(zn);
180 	return (zn);
181 }
182 
183 zap_name_t *
184 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
185 {
186 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
187 
188 	ASSERT(zap->zap_normflags == 0);
189 	zn->zn_zap = zap;
190 	zn->zn_key_intlen = sizeof (*key);
191 	zn->zn_key_orig = zn->zn_key_norm = key;
192 	zn->zn_key_orig_len = zn->zn_key_norm_len = numints;
193 	zn->zn_matchtype = MT_EXACT;
194 
195 	zn->zn_hash = zap_hash(zn);
196 	return (zn);
197 }
198 
199 static void
200 mzap_byteswap(mzap_phys_t *buf, size_t size)
201 {
202 	int i, max;
203 	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
204 	buf->mz_salt = BSWAP_64(buf->mz_salt);
205 	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
206 	max = (size / MZAP_ENT_LEN) - 1;
207 	for (i = 0; i < max; i++) {
208 		buf->mz_chunk[i].mze_value =
209 		    BSWAP_64(buf->mz_chunk[i].mze_value);
210 		buf->mz_chunk[i].mze_cd =
211 		    BSWAP_32(buf->mz_chunk[i].mze_cd);
212 	}
213 }
214 
215 void
216 zap_byteswap(void *buf, size_t size)
217 {
218 	uint64_t block_type;
219 
220 	block_type = *(uint64_t *)buf;
221 
222 	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
223 		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
224 		mzap_byteswap(buf, size);
225 	} else {
226 		fzap_byteswap(buf, size);
227 	}
228 }
229 
230 static int
231 mze_compare(const void *arg1, const void *arg2)
232 {
233 	const mzap_ent_t *mze1 = arg1;
234 	const mzap_ent_t *mze2 = arg2;
235 
236 	if (mze1->mze_hash > mze2->mze_hash)
237 		return (+1);
238 	if (mze1->mze_hash < mze2->mze_hash)
239 		return (-1);
240 	if (mze1->mze_phys.mze_cd > mze2->mze_phys.mze_cd)
241 		return (+1);
242 	if (mze1->mze_phys.mze_cd < mze2->mze_phys.mze_cd)
243 		return (-1);
244 	return (0);
245 }
246 
247 static void
248 mze_insert(zap_t *zap, int chunkid, uint64_t hash, mzap_ent_phys_t *mzep)
249 {
250 	mzap_ent_t *mze;
251 
252 	ASSERT(zap->zap_ismicro);
253 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
254 	ASSERT(mzep->mze_cd < zap_maxcd(zap));
255 
256 	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
257 	mze->mze_chunkid = chunkid;
258 	mze->mze_hash = hash;
259 	mze->mze_phys = *mzep;
260 	avl_add(&zap->zap_m.zap_avl, mze);
261 }
262 
263 static mzap_ent_t *
264 mze_find(zap_name_t *zn)
265 {
266 	mzap_ent_t mze_tofind;
267 	mzap_ent_t *mze;
268 	avl_index_t idx;
269 	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
270 
271 	ASSERT(zn->zn_zap->zap_ismicro);
272 	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
273 
274 	mze_tofind.mze_hash = zn->zn_hash;
275 	mze_tofind.mze_phys.mze_cd = 0;
276 
277 again:
278 	mze = avl_find(avl, &mze_tofind, &idx);
279 	if (mze == NULL)
280 		mze = avl_nearest(avl, idx, AVL_AFTER);
281 	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
282 		if (zap_match(zn, mze->mze_phys.mze_name))
283 			return (mze);
284 	}
285 	if (zn->zn_matchtype == MT_BEST) {
286 		zn->zn_matchtype = MT_FIRST;
287 		goto again;
288 	}
289 	return (NULL);
290 }
291 
292 static uint32_t
293 mze_find_unused_cd(zap_t *zap, uint64_t hash)
294 {
295 	mzap_ent_t mze_tofind;
296 	mzap_ent_t *mze;
297 	avl_index_t idx;
298 	avl_tree_t *avl = &zap->zap_m.zap_avl;
299 	uint32_t cd;
300 
301 	ASSERT(zap->zap_ismicro);
302 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
303 
304 	mze_tofind.mze_hash = hash;
305 	mze_tofind.mze_phys.mze_cd = 0;
306 
307 	cd = 0;
308 	for (mze = avl_find(avl, &mze_tofind, &idx);
309 	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
310 		if (mze->mze_phys.mze_cd != cd)
311 			break;
312 		cd++;
313 	}
314 
315 	return (cd);
316 }
317 
318 static void
319 mze_remove(zap_t *zap, mzap_ent_t *mze)
320 {
321 	ASSERT(zap->zap_ismicro);
322 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
323 
324 	avl_remove(&zap->zap_m.zap_avl, mze);
325 	kmem_free(mze, sizeof (mzap_ent_t));
326 }
327 
328 static void
329 mze_destroy(zap_t *zap)
330 {
331 	mzap_ent_t *mze;
332 	void *avlcookie = NULL;
333 
334 	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
335 		kmem_free(mze, sizeof (mzap_ent_t));
336 	avl_destroy(&zap->zap_m.zap_avl);
337 }
338 
339 static zap_t *
340 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
341 {
342 	zap_t *winner;
343 	zap_t *zap;
344 	int i;
345 
346 	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
347 
348 	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
349 	rw_init(&zap->zap_rwlock, 0, 0, 0);
350 	rw_enter(&zap->zap_rwlock, RW_WRITER);
351 	zap->zap_objset = os;
352 	zap->zap_object = obj;
353 	zap->zap_dbuf = db;
354 
355 	if (*(uint64_t *)db->db_data != ZBT_MICRO) {
356 		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
357 		zap->zap_f.zap_block_shift = highbit(db->db_size) - 1;
358 	} else {
359 		zap->zap_ismicro = TRUE;
360 	}
361 
362 	/*
363 	 * Make sure that zap_ismicro is set before we let others see
364 	 * it, because zap_lockdir() checks zap_ismicro without the lock
365 	 * held.
366 	 */
367 	winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict);
368 
369 	if (winner != NULL) {
370 		rw_exit(&zap->zap_rwlock);
371 		rw_destroy(&zap->zap_rwlock);
372 		if (!zap->zap_ismicro)
373 			mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
374 		kmem_free(zap, sizeof (zap_t));
375 		return (winner);
376 	}
377 
378 	if (zap->zap_ismicro) {
379 		zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
380 		zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags;
381 		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
382 		avl_create(&zap->zap_m.zap_avl, mze_compare,
383 		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
384 
385 		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
386 			mzap_ent_phys_t *mze =
387 			    &zap->zap_m.zap_phys->mz_chunk[i];
388 			if (mze->mze_name[0]) {
389 				zap_name_t *zn;
390 
391 				zap->zap_m.zap_num_entries++;
392 				zn = zap_name_alloc(zap, mze->mze_name,
393 				    MT_EXACT);
394 				mze_insert(zap, i, zn->zn_hash, mze);
395 				zap_name_free(zn);
396 			}
397 		}
398 	} else {
399 		zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
400 		zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags;
401 
402 		ASSERT3U(sizeof (struct zap_leaf_header), ==,
403 		    2*ZAP_LEAF_CHUNKSIZE);
404 
405 		/*
406 		 * The embedded pointer table should not overlap the
407 		 * other members.
408 		 */
409 		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
410 		    &zap->zap_f.zap_phys->zap_salt);
411 
412 		/*
413 		 * The embedded pointer table should end at the end of
414 		 * the block
415 		 */
416 		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
417 		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
418 		    (uintptr_t)zap->zap_f.zap_phys, ==,
419 		    zap->zap_dbuf->db_size);
420 	}
421 	rw_exit(&zap->zap_rwlock);
422 	return (zap);
423 }
424 
425 int
426 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
427     krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
428 {
429 	zap_t *zap;
430 	dmu_buf_t *db;
431 	krw_t lt;
432 	int err;
433 
434 	*zapp = NULL;
435 
436 	err = dmu_buf_hold(os, obj, 0, NULL, &db);
437 	if (err)
438 		return (err);
439 
440 #ifdef ZFS_DEBUG
441 	{
442 		dmu_object_info_t doi;
443 		dmu_object_info_from_db(db, &doi);
444 		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
445 	}
446 #endif
447 
448 	zap = dmu_buf_get_user(db);
449 	if (zap == NULL)
450 		zap = mzap_open(os, obj, db);
451 
452 	/*
453 	 * We're checking zap_ismicro without the lock held, in order to
454 	 * tell what type of lock we want.  Once we have some sort of
455 	 * lock, see if it really is the right type.  In practice this
456 	 * can only be different if it was upgraded from micro to fat,
457 	 * and micro wanted WRITER but fat only needs READER.
458 	 */
459 	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
460 	rw_enter(&zap->zap_rwlock, lt);
461 	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
462 		/* it was upgraded, now we only need reader */
463 		ASSERT(lt == RW_WRITER);
464 		ASSERT(RW_READER ==
465 		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
466 		rw_downgrade(&zap->zap_rwlock);
467 		lt = RW_READER;
468 	}
469 
470 	zap->zap_objset = os;
471 
472 	if (lt == RW_WRITER)
473 		dmu_buf_will_dirty(db, tx);
474 
475 	ASSERT3P(zap->zap_dbuf, ==, db);
476 
477 	ASSERT(!zap->zap_ismicro ||
478 	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
479 	if (zap->zap_ismicro && tx && adding &&
480 	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
481 		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
482 		if (newsz > MZAP_MAX_BLKSZ) {
483 			dprintf("upgrading obj %llu: num_entries=%u\n",
484 			    obj, zap->zap_m.zap_num_entries);
485 			*zapp = zap;
486 			return (mzap_upgrade(zapp, tx, 0));
487 		}
488 		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
489 		ASSERT3U(err, ==, 0);
490 		zap->zap_m.zap_num_chunks =
491 		    db->db_size / MZAP_ENT_LEN - 1;
492 	}
493 
494 	*zapp = zap;
495 	return (0);
496 }
497 
498 void
499 zap_unlockdir(zap_t *zap)
500 {
501 	rw_exit(&zap->zap_rwlock);
502 	dmu_buf_rele(zap->zap_dbuf, NULL);
503 }
504 
505 static int
506 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
507 {
508 	mzap_phys_t *mzp;
509 	int i, sz, nchunks;
510 	int err = 0;
511 	zap_t *zap = *zapp;
512 
513 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
514 
515 	sz = zap->zap_dbuf->db_size;
516 	mzp = kmem_alloc(sz, KM_SLEEP);
517 	bcopy(zap->zap_dbuf->db_data, mzp, sz);
518 	nchunks = zap->zap_m.zap_num_chunks;
519 
520 	if (!flags) {
521 		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
522 		    1ULL << fzap_default_block_shift, 0, tx);
523 		if (err) {
524 			kmem_free(mzp, sz);
525 			return (err);
526 		}
527 	}
528 
529 	dprintf("upgrading obj=%llu with %u chunks\n",
530 	    zap->zap_object, nchunks);
531 	/* XXX destroy the avl later, so we can use the stored hash value */
532 	mze_destroy(zap);
533 
534 	fzap_upgrade(zap, tx, flags);
535 
536 	for (i = 0; i < nchunks; i++) {
537 		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
538 		zap_name_t *zn;
539 		if (mze->mze_name[0] == 0)
540 			continue;
541 		dprintf("adding %s=%llu\n",
542 		    mze->mze_name, mze->mze_value);
543 		zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
544 		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
545 		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
546 		zap_name_free(zn);
547 		if (err)
548 			break;
549 	}
550 	kmem_free(mzp, sz);
551 	*zapp = zap;
552 	return (err);
553 }
554 
555 static void
556 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
557     dmu_tx_t *tx)
558 {
559 	dmu_buf_t *db;
560 	mzap_phys_t *zp;
561 
562 	VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db));
563 
564 #ifdef ZFS_DEBUG
565 	{
566 		dmu_object_info_t doi;
567 		dmu_object_info_from_db(db, &doi);
568 		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
569 	}
570 #endif
571 
572 	dmu_buf_will_dirty(db, tx);
573 	zp = db->db_data;
574 	zp->mz_block_type = ZBT_MICRO;
575 	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
576 	zp->mz_normflags = normflags;
577 	dmu_buf_rele(db, FTAG);
578 
579 	if (flags != 0) {
580 		zap_t *zap;
581 		/* Only fat zap supports flags; upgrade immediately. */
582 		VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
583 		    B_FALSE, B_FALSE, &zap));
584 		VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
585 		zap_unlockdir(zap);
586 	}
587 }
588 
589 int
590 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
591     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
592 {
593 	return (zap_create_claim_norm(os, obj,
594 	    0, ot, bonustype, bonuslen, tx));
595 }
596 
597 int
598 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
599     dmu_object_type_t ot,
600     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
601 {
602 	int err;
603 
604 	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
605 	if (err != 0)
606 		return (err);
607 	mzap_create_impl(os, obj, normflags, 0, tx);
608 	return (0);
609 }
610 
611 uint64_t
612 zap_create(objset_t *os, dmu_object_type_t ot,
613     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
614 {
615 	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
616 }
617 
618 uint64_t
619 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
620     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
621 {
622 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
623 
624 	mzap_create_impl(os, obj, normflags, 0, tx);
625 	return (obj);
626 }
627 
628 uint64_t
629 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
630     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
631     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
632 {
633 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
634 
635 	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
636 	    leaf_blockshift <= SPA_MAXBLOCKSHIFT &&
637 	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
638 	    indirect_blockshift <= SPA_MAXBLOCKSHIFT);
639 
640 	VERIFY(dmu_object_set_blocksize(os, obj,
641 	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
642 
643 	mzap_create_impl(os, obj, normflags, flags, tx);
644 	return (obj);
645 }
646 
647 int
648 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
649 {
650 	/*
651 	 * dmu_object_free will free the object number and free the
652 	 * data.  Freeing the data will cause our pageout function to be
653 	 * called, which will destroy our data (zap_leaf_t's and zap_t).
654 	 */
655 
656 	return (dmu_object_free(os, zapobj, tx));
657 }
658 
659 _NOTE(ARGSUSED(0))
660 void
661 zap_evict(dmu_buf_t *db, void *vzap)
662 {
663 	zap_t *zap = vzap;
664 
665 	rw_destroy(&zap->zap_rwlock);
666 
667 	if (zap->zap_ismicro)
668 		mze_destroy(zap);
669 	else
670 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
671 
672 	kmem_free(zap, sizeof (zap_t));
673 }
674 
675 int
676 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
677 {
678 	zap_t *zap;
679 	int err;
680 
681 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
682 	if (err)
683 		return (err);
684 	if (!zap->zap_ismicro) {
685 		err = fzap_count(zap, count);
686 	} else {
687 		*count = zap->zap_m.zap_num_entries;
688 	}
689 	zap_unlockdir(zap);
690 	return (err);
691 }
692 
693 /*
694  * zn may be NULL; if not specified, it will be computed if needed.
695  * See also the comment above zap_entry_normalization_conflict().
696  */
697 static boolean_t
698 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
699 {
700 	mzap_ent_t *other;
701 	int direction = AVL_BEFORE;
702 	boolean_t allocdzn = B_FALSE;
703 
704 	if (zap->zap_normflags == 0)
705 		return (B_FALSE);
706 
707 again:
708 	for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
709 	    other && other->mze_hash == mze->mze_hash;
710 	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
711 
712 		if (zn == NULL) {
713 			zn = zap_name_alloc(zap, mze->mze_phys.mze_name,
714 			    MT_FIRST);
715 			allocdzn = B_TRUE;
716 		}
717 		if (zap_match(zn, other->mze_phys.mze_name)) {
718 			if (allocdzn)
719 				zap_name_free(zn);
720 			return (B_TRUE);
721 		}
722 	}
723 
724 	if (direction == AVL_BEFORE) {
725 		direction = AVL_AFTER;
726 		goto again;
727 	}
728 
729 	if (allocdzn)
730 		zap_name_free(zn);
731 	return (B_FALSE);
732 }
733 
734 /*
735  * Routines for manipulating attributes.
736  */
737 
738 int
739 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
740     uint64_t integer_size, uint64_t num_integers, void *buf)
741 {
742 	return (zap_lookup_norm(os, zapobj, name, integer_size,
743 	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
744 }
745 
746 int
747 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
748     uint64_t integer_size, uint64_t num_integers, void *buf,
749     matchtype_t mt, char *realname, int rn_len,
750     boolean_t *ncp)
751 {
752 	zap_t *zap;
753 	int err;
754 	mzap_ent_t *mze;
755 	zap_name_t *zn;
756 
757 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
758 	if (err)
759 		return (err);
760 	zn = zap_name_alloc(zap, name, mt);
761 	if (zn == NULL) {
762 		zap_unlockdir(zap);
763 		return (ENOTSUP);
764 	}
765 
766 	if (!zap->zap_ismicro) {
767 		err = fzap_lookup(zn, integer_size, num_integers, buf,
768 		    realname, rn_len, ncp);
769 	} else {
770 		mze = mze_find(zn);
771 		if (mze == NULL) {
772 			err = ENOENT;
773 		} else {
774 			if (num_integers < 1) {
775 				err = EOVERFLOW;
776 			} else if (integer_size != 8) {
777 				err = EINVAL;
778 			} else {
779 				*(uint64_t *)buf = mze->mze_phys.mze_value;
780 				(void) strlcpy(realname,
781 				    mze->mze_phys.mze_name, rn_len);
782 				if (ncp) {
783 					*ncp = mzap_normalization_conflict(zap,
784 					    zn, mze);
785 				}
786 			}
787 		}
788 	}
789 	zap_name_free(zn);
790 	zap_unlockdir(zap);
791 	return (err);
792 }
793 
794 int
795 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
796     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
797 {
798 	zap_t *zap;
799 	int err;
800 	zap_name_t *zn;
801 
802 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
803 	if (err)
804 		return (err);
805 	zn = zap_name_alloc_uint64(zap, key, key_numints);
806 	if (zn == NULL) {
807 		zap_unlockdir(zap);
808 		return (ENOTSUP);
809 	}
810 
811 	err = fzap_lookup(zn, integer_size, num_integers, buf,
812 	    NULL, 0, NULL);
813 	zap_name_free(zn);
814 	zap_unlockdir(zap);
815 	return (err);
816 }
817 
818 int
819 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
820 {
821 	int err = (zap_lookup_norm(os, zapobj, name, 0,
822 	    0, NULL, MT_EXACT, NULL, 0, NULL));
823 	if (err == EOVERFLOW || err == EINVAL)
824 		err = 0; /* found, but skipped reading the value */
825 	return (err);
826 }
827 
828 int
829 zap_length(objset_t *os, uint64_t zapobj, const char *name,
830     uint64_t *integer_size, uint64_t *num_integers)
831 {
832 	zap_t *zap;
833 	int err;
834 	mzap_ent_t *mze;
835 	zap_name_t *zn;
836 
837 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
838 	if (err)
839 		return (err);
840 	zn = zap_name_alloc(zap, name, MT_EXACT);
841 	if (zn == NULL) {
842 		zap_unlockdir(zap);
843 		return (ENOTSUP);
844 	}
845 	if (!zap->zap_ismicro) {
846 		err = fzap_length(zn, integer_size, num_integers);
847 	} else {
848 		mze = mze_find(zn);
849 		if (mze == NULL) {
850 			err = ENOENT;
851 		} else {
852 			if (integer_size)
853 				*integer_size = 8;
854 			if (num_integers)
855 				*num_integers = 1;
856 		}
857 	}
858 	zap_name_free(zn);
859 	zap_unlockdir(zap);
860 	return (err);
861 }
862 
863 int
864 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
865     int key_numints, uint64_t *integer_size, uint64_t *num_integers)
866 {
867 	zap_t *zap;
868 	int err;
869 	zap_name_t *zn;
870 
871 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
872 	if (err)
873 		return (err);
874 	zn = zap_name_alloc_uint64(zap, key, key_numints);
875 	if (zn == NULL) {
876 		zap_unlockdir(zap);
877 		return (ENOTSUP);
878 	}
879 	err = fzap_length(zn, integer_size, num_integers);
880 	zap_name_free(zn);
881 	zap_unlockdir(zap);
882 	return (err);
883 }
884 
885 static void
886 mzap_addent(zap_name_t *zn, uint64_t value)
887 {
888 	int i;
889 	zap_t *zap = zn->zn_zap;
890 	int start = zap->zap_m.zap_alloc_next;
891 	uint32_t cd;
892 
893 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
894 
895 #ifdef ZFS_DEBUG
896 	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
897 		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
898 		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
899 	}
900 #endif
901 
902 	cd = mze_find_unused_cd(zap, zn->zn_hash);
903 	/* given the limited size of the microzap, this can't happen */
904 	ASSERT(cd < zap_maxcd(zap));
905 
906 again:
907 	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
908 		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
909 		if (mze->mze_name[0] == 0) {
910 			mze->mze_value = value;
911 			mze->mze_cd = cd;
912 			(void) strcpy(mze->mze_name, zn->zn_key_orig);
913 			zap->zap_m.zap_num_entries++;
914 			zap->zap_m.zap_alloc_next = i+1;
915 			if (zap->zap_m.zap_alloc_next ==
916 			    zap->zap_m.zap_num_chunks)
917 				zap->zap_m.zap_alloc_next = 0;
918 			mze_insert(zap, i, zn->zn_hash, mze);
919 			return;
920 		}
921 	}
922 	if (start != 0) {
923 		start = 0;
924 		goto again;
925 	}
926 	ASSERT(!"out of entries!");
927 }
928 
929 int
930 zap_add(objset_t *os, uint64_t zapobj, const char *key,
931     int integer_size, uint64_t num_integers,
932     const void *val, dmu_tx_t *tx)
933 {
934 	zap_t *zap;
935 	int err;
936 	mzap_ent_t *mze;
937 	const uint64_t *intval = val;
938 	zap_name_t *zn;
939 
940 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
941 	if (err)
942 		return (err);
943 	zn = zap_name_alloc(zap, key, MT_EXACT);
944 	if (zn == NULL) {
945 		zap_unlockdir(zap);
946 		return (ENOTSUP);
947 	}
948 	if (!zap->zap_ismicro) {
949 		err = fzap_add(zn, integer_size, num_integers, val, tx);
950 		zap = zn->zn_zap;	/* fzap_add() may change zap */
951 	} else if (integer_size != 8 || num_integers != 1 ||
952 	    strlen(key) >= MZAP_NAME_LEN) {
953 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
954 		if (err == 0)
955 			err = fzap_add(zn, integer_size, num_integers, val, tx);
956 		zap = zn->zn_zap;	/* fzap_add() may change zap */
957 	} else {
958 		mze = mze_find(zn);
959 		if (mze != NULL) {
960 			err = EEXIST;
961 		} else {
962 			mzap_addent(zn, *intval);
963 		}
964 	}
965 	ASSERT(zap == zn->zn_zap);
966 	zap_name_free(zn);
967 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
968 		zap_unlockdir(zap);
969 	return (err);
970 }
971 
972 int
973 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
974     int key_numints, int integer_size, uint64_t num_integers,
975     const void *val, dmu_tx_t *tx)
976 {
977 	zap_t *zap;
978 	int err;
979 	zap_name_t *zn;
980 
981 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
982 	if (err)
983 		return (err);
984 	zn = zap_name_alloc_uint64(zap, key, key_numints);
985 	if (zn == NULL) {
986 		zap_unlockdir(zap);
987 		return (ENOTSUP);
988 	}
989 	err = fzap_add(zn, integer_size, num_integers, val, tx);
990 	zap = zn->zn_zap;	/* fzap_add() may change zap */
991 	zap_name_free(zn);
992 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
993 		zap_unlockdir(zap);
994 	return (err);
995 }
996 
997 int
998 zap_update(objset_t *os, uint64_t zapobj, const char *name,
999     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1000 {
1001 	zap_t *zap;
1002 	mzap_ent_t *mze;
1003 	const uint64_t *intval = val;
1004 	zap_name_t *zn;
1005 	int err;
1006 
1007 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1008 	if (err)
1009 		return (err);
1010 	zn = zap_name_alloc(zap, name, MT_EXACT);
1011 	if (zn == NULL) {
1012 		zap_unlockdir(zap);
1013 		return (ENOTSUP);
1014 	}
1015 	if (!zap->zap_ismicro) {
1016 		err = fzap_update(zn, integer_size, num_integers, val, tx);
1017 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1018 	} else if (integer_size != 8 || num_integers != 1 ||
1019 	    strlen(name) >= MZAP_NAME_LEN) {
1020 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1021 		    zapobj, integer_size, num_integers, name);
1022 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1023 		if (err == 0)
1024 			err = fzap_update(zn, integer_size, num_integers,
1025 			    val, tx);
1026 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1027 	} else {
1028 		mze = mze_find(zn);
1029 		if (mze != NULL) {
1030 			mze->mze_phys.mze_value = *intval;
1031 			zap->zap_m.zap_phys->mz_chunk
1032 			    [mze->mze_chunkid].mze_value = *intval;
1033 		} else {
1034 			mzap_addent(zn, *intval);
1035 		}
1036 	}
1037 	ASSERT(zap == zn->zn_zap);
1038 	zap_name_free(zn);
1039 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1040 		zap_unlockdir(zap);
1041 	return (err);
1042 }
1043 
1044 int
1045 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1046     int key_numints,
1047     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1048 {
1049 	zap_t *zap;
1050 	zap_name_t *zn;
1051 	int err;
1052 
1053 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1054 	if (err)
1055 		return (err);
1056 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1057 	if (zn == NULL) {
1058 		zap_unlockdir(zap);
1059 		return (ENOTSUP);
1060 	}
1061 	err = fzap_update(zn, integer_size, num_integers, val, tx);
1062 	zap = zn->zn_zap;	/* fzap_update() may change zap */
1063 	zap_name_free(zn);
1064 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1065 		zap_unlockdir(zap);
1066 	return (err);
1067 }
1068 
1069 int
1070 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1071 {
1072 	return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1073 }
1074 
1075 int
1076 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1077     matchtype_t mt, dmu_tx_t *tx)
1078 {
1079 	zap_t *zap;
1080 	int err;
1081 	mzap_ent_t *mze;
1082 	zap_name_t *zn;
1083 
1084 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1085 	if (err)
1086 		return (err);
1087 	zn = zap_name_alloc(zap, name, mt);
1088 	if (zn == NULL) {
1089 		zap_unlockdir(zap);
1090 		return (ENOTSUP);
1091 	}
1092 	if (!zap->zap_ismicro) {
1093 		err = fzap_remove(zn, tx);
1094 	} else {
1095 		mze = mze_find(zn);
1096 		if (mze == NULL) {
1097 			err = ENOENT;
1098 		} else {
1099 			zap->zap_m.zap_num_entries--;
1100 			bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
1101 			    sizeof (mzap_ent_phys_t));
1102 			mze_remove(zap, mze);
1103 		}
1104 	}
1105 	zap_name_free(zn);
1106 	zap_unlockdir(zap);
1107 	return (err);
1108 }
1109 
1110 int
1111 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1112     int key_numints, dmu_tx_t *tx)
1113 {
1114 	zap_t *zap;
1115 	int err;
1116 	zap_name_t *zn;
1117 
1118 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1119 	if (err)
1120 		return (err);
1121 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1122 	if (zn == NULL) {
1123 		zap_unlockdir(zap);
1124 		return (ENOTSUP);
1125 	}
1126 	err = fzap_remove(zn, tx);
1127 	zap_name_free(zn);
1128 	zap_unlockdir(zap);
1129 	return (err);
1130 }
1131 
1132 /*
1133  * Routines for iterating over the attributes.
1134  */
1135 
1136 void
1137 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1138     uint64_t serialized)
1139 {
1140 	zc->zc_objset = os;
1141 	zc->zc_zap = NULL;
1142 	zc->zc_leaf = NULL;
1143 	zc->zc_zapobj = zapobj;
1144 	zc->zc_serialized = serialized;
1145 	zc->zc_hash = 0;
1146 	zc->zc_cd = 0;
1147 }
1148 
1149 void
1150 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1151 {
1152 	zap_cursor_init_serialized(zc, os, zapobj, 0);
1153 }
1154 
1155 void
1156 zap_cursor_fini(zap_cursor_t *zc)
1157 {
1158 	if (zc->zc_zap) {
1159 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1160 		zap_unlockdir(zc->zc_zap);
1161 		zc->zc_zap = NULL;
1162 	}
1163 	if (zc->zc_leaf) {
1164 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1165 		zap_put_leaf(zc->zc_leaf);
1166 		zc->zc_leaf = NULL;
1167 	}
1168 	zc->zc_objset = NULL;
1169 }
1170 
1171 uint64_t
1172 zap_cursor_serialize(zap_cursor_t *zc)
1173 {
1174 	if (zc->zc_hash == -1ULL)
1175 		return (-1ULL);
1176 	if (zc->zc_zap == NULL)
1177 		return (zc->zc_serialized);
1178 	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1179 	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1180 
1181 	/*
1182 	 * We want to keep the high 32 bits of the cursor zero if we can, so
1183 	 * that 32-bit programs can access this.  So usually use a small
1184 	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1185 	 * of the cursor.
1186 	 *
1187 	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1188 	 */
1189 	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1190 	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1191 }
1192 
1193 int
1194 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1195 {
1196 	int err;
1197 	avl_index_t idx;
1198 	mzap_ent_t mze_tofind;
1199 	mzap_ent_t *mze;
1200 
1201 	if (zc->zc_hash == -1ULL)
1202 		return (ENOENT);
1203 
1204 	if (zc->zc_zap == NULL) {
1205 		int hb;
1206 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1207 		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1208 		if (err)
1209 			return (err);
1210 
1211 		/*
1212 		 * To support zap_cursor_init_serialized, advance, retrieve,
1213 		 * we must add to the existing zc_cd, which may already
1214 		 * be 1 due to the zap_cursor_advance.
1215 		 */
1216 		ASSERT(zc->zc_hash == 0);
1217 		hb = zap_hashbits(zc->zc_zap);
1218 		zc->zc_hash = zc->zc_serialized << (64 - hb);
1219 		zc->zc_cd += zc->zc_serialized >> hb;
1220 		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1221 			zc->zc_cd = 0;
1222 	} else {
1223 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1224 	}
1225 	if (!zc->zc_zap->zap_ismicro) {
1226 		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1227 	} else {
1228 		err = ENOENT;
1229 
1230 		mze_tofind.mze_hash = zc->zc_hash;
1231 		mze_tofind.mze_phys.mze_cd = zc->zc_cd;
1232 
1233 		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1234 		if (mze == NULL) {
1235 			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1236 			    idx, AVL_AFTER);
1237 		}
1238 		if (mze) {
1239 			ASSERT(0 == bcmp(&mze->mze_phys,
1240 			    &zc->zc_zap->zap_m.zap_phys->mz_chunk
1241 			    [mze->mze_chunkid], sizeof (mze->mze_phys)));
1242 
1243 			za->za_normalization_conflict =
1244 			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1245 			za->za_integer_length = 8;
1246 			za->za_num_integers = 1;
1247 			za->za_first_integer = mze->mze_phys.mze_value;
1248 			(void) strcpy(za->za_name, mze->mze_phys.mze_name);
1249 			zc->zc_hash = mze->mze_hash;
1250 			zc->zc_cd = mze->mze_phys.mze_cd;
1251 			err = 0;
1252 		} else {
1253 			zc->zc_hash = -1ULL;
1254 		}
1255 	}
1256 	rw_exit(&zc->zc_zap->zap_rwlock);
1257 	return (err);
1258 }
1259 
1260 void
1261 zap_cursor_advance(zap_cursor_t *zc)
1262 {
1263 	if (zc->zc_hash == -1ULL)
1264 		return;
1265 	zc->zc_cd++;
1266 }
1267 
1268 int
1269 zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt)
1270 {
1271 	int err = 0;
1272 	mzap_ent_t *mze;
1273 	zap_name_t *zn;
1274 
1275 	if (zc->zc_zap == NULL) {
1276 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1277 		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1278 		if (err)
1279 			return (err);
1280 	} else {
1281 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1282 	}
1283 
1284 	zn = zap_name_alloc(zc->zc_zap, name, mt);
1285 	if (zn == NULL) {
1286 		rw_exit(&zc->zc_zap->zap_rwlock);
1287 		return (ENOTSUP);
1288 	}
1289 
1290 	if (!zc->zc_zap->zap_ismicro) {
1291 		err = fzap_cursor_move_to_key(zc, zn);
1292 	} else {
1293 		mze = mze_find(zn);
1294 		if (mze == NULL) {
1295 			err = ENOENT;
1296 			goto out;
1297 		}
1298 		zc->zc_hash = mze->mze_hash;
1299 		zc->zc_cd = mze->mze_phys.mze_cd;
1300 	}
1301 
1302 out:
1303 	zap_name_free(zn);
1304 	rw_exit(&zc->zc_zap->zap_rwlock);
1305 	return (err);
1306 }
1307 
1308 int
1309 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1310 {
1311 	int err;
1312 	zap_t *zap;
1313 
1314 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1315 	if (err)
1316 		return (err);
1317 
1318 	bzero(zs, sizeof (zap_stats_t));
1319 
1320 	if (zap->zap_ismicro) {
1321 		zs->zs_blocksize = zap->zap_dbuf->db_size;
1322 		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1323 		zs->zs_num_blocks = 1;
1324 	} else {
1325 		fzap_get_stats(zap, zs);
1326 	}
1327 	zap_unlockdir(zap);
1328 	return (0);
1329 }
1330 
1331 int
1332 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1333     uint64_t *towrite, uint64_t *tooverwrite)
1334 {
1335 	zap_t *zap;
1336 	int err = 0;
1337 
1338 
1339 	/*
1340 	 * Since, we don't have a name, we cannot figure out which blocks will
1341 	 * be affected in this operation. So, account for the worst case :
1342 	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1343 	 * - 4 new blocks written if adding:
1344 	 * 	- 2 blocks for possibly split leaves,
1345 	 * 	- 2 grown ptrtbl blocks
1346 	 *
1347 	 * This also accomodates the case where an add operation to a fairly
1348 	 * large microzap results in a promotion to fatzap.
1349 	 */
1350 	if (name == NULL) {
1351 		*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1352 		return (err);
1353 	}
1354 
1355 	/*
1356 	 * We lock the zap with adding ==  FALSE. Because, if we pass
1357 	 * the actual value of add, it could trigger a mzap_upgrade().
1358 	 * At present we are just evaluating the possibility of this operation
1359 	 * and hence we donot want to trigger an upgrade.
1360 	 */
1361 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1362 	if (err)
1363 		return (err);
1364 
1365 	if (!zap->zap_ismicro) {
1366 		zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1367 		if (zn) {
1368 			err = fzap_count_write(zn, add, towrite,
1369 			    tooverwrite);
1370 			zap_name_free(zn);
1371 		} else {
1372 			/*
1373 			 * We treat this case as similar to (name == NULL)
1374 			 */
1375 			*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1376 		}
1377 	} else {
1378 		/*
1379 		 * We are here if (name != NULL) and this is a micro-zap.
1380 		 * We account for the header block depending on whether it
1381 		 * is freeable.
1382 		 *
1383 		 * Incase of an add-operation it is hard to find out
1384 		 * if this add will promote this microzap to fatzap.
1385 		 * Hence, we consider the worst case and account for the
1386 		 * blocks assuming this microzap would be promoted to a
1387 		 * fatzap.
1388 		 *
1389 		 * 1 block overwritten  : header block
1390 		 * 4 new blocks written : 2 new split leaf, 2 grown
1391 		 *			ptrtbl blocks
1392 		 */
1393 		if (dmu_buf_freeable(zap->zap_dbuf))
1394 			*tooverwrite += SPA_MAXBLOCKSIZE;
1395 		else
1396 			*towrite += SPA_MAXBLOCKSIZE;
1397 
1398 		if (add) {
1399 			*towrite += 4 * SPA_MAXBLOCKSIZE;
1400 		}
1401 	}
1402 
1403 	zap_unlockdir(zap);
1404 	return (err);
1405 }
1406