1fa9e4066Sahrens /* 2fa9e4066Sahrens * CDDL HEADER START 3fa9e4066Sahrens * 4fa9e4066Sahrens * The contents of this file are subject to the terms of the 5ea8dc4b6Seschrock * Common Development and Distribution License (the "License"). 6ea8dc4b6Seschrock * You may not use this file except in compliance with the License. 7fa9e4066Sahrens * 8fa9e4066Sahrens * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9fa9e4066Sahrens * or http://www.opensolaris.org/os/licensing. 10fa9e4066Sahrens * See the License for the specific language governing permissions 11fa9e4066Sahrens * and limitations under the License. 12fa9e4066Sahrens * 13fa9e4066Sahrens * When distributing Covered Code, include this CDDL HEADER in each 14fa9e4066Sahrens * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15fa9e4066Sahrens * If applicable, add the following below this CDDL HEADER, with the 16fa9e4066Sahrens * fields enclosed by brackets "[]" replaced with your own identifying 17fa9e4066Sahrens * information: Portions Copyright [yyyy] [name of copyright owner] 18fa9e4066Sahrens * 19fa9e4066Sahrens * CDDL HEADER END 20fa9e4066Sahrens */ 21fa9e4066Sahrens /* 22a3f829aeSBill Moore * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23fa9e4066Sahrens * Use is subject to license terms. 24fa9e4066Sahrens */ 25be6fd75aSMatthew Ahrens /* 26be6fd75aSMatthew Ahrens * Copyright (c) 2013 by Delphix. All rights reserved. 27be6fd75aSMatthew Ahrens */ 28fa9e4066Sahrens 29fa9e4066Sahrens #include <sys/zfs_context.h> 30fa9e4066Sahrens #include <sys/spa.h> 31fa9e4066Sahrens #include <sys/vdev_impl.h> 32fa9e4066Sahrens #include <sys/zio.h> 3387db74c1Sek110237 #include <sys/kstat.h> 34fa9e4066Sahrens 35fa9e4066Sahrens /* 36fa9e4066Sahrens * Virtual device read-ahead caching. 37fa9e4066Sahrens * 38fa9e4066Sahrens * This file implements a simple LRU read-ahead cache. When the DMU reads 39fa9e4066Sahrens * a given block, it will often want other, nearby blocks soon thereafter. 40fa9e4066Sahrens * We take advantage of this by reading a larger disk region and caching 4187db74c1Sek110237 * the result. In the best case, this can turn 128 back-to-back 512-byte 4287db74c1Sek110237 * reads into a single 64k read followed by 127 cache hits; this reduces 43fa9e4066Sahrens * latency dramatically. In the worst case, it can turn an isolated 512-byte 4487db74c1Sek110237 * read into a 64k read, which doesn't affect latency all that much but is 45fa9e4066Sahrens * terribly wasteful of bandwidth. A more intelligent version of the cache 46fa9e4066Sahrens * could keep track of access patterns and not do read-ahead unless it sees 47fdb2e906Sek110237 * at least two temporally close I/Os to the same region. Currently, only 48fdb2e906Sek110237 * metadata I/O is inflated. A futher enhancement could take advantage of 49fdb2e906Sek110237 * more semantic information about the I/O. And it could use something 50fdb2e906Sek110237 * faster than an AVL tree; that was chosen solely for convenience. 51fa9e4066Sahrens * 52fa9e4066Sahrens * There are five cache operations: allocate, fill, read, write, evict. 53fa9e4066Sahrens * 54fa9e4066Sahrens * (1) Allocate. This reserves a cache entry for the specified region. 55fa9e4066Sahrens * We separate the allocate and fill operations so that multiple threads 56fa9e4066Sahrens * don't generate I/O for the same cache miss. 57fa9e4066Sahrens * 58fa9e4066Sahrens * (2) Fill. When the I/O for a cache miss completes, the fill routine 59fa9e4066Sahrens * places the data in the previously allocated cache entry. 60fa9e4066Sahrens * 61fa9e4066Sahrens * (3) Read. Read data from the cache. 62fa9e4066Sahrens * 63fa9e4066Sahrens * (4) Write. Update cache contents after write completion. 64fa9e4066Sahrens * 65fa9e4066Sahrens * (5) Evict. When allocating a new entry, we evict the oldest (LRU) entry 66614409b5Sahrens * if the total cache size exceeds zfs_vdev_cache_size. 67fa9e4066Sahrens */ 68fa9e4066Sahrens 69614409b5Sahrens /* 70614409b5Sahrens * These tunables are for performance analysis. 71614409b5Sahrens */ 72614409b5Sahrens /* 73614409b5Sahrens * All i/os smaller than zfs_vdev_cache_max will be turned into 74614409b5Sahrens * 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software 7587db74c1Sek110237 * track buffer). At most zfs_vdev_cache_size bytes will be kept in each 76614409b5Sahrens * vdev's vdev_cache. 77b68a40a8SGarrett D'Amore * 78b68a40a8SGarrett D'Amore * TODO: Note that with the current ZFS code, it turns out that the 79b68a40a8SGarrett D'Amore * vdev cache is not helpful, and in some cases actually harmful. It 80b68a40a8SGarrett D'Amore * is better if we disable this. Once some time has passed, we should 81b68a40a8SGarrett D'Amore * actually remove this to simplify the code. For now we just disable 82b68a40a8SGarrett D'Amore * it by setting the zfs_vdev_cache_size to zero. Note that Solaris 11 83b68a40a8SGarrett D'Amore * has made these same changes. 84614409b5Sahrens */ 8587db74c1Sek110237 int zfs_vdev_cache_max = 1<<14; /* 16KB */ 86b68a40a8SGarrett D'Amore int zfs_vdev_cache_size = 0; 87614409b5Sahrens int zfs_vdev_cache_bshift = 16; 88614409b5Sahrens 8987db74c1Sek110237 #define VCBS (1 << zfs_vdev_cache_bshift) /* 64KB */ 9087db74c1Sek110237 9187db74c1Sek110237 kstat_t *vdc_ksp = NULL; 9287db74c1Sek110237 9387db74c1Sek110237 typedef struct vdc_stats { 9487db74c1Sek110237 kstat_named_t vdc_stat_delegations; 9587db74c1Sek110237 kstat_named_t vdc_stat_hits; 9687db74c1Sek110237 kstat_named_t vdc_stat_misses; 9787db74c1Sek110237 } vdc_stats_t; 9887db74c1Sek110237 9987db74c1Sek110237 static vdc_stats_t vdc_stats = { 10087db74c1Sek110237 { "delegations", KSTAT_DATA_UINT64 }, 10187db74c1Sek110237 { "hits", KSTAT_DATA_UINT64 }, 10287db74c1Sek110237 { "misses", KSTAT_DATA_UINT64 } 10387db74c1Sek110237 }; 10487db74c1Sek110237 105*1a5e258fSJosef 'Jeff' Sipek #define VDCSTAT_BUMP(stat) atomic_inc_64(&vdc_stats.stat.value.ui64); 106614409b5Sahrens 107fa9e4066Sahrens static int 108fa9e4066Sahrens vdev_cache_offset_compare(const void *a1, const void *a2) 109fa9e4066Sahrens { 110fa9e4066Sahrens const vdev_cache_entry_t *ve1 = a1; 111fa9e4066Sahrens const vdev_cache_entry_t *ve2 = a2; 112fa9e4066Sahrens 113fa9e4066Sahrens if (ve1->ve_offset < ve2->ve_offset) 114fa9e4066Sahrens return (-1); 115fa9e4066Sahrens if (ve1->ve_offset > ve2->ve_offset) 116fa9e4066Sahrens return (1); 117fa9e4066Sahrens return (0); 118fa9e4066Sahrens } 119fa9e4066Sahrens 120fa9e4066Sahrens static int 121fa9e4066Sahrens vdev_cache_lastused_compare(const void *a1, const void *a2) 122fa9e4066Sahrens { 123fa9e4066Sahrens const vdev_cache_entry_t *ve1 = a1; 124fa9e4066Sahrens const vdev_cache_entry_t *ve2 = a2; 125fa9e4066Sahrens 126fa9e4066Sahrens if (ve1->ve_lastused < ve2->ve_lastused) 127fa9e4066Sahrens return (-1); 128fa9e4066Sahrens if (ve1->ve_lastused > ve2->ve_lastused) 129fa9e4066Sahrens return (1); 130fa9e4066Sahrens 131fa9e4066Sahrens /* 132fa9e4066Sahrens * Among equally old entries, sort by offset to ensure uniqueness. 133fa9e4066Sahrens */ 134fa9e4066Sahrens return (vdev_cache_offset_compare(a1, a2)); 135fa9e4066Sahrens } 136fa9e4066Sahrens 137fa9e4066Sahrens /* 138fa9e4066Sahrens * Evict the specified entry from the cache. 139fa9e4066Sahrens */ 140fa9e4066Sahrens static void 141fa9e4066Sahrens vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve) 142fa9e4066Sahrens { 143fa9e4066Sahrens ASSERT(MUTEX_HELD(&vc->vc_lock)); 144fa9e4066Sahrens ASSERT(ve->ve_fill_io == NULL); 145fa9e4066Sahrens ASSERT(ve->ve_data != NULL); 146fa9e4066Sahrens 147fa9e4066Sahrens avl_remove(&vc->vc_lastused_tree, ve); 148fa9e4066Sahrens avl_remove(&vc->vc_offset_tree, ve); 149614409b5Sahrens zio_buf_free(ve->ve_data, VCBS); 150fa9e4066Sahrens kmem_free(ve, sizeof (vdev_cache_entry_t)); 151fa9e4066Sahrens } 152fa9e4066Sahrens 153fa9e4066Sahrens /* 154fa9e4066Sahrens * Allocate an entry in the cache. At the point we don't have the data, 155fa9e4066Sahrens * we're just creating a placeholder so that multiple threads don't all 156fa9e4066Sahrens * go off and read the same blocks. 157fa9e4066Sahrens */ 158fa9e4066Sahrens static vdev_cache_entry_t * 159fa9e4066Sahrens vdev_cache_allocate(zio_t *zio) 160fa9e4066Sahrens { 161fa9e4066Sahrens vdev_cache_t *vc = &zio->io_vd->vdev_cache; 162614409b5Sahrens uint64_t offset = P2ALIGN(zio->io_offset, VCBS); 163fa9e4066Sahrens vdev_cache_entry_t *ve; 164fa9e4066Sahrens 165fa9e4066Sahrens ASSERT(MUTEX_HELD(&vc->vc_lock)); 166fa9e4066Sahrens 167614409b5Sahrens if (zfs_vdev_cache_size == 0) 168fa9e4066Sahrens return (NULL); 169fa9e4066Sahrens 170fa9e4066Sahrens /* 171fa9e4066Sahrens * If adding a new entry would exceed the cache size, 172fa9e4066Sahrens * evict the oldest entry (LRU). 173fa9e4066Sahrens */ 174614409b5Sahrens if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) > 175614409b5Sahrens zfs_vdev_cache_size) { 176fa9e4066Sahrens ve = avl_first(&vc->vc_lastused_tree); 177e14bb325SJeff Bonwick if (ve->ve_fill_io != NULL) 178fa9e4066Sahrens return (NULL); 179fa9e4066Sahrens ASSERT(ve->ve_hits != 0); 180fa9e4066Sahrens vdev_cache_evict(vc, ve); 181fa9e4066Sahrens } 182fa9e4066Sahrens 183fa9e4066Sahrens ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP); 184fa9e4066Sahrens ve->ve_offset = offset; 185d3d50737SRafael Vanoni ve->ve_lastused = ddi_get_lbolt(); 186614409b5Sahrens ve->ve_data = zio_buf_alloc(VCBS); 187fa9e4066Sahrens 188fa9e4066Sahrens avl_add(&vc->vc_offset_tree, ve); 189fa9e4066Sahrens avl_add(&vc->vc_lastused_tree, ve); 190fa9e4066Sahrens 191fa9e4066Sahrens return (ve); 192fa9e4066Sahrens } 193fa9e4066Sahrens 194fa9e4066Sahrens static void 195fa9e4066Sahrens vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio) 196fa9e4066Sahrens { 197614409b5Sahrens uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS); 198fa9e4066Sahrens 199fa9e4066Sahrens ASSERT(MUTEX_HELD(&vc->vc_lock)); 200fa9e4066Sahrens ASSERT(ve->ve_fill_io == NULL); 201fa9e4066Sahrens 202d3d50737SRafael Vanoni if (ve->ve_lastused != ddi_get_lbolt()) { 203fa9e4066Sahrens avl_remove(&vc->vc_lastused_tree, ve); 204d3d50737SRafael Vanoni ve->ve_lastused = ddi_get_lbolt(); 205fa9e4066Sahrens avl_add(&vc->vc_lastused_tree, ve); 206fa9e4066Sahrens } 207fa9e4066Sahrens 208fa9e4066Sahrens ve->ve_hits++; 209fa9e4066Sahrens bcopy(ve->ve_data + cache_phase, zio->io_data, zio->io_size); 210fa9e4066Sahrens } 211fa9e4066Sahrens 212fa9e4066Sahrens /* 213fa9e4066Sahrens * Fill a previously allocated cache entry with data. 214fa9e4066Sahrens */ 215fa9e4066Sahrens static void 216a3f829aeSBill Moore vdev_cache_fill(zio_t *fio) 217fa9e4066Sahrens { 218a3f829aeSBill Moore vdev_t *vd = fio->io_vd; 219fa9e4066Sahrens vdev_cache_t *vc = &vd->vdev_cache; 220a3f829aeSBill Moore vdev_cache_entry_t *ve = fio->io_private; 221a3f829aeSBill Moore zio_t *pio; 222fa9e4066Sahrens 223a3f829aeSBill Moore ASSERT(fio->io_size == VCBS); 224fa9e4066Sahrens 225fa9e4066Sahrens /* 226fa9e4066Sahrens * Add data to the cache. 227fa9e4066Sahrens */ 228fa9e4066Sahrens mutex_enter(&vc->vc_lock); 229fa9e4066Sahrens 230a3f829aeSBill Moore ASSERT(ve->ve_fill_io == fio); 231a3f829aeSBill Moore ASSERT(ve->ve_offset == fio->io_offset); 232a3f829aeSBill Moore ASSERT(ve->ve_data == fio->io_data); 233fa9e4066Sahrens 234fa9e4066Sahrens ve->ve_fill_io = NULL; 235fa9e4066Sahrens 236fa9e4066Sahrens /* 237fa9e4066Sahrens * Even if this cache line was invalidated by a missed write update, 238fa9e4066Sahrens * any reads that were queued up before the missed update are still 239fa9e4066Sahrens * valid, so we can satisfy them from this line before we evict it. 240fa9e4066Sahrens */ 241a3f829aeSBill Moore while ((pio = zio_walk_parents(fio)) != NULL) 242a3f829aeSBill Moore vdev_cache_hit(vc, ve, pio); 243fa9e4066Sahrens 244a3f829aeSBill Moore if (fio->io_error || ve->ve_missed_update) 245fa9e4066Sahrens vdev_cache_evict(vc, ve); 246fa9e4066Sahrens 247fa9e4066Sahrens mutex_exit(&vc->vc_lock); 248fa9e4066Sahrens } 249fa9e4066Sahrens 250fa9e4066Sahrens /* 25143466aaeSMax Grossman * Read data from the cache. Returns B_TRUE cache hit, B_FALSE on miss. 252fa9e4066Sahrens */ 25343466aaeSMax Grossman boolean_t 254fa9e4066Sahrens vdev_cache_read(zio_t *zio) 255fa9e4066Sahrens { 256fa9e4066Sahrens vdev_cache_t *vc = &zio->io_vd->vdev_cache; 257fa9e4066Sahrens vdev_cache_entry_t *ve, ve_search; 258614409b5Sahrens uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS); 259614409b5Sahrens uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS); 260fa9e4066Sahrens zio_t *fio; 261fa9e4066Sahrens 262fa9e4066Sahrens ASSERT(zio->io_type == ZIO_TYPE_READ); 263fa9e4066Sahrens 264fa9e4066Sahrens if (zio->io_flags & ZIO_FLAG_DONT_CACHE) 26543466aaeSMax Grossman return (B_FALSE); 266fa9e4066Sahrens 267614409b5Sahrens if (zio->io_size > zfs_vdev_cache_max) 26843466aaeSMax Grossman return (B_FALSE); 269fa9e4066Sahrens 270fa9e4066Sahrens /* 271fa9e4066Sahrens * If the I/O straddles two or more cache blocks, don't cache it. 272fa9e4066Sahrens */ 27388b7b0f2SMatthew Ahrens if (P2BOUNDARY(zio->io_offset, zio->io_size, VCBS)) 27443466aaeSMax Grossman return (B_FALSE); 275fa9e4066Sahrens 276614409b5Sahrens ASSERT(cache_phase + zio->io_size <= VCBS); 277fa9e4066Sahrens 278fa9e4066Sahrens mutex_enter(&vc->vc_lock); 279fa9e4066Sahrens 280fa9e4066Sahrens ve_search.ve_offset = cache_offset; 281fa9e4066Sahrens ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL); 282fa9e4066Sahrens 283fa9e4066Sahrens if (ve != NULL) { 284fa9e4066Sahrens if (ve->ve_missed_update) { 285fa9e4066Sahrens mutex_exit(&vc->vc_lock); 28643466aaeSMax Grossman return (B_FALSE); 287fa9e4066Sahrens } 288fa9e4066Sahrens 289fa9e4066Sahrens if ((fio = ve->ve_fill_io) != NULL) { 290fa9e4066Sahrens zio_vdev_io_bypass(zio); 291a3f829aeSBill Moore zio_add_child(zio, fio); 292fa9e4066Sahrens mutex_exit(&vc->vc_lock); 29387db74c1Sek110237 VDCSTAT_BUMP(vdc_stat_delegations); 29443466aaeSMax Grossman return (B_TRUE); 295fa9e4066Sahrens } 296fa9e4066Sahrens 297fa9e4066Sahrens vdev_cache_hit(vc, ve, zio); 298fa9e4066Sahrens zio_vdev_io_bypass(zio); 299fa9e4066Sahrens 300fa9e4066Sahrens mutex_exit(&vc->vc_lock); 30187db74c1Sek110237 VDCSTAT_BUMP(vdc_stat_hits); 30243466aaeSMax Grossman return (B_TRUE); 303fa9e4066Sahrens } 304fa9e4066Sahrens 305fa9e4066Sahrens ve = vdev_cache_allocate(zio); 306fa9e4066Sahrens 307fa9e4066Sahrens if (ve == NULL) { 308fa9e4066Sahrens mutex_exit(&vc->vc_lock); 30943466aaeSMax Grossman return (B_FALSE); 310fa9e4066Sahrens } 311fa9e4066Sahrens 312e14bb325SJeff Bonwick fio = zio_vdev_delegated_io(zio->io_vd, cache_offset, 31369962b56SMatthew Ahrens ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_NOW, 314e14bb325SJeff Bonwick ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve); 315fa9e4066Sahrens 316fa9e4066Sahrens ve->ve_fill_io = fio; 317fa9e4066Sahrens zio_vdev_io_bypass(zio); 318a3f829aeSBill Moore zio_add_child(zio, fio); 319fa9e4066Sahrens 320fa9e4066Sahrens mutex_exit(&vc->vc_lock); 321fa9e4066Sahrens zio_nowait(fio); 32287db74c1Sek110237 VDCSTAT_BUMP(vdc_stat_misses); 323fa9e4066Sahrens 32443466aaeSMax Grossman return (B_TRUE); 325fa9e4066Sahrens } 326fa9e4066Sahrens 327fa9e4066Sahrens /* 328fa9e4066Sahrens * Update cache contents upon write completion. 329fa9e4066Sahrens */ 330fa9e4066Sahrens void 331fa9e4066Sahrens vdev_cache_write(zio_t *zio) 332fa9e4066Sahrens { 333fa9e4066Sahrens vdev_cache_t *vc = &zio->io_vd->vdev_cache; 334fa9e4066Sahrens vdev_cache_entry_t *ve, ve_search; 335fa9e4066Sahrens uint64_t io_start = zio->io_offset; 336fa9e4066Sahrens uint64_t io_end = io_start + zio->io_size; 337614409b5Sahrens uint64_t min_offset = P2ALIGN(io_start, VCBS); 338614409b5Sahrens uint64_t max_offset = P2ROUNDUP(io_end, VCBS); 339fa9e4066Sahrens avl_index_t where; 340fa9e4066Sahrens 341fa9e4066Sahrens ASSERT(zio->io_type == ZIO_TYPE_WRITE); 342fa9e4066Sahrens 343fa9e4066Sahrens mutex_enter(&vc->vc_lock); 344fa9e4066Sahrens 345fa9e4066Sahrens ve_search.ve_offset = min_offset; 346fa9e4066Sahrens ve = avl_find(&vc->vc_offset_tree, &ve_search, &where); 347fa9e4066Sahrens 348fa9e4066Sahrens if (ve == NULL) 349fa9e4066Sahrens ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER); 350fa9e4066Sahrens 351fa9e4066Sahrens while (ve != NULL && ve->ve_offset < max_offset) { 352fa9e4066Sahrens uint64_t start = MAX(ve->ve_offset, io_start); 353614409b5Sahrens uint64_t end = MIN(ve->ve_offset + VCBS, io_end); 354fa9e4066Sahrens 355fa9e4066Sahrens if (ve->ve_fill_io != NULL) { 356fa9e4066Sahrens ve->ve_missed_update = 1; 357fa9e4066Sahrens } else { 358fa9e4066Sahrens bcopy((char *)zio->io_data + start - io_start, 359fa9e4066Sahrens ve->ve_data + start - ve->ve_offset, end - start); 360fa9e4066Sahrens } 361fa9e4066Sahrens ve = AVL_NEXT(&vc->vc_offset_tree, ve); 362fa9e4066Sahrens } 363fa9e4066Sahrens mutex_exit(&vc->vc_lock); 364fa9e4066Sahrens } 365fa9e4066Sahrens 366fa9e4066Sahrens void 3673d7072f8Seschrock vdev_cache_purge(vdev_t *vd) 3683d7072f8Seschrock { 3693d7072f8Seschrock vdev_cache_t *vc = &vd->vdev_cache; 3703d7072f8Seschrock vdev_cache_entry_t *ve; 3713d7072f8Seschrock 3723d7072f8Seschrock mutex_enter(&vc->vc_lock); 3733d7072f8Seschrock while ((ve = avl_first(&vc->vc_offset_tree)) != NULL) 3743d7072f8Seschrock vdev_cache_evict(vc, ve); 3753d7072f8Seschrock mutex_exit(&vc->vc_lock); 3763d7072f8Seschrock } 3773d7072f8Seschrock 3783d7072f8Seschrock void 379fa9e4066Sahrens vdev_cache_init(vdev_t *vd) 380fa9e4066Sahrens { 381fa9e4066Sahrens vdev_cache_t *vc = &vd->vdev_cache; 382fa9e4066Sahrens 383fa9e4066Sahrens mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL); 384fa9e4066Sahrens 385fa9e4066Sahrens avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare, 386fa9e4066Sahrens sizeof (vdev_cache_entry_t), 387fa9e4066Sahrens offsetof(struct vdev_cache_entry, ve_offset_node)); 388fa9e4066Sahrens 389fa9e4066Sahrens avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare, 390fa9e4066Sahrens sizeof (vdev_cache_entry_t), 391fa9e4066Sahrens offsetof(struct vdev_cache_entry, ve_lastused_node)); 392fa9e4066Sahrens } 393fa9e4066Sahrens 394fa9e4066Sahrens void 395fa9e4066Sahrens vdev_cache_fini(vdev_t *vd) 396fa9e4066Sahrens { 397fa9e4066Sahrens vdev_cache_t *vc = &vd->vdev_cache; 398fa9e4066Sahrens 3993d7072f8Seschrock vdev_cache_purge(vd); 400fa9e4066Sahrens 401fa9e4066Sahrens avl_destroy(&vc->vc_offset_tree); 402fa9e4066Sahrens avl_destroy(&vc->vc_lastused_tree); 403fa9e4066Sahrens 404fa9e4066Sahrens mutex_destroy(&vc->vc_lock); 405fa9e4066Sahrens } 40687db74c1Sek110237 40787db74c1Sek110237 void 40887db74c1Sek110237 vdev_cache_stat_init(void) 40987db74c1Sek110237 { 41087db74c1Sek110237 vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc", 41187db74c1Sek110237 KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t), 41287db74c1Sek110237 KSTAT_FLAG_VIRTUAL); 41387db74c1Sek110237 if (vdc_ksp != NULL) { 41487db74c1Sek110237 vdc_ksp->ks_data = &vdc_stats; 41587db74c1Sek110237 kstat_install(vdc_ksp); 41687db74c1Sek110237 } 41787db74c1Sek110237 } 41887db74c1Sek110237 41987db74c1Sek110237 void 42087db74c1Sek110237 vdev_cache_stat_fini(void) 42187db74c1Sek110237 { 42287db74c1Sek110237 if (vdc_ksp != NULL) { 42387db74c1Sek110237 kstat_delete(vdc_ksp); 42487db74c1Sek110237 vdc_ksp = NULL; 42587db74c1Sek110237 } 42687db74c1Sek110237 } 427