xref: /titanic_51/usr/src/uts/common/fs/zfs/vdev_label.c (revision 631e5d7f05cf5843041dce683121c6c6e20a9b75)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Virtual Device Labels
28  * ---------------------
29  *
30  * The vdev label serves several distinct purposes:
31  *
32  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
33  *	   identity within the pool.
34  *
35  * 	2. Verify that all the devices given in a configuration are present
36  *         within the pool.
37  *
38  * 	3. Determine the uberblock for the pool.
39  *
40  * 	4. In case of an import operation, determine the configuration of the
41  *         toplevel vdev of which it is a part.
42  *
43  * 	5. If an import operation cannot find all the devices in the pool,
44  *         provide enough information to the administrator to determine which
45  *         devices are missing.
46  *
47  * It is important to note that while the kernel is responsible for writing the
48  * label, it only consumes the information in the first three cases.  The
49  * latter information is only consumed in userland when determining the
50  * configuration to import a pool.
51  *
52  *
53  * Label Organization
54  * ------------------
55  *
56  * Before describing the contents of the label, it's important to understand how
57  * the labels are written and updated with respect to the uberblock.
58  *
59  * When the pool configuration is altered, either because it was newly created
60  * or a device was added, we want to update all the labels such that we can deal
61  * with fatal failure at any point.  To this end, each disk has two labels which
62  * are updated before and after the uberblock is synced.  Assuming we have
63  * labels and an uberblock with the following transaction groups:
64  *
65  *              L1          UB          L2
66  *           +------+    +------+    +------+
67  *           |      |    |      |    |      |
68  *           | t10  |    | t10  |    | t10  |
69  *           |      |    |      |    |      |
70  *           +------+    +------+    +------+
71  *
72  * In this stable state, the labels and the uberblock were all updated within
73  * the same transaction group (10).  Each label is mirrored and checksummed, so
74  * that we can detect when we fail partway through writing the label.
75  *
76  * In order to identify which labels are valid, the labels are written in the
77  * following manner:
78  *
79  * 	1. For each vdev, update 'L1' to the new label
80  * 	2. Update the uberblock
81  * 	3. For each vdev, update 'L2' to the new label
82  *
83  * Given arbitrary failure, we can determine the correct label to use based on
84  * the transaction group.  If we fail after updating L1 but before updating the
85  * UB, we will notice that L1's transaction group is greater than the uberblock,
86  * so L2 must be valid.  If we fail after writing the uberblock but before
87  * writing L2, we will notice that L2's transaction group is less than L1, and
88  * therefore L1 is valid.
89  *
90  * Another added complexity is that not every label is updated when the config
91  * is synced.  If we add a single device, we do not want to have to re-write
92  * every label for every device in the pool.  This means that both L1 and L2 may
93  * be older than the pool uberblock, because the necessary information is stored
94  * on another vdev.
95  *
96  *
97  * On-disk Format
98  * --------------
99  *
100  * The vdev label consists of two distinct parts, and is wrapped within the
101  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
102  * VTOC disk labels, but is otherwise ignored.
103  *
104  * The first half of the label is a packed nvlist which contains pool wide
105  * properties, per-vdev properties, and configuration information.  It is
106  * described in more detail below.
107  *
108  * The latter half of the label consists of a redundant array of uberblocks.
109  * These uberblocks are updated whenever a transaction group is committed,
110  * or when the configuration is updated.  When a pool is loaded, we scan each
111  * vdev for the 'best' uberblock.
112  *
113  *
114  * Configuration Information
115  * -------------------------
116  *
117  * The nvlist describing the pool and vdev contains the following elements:
118  *
119  * 	version		ZFS on-disk version
120  * 	name		Pool name
121  * 	state		Pool state
122  * 	txg		Transaction group in which this label was written
123  * 	pool_guid	Unique identifier for this pool
124  * 	vdev_tree	An nvlist describing vdev tree.
125  *
126  * Each leaf device label also contains the following:
127  *
128  * 	top_guid	Unique ID for top-level vdev in which this is contained
129  * 	guid		Unique ID for the leaf vdev
130  *
131  * The 'vs' configuration follows the format described in 'spa_config.c'.
132  */
133 
134 #include <sys/zfs_context.h>
135 #include <sys/spa.h>
136 #include <sys/spa_impl.h>
137 #include <sys/dmu.h>
138 #include <sys/zap.h>
139 #include <sys/vdev.h>
140 #include <sys/vdev_impl.h>
141 #include <sys/uberblock_impl.h>
142 #include <sys/metaslab.h>
143 #include <sys/zio.h>
144 #include <sys/fs/zfs.h>
145 
146 /*
147  * Basic routines to read and write from a vdev label.
148  * Used throughout the rest of this file.
149  */
150 uint64_t
151 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
152 {
153 	ASSERT(offset < sizeof (vdev_label_t));
154 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
155 
156 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
157 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
158 }
159 
160 /*
161  * Returns back the vdev label associated with the passed in offset.
162  */
163 int
164 vdev_label_number(uint64_t psize, uint64_t offset)
165 {
166 	int l;
167 
168 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
169 		offset -= psize - VDEV_LABEL_END_SIZE;
170 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
171 	}
172 	l = offset / sizeof (vdev_label_t);
173 	return (l < VDEV_LABELS ? l : -1);
174 }
175 
176 static void
177 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
178 	uint64_t size, zio_done_func_t *done, void *private, int flags)
179 {
180 	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
181 	    SCL_STATE_ALL);
182 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
183 
184 	zio_nowait(zio_read_phys(zio, vd,
185 	    vdev_label_offset(vd->vdev_psize, l, offset),
186 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
187 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
188 }
189 
190 static void
191 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
192 	uint64_t size, zio_done_func_t *done, void *private, int flags)
193 {
194 	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
195 	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
196 	    (SCL_CONFIG | SCL_STATE) &&
197 	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
198 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
199 
200 	zio_nowait(zio_write_phys(zio, vd,
201 	    vdev_label_offset(vd->vdev_psize, l, offset),
202 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
203 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
204 }
205 
206 /*
207  * Generate the nvlist representing this vdev's config.
208  */
209 nvlist_t *
210 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
211     boolean_t isspare, boolean_t isl2cache)
212 {
213 	nvlist_t *nv = NULL;
214 
215 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
216 
217 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
218 	    vd->vdev_ops->vdev_op_type) == 0);
219 	if (!isspare && !isl2cache)
220 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
221 		    == 0);
222 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
223 
224 	if (vd->vdev_path != NULL)
225 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
226 		    vd->vdev_path) == 0);
227 
228 	if (vd->vdev_devid != NULL)
229 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
230 		    vd->vdev_devid) == 0);
231 
232 	if (vd->vdev_physpath != NULL)
233 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
234 		    vd->vdev_physpath) == 0);
235 
236 	if (vd->vdev_fru != NULL)
237 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
238 		    vd->vdev_fru) == 0);
239 
240 	if (vd->vdev_nparity != 0) {
241 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
242 		    VDEV_TYPE_RAIDZ) == 0);
243 
244 		/*
245 		 * Make sure someone hasn't managed to sneak a fancy new vdev
246 		 * into a crufty old storage pool.
247 		 */
248 		ASSERT(vd->vdev_nparity == 1 ||
249 		    (vd->vdev_nparity <= 2 &&
250 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
251 		    (vd->vdev_nparity <= 3 &&
252 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
253 
254 		/*
255 		 * Note that we'll add the nparity tag even on storage pools
256 		 * that only support a single parity device -- older software
257 		 * will just ignore it.
258 		 */
259 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
260 		    vd->vdev_nparity) == 0);
261 	}
262 
263 	if (vd->vdev_wholedisk != -1ULL)
264 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
265 		    vd->vdev_wholedisk) == 0);
266 
267 	if (vd->vdev_not_present)
268 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
269 
270 	if (vd->vdev_isspare)
271 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
272 
273 	if (!isspare && !isl2cache && vd == vd->vdev_top) {
274 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
275 		    vd->vdev_ms_array) == 0);
276 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
277 		    vd->vdev_ms_shift) == 0);
278 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
279 		    vd->vdev_ashift) == 0);
280 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
281 		    vd->vdev_asize) == 0);
282 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
283 		    vd->vdev_islog) == 0);
284 	}
285 
286 	if (vd->vdev_dtl_smo.smo_object != 0)
287 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
288 		    vd->vdev_dtl_smo.smo_object) == 0);
289 
290 	if (vd->vdev_crtxg)
291 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
292 		    vd->vdev_crtxg) == 0);
293 
294 	if (getstats) {
295 		vdev_stat_t vs;
296 		vdev_get_stats(vd, &vs);
297 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
298 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
299 	}
300 
301 	if (!vd->vdev_ops->vdev_op_leaf) {
302 		nvlist_t **child;
303 		int c;
304 
305 		ASSERT(!vd->vdev_ishole);
306 
307 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
308 		    KM_SLEEP);
309 
310 		for (c = 0; c < vd->vdev_children; c++)
311 			child[c] = vdev_config_generate(spa, vd->vdev_child[c],
312 			    getstats, isspare, isl2cache);
313 
314 		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
315 		    child, vd->vdev_children) == 0);
316 
317 		for (c = 0; c < vd->vdev_children; c++)
318 			nvlist_free(child[c]);
319 
320 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
321 
322 	} else {
323 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
324 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
325 			    B_TRUE) == 0);
326 		if (vd->vdev_faulted)
327 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
328 			    B_TRUE) == 0);
329 		if (vd->vdev_degraded)
330 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
331 			    B_TRUE) == 0);
332 		if (vd->vdev_removed)
333 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
334 			    B_TRUE) == 0);
335 		if (vd->vdev_unspare)
336 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
337 			    B_TRUE) == 0);
338 		if (vd->vdev_ishole)
339 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE,
340 			    B_TRUE) == 0);
341 	}
342 
343 	return (nv);
344 }
345 
346 /*
347  * Generate a view of the top-level vdevs.  If we currently have holes
348  * in the namespace, then generate an array which contains a list of holey
349  * vdevs.  Additionally, add the number of top-level children that currently
350  * exist.
351  */
352 void
353 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
354 {
355 	vdev_t *rvd = spa->spa_root_vdev;
356 	uint64_t *array;
357 	uint_t idx;
358 
359 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
360 
361 	idx = 0;
362 	for (int c = 0; c < rvd->vdev_children; c++) {
363 		vdev_t *tvd = rvd->vdev_child[c];
364 
365 		if (tvd->vdev_ishole)
366 			array[idx++] = c;
367 	}
368 
369 	VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
370 	    array, idx++) == 0);
371 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
372 	    rvd->vdev_children) == 0);
373 
374 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
375 }
376 
377 nvlist_t *
378 vdev_label_read_config(vdev_t *vd)
379 {
380 	spa_t *spa = vd->vdev_spa;
381 	nvlist_t *config = NULL;
382 	vdev_phys_t *vp;
383 	zio_t *zio;
384 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
385 	    ZIO_FLAG_SPECULATIVE;
386 
387 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
388 
389 	if (!vdev_readable(vd))
390 		return (NULL);
391 
392 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
393 
394 retry:
395 	for (int l = 0; l < VDEV_LABELS; l++) {
396 
397 		zio = zio_root(spa, NULL, NULL, flags);
398 
399 		vdev_label_read(zio, vd, l, vp,
400 		    offsetof(vdev_label_t, vl_vdev_phys),
401 		    sizeof (vdev_phys_t), NULL, NULL, flags);
402 
403 		if (zio_wait(zio) == 0 &&
404 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
405 		    &config, 0) == 0)
406 			break;
407 
408 		if (config != NULL) {
409 			nvlist_free(config);
410 			config = NULL;
411 		}
412 	}
413 
414 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
415 		flags |= ZIO_FLAG_TRYHARD;
416 		goto retry;
417 	}
418 
419 	zio_buf_free(vp, sizeof (vdev_phys_t));
420 
421 	return (config);
422 }
423 
424 /*
425  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
426  * in with the device guid if this spare is active elsewhere on the system.
427  */
428 static boolean_t
429 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
430     uint64_t *spare_guid, uint64_t *l2cache_guid)
431 {
432 	spa_t *spa = vd->vdev_spa;
433 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
434 	uint64_t vdtxg = 0;
435 	nvlist_t *label;
436 
437 	if (spare_guid)
438 		*spare_guid = 0ULL;
439 	if (l2cache_guid)
440 		*l2cache_guid = 0ULL;
441 
442 	/*
443 	 * Read the label, if any, and perform some basic sanity checks.
444 	 */
445 	if ((label = vdev_label_read_config(vd)) == NULL)
446 		return (B_FALSE);
447 
448 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
449 	    &vdtxg);
450 
451 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
452 	    &state) != 0 ||
453 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
454 	    &device_guid) != 0) {
455 		nvlist_free(label);
456 		return (B_FALSE);
457 	}
458 
459 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
460 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
461 	    &pool_guid) != 0 ||
462 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
463 	    &txg) != 0)) {
464 		nvlist_free(label);
465 		return (B_FALSE);
466 	}
467 
468 	nvlist_free(label);
469 
470 	/*
471 	 * Check to see if this device indeed belongs to the pool it claims to
472 	 * be a part of.  The only way this is allowed is if the device is a hot
473 	 * spare (which we check for later on).
474 	 */
475 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
476 	    !spa_guid_exists(pool_guid, device_guid) &&
477 	    !spa_spare_exists(device_guid, NULL, NULL) &&
478 	    !spa_l2cache_exists(device_guid, NULL))
479 		return (B_FALSE);
480 
481 	/*
482 	 * If the transaction group is zero, then this an initialized (but
483 	 * unused) label.  This is only an error if the create transaction
484 	 * on-disk is the same as the one we're using now, in which case the
485 	 * user has attempted to add the same vdev multiple times in the same
486 	 * transaction.
487 	 */
488 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
489 	    txg == 0 && vdtxg == crtxg)
490 		return (B_TRUE);
491 
492 	/*
493 	 * Check to see if this is a spare device.  We do an explicit check for
494 	 * spa_has_spare() here because it may be on our pending list of spares
495 	 * to add.  We also check if it is an l2cache device.
496 	 */
497 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
498 	    spa_has_spare(spa, device_guid)) {
499 		if (spare_guid)
500 			*spare_guid = device_guid;
501 
502 		switch (reason) {
503 		case VDEV_LABEL_CREATE:
504 		case VDEV_LABEL_L2CACHE:
505 			return (B_TRUE);
506 
507 		case VDEV_LABEL_REPLACE:
508 			return (!spa_has_spare(spa, device_guid) ||
509 			    spare_pool != 0ULL);
510 
511 		case VDEV_LABEL_SPARE:
512 			return (spa_has_spare(spa, device_guid));
513 		}
514 	}
515 
516 	/*
517 	 * Check to see if this is an l2cache device.
518 	 */
519 	if (spa_l2cache_exists(device_guid, NULL))
520 		return (B_TRUE);
521 
522 	/*
523 	 * If the device is marked ACTIVE, then this device is in use by another
524 	 * pool on the system.
525 	 */
526 	return (state == POOL_STATE_ACTIVE);
527 }
528 
529 /*
530  * Initialize a vdev label.  We check to make sure each leaf device is not in
531  * use, and writable.  We put down an initial label which we will later
532  * overwrite with a complete label.  Note that it's important to do this
533  * sequentially, not in parallel, so that we catch cases of multiple use of the
534  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
535  * itself.
536  */
537 int
538 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
539 {
540 	spa_t *spa = vd->vdev_spa;
541 	nvlist_t *label;
542 	vdev_phys_t *vp;
543 	char *pad2;
544 	uberblock_t *ub;
545 	zio_t *zio;
546 	char *buf;
547 	size_t buflen;
548 	int error;
549 	uint64_t spare_guid, l2cache_guid;
550 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
551 
552 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
553 
554 	for (int c = 0; c < vd->vdev_children; c++)
555 		if ((error = vdev_label_init(vd->vdev_child[c],
556 		    crtxg, reason)) != 0)
557 			return (error);
558 
559 	/* Track the creation time for this vdev */
560 	vd->vdev_crtxg = crtxg;
561 
562 	if (!vd->vdev_ops->vdev_op_leaf)
563 		return (0);
564 
565 	/*
566 	 * Dead vdevs cannot be initialized.
567 	 */
568 	if (vdev_is_dead(vd))
569 		return (EIO);
570 
571 	/*
572 	 * Determine if the vdev is in use.
573 	 */
574 	if (reason != VDEV_LABEL_REMOVE &&
575 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
576 		return (EBUSY);
577 
578 	/*
579 	 * If this is a request to add or replace a spare or l2cache device
580 	 * that is in use elsewhere on the system, then we must update the
581 	 * guid (which was initialized to a random value) to reflect the
582 	 * actual GUID (which is shared between multiple pools).
583 	 */
584 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
585 	    spare_guid != 0ULL) {
586 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
587 
588 		vd->vdev_guid += guid_delta;
589 
590 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
591 			pvd->vdev_guid_sum += guid_delta;
592 
593 		/*
594 		 * If this is a replacement, then we want to fallthrough to the
595 		 * rest of the code.  If we're adding a spare, then it's already
596 		 * labeled appropriately and we can just return.
597 		 */
598 		if (reason == VDEV_LABEL_SPARE)
599 			return (0);
600 		ASSERT(reason == VDEV_LABEL_REPLACE);
601 	}
602 
603 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
604 	    l2cache_guid != 0ULL) {
605 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
606 
607 		vd->vdev_guid += guid_delta;
608 
609 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
610 			pvd->vdev_guid_sum += guid_delta;
611 
612 		/*
613 		 * If this is a replacement, then we want to fallthrough to the
614 		 * rest of the code.  If we're adding an l2cache, then it's
615 		 * already labeled appropriately and we can just return.
616 		 */
617 		if (reason == VDEV_LABEL_L2CACHE)
618 			return (0);
619 		ASSERT(reason == VDEV_LABEL_REPLACE);
620 	}
621 
622 	/*
623 	 * Initialize its label.
624 	 */
625 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
626 	bzero(vp, sizeof (vdev_phys_t));
627 
628 	/*
629 	 * Generate a label describing the pool and our top-level vdev.
630 	 * We mark it as being from txg 0 to indicate that it's not
631 	 * really part of an active pool just yet.  The labels will
632 	 * be written again with a meaningful txg by spa_sync().
633 	 */
634 	if (reason == VDEV_LABEL_SPARE ||
635 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
636 		/*
637 		 * For inactive hot spares, we generate a special label that
638 		 * identifies as a mutually shared hot spare.  We write the
639 		 * label if we are adding a hot spare, or if we are removing an
640 		 * active hot spare (in which case we want to revert the
641 		 * labels).
642 		 */
643 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
644 
645 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
646 		    spa_version(spa)) == 0);
647 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
648 		    POOL_STATE_SPARE) == 0);
649 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
650 		    vd->vdev_guid) == 0);
651 	} else if (reason == VDEV_LABEL_L2CACHE ||
652 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
653 		/*
654 		 * For level 2 ARC devices, add a special label.
655 		 */
656 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
657 
658 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
659 		    spa_version(spa)) == 0);
660 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
661 		    POOL_STATE_L2CACHE) == 0);
662 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
663 		    vd->vdev_guid) == 0);
664 	} else {
665 		label = spa_config_generate(spa, vd, 0ULL, B_FALSE);
666 
667 		/*
668 		 * Add our creation time.  This allows us to detect multiple
669 		 * vdev uses as described above, and automatically expires if we
670 		 * fail.
671 		 */
672 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
673 		    crtxg) == 0);
674 	}
675 
676 	buf = vp->vp_nvlist;
677 	buflen = sizeof (vp->vp_nvlist);
678 
679 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
680 	if (error != 0) {
681 		nvlist_free(label);
682 		zio_buf_free(vp, sizeof (vdev_phys_t));
683 		/* EFAULT means nvlist_pack ran out of room */
684 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
685 	}
686 
687 	/*
688 	 * Initialize uberblock template.
689 	 */
690 	ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
691 	bzero(ub, VDEV_UBERBLOCK_RING);
692 	*ub = spa->spa_uberblock;
693 	ub->ub_txg = 0;
694 
695 	/* Initialize the 2nd padding area. */
696 	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
697 	bzero(pad2, VDEV_PAD_SIZE);
698 
699 	/*
700 	 * Write everything in parallel.
701 	 */
702 retry:
703 	zio = zio_root(spa, NULL, NULL, flags);
704 
705 	for (int l = 0; l < VDEV_LABELS; l++) {
706 
707 		vdev_label_write(zio, vd, l, vp,
708 		    offsetof(vdev_label_t, vl_vdev_phys),
709 		    sizeof (vdev_phys_t), NULL, NULL, flags);
710 
711 		/*
712 		 * Skip the 1st padding area.
713 		 * Zero out the 2nd padding area where it might have
714 		 * left over data from previous filesystem format.
715 		 */
716 		vdev_label_write(zio, vd, l, pad2,
717 		    offsetof(vdev_label_t, vl_pad2),
718 		    VDEV_PAD_SIZE, NULL, NULL, flags);
719 
720 		vdev_label_write(zio, vd, l, ub,
721 		    offsetof(vdev_label_t, vl_uberblock),
722 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
723 	}
724 
725 	error = zio_wait(zio);
726 
727 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
728 		flags |= ZIO_FLAG_TRYHARD;
729 		goto retry;
730 	}
731 
732 	nvlist_free(label);
733 	zio_buf_free(pad2, VDEV_PAD_SIZE);
734 	zio_buf_free(ub, VDEV_UBERBLOCK_RING);
735 	zio_buf_free(vp, sizeof (vdev_phys_t));
736 
737 	/*
738 	 * If this vdev hasn't been previously identified as a spare, then we
739 	 * mark it as such only if a) we are labeling it as a spare, or b) it
740 	 * exists as a spare elsewhere in the system.  Do the same for
741 	 * level 2 ARC devices.
742 	 */
743 	if (error == 0 && !vd->vdev_isspare &&
744 	    (reason == VDEV_LABEL_SPARE ||
745 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
746 		spa_spare_add(vd);
747 
748 	if (error == 0 && !vd->vdev_isl2cache &&
749 	    (reason == VDEV_LABEL_L2CACHE ||
750 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
751 		spa_l2cache_add(vd);
752 
753 	return (error);
754 }
755 
756 /*
757  * ==========================================================================
758  * uberblock load/sync
759  * ==========================================================================
760  */
761 
762 /*
763  * For use by zdb and debugging purposes only
764  */
765 uint64_t ub_max_txg = UINT64_MAX;
766 
767 /*
768  * Consider the following situation: txg is safely synced to disk.  We've
769  * written the first uberblock for txg + 1, and then we lose power.  When we
770  * come back up, we fail to see the uberblock for txg + 1 because, say,
771  * it was on a mirrored device and the replica to which we wrote txg + 1
772  * is now offline.  If we then make some changes and sync txg + 1, and then
773  * the missing replica comes back, then for a new seconds we'll have two
774  * conflicting uberblocks on disk with the same txg.  The solution is simple:
775  * among uberblocks with equal txg, choose the one with the latest timestamp.
776  */
777 static int
778 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
779 {
780 	if (ub1->ub_txg < ub2->ub_txg)
781 		return (-1);
782 	if (ub1->ub_txg > ub2->ub_txg)
783 		return (1);
784 
785 	if (ub1->ub_timestamp < ub2->ub_timestamp)
786 		return (-1);
787 	if (ub1->ub_timestamp > ub2->ub_timestamp)
788 		return (1);
789 
790 	return (0);
791 }
792 
793 static void
794 vdev_uberblock_load_done(zio_t *zio)
795 {
796 	zio_t *rio = zio->io_private;
797 	uberblock_t *ub = zio->io_data;
798 	uberblock_t *ubbest = rio->io_private;
799 
800 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
801 
802 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
803 		mutex_enter(&rio->io_lock);
804 		if (ub->ub_txg <= ub_max_txg &&
805 		    vdev_uberblock_compare(ub, ubbest) > 0)
806 			*ubbest = *ub;
807 		mutex_exit(&rio->io_lock);
808 	}
809 
810 	zio_buf_free(zio->io_data, zio->io_size);
811 }
812 
813 void
814 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
815 {
816 	spa_t *spa = vd->vdev_spa;
817 	vdev_t *rvd = spa->spa_root_vdev;
818 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
819 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
820 
821 	if (vd == rvd) {
822 		ASSERT(zio == NULL);
823 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
824 		zio = zio_root(spa, NULL, ubbest, flags);
825 		bzero(ubbest, sizeof (uberblock_t));
826 	}
827 
828 	ASSERT(zio != NULL);
829 
830 	for (int c = 0; c < vd->vdev_children; c++)
831 		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
832 
833 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
834 		for (int l = 0; l < VDEV_LABELS; l++) {
835 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
836 				vdev_label_read(zio, vd, l,
837 				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
838 				    VDEV_UBERBLOCK_OFFSET(vd, n),
839 				    VDEV_UBERBLOCK_SIZE(vd),
840 				    vdev_uberblock_load_done, zio, flags);
841 			}
842 		}
843 	}
844 
845 	if (vd == rvd) {
846 		(void) zio_wait(zio);
847 		spa_config_exit(spa, SCL_ALL, FTAG);
848 	}
849 }
850 
851 /*
852  * On success, increment root zio's count of good writes.
853  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
854  */
855 static void
856 vdev_uberblock_sync_done(zio_t *zio)
857 {
858 	uint64_t *good_writes = zio->io_private;
859 
860 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
861 		atomic_add_64(good_writes, 1);
862 }
863 
864 /*
865  * Write the uberblock to all labels of all leaves of the specified vdev.
866  */
867 static void
868 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
869 {
870 	uberblock_t *ubbuf;
871 	int n;
872 
873 	for (int c = 0; c < vd->vdev_children; c++)
874 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
875 
876 	if (!vd->vdev_ops->vdev_op_leaf)
877 		return;
878 
879 	if (!vdev_writeable(vd))
880 		return;
881 
882 	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
883 
884 	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
885 	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
886 	*ubbuf = *ub;
887 
888 	for (int l = 0; l < VDEV_LABELS; l++)
889 		vdev_label_write(zio, vd, l, ubbuf,
890 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
891 		    vdev_uberblock_sync_done, zio->io_private,
892 		    flags | ZIO_FLAG_DONT_PROPAGATE);
893 
894 	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
895 }
896 
897 int
898 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
899 {
900 	spa_t *spa = svd[0]->vdev_spa;
901 	zio_t *zio;
902 	uint64_t good_writes = 0;
903 
904 	zio = zio_root(spa, NULL, &good_writes, flags);
905 
906 	for (int v = 0; v < svdcount; v++)
907 		vdev_uberblock_sync(zio, ub, svd[v], flags);
908 
909 	(void) zio_wait(zio);
910 
911 	/*
912 	 * Flush the uberblocks to disk.  This ensures that the odd labels
913 	 * are no longer needed (because the new uberblocks and the even
914 	 * labels are safely on disk), so it is safe to overwrite them.
915 	 */
916 	zio = zio_root(spa, NULL, NULL, flags);
917 
918 	for (int v = 0; v < svdcount; v++)
919 		zio_flush(zio, svd[v]);
920 
921 	(void) zio_wait(zio);
922 
923 	return (good_writes >= 1 ? 0 : EIO);
924 }
925 
926 /*
927  * On success, increment the count of good writes for our top-level vdev.
928  */
929 static void
930 vdev_label_sync_done(zio_t *zio)
931 {
932 	uint64_t *good_writes = zio->io_private;
933 
934 	if (zio->io_error == 0)
935 		atomic_add_64(good_writes, 1);
936 }
937 
938 /*
939  * If there weren't enough good writes, indicate failure to the parent.
940  */
941 static void
942 vdev_label_sync_top_done(zio_t *zio)
943 {
944 	uint64_t *good_writes = zio->io_private;
945 
946 	if (*good_writes == 0)
947 		zio->io_error = EIO;
948 
949 	kmem_free(good_writes, sizeof (uint64_t));
950 }
951 
952 /*
953  * We ignore errors for log and cache devices, simply free the private data.
954  */
955 static void
956 vdev_label_sync_ignore_done(zio_t *zio)
957 {
958 	kmem_free(zio->io_private, sizeof (uint64_t));
959 }
960 
961 /*
962  * Write all even or odd labels to all leaves of the specified vdev.
963  */
964 static void
965 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
966 {
967 	nvlist_t *label;
968 	vdev_phys_t *vp;
969 	char *buf;
970 	size_t buflen;
971 
972 	for (int c = 0; c < vd->vdev_children; c++)
973 		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
974 
975 	if (!vd->vdev_ops->vdev_op_leaf)
976 		return;
977 
978 	if (!vdev_writeable(vd))
979 		return;
980 
981 	/*
982 	 * Generate a label describing the top-level config to which we belong.
983 	 */
984 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
985 
986 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
987 	bzero(vp, sizeof (vdev_phys_t));
988 
989 	buf = vp->vp_nvlist;
990 	buflen = sizeof (vp->vp_nvlist);
991 
992 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
993 		for (; l < VDEV_LABELS; l += 2) {
994 			vdev_label_write(zio, vd, l, vp,
995 			    offsetof(vdev_label_t, vl_vdev_phys),
996 			    sizeof (vdev_phys_t),
997 			    vdev_label_sync_done, zio->io_private,
998 			    flags | ZIO_FLAG_DONT_PROPAGATE);
999 		}
1000 	}
1001 
1002 	zio_buf_free(vp, sizeof (vdev_phys_t));
1003 	nvlist_free(label);
1004 }
1005 
1006 int
1007 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1008 {
1009 	list_t *dl = &spa->spa_config_dirty_list;
1010 	vdev_t *vd;
1011 	zio_t *zio;
1012 	int error;
1013 
1014 	/*
1015 	 * Write the new labels to disk.
1016 	 */
1017 	zio = zio_root(spa, NULL, NULL, flags);
1018 
1019 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1020 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1021 		    KM_SLEEP);
1022 
1023 		ASSERT(!vd->vdev_ishole);
1024 
1025 		zio_t *vio = zio_null(zio, spa, NULL,
1026 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1027 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1028 		    good_writes, flags);
1029 		vdev_label_sync(vio, vd, l, txg, flags);
1030 		zio_nowait(vio);
1031 	}
1032 
1033 	error = zio_wait(zio);
1034 
1035 	/*
1036 	 * Flush the new labels to disk.
1037 	 */
1038 	zio = zio_root(spa, NULL, NULL, flags);
1039 
1040 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1041 		zio_flush(zio, vd);
1042 
1043 	(void) zio_wait(zio);
1044 
1045 	return (error);
1046 }
1047 
1048 /*
1049  * Sync the uberblock and any changes to the vdev configuration.
1050  *
1051  * The order of operations is carefully crafted to ensure that
1052  * if the system panics or loses power at any time, the state on disk
1053  * is still transactionally consistent.  The in-line comments below
1054  * describe the failure semantics at each stage.
1055  *
1056  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1057  * at any time, you can just call it again, and it will resume its work.
1058  */
1059 int
1060 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1061 {
1062 	spa_t *spa = svd[0]->vdev_spa;
1063 	uberblock_t *ub = &spa->spa_uberblock;
1064 	vdev_t *vd;
1065 	zio_t *zio;
1066 	int error;
1067 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1068 
1069 	/*
1070 	 * Normally, we don't want to try too hard to write every label and
1071 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1072 	 * sync process to block while we retry.  But if we can't write a
1073 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1074 	 * bailing out and declaring the pool faulted.
1075 	 */
1076 	if (tryhard)
1077 		flags |= ZIO_FLAG_TRYHARD;
1078 
1079 	ASSERT(ub->ub_txg <= txg);
1080 
1081 	/*
1082 	 * If this isn't a resync due to I/O errors,
1083 	 * and nothing changed in this transaction group,
1084 	 * and the vdev configuration hasn't changed,
1085 	 * then there's nothing to do.
1086 	 */
1087 	if (ub->ub_txg < txg &&
1088 	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1089 	    list_is_empty(&spa->spa_config_dirty_list))
1090 		return (0);
1091 
1092 	if (txg > spa_freeze_txg(spa))
1093 		return (0);
1094 
1095 	ASSERT(txg <= spa->spa_final_txg);
1096 
1097 	/*
1098 	 * Flush the write cache of every disk that's been written to
1099 	 * in this transaction group.  This ensures that all blocks
1100 	 * written in this txg will be committed to stable storage
1101 	 * before any uberblock that references them.
1102 	 */
1103 	zio = zio_root(spa, NULL, NULL, flags);
1104 
1105 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1106 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1107 		zio_flush(zio, vd);
1108 
1109 	(void) zio_wait(zio);
1110 
1111 	/*
1112 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1113 	 * system dies in the middle of this process, that's OK: all of the
1114 	 * even labels that made it to disk will be newer than any uberblock,
1115 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1116 	 * which have not yet been touched, will still be valid.  We flush
1117 	 * the new labels to disk to ensure that all even-label updates
1118 	 * are committed to stable storage before the uberblock update.
1119 	 */
1120 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1121 		return (error);
1122 
1123 	/*
1124 	 * Sync the uberblocks to all vdevs in svd[].
1125 	 * If the system dies in the middle of this step, there are two cases
1126 	 * to consider, and the on-disk state is consistent either way:
1127 	 *
1128 	 * (1)	If none of the new uberblocks made it to disk, then the
1129 	 *	previous uberblock will be the newest, and the odd labels
1130 	 *	(which had not yet been touched) will be valid with respect
1131 	 *	to that uberblock.
1132 	 *
1133 	 * (2)	If one or more new uberblocks made it to disk, then they
1134 	 *	will be the newest, and the even labels (which had all
1135 	 *	been successfully committed) will be valid with respect
1136 	 *	to the new uberblocks.
1137 	 */
1138 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1139 		return (error);
1140 
1141 	/*
1142 	 * Sync out odd labels for every dirty vdev.  If the system dies
1143 	 * in the middle of this process, the even labels and the new
1144 	 * uberblocks will suffice to open the pool.  The next time
1145 	 * the pool is opened, the first thing we'll do -- before any
1146 	 * user data is modified -- is mark every vdev dirty so that
1147 	 * all labels will be brought up to date.  We flush the new labels
1148 	 * to disk to ensure that all odd-label updates are committed to
1149 	 * stable storage before the next transaction group begins.
1150 	 */
1151 	return (vdev_label_sync_list(spa, 1, txg, flags));
1152 }
1153