1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/fm/fs/zfs.h> 32 #include <sys/spa.h> 33 #include <sys/spa_impl.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/uberblock_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/metaslab_impl.h> 40 #include <sys/space_map.h> 41 #include <sys/space_reftree.h> 42 #include <sys/zio.h> 43 #include <sys/zap.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/arc.h> 46 #include <sys/zil.h> 47 #include <sys/dsl_scan.h> 48 49 /* 50 * Virtual device management. 51 */ 52 53 static vdev_ops_t *vdev_ops_table[] = { 54 &vdev_root_ops, 55 &vdev_raidz_ops, 56 &vdev_mirror_ops, 57 &vdev_replacing_ops, 58 &vdev_spare_ops, 59 &vdev_disk_ops, 60 &vdev_file_ops, 61 &vdev_missing_ops, 62 &vdev_hole_ops, 63 NULL 64 }; 65 66 /* maximum scrub/resilver I/O queue per leaf vdev */ 67 int zfs_scrub_limit = 10; 68 69 /* 70 * When a vdev is added, it will be divided into approximately (but no 71 * more than) this number of metaslabs. 72 */ 73 int metaslabs_per_vdev = 200; 74 75 /* 76 * Given a vdev type, return the appropriate ops vector. 77 */ 78 static vdev_ops_t * 79 vdev_getops(const char *type) 80 { 81 vdev_ops_t *ops, **opspp; 82 83 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 84 if (strcmp(ops->vdev_op_type, type) == 0) 85 break; 86 87 return (ops); 88 } 89 90 /* 91 * Default asize function: return the MAX of psize with the asize of 92 * all children. This is what's used by anything other than RAID-Z. 93 */ 94 uint64_t 95 vdev_default_asize(vdev_t *vd, uint64_t psize) 96 { 97 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 98 uint64_t csize; 99 100 for (int c = 0; c < vd->vdev_children; c++) { 101 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 102 asize = MAX(asize, csize); 103 } 104 105 return (asize); 106 } 107 108 /* 109 * Get the minimum allocatable size. We define the allocatable size as 110 * the vdev's asize rounded to the nearest metaslab. This allows us to 111 * replace or attach devices which don't have the same physical size but 112 * can still satisfy the same number of allocations. 113 */ 114 uint64_t 115 vdev_get_min_asize(vdev_t *vd) 116 { 117 vdev_t *pvd = vd->vdev_parent; 118 119 /* 120 * If our parent is NULL (inactive spare or cache) or is the root, 121 * just return our own asize. 122 */ 123 if (pvd == NULL) 124 return (vd->vdev_asize); 125 126 /* 127 * The top-level vdev just returns the allocatable size rounded 128 * to the nearest metaslab. 129 */ 130 if (vd == vd->vdev_top) 131 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 132 133 /* 134 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 135 * so each child must provide at least 1/Nth of its asize. 136 */ 137 if (pvd->vdev_ops == &vdev_raidz_ops) 138 return (pvd->vdev_min_asize / pvd->vdev_children); 139 140 return (pvd->vdev_min_asize); 141 } 142 143 void 144 vdev_set_min_asize(vdev_t *vd) 145 { 146 vd->vdev_min_asize = vdev_get_min_asize(vd); 147 148 for (int c = 0; c < vd->vdev_children; c++) 149 vdev_set_min_asize(vd->vdev_child[c]); 150 } 151 152 vdev_t * 153 vdev_lookup_top(spa_t *spa, uint64_t vdev) 154 { 155 vdev_t *rvd = spa->spa_root_vdev; 156 157 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 158 159 if (vdev < rvd->vdev_children) { 160 ASSERT(rvd->vdev_child[vdev] != NULL); 161 return (rvd->vdev_child[vdev]); 162 } 163 164 return (NULL); 165 } 166 167 vdev_t * 168 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 169 { 170 vdev_t *mvd; 171 172 if (vd->vdev_guid == guid) 173 return (vd); 174 175 for (int c = 0; c < vd->vdev_children; c++) 176 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 177 NULL) 178 return (mvd); 179 180 return (NULL); 181 } 182 183 static int 184 vdev_count_leaves_impl(vdev_t *vd) 185 { 186 int n = 0; 187 188 if (vd->vdev_ops->vdev_op_leaf) 189 return (1); 190 191 for (int c = 0; c < vd->vdev_children; c++) 192 n += vdev_count_leaves_impl(vd->vdev_child[c]); 193 194 return (n); 195 } 196 197 int 198 vdev_count_leaves(spa_t *spa) 199 { 200 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 201 } 202 203 void 204 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 205 { 206 size_t oldsize, newsize; 207 uint64_t id = cvd->vdev_id; 208 vdev_t **newchild; 209 spa_t *spa = cvd->vdev_spa; 210 211 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 212 ASSERT(cvd->vdev_parent == NULL); 213 214 cvd->vdev_parent = pvd; 215 216 if (pvd == NULL) 217 return; 218 219 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 220 221 oldsize = pvd->vdev_children * sizeof (vdev_t *); 222 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 223 newsize = pvd->vdev_children * sizeof (vdev_t *); 224 225 newchild = kmem_zalloc(newsize, KM_SLEEP); 226 if (pvd->vdev_child != NULL) { 227 bcopy(pvd->vdev_child, newchild, oldsize); 228 kmem_free(pvd->vdev_child, oldsize); 229 } 230 231 pvd->vdev_child = newchild; 232 pvd->vdev_child[id] = cvd; 233 234 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 235 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 236 237 /* 238 * Walk up all ancestors to update guid sum. 239 */ 240 for (; pvd != NULL; pvd = pvd->vdev_parent) 241 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 242 } 243 244 void 245 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 246 { 247 int c; 248 uint_t id = cvd->vdev_id; 249 250 ASSERT(cvd->vdev_parent == pvd); 251 252 if (pvd == NULL) 253 return; 254 255 ASSERT(id < pvd->vdev_children); 256 ASSERT(pvd->vdev_child[id] == cvd); 257 258 pvd->vdev_child[id] = NULL; 259 cvd->vdev_parent = NULL; 260 261 for (c = 0; c < pvd->vdev_children; c++) 262 if (pvd->vdev_child[c]) 263 break; 264 265 if (c == pvd->vdev_children) { 266 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 267 pvd->vdev_child = NULL; 268 pvd->vdev_children = 0; 269 } 270 271 /* 272 * Walk up all ancestors to update guid sum. 273 */ 274 for (; pvd != NULL; pvd = pvd->vdev_parent) 275 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 276 } 277 278 /* 279 * Remove any holes in the child array. 280 */ 281 void 282 vdev_compact_children(vdev_t *pvd) 283 { 284 vdev_t **newchild, *cvd; 285 int oldc = pvd->vdev_children; 286 int newc; 287 288 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 289 290 for (int c = newc = 0; c < oldc; c++) 291 if (pvd->vdev_child[c]) 292 newc++; 293 294 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 295 296 for (int c = newc = 0; c < oldc; c++) { 297 if ((cvd = pvd->vdev_child[c]) != NULL) { 298 newchild[newc] = cvd; 299 cvd->vdev_id = newc++; 300 } 301 } 302 303 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 304 pvd->vdev_child = newchild; 305 pvd->vdev_children = newc; 306 } 307 308 /* 309 * Allocate and minimally initialize a vdev_t. 310 */ 311 vdev_t * 312 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 313 { 314 vdev_t *vd; 315 316 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 317 318 if (spa->spa_root_vdev == NULL) { 319 ASSERT(ops == &vdev_root_ops); 320 spa->spa_root_vdev = vd; 321 spa->spa_load_guid = spa_generate_guid(NULL); 322 } 323 324 if (guid == 0 && ops != &vdev_hole_ops) { 325 if (spa->spa_root_vdev == vd) { 326 /* 327 * The root vdev's guid will also be the pool guid, 328 * which must be unique among all pools. 329 */ 330 guid = spa_generate_guid(NULL); 331 } else { 332 /* 333 * Any other vdev's guid must be unique within the pool. 334 */ 335 guid = spa_generate_guid(spa); 336 } 337 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 338 } 339 340 vd->vdev_spa = spa; 341 vd->vdev_id = id; 342 vd->vdev_guid = guid; 343 vd->vdev_guid_sum = guid; 344 vd->vdev_ops = ops; 345 vd->vdev_state = VDEV_STATE_CLOSED; 346 vd->vdev_ishole = (ops == &vdev_hole_ops); 347 348 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 349 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 350 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 351 for (int t = 0; t < DTL_TYPES; t++) { 352 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 353 &vd->vdev_dtl_lock); 354 } 355 txg_list_create(&vd->vdev_ms_list, 356 offsetof(struct metaslab, ms_txg_node)); 357 txg_list_create(&vd->vdev_dtl_list, 358 offsetof(struct vdev, vdev_dtl_node)); 359 vd->vdev_stat.vs_timestamp = gethrtime(); 360 vdev_queue_init(vd); 361 vdev_cache_init(vd); 362 363 return (vd); 364 } 365 366 /* 367 * Allocate a new vdev. The 'alloctype' is used to control whether we are 368 * creating a new vdev or loading an existing one - the behavior is slightly 369 * different for each case. 370 */ 371 int 372 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 373 int alloctype) 374 { 375 vdev_ops_t *ops; 376 char *type; 377 uint64_t guid = 0, islog, nparity; 378 vdev_t *vd; 379 380 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 381 382 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 383 return (SET_ERROR(EINVAL)); 384 385 if ((ops = vdev_getops(type)) == NULL) 386 return (SET_ERROR(EINVAL)); 387 388 /* 389 * If this is a load, get the vdev guid from the nvlist. 390 * Otherwise, vdev_alloc_common() will generate one for us. 391 */ 392 if (alloctype == VDEV_ALLOC_LOAD) { 393 uint64_t label_id; 394 395 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 396 label_id != id) 397 return (SET_ERROR(EINVAL)); 398 399 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 400 return (SET_ERROR(EINVAL)); 401 } else if (alloctype == VDEV_ALLOC_SPARE) { 402 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 403 return (SET_ERROR(EINVAL)); 404 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 406 return (SET_ERROR(EINVAL)); 407 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 408 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 409 return (SET_ERROR(EINVAL)); 410 } 411 412 /* 413 * The first allocated vdev must be of type 'root'. 414 */ 415 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 416 return (SET_ERROR(EINVAL)); 417 418 /* 419 * Determine whether we're a log vdev. 420 */ 421 islog = 0; 422 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 423 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 424 return (SET_ERROR(ENOTSUP)); 425 426 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 427 return (SET_ERROR(ENOTSUP)); 428 429 /* 430 * Set the nparity property for RAID-Z vdevs. 431 */ 432 nparity = -1ULL; 433 if (ops == &vdev_raidz_ops) { 434 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 435 &nparity) == 0) { 436 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 437 return (SET_ERROR(EINVAL)); 438 /* 439 * Previous versions could only support 1 or 2 parity 440 * device. 441 */ 442 if (nparity > 1 && 443 spa_version(spa) < SPA_VERSION_RAIDZ2) 444 return (SET_ERROR(ENOTSUP)); 445 if (nparity > 2 && 446 spa_version(spa) < SPA_VERSION_RAIDZ3) 447 return (SET_ERROR(ENOTSUP)); 448 } else { 449 /* 450 * We require the parity to be specified for SPAs that 451 * support multiple parity levels. 452 */ 453 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 454 return (SET_ERROR(EINVAL)); 455 /* 456 * Otherwise, we default to 1 parity device for RAID-Z. 457 */ 458 nparity = 1; 459 } 460 } else { 461 nparity = 0; 462 } 463 ASSERT(nparity != -1ULL); 464 465 vd = vdev_alloc_common(spa, id, guid, ops); 466 467 vd->vdev_islog = islog; 468 vd->vdev_nparity = nparity; 469 470 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 471 vd->vdev_path = spa_strdup(vd->vdev_path); 472 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 473 vd->vdev_devid = spa_strdup(vd->vdev_devid); 474 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 475 &vd->vdev_physpath) == 0) 476 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 477 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 478 vd->vdev_fru = spa_strdup(vd->vdev_fru); 479 480 /* 481 * Set the whole_disk property. If it's not specified, leave the value 482 * as -1. 483 */ 484 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 485 &vd->vdev_wholedisk) != 0) 486 vd->vdev_wholedisk = -1ULL; 487 488 /* 489 * Look for the 'not present' flag. This will only be set if the device 490 * was not present at the time of import. 491 */ 492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 493 &vd->vdev_not_present); 494 495 /* 496 * Get the alignment requirement. 497 */ 498 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 499 500 /* 501 * Retrieve the vdev creation time. 502 */ 503 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 504 &vd->vdev_crtxg); 505 506 /* 507 * If we're a top-level vdev, try to load the allocation parameters. 508 */ 509 if (parent && !parent->vdev_parent && 510 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 511 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 512 &vd->vdev_ms_array); 513 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 514 &vd->vdev_ms_shift); 515 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 516 &vd->vdev_asize); 517 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 518 &vd->vdev_removing); 519 } 520 521 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 522 ASSERT(alloctype == VDEV_ALLOC_LOAD || 523 alloctype == VDEV_ALLOC_ADD || 524 alloctype == VDEV_ALLOC_SPLIT || 525 alloctype == VDEV_ALLOC_ROOTPOOL); 526 vd->vdev_mg = metaslab_group_create(islog ? 527 spa_log_class(spa) : spa_normal_class(spa), vd); 528 } 529 530 /* 531 * If we're a leaf vdev, try to load the DTL object and other state. 532 */ 533 if (vd->vdev_ops->vdev_op_leaf && 534 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 535 alloctype == VDEV_ALLOC_ROOTPOOL)) { 536 if (alloctype == VDEV_ALLOC_LOAD) { 537 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 538 &vd->vdev_dtl_object); 539 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 540 &vd->vdev_unspare); 541 } 542 543 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 544 uint64_t spare = 0; 545 546 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 547 &spare) == 0 && spare) 548 spa_spare_add(vd); 549 } 550 551 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 552 &vd->vdev_offline); 553 554 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 555 &vd->vdev_resilver_txg); 556 557 /* 558 * When importing a pool, we want to ignore the persistent fault 559 * state, as the diagnosis made on another system may not be 560 * valid in the current context. Local vdevs will 561 * remain in the faulted state. 562 */ 563 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 564 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 565 &vd->vdev_faulted); 566 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 567 &vd->vdev_degraded); 568 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 569 &vd->vdev_removed); 570 571 if (vd->vdev_faulted || vd->vdev_degraded) { 572 char *aux; 573 574 vd->vdev_label_aux = 575 VDEV_AUX_ERR_EXCEEDED; 576 if (nvlist_lookup_string(nv, 577 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 578 strcmp(aux, "external") == 0) 579 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 580 } 581 } 582 } 583 584 /* 585 * Add ourselves to the parent's list of children. 586 */ 587 vdev_add_child(parent, vd); 588 589 *vdp = vd; 590 591 return (0); 592 } 593 594 void 595 vdev_free(vdev_t *vd) 596 { 597 spa_t *spa = vd->vdev_spa; 598 599 /* 600 * vdev_free() implies closing the vdev first. This is simpler than 601 * trying to ensure complicated semantics for all callers. 602 */ 603 vdev_close(vd); 604 605 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 606 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 607 608 /* 609 * Free all children. 610 */ 611 for (int c = 0; c < vd->vdev_children; c++) 612 vdev_free(vd->vdev_child[c]); 613 614 ASSERT(vd->vdev_child == NULL); 615 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 616 617 /* 618 * Discard allocation state. 619 */ 620 if (vd->vdev_mg != NULL) { 621 vdev_metaslab_fini(vd); 622 metaslab_group_destroy(vd->vdev_mg); 623 } 624 625 ASSERT0(vd->vdev_stat.vs_space); 626 ASSERT0(vd->vdev_stat.vs_dspace); 627 ASSERT0(vd->vdev_stat.vs_alloc); 628 629 /* 630 * Remove this vdev from its parent's child list. 631 */ 632 vdev_remove_child(vd->vdev_parent, vd); 633 634 ASSERT(vd->vdev_parent == NULL); 635 636 /* 637 * Clean up vdev structure. 638 */ 639 vdev_queue_fini(vd); 640 vdev_cache_fini(vd); 641 642 if (vd->vdev_path) 643 spa_strfree(vd->vdev_path); 644 if (vd->vdev_devid) 645 spa_strfree(vd->vdev_devid); 646 if (vd->vdev_physpath) 647 spa_strfree(vd->vdev_physpath); 648 if (vd->vdev_fru) 649 spa_strfree(vd->vdev_fru); 650 651 if (vd->vdev_isspare) 652 spa_spare_remove(vd); 653 if (vd->vdev_isl2cache) 654 spa_l2cache_remove(vd); 655 656 txg_list_destroy(&vd->vdev_ms_list); 657 txg_list_destroy(&vd->vdev_dtl_list); 658 659 mutex_enter(&vd->vdev_dtl_lock); 660 space_map_close(vd->vdev_dtl_sm); 661 for (int t = 0; t < DTL_TYPES; t++) { 662 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 663 range_tree_destroy(vd->vdev_dtl[t]); 664 } 665 mutex_exit(&vd->vdev_dtl_lock); 666 667 mutex_destroy(&vd->vdev_dtl_lock); 668 mutex_destroy(&vd->vdev_stat_lock); 669 mutex_destroy(&vd->vdev_probe_lock); 670 671 if (vd == spa->spa_root_vdev) 672 spa->spa_root_vdev = NULL; 673 674 kmem_free(vd, sizeof (vdev_t)); 675 } 676 677 /* 678 * Transfer top-level vdev state from svd to tvd. 679 */ 680 static void 681 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 682 { 683 spa_t *spa = svd->vdev_spa; 684 metaslab_t *msp; 685 vdev_t *vd; 686 int t; 687 688 ASSERT(tvd == tvd->vdev_top); 689 690 tvd->vdev_ms_array = svd->vdev_ms_array; 691 tvd->vdev_ms_shift = svd->vdev_ms_shift; 692 tvd->vdev_ms_count = svd->vdev_ms_count; 693 694 svd->vdev_ms_array = 0; 695 svd->vdev_ms_shift = 0; 696 svd->vdev_ms_count = 0; 697 698 if (tvd->vdev_mg) 699 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 700 tvd->vdev_mg = svd->vdev_mg; 701 tvd->vdev_ms = svd->vdev_ms; 702 703 svd->vdev_mg = NULL; 704 svd->vdev_ms = NULL; 705 706 if (tvd->vdev_mg != NULL) 707 tvd->vdev_mg->mg_vd = tvd; 708 709 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 710 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 711 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 712 713 svd->vdev_stat.vs_alloc = 0; 714 svd->vdev_stat.vs_space = 0; 715 svd->vdev_stat.vs_dspace = 0; 716 717 for (t = 0; t < TXG_SIZE; t++) { 718 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 719 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 720 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 721 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 722 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 723 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 724 } 725 726 if (list_link_active(&svd->vdev_config_dirty_node)) { 727 vdev_config_clean(svd); 728 vdev_config_dirty(tvd); 729 } 730 731 if (list_link_active(&svd->vdev_state_dirty_node)) { 732 vdev_state_clean(svd); 733 vdev_state_dirty(tvd); 734 } 735 736 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 737 svd->vdev_deflate_ratio = 0; 738 739 tvd->vdev_islog = svd->vdev_islog; 740 svd->vdev_islog = 0; 741 } 742 743 static void 744 vdev_top_update(vdev_t *tvd, vdev_t *vd) 745 { 746 if (vd == NULL) 747 return; 748 749 vd->vdev_top = tvd; 750 751 for (int c = 0; c < vd->vdev_children; c++) 752 vdev_top_update(tvd, vd->vdev_child[c]); 753 } 754 755 /* 756 * Add a mirror/replacing vdev above an existing vdev. 757 */ 758 vdev_t * 759 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 760 { 761 spa_t *spa = cvd->vdev_spa; 762 vdev_t *pvd = cvd->vdev_parent; 763 vdev_t *mvd; 764 765 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 766 767 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 768 769 mvd->vdev_asize = cvd->vdev_asize; 770 mvd->vdev_min_asize = cvd->vdev_min_asize; 771 mvd->vdev_max_asize = cvd->vdev_max_asize; 772 mvd->vdev_ashift = cvd->vdev_ashift; 773 mvd->vdev_state = cvd->vdev_state; 774 mvd->vdev_crtxg = cvd->vdev_crtxg; 775 776 vdev_remove_child(pvd, cvd); 777 vdev_add_child(pvd, mvd); 778 cvd->vdev_id = mvd->vdev_children; 779 vdev_add_child(mvd, cvd); 780 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 781 782 if (mvd == mvd->vdev_top) 783 vdev_top_transfer(cvd, mvd); 784 785 return (mvd); 786 } 787 788 /* 789 * Remove a 1-way mirror/replacing vdev from the tree. 790 */ 791 void 792 vdev_remove_parent(vdev_t *cvd) 793 { 794 vdev_t *mvd = cvd->vdev_parent; 795 vdev_t *pvd = mvd->vdev_parent; 796 797 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 798 799 ASSERT(mvd->vdev_children == 1); 800 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 801 mvd->vdev_ops == &vdev_replacing_ops || 802 mvd->vdev_ops == &vdev_spare_ops); 803 cvd->vdev_ashift = mvd->vdev_ashift; 804 805 vdev_remove_child(mvd, cvd); 806 vdev_remove_child(pvd, mvd); 807 808 /* 809 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 810 * Otherwise, we could have detached an offline device, and when we 811 * go to import the pool we'll think we have two top-level vdevs, 812 * instead of a different version of the same top-level vdev. 813 */ 814 if (mvd->vdev_top == mvd) { 815 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 816 cvd->vdev_orig_guid = cvd->vdev_guid; 817 cvd->vdev_guid += guid_delta; 818 cvd->vdev_guid_sum += guid_delta; 819 } 820 cvd->vdev_id = mvd->vdev_id; 821 vdev_add_child(pvd, cvd); 822 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 823 824 if (cvd == cvd->vdev_top) 825 vdev_top_transfer(mvd, cvd); 826 827 ASSERT(mvd->vdev_children == 0); 828 vdev_free(mvd); 829 } 830 831 int 832 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 833 { 834 spa_t *spa = vd->vdev_spa; 835 objset_t *mos = spa->spa_meta_objset; 836 uint64_t m; 837 uint64_t oldc = vd->vdev_ms_count; 838 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 839 metaslab_t **mspp; 840 int error; 841 842 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 843 844 /* 845 * This vdev is not being allocated from yet or is a hole. 846 */ 847 if (vd->vdev_ms_shift == 0) 848 return (0); 849 850 ASSERT(!vd->vdev_ishole); 851 852 /* 853 * Compute the raidz-deflation ratio. Note, we hard-code 854 * in 128k (1 << 17) because it is the "typical" blocksize. 855 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 856 * otherwise it would inconsistently account for existing bp's. 857 */ 858 vd->vdev_deflate_ratio = (1 << 17) / 859 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 860 861 ASSERT(oldc <= newc); 862 863 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 864 865 if (oldc != 0) { 866 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 867 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 868 } 869 870 vd->vdev_ms = mspp; 871 vd->vdev_ms_count = newc; 872 873 for (m = oldc; m < newc; m++) { 874 uint64_t object = 0; 875 876 if (txg == 0) { 877 error = dmu_read(mos, vd->vdev_ms_array, 878 m * sizeof (uint64_t), sizeof (uint64_t), &object, 879 DMU_READ_PREFETCH); 880 if (error) 881 return (error); 882 } 883 884 error = metaslab_init(vd->vdev_mg, m, object, txg, 885 &(vd->vdev_ms[m])); 886 if (error) 887 return (error); 888 } 889 890 if (txg == 0) 891 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 892 893 /* 894 * If the vdev is being removed we don't activate 895 * the metaslabs since we want to ensure that no new 896 * allocations are performed on this device. 897 */ 898 if (oldc == 0 && !vd->vdev_removing) 899 metaslab_group_activate(vd->vdev_mg); 900 901 if (txg == 0) 902 spa_config_exit(spa, SCL_ALLOC, FTAG); 903 904 return (0); 905 } 906 907 void 908 vdev_metaslab_fini(vdev_t *vd) 909 { 910 uint64_t m; 911 uint64_t count = vd->vdev_ms_count; 912 913 if (vd->vdev_ms != NULL) { 914 metaslab_group_passivate(vd->vdev_mg); 915 for (m = 0; m < count; m++) { 916 metaslab_t *msp = vd->vdev_ms[m]; 917 918 if (msp != NULL) 919 metaslab_fini(msp); 920 } 921 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 922 vd->vdev_ms = NULL; 923 } 924 } 925 926 typedef struct vdev_probe_stats { 927 boolean_t vps_readable; 928 boolean_t vps_writeable; 929 int vps_flags; 930 } vdev_probe_stats_t; 931 932 static void 933 vdev_probe_done(zio_t *zio) 934 { 935 spa_t *spa = zio->io_spa; 936 vdev_t *vd = zio->io_vd; 937 vdev_probe_stats_t *vps = zio->io_private; 938 939 ASSERT(vd->vdev_probe_zio != NULL); 940 941 if (zio->io_type == ZIO_TYPE_READ) { 942 if (zio->io_error == 0) 943 vps->vps_readable = 1; 944 if (zio->io_error == 0 && spa_writeable(spa)) { 945 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 946 zio->io_offset, zio->io_size, zio->io_data, 947 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 948 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 949 } else { 950 zio_buf_free(zio->io_data, zio->io_size); 951 } 952 } else if (zio->io_type == ZIO_TYPE_WRITE) { 953 if (zio->io_error == 0) 954 vps->vps_writeable = 1; 955 zio_buf_free(zio->io_data, zio->io_size); 956 } else if (zio->io_type == ZIO_TYPE_NULL) { 957 zio_t *pio; 958 959 vd->vdev_cant_read |= !vps->vps_readable; 960 vd->vdev_cant_write |= !vps->vps_writeable; 961 962 if (vdev_readable(vd) && 963 (vdev_writeable(vd) || !spa_writeable(spa))) { 964 zio->io_error = 0; 965 } else { 966 ASSERT(zio->io_error != 0); 967 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 968 spa, vd, NULL, 0, 0); 969 zio->io_error = SET_ERROR(ENXIO); 970 } 971 972 mutex_enter(&vd->vdev_probe_lock); 973 ASSERT(vd->vdev_probe_zio == zio); 974 vd->vdev_probe_zio = NULL; 975 mutex_exit(&vd->vdev_probe_lock); 976 977 while ((pio = zio_walk_parents(zio)) != NULL) 978 if (!vdev_accessible(vd, pio)) 979 pio->io_error = SET_ERROR(ENXIO); 980 981 kmem_free(vps, sizeof (*vps)); 982 } 983 } 984 985 /* 986 * Determine whether this device is accessible. 987 * 988 * Read and write to several known locations: the pad regions of each 989 * vdev label but the first, which we leave alone in case it contains 990 * a VTOC. 991 */ 992 zio_t * 993 vdev_probe(vdev_t *vd, zio_t *zio) 994 { 995 spa_t *spa = vd->vdev_spa; 996 vdev_probe_stats_t *vps = NULL; 997 zio_t *pio; 998 999 ASSERT(vd->vdev_ops->vdev_op_leaf); 1000 1001 /* 1002 * Don't probe the probe. 1003 */ 1004 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1005 return (NULL); 1006 1007 /* 1008 * To prevent 'probe storms' when a device fails, we create 1009 * just one probe i/o at a time. All zios that want to probe 1010 * this vdev will become parents of the probe io. 1011 */ 1012 mutex_enter(&vd->vdev_probe_lock); 1013 1014 if ((pio = vd->vdev_probe_zio) == NULL) { 1015 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1016 1017 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1018 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1019 ZIO_FLAG_TRYHARD; 1020 1021 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1022 /* 1023 * vdev_cant_read and vdev_cant_write can only 1024 * transition from TRUE to FALSE when we have the 1025 * SCL_ZIO lock as writer; otherwise they can only 1026 * transition from FALSE to TRUE. This ensures that 1027 * any zio looking at these values can assume that 1028 * failures persist for the life of the I/O. That's 1029 * important because when a device has intermittent 1030 * connectivity problems, we want to ensure that 1031 * they're ascribed to the device (ENXIO) and not 1032 * the zio (EIO). 1033 * 1034 * Since we hold SCL_ZIO as writer here, clear both 1035 * values so the probe can reevaluate from first 1036 * principles. 1037 */ 1038 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1039 vd->vdev_cant_read = B_FALSE; 1040 vd->vdev_cant_write = B_FALSE; 1041 } 1042 1043 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1044 vdev_probe_done, vps, 1045 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1046 1047 /* 1048 * We can't change the vdev state in this context, so we 1049 * kick off an async task to do it on our behalf. 1050 */ 1051 if (zio != NULL) { 1052 vd->vdev_probe_wanted = B_TRUE; 1053 spa_async_request(spa, SPA_ASYNC_PROBE); 1054 } 1055 } 1056 1057 if (zio != NULL) 1058 zio_add_child(zio, pio); 1059 1060 mutex_exit(&vd->vdev_probe_lock); 1061 1062 if (vps == NULL) { 1063 ASSERT(zio != NULL); 1064 return (NULL); 1065 } 1066 1067 for (int l = 1; l < VDEV_LABELS; l++) { 1068 zio_nowait(zio_read_phys(pio, vd, 1069 vdev_label_offset(vd->vdev_psize, l, 1070 offsetof(vdev_label_t, vl_pad2)), 1071 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1072 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1073 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1074 } 1075 1076 if (zio == NULL) 1077 return (pio); 1078 1079 zio_nowait(pio); 1080 return (NULL); 1081 } 1082 1083 static void 1084 vdev_open_child(void *arg) 1085 { 1086 vdev_t *vd = arg; 1087 1088 vd->vdev_open_thread = curthread; 1089 vd->vdev_open_error = vdev_open(vd); 1090 vd->vdev_open_thread = NULL; 1091 } 1092 1093 boolean_t 1094 vdev_uses_zvols(vdev_t *vd) 1095 { 1096 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1097 strlen(ZVOL_DIR)) == 0) 1098 return (B_TRUE); 1099 for (int c = 0; c < vd->vdev_children; c++) 1100 if (vdev_uses_zvols(vd->vdev_child[c])) 1101 return (B_TRUE); 1102 return (B_FALSE); 1103 } 1104 1105 void 1106 vdev_open_children(vdev_t *vd) 1107 { 1108 taskq_t *tq; 1109 int children = vd->vdev_children; 1110 1111 /* 1112 * in order to handle pools on top of zvols, do the opens 1113 * in a single thread so that the same thread holds the 1114 * spa_namespace_lock 1115 */ 1116 if (vdev_uses_zvols(vd)) { 1117 for (int c = 0; c < children; c++) 1118 vd->vdev_child[c]->vdev_open_error = 1119 vdev_open(vd->vdev_child[c]); 1120 return; 1121 } 1122 tq = taskq_create("vdev_open", children, minclsyspri, 1123 children, children, TASKQ_PREPOPULATE); 1124 1125 for (int c = 0; c < children; c++) 1126 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1127 TQ_SLEEP) != NULL); 1128 1129 taskq_destroy(tq); 1130 } 1131 1132 /* 1133 * Prepare a virtual device for access. 1134 */ 1135 int 1136 vdev_open(vdev_t *vd) 1137 { 1138 spa_t *spa = vd->vdev_spa; 1139 int error; 1140 uint64_t osize = 0; 1141 uint64_t max_osize = 0; 1142 uint64_t asize, max_asize, psize; 1143 uint64_t ashift = 0; 1144 1145 ASSERT(vd->vdev_open_thread == curthread || 1146 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1147 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1148 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1149 vd->vdev_state == VDEV_STATE_OFFLINE); 1150 1151 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1152 vd->vdev_cant_read = B_FALSE; 1153 vd->vdev_cant_write = B_FALSE; 1154 vd->vdev_min_asize = vdev_get_min_asize(vd); 1155 1156 /* 1157 * If this vdev is not removed, check its fault status. If it's 1158 * faulted, bail out of the open. 1159 */ 1160 if (!vd->vdev_removed && vd->vdev_faulted) { 1161 ASSERT(vd->vdev_children == 0); 1162 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1163 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1164 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1165 vd->vdev_label_aux); 1166 return (SET_ERROR(ENXIO)); 1167 } else if (vd->vdev_offline) { 1168 ASSERT(vd->vdev_children == 0); 1169 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1170 return (SET_ERROR(ENXIO)); 1171 } 1172 1173 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1174 1175 /* 1176 * Reset the vdev_reopening flag so that we actually close 1177 * the vdev on error. 1178 */ 1179 vd->vdev_reopening = B_FALSE; 1180 if (zio_injection_enabled && error == 0) 1181 error = zio_handle_device_injection(vd, NULL, ENXIO); 1182 1183 if (error) { 1184 if (vd->vdev_removed && 1185 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1186 vd->vdev_removed = B_FALSE; 1187 1188 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1189 vd->vdev_stat.vs_aux); 1190 return (error); 1191 } 1192 1193 vd->vdev_removed = B_FALSE; 1194 1195 /* 1196 * Recheck the faulted flag now that we have confirmed that 1197 * the vdev is accessible. If we're faulted, bail. 1198 */ 1199 if (vd->vdev_faulted) { 1200 ASSERT(vd->vdev_children == 0); 1201 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1202 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1203 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1204 vd->vdev_label_aux); 1205 return (SET_ERROR(ENXIO)); 1206 } 1207 1208 if (vd->vdev_degraded) { 1209 ASSERT(vd->vdev_children == 0); 1210 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1211 VDEV_AUX_ERR_EXCEEDED); 1212 } else { 1213 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1214 } 1215 1216 /* 1217 * For hole or missing vdevs we just return success. 1218 */ 1219 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1220 return (0); 1221 1222 for (int c = 0; c < vd->vdev_children; c++) { 1223 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1224 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1225 VDEV_AUX_NONE); 1226 break; 1227 } 1228 } 1229 1230 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1231 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1232 1233 if (vd->vdev_children == 0) { 1234 if (osize < SPA_MINDEVSIZE) { 1235 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1236 VDEV_AUX_TOO_SMALL); 1237 return (SET_ERROR(EOVERFLOW)); 1238 } 1239 psize = osize; 1240 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1241 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1242 VDEV_LABEL_END_SIZE); 1243 } else { 1244 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1245 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1246 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1247 VDEV_AUX_TOO_SMALL); 1248 return (SET_ERROR(EOVERFLOW)); 1249 } 1250 psize = 0; 1251 asize = osize; 1252 max_asize = max_osize; 1253 } 1254 1255 vd->vdev_psize = psize; 1256 1257 /* 1258 * Make sure the allocatable size hasn't shrunk. 1259 */ 1260 if (asize < vd->vdev_min_asize) { 1261 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1262 VDEV_AUX_BAD_LABEL); 1263 return (SET_ERROR(EINVAL)); 1264 } 1265 1266 if (vd->vdev_asize == 0) { 1267 /* 1268 * This is the first-ever open, so use the computed values. 1269 * For testing purposes, a higher ashift can be requested. 1270 */ 1271 vd->vdev_asize = asize; 1272 vd->vdev_max_asize = max_asize; 1273 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1274 } else { 1275 /* 1276 * Detect if the alignment requirement has increased. 1277 * We don't want to make the pool unavailable, just 1278 * issue a warning instead. 1279 */ 1280 if (ashift > vd->vdev_top->vdev_ashift && 1281 vd->vdev_ops->vdev_op_leaf) { 1282 cmn_err(CE_WARN, 1283 "Disk, '%s', has a block alignment that is " 1284 "larger than the pool's alignment\n", 1285 vd->vdev_path); 1286 } 1287 vd->vdev_max_asize = max_asize; 1288 } 1289 1290 /* 1291 * If all children are healthy and the asize has increased, 1292 * then we've experienced dynamic LUN growth. If automatic 1293 * expansion is enabled then use the additional space. 1294 */ 1295 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1296 (vd->vdev_expanding || spa->spa_autoexpand)) 1297 vd->vdev_asize = asize; 1298 1299 vdev_set_min_asize(vd); 1300 1301 /* 1302 * Ensure we can issue some IO before declaring the 1303 * vdev open for business. 1304 */ 1305 if (vd->vdev_ops->vdev_op_leaf && 1306 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1307 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1308 VDEV_AUX_ERR_EXCEEDED); 1309 return (error); 1310 } 1311 1312 /* 1313 * Track the min and max ashift values for normal data devices. 1314 */ 1315 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1316 !vd->vdev_islog && vd->vdev_aux == NULL) { 1317 if (vd->vdev_ashift > spa->spa_max_ashift) 1318 spa->spa_max_ashift = vd->vdev_ashift; 1319 if (vd->vdev_ashift < spa->spa_min_ashift) 1320 spa->spa_min_ashift = vd->vdev_ashift; 1321 } 1322 1323 /* 1324 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1325 * resilver. But don't do this if we are doing a reopen for a scrub, 1326 * since this would just restart the scrub we are already doing. 1327 */ 1328 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1329 vdev_resilver_needed(vd, NULL, NULL)) 1330 spa_async_request(spa, SPA_ASYNC_RESILVER); 1331 1332 return (0); 1333 } 1334 1335 /* 1336 * Called once the vdevs are all opened, this routine validates the label 1337 * contents. This needs to be done before vdev_load() so that we don't 1338 * inadvertently do repair I/Os to the wrong device. 1339 * 1340 * If 'strict' is false ignore the spa guid check. This is necessary because 1341 * if the machine crashed during a re-guid the new guid might have been written 1342 * to all of the vdev labels, but not the cached config. The strict check 1343 * will be performed when the pool is opened again using the mos config. 1344 * 1345 * This function will only return failure if one of the vdevs indicates that it 1346 * has since been destroyed or exported. This is only possible if 1347 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1348 * will be updated but the function will return 0. 1349 */ 1350 int 1351 vdev_validate(vdev_t *vd, boolean_t strict) 1352 { 1353 spa_t *spa = vd->vdev_spa; 1354 nvlist_t *label; 1355 uint64_t guid = 0, top_guid; 1356 uint64_t state; 1357 1358 for (int c = 0; c < vd->vdev_children; c++) 1359 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1360 return (SET_ERROR(EBADF)); 1361 1362 /* 1363 * If the device has already failed, or was marked offline, don't do 1364 * any further validation. Otherwise, label I/O will fail and we will 1365 * overwrite the previous state. 1366 */ 1367 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1368 uint64_t aux_guid = 0; 1369 nvlist_t *nvl; 1370 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1371 spa_last_synced_txg(spa) : -1ULL; 1372 1373 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1374 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1375 VDEV_AUX_BAD_LABEL); 1376 return (0); 1377 } 1378 1379 /* 1380 * Determine if this vdev has been split off into another 1381 * pool. If so, then refuse to open it. 1382 */ 1383 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1384 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1385 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1386 VDEV_AUX_SPLIT_POOL); 1387 nvlist_free(label); 1388 return (0); 1389 } 1390 1391 if (strict && (nvlist_lookup_uint64(label, 1392 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1393 guid != spa_guid(spa))) { 1394 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1395 VDEV_AUX_CORRUPT_DATA); 1396 nvlist_free(label); 1397 return (0); 1398 } 1399 1400 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1401 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1402 &aux_guid) != 0) 1403 aux_guid = 0; 1404 1405 /* 1406 * If this vdev just became a top-level vdev because its 1407 * sibling was detached, it will have adopted the parent's 1408 * vdev guid -- but the label may or may not be on disk yet. 1409 * Fortunately, either version of the label will have the 1410 * same top guid, so if we're a top-level vdev, we can 1411 * safely compare to that instead. 1412 * 1413 * If we split this vdev off instead, then we also check the 1414 * original pool's guid. We don't want to consider the vdev 1415 * corrupt if it is partway through a split operation. 1416 */ 1417 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1418 &guid) != 0 || 1419 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1420 &top_guid) != 0 || 1421 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1422 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1423 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1424 VDEV_AUX_CORRUPT_DATA); 1425 nvlist_free(label); 1426 return (0); 1427 } 1428 1429 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1430 &state) != 0) { 1431 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1432 VDEV_AUX_CORRUPT_DATA); 1433 nvlist_free(label); 1434 return (0); 1435 } 1436 1437 nvlist_free(label); 1438 1439 /* 1440 * If this is a verbatim import, no need to check the 1441 * state of the pool. 1442 */ 1443 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1444 spa_load_state(spa) == SPA_LOAD_OPEN && 1445 state != POOL_STATE_ACTIVE) 1446 return (SET_ERROR(EBADF)); 1447 1448 /* 1449 * If we were able to open and validate a vdev that was 1450 * previously marked permanently unavailable, clear that state 1451 * now. 1452 */ 1453 if (vd->vdev_not_present) 1454 vd->vdev_not_present = 0; 1455 } 1456 1457 return (0); 1458 } 1459 1460 /* 1461 * Close a virtual device. 1462 */ 1463 void 1464 vdev_close(vdev_t *vd) 1465 { 1466 spa_t *spa = vd->vdev_spa; 1467 vdev_t *pvd = vd->vdev_parent; 1468 1469 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1470 1471 /* 1472 * If our parent is reopening, then we are as well, unless we are 1473 * going offline. 1474 */ 1475 if (pvd != NULL && pvd->vdev_reopening) 1476 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1477 1478 vd->vdev_ops->vdev_op_close(vd); 1479 1480 vdev_cache_purge(vd); 1481 1482 /* 1483 * We record the previous state before we close it, so that if we are 1484 * doing a reopen(), we don't generate FMA ereports if we notice that 1485 * it's still faulted. 1486 */ 1487 vd->vdev_prevstate = vd->vdev_state; 1488 1489 if (vd->vdev_offline) 1490 vd->vdev_state = VDEV_STATE_OFFLINE; 1491 else 1492 vd->vdev_state = VDEV_STATE_CLOSED; 1493 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1494 } 1495 1496 void 1497 vdev_hold(vdev_t *vd) 1498 { 1499 spa_t *spa = vd->vdev_spa; 1500 1501 ASSERT(spa_is_root(spa)); 1502 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1503 return; 1504 1505 for (int c = 0; c < vd->vdev_children; c++) 1506 vdev_hold(vd->vdev_child[c]); 1507 1508 if (vd->vdev_ops->vdev_op_leaf) 1509 vd->vdev_ops->vdev_op_hold(vd); 1510 } 1511 1512 void 1513 vdev_rele(vdev_t *vd) 1514 { 1515 spa_t *spa = vd->vdev_spa; 1516 1517 ASSERT(spa_is_root(spa)); 1518 for (int c = 0; c < vd->vdev_children; c++) 1519 vdev_rele(vd->vdev_child[c]); 1520 1521 if (vd->vdev_ops->vdev_op_leaf) 1522 vd->vdev_ops->vdev_op_rele(vd); 1523 } 1524 1525 /* 1526 * Reopen all interior vdevs and any unopened leaves. We don't actually 1527 * reopen leaf vdevs which had previously been opened as they might deadlock 1528 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1529 * If the leaf has never been opened then open it, as usual. 1530 */ 1531 void 1532 vdev_reopen(vdev_t *vd) 1533 { 1534 spa_t *spa = vd->vdev_spa; 1535 1536 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1537 1538 /* set the reopening flag unless we're taking the vdev offline */ 1539 vd->vdev_reopening = !vd->vdev_offline; 1540 vdev_close(vd); 1541 (void) vdev_open(vd); 1542 1543 /* 1544 * Call vdev_validate() here to make sure we have the same device. 1545 * Otherwise, a device with an invalid label could be successfully 1546 * opened in response to vdev_reopen(). 1547 */ 1548 if (vd->vdev_aux) { 1549 (void) vdev_validate_aux(vd); 1550 if (vdev_readable(vd) && vdev_writeable(vd) && 1551 vd->vdev_aux == &spa->spa_l2cache && 1552 !l2arc_vdev_present(vd)) 1553 l2arc_add_vdev(spa, vd); 1554 } else { 1555 (void) vdev_validate(vd, B_TRUE); 1556 } 1557 1558 /* 1559 * Reassess parent vdev's health. 1560 */ 1561 vdev_propagate_state(vd); 1562 } 1563 1564 int 1565 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1566 { 1567 int error; 1568 1569 /* 1570 * Normally, partial opens (e.g. of a mirror) are allowed. 1571 * For a create, however, we want to fail the request if 1572 * there are any components we can't open. 1573 */ 1574 error = vdev_open(vd); 1575 1576 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1577 vdev_close(vd); 1578 return (error ? error : ENXIO); 1579 } 1580 1581 /* 1582 * Recursively load DTLs and initialize all labels. 1583 */ 1584 if ((error = vdev_dtl_load(vd)) != 0 || 1585 (error = vdev_label_init(vd, txg, isreplacing ? 1586 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1587 vdev_close(vd); 1588 return (error); 1589 } 1590 1591 return (0); 1592 } 1593 1594 void 1595 vdev_metaslab_set_size(vdev_t *vd) 1596 { 1597 /* 1598 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1599 */ 1600 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1601 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1602 } 1603 1604 void 1605 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1606 { 1607 ASSERT(vd == vd->vdev_top); 1608 ASSERT(!vd->vdev_ishole); 1609 ASSERT(ISP2(flags)); 1610 ASSERT(spa_writeable(vd->vdev_spa)); 1611 1612 if (flags & VDD_METASLAB) 1613 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1614 1615 if (flags & VDD_DTL) 1616 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1617 1618 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1619 } 1620 1621 void 1622 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1623 { 1624 for (int c = 0; c < vd->vdev_children; c++) 1625 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1626 1627 if (vd->vdev_ops->vdev_op_leaf) 1628 vdev_dirty(vd->vdev_top, flags, vd, txg); 1629 } 1630 1631 /* 1632 * DTLs. 1633 * 1634 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1635 * the vdev has less than perfect replication. There are four kinds of DTL: 1636 * 1637 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1638 * 1639 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1640 * 1641 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1642 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1643 * txgs that was scrubbed. 1644 * 1645 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1646 * persistent errors or just some device being offline. 1647 * Unlike the other three, the DTL_OUTAGE map is not generally 1648 * maintained; it's only computed when needed, typically to 1649 * determine whether a device can be detached. 1650 * 1651 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1652 * either has the data or it doesn't. 1653 * 1654 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1655 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1656 * if any child is less than fully replicated, then so is its parent. 1657 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1658 * comprising only those txgs which appear in 'maxfaults' or more children; 1659 * those are the txgs we don't have enough replication to read. For example, 1660 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1661 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1662 * two child DTL_MISSING maps. 1663 * 1664 * It should be clear from the above that to compute the DTLs and outage maps 1665 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1666 * Therefore, that is all we keep on disk. When loading the pool, or after 1667 * a configuration change, we generate all other DTLs from first principles. 1668 */ 1669 void 1670 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1671 { 1672 range_tree_t *rt = vd->vdev_dtl[t]; 1673 1674 ASSERT(t < DTL_TYPES); 1675 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1676 ASSERT(spa_writeable(vd->vdev_spa)); 1677 1678 mutex_enter(rt->rt_lock); 1679 if (!range_tree_contains(rt, txg, size)) 1680 range_tree_add(rt, txg, size); 1681 mutex_exit(rt->rt_lock); 1682 } 1683 1684 boolean_t 1685 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1686 { 1687 range_tree_t *rt = vd->vdev_dtl[t]; 1688 boolean_t dirty = B_FALSE; 1689 1690 ASSERT(t < DTL_TYPES); 1691 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1692 1693 mutex_enter(rt->rt_lock); 1694 if (range_tree_space(rt) != 0) 1695 dirty = range_tree_contains(rt, txg, size); 1696 mutex_exit(rt->rt_lock); 1697 1698 return (dirty); 1699 } 1700 1701 boolean_t 1702 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1703 { 1704 range_tree_t *rt = vd->vdev_dtl[t]; 1705 boolean_t empty; 1706 1707 mutex_enter(rt->rt_lock); 1708 empty = (range_tree_space(rt) == 0); 1709 mutex_exit(rt->rt_lock); 1710 1711 return (empty); 1712 } 1713 1714 /* 1715 * Returns the lowest txg in the DTL range. 1716 */ 1717 static uint64_t 1718 vdev_dtl_min(vdev_t *vd) 1719 { 1720 range_seg_t *rs; 1721 1722 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1723 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1724 ASSERT0(vd->vdev_children); 1725 1726 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1727 return (rs->rs_start - 1); 1728 } 1729 1730 /* 1731 * Returns the highest txg in the DTL. 1732 */ 1733 static uint64_t 1734 vdev_dtl_max(vdev_t *vd) 1735 { 1736 range_seg_t *rs; 1737 1738 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1739 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1740 ASSERT0(vd->vdev_children); 1741 1742 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1743 return (rs->rs_end); 1744 } 1745 1746 /* 1747 * Determine if a resilvering vdev should remove any DTL entries from 1748 * its range. If the vdev was resilvering for the entire duration of the 1749 * scan then it should excise that range from its DTLs. Otherwise, this 1750 * vdev is considered partially resilvered and should leave its DTL 1751 * entries intact. The comment in vdev_dtl_reassess() describes how we 1752 * excise the DTLs. 1753 */ 1754 static boolean_t 1755 vdev_dtl_should_excise(vdev_t *vd) 1756 { 1757 spa_t *spa = vd->vdev_spa; 1758 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1759 1760 ASSERT0(scn->scn_phys.scn_errors); 1761 ASSERT0(vd->vdev_children); 1762 1763 if (vd->vdev_resilver_txg == 0 || 1764 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1765 return (B_TRUE); 1766 1767 /* 1768 * When a resilver is initiated the scan will assign the scn_max_txg 1769 * value to the highest txg value that exists in all DTLs. If this 1770 * device's max DTL is not part of this scan (i.e. it is not in 1771 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1772 * for excision. 1773 */ 1774 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1775 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1776 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1777 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1778 return (B_TRUE); 1779 } 1780 return (B_FALSE); 1781 } 1782 1783 /* 1784 * Reassess DTLs after a config change or scrub completion. 1785 */ 1786 void 1787 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1788 { 1789 spa_t *spa = vd->vdev_spa; 1790 avl_tree_t reftree; 1791 int minref; 1792 1793 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1794 1795 for (int c = 0; c < vd->vdev_children; c++) 1796 vdev_dtl_reassess(vd->vdev_child[c], txg, 1797 scrub_txg, scrub_done); 1798 1799 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1800 return; 1801 1802 if (vd->vdev_ops->vdev_op_leaf) { 1803 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1804 1805 mutex_enter(&vd->vdev_dtl_lock); 1806 1807 /* 1808 * If we've completed a scan cleanly then determine 1809 * if this vdev should remove any DTLs. We only want to 1810 * excise regions on vdevs that were available during 1811 * the entire duration of this scan. 1812 */ 1813 if (scrub_txg != 0 && 1814 (spa->spa_scrub_started || 1815 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1816 vdev_dtl_should_excise(vd)) { 1817 /* 1818 * We completed a scrub up to scrub_txg. If we 1819 * did it without rebooting, then the scrub dtl 1820 * will be valid, so excise the old region and 1821 * fold in the scrub dtl. Otherwise, leave the 1822 * dtl as-is if there was an error. 1823 * 1824 * There's little trick here: to excise the beginning 1825 * of the DTL_MISSING map, we put it into a reference 1826 * tree and then add a segment with refcnt -1 that 1827 * covers the range [0, scrub_txg). This means 1828 * that each txg in that range has refcnt -1 or 0. 1829 * We then add DTL_SCRUB with a refcnt of 2, so that 1830 * entries in the range [0, scrub_txg) will have a 1831 * positive refcnt -- either 1 or 2. We then convert 1832 * the reference tree into the new DTL_MISSING map. 1833 */ 1834 space_reftree_create(&reftree); 1835 space_reftree_add_map(&reftree, 1836 vd->vdev_dtl[DTL_MISSING], 1); 1837 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1838 space_reftree_add_map(&reftree, 1839 vd->vdev_dtl[DTL_SCRUB], 2); 1840 space_reftree_generate_map(&reftree, 1841 vd->vdev_dtl[DTL_MISSING], 1); 1842 space_reftree_destroy(&reftree); 1843 } 1844 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1845 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1846 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1847 if (scrub_done) 1848 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1849 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1850 if (!vdev_readable(vd)) 1851 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1852 else 1853 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1854 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1855 1856 /* 1857 * If the vdev was resilvering and no longer has any 1858 * DTLs then reset its resilvering flag. 1859 */ 1860 if (vd->vdev_resilver_txg != 0 && 1861 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1862 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1863 vd->vdev_resilver_txg = 0; 1864 1865 mutex_exit(&vd->vdev_dtl_lock); 1866 1867 if (txg != 0) 1868 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1869 return; 1870 } 1871 1872 mutex_enter(&vd->vdev_dtl_lock); 1873 for (int t = 0; t < DTL_TYPES; t++) { 1874 /* account for child's outage in parent's missing map */ 1875 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1876 if (t == DTL_SCRUB) 1877 continue; /* leaf vdevs only */ 1878 if (t == DTL_PARTIAL) 1879 minref = 1; /* i.e. non-zero */ 1880 else if (vd->vdev_nparity != 0) 1881 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1882 else 1883 minref = vd->vdev_children; /* any kind of mirror */ 1884 space_reftree_create(&reftree); 1885 for (int c = 0; c < vd->vdev_children; c++) { 1886 vdev_t *cvd = vd->vdev_child[c]; 1887 mutex_enter(&cvd->vdev_dtl_lock); 1888 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1889 mutex_exit(&cvd->vdev_dtl_lock); 1890 } 1891 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1892 space_reftree_destroy(&reftree); 1893 } 1894 mutex_exit(&vd->vdev_dtl_lock); 1895 } 1896 1897 int 1898 vdev_dtl_load(vdev_t *vd) 1899 { 1900 spa_t *spa = vd->vdev_spa; 1901 objset_t *mos = spa->spa_meta_objset; 1902 int error = 0; 1903 1904 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1905 ASSERT(!vd->vdev_ishole); 1906 1907 error = space_map_open(&vd->vdev_dtl_sm, mos, 1908 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1909 if (error) 1910 return (error); 1911 ASSERT(vd->vdev_dtl_sm != NULL); 1912 1913 mutex_enter(&vd->vdev_dtl_lock); 1914 1915 /* 1916 * Now that we've opened the space_map we need to update 1917 * the in-core DTL. 1918 */ 1919 space_map_update(vd->vdev_dtl_sm); 1920 1921 error = space_map_load(vd->vdev_dtl_sm, 1922 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1923 mutex_exit(&vd->vdev_dtl_lock); 1924 1925 return (error); 1926 } 1927 1928 for (int c = 0; c < vd->vdev_children; c++) { 1929 error = vdev_dtl_load(vd->vdev_child[c]); 1930 if (error != 0) 1931 break; 1932 } 1933 1934 return (error); 1935 } 1936 1937 void 1938 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1939 { 1940 spa_t *spa = vd->vdev_spa; 1941 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 1942 objset_t *mos = spa->spa_meta_objset; 1943 range_tree_t *rtsync; 1944 kmutex_t rtlock; 1945 dmu_tx_t *tx; 1946 uint64_t object = space_map_object(vd->vdev_dtl_sm); 1947 1948 ASSERT(!vd->vdev_ishole); 1949 ASSERT(vd->vdev_ops->vdev_op_leaf); 1950 1951 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1952 1953 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 1954 mutex_enter(&vd->vdev_dtl_lock); 1955 space_map_free(vd->vdev_dtl_sm, tx); 1956 space_map_close(vd->vdev_dtl_sm); 1957 vd->vdev_dtl_sm = NULL; 1958 mutex_exit(&vd->vdev_dtl_lock); 1959 dmu_tx_commit(tx); 1960 return; 1961 } 1962 1963 if (vd->vdev_dtl_sm == NULL) { 1964 uint64_t new_object; 1965 1966 new_object = space_map_alloc(mos, tx); 1967 VERIFY3U(new_object, !=, 0); 1968 1969 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 1970 0, -1ULL, 0, &vd->vdev_dtl_lock)); 1971 ASSERT(vd->vdev_dtl_sm != NULL); 1972 } 1973 1974 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 1975 1976 rtsync = range_tree_create(NULL, NULL, &rtlock); 1977 1978 mutex_enter(&rtlock); 1979 1980 mutex_enter(&vd->vdev_dtl_lock); 1981 range_tree_walk(rt, range_tree_add, rtsync); 1982 mutex_exit(&vd->vdev_dtl_lock); 1983 1984 space_map_truncate(vd->vdev_dtl_sm, tx); 1985 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 1986 range_tree_vacate(rtsync, NULL, NULL); 1987 1988 range_tree_destroy(rtsync); 1989 1990 mutex_exit(&rtlock); 1991 mutex_destroy(&rtlock); 1992 1993 /* 1994 * If the object for the space map has changed then dirty 1995 * the top level so that we update the config. 1996 */ 1997 if (object != space_map_object(vd->vdev_dtl_sm)) { 1998 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 1999 "new object %llu", txg, spa_name(spa), object, 2000 space_map_object(vd->vdev_dtl_sm)); 2001 vdev_config_dirty(vd->vdev_top); 2002 } 2003 2004 dmu_tx_commit(tx); 2005 2006 mutex_enter(&vd->vdev_dtl_lock); 2007 space_map_update(vd->vdev_dtl_sm); 2008 mutex_exit(&vd->vdev_dtl_lock); 2009 } 2010 2011 /* 2012 * Determine whether the specified vdev can be offlined/detached/removed 2013 * without losing data. 2014 */ 2015 boolean_t 2016 vdev_dtl_required(vdev_t *vd) 2017 { 2018 spa_t *spa = vd->vdev_spa; 2019 vdev_t *tvd = vd->vdev_top; 2020 uint8_t cant_read = vd->vdev_cant_read; 2021 boolean_t required; 2022 2023 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2024 2025 if (vd == spa->spa_root_vdev || vd == tvd) 2026 return (B_TRUE); 2027 2028 /* 2029 * Temporarily mark the device as unreadable, and then determine 2030 * whether this results in any DTL outages in the top-level vdev. 2031 * If not, we can safely offline/detach/remove the device. 2032 */ 2033 vd->vdev_cant_read = B_TRUE; 2034 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2035 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2036 vd->vdev_cant_read = cant_read; 2037 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2038 2039 if (!required && zio_injection_enabled) 2040 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2041 2042 return (required); 2043 } 2044 2045 /* 2046 * Determine if resilver is needed, and if so the txg range. 2047 */ 2048 boolean_t 2049 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2050 { 2051 boolean_t needed = B_FALSE; 2052 uint64_t thismin = UINT64_MAX; 2053 uint64_t thismax = 0; 2054 2055 if (vd->vdev_children == 0) { 2056 mutex_enter(&vd->vdev_dtl_lock); 2057 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2058 vdev_writeable(vd)) { 2059 2060 thismin = vdev_dtl_min(vd); 2061 thismax = vdev_dtl_max(vd); 2062 needed = B_TRUE; 2063 } 2064 mutex_exit(&vd->vdev_dtl_lock); 2065 } else { 2066 for (int c = 0; c < vd->vdev_children; c++) { 2067 vdev_t *cvd = vd->vdev_child[c]; 2068 uint64_t cmin, cmax; 2069 2070 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2071 thismin = MIN(thismin, cmin); 2072 thismax = MAX(thismax, cmax); 2073 needed = B_TRUE; 2074 } 2075 } 2076 } 2077 2078 if (needed && minp) { 2079 *minp = thismin; 2080 *maxp = thismax; 2081 } 2082 return (needed); 2083 } 2084 2085 void 2086 vdev_load(vdev_t *vd) 2087 { 2088 /* 2089 * Recursively load all children. 2090 */ 2091 for (int c = 0; c < vd->vdev_children; c++) 2092 vdev_load(vd->vdev_child[c]); 2093 2094 /* 2095 * If this is a top-level vdev, initialize its metaslabs. 2096 */ 2097 if (vd == vd->vdev_top && !vd->vdev_ishole && 2098 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2099 vdev_metaslab_init(vd, 0) != 0)) 2100 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2101 VDEV_AUX_CORRUPT_DATA); 2102 2103 /* 2104 * If this is a leaf vdev, load its DTL. 2105 */ 2106 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2107 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2108 VDEV_AUX_CORRUPT_DATA); 2109 } 2110 2111 /* 2112 * The special vdev case is used for hot spares and l2cache devices. Its 2113 * sole purpose it to set the vdev state for the associated vdev. To do this, 2114 * we make sure that we can open the underlying device, then try to read the 2115 * label, and make sure that the label is sane and that it hasn't been 2116 * repurposed to another pool. 2117 */ 2118 int 2119 vdev_validate_aux(vdev_t *vd) 2120 { 2121 nvlist_t *label; 2122 uint64_t guid, version; 2123 uint64_t state; 2124 2125 if (!vdev_readable(vd)) 2126 return (0); 2127 2128 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2129 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2130 VDEV_AUX_CORRUPT_DATA); 2131 return (-1); 2132 } 2133 2134 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2135 !SPA_VERSION_IS_SUPPORTED(version) || 2136 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2137 guid != vd->vdev_guid || 2138 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2139 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2140 VDEV_AUX_CORRUPT_DATA); 2141 nvlist_free(label); 2142 return (-1); 2143 } 2144 2145 /* 2146 * We don't actually check the pool state here. If it's in fact in 2147 * use by another pool, we update this fact on the fly when requested. 2148 */ 2149 nvlist_free(label); 2150 return (0); 2151 } 2152 2153 void 2154 vdev_remove(vdev_t *vd, uint64_t txg) 2155 { 2156 spa_t *spa = vd->vdev_spa; 2157 objset_t *mos = spa->spa_meta_objset; 2158 dmu_tx_t *tx; 2159 2160 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2161 2162 if (vd->vdev_ms != NULL) { 2163 metaslab_group_t *mg = vd->vdev_mg; 2164 2165 metaslab_group_histogram_verify(mg); 2166 metaslab_class_histogram_verify(mg->mg_class); 2167 2168 for (int m = 0; m < vd->vdev_ms_count; m++) { 2169 metaslab_t *msp = vd->vdev_ms[m]; 2170 2171 if (msp == NULL || msp->ms_sm == NULL) 2172 continue; 2173 2174 mutex_enter(&msp->ms_lock); 2175 /* 2176 * If the metaslab was not loaded when the vdev 2177 * was removed then the histogram accounting may 2178 * not be accurate. Update the histogram information 2179 * here so that we ensure that the metaslab group 2180 * and metaslab class are up-to-date. 2181 */ 2182 metaslab_group_histogram_remove(mg, msp); 2183 2184 VERIFY0(space_map_allocated(msp->ms_sm)); 2185 space_map_free(msp->ms_sm, tx); 2186 space_map_close(msp->ms_sm); 2187 msp->ms_sm = NULL; 2188 mutex_exit(&msp->ms_lock); 2189 } 2190 2191 metaslab_group_histogram_verify(mg); 2192 metaslab_class_histogram_verify(mg->mg_class); 2193 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2194 ASSERT0(mg->mg_histogram[i]); 2195 2196 } 2197 2198 if (vd->vdev_ms_array) { 2199 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2200 vd->vdev_ms_array = 0; 2201 } 2202 dmu_tx_commit(tx); 2203 } 2204 2205 void 2206 vdev_sync_done(vdev_t *vd, uint64_t txg) 2207 { 2208 metaslab_t *msp; 2209 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2210 2211 ASSERT(!vd->vdev_ishole); 2212 2213 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2214 metaslab_sync_done(msp, txg); 2215 2216 if (reassess) 2217 metaslab_sync_reassess(vd->vdev_mg); 2218 } 2219 2220 void 2221 vdev_sync(vdev_t *vd, uint64_t txg) 2222 { 2223 spa_t *spa = vd->vdev_spa; 2224 vdev_t *lvd; 2225 metaslab_t *msp; 2226 dmu_tx_t *tx; 2227 2228 ASSERT(!vd->vdev_ishole); 2229 2230 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2231 ASSERT(vd == vd->vdev_top); 2232 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2233 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2234 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2235 ASSERT(vd->vdev_ms_array != 0); 2236 vdev_config_dirty(vd); 2237 dmu_tx_commit(tx); 2238 } 2239 2240 /* 2241 * Remove the metadata associated with this vdev once it's empty. 2242 */ 2243 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2244 vdev_remove(vd, txg); 2245 2246 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2247 metaslab_sync(msp, txg); 2248 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2249 } 2250 2251 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2252 vdev_dtl_sync(lvd, txg); 2253 2254 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2255 } 2256 2257 uint64_t 2258 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2259 { 2260 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2261 } 2262 2263 /* 2264 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2265 * not be opened, and no I/O is attempted. 2266 */ 2267 int 2268 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2269 { 2270 vdev_t *vd, *tvd; 2271 2272 spa_vdev_state_enter(spa, SCL_NONE); 2273 2274 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2275 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2276 2277 if (!vd->vdev_ops->vdev_op_leaf) 2278 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2279 2280 tvd = vd->vdev_top; 2281 2282 /* 2283 * We don't directly use the aux state here, but if we do a 2284 * vdev_reopen(), we need this value to be present to remember why we 2285 * were faulted. 2286 */ 2287 vd->vdev_label_aux = aux; 2288 2289 /* 2290 * Faulted state takes precedence over degraded. 2291 */ 2292 vd->vdev_delayed_close = B_FALSE; 2293 vd->vdev_faulted = 1ULL; 2294 vd->vdev_degraded = 0ULL; 2295 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2296 2297 /* 2298 * If this device has the only valid copy of the data, then 2299 * back off and simply mark the vdev as degraded instead. 2300 */ 2301 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2302 vd->vdev_degraded = 1ULL; 2303 vd->vdev_faulted = 0ULL; 2304 2305 /* 2306 * If we reopen the device and it's not dead, only then do we 2307 * mark it degraded. 2308 */ 2309 vdev_reopen(tvd); 2310 2311 if (vdev_readable(vd)) 2312 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2313 } 2314 2315 return (spa_vdev_state_exit(spa, vd, 0)); 2316 } 2317 2318 /* 2319 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2320 * user that something is wrong. The vdev continues to operate as normal as far 2321 * as I/O is concerned. 2322 */ 2323 int 2324 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2325 { 2326 vdev_t *vd; 2327 2328 spa_vdev_state_enter(spa, SCL_NONE); 2329 2330 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2331 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2332 2333 if (!vd->vdev_ops->vdev_op_leaf) 2334 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2335 2336 /* 2337 * If the vdev is already faulted, then don't do anything. 2338 */ 2339 if (vd->vdev_faulted || vd->vdev_degraded) 2340 return (spa_vdev_state_exit(spa, NULL, 0)); 2341 2342 vd->vdev_degraded = 1ULL; 2343 if (!vdev_is_dead(vd)) 2344 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2345 aux); 2346 2347 return (spa_vdev_state_exit(spa, vd, 0)); 2348 } 2349 2350 /* 2351 * Online the given vdev. 2352 * 2353 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2354 * spare device should be detached when the device finishes resilvering. 2355 * Second, the online should be treated like a 'test' online case, so no FMA 2356 * events are generated if the device fails to open. 2357 */ 2358 int 2359 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2360 { 2361 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2362 boolean_t postevent = B_FALSE; 2363 2364 spa_vdev_state_enter(spa, SCL_NONE); 2365 2366 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2367 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2368 2369 if (!vd->vdev_ops->vdev_op_leaf) 2370 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2371 2372 postevent = 2373 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ? 2374 B_TRUE : B_FALSE; 2375 2376 tvd = vd->vdev_top; 2377 vd->vdev_offline = B_FALSE; 2378 vd->vdev_tmpoffline = B_FALSE; 2379 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2380 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2381 2382 /* XXX - L2ARC 1.0 does not support expansion */ 2383 if (!vd->vdev_aux) { 2384 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2385 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2386 } 2387 2388 vdev_reopen(tvd); 2389 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2390 2391 if (!vd->vdev_aux) { 2392 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2393 pvd->vdev_expanding = B_FALSE; 2394 } 2395 2396 if (newstate) 2397 *newstate = vd->vdev_state; 2398 if ((flags & ZFS_ONLINE_UNSPARE) && 2399 !vdev_is_dead(vd) && vd->vdev_parent && 2400 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2401 vd->vdev_parent->vdev_child[0] == vd) 2402 vd->vdev_unspare = B_TRUE; 2403 2404 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2405 2406 /* XXX - L2ARC 1.0 does not support expansion */ 2407 if (vd->vdev_aux) 2408 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2409 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2410 } 2411 2412 if (postevent) 2413 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE); 2414 2415 return (spa_vdev_state_exit(spa, vd, 0)); 2416 } 2417 2418 static int 2419 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2420 { 2421 vdev_t *vd, *tvd; 2422 int error = 0; 2423 uint64_t generation; 2424 metaslab_group_t *mg; 2425 2426 top: 2427 spa_vdev_state_enter(spa, SCL_ALLOC); 2428 2429 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2430 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2431 2432 if (!vd->vdev_ops->vdev_op_leaf) 2433 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2434 2435 tvd = vd->vdev_top; 2436 mg = tvd->vdev_mg; 2437 generation = spa->spa_config_generation + 1; 2438 2439 /* 2440 * If the device isn't already offline, try to offline it. 2441 */ 2442 if (!vd->vdev_offline) { 2443 /* 2444 * If this device has the only valid copy of some data, 2445 * don't allow it to be offlined. Log devices are always 2446 * expendable. 2447 */ 2448 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2449 vdev_dtl_required(vd)) 2450 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2451 2452 /* 2453 * If the top-level is a slog and it has had allocations 2454 * then proceed. We check that the vdev's metaslab group 2455 * is not NULL since it's possible that we may have just 2456 * added this vdev but not yet initialized its metaslabs. 2457 */ 2458 if (tvd->vdev_islog && mg != NULL) { 2459 /* 2460 * Prevent any future allocations. 2461 */ 2462 metaslab_group_passivate(mg); 2463 (void) spa_vdev_state_exit(spa, vd, 0); 2464 2465 error = spa_offline_log(spa); 2466 2467 spa_vdev_state_enter(spa, SCL_ALLOC); 2468 2469 /* 2470 * Check to see if the config has changed. 2471 */ 2472 if (error || generation != spa->spa_config_generation) { 2473 metaslab_group_activate(mg); 2474 if (error) 2475 return (spa_vdev_state_exit(spa, 2476 vd, error)); 2477 (void) spa_vdev_state_exit(spa, vd, 0); 2478 goto top; 2479 } 2480 ASSERT0(tvd->vdev_stat.vs_alloc); 2481 } 2482 2483 /* 2484 * Offline this device and reopen its top-level vdev. 2485 * If the top-level vdev is a log device then just offline 2486 * it. Otherwise, if this action results in the top-level 2487 * vdev becoming unusable, undo it and fail the request. 2488 */ 2489 vd->vdev_offline = B_TRUE; 2490 vdev_reopen(tvd); 2491 2492 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2493 vdev_is_dead(tvd)) { 2494 vd->vdev_offline = B_FALSE; 2495 vdev_reopen(tvd); 2496 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2497 } 2498 2499 /* 2500 * Add the device back into the metaslab rotor so that 2501 * once we online the device it's open for business. 2502 */ 2503 if (tvd->vdev_islog && mg != NULL) 2504 metaslab_group_activate(mg); 2505 } 2506 2507 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2508 2509 return (spa_vdev_state_exit(spa, vd, 0)); 2510 } 2511 2512 int 2513 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2514 { 2515 int error; 2516 2517 mutex_enter(&spa->spa_vdev_top_lock); 2518 error = vdev_offline_locked(spa, guid, flags); 2519 mutex_exit(&spa->spa_vdev_top_lock); 2520 2521 return (error); 2522 } 2523 2524 /* 2525 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2526 * vdev_offline(), we assume the spa config is locked. We also clear all 2527 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2528 */ 2529 void 2530 vdev_clear(spa_t *spa, vdev_t *vd) 2531 { 2532 vdev_t *rvd = spa->spa_root_vdev; 2533 2534 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2535 2536 if (vd == NULL) 2537 vd = rvd; 2538 2539 vd->vdev_stat.vs_read_errors = 0; 2540 vd->vdev_stat.vs_write_errors = 0; 2541 vd->vdev_stat.vs_checksum_errors = 0; 2542 2543 for (int c = 0; c < vd->vdev_children; c++) 2544 vdev_clear(spa, vd->vdev_child[c]); 2545 2546 /* 2547 * If we're in the FAULTED state or have experienced failed I/O, then 2548 * clear the persistent state and attempt to reopen the device. We 2549 * also mark the vdev config dirty, so that the new faulted state is 2550 * written out to disk. 2551 */ 2552 if (vd->vdev_faulted || vd->vdev_degraded || 2553 !vdev_readable(vd) || !vdev_writeable(vd)) { 2554 2555 /* 2556 * When reopening in reponse to a clear event, it may be due to 2557 * a fmadm repair request. In this case, if the device is 2558 * still broken, we want to still post the ereport again. 2559 */ 2560 vd->vdev_forcefault = B_TRUE; 2561 2562 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2563 vd->vdev_cant_read = B_FALSE; 2564 vd->vdev_cant_write = B_FALSE; 2565 2566 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2567 2568 vd->vdev_forcefault = B_FALSE; 2569 2570 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2571 vdev_state_dirty(vd->vdev_top); 2572 2573 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2574 spa_async_request(spa, SPA_ASYNC_RESILVER); 2575 2576 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2577 } 2578 2579 /* 2580 * When clearing a FMA-diagnosed fault, we always want to 2581 * unspare the device, as we assume that the original spare was 2582 * done in response to the FMA fault. 2583 */ 2584 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2585 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2586 vd->vdev_parent->vdev_child[0] == vd) 2587 vd->vdev_unspare = B_TRUE; 2588 } 2589 2590 boolean_t 2591 vdev_is_dead(vdev_t *vd) 2592 { 2593 /* 2594 * Holes and missing devices are always considered "dead". 2595 * This simplifies the code since we don't have to check for 2596 * these types of devices in the various code paths. 2597 * Instead we rely on the fact that we skip over dead devices 2598 * before issuing I/O to them. 2599 */ 2600 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2601 vd->vdev_ops == &vdev_missing_ops); 2602 } 2603 2604 boolean_t 2605 vdev_readable(vdev_t *vd) 2606 { 2607 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2608 } 2609 2610 boolean_t 2611 vdev_writeable(vdev_t *vd) 2612 { 2613 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2614 } 2615 2616 boolean_t 2617 vdev_allocatable(vdev_t *vd) 2618 { 2619 uint64_t state = vd->vdev_state; 2620 2621 /* 2622 * We currently allow allocations from vdevs which may be in the 2623 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2624 * fails to reopen then we'll catch it later when we're holding 2625 * the proper locks. Note that we have to get the vdev state 2626 * in a local variable because although it changes atomically, 2627 * we're asking two separate questions about it. 2628 */ 2629 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2630 !vd->vdev_cant_write && !vd->vdev_ishole); 2631 } 2632 2633 boolean_t 2634 vdev_accessible(vdev_t *vd, zio_t *zio) 2635 { 2636 ASSERT(zio->io_vd == vd); 2637 2638 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2639 return (B_FALSE); 2640 2641 if (zio->io_type == ZIO_TYPE_READ) 2642 return (!vd->vdev_cant_read); 2643 2644 if (zio->io_type == ZIO_TYPE_WRITE) 2645 return (!vd->vdev_cant_write); 2646 2647 return (B_TRUE); 2648 } 2649 2650 /* 2651 * Get statistics for the given vdev. 2652 */ 2653 void 2654 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2655 { 2656 spa_t *spa = vd->vdev_spa; 2657 vdev_t *rvd = spa->spa_root_vdev; 2658 2659 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2660 2661 mutex_enter(&vd->vdev_stat_lock); 2662 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2663 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2664 vs->vs_state = vd->vdev_state; 2665 vs->vs_rsize = vdev_get_min_asize(vd); 2666 if (vd->vdev_ops->vdev_op_leaf) 2667 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2668 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2669 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2670 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2671 } 2672 2673 /* 2674 * If we're getting stats on the root vdev, aggregate the I/O counts 2675 * over all top-level vdevs (i.e. the direct children of the root). 2676 */ 2677 if (vd == rvd) { 2678 for (int c = 0; c < rvd->vdev_children; c++) { 2679 vdev_t *cvd = rvd->vdev_child[c]; 2680 vdev_stat_t *cvs = &cvd->vdev_stat; 2681 2682 for (int t = 0; t < ZIO_TYPES; t++) { 2683 vs->vs_ops[t] += cvs->vs_ops[t]; 2684 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2685 } 2686 cvs->vs_scan_removing = cvd->vdev_removing; 2687 } 2688 } 2689 mutex_exit(&vd->vdev_stat_lock); 2690 } 2691 2692 void 2693 vdev_clear_stats(vdev_t *vd) 2694 { 2695 mutex_enter(&vd->vdev_stat_lock); 2696 vd->vdev_stat.vs_space = 0; 2697 vd->vdev_stat.vs_dspace = 0; 2698 vd->vdev_stat.vs_alloc = 0; 2699 mutex_exit(&vd->vdev_stat_lock); 2700 } 2701 2702 void 2703 vdev_scan_stat_init(vdev_t *vd) 2704 { 2705 vdev_stat_t *vs = &vd->vdev_stat; 2706 2707 for (int c = 0; c < vd->vdev_children; c++) 2708 vdev_scan_stat_init(vd->vdev_child[c]); 2709 2710 mutex_enter(&vd->vdev_stat_lock); 2711 vs->vs_scan_processed = 0; 2712 mutex_exit(&vd->vdev_stat_lock); 2713 } 2714 2715 void 2716 vdev_stat_update(zio_t *zio, uint64_t psize) 2717 { 2718 spa_t *spa = zio->io_spa; 2719 vdev_t *rvd = spa->spa_root_vdev; 2720 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2721 vdev_t *pvd; 2722 uint64_t txg = zio->io_txg; 2723 vdev_stat_t *vs = &vd->vdev_stat; 2724 zio_type_t type = zio->io_type; 2725 int flags = zio->io_flags; 2726 2727 /* 2728 * If this i/o is a gang leader, it didn't do any actual work. 2729 */ 2730 if (zio->io_gang_tree) 2731 return; 2732 2733 if (zio->io_error == 0) { 2734 /* 2735 * If this is a root i/o, don't count it -- we've already 2736 * counted the top-level vdevs, and vdev_get_stats() will 2737 * aggregate them when asked. This reduces contention on 2738 * the root vdev_stat_lock and implicitly handles blocks 2739 * that compress away to holes, for which there is no i/o. 2740 * (Holes never create vdev children, so all the counters 2741 * remain zero, which is what we want.) 2742 * 2743 * Note: this only applies to successful i/o (io_error == 0) 2744 * because unlike i/o counts, errors are not additive. 2745 * When reading a ditto block, for example, failure of 2746 * one top-level vdev does not imply a root-level error. 2747 */ 2748 if (vd == rvd) 2749 return; 2750 2751 ASSERT(vd == zio->io_vd); 2752 2753 if (flags & ZIO_FLAG_IO_BYPASS) 2754 return; 2755 2756 mutex_enter(&vd->vdev_stat_lock); 2757 2758 if (flags & ZIO_FLAG_IO_REPAIR) { 2759 if (flags & ZIO_FLAG_SCAN_THREAD) { 2760 dsl_scan_phys_t *scn_phys = 2761 &spa->spa_dsl_pool->dp_scan->scn_phys; 2762 uint64_t *processed = &scn_phys->scn_processed; 2763 2764 /* XXX cleanup? */ 2765 if (vd->vdev_ops->vdev_op_leaf) 2766 atomic_add_64(processed, psize); 2767 vs->vs_scan_processed += psize; 2768 } 2769 2770 if (flags & ZIO_FLAG_SELF_HEAL) 2771 vs->vs_self_healed += psize; 2772 } 2773 2774 vs->vs_ops[type]++; 2775 vs->vs_bytes[type] += psize; 2776 2777 mutex_exit(&vd->vdev_stat_lock); 2778 return; 2779 } 2780 2781 if (flags & ZIO_FLAG_SPECULATIVE) 2782 return; 2783 2784 /* 2785 * If this is an I/O error that is going to be retried, then ignore the 2786 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2787 * hard errors, when in reality they can happen for any number of 2788 * innocuous reasons (bus resets, MPxIO link failure, etc). 2789 */ 2790 if (zio->io_error == EIO && 2791 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2792 return; 2793 2794 /* 2795 * Intent logs writes won't propagate their error to the root 2796 * I/O so don't mark these types of failures as pool-level 2797 * errors. 2798 */ 2799 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2800 return; 2801 2802 mutex_enter(&vd->vdev_stat_lock); 2803 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2804 if (zio->io_error == ECKSUM) 2805 vs->vs_checksum_errors++; 2806 else 2807 vs->vs_read_errors++; 2808 } 2809 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2810 vs->vs_write_errors++; 2811 mutex_exit(&vd->vdev_stat_lock); 2812 2813 if (type == ZIO_TYPE_WRITE && txg != 0 && 2814 (!(flags & ZIO_FLAG_IO_REPAIR) || 2815 (flags & ZIO_FLAG_SCAN_THREAD) || 2816 spa->spa_claiming)) { 2817 /* 2818 * This is either a normal write (not a repair), or it's 2819 * a repair induced by the scrub thread, or it's a repair 2820 * made by zil_claim() during spa_load() in the first txg. 2821 * In the normal case, we commit the DTL change in the same 2822 * txg as the block was born. In the scrub-induced repair 2823 * case, we know that scrubs run in first-pass syncing context, 2824 * so we commit the DTL change in spa_syncing_txg(spa). 2825 * In the zil_claim() case, we commit in spa_first_txg(spa). 2826 * 2827 * We currently do not make DTL entries for failed spontaneous 2828 * self-healing writes triggered by normal (non-scrubbing) 2829 * reads, because we have no transactional context in which to 2830 * do so -- and it's not clear that it'd be desirable anyway. 2831 */ 2832 if (vd->vdev_ops->vdev_op_leaf) { 2833 uint64_t commit_txg = txg; 2834 if (flags & ZIO_FLAG_SCAN_THREAD) { 2835 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2836 ASSERT(spa_sync_pass(spa) == 1); 2837 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2838 commit_txg = spa_syncing_txg(spa); 2839 } else if (spa->spa_claiming) { 2840 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2841 commit_txg = spa_first_txg(spa); 2842 } 2843 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2844 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2845 return; 2846 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2847 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2848 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2849 } 2850 if (vd != rvd) 2851 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2852 } 2853 } 2854 2855 /* 2856 * Update the in-core space usage stats for this vdev, its metaslab class, 2857 * and the root vdev. 2858 */ 2859 void 2860 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2861 int64_t space_delta) 2862 { 2863 int64_t dspace_delta = space_delta; 2864 spa_t *spa = vd->vdev_spa; 2865 vdev_t *rvd = spa->spa_root_vdev; 2866 metaslab_group_t *mg = vd->vdev_mg; 2867 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2868 2869 ASSERT(vd == vd->vdev_top); 2870 2871 /* 2872 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2873 * factor. We must calculate this here and not at the root vdev 2874 * because the root vdev's psize-to-asize is simply the max of its 2875 * childrens', thus not accurate enough for us. 2876 */ 2877 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2878 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2879 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2880 vd->vdev_deflate_ratio; 2881 2882 mutex_enter(&vd->vdev_stat_lock); 2883 vd->vdev_stat.vs_alloc += alloc_delta; 2884 vd->vdev_stat.vs_space += space_delta; 2885 vd->vdev_stat.vs_dspace += dspace_delta; 2886 mutex_exit(&vd->vdev_stat_lock); 2887 2888 if (mc == spa_normal_class(spa)) { 2889 mutex_enter(&rvd->vdev_stat_lock); 2890 rvd->vdev_stat.vs_alloc += alloc_delta; 2891 rvd->vdev_stat.vs_space += space_delta; 2892 rvd->vdev_stat.vs_dspace += dspace_delta; 2893 mutex_exit(&rvd->vdev_stat_lock); 2894 } 2895 2896 if (mc != NULL) { 2897 ASSERT(rvd == vd->vdev_parent); 2898 ASSERT(vd->vdev_ms_count != 0); 2899 2900 metaslab_class_space_update(mc, 2901 alloc_delta, defer_delta, space_delta, dspace_delta); 2902 } 2903 } 2904 2905 /* 2906 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2907 * so that it will be written out next time the vdev configuration is synced. 2908 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2909 */ 2910 void 2911 vdev_config_dirty(vdev_t *vd) 2912 { 2913 spa_t *spa = vd->vdev_spa; 2914 vdev_t *rvd = spa->spa_root_vdev; 2915 int c; 2916 2917 ASSERT(spa_writeable(spa)); 2918 2919 /* 2920 * If this is an aux vdev (as with l2cache and spare devices), then we 2921 * update the vdev config manually and set the sync flag. 2922 */ 2923 if (vd->vdev_aux != NULL) { 2924 spa_aux_vdev_t *sav = vd->vdev_aux; 2925 nvlist_t **aux; 2926 uint_t naux; 2927 2928 for (c = 0; c < sav->sav_count; c++) { 2929 if (sav->sav_vdevs[c] == vd) 2930 break; 2931 } 2932 2933 if (c == sav->sav_count) { 2934 /* 2935 * We're being removed. There's nothing more to do. 2936 */ 2937 ASSERT(sav->sav_sync == B_TRUE); 2938 return; 2939 } 2940 2941 sav->sav_sync = B_TRUE; 2942 2943 if (nvlist_lookup_nvlist_array(sav->sav_config, 2944 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2945 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2946 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2947 } 2948 2949 ASSERT(c < naux); 2950 2951 /* 2952 * Setting the nvlist in the middle if the array is a little 2953 * sketchy, but it will work. 2954 */ 2955 nvlist_free(aux[c]); 2956 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2957 2958 return; 2959 } 2960 2961 /* 2962 * The dirty list is protected by the SCL_CONFIG lock. The caller 2963 * must either hold SCL_CONFIG as writer, or must be the sync thread 2964 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2965 * so this is sufficient to ensure mutual exclusion. 2966 */ 2967 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2968 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2969 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2970 2971 if (vd == rvd) { 2972 for (c = 0; c < rvd->vdev_children; c++) 2973 vdev_config_dirty(rvd->vdev_child[c]); 2974 } else { 2975 ASSERT(vd == vd->vdev_top); 2976 2977 if (!list_link_active(&vd->vdev_config_dirty_node) && 2978 !vd->vdev_ishole) 2979 list_insert_head(&spa->spa_config_dirty_list, vd); 2980 } 2981 } 2982 2983 void 2984 vdev_config_clean(vdev_t *vd) 2985 { 2986 spa_t *spa = vd->vdev_spa; 2987 2988 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2989 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2990 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2991 2992 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2993 list_remove(&spa->spa_config_dirty_list, vd); 2994 } 2995 2996 /* 2997 * Mark a top-level vdev's state as dirty, so that the next pass of 2998 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2999 * the state changes from larger config changes because they require 3000 * much less locking, and are often needed for administrative actions. 3001 */ 3002 void 3003 vdev_state_dirty(vdev_t *vd) 3004 { 3005 spa_t *spa = vd->vdev_spa; 3006 3007 ASSERT(spa_writeable(spa)); 3008 ASSERT(vd == vd->vdev_top); 3009 3010 /* 3011 * The state list is protected by the SCL_STATE lock. The caller 3012 * must either hold SCL_STATE as writer, or must be the sync thread 3013 * (which holds SCL_STATE as reader). There's only one sync thread, 3014 * so this is sufficient to ensure mutual exclusion. 3015 */ 3016 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3017 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3018 spa_config_held(spa, SCL_STATE, RW_READER))); 3019 3020 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 3021 list_insert_head(&spa->spa_state_dirty_list, vd); 3022 } 3023 3024 void 3025 vdev_state_clean(vdev_t *vd) 3026 { 3027 spa_t *spa = vd->vdev_spa; 3028 3029 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3030 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3031 spa_config_held(spa, SCL_STATE, RW_READER))); 3032 3033 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3034 list_remove(&spa->spa_state_dirty_list, vd); 3035 } 3036 3037 /* 3038 * Propagate vdev state up from children to parent. 3039 */ 3040 void 3041 vdev_propagate_state(vdev_t *vd) 3042 { 3043 spa_t *spa = vd->vdev_spa; 3044 vdev_t *rvd = spa->spa_root_vdev; 3045 int degraded = 0, faulted = 0; 3046 int corrupted = 0; 3047 vdev_t *child; 3048 3049 if (vd->vdev_children > 0) { 3050 for (int c = 0; c < vd->vdev_children; c++) { 3051 child = vd->vdev_child[c]; 3052 3053 /* 3054 * Don't factor holes into the decision. 3055 */ 3056 if (child->vdev_ishole) 3057 continue; 3058 3059 if (!vdev_readable(child) || 3060 (!vdev_writeable(child) && spa_writeable(spa))) { 3061 /* 3062 * Root special: if there is a top-level log 3063 * device, treat the root vdev as if it were 3064 * degraded. 3065 */ 3066 if (child->vdev_islog && vd == rvd) 3067 degraded++; 3068 else 3069 faulted++; 3070 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3071 degraded++; 3072 } 3073 3074 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3075 corrupted++; 3076 } 3077 3078 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3079 3080 /* 3081 * Root special: if there is a top-level vdev that cannot be 3082 * opened due to corrupted metadata, then propagate the root 3083 * vdev's aux state as 'corrupt' rather than 'insufficient 3084 * replicas'. 3085 */ 3086 if (corrupted && vd == rvd && 3087 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3088 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3089 VDEV_AUX_CORRUPT_DATA); 3090 } 3091 3092 if (vd->vdev_parent) 3093 vdev_propagate_state(vd->vdev_parent); 3094 } 3095 3096 /* 3097 * Set a vdev's state. If this is during an open, we don't update the parent 3098 * state, because we're in the process of opening children depth-first. 3099 * Otherwise, we propagate the change to the parent. 3100 * 3101 * If this routine places a device in a faulted state, an appropriate ereport is 3102 * generated. 3103 */ 3104 void 3105 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3106 { 3107 uint64_t save_state; 3108 spa_t *spa = vd->vdev_spa; 3109 3110 if (state == vd->vdev_state) { 3111 vd->vdev_stat.vs_aux = aux; 3112 return; 3113 } 3114 3115 save_state = vd->vdev_state; 3116 3117 vd->vdev_state = state; 3118 vd->vdev_stat.vs_aux = aux; 3119 3120 /* 3121 * If we are setting the vdev state to anything but an open state, then 3122 * always close the underlying device unless the device has requested 3123 * a delayed close (i.e. we're about to remove or fault the device). 3124 * Otherwise, we keep accessible but invalid devices open forever. 3125 * We don't call vdev_close() itself, because that implies some extra 3126 * checks (offline, etc) that we don't want here. This is limited to 3127 * leaf devices, because otherwise closing the device will affect other 3128 * children. 3129 */ 3130 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3131 vd->vdev_ops->vdev_op_leaf) 3132 vd->vdev_ops->vdev_op_close(vd); 3133 3134 /* 3135 * If we have brought this vdev back into service, we need 3136 * to notify fmd so that it can gracefully repair any outstanding 3137 * cases due to a missing device. We do this in all cases, even those 3138 * that probably don't correlate to a repaired fault. This is sure to 3139 * catch all cases, and we let the zfs-retire agent sort it out. If 3140 * this is a transient state it's OK, as the retire agent will 3141 * double-check the state of the vdev before repairing it. 3142 */ 3143 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3144 vd->vdev_prevstate != state) 3145 zfs_post_state_change(spa, vd); 3146 3147 if (vd->vdev_removed && 3148 state == VDEV_STATE_CANT_OPEN && 3149 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3150 /* 3151 * If the previous state is set to VDEV_STATE_REMOVED, then this 3152 * device was previously marked removed and someone attempted to 3153 * reopen it. If this failed due to a nonexistent device, then 3154 * keep the device in the REMOVED state. We also let this be if 3155 * it is one of our special test online cases, which is only 3156 * attempting to online the device and shouldn't generate an FMA 3157 * fault. 3158 */ 3159 vd->vdev_state = VDEV_STATE_REMOVED; 3160 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3161 } else if (state == VDEV_STATE_REMOVED) { 3162 vd->vdev_removed = B_TRUE; 3163 } else if (state == VDEV_STATE_CANT_OPEN) { 3164 /* 3165 * If we fail to open a vdev during an import or recovery, we 3166 * mark it as "not available", which signifies that it was 3167 * never there to begin with. Failure to open such a device 3168 * is not considered an error. 3169 */ 3170 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3171 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3172 vd->vdev_ops->vdev_op_leaf) 3173 vd->vdev_not_present = 1; 3174 3175 /* 3176 * Post the appropriate ereport. If the 'prevstate' field is 3177 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3178 * that this is part of a vdev_reopen(). In this case, we don't 3179 * want to post the ereport if the device was already in the 3180 * CANT_OPEN state beforehand. 3181 * 3182 * If the 'checkremove' flag is set, then this is an attempt to 3183 * online the device in response to an insertion event. If we 3184 * hit this case, then we have detected an insertion event for a 3185 * faulted or offline device that wasn't in the removed state. 3186 * In this scenario, we don't post an ereport because we are 3187 * about to replace the device, or attempt an online with 3188 * vdev_forcefault, which will generate the fault for us. 3189 */ 3190 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3191 !vd->vdev_not_present && !vd->vdev_checkremove && 3192 vd != spa->spa_root_vdev) { 3193 const char *class; 3194 3195 switch (aux) { 3196 case VDEV_AUX_OPEN_FAILED: 3197 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3198 break; 3199 case VDEV_AUX_CORRUPT_DATA: 3200 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3201 break; 3202 case VDEV_AUX_NO_REPLICAS: 3203 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3204 break; 3205 case VDEV_AUX_BAD_GUID_SUM: 3206 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3207 break; 3208 case VDEV_AUX_TOO_SMALL: 3209 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3210 break; 3211 case VDEV_AUX_BAD_LABEL: 3212 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3213 break; 3214 default: 3215 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3216 } 3217 3218 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3219 } 3220 3221 /* Erase any notion of persistent removed state */ 3222 vd->vdev_removed = B_FALSE; 3223 } else { 3224 vd->vdev_removed = B_FALSE; 3225 } 3226 3227 if (!isopen && vd->vdev_parent) 3228 vdev_propagate_state(vd->vdev_parent); 3229 } 3230 3231 /* 3232 * Check the vdev configuration to ensure that it's capable of supporting 3233 * a root pool. We do not support partial configuration. 3234 * In addition, only a single top-level vdev is allowed. 3235 */ 3236 boolean_t 3237 vdev_is_bootable(vdev_t *vd) 3238 { 3239 if (!vd->vdev_ops->vdev_op_leaf) { 3240 char *vdev_type = vd->vdev_ops->vdev_op_type; 3241 3242 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3243 vd->vdev_children > 1) { 3244 return (B_FALSE); 3245 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3246 return (B_FALSE); 3247 } 3248 } 3249 3250 for (int c = 0; c < vd->vdev_children; c++) { 3251 if (!vdev_is_bootable(vd->vdev_child[c])) 3252 return (B_FALSE); 3253 } 3254 return (B_TRUE); 3255 } 3256 3257 /* 3258 * Load the state from the original vdev tree (ovd) which 3259 * we've retrieved from the MOS config object. If the original 3260 * vdev was offline or faulted then we transfer that state to the 3261 * device in the current vdev tree (nvd). 3262 */ 3263 void 3264 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3265 { 3266 spa_t *spa = nvd->vdev_spa; 3267 3268 ASSERT(nvd->vdev_top->vdev_islog); 3269 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3270 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3271 3272 for (int c = 0; c < nvd->vdev_children; c++) 3273 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3274 3275 if (nvd->vdev_ops->vdev_op_leaf) { 3276 /* 3277 * Restore the persistent vdev state 3278 */ 3279 nvd->vdev_offline = ovd->vdev_offline; 3280 nvd->vdev_faulted = ovd->vdev_faulted; 3281 nvd->vdev_degraded = ovd->vdev_degraded; 3282 nvd->vdev_removed = ovd->vdev_removed; 3283 } 3284 } 3285 3286 /* 3287 * Determine if a log device has valid content. If the vdev was 3288 * removed or faulted in the MOS config then we know that 3289 * the content on the log device has already been written to the pool. 3290 */ 3291 boolean_t 3292 vdev_log_state_valid(vdev_t *vd) 3293 { 3294 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3295 !vd->vdev_removed) 3296 return (B_TRUE); 3297 3298 for (int c = 0; c < vd->vdev_children; c++) 3299 if (vdev_log_state_valid(vd->vdev_child[c])) 3300 return (B_TRUE); 3301 3302 return (B_FALSE); 3303 } 3304 3305 /* 3306 * Expand a vdev if possible. 3307 */ 3308 void 3309 vdev_expand(vdev_t *vd, uint64_t txg) 3310 { 3311 ASSERT(vd->vdev_top == vd); 3312 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3313 3314 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3315 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3316 vdev_config_dirty(vd); 3317 } 3318 } 3319 3320 /* 3321 * Split a vdev. 3322 */ 3323 void 3324 vdev_split(vdev_t *vd) 3325 { 3326 vdev_t *cvd, *pvd = vd->vdev_parent; 3327 3328 vdev_remove_child(pvd, vd); 3329 vdev_compact_children(pvd); 3330 3331 cvd = pvd->vdev_child[0]; 3332 if (pvd->vdev_children == 1) { 3333 vdev_remove_parent(cvd); 3334 cvd->vdev_splitting = B_TRUE; 3335 } 3336 vdev_propagate_state(cvd); 3337 } 3338 3339 void 3340 vdev_deadman(vdev_t *vd) 3341 { 3342 for (int c = 0; c < vd->vdev_children; c++) { 3343 vdev_t *cvd = vd->vdev_child[c]; 3344 3345 vdev_deadman(cvd); 3346 } 3347 3348 if (vd->vdev_ops->vdev_op_leaf) { 3349 vdev_queue_t *vq = &vd->vdev_queue; 3350 3351 mutex_enter(&vq->vq_lock); 3352 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3353 spa_t *spa = vd->vdev_spa; 3354 zio_t *fio; 3355 uint64_t delta; 3356 3357 /* 3358 * Look at the head of all the pending queues, 3359 * if any I/O has been outstanding for longer than 3360 * the spa_deadman_synctime we panic the system. 3361 */ 3362 fio = avl_first(&vq->vq_active_tree); 3363 delta = gethrtime() - fio->io_timestamp; 3364 if (delta > spa_deadman_synctime(spa)) { 3365 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3366 "delta %lluns, last io %lluns", 3367 fio->io_timestamp, delta, 3368 vq->vq_io_complete_ts); 3369 fm_panic("I/O to pool '%s' appears to be " 3370 "hung.", spa_name(spa)); 3371 } 3372 } 3373 mutex_exit(&vq->vq_lock); 3374 } 3375 } 3376