xref: /titanic_51/usr/src/uts/common/fs/zfs/vdev_label.c (revision 6cefaae1e90a413ba01560575bb3998e1a3df40e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Virtual Device Labels
28  * ---------------------
29  *
30  * The vdev label serves several distinct purposes:
31  *
32  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
33  *	   identity within the pool.
34  *
35  * 	2. Verify that all the devices given in a configuration are present
36  *         within the pool.
37  *
38  * 	3. Determine the uberblock for the pool.
39  *
40  * 	4. In case of an import operation, determine the configuration of the
41  *         toplevel vdev of which it is a part.
42  *
43  * 	5. If an import operation cannot find all the devices in the pool,
44  *         provide enough information to the administrator to determine which
45  *         devices are missing.
46  *
47  * It is important to note that while the kernel is responsible for writing the
48  * label, it only consumes the information in the first three cases.  The
49  * latter information is only consumed in userland when determining the
50  * configuration to import a pool.
51  *
52  *
53  * Label Organization
54  * ------------------
55  *
56  * Before describing the contents of the label, it's important to understand how
57  * the labels are written and updated with respect to the uberblock.
58  *
59  * When the pool configuration is altered, either because it was newly created
60  * or a device was added, we want to update all the labels such that we can deal
61  * with fatal failure at any point.  To this end, each disk has two labels which
62  * are updated before and after the uberblock is synced.  Assuming we have
63  * labels and an uberblock with the following transaction groups:
64  *
65  *              L1          UB          L2
66  *           +------+    +------+    +------+
67  *           |      |    |      |    |      |
68  *           | t10  |    | t10  |    | t10  |
69  *           |      |    |      |    |      |
70  *           +------+    +------+    +------+
71  *
72  * In this stable state, the labels and the uberblock were all updated within
73  * the same transaction group (10).  Each label is mirrored and checksummed, so
74  * that we can detect when we fail partway through writing the label.
75  *
76  * In order to identify which labels are valid, the labels are written in the
77  * following manner:
78  *
79  * 	1. For each vdev, update 'L1' to the new label
80  * 	2. Update the uberblock
81  * 	3. For each vdev, update 'L2' to the new label
82  *
83  * Given arbitrary failure, we can determine the correct label to use based on
84  * the transaction group.  If we fail after updating L1 but before updating the
85  * UB, we will notice that L1's transaction group is greater than the uberblock,
86  * so L2 must be valid.  If we fail after writing the uberblock but before
87  * writing L2, we will notice that L2's transaction group is less than L1, and
88  * therefore L1 is valid.
89  *
90  * Another added complexity is that not every label is updated when the config
91  * is synced.  If we add a single device, we do not want to have to re-write
92  * every label for every device in the pool.  This means that both L1 and L2 may
93  * be older than the pool uberblock, because the necessary information is stored
94  * on another vdev.
95  *
96  *
97  * On-disk Format
98  * --------------
99  *
100  * The vdev label consists of two distinct parts, and is wrapped within the
101  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
102  * VTOC disk labels, but is otherwise ignored.
103  *
104  * The first half of the label is a packed nvlist which contains pool wide
105  * properties, per-vdev properties, and configuration information.  It is
106  * described in more detail below.
107  *
108  * The latter half of the label consists of a redundant array of uberblocks.
109  * These uberblocks are updated whenever a transaction group is committed,
110  * or when the configuration is updated.  When a pool is loaded, we scan each
111  * vdev for the 'best' uberblock.
112  *
113  *
114  * Configuration Information
115  * -------------------------
116  *
117  * The nvlist describing the pool and vdev contains the following elements:
118  *
119  * 	version		ZFS on-disk version
120  * 	name		Pool name
121  * 	state		Pool state
122  * 	txg		Transaction group in which this label was written
123  * 	pool_guid	Unique identifier for this pool
124  * 	vdev_tree	An nvlist describing vdev tree.
125  *
126  * Each leaf device label also contains the following:
127  *
128  * 	top_guid	Unique ID for top-level vdev in which this is contained
129  * 	guid		Unique ID for the leaf vdev
130  *
131  * The 'vs' configuration follows the format described in 'spa_config.c'.
132  */
133 
134 #include <sys/zfs_context.h>
135 #include <sys/spa.h>
136 #include <sys/spa_impl.h>
137 #include <sys/dmu.h>
138 #include <sys/zap.h>
139 #include <sys/vdev.h>
140 #include <sys/vdev_impl.h>
141 #include <sys/uberblock_impl.h>
142 #include <sys/metaslab.h>
143 #include <sys/zio.h>
144 #include <sys/fs/zfs.h>
145 
146 /*
147  * Basic routines to read and write from a vdev label.
148  * Used throughout the rest of this file.
149  */
150 uint64_t
151 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
152 {
153 	ASSERT(offset < sizeof (vdev_label_t));
154 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
155 
156 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
157 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
158 }
159 
160 /*
161  * Returns back the vdev label associated with the passed in offset.
162  */
163 int
164 vdev_label_number(uint64_t psize, uint64_t offset)
165 {
166 	int l;
167 
168 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
169 		offset -= psize - VDEV_LABEL_END_SIZE;
170 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
171 	}
172 	l = offset / sizeof (vdev_label_t);
173 	return (l < VDEV_LABELS ? l : -1);
174 }
175 
176 static void
177 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
178 	uint64_t size, zio_done_func_t *done, void *private, int flags)
179 {
180 	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
181 	    SCL_STATE_ALL);
182 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
183 
184 	zio_nowait(zio_read_phys(zio, vd,
185 	    vdev_label_offset(vd->vdev_psize, l, offset),
186 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
187 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
188 }
189 
190 static void
191 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
192 	uint64_t size, zio_done_func_t *done, void *private, int flags)
193 {
194 	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
195 	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
196 	    (SCL_CONFIG | SCL_STATE) &&
197 	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
198 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
199 
200 	zio_nowait(zio_write_phys(zio, vd,
201 	    vdev_label_offset(vd->vdev_psize, l, offset),
202 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
203 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
204 }
205 
206 /*
207  * Generate the nvlist representing this vdev's config.
208  */
209 nvlist_t *
210 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
211     boolean_t isspare, boolean_t isl2cache)
212 {
213 	nvlist_t *nv = NULL;
214 
215 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
216 
217 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
218 	    vd->vdev_ops->vdev_op_type) == 0);
219 	if (!isspare && !isl2cache)
220 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
221 		    == 0);
222 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
223 
224 	if (vd->vdev_path != NULL)
225 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
226 		    vd->vdev_path) == 0);
227 
228 	if (vd->vdev_devid != NULL)
229 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
230 		    vd->vdev_devid) == 0);
231 
232 	if (vd->vdev_physpath != NULL)
233 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
234 		    vd->vdev_physpath) == 0);
235 
236 	if (vd->vdev_nparity != 0) {
237 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
238 		    VDEV_TYPE_RAIDZ) == 0);
239 
240 		/*
241 		 * Make sure someone hasn't managed to sneak a fancy new vdev
242 		 * into a crufty old storage pool.
243 		 */
244 		ASSERT(vd->vdev_nparity == 1 ||
245 		    (vd->vdev_nparity == 2 &&
246 		    spa_version(spa) >= SPA_VERSION_RAID6));
247 
248 		/*
249 		 * Note that we'll add the nparity tag even on storage pools
250 		 * that only support a single parity device -- older software
251 		 * will just ignore it.
252 		 */
253 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
254 		    vd->vdev_nparity) == 0);
255 	}
256 
257 	if (vd->vdev_wholedisk != -1ULL)
258 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
259 		    vd->vdev_wholedisk) == 0);
260 
261 	if (vd->vdev_not_present)
262 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
263 
264 	if (vd->vdev_isspare)
265 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
266 
267 	if (!isspare && !isl2cache && vd == vd->vdev_top) {
268 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
269 		    vd->vdev_ms_array) == 0);
270 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
271 		    vd->vdev_ms_shift) == 0);
272 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
273 		    vd->vdev_ashift) == 0);
274 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
275 		    vd->vdev_asize) == 0);
276 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
277 		    vd->vdev_islog) == 0);
278 	}
279 
280 	if (vd->vdev_dtl.smo_object != 0)
281 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
282 		    vd->vdev_dtl.smo_object) == 0);
283 
284 	if (getstats) {
285 		vdev_stat_t vs;
286 		vdev_get_stats(vd, &vs);
287 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
288 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
289 	}
290 
291 	if (!vd->vdev_ops->vdev_op_leaf) {
292 		nvlist_t **child;
293 		int c;
294 
295 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
296 		    KM_SLEEP);
297 
298 		for (c = 0; c < vd->vdev_children; c++)
299 			child[c] = vdev_config_generate(spa, vd->vdev_child[c],
300 			    getstats, isspare, isl2cache);
301 
302 		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
303 		    child, vd->vdev_children) == 0);
304 
305 		for (c = 0; c < vd->vdev_children; c++)
306 			nvlist_free(child[c]);
307 
308 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
309 
310 	} else {
311 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
312 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
313 			    B_TRUE) == 0);
314 		if (vd->vdev_faulted)
315 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
316 			    B_TRUE) == 0);
317 		if (vd->vdev_degraded)
318 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
319 			    B_TRUE) == 0);
320 		if (vd->vdev_removed)
321 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
322 			    B_TRUE) == 0);
323 		if (vd->vdev_unspare)
324 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
325 			    B_TRUE) == 0);
326 	}
327 
328 	return (nv);
329 }
330 
331 nvlist_t *
332 vdev_label_read_config(vdev_t *vd)
333 {
334 	spa_t *spa = vd->vdev_spa;
335 	nvlist_t *config = NULL;
336 	vdev_phys_t *vp;
337 	zio_t *zio;
338 	int flags =
339 	    ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
340 
341 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
342 
343 	if (!vdev_readable(vd))
344 		return (NULL);
345 
346 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
347 
348 	for (int l = 0; l < VDEV_LABELS; l++) {
349 
350 		zio = zio_root(spa, NULL, NULL, flags);
351 
352 		vdev_label_read(zio, vd, l, vp,
353 		    offsetof(vdev_label_t, vl_vdev_phys),
354 		    sizeof (vdev_phys_t), NULL, NULL, flags);
355 
356 		if (zio_wait(zio) == 0 &&
357 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
358 		    &config, 0) == 0)
359 			break;
360 
361 		if (config != NULL) {
362 			nvlist_free(config);
363 			config = NULL;
364 		}
365 	}
366 
367 	zio_buf_free(vp, sizeof (vdev_phys_t));
368 
369 	return (config);
370 }
371 
372 /*
373  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
374  * in with the device guid if this spare is active elsewhere on the system.
375  */
376 static boolean_t
377 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
378     uint64_t *spare_guid, uint64_t *l2cache_guid)
379 {
380 	spa_t *spa = vd->vdev_spa;
381 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
382 	uint64_t vdtxg = 0;
383 	nvlist_t *label;
384 
385 	if (spare_guid)
386 		*spare_guid = 0ULL;
387 	if (l2cache_guid)
388 		*l2cache_guid = 0ULL;
389 
390 	/*
391 	 * Read the label, if any, and perform some basic sanity checks.
392 	 */
393 	if ((label = vdev_label_read_config(vd)) == NULL)
394 		return (B_FALSE);
395 
396 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
397 	    &vdtxg);
398 
399 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
400 	    &state) != 0 ||
401 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
402 	    &device_guid) != 0) {
403 		nvlist_free(label);
404 		return (B_FALSE);
405 	}
406 
407 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
408 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
409 	    &pool_guid) != 0 ||
410 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
411 	    &txg) != 0)) {
412 		nvlist_free(label);
413 		return (B_FALSE);
414 	}
415 
416 	nvlist_free(label);
417 
418 	/*
419 	 * Check to see if this device indeed belongs to the pool it claims to
420 	 * be a part of.  The only way this is allowed is if the device is a hot
421 	 * spare (which we check for later on).
422 	 */
423 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
424 	    !spa_guid_exists(pool_guid, device_guid) &&
425 	    !spa_spare_exists(device_guid, NULL, NULL) &&
426 	    !spa_l2cache_exists(device_guid, NULL))
427 		return (B_FALSE);
428 
429 	/*
430 	 * If the transaction group is zero, then this an initialized (but
431 	 * unused) label.  This is only an error if the create transaction
432 	 * on-disk is the same as the one we're using now, in which case the
433 	 * user has attempted to add the same vdev multiple times in the same
434 	 * transaction.
435 	 */
436 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
437 	    txg == 0 && vdtxg == crtxg)
438 		return (B_TRUE);
439 
440 	/*
441 	 * Check to see if this is a spare device.  We do an explicit check for
442 	 * spa_has_spare() here because it may be on our pending list of spares
443 	 * to add.  We also check if it is an l2cache device.
444 	 */
445 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
446 	    spa_has_spare(spa, device_guid)) {
447 		if (spare_guid)
448 			*spare_guid = device_guid;
449 
450 		switch (reason) {
451 		case VDEV_LABEL_CREATE:
452 		case VDEV_LABEL_L2CACHE:
453 			return (B_TRUE);
454 
455 		case VDEV_LABEL_REPLACE:
456 			return (!spa_has_spare(spa, device_guid) ||
457 			    spare_pool != 0ULL);
458 
459 		case VDEV_LABEL_SPARE:
460 			return (spa_has_spare(spa, device_guid));
461 		}
462 	}
463 
464 	/*
465 	 * Check to see if this is an l2cache device.
466 	 */
467 	if (spa_l2cache_exists(device_guid, NULL))
468 		return (B_TRUE);
469 
470 	/*
471 	 * If the device is marked ACTIVE, then this device is in use by another
472 	 * pool on the system.
473 	 */
474 	return (state == POOL_STATE_ACTIVE);
475 }
476 
477 /*
478  * Initialize a vdev label.  We check to make sure each leaf device is not in
479  * use, and writable.  We put down an initial label which we will later
480  * overwrite with a complete label.  Note that it's important to do this
481  * sequentially, not in parallel, so that we catch cases of multiple use of the
482  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
483  * itself.
484  */
485 int
486 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
487 {
488 	spa_t *spa = vd->vdev_spa;
489 	nvlist_t *label;
490 	vdev_phys_t *vp;
491 	vdev_boot_header_t *vb;
492 	uberblock_t *ub;
493 	zio_t *zio;
494 	char *buf;
495 	size_t buflen;
496 	int error;
497 	uint64_t spare_guid, l2cache_guid;
498 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
499 
500 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
501 
502 	for (int c = 0; c < vd->vdev_children; c++)
503 		if ((error = vdev_label_init(vd->vdev_child[c],
504 		    crtxg, reason)) != 0)
505 			return (error);
506 
507 	if (!vd->vdev_ops->vdev_op_leaf)
508 		return (0);
509 
510 	/*
511 	 * Dead vdevs cannot be initialized.
512 	 */
513 	if (vdev_is_dead(vd))
514 		return (EIO);
515 
516 	/*
517 	 * Determine if the vdev is in use.
518 	 */
519 	if (reason != VDEV_LABEL_REMOVE &&
520 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
521 		return (EBUSY);
522 
523 	/*
524 	 * If this is a request to add or replace a spare or l2cache device
525 	 * that is in use elsewhere on the system, then we must update the
526 	 * guid (which was initialized to a random value) to reflect the
527 	 * actual GUID (which is shared between multiple pools).
528 	 */
529 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
530 	    spare_guid != 0ULL) {
531 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
532 
533 		vd->vdev_guid += guid_delta;
534 
535 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
536 			pvd->vdev_guid_sum += guid_delta;
537 
538 		/*
539 		 * If this is a replacement, then we want to fallthrough to the
540 		 * rest of the code.  If we're adding a spare, then it's already
541 		 * labeled appropriately and we can just return.
542 		 */
543 		if (reason == VDEV_LABEL_SPARE)
544 			return (0);
545 		ASSERT(reason == VDEV_LABEL_REPLACE);
546 	}
547 
548 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
549 	    l2cache_guid != 0ULL) {
550 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
551 
552 		vd->vdev_guid += guid_delta;
553 
554 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
555 			pvd->vdev_guid_sum += guid_delta;
556 
557 		/*
558 		 * If this is a replacement, then we want to fallthrough to the
559 		 * rest of the code.  If we're adding an l2cache, then it's
560 		 * already labeled appropriately and we can just return.
561 		 */
562 		if (reason == VDEV_LABEL_L2CACHE)
563 			return (0);
564 		ASSERT(reason == VDEV_LABEL_REPLACE);
565 	}
566 
567 	/*
568 	 * Initialize its label.
569 	 */
570 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
571 	bzero(vp, sizeof (vdev_phys_t));
572 
573 	/*
574 	 * Generate a label describing the pool and our top-level vdev.
575 	 * We mark it as being from txg 0 to indicate that it's not
576 	 * really part of an active pool just yet.  The labels will
577 	 * be written again with a meaningful txg by spa_sync().
578 	 */
579 	if (reason == VDEV_LABEL_SPARE ||
580 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
581 		/*
582 		 * For inactive hot spares, we generate a special label that
583 		 * identifies as a mutually shared hot spare.  We write the
584 		 * label if we are adding a hot spare, or if we are removing an
585 		 * active hot spare (in which case we want to revert the
586 		 * labels).
587 		 */
588 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
589 
590 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
591 		    spa_version(spa)) == 0);
592 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
593 		    POOL_STATE_SPARE) == 0);
594 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
595 		    vd->vdev_guid) == 0);
596 	} else if (reason == VDEV_LABEL_L2CACHE ||
597 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
598 		/*
599 		 * For level 2 ARC devices, add a special label.
600 		 */
601 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
602 
603 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
604 		    spa_version(spa)) == 0);
605 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
606 		    POOL_STATE_L2CACHE) == 0);
607 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
608 		    vd->vdev_guid) == 0);
609 	} else {
610 		label = spa_config_generate(spa, vd, 0ULL, B_FALSE);
611 
612 		/*
613 		 * Add our creation time.  This allows us to detect multiple
614 		 * vdev uses as described above, and automatically expires if we
615 		 * fail.
616 		 */
617 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
618 		    crtxg) == 0);
619 	}
620 
621 	buf = vp->vp_nvlist;
622 	buflen = sizeof (vp->vp_nvlist);
623 
624 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
625 	if (error != 0) {
626 		nvlist_free(label);
627 		zio_buf_free(vp, sizeof (vdev_phys_t));
628 		/* EFAULT means nvlist_pack ran out of room */
629 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
630 	}
631 
632 	/*
633 	 * Initialize boot block header.
634 	 */
635 	vb = zio_buf_alloc(sizeof (vdev_boot_header_t));
636 	bzero(vb, sizeof (vdev_boot_header_t));
637 	vb->vb_magic = VDEV_BOOT_MAGIC;
638 	vb->vb_version = VDEV_BOOT_VERSION;
639 	vb->vb_offset = VDEV_BOOT_OFFSET;
640 	vb->vb_size = VDEV_BOOT_SIZE;
641 
642 	/*
643 	 * Initialize uberblock template.
644 	 */
645 	ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
646 	bzero(ub, VDEV_UBERBLOCK_SIZE(vd));
647 	*ub = spa->spa_uberblock;
648 	ub->ub_txg = 0;
649 
650 	/*
651 	 * Write everything in parallel.
652 	 */
653 	zio = zio_root(spa, NULL, NULL, flags);
654 
655 	for (int l = 0; l < VDEV_LABELS; l++) {
656 
657 		vdev_label_write(zio, vd, l, vp,
658 		    offsetof(vdev_label_t, vl_vdev_phys),
659 		    sizeof (vdev_phys_t), NULL, NULL, flags);
660 
661 		vdev_label_write(zio, vd, l, vb,
662 		    offsetof(vdev_label_t, vl_boot_header),
663 		    sizeof (vdev_boot_header_t), NULL, NULL, flags);
664 
665 		for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
666 			vdev_label_write(zio, vd, l, ub,
667 			    VDEV_UBERBLOCK_OFFSET(vd, n),
668 			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, flags);
669 		}
670 	}
671 
672 	error = zio_wait(zio);
673 
674 	nvlist_free(label);
675 	zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd));
676 	zio_buf_free(vb, sizeof (vdev_boot_header_t));
677 	zio_buf_free(vp, sizeof (vdev_phys_t));
678 
679 	/*
680 	 * If this vdev hasn't been previously identified as a spare, then we
681 	 * mark it as such only if a) we are labeling it as a spare, or b) it
682 	 * exists as a spare elsewhere in the system.  Do the same for
683 	 * level 2 ARC devices.
684 	 */
685 	if (error == 0 && !vd->vdev_isspare &&
686 	    (reason == VDEV_LABEL_SPARE ||
687 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
688 		spa_spare_add(vd);
689 
690 	if (error == 0 && !vd->vdev_isl2cache &&
691 	    (reason == VDEV_LABEL_L2CACHE ||
692 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
693 		spa_l2cache_add(vd);
694 
695 	return (error);
696 }
697 
698 /*
699  * ==========================================================================
700  * uberblock load/sync
701  * ==========================================================================
702  */
703 
704 /*
705  * For use by zdb and debugging purposes only
706  */
707 uint64_t ub_max_txg = UINT64_MAX;
708 
709 /*
710  * Consider the following situation: txg is safely synced to disk.  We've
711  * written the first uberblock for txg + 1, and then we lose power.  When we
712  * come back up, we fail to see the uberblock for txg + 1 because, say,
713  * it was on a mirrored device and the replica to which we wrote txg + 1
714  * is now offline.  If we then make some changes and sync txg + 1, and then
715  * the missing replica comes back, then for a new seconds we'll have two
716  * conflicting uberblocks on disk with the same txg.  The solution is simple:
717  * among uberblocks with equal txg, choose the one with the latest timestamp.
718  */
719 static int
720 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
721 {
722 	if (ub1->ub_txg < ub2->ub_txg)
723 		return (-1);
724 	if (ub1->ub_txg > ub2->ub_txg)
725 		return (1);
726 
727 	if (ub1->ub_timestamp < ub2->ub_timestamp)
728 		return (-1);
729 	if (ub1->ub_timestamp > ub2->ub_timestamp)
730 		return (1);
731 
732 	return (0);
733 }
734 
735 static void
736 vdev_uberblock_load_done(zio_t *zio)
737 {
738 	zio_t *rio = zio->io_private;
739 	uberblock_t *ub = zio->io_data;
740 	uberblock_t *ubbest = rio->io_private;
741 
742 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
743 
744 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
745 		mutex_enter(&rio->io_lock);
746 		if (ub->ub_txg <= ub_max_txg &&
747 		    vdev_uberblock_compare(ub, ubbest) > 0)
748 			*ubbest = *ub;
749 		mutex_exit(&rio->io_lock);
750 	}
751 
752 	zio_buf_free(zio->io_data, zio->io_size);
753 }
754 
755 void
756 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
757 {
758 	spa_t *spa = vd->vdev_spa;
759 	vdev_t *rvd = spa->spa_root_vdev;
760 	int flags =
761 	    ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
762 
763 	if (vd == rvd) {
764 		ASSERT(zio == NULL);
765 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
766 		zio = zio_root(spa, NULL, ubbest, flags);
767 		bzero(ubbest, sizeof (uberblock_t));
768 	}
769 
770 	ASSERT(zio != NULL);
771 
772 	for (int c = 0; c < vd->vdev_children; c++)
773 		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
774 
775 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
776 		for (int l = 0; l < VDEV_LABELS; l++) {
777 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
778 				vdev_label_read(zio, vd, l,
779 				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
780 				    VDEV_UBERBLOCK_OFFSET(vd, n),
781 				    VDEV_UBERBLOCK_SIZE(vd),
782 				    vdev_uberblock_load_done, zio, flags);
783 			}
784 		}
785 	}
786 
787 	if (vd == rvd) {
788 		(void) zio_wait(zio);
789 		spa_config_exit(spa, SCL_ALL, FTAG);
790 	}
791 }
792 
793 /*
794  * On success, increment root zio's count of good writes.
795  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
796  */
797 static void
798 vdev_uberblock_sync_done(zio_t *zio)
799 {
800 	uint64_t *good_writes = zio->io_private;
801 
802 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
803 		atomic_add_64(good_writes, 1);
804 }
805 
806 /*
807  * Write the uberblock to all labels of all leaves of the specified vdev.
808  */
809 static void
810 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
811 {
812 	uberblock_t *ubbuf;
813 	int n;
814 
815 	for (int c = 0; c < vd->vdev_children; c++)
816 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
817 
818 	if (!vd->vdev_ops->vdev_op_leaf)
819 		return;
820 
821 	if (!vdev_writeable(vd))
822 		return;
823 
824 	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
825 
826 	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
827 	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
828 	*ubbuf = *ub;
829 
830 	for (int l = 0; l < VDEV_LABELS; l++)
831 		vdev_label_write(zio, vd, l, ubbuf,
832 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
833 		    vdev_uberblock_sync_done, zio->io_private,
834 		    flags | ZIO_FLAG_DONT_PROPAGATE);
835 
836 	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
837 }
838 
839 int
840 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
841 {
842 	spa_t *spa = svd[0]->vdev_spa;
843 	zio_t *zio;
844 	uint64_t good_writes = 0;
845 
846 	zio = zio_root(spa, NULL, &good_writes, flags);
847 
848 	for (int v = 0; v < svdcount; v++)
849 		vdev_uberblock_sync(zio, ub, svd[v], flags);
850 
851 	(void) zio_wait(zio);
852 
853 	/*
854 	 * Flush the uberblocks to disk.  This ensures that the odd labels
855 	 * are no longer needed (because the new uberblocks and the even
856 	 * labels are safely on disk), so it is safe to overwrite them.
857 	 */
858 	zio = zio_root(spa, NULL, NULL, flags);
859 
860 	for (int v = 0; v < svdcount; v++)
861 		zio_flush(zio, svd[v]);
862 
863 	(void) zio_wait(zio);
864 
865 	return (good_writes >= 1 ? 0 : EIO);
866 }
867 
868 /*
869  * On success, increment the count of good writes for our top-level vdev.
870  */
871 static void
872 vdev_label_sync_done(zio_t *zio)
873 {
874 	uint64_t *good_writes = zio->io_private;
875 
876 	if (zio->io_error == 0)
877 		atomic_add_64(good_writes, 1);
878 }
879 
880 /*
881  * If there weren't enough good writes, indicate failure to the parent.
882  */
883 static void
884 vdev_label_sync_top_done(zio_t *zio)
885 {
886 	uint64_t *good_writes = zio->io_private;
887 
888 	if (*good_writes == 0)
889 		zio->io_error = EIO;
890 
891 	kmem_free(good_writes, sizeof (uint64_t));
892 }
893 
894 /*
895  * We ignore errors for log and cache devices, simply free the private data.
896  */
897 static void
898 vdev_label_sync_ignore_done(zio_t *zio)
899 {
900 	kmem_free(zio->io_private, sizeof (uint64_t));
901 }
902 
903 /*
904  * Write all even or odd labels to all leaves of the specified vdev.
905  */
906 static void
907 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
908 {
909 	nvlist_t *label;
910 	vdev_phys_t *vp;
911 	char *buf;
912 	size_t buflen;
913 
914 	for (int c = 0; c < vd->vdev_children; c++)
915 		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
916 
917 	if (!vd->vdev_ops->vdev_op_leaf)
918 		return;
919 
920 	if (!vdev_writeable(vd))
921 		return;
922 
923 	/*
924 	 * Generate a label describing the top-level config to which we belong.
925 	 */
926 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
927 
928 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
929 	bzero(vp, sizeof (vdev_phys_t));
930 
931 	buf = vp->vp_nvlist;
932 	buflen = sizeof (vp->vp_nvlist);
933 
934 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
935 		for (; l < VDEV_LABELS; l += 2) {
936 			vdev_label_write(zio, vd, l, vp,
937 			    offsetof(vdev_label_t, vl_vdev_phys),
938 			    sizeof (vdev_phys_t),
939 			    vdev_label_sync_done, zio->io_private,
940 			    flags | ZIO_FLAG_DONT_PROPAGATE);
941 		}
942 	}
943 
944 	zio_buf_free(vp, sizeof (vdev_phys_t));
945 	nvlist_free(label);
946 }
947 
948 int
949 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
950 {
951 	list_t *dl = &spa->spa_config_dirty_list;
952 	vdev_t *vd;
953 	zio_t *zio;
954 	int error;
955 
956 	/*
957 	 * Write the new labels to disk.
958 	 */
959 	zio = zio_root(spa, NULL, NULL, flags);
960 
961 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
962 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
963 		    KM_SLEEP);
964 		zio_t *vio = zio_null(zio, spa,
965 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
966 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
967 		    good_writes, flags);
968 		vdev_label_sync(vio, vd, l, txg, flags);
969 		zio_nowait(vio);
970 	}
971 
972 	error = zio_wait(zio);
973 
974 	/*
975 	 * Flush the new labels to disk.
976 	 */
977 	zio = zio_root(spa, NULL, NULL, flags);
978 
979 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
980 		zio_flush(zio, vd);
981 
982 	(void) zio_wait(zio);
983 
984 	return (error);
985 }
986 
987 /*
988  * Sync the uberblock and any changes to the vdev configuration.
989  *
990  * The order of operations is carefully crafted to ensure that
991  * if the system panics or loses power at any time, the state on disk
992  * is still transactionally consistent.  The in-line comments below
993  * describe the failure semantics at each stage.
994  *
995  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
996  * at any time, you can just call it again, and it will resume its work.
997  */
998 int
999 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1000 {
1001 	spa_t *spa = svd[0]->vdev_spa;
1002 	uberblock_t *ub = &spa->spa_uberblock;
1003 	vdev_t *vd;
1004 	zio_t *zio;
1005 	int error;
1006 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1007 
1008 	ASSERT(ub->ub_txg <= txg);
1009 
1010 	/*
1011 	 * If this isn't a resync due to I/O errors,
1012 	 * and nothing changed in this transaction group,
1013 	 * and the vdev configuration hasn't changed,
1014 	 * then there's nothing to do.
1015 	 */
1016 	if (ub->ub_txg < txg &&
1017 	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1018 	    list_is_empty(&spa->spa_config_dirty_list))
1019 		return (0);
1020 
1021 	if (txg > spa_freeze_txg(spa))
1022 		return (0);
1023 
1024 	ASSERT(txg <= spa->spa_final_txg);
1025 
1026 	/*
1027 	 * Flush the write cache of every disk that's been written to
1028 	 * in this transaction group.  This ensures that all blocks
1029 	 * written in this txg will be committed to stable storage
1030 	 * before any uberblock that references them.
1031 	 */
1032 	zio = zio_root(spa, NULL, NULL, flags);
1033 
1034 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1035 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1036 		zio_flush(zio, vd);
1037 
1038 	(void) zio_wait(zio);
1039 
1040 	/*
1041 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1042 	 * system dies in the middle of this process, that's OK: all of the
1043 	 * even labels that made it to disk will be newer than any uberblock,
1044 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1045 	 * which have not yet been touched, will still be valid.  We flush
1046 	 * the new labels to disk to ensure that all even-label updates
1047 	 * are committed to stable storage before the uberblock update.
1048 	 */
1049 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1050 		return (error);
1051 
1052 	/*
1053 	 * Sync the uberblocks to all vdevs in svd[].
1054 	 * If the system dies in the middle of this step, there are two cases
1055 	 * to consider, and the on-disk state is consistent either way:
1056 	 *
1057 	 * (1)	If none of the new uberblocks made it to disk, then the
1058 	 *	previous uberblock will be the newest, and the odd labels
1059 	 *	(which had not yet been touched) will be valid with respect
1060 	 *	to that uberblock.
1061 	 *
1062 	 * (2)	If one or more new uberblocks made it to disk, then they
1063 	 *	will be the newest, and the even labels (which had all
1064 	 *	been successfully committed) will be valid with respect
1065 	 *	to the new uberblocks.
1066 	 */
1067 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1068 		return (error);
1069 
1070 	/*
1071 	 * Sync out odd labels for every dirty vdev.  If the system dies
1072 	 * in the middle of this process, the even labels and the new
1073 	 * uberblocks will suffice to open the pool.  The next time
1074 	 * the pool is opened, the first thing we'll do -- before any
1075 	 * user data is modified -- is mark every vdev dirty so that
1076 	 * all labels will be brought up to date.  We flush the new labels
1077 	 * to disk to ensure that all odd-label updates are committed to
1078 	 * stable storage before the next transaction group begins.
1079 	 */
1080 	return (vdev_label_sync_list(spa, 1, txg, flags));
1081 }
1082