1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/uberblock_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/space_map.h> 38 #include <sys/zio.h> 39 #include <sys/zap.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/arc.h> 42 43 /* 44 * Virtual device management. 45 */ 46 47 static vdev_ops_t *vdev_ops_table[] = { 48 &vdev_root_ops, 49 &vdev_raidz_ops, 50 &vdev_mirror_ops, 51 &vdev_replacing_ops, 52 &vdev_spare_ops, 53 &vdev_disk_ops, 54 &vdev_file_ops, 55 &vdev_missing_ops, 56 NULL 57 }; 58 59 /* maximum scrub/resilver I/O queue per leaf vdev */ 60 int zfs_scrub_limit = 10; 61 62 /* 63 * Given a vdev type, return the appropriate ops vector. 64 */ 65 static vdev_ops_t * 66 vdev_getops(const char *type) 67 { 68 vdev_ops_t *ops, **opspp; 69 70 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 71 if (strcmp(ops->vdev_op_type, type) == 0) 72 break; 73 74 return (ops); 75 } 76 77 /* 78 * Default asize function: return the MAX of psize with the asize of 79 * all children. This is what's used by anything other than RAID-Z. 80 */ 81 uint64_t 82 vdev_default_asize(vdev_t *vd, uint64_t psize) 83 { 84 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 85 uint64_t csize; 86 uint64_t c; 87 88 for (c = 0; c < vd->vdev_children; c++) { 89 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 90 asize = MAX(asize, csize); 91 } 92 93 return (asize); 94 } 95 96 /* 97 * Get the replaceable or attachable device size. 98 * If the parent is a mirror or raidz, the replaceable size is the minimum 99 * psize of all its children. For the rest, just return our own psize. 100 * 101 * e.g. 102 * psize rsize 103 * root - - 104 * mirror/raidz - - 105 * disk1 20g 20g 106 * disk2 40g 20g 107 * disk3 80g 80g 108 */ 109 uint64_t 110 vdev_get_rsize(vdev_t *vd) 111 { 112 vdev_t *pvd, *cvd; 113 uint64_t c, rsize; 114 115 pvd = vd->vdev_parent; 116 117 /* 118 * If our parent is NULL or the root, just return our own psize. 119 */ 120 if (pvd == NULL || pvd->vdev_parent == NULL) 121 return (vd->vdev_psize); 122 123 rsize = 0; 124 125 for (c = 0; c < pvd->vdev_children; c++) { 126 cvd = pvd->vdev_child[c]; 127 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 128 } 129 130 return (rsize); 131 } 132 133 vdev_t * 134 vdev_lookup_top(spa_t *spa, uint64_t vdev) 135 { 136 vdev_t *rvd = spa->spa_root_vdev; 137 138 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 139 140 if (vdev < rvd->vdev_children) { 141 ASSERT(rvd->vdev_child[vdev] != NULL); 142 return (rvd->vdev_child[vdev]); 143 } 144 145 return (NULL); 146 } 147 148 vdev_t * 149 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 150 { 151 int c; 152 vdev_t *mvd; 153 154 if (vd->vdev_guid == guid) 155 return (vd); 156 157 for (c = 0; c < vd->vdev_children; c++) 158 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 159 NULL) 160 return (mvd); 161 162 return (NULL); 163 } 164 165 void 166 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 167 { 168 size_t oldsize, newsize; 169 uint64_t id = cvd->vdev_id; 170 vdev_t **newchild; 171 172 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 173 ASSERT(cvd->vdev_parent == NULL); 174 175 cvd->vdev_parent = pvd; 176 177 if (pvd == NULL) 178 return; 179 180 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 181 182 oldsize = pvd->vdev_children * sizeof (vdev_t *); 183 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 184 newsize = pvd->vdev_children * sizeof (vdev_t *); 185 186 newchild = kmem_zalloc(newsize, KM_SLEEP); 187 if (pvd->vdev_child != NULL) { 188 bcopy(pvd->vdev_child, newchild, oldsize); 189 kmem_free(pvd->vdev_child, oldsize); 190 } 191 192 pvd->vdev_child = newchild; 193 pvd->vdev_child[id] = cvd; 194 195 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 196 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 197 198 /* 199 * Walk up all ancestors to update guid sum. 200 */ 201 for (; pvd != NULL; pvd = pvd->vdev_parent) 202 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 203 204 if (cvd->vdev_ops->vdev_op_leaf) 205 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 206 } 207 208 void 209 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 210 { 211 int c; 212 uint_t id = cvd->vdev_id; 213 214 ASSERT(cvd->vdev_parent == pvd); 215 216 if (pvd == NULL) 217 return; 218 219 ASSERT(id < pvd->vdev_children); 220 ASSERT(pvd->vdev_child[id] == cvd); 221 222 pvd->vdev_child[id] = NULL; 223 cvd->vdev_parent = NULL; 224 225 for (c = 0; c < pvd->vdev_children; c++) 226 if (pvd->vdev_child[c]) 227 break; 228 229 if (c == pvd->vdev_children) { 230 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 231 pvd->vdev_child = NULL; 232 pvd->vdev_children = 0; 233 } 234 235 /* 236 * Walk up all ancestors to update guid sum. 237 */ 238 for (; pvd != NULL; pvd = pvd->vdev_parent) 239 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 240 241 if (cvd->vdev_ops->vdev_op_leaf) 242 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 243 } 244 245 /* 246 * Remove any holes in the child array. 247 */ 248 void 249 vdev_compact_children(vdev_t *pvd) 250 { 251 vdev_t **newchild, *cvd; 252 int oldc = pvd->vdev_children; 253 int newc, c; 254 255 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 256 257 for (c = newc = 0; c < oldc; c++) 258 if (pvd->vdev_child[c]) 259 newc++; 260 261 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 262 263 for (c = newc = 0; c < oldc; c++) { 264 if ((cvd = pvd->vdev_child[c]) != NULL) { 265 newchild[newc] = cvd; 266 cvd->vdev_id = newc++; 267 } 268 } 269 270 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 271 pvd->vdev_child = newchild; 272 pvd->vdev_children = newc; 273 } 274 275 /* 276 * Allocate and minimally initialize a vdev_t. 277 */ 278 static vdev_t * 279 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 280 { 281 vdev_t *vd; 282 283 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 284 285 if (spa->spa_root_vdev == NULL) { 286 ASSERT(ops == &vdev_root_ops); 287 spa->spa_root_vdev = vd; 288 } 289 290 if (guid == 0) { 291 if (spa->spa_root_vdev == vd) { 292 /* 293 * The root vdev's guid will also be the pool guid, 294 * which must be unique among all pools. 295 */ 296 while (guid == 0 || spa_guid_exists(guid, 0)) 297 guid = spa_get_random(-1ULL); 298 } else { 299 /* 300 * Any other vdev's guid must be unique within the pool. 301 */ 302 while (guid == 0 || 303 spa_guid_exists(spa_guid(spa), guid)) 304 guid = spa_get_random(-1ULL); 305 } 306 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 307 } 308 309 vd->vdev_spa = spa; 310 vd->vdev_id = id; 311 vd->vdev_guid = guid; 312 vd->vdev_guid_sum = guid; 313 vd->vdev_ops = ops; 314 vd->vdev_state = VDEV_STATE_CLOSED; 315 316 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 317 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 318 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 319 space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); 320 space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); 321 txg_list_create(&vd->vdev_ms_list, 322 offsetof(struct metaslab, ms_txg_node)); 323 txg_list_create(&vd->vdev_dtl_list, 324 offsetof(struct vdev, vdev_dtl_node)); 325 vd->vdev_stat.vs_timestamp = gethrtime(); 326 vdev_queue_init(vd); 327 vdev_cache_init(vd); 328 329 return (vd); 330 } 331 332 /* 333 * Allocate a new vdev. The 'alloctype' is used to control whether we are 334 * creating a new vdev or loading an existing one - the behavior is slightly 335 * different for each case. 336 */ 337 int 338 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 339 int alloctype) 340 { 341 vdev_ops_t *ops; 342 char *type; 343 uint64_t guid = 0, islog, nparity; 344 vdev_t *vd; 345 346 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 347 348 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 349 return (EINVAL); 350 351 if ((ops = vdev_getops(type)) == NULL) 352 return (EINVAL); 353 354 /* 355 * If this is a load, get the vdev guid from the nvlist. 356 * Otherwise, vdev_alloc_common() will generate one for us. 357 */ 358 if (alloctype == VDEV_ALLOC_LOAD) { 359 uint64_t label_id; 360 361 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 362 label_id != id) 363 return (EINVAL); 364 365 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 366 return (EINVAL); 367 } else if (alloctype == VDEV_ALLOC_SPARE) { 368 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 369 return (EINVAL); 370 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 371 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 372 return (EINVAL); 373 } 374 375 /* 376 * The first allocated vdev must be of type 'root'. 377 */ 378 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 379 return (EINVAL); 380 381 /* 382 * Determine whether we're a log vdev. 383 */ 384 islog = 0; 385 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 386 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 387 return (ENOTSUP); 388 389 /* 390 * Set the nparity property for RAID-Z vdevs. 391 */ 392 nparity = -1ULL; 393 if (ops == &vdev_raidz_ops) { 394 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 395 &nparity) == 0) { 396 /* 397 * Currently, we can only support 2 parity devices. 398 */ 399 if (nparity == 0 || nparity > 2) 400 return (EINVAL); 401 /* 402 * Older versions can only support 1 parity device. 403 */ 404 if (nparity == 2 && 405 spa_version(spa) < SPA_VERSION_RAID6) 406 return (ENOTSUP); 407 } else { 408 /* 409 * We require the parity to be specified for SPAs that 410 * support multiple parity levels. 411 */ 412 if (spa_version(spa) >= SPA_VERSION_RAID6) 413 return (EINVAL); 414 /* 415 * Otherwise, we default to 1 parity device for RAID-Z. 416 */ 417 nparity = 1; 418 } 419 } else { 420 nparity = 0; 421 } 422 ASSERT(nparity != -1ULL); 423 424 vd = vdev_alloc_common(spa, id, guid, ops); 425 426 vd->vdev_islog = islog; 427 vd->vdev_nparity = nparity; 428 429 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 430 vd->vdev_path = spa_strdup(vd->vdev_path); 431 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 432 vd->vdev_devid = spa_strdup(vd->vdev_devid); 433 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 434 &vd->vdev_physpath) == 0) 435 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 436 437 /* 438 * Set the whole_disk property. If it's not specified, leave the value 439 * as -1. 440 */ 441 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 442 &vd->vdev_wholedisk) != 0) 443 vd->vdev_wholedisk = -1ULL; 444 445 /* 446 * Look for the 'not present' flag. This will only be set if the device 447 * was not present at the time of import. 448 */ 449 if (!spa->spa_import_faulted) 450 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 451 &vd->vdev_not_present); 452 453 /* 454 * Get the alignment requirement. 455 */ 456 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 457 458 /* 459 * If we're a top-level vdev, try to load the allocation parameters. 460 */ 461 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 463 &vd->vdev_ms_array); 464 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 465 &vd->vdev_ms_shift); 466 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 467 &vd->vdev_asize); 468 } 469 470 /* 471 * If we're a leaf vdev, try to load the DTL object and other state. 472 */ 473 if (vd->vdev_ops->vdev_op_leaf && 474 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) { 475 if (alloctype == VDEV_ALLOC_LOAD) { 476 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 477 &vd->vdev_dtl.smo_object); 478 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 479 &vd->vdev_unspare); 480 } 481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 482 &vd->vdev_offline); 483 484 /* 485 * When importing a pool, we want to ignore the persistent fault 486 * state, as the diagnosis made on another system may not be 487 * valid in the current context. 488 */ 489 if (spa->spa_load_state == SPA_LOAD_OPEN) { 490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 491 &vd->vdev_faulted); 492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 493 &vd->vdev_degraded); 494 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 495 &vd->vdev_removed); 496 } 497 } 498 499 /* 500 * Add ourselves to the parent's list of children. 501 */ 502 vdev_add_child(parent, vd); 503 504 *vdp = vd; 505 506 return (0); 507 } 508 509 void 510 vdev_free(vdev_t *vd) 511 { 512 int c; 513 spa_t *spa = vd->vdev_spa; 514 515 /* 516 * vdev_free() implies closing the vdev first. This is simpler than 517 * trying to ensure complicated semantics for all callers. 518 */ 519 vdev_close(vd); 520 521 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 522 523 /* 524 * Free all children. 525 */ 526 for (c = 0; c < vd->vdev_children; c++) 527 vdev_free(vd->vdev_child[c]); 528 529 ASSERT(vd->vdev_child == NULL); 530 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 531 532 /* 533 * Discard allocation state. 534 */ 535 if (vd == vd->vdev_top) 536 vdev_metaslab_fini(vd); 537 538 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 539 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 540 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 541 542 /* 543 * Remove this vdev from its parent's child list. 544 */ 545 vdev_remove_child(vd->vdev_parent, vd); 546 547 ASSERT(vd->vdev_parent == NULL); 548 549 /* 550 * Clean up vdev structure. 551 */ 552 vdev_queue_fini(vd); 553 vdev_cache_fini(vd); 554 555 if (vd->vdev_path) 556 spa_strfree(vd->vdev_path); 557 if (vd->vdev_devid) 558 spa_strfree(vd->vdev_devid); 559 if (vd->vdev_physpath) 560 spa_strfree(vd->vdev_physpath); 561 562 if (vd->vdev_isspare) 563 spa_spare_remove(vd); 564 if (vd->vdev_isl2cache) 565 spa_l2cache_remove(vd); 566 567 txg_list_destroy(&vd->vdev_ms_list); 568 txg_list_destroy(&vd->vdev_dtl_list); 569 mutex_enter(&vd->vdev_dtl_lock); 570 space_map_unload(&vd->vdev_dtl_map); 571 space_map_destroy(&vd->vdev_dtl_map); 572 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 573 space_map_destroy(&vd->vdev_dtl_scrub); 574 mutex_exit(&vd->vdev_dtl_lock); 575 mutex_destroy(&vd->vdev_dtl_lock); 576 mutex_destroy(&vd->vdev_stat_lock); 577 mutex_destroy(&vd->vdev_probe_lock); 578 579 if (vd == spa->spa_root_vdev) 580 spa->spa_root_vdev = NULL; 581 582 kmem_free(vd, sizeof (vdev_t)); 583 } 584 585 /* 586 * Transfer top-level vdev state from svd to tvd. 587 */ 588 static void 589 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 590 { 591 spa_t *spa = svd->vdev_spa; 592 metaslab_t *msp; 593 vdev_t *vd; 594 int t; 595 596 ASSERT(tvd == tvd->vdev_top); 597 598 tvd->vdev_ms_array = svd->vdev_ms_array; 599 tvd->vdev_ms_shift = svd->vdev_ms_shift; 600 tvd->vdev_ms_count = svd->vdev_ms_count; 601 602 svd->vdev_ms_array = 0; 603 svd->vdev_ms_shift = 0; 604 svd->vdev_ms_count = 0; 605 606 tvd->vdev_mg = svd->vdev_mg; 607 tvd->vdev_ms = svd->vdev_ms; 608 609 svd->vdev_mg = NULL; 610 svd->vdev_ms = NULL; 611 612 if (tvd->vdev_mg != NULL) 613 tvd->vdev_mg->mg_vd = tvd; 614 615 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 616 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 617 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 618 619 svd->vdev_stat.vs_alloc = 0; 620 svd->vdev_stat.vs_space = 0; 621 svd->vdev_stat.vs_dspace = 0; 622 623 for (t = 0; t < TXG_SIZE; t++) { 624 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 625 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 626 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 627 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 628 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 629 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 630 } 631 632 if (list_link_active(&svd->vdev_config_dirty_node)) { 633 vdev_config_clean(svd); 634 vdev_config_dirty(tvd); 635 } 636 637 if (list_link_active(&svd->vdev_state_dirty_node)) { 638 vdev_state_clean(svd); 639 vdev_state_dirty(tvd); 640 } 641 642 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 643 svd->vdev_deflate_ratio = 0; 644 645 tvd->vdev_islog = svd->vdev_islog; 646 svd->vdev_islog = 0; 647 } 648 649 static void 650 vdev_top_update(vdev_t *tvd, vdev_t *vd) 651 { 652 int c; 653 654 if (vd == NULL) 655 return; 656 657 vd->vdev_top = tvd; 658 659 for (c = 0; c < vd->vdev_children; c++) 660 vdev_top_update(tvd, vd->vdev_child[c]); 661 } 662 663 /* 664 * Add a mirror/replacing vdev above an existing vdev. 665 */ 666 vdev_t * 667 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 668 { 669 spa_t *spa = cvd->vdev_spa; 670 vdev_t *pvd = cvd->vdev_parent; 671 vdev_t *mvd; 672 673 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 674 675 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 676 677 mvd->vdev_asize = cvd->vdev_asize; 678 mvd->vdev_ashift = cvd->vdev_ashift; 679 mvd->vdev_state = cvd->vdev_state; 680 681 vdev_remove_child(pvd, cvd); 682 vdev_add_child(pvd, mvd); 683 cvd->vdev_id = mvd->vdev_children; 684 vdev_add_child(mvd, cvd); 685 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 686 687 if (mvd == mvd->vdev_top) 688 vdev_top_transfer(cvd, mvd); 689 690 return (mvd); 691 } 692 693 /* 694 * Remove a 1-way mirror/replacing vdev from the tree. 695 */ 696 void 697 vdev_remove_parent(vdev_t *cvd) 698 { 699 vdev_t *mvd = cvd->vdev_parent; 700 vdev_t *pvd = mvd->vdev_parent; 701 702 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 703 704 ASSERT(mvd->vdev_children == 1); 705 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 706 mvd->vdev_ops == &vdev_replacing_ops || 707 mvd->vdev_ops == &vdev_spare_ops); 708 cvd->vdev_ashift = mvd->vdev_ashift; 709 710 vdev_remove_child(mvd, cvd); 711 vdev_remove_child(pvd, mvd); 712 /* 713 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 714 * Otherwise, we could have detached an offline device, and when we 715 * go to import the pool we'll think we have two top-level vdevs, 716 * instead of a different version of the same top-level vdev. 717 */ 718 if (mvd->vdev_top == mvd) 719 cvd->vdev_guid = cvd->vdev_guid_sum = mvd->vdev_guid; 720 cvd->vdev_id = mvd->vdev_id; 721 vdev_add_child(pvd, cvd); 722 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 723 724 if (cvd == cvd->vdev_top) 725 vdev_top_transfer(mvd, cvd); 726 727 ASSERT(mvd->vdev_children == 0); 728 vdev_free(mvd); 729 } 730 731 int 732 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 733 { 734 spa_t *spa = vd->vdev_spa; 735 objset_t *mos = spa->spa_meta_objset; 736 metaslab_class_t *mc; 737 uint64_t m; 738 uint64_t oldc = vd->vdev_ms_count; 739 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 740 metaslab_t **mspp; 741 int error; 742 743 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 744 return (0); 745 746 ASSERT(oldc <= newc); 747 748 if (vd->vdev_islog) 749 mc = spa->spa_log_class; 750 else 751 mc = spa->spa_normal_class; 752 753 if (vd->vdev_mg == NULL) 754 vd->vdev_mg = metaslab_group_create(mc, vd); 755 756 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 757 758 if (oldc != 0) { 759 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 760 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 761 } 762 763 vd->vdev_ms = mspp; 764 vd->vdev_ms_count = newc; 765 766 for (m = oldc; m < newc; m++) { 767 space_map_obj_t smo = { 0, 0, 0 }; 768 if (txg == 0) { 769 uint64_t object = 0; 770 error = dmu_read(mos, vd->vdev_ms_array, 771 m * sizeof (uint64_t), sizeof (uint64_t), &object); 772 if (error) 773 return (error); 774 if (object != 0) { 775 dmu_buf_t *db; 776 error = dmu_bonus_hold(mos, object, FTAG, &db); 777 if (error) 778 return (error); 779 ASSERT3U(db->db_size, >=, sizeof (smo)); 780 bcopy(db->db_data, &smo, sizeof (smo)); 781 ASSERT3U(smo.smo_object, ==, object); 782 dmu_buf_rele(db, FTAG); 783 } 784 } 785 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 786 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 787 } 788 789 return (0); 790 } 791 792 void 793 vdev_metaslab_fini(vdev_t *vd) 794 { 795 uint64_t m; 796 uint64_t count = vd->vdev_ms_count; 797 798 if (vd->vdev_ms != NULL) { 799 for (m = 0; m < count; m++) 800 if (vd->vdev_ms[m] != NULL) 801 metaslab_fini(vd->vdev_ms[m]); 802 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 803 vd->vdev_ms = NULL; 804 } 805 } 806 807 typedef struct vdev_probe_stats { 808 boolean_t vps_readable; 809 boolean_t vps_writeable; 810 int vps_flags; 811 zio_t *vps_root; 812 vdev_t *vps_vd; 813 } vdev_probe_stats_t; 814 815 static void 816 vdev_probe_done(zio_t *zio) 817 { 818 vdev_probe_stats_t *vps = zio->io_private; 819 vdev_t *vd = vps->vps_vd; 820 821 if (zio->io_type == ZIO_TYPE_READ) { 822 ASSERT(zio->io_vd == vd); 823 if (zio->io_error == 0) 824 vps->vps_readable = 1; 825 if (zio->io_error == 0 && (spa_mode & FWRITE)) { 826 zio_nowait(zio_write_phys(vps->vps_root, vd, 827 zio->io_offset, zio->io_size, zio->io_data, 828 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 829 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 830 } else { 831 zio_buf_free(zio->io_data, zio->io_size); 832 } 833 } else if (zio->io_type == ZIO_TYPE_WRITE) { 834 ASSERT(zio->io_vd == vd); 835 if (zio->io_error == 0) 836 vps->vps_writeable = 1; 837 zio_buf_free(zio->io_data, zio->io_size); 838 } else if (zio->io_type == ZIO_TYPE_NULL) { 839 ASSERT(zio->io_vd == NULL); 840 ASSERT(zio == vps->vps_root); 841 842 vd->vdev_cant_read |= !vps->vps_readable; 843 vd->vdev_cant_write |= !vps->vps_writeable; 844 845 if (vdev_readable(vd) && 846 (vdev_writeable(vd) || !(spa_mode & FWRITE))) { 847 zio->io_error = 0; 848 } else { 849 ASSERT(zio->io_error != 0); 850 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 851 zio->io_spa, vd, NULL, 0, 0); 852 zio->io_error = ENXIO; 853 } 854 kmem_free(vps, sizeof (*vps)); 855 } 856 } 857 858 /* 859 * Determine whether this device is accessible by reading and writing 860 * to several known locations: the pad regions of each vdev label 861 * but the first (which we leave alone in case it contains a VTOC). 862 */ 863 zio_t * 864 vdev_probe(vdev_t *vd, zio_t *pio) 865 { 866 spa_t *spa = vd->vdev_spa; 867 vdev_probe_stats_t *vps; 868 zio_t *zio; 869 870 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 871 872 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 873 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_DONT_RETRY; 874 875 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 876 /* 877 * vdev_cant_read and vdev_cant_write can only transition 878 * from TRUE to FALSE when we have the SCL_ZIO lock as writer; 879 * otherwise they can only transition from FALSE to TRUE. 880 * This ensures that any zio looking at these values can 881 * assume that failures persist for the life of the I/O. 882 * That's important because when a device has intermittent 883 * connectivity problems, we want to ensure that they're 884 * ascribed to the device (ENXIO) and not the zio (EIO). 885 * 886 * Since we hold SCL_ZIO as writer here, clear both values 887 * so the probe can reevaluate from first principles. 888 */ 889 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 890 vd->vdev_cant_read = B_FALSE; 891 vd->vdev_cant_write = B_FALSE; 892 } 893 894 ASSERT(vd->vdev_ops->vdev_op_leaf); 895 896 zio = zio_null(pio, spa, vdev_probe_done, vps, vps->vps_flags); 897 898 vps->vps_root = zio; 899 vps->vps_vd = vd; 900 901 for (int l = 1; l < VDEV_LABELS; l++) { 902 zio_nowait(zio_read_phys(zio, vd, 903 vdev_label_offset(vd->vdev_psize, l, 904 offsetof(vdev_label_t, vl_pad)), 905 VDEV_SKIP_SIZE, zio_buf_alloc(VDEV_SKIP_SIZE), 906 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 907 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 908 } 909 910 return (zio); 911 } 912 913 /* 914 * Prepare a virtual device for access. 915 */ 916 int 917 vdev_open(vdev_t *vd) 918 { 919 int error; 920 int c; 921 uint64_t osize = 0; 922 uint64_t asize, psize; 923 uint64_t ashift = 0; 924 925 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 926 vd->vdev_state == VDEV_STATE_CANT_OPEN || 927 vd->vdev_state == VDEV_STATE_OFFLINE); 928 929 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 930 931 if (!vd->vdev_removed && vd->vdev_faulted) { 932 ASSERT(vd->vdev_children == 0); 933 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 934 VDEV_AUX_ERR_EXCEEDED); 935 return (ENXIO); 936 } else if (vd->vdev_offline) { 937 ASSERT(vd->vdev_children == 0); 938 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 939 return (ENXIO); 940 } 941 942 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 943 944 if (zio_injection_enabled && error == 0) 945 error = zio_handle_device_injection(vd, ENXIO); 946 947 if (error) { 948 if (vd->vdev_removed && 949 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 950 vd->vdev_removed = B_FALSE; 951 952 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 953 vd->vdev_stat.vs_aux); 954 return (error); 955 } 956 957 vd->vdev_removed = B_FALSE; 958 959 if (vd->vdev_degraded) { 960 ASSERT(vd->vdev_children == 0); 961 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 962 VDEV_AUX_ERR_EXCEEDED); 963 } else { 964 vd->vdev_state = VDEV_STATE_HEALTHY; 965 } 966 967 for (c = 0; c < vd->vdev_children; c++) 968 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 969 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 970 VDEV_AUX_NONE); 971 break; 972 } 973 974 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 975 976 if (vd->vdev_children == 0) { 977 if (osize < SPA_MINDEVSIZE) { 978 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 979 VDEV_AUX_TOO_SMALL); 980 return (EOVERFLOW); 981 } 982 psize = osize; 983 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 984 } else { 985 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 986 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 987 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 988 VDEV_AUX_TOO_SMALL); 989 return (EOVERFLOW); 990 } 991 psize = 0; 992 asize = osize; 993 } 994 995 vd->vdev_psize = psize; 996 997 if (vd->vdev_asize == 0) { 998 /* 999 * This is the first-ever open, so use the computed values. 1000 * For testing purposes, a higher ashift can be requested. 1001 */ 1002 vd->vdev_asize = asize; 1003 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1004 } else { 1005 /* 1006 * Make sure the alignment requirement hasn't increased. 1007 */ 1008 if (ashift > vd->vdev_top->vdev_ashift) { 1009 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1010 VDEV_AUX_BAD_LABEL); 1011 return (EINVAL); 1012 } 1013 1014 /* 1015 * Make sure the device hasn't shrunk. 1016 */ 1017 if (asize < vd->vdev_asize) { 1018 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1019 VDEV_AUX_BAD_LABEL); 1020 return (EINVAL); 1021 } 1022 1023 /* 1024 * If all children are healthy and the asize has increased, 1025 * then we've experienced dynamic LUN growth. 1026 */ 1027 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1028 asize > vd->vdev_asize) { 1029 vd->vdev_asize = asize; 1030 } 1031 } 1032 1033 /* 1034 * Ensure we can issue some IO before declaring the 1035 * vdev open for business. 1036 */ 1037 if (vd->vdev_ops->vdev_op_leaf && 1038 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1039 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1040 VDEV_AUX_IO_FAILURE); 1041 return (error); 1042 } 1043 1044 /* 1045 * If this is a top-level vdev, compute the raidz-deflation 1046 * ratio. Note, we hard-code in 128k (1<<17) because it is the 1047 * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE 1048 * changes, this algorithm must never change, or we will 1049 * inconsistently account for existing bp's. 1050 */ 1051 if (vd->vdev_top == vd) { 1052 vd->vdev_deflate_ratio = (1<<17) / 1053 (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); 1054 } 1055 1056 /* 1057 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1058 * resilver. But don't do this if we are doing a reopen for a 1059 * scrub, since this would just restart the scrub we are already 1060 * doing. 1061 */ 1062 if (vd->vdev_children == 0 && !vd->vdev_spa->spa_scrub_reopen) { 1063 mutex_enter(&vd->vdev_dtl_lock); 1064 if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd)) 1065 spa_async_request(vd->vdev_spa, SPA_ASYNC_RESILVER); 1066 mutex_exit(&vd->vdev_dtl_lock); 1067 } 1068 1069 return (0); 1070 } 1071 1072 /* 1073 * Called once the vdevs are all opened, this routine validates the label 1074 * contents. This needs to be done before vdev_load() so that we don't 1075 * inadvertently do repair I/Os to the wrong device. 1076 * 1077 * This function will only return failure if one of the vdevs indicates that it 1078 * has since been destroyed or exported. This is only possible if 1079 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1080 * will be updated but the function will return 0. 1081 */ 1082 int 1083 vdev_validate(vdev_t *vd) 1084 { 1085 spa_t *spa = vd->vdev_spa; 1086 int c; 1087 nvlist_t *label; 1088 uint64_t guid, top_guid; 1089 uint64_t state; 1090 1091 for (c = 0; c < vd->vdev_children; c++) 1092 if (vdev_validate(vd->vdev_child[c]) != 0) 1093 return (EBADF); 1094 1095 /* 1096 * If the device has already failed, or was marked offline, don't do 1097 * any further validation. Otherwise, label I/O will fail and we will 1098 * overwrite the previous state. 1099 */ 1100 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1101 1102 if ((label = vdev_label_read_config(vd)) == NULL) { 1103 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1104 VDEV_AUX_BAD_LABEL); 1105 return (0); 1106 } 1107 1108 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1109 &guid) != 0 || guid != spa_guid(spa)) { 1110 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1111 VDEV_AUX_CORRUPT_DATA); 1112 nvlist_free(label); 1113 return (0); 1114 } 1115 1116 /* 1117 * If this vdev just became a top-level vdev because its 1118 * sibling was detached, it will have adopted the parent's 1119 * vdev guid -- but the label may or may not be on disk yet. 1120 * Fortunately, either version of the label will have the 1121 * same top guid, so if we're a top-level vdev, we can 1122 * safely compare to that instead. 1123 */ 1124 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1125 &guid) != 0 || 1126 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1127 &top_guid) != 0 || 1128 (vd->vdev_guid != guid && 1129 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1130 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1131 VDEV_AUX_CORRUPT_DATA); 1132 nvlist_free(label); 1133 return (0); 1134 } 1135 1136 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1137 &state) != 0) { 1138 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1139 VDEV_AUX_CORRUPT_DATA); 1140 nvlist_free(label); 1141 return (0); 1142 } 1143 1144 nvlist_free(label); 1145 1146 if (spa->spa_load_state == SPA_LOAD_OPEN && 1147 state != POOL_STATE_ACTIVE) 1148 return (EBADF); 1149 1150 /* 1151 * If we were able to open and validate a vdev that was 1152 * previously marked permanently unavailable, clear that state 1153 * now. 1154 */ 1155 if (vd->vdev_not_present) 1156 vd->vdev_not_present = 0; 1157 } 1158 1159 return (0); 1160 } 1161 1162 /* 1163 * Close a virtual device. 1164 */ 1165 void 1166 vdev_close(vdev_t *vd) 1167 { 1168 vd->vdev_ops->vdev_op_close(vd); 1169 1170 vdev_cache_purge(vd); 1171 1172 /* 1173 * We record the previous state before we close it, so that if we are 1174 * doing a reopen(), we don't generate FMA ereports if we notice that 1175 * it's still faulted. 1176 */ 1177 vd->vdev_prevstate = vd->vdev_state; 1178 1179 if (vd->vdev_offline) 1180 vd->vdev_state = VDEV_STATE_OFFLINE; 1181 else 1182 vd->vdev_state = VDEV_STATE_CLOSED; 1183 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1184 } 1185 1186 void 1187 vdev_reopen(vdev_t *vd) 1188 { 1189 spa_t *spa = vd->vdev_spa; 1190 1191 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1192 1193 vdev_close(vd); 1194 (void) vdev_open(vd); 1195 1196 /* 1197 * Call vdev_validate() here to make sure we have the same device. 1198 * Otherwise, a device with an invalid label could be successfully 1199 * opened in response to vdev_reopen(). 1200 */ 1201 if (vd->vdev_aux) { 1202 (void) vdev_validate_aux(vd); 1203 if (vdev_readable(vd) && vdev_writeable(vd) && 1204 !l2arc_vdev_present(vd)) { 1205 uint64_t size = vdev_get_rsize(vd); 1206 l2arc_add_vdev(spa, vd, 1207 VDEV_LABEL_START_SIZE, 1208 size - VDEV_LABEL_START_SIZE); 1209 } 1210 } else { 1211 (void) vdev_validate(vd); 1212 } 1213 1214 /* 1215 * Reassess parent vdev's health. 1216 */ 1217 vdev_propagate_state(vd); 1218 } 1219 1220 int 1221 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1222 { 1223 int error; 1224 1225 /* 1226 * Normally, partial opens (e.g. of a mirror) are allowed. 1227 * For a create, however, we want to fail the request if 1228 * there are any components we can't open. 1229 */ 1230 error = vdev_open(vd); 1231 1232 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1233 vdev_close(vd); 1234 return (error ? error : ENXIO); 1235 } 1236 1237 /* 1238 * Recursively initialize all labels. 1239 */ 1240 if ((error = vdev_label_init(vd, txg, isreplacing ? 1241 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1242 vdev_close(vd); 1243 return (error); 1244 } 1245 1246 return (0); 1247 } 1248 1249 /* 1250 * The is the latter half of vdev_create(). It is distinct because it 1251 * involves initiating transactions in order to do metaslab creation. 1252 * For creation, we want to try to create all vdevs at once and then undo it 1253 * if anything fails; this is much harder if we have pending transactions. 1254 */ 1255 void 1256 vdev_init(vdev_t *vd, uint64_t txg) 1257 { 1258 /* 1259 * Aim for roughly 200 metaslabs per vdev. 1260 */ 1261 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1262 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1263 1264 /* 1265 * Initialize the vdev's metaslabs. This can't fail because 1266 * there's nothing to read when creating all new metaslabs. 1267 */ 1268 VERIFY(vdev_metaslab_init(vd, txg) == 0); 1269 } 1270 1271 void 1272 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1273 { 1274 ASSERT(vd == vd->vdev_top); 1275 ASSERT(ISP2(flags)); 1276 1277 if (flags & VDD_METASLAB) 1278 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1279 1280 if (flags & VDD_DTL) 1281 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1282 1283 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1284 } 1285 1286 void 1287 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) 1288 { 1289 mutex_enter(sm->sm_lock); 1290 if (!space_map_contains(sm, txg, size)) 1291 space_map_add(sm, txg, size); 1292 mutex_exit(sm->sm_lock); 1293 } 1294 1295 int 1296 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) 1297 { 1298 int dirty; 1299 1300 /* 1301 * Quick test without the lock -- covers the common case that 1302 * there are no dirty time segments. 1303 */ 1304 if (sm->sm_space == 0) 1305 return (0); 1306 1307 mutex_enter(sm->sm_lock); 1308 dirty = space_map_contains(sm, txg, size); 1309 mutex_exit(sm->sm_lock); 1310 1311 return (dirty); 1312 } 1313 1314 /* 1315 * Reassess DTLs after a config change or scrub completion. 1316 */ 1317 void 1318 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1319 { 1320 spa_t *spa = vd->vdev_spa; 1321 int c; 1322 1323 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 1324 1325 if (vd->vdev_children == 0) { 1326 mutex_enter(&vd->vdev_dtl_lock); 1327 if (scrub_txg != 0 && 1328 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { 1329 /* XXX should check scrub_done? */ 1330 /* 1331 * We completed a scrub up to scrub_txg. If we 1332 * did it without rebooting, then the scrub dtl 1333 * will be valid, so excise the old region and 1334 * fold in the scrub dtl. Otherwise, leave the 1335 * dtl as-is if there was an error. 1336 */ 1337 space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); 1338 space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); 1339 } 1340 if (scrub_done) 1341 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1342 mutex_exit(&vd->vdev_dtl_lock); 1343 1344 if (txg != 0) 1345 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1346 return; 1347 } 1348 1349 /* 1350 * Make sure the DTLs are always correct under the scrub lock. 1351 */ 1352 if (vd == spa->spa_root_vdev) 1353 mutex_enter(&spa->spa_scrub_lock); 1354 1355 mutex_enter(&vd->vdev_dtl_lock); 1356 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 1357 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1358 mutex_exit(&vd->vdev_dtl_lock); 1359 1360 for (c = 0; c < vd->vdev_children; c++) { 1361 vdev_t *cvd = vd->vdev_child[c]; 1362 vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); 1363 mutex_enter(&vd->vdev_dtl_lock); 1364 space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); 1365 space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); 1366 mutex_exit(&vd->vdev_dtl_lock); 1367 } 1368 1369 if (vd == spa->spa_root_vdev) 1370 mutex_exit(&spa->spa_scrub_lock); 1371 } 1372 1373 static int 1374 vdev_dtl_load(vdev_t *vd) 1375 { 1376 spa_t *spa = vd->vdev_spa; 1377 space_map_obj_t *smo = &vd->vdev_dtl; 1378 objset_t *mos = spa->spa_meta_objset; 1379 dmu_buf_t *db; 1380 int error; 1381 1382 ASSERT(vd->vdev_children == 0); 1383 1384 if (smo->smo_object == 0) 1385 return (0); 1386 1387 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1388 return (error); 1389 1390 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1391 bcopy(db->db_data, smo, sizeof (*smo)); 1392 dmu_buf_rele(db, FTAG); 1393 1394 mutex_enter(&vd->vdev_dtl_lock); 1395 error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos); 1396 mutex_exit(&vd->vdev_dtl_lock); 1397 1398 return (error); 1399 } 1400 1401 void 1402 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1403 { 1404 spa_t *spa = vd->vdev_spa; 1405 space_map_obj_t *smo = &vd->vdev_dtl; 1406 space_map_t *sm = &vd->vdev_dtl_map; 1407 objset_t *mos = spa->spa_meta_objset; 1408 space_map_t smsync; 1409 kmutex_t smlock; 1410 dmu_buf_t *db; 1411 dmu_tx_t *tx; 1412 1413 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1414 1415 if (vd->vdev_detached) { 1416 if (smo->smo_object != 0) { 1417 int err = dmu_object_free(mos, smo->smo_object, tx); 1418 ASSERT3U(err, ==, 0); 1419 smo->smo_object = 0; 1420 } 1421 dmu_tx_commit(tx); 1422 return; 1423 } 1424 1425 if (smo->smo_object == 0) { 1426 ASSERT(smo->smo_objsize == 0); 1427 ASSERT(smo->smo_alloc == 0); 1428 smo->smo_object = dmu_object_alloc(mos, 1429 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1430 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1431 ASSERT(smo->smo_object != 0); 1432 vdev_config_dirty(vd->vdev_top); 1433 } 1434 1435 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1436 1437 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1438 &smlock); 1439 1440 mutex_enter(&smlock); 1441 1442 mutex_enter(&vd->vdev_dtl_lock); 1443 space_map_walk(sm, space_map_add, &smsync); 1444 mutex_exit(&vd->vdev_dtl_lock); 1445 1446 space_map_truncate(smo, mos, tx); 1447 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1448 1449 space_map_destroy(&smsync); 1450 1451 mutex_exit(&smlock); 1452 mutex_destroy(&smlock); 1453 1454 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1455 dmu_buf_will_dirty(db, tx); 1456 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1457 bcopy(smo, db->db_data, sizeof (*smo)); 1458 dmu_buf_rele(db, FTAG); 1459 1460 dmu_tx_commit(tx); 1461 } 1462 1463 /* 1464 * Determine if resilver is needed, and if so the txg range. 1465 */ 1466 boolean_t 1467 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1468 { 1469 boolean_t needed = B_FALSE; 1470 uint64_t thismin = UINT64_MAX; 1471 uint64_t thismax = 0; 1472 1473 if (vd->vdev_children == 0) { 1474 mutex_enter(&vd->vdev_dtl_lock); 1475 if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd)) { 1476 space_seg_t *ss; 1477 1478 ss = avl_first(&vd->vdev_dtl_map.sm_root); 1479 thismin = ss->ss_start - 1; 1480 ss = avl_last(&vd->vdev_dtl_map.sm_root); 1481 thismax = ss->ss_end; 1482 needed = B_TRUE; 1483 } 1484 mutex_exit(&vd->vdev_dtl_lock); 1485 } else { 1486 int c; 1487 for (c = 0; c < vd->vdev_children; c++) { 1488 vdev_t *cvd = vd->vdev_child[c]; 1489 uint64_t cmin, cmax; 1490 1491 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1492 thismin = MIN(thismin, cmin); 1493 thismax = MAX(thismax, cmax); 1494 needed = B_TRUE; 1495 } 1496 } 1497 } 1498 1499 if (needed && minp) { 1500 *minp = thismin; 1501 *maxp = thismax; 1502 } 1503 return (needed); 1504 } 1505 1506 void 1507 vdev_load(vdev_t *vd) 1508 { 1509 int c; 1510 1511 /* 1512 * Recursively load all children. 1513 */ 1514 for (c = 0; c < vd->vdev_children; c++) 1515 vdev_load(vd->vdev_child[c]); 1516 1517 /* 1518 * If this is a top-level vdev, initialize its metaslabs. 1519 */ 1520 if (vd == vd->vdev_top && 1521 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1522 vdev_metaslab_init(vd, 0) != 0)) 1523 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1524 VDEV_AUX_CORRUPT_DATA); 1525 1526 /* 1527 * If this is a leaf vdev, load its DTL. 1528 */ 1529 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1530 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1531 VDEV_AUX_CORRUPT_DATA); 1532 } 1533 1534 /* 1535 * The special vdev case is used for hot spares and l2cache devices. Its 1536 * sole purpose it to set the vdev state for the associated vdev. To do this, 1537 * we make sure that we can open the underlying device, then try to read the 1538 * label, and make sure that the label is sane and that it hasn't been 1539 * repurposed to another pool. 1540 */ 1541 int 1542 vdev_validate_aux(vdev_t *vd) 1543 { 1544 nvlist_t *label; 1545 uint64_t guid, version; 1546 uint64_t state; 1547 1548 if (!vdev_readable(vd)) 1549 return (0); 1550 1551 if ((label = vdev_label_read_config(vd)) == NULL) { 1552 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1553 VDEV_AUX_CORRUPT_DATA); 1554 return (-1); 1555 } 1556 1557 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1558 version > SPA_VERSION || 1559 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1560 guid != vd->vdev_guid || 1561 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1562 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1563 VDEV_AUX_CORRUPT_DATA); 1564 nvlist_free(label); 1565 return (-1); 1566 } 1567 1568 /* 1569 * We don't actually check the pool state here. If it's in fact in 1570 * use by another pool, we update this fact on the fly when requested. 1571 */ 1572 nvlist_free(label); 1573 return (0); 1574 } 1575 1576 void 1577 vdev_sync_done(vdev_t *vd, uint64_t txg) 1578 { 1579 metaslab_t *msp; 1580 1581 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1582 metaslab_sync_done(msp, txg); 1583 } 1584 1585 void 1586 vdev_sync(vdev_t *vd, uint64_t txg) 1587 { 1588 spa_t *spa = vd->vdev_spa; 1589 vdev_t *lvd; 1590 metaslab_t *msp; 1591 dmu_tx_t *tx; 1592 1593 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1594 ASSERT(vd == vd->vdev_top); 1595 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1596 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1597 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1598 ASSERT(vd->vdev_ms_array != 0); 1599 vdev_config_dirty(vd); 1600 dmu_tx_commit(tx); 1601 } 1602 1603 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1604 metaslab_sync(msp, txg); 1605 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1606 } 1607 1608 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1609 vdev_dtl_sync(lvd, txg); 1610 1611 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1612 } 1613 1614 uint64_t 1615 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1616 { 1617 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1618 } 1619 1620 /* 1621 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 1622 * not be opened, and no I/O is attempted. 1623 */ 1624 int 1625 vdev_fault(spa_t *spa, uint64_t guid) 1626 { 1627 vdev_t *vd; 1628 1629 spa_vdev_state_enter(spa); 1630 1631 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1632 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1633 1634 if (!vd->vdev_ops->vdev_op_leaf) 1635 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1636 1637 /* 1638 * Faulted state takes precedence over degraded. 1639 */ 1640 vd->vdev_faulted = 1ULL; 1641 vd->vdev_degraded = 0ULL; 1642 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); 1643 1644 /* 1645 * If marking the vdev as faulted cause the top-level vdev to become 1646 * unavailable, then back off and simply mark the vdev as degraded 1647 * instead. 1648 */ 1649 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) { 1650 vd->vdev_degraded = 1ULL; 1651 vd->vdev_faulted = 0ULL; 1652 1653 /* 1654 * If we reopen the device and it's not dead, only then do we 1655 * mark it degraded. 1656 */ 1657 vdev_reopen(vd); 1658 1659 if (vdev_readable(vd)) { 1660 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1661 VDEV_AUX_ERR_EXCEEDED); 1662 } 1663 } 1664 1665 return (spa_vdev_state_exit(spa, vd, 0)); 1666 } 1667 1668 /* 1669 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 1670 * user that something is wrong. The vdev continues to operate as normal as far 1671 * as I/O is concerned. 1672 */ 1673 int 1674 vdev_degrade(spa_t *spa, uint64_t guid) 1675 { 1676 vdev_t *vd; 1677 1678 spa_vdev_state_enter(spa); 1679 1680 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1681 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1682 1683 if (!vd->vdev_ops->vdev_op_leaf) 1684 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1685 1686 /* 1687 * If the vdev is already faulted, then don't do anything. 1688 */ 1689 if (vd->vdev_faulted || vd->vdev_degraded) 1690 return (spa_vdev_state_exit(spa, NULL, 0)); 1691 1692 vd->vdev_degraded = 1ULL; 1693 if (!vdev_is_dead(vd)) 1694 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1695 VDEV_AUX_ERR_EXCEEDED); 1696 1697 return (spa_vdev_state_exit(spa, vd, 0)); 1698 } 1699 1700 /* 1701 * Online the given vdev. If 'unspare' is set, it implies two things. First, 1702 * any attached spare device should be detached when the device finishes 1703 * resilvering. Second, the online should be treated like a 'test' online case, 1704 * so no FMA events are generated if the device fails to open. 1705 */ 1706 int 1707 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 1708 { 1709 vdev_t *vd; 1710 1711 spa_vdev_state_enter(spa); 1712 1713 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1714 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1715 1716 if (!vd->vdev_ops->vdev_op_leaf) 1717 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1718 1719 vd->vdev_offline = B_FALSE; 1720 vd->vdev_tmpoffline = B_FALSE; 1721 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 1722 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 1723 vdev_reopen(vd->vdev_top); 1724 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 1725 1726 if (newstate) 1727 *newstate = vd->vdev_state; 1728 if ((flags & ZFS_ONLINE_UNSPARE) && 1729 !vdev_is_dead(vd) && vd->vdev_parent && 1730 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 1731 vd->vdev_parent->vdev_child[0] == vd) 1732 vd->vdev_unspare = B_TRUE; 1733 1734 (void) spa_vdev_state_exit(spa, vd, 0); 1735 1736 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0); 1737 1738 return (0); 1739 } 1740 1741 int 1742 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 1743 { 1744 vdev_t *vd; 1745 1746 spa_vdev_state_enter(spa); 1747 1748 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1749 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1750 1751 if (!vd->vdev_ops->vdev_op_leaf) 1752 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1753 1754 /* 1755 * If the device isn't already offline, try to offline it. 1756 */ 1757 if (!vd->vdev_offline) { 1758 /* 1759 * If this device's top-level vdev has a non-empty DTL, 1760 * don't allow the device to be offlined. 1761 * 1762 * XXX -- make this more precise by allowing the offline 1763 * as long as the remaining devices don't have any DTL holes. 1764 */ 1765 if (vd->vdev_top->vdev_dtl_map.sm_space != 0) 1766 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 1767 1768 /* 1769 * Offline this device and reopen its top-level vdev. 1770 * If this action results in the top-level vdev becoming 1771 * unusable, undo it and fail the request. 1772 */ 1773 vd->vdev_offline = B_TRUE; 1774 vdev_reopen(vd->vdev_top); 1775 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) { 1776 vd->vdev_offline = B_FALSE; 1777 vdev_reopen(vd->vdev_top); 1778 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 1779 } 1780 } 1781 1782 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 1783 1784 return (spa_vdev_state_exit(spa, vd, 0)); 1785 } 1786 1787 /* 1788 * Clear the error counts associated with this vdev. Unlike vdev_online() and 1789 * vdev_offline(), we assume the spa config is locked. We also clear all 1790 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 1791 */ 1792 void 1793 vdev_clear(spa_t *spa, vdev_t *vd) 1794 { 1795 vdev_t *rvd = spa->spa_root_vdev; 1796 1797 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1798 1799 if (vd == NULL) 1800 vd = rvd; 1801 1802 vd->vdev_stat.vs_read_errors = 0; 1803 vd->vdev_stat.vs_write_errors = 0; 1804 vd->vdev_stat.vs_checksum_errors = 0; 1805 1806 for (int c = 0; c < vd->vdev_children; c++) 1807 vdev_clear(spa, vd->vdev_child[c]); 1808 1809 /* 1810 * If we're in the FAULTED state or have experienced failed I/O, then 1811 * clear the persistent state and attempt to reopen the device. We 1812 * also mark the vdev config dirty, so that the new faulted state is 1813 * written out to disk. 1814 */ 1815 if (vd->vdev_faulted || vd->vdev_degraded || 1816 !vdev_readable(vd) || !vdev_writeable(vd)) { 1817 1818 vd->vdev_faulted = vd->vdev_degraded = 0; 1819 vd->vdev_cant_read = B_FALSE; 1820 vd->vdev_cant_write = B_FALSE; 1821 1822 vdev_reopen(vd); 1823 1824 if (vd != rvd) 1825 vdev_state_dirty(vd->vdev_top); 1826 1827 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 1828 spa_async_request(spa, SPA_ASYNC_RESILVER); 1829 1830 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 1831 } 1832 } 1833 1834 boolean_t 1835 vdev_is_dead(vdev_t *vd) 1836 { 1837 return (vd->vdev_state < VDEV_STATE_DEGRADED); 1838 } 1839 1840 boolean_t 1841 vdev_readable(vdev_t *vd) 1842 { 1843 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 1844 } 1845 1846 boolean_t 1847 vdev_writeable(vdev_t *vd) 1848 { 1849 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 1850 } 1851 1852 boolean_t 1853 vdev_accessible(vdev_t *vd, zio_t *zio) 1854 { 1855 ASSERT(zio->io_vd == vd); 1856 1857 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 1858 return (B_FALSE); 1859 1860 if (zio->io_type == ZIO_TYPE_READ) 1861 return (!vd->vdev_cant_read); 1862 1863 if (zio->io_type == ZIO_TYPE_WRITE) 1864 return (!vd->vdev_cant_write); 1865 1866 return (B_TRUE); 1867 } 1868 1869 /* 1870 * Get statistics for the given vdev. 1871 */ 1872 void 1873 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 1874 { 1875 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1876 1877 mutex_enter(&vd->vdev_stat_lock); 1878 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 1879 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; 1880 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 1881 vs->vs_state = vd->vdev_state; 1882 vs->vs_rsize = vdev_get_rsize(vd); 1883 mutex_exit(&vd->vdev_stat_lock); 1884 1885 /* 1886 * If we're getting stats on the root vdev, aggregate the I/O counts 1887 * over all top-level vdevs (i.e. the direct children of the root). 1888 */ 1889 if (vd == rvd) { 1890 for (int c = 0; c < rvd->vdev_children; c++) { 1891 vdev_t *cvd = rvd->vdev_child[c]; 1892 vdev_stat_t *cvs = &cvd->vdev_stat; 1893 1894 mutex_enter(&vd->vdev_stat_lock); 1895 for (int t = 0; t < ZIO_TYPES; t++) { 1896 vs->vs_ops[t] += cvs->vs_ops[t]; 1897 vs->vs_bytes[t] += cvs->vs_bytes[t]; 1898 } 1899 vs->vs_scrub_examined += cvs->vs_scrub_examined; 1900 mutex_exit(&vd->vdev_stat_lock); 1901 } 1902 } 1903 } 1904 1905 void 1906 vdev_clear_stats(vdev_t *vd) 1907 { 1908 mutex_enter(&vd->vdev_stat_lock); 1909 vd->vdev_stat.vs_space = 0; 1910 vd->vdev_stat.vs_dspace = 0; 1911 vd->vdev_stat.vs_alloc = 0; 1912 mutex_exit(&vd->vdev_stat_lock); 1913 } 1914 1915 void 1916 vdev_stat_update(zio_t *zio, uint64_t psize) 1917 { 1918 vdev_t *rvd = zio->io_spa->spa_root_vdev; 1919 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 1920 vdev_t *pvd; 1921 uint64_t txg = zio->io_txg; 1922 vdev_stat_t *vs = &vd->vdev_stat; 1923 zio_type_t type = zio->io_type; 1924 int flags = zio->io_flags; 1925 1926 /* 1927 * If this i/o is a gang leader, it didn't do any actual work. 1928 */ 1929 if (zio->io_gang_tree) 1930 return; 1931 1932 if (zio->io_error == 0) { 1933 /* 1934 * If this is a root i/o, don't count it -- we've already 1935 * counted the top-level vdevs, and vdev_get_stats() will 1936 * aggregate them when asked. This reduces contention on 1937 * the root vdev_stat_lock and implicitly handles blocks 1938 * that compress away to holes, for which there is no i/o. 1939 * (Holes never create vdev children, so all the counters 1940 * remain zero, which is what we want.) 1941 * 1942 * Note: this only applies to successful i/o (io_error == 0) 1943 * because unlike i/o counts, errors are not additive. 1944 * When reading a ditto block, for example, failure of 1945 * one top-level vdev does not imply a root-level error. 1946 */ 1947 if (vd == rvd) 1948 return; 1949 1950 ASSERT(vd == zio->io_vd); 1951 if (!(flags & ZIO_FLAG_IO_BYPASS)) { 1952 mutex_enter(&vd->vdev_stat_lock); 1953 vs->vs_ops[type]++; 1954 vs->vs_bytes[type] += psize; 1955 mutex_exit(&vd->vdev_stat_lock); 1956 } 1957 if (flags & ZIO_FLAG_IO_REPAIR) { 1958 ASSERT(zio->io_delegate_list == NULL); 1959 mutex_enter(&vd->vdev_stat_lock); 1960 if (flags & ZIO_FLAG_SCRUB_THREAD) 1961 vs->vs_scrub_repaired += psize; 1962 else 1963 vs->vs_self_healed += psize; 1964 mutex_exit(&vd->vdev_stat_lock); 1965 } 1966 return; 1967 } 1968 1969 if (flags & ZIO_FLAG_SPECULATIVE) 1970 return; 1971 1972 mutex_enter(&vd->vdev_stat_lock); 1973 if (type == ZIO_TYPE_READ) { 1974 if (zio->io_error == ECKSUM) 1975 vs->vs_checksum_errors++; 1976 else 1977 vs->vs_read_errors++; 1978 } 1979 if (type == ZIO_TYPE_WRITE) 1980 vs->vs_write_errors++; 1981 mutex_exit(&vd->vdev_stat_lock); 1982 1983 if (type == ZIO_TYPE_WRITE && txg != 0 && vd->vdev_children == 0) { 1984 if (flags & ZIO_FLAG_SCRUB_THREAD) { 1985 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 1986 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1987 vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); 1988 } 1989 if (!(flags & ZIO_FLAG_IO_REPAIR)) { 1990 if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) 1991 return; 1992 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1993 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1994 vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); 1995 } 1996 } 1997 } 1998 1999 void 2000 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 2001 { 2002 int c; 2003 vdev_stat_t *vs = &vd->vdev_stat; 2004 2005 for (c = 0; c < vd->vdev_children; c++) 2006 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 2007 2008 mutex_enter(&vd->vdev_stat_lock); 2009 2010 if (type == POOL_SCRUB_NONE) { 2011 /* 2012 * Update completion and end time. Leave everything else alone 2013 * so we can report what happened during the previous scrub. 2014 */ 2015 vs->vs_scrub_complete = complete; 2016 vs->vs_scrub_end = gethrestime_sec(); 2017 } else { 2018 vs->vs_scrub_type = type; 2019 vs->vs_scrub_complete = 0; 2020 vs->vs_scrub_examined = 0; 2021 vs->vs_scrub_repaired = 0; 2022 vs->vs_scrub_start = gethrestime_sec(); 2023 vs->vs_scrub_end = 0; 2024 } 2025 2026 mutex_exit(&vd->vdev_stat_lock); 2027 } 2028 2029 /* 2030 * Update the in-core space usage stats for this vdev and the root vdev. 2031 */ 2032 void 2033 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta, 2034 boolean_t update_root) 2035 { 2036 int64_t dspace_delta = space_delta; 2037 spa_t *spa = vd->vdev_spa; 2038 vdev_t *rvd = spa->spa_root_vdev; 2039 2040 ASSERT(vd == vd->vdev_top); 2041 2042 /* 2043 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2044 * factor. We must calculate this here and not at the root vdev 2045 * because the root vdev's psize-to-asize is simply the max of its 2046 * childrens', thus not accurate enough for us. 2047 */ 2048 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2049 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2050 vd->vdev_deflate_ratio; 2051 2052 mutex_enter(&vd->vdev_stat_lock); 2053 vd->vdev_stat.vs_space += space_delta; 2054 vd->vdev_stat.vs_alloc += alloc_delta; 2055 vd->vdev_stat.vs_dspace += dspace_delta; 2056 mutex_exit(&vd->vdev_stat_lock); 2057 2058 if (update_root) { 2059 ASSERT(rvd == vd->vdev_parent); 2060 ASSERT(vd->vdev_ms_count != 0); 2061 2062 /* 2063 * Don't count non-normal (e.g. intent log) space as part of 2064 * the pool's capacity. 2065 */ 2066 if (vd->vdev_mg->mg_class != spa->spa_normal_class) 2067 return; 2068 2069 mutex_enter(&rvd->vdev_stat_lock); 2070 rvd->vdev_stat.vs_space += space_delta; 2071 rvd->vdev_stat.vs_alloc += alloc_delta; 2072 rvd->vdev_stat.vs_dspace += dspace_delta; 2073 mutex_exit(&rvd->vdev_stat_lock); 2074 } 2075 } 2076 2077 /* 2078 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2079 * so that it will be written out next time the vdev configuration is synced. 2080 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2081 */ 2082 void 2083 vdev_config_dirty(vdev_t *vd) 2084 { 2085 spa_t *spa = vd->vdev_spa; 2086 vdev_t *rvd = spa->spa_root_vdev; 2087 int c; 2088 2089 /* 2090 * If this is an aux vdev (as with l2cache devices), then we update the 2091 * vdev config manually and set the sync flag. 2092 */ 2093 if (vd->vdev_aux != NULL) { 2094 spa_aux_vdev_t *sav = vd->vdev_aux; 2095 nvlist_t **aux; 2096 uint_t naux; 2097 2098 for (c = 0; c < sav->sav_count; c++) { 2099 if (sav->sav_vdevs[c] == vd) 2100 break; 2101 } 2102 2103 if (c == sav->sav_count) { 2104 /* 2105 * We're being removed. There's nothing more to do. 2106 */ 2107 ASSERT(sav->sav_sync == B_TRUE); 2108 return; 2109 } 2110 2111 sav->sav_sync = B_TRUE; 2112 2113 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2114 ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0); 2115 2116 ASSERT(c < naux); 2117 2118 /* 2119 * Setting the nvlist in the middle if the array is a little 2120 * sketchy, but it will work. 2121 */ 2122 nvlist_free(aux[c]); 2123 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); 2124 2125 return; 2126 } 2127 2128 /* 2129 * The dirty list is protected by the SCL_CONFIG lock. The caller 2130 * must either hold SCL_CONFIG as writer, or must be the sync thread 2131 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2132 * so this is sufficient to ensure mutual exclusion. 2133 */ 2134 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2135 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2136 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2137 2138 if (vd == rvd) { 2139 for (c = 0; c < rvd->vdev_children; c++) 2140 vdev_config_dirty(rvd->vdev_child[c]); 2141 } else { 2142 ASSERT(vd == vd->vdev_top); 2143 2144 if (!list_link_active(&vd->vdev_config_dirty_node)) 2145 list_insert_head(&spa->spa_config_dirty_list, vd); 2146 } 2147 } 2148 2149 void 2150 vdev_config_clean(vdev_t *vd) 2151 { 2152 spa_t *spa = vd->vdev_spa; 2153 2154 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2155 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2156 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2157 2158 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2159 list_remove(&spa->spa_config_dirty_list, vd); 2160 } 2161 2162 /* 2163 * Mark a top-level vdev's state as dirty, so that the next pass of 2164 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2165 * the state changes from larger config changes because they require 2166 * much less locking, and are often needed for administrative actions. 2167 */ 2168 void 2169 vdev_state_dirty(vdev_t *vd) 2170 { 2171 spa_t *spa = vd->vdev_spa; 2172 2173 ASSERT(vd == vd->vdev_top); 2174 2175 /* 2176 * The state list is protected by the SCL_STATE lock. The caller 2177 * must either hold SCL_STATE as writer, or must be the sync thread 2178 * (which holds SCL_STATE as reader). There's only one sync thread, 2179 * so this is sufficient to ensure mutual exclusion. 2180 */ 2181 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2182 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2183 spa_config_held(spa, SCL_STATE, RW_READER))); 2184 2185 if (!list_link_active(&vd->vdev_state_dirty_node)) 2186 list_insert_head(&spa->spa_state_dirty_list, vd); 2187 } 2188 2189 void 2190 vdev_state_clean(vdev_t *vd) 2191 { 2192 spa_t *spa = vd->vdev_spa; 2193 2194 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2195 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2196 spa_config_held(spa, SCL_STATE, RW_READER))); 2197 2198 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2199 list_remove(&spa->spa_state_dirty_list, vd); 2200 } 2201 2202 /* 2203 * Propagate vdev state up from children to parent. 2204 */ 2205 void 2206 vdev_propagate_state(vdev_t *vd) 2207 { 2208 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2209 int degraded = 0, faulted = 0; 2210 int corrupted = 0; 2211 int c; 2212 vdev_t *child; 2213 2214 if (vd->vdev_children > 0) { 2215 for (c = 0; c < vd->vdev_children; c++) { 2216 child = vd->vdev_child[c]; 2217 2218 if (!vdev_readable(child) || 2219 (!vdev_writeable(child) && (spa_mode & FWRITE))) { 2220 /* 2221 * Root special: if there is a top-level log 2222 * device, treat the root vdev as if it were 2223 * degraded. 2224 */ 2225 if (child->vdev_islog && vd == rvd) 2226 degraded++; 2227 else 2228 faulted++; 2229 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2230 degraded++; 2231 } 2232 2233 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2234 corrupted++; 2235 } 2236 2237 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2238 2239 /* 2240 * Root special: if there is a top-level vdev that cannot be 2241 * opened due to corrupted metadata, then propagate the root 2242 * vdev's aux state as 'corrupt' rather than 'insufficient 2243 * replicas'. 2244 */ 2245 if (corrupted && vd == rvd && 2246 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2247 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2248 VDEV_AUX_CORRUPT_DATA); 2249 } 2250 2251 if (vd->vdev_parent) 2252 vdev_propagate_state(vd->vdev_parent); 2253 } 2254 2255 /* 2256 * Set a vdev's state. If this is during an open, we don't update the parent 2257 * state, because we're in the process of opening children depth-first. 2258 * Otherwise, we propagate the change to the parent. 2259 * 2260 * If this routine places a device in a faulted state, an appropriate ereport is 2261 * generated. 2262 */ 2263 void 2264 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2265 { 2266 uint64_t save_state; 2267 spa_t *spa = vd->vdev_spa; 2268 2269 if (state == vd->vdev_state) { 2270 vd->vdev_stat.vs_aux = aux; 2271 return; 2272 } 2273 2274 save_state = vd->vdev_state; 2275 2276 vd->vdev_state = state; 2277 vd->vdev_stat.vs_aux = aux; 2278 2279 /* 2280 * If we are setting the vdev state to anything but an open state, then 2281 * always close the underlying device. Otherwise, we keep accessible 2282 * but invalid devices open forever. We don't call vdev_close() itself, 2283 * because that implies some extra checks (offline, etc) that we don't 2284 * want here. This is limited to leaf devices, because otherwise 2285 * closing the device will affect other children. 2286 */ 2287 if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) 2288 vd->vdev_ops->vdev_op_close(vd); 2289 2290 if (vd->vdev_removed && 2291 state == VDEV_STATE_CANT_OPEN && 2292 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2293 /* 2294 * If the previous state is set to VDEV_STATE_REMOVED, then this 2295 * device was previously marked removed and someone attempted to 2296 * reopen it. If this failed due to a nonexistent device, then 2297 * keep the device in the REMOVED state. We also let this be if 2298 * it is one of our special test online cases, which is only 2299 * attempting to online the device and shouldn't generate an FMA 2300 * fault. 2301 */ 2302 vd->vdev_state = VDEV_STATE_REMOVED; 2303 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2304 } else if (state == VDEV_STATE_REMOVED) { 2305 /* 2306 * Indicate to the ZFS DE that this device has been removed, and 2307 * any recent errors should be ignored. 2308 */ 2309 zfs_post_remove(spa, vd); 2310 vd->vdev_removed = B_TRUE; 2311 } else if (state == VDEV_STATE_CANT_OPEN) { 2312 /* 2313 * If we fail to open a vdev during an import, we mark it as 2314 * "not available", which signifies that it was never there to 2315 * begin with. Failure to open such a device is not considered 2316 * an error. 2317 */ 2318 if (spa->spa_load_state == SPA_LOAD_IMPORT && 2319 !spa->spa_import_faulted && 2320 vd->vdev_ops->vdev_op_leaf) 2321 vd->vdev_not_present = 1; 2322 2323 /* 2324 * Post the appropriate ereport. If the 'prevstate' field is 2325 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2326 * that this is part of a vdev_reopen(). In this case, we don't 2327 * want to post the ereport if the device was already in the 2328 * CANT_OPEN state beforehand. 2329 * 2330 * If the 'checkremove' flag is set, then this is an attempt to 2331 * online the device in response to an insertion event. If we 2332 * hit this case, then we have detected an insertion event for a 2333 * faulted or offline device that wasn't in the removed state. 2334 * In this scenario, we don't post an ereport because we are 2335 * about to replace the device, or attempt an online with 2336 * vdev_forcefault, which will generate the fault for us. 2337 */ 2338 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2339 !vd->vdev_not_present && !vd->vdev_checkremove && 2340 vd != spa->spa_root_vdev) { 2341 const char *class; 2342 2343 switch (aux) { 2344 case VDEV_AUX_OPEN_FAILED: 2345 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2346 break; 2347 case VDEV_AUX_CORRUPT_DATA: 2348 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2349 break; 2350 case VDEV_AUX_NO_REPLICAS: 2351 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2352 break; 2353 case VDEV_AUX_BAD_GUID_SUM: 2354 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2355 break; 2356 case VDEV_AUX_TOO_SMALL: 2357 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2358 break; 2359 case VDEV_AUX_BAD_LABEL: 2360 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2361 break; 2362 case VDEV_AUX_IO_FAILURE: 2363 class = FM_EREPORT_ZFS_IO_FAILURE; 2364 break; 2365 default: 2366 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2367 } 2368 2369 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 2370 } 2371 2372 /* Erase any notion of persistent removed state */ 2373 vd->vdev_removed = B_FALSE; 2374 } else { 2375 vd->vdev_removed = B_FALSE; 2376 } 2377 2378 if (!isopen) 2379 vdev_propagate_state(vd); 2380 } 2381 2382 /* 2383 * Check the vdev configuration to ensure that it's capable of supporting 2384 * a root pool. Currently, we do not support RAID-Z or partial configuration. 2385 * In addition, only a single top-level vdev is allowed and none of the leaves 2386 * can be wholedisks. 2387 */ 2388 boolean_t 2389 vdev_is_bootable(vdev_t *vd) 2390 { 2391 int c; 2392 2393 if (!vd->vdev_ops->vdev_op_leaf) { 2394 char *vdev_type = vd->vdev_ops->vdev_op_type; 2395 2396 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 2397 vd->vdev_children > 1) { 2398 return (B_FALSE); 2399 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 2400 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 2401 return (B_FALSE); 2402 } 2403 } else if (vd->vdev_wholedisk == 1) { 2404 return (B_FALSE); 2405 } 2406 2407 for (c = 0; c < vd->vdev_children; c++) { 2408 if (!vdev_is_bootable(vd->vdev_child[c])) 2409 return (B_FALSE); 2410 } 2411 return (B_TRUE); 2412 } 2413