1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/zio.h> 40 #include <sys/zap.h> 41 #include <sys/fs/zfs.h> 42 #include <sys/arc.h> 43 #include <sys/zil.h> 44 #include <sys/dsl_scan.h> 45 46 /* 47 * Virtual device management. 48 */ 49 50 static vdev_ops_t *vdev_ops_table[] = { 51 &vdev_root_ops, 52 &vdev_raidz_ops, 53 &vdev_mirror_ops, 54 &vdev_replacing_ops, 55 &vdev_spare_ops, 56 &vdev_disk_ops, 57 &vdev_file_ops, 58 &vdev_missing_ops, 59 &vdev_hole_ops, 60 NULL 61 }; 62 63 /* maximum scrub/resilver I/O queue per leaf vdev */ 64 int zfs_scrub_limit = 10; 65 66 /* 67 * Given a vdev type, return the appropriate ops vector. 68 */ 69 static vdev_ops_t * 70 vdev_getops(const char *type) 71 { 72 vdev_ops_t *ops, **opspp; 73 74 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 75 if (strcmp(ops->vdev_op_type, type) == 0) 76 break; 77 78 return (ops); 79 } 80 81 /* 82 * Default asize function: return the MAX of psize with the asize of 83 * all children. This is what's used by anything other than RAID-Z. 84 */ 85 uint64_t 86 vdev_default_asize(vdev_t *vd, uint64_t psize) 87 { 88 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 89 uint64_t csize; 90 91 for (int c = 0; c < vd->vdev_children; c++) { 92 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 93 asize = MAX(asize, csize); 94 } 95 96 return (asize); 97 } 98 99 /* 100 * Get the minimum allocatable size. We define the allocatable size as 101 * the vdev's asize rounded to the nearest metaslab. This allows us to 102 * replace or attach devices which don't have the same physical size but 103 * can still satisfy the same number of allocations. 104 */ 105 uint64_t 106 vdev_get_min_asize(vdev_t *vd) 107 { 108 vdev_t *pvd = vd->vdev_parent; 109 110 /* 111 * If our parent is NULL (inactive spare or cache) or is the root, 112 * just return our own asize. 113 */ 114 if (pvd == NULL) 115 return (vd->vdev_asize); 116 117 /* 118 * The top-level vdev just returns the allocatable size rounded 119 * to the nearest metaslab. 120 */ 121 if (vd == vd->vdev_top) 122 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 123 124 /* 125 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 126 * so each child must provide at least 1/Nth of its asize. 127 */ 128 if (pvd->vdev_ops == &vdev_raidz_ops) 129 return (pvd->vdev_min_asize / pvd->vdev_children); 130 131 return (pvd->vdev_min_asize); 132 } 133 134 void 135 vdev_set_min_asize(vdev_t *vd) 136 { 137 vd->vdev_min_asize = vdev_get_min_asize(vd); 138 139 for (int c = 0; c < vd->vdev_children; c++) 140 vdev_set_min_asize(vd->vdev_child[c]); 141 } 142 143 vdev_t * 144 vdev_lookup_top(spa_t *spa, uint64_t vdev) 145 { 146 vdev_t *rvd = spa->spa_root_vdev; 147 148 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 149 150 if (vdev < rvd->vdev_children) { 151 ASSERT(rvd->vdev_child[vdev] != NULL); 152 return (rvd->vdev_child[vdev]); 153 } 154 155 return (NULL); 156 } 157 158 vdev_t * 159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 160 { 161 vdev_t *mvd; 162 163 if (vd->vdev_guid == guid) 164 return (vd); 165 166 for (int c = 0; c < vd->vdev_children; c++) 167 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 168 NULL) 169 return (mvd); 170 171 return (NULL); 172 } 173 174 void 175 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 176 { 177 size_t oldsize, newsize; 178 uint64_t id = cvd->vdev_id; 179 vdev_t **newchild; 180 181 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 182 ASSERT(cvd->vdev_parent == NULL); 183 184 cvd->vdev_parent = pvd; 185 186 if (pvd == NULL) 187 return; 188 189 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 190 191 oldsize = pvd->vdev_children * sizeof (vdev_t *); 192 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 193 newsize = pvd->vdev_children * sizeof (vdev_t *); 194 195 newchild = kmem_zalloc(newsize, KM_SLEEP); 196 if (pvd->vdev_child != NULL) { 197 bcopy(pvd->vdev_child, newchild, oldsize); 198 kmem_free(pvd->vdev_child, oldsize); 199 } 200 201 pvd->vdev_child = newchild; 202 pvd->vdev_child[id] = cvd; 203 204 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 205 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 206 207 /* 208 * Walk up all ancestors to update guid sum. 209 */ 210 for (; pvd != NULL; pvd = pvd->vdev_parent) 211 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 212 } 213 214 void 215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 216 { 217 int c; 218 uint_t id = cvd->vdev_id; 219 220 ASSERT(cvd->vdev_parent == pvd); 221 222 if (pvd == NULL) 223 return; 224 225 ASSERT(id < pvd->vdev_children); 226 ASSERT(pvd->vdev_child[id] == cvd); 227 228 pvd->vdev_child[id] = NULL; 229 cvd->vdev_parent = NULL; 230 231 for (c = 0; c < pvd->vdev_children; c++) 232 if (pvd->vdev_child[c]) 233 break; 234 235 if (c == pvd->vdev_children) { 236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 237 pvd->vdev_child = NULL; 238 pvd->vdev_children = 0; 239 } 240 241 /* 242 * Walk up all ancestors to update guid sum. 243 */ 244 for (; pvd != NULL; pvd = pvd->vdev_parent) 245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 246 } 247 248 /* 249 * Remove any holes in the child array. 250 */ 251 void 252 vdev_compact_children(vdev_t *pvd) 253 { 254 vdev_t **newchild, *cvd; 255 int oldc = pvd->vdev_children; 256 int newc; 257 258 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 259 260 for (int c = newc = 0; c < oldc; c++) 261 if (pvd->vdev_child[c]) 262 newc++; 263 264 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 265 266 for (int c = newc = 0; c < oldc; c++) { 267 if ((cvd = pvd->vdev_child[c]) != NULL) { 268 newchild[newc] = cvd; 269 cvd->vdev_id = newc++; 270 } 271 } 272 273 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 274 pvd->vdev_child = newchild; 275 pvd->vdev_children = newc; 276 } 277 278 /* 279 * Allocate and minimally initialize a vdev_t. 280 */ 281 vdev_t * 282 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 283 { 284 vdev_t *vd; 285 286 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 287 288 if (spa->spa_root_vdev == NULL) { 289 ASSERT(ops == &vdev_root_ops); 290 spa->spa_root_vdev = vd; 291 spa->spa_load_guid = spa_generate_guid(NULL); 292 } 293 294 if (guid == 0 && ops != &vdev_hole_ops) { 295 if (spa->spa_root_vdev == vd) { 296 /* 297 * The root vdev's guid will also be the pool guid, 298 * which must be unique among all pools. 299 */ 300 guid = spa_generate_guid(NULL); 301 } else { 302 /* 303 * Any other vdev's guid must be unique within the pool. 304 */ 305 guid = spa_generate_guid(spa); 306 } 307 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 308 } 309 310 vd->vdev_spa = spa; 311 vd->vdev_id = id; 312 vd->vdev_guid = guid; 313 vd->vdev_guid_sum = guid; 314 vd->vdev_ops = ops; 315 vd->vdev_state = VDEV_STATE_CLOSED; 316 vd->vdev_ishole = (ops == &vdev_hole_ops); 317 318 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 319 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 320 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 321 for (int t = 0; t < DTL_TYPES; t++) { 322 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 323 &vd->vdev_dtl_lock); 324 } 325 txg_list_create(&vd->vdev_ms_list, 326 offsetof(struct metaslab, ms_txg_node)); 327 txg_list_create(&vd->vdev_dtl_list, 328 offsetof(struct vdev, vdev_dtl_node)); 329 vd->vdev_stat.vs_timestamp = gethrtime(); 330 vdev_queue_init(vd); 331 vdev_cache_init(vd); 332 333 return (vd); 334 } 335 336 /* 337 * Allocate a new vdev. The 'alloctype' is used to control whether we are 338 * creating a new vdev or loading an existing one - the behavior is slightly 339 * different for each case. 340 */ 341 int 342 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 343 int alloctype) 344 { 345 vdev_ops_t *ops; 346 char *type; 347 uint64_t guid = 0, islog, nparity; 348 vdev_t *vd; 349 350 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 351 352 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 353 return (SET_ERROR(EINVAL)); 354 355 if ((ops = vdev_getops(type)) == NULL) 356 return (SET_ERROR(EINVAL)); 357 358 /* 359 * If this is a load, get the vdev guid from the nvlist. 360 * Otherwise, vdev_alloc_common() will generate one for us. 361 */ 362 if (alloctype == VDEV_ALLOC_LOAD) { 363 uint64_t label_id; 364 365 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 366 label_id != id) 367 return (SET_ERROR(EINVAL)); 368 369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 370 return (SET_ERROR(EINVAL)); 371 } else if (alloctype == VDEV_ALLOC_SPARE) { 372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 373 return (SET_ERROR(EINVAL)); 374 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 376 return (SET_ERROR(EINVAL)); 377 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 379 return (SET_ERROR(EINVAL)); 380 } 381 382 /* 383 * The first allocated vdev must be of type 'root'. 384 */ 385 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 386 return (SET_ERROR(EINVAL)); 387 388 /* 389 * Determine whether we're a log vdev. 390 */ 391 islog = 0; 392 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 393 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 394 return (SET_ERROR(ENOTSUP)); 395 396 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 397 return (SET_ERROR(ENOTSUP)); 398 399 /* 400 * Set the nparity property for RAID-Z vdevs. 401 */ 402 nparity = -1ULL; 403 if (ops == &vdev_raidz_ops) { 404 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 405 &nparity) == 0) { 406 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 407 return (SET_ERROR(EINVAL)); 408 /* 409 * Previous versions could only support 1 or 2 parity 410 * device. 411 */ 412 if (nparity > 1 && 413 spa_version(spa) < SPA_VERSION_RAIDZ2) 414 return (SET_ERROR(ENOTSUP)); 415 if (nparity > 2 && 416 spa_version(spa) < SPA_VERSION_RAIDZ3) 417 return (SET_ERROR(ENOTSUP)); 418 } else { 419 /* 420 * We require the parity to be specified for SPAs that 421 * support multiple parity levels. 422 */ 423 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 424 return (SET_ERROR(EINVAL)); 425 /* 426 * Otherwise, we default to 1 parity device for RAID-Z. 427 */ 428 nparity = 1; 429 } 430 } else { 431 nparity = 0; 432 } 433 ASSERT(nparity != -1ULL); 434 435 vd = vdev_alloc_common(spa, id, guid, ops); 436 437 vd->vdev_islog = islog; 438 vd->vdev_nparity = nparity; 439 440 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 441 vd->vdev_path = spa_strdup(vd->vdev_path); 442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 443 vd->vdev_devid = spa_strdup(vd->vdev_devid); 444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 445 &vd->vdev_physpath) == 0) 446 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 448 vd->vdev_fru = spa_strdup(vd->vdev_fru); 449 450 /* 451 * Set the whole_disk property. If it's not specified, leave the value 452 * as -1. 453 */ 454 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 455 &vd->vdev_wholedisk) != 0) 456 vd->vdev_wholedisk = -1ULL; 457 458 /* 459 * Look for the 'not present' flag. This will only be set if the device 460 * was not present at the time of import. 461 */ 462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 463 &vd->vdev_not_present); 464 465 /* 466 * Get the alignment requirement. 467 */ 468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 469 470 /* 471 * Retrieve the vdev creation time. 472 */ 473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 474 &vd->vdev_crtxg); 475 476 /* 477 * If we're a top-level vdev, try to load the allocation parameters. 478 */ 479 if (parent && !parent->vdev_parent && 480 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 482 &vd->vdev_ms_array); 483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 484 &vd->vdev_ms_shift); 485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 486 &vd->vdev_asize); 487 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 488 &vd->vdev_removing); 489 } 490 491 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 492 ASSERT(alloctype == VDEV_ALLOC_LOAD || 493 alloctype == VDEV_ALLOC_ADD || 494 alloctype == VDEV_ALLOC_SPLIT || 495 alloctype == VDEV_ALLOC_ROOTPOOL); 496 vd->vdev_mg = metaslab_group_create(islog ? 497 spa_log_class(spa) : spa_normal_class(spa), vd); 498 } 499 500 /* 501 * If we're a leaf vdev, try to load the DTL object and other state. 502 */ 503 if (vd->vdev_ops->vdev_op_leaf && 504 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 505 alloctype == VDEV_ALLOC_ROOTPOOL)) { 506 if (alloctype == VDEV_ALLOC_LOAD) { 507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 508 &vd->vdev_dtl_smo.smo_object); 509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 510 &vd->vdev_unspare); 511 } 512 513 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 514 uint64_t spare = 0; 515 516 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 517 &spare) == 0 && spare) 518 spa_spare_add(vd); 519 } 520 521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 522 &vd->vdev_offline); 523 524 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING, 525 &vd->vdev_resilvering); 526 527 /* 528 * When importing a pool, we want to ignore the persistent fault 529 * state, as the diagnosis made on another system may not be 530 * valid in the current context. Local vdevs will 531 * remain in the faulted state. 532 */ 533 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 535 &vd->vdev_faulted); 536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 537 &vd->vdev_degraded); 538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 539 &vd->vdev_removed); 540 541 if (vd->vdev_faulted || vd->vdev_degraded) { 542 char *aux; 543 544 vd->vdev_label_aux = 545 VDEV_AUX_ERR_EXCEEDED; 546 if (nvlist_lookup_string(nv, 547 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 548 strcmp(aux, "external") == 0) 549 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 550 } 551 } 552 } 553 554 /* 555 * Add ourselves to the parent's list of children. 556 */ 557 vdev_add_child(parent, vd); 558 559 *vdp = vd; 560 561 return (0); 562 } 563 564 void 565 vdev_free(vdev_t *vd) 566 { 567 spa_t *spa = vd->vdev_spa; 568 569 /* 570 * vdev_free() implies closing the vdev first. This is simpler than 571 * trying to ensure complicated semantics for all callers. 572 */ 573 vdev_close(vd); 574 575 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 576 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 577 578 /* 579 * Free all children. 580 */ 581 for (int c = 0; c < vd->vdev_children; c++) 582 vdev_free(vd->vdev_child[c]); 583 584 ASSERT(vd->vdev_child == NULL); 585 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 586 587 /* 588 * Discard allocation state. 589 */ 590 if (vd->vdev_mg != NULL) { 591 vdev_metaslab_fini(vd); 592 metaslab_group_destroy(vd->vdev_mg); 593 } 594 595 ASSERT0(vd->vdev_stat.vs_space); 596 ASSERT0(vd->vdev_stat.vs_dspace); 597 ASSERT0(vd->vdev_stat.vs_alloc); 598 599 /* 600 * Remove this vdev from its parent's child list. 601 */ 602 vdev_remove_child(vd->vdev_parent, vd); 603 604 ASSERT(vd->vdev_parent == NULL); 605 606 /* 607 * Clean up vdev structure. 608 */ 609 vdev_queue_fini(vd); 610 vdev_cache_fini(vd); 611 612 if (vd->vdev_path) 613 spa_strfree(vd->vdev_path); 614 if (vd->vdev_devid) 615 spa_strfree(vd->vdev_devid); 616 if (vd->vdev_physpath) 617 spa_strfree(vd->vdev_physpath); 618 if (vd->vdev_fru) 619 spa_strfree(vd->vdev_fru); 620 621 if (vd->vdev_isspare) 622 spa_spare_remove(vd); 623 if (vd->vdev_isl2cache) 624 spa_l2cache_remove(vd); 625 626 txg_list_destroy(&vd->vdev_ms_list); 627 txg_list_destroy(&vd->vdev_dtl_list); 628 629 mutex_enter(&vd->vdev_dtl_lock); 630 for (int t = 0; t < DTL_TYPES; t++) { 631 space_map_unload(&vd->vdev_dtl[t]); 632 space_map_destroy(&vd->vdev_dtl[t]); 633 } 634 mutex_exit(&vd->vdev_dtl_lock); 635 636 mutex_destroy(&vd->vdev_dtl_lock); 637 mutex_destroy(&vd->vdev_stat_lock); 638 mutex_destroy(&vd->vdev_probe_lock); 639 640 if (vd == spa->spa_root_vdev) 641 spa->spa_root_vdev = NULL; 642 643 kmem_free(vd, sizeof (vdev_t)); 644 } 645 646 /* 647 * Transfer top-level vdev state from svd to tvd. 648 */ 649 static void 650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 651 { 652 spa_t *spa = svd->vdev_spa; 653 metaslab_t *msp; 654 vdev_t *vd; 655 int t; 656 657 ASSERT(tvd == tvd->vdev_top); 658 659 tvd->vdev_ms_array = svd->vdev_ms_array; 660 tvd->vdev_ms_shift = svd->vdev_ms_shift; 661 tvd->vdev_ms_count = svd->vdev_ms_count; 662 663 svd->vdev_ms_array = 0; 664 svd->vdev_ms_shift = 0; 665 svd->vdev_ms_count = 0; 666 667 if (tvd->vdev_mg) 668 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 669 tvd->vdev_mg = svd->vdev_mg; 670 tvd->vdev_ms = svd->vdev_ms; 671 672 svd->vdev_mg = NULL; 673 svd->vdev_ms = NULL; 674 675 if (tvd->vdev_mg != NULL) 676 tvd->vdev_mg->mg_vd = tvd; 677 678 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 679 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 680 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 681 682 svd->vdev_stat.vs_alloc = 0; 683 svd->vdev_stat.vs_space = 0; 684 svd->vdev_stat.vs_dspace = 0; 685 686 for (t = 0; t < TXG_SIZE; t++) { 687 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 688 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 689 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 690 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 691 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 692 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 693 } 694 695 if (list_link_active(&svd->vdev_config_dirty_node)) { 696 vdev_config_clean(svd); 697 vdev_config_dirty(tvd); 698 } 699 700 if (list_link_active(&svd->vdev_state_dirty_node)) { 701 vdev_state_clean(svd); 702 vdev_state_dirty(tvd); 703 } 704 705 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 706 svd->vdev_deflate_ratio = 0; 707 708 tvd->vdev_islog = svd->vdev_islog; 709 svd->vdev_islog = 0; 710 } 711 712 static void 713 vdev_top_update(vdev_t *tvd, vdev_t *vd) 714 { 715 if (vd == NULL) 716 return; 717 718 vd->vdev_top = tvd; 719 720 for (int c = 0; c < vd->vdev_children; c++) 721 vdev_top_update(tvd, vd->vdev_child[c]); 722 } 723 724 /* 725 * Add a mirror/replacing vdev above an existing vdev. 726 */ 727 vdev_t * 728 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 729 { 730 spa_t *spa = cvd->vdev_spa; 731 vdev_t *pvd = cvd->vdev_parent; 732 vdev_t *mvd; 733 734 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 735 736 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 737 738 mvd->vdev_asize = cvd->vdev_asize; 739 mvd->vdev_min_asize = cvd->vdev_min_asize; 740 mvd->vdev_max_asize = cvd->vdev_max_asize; 741 mvd->vdev_ashift = cvd->vdev_ashift; 742 mvd->vdev_state = cvd->vdev_state; 743 mvd->vdev_crtxg = cvd->vdev_crtxg; 744 745 vdev_remove_child(pvd, cvd); 746 vdev_add_child(pvd, mvd); 747 cvd->vdev_id = mvd->vdev_children; 748 vdev_add_child(mvd, cvd); 749 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 750 751 if (mvd == mvd->vdev_top) 752 vdev_top_transfer(cvd, mvd); 753 754 return (mvd); 755 } 756 757 /* 758 * Remove a 1-way mirror/replacing vdev from the tree. 759 */ 760 void 761 vdev_remove_parent(vdev_t *cvd) 762 { 763 vdev_t *mvd = cvd->vdev_parent; 764 vdev_t *pvd = mvd->vdev_parent; 765 766 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 767 768 ASSERT(mvd->vdev_children == 1); 769 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 770 mvd->vdev_ops == &vdev_replacing_ops || 771 mvd->vdev_ops == &vdev_spare_ops); 772 cvd->vdev_ashift = mvd->vdev_ashift; 773 774 vdev_remove_child(mvd, cvd); 775 vdev_remove_child(pvd, mvd); 776 777 /* 778 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 779 * Otherwise, we could have detached an offline device, and when we 780 * go to import the pool we'll think we have two top-level vdevs, 781 * instead of a different version of the same top-level vdev. 782 */ 783 if (mvd->vdev_top == mvd) { 784 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 785 cvd->vdev_orig_guid = cvd->vdev_guid; 786 cvd->vdev_guid += guid_delta; 787 cvd->vdev_guid_sum += guid_delta; 788 } 789 cvd->vdev_id = mvd->vdev_id; 790 vdev_add_child(pvd, cvd); 791 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 792 793 if (cvd == cvd->vdev_top) 794 vdev_top_transfer(mvd, cvd); 795 796 ASSERT(mvd->vdev_children == 0); 797 vdev_free(mvd); 798 } 799 800 int 801 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 802 { 803 spa_t *spa = vd->vdev_spa; 804 objset_t *mos = spa->spa_meta_objset; 805 uint64_t m; 806 uint64_t oldc = vd->vdev_ms_count; 807 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 808 metaslab_t **mspp; 809 int error; 810 811 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 812 813 /* 814 * This vdev is not being allocated from yet or is a hole. 815 */ 816 if (vd->vdev_ms_shift == 0) 817 return (0); 818 819 ASSERT(!vd->vdev_ishole); 820 821 /* 822 * Compute the raidz-deflation ratio. Note, we hard-code 823 * in 128k (1 << 17) because it is the current "typical" blocksize. 824 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 825 * or we will inconsistently account for existing bp's. 826 */ 827 vd->vdev_deflate_ratio = (1 << 17) / 828 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 829 830 ASSERT(oldc <= newc); 831 832 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 833 834 if (oldc != 0) { 835 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 836 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 837 } 838 839 vd->vdev_ms = mspp; 840 vd->vdev_ms_count = newc; 841 842 for (m = oldc; m < newc; m++) { 843 space_map_obj_t smo = { 0, 0, 0 }; 844 if (txg == 0) { 845 uint64_t object = 0; 846 error = dmu_read(mos, vd->vdev_ms_array, 847 m * sizeof (uint64_t), sizeof (uint64_t), &object, 848 DMU_READ_PREFETCH); 849 if (error) 850 return (error); 851 if (object != 0) { 852 dmu_buf_t *db; 853 error = dmu_bonus_hold(mos, object, FTAG, &db); 854 if (error) 855 return (error); 856 ASSERT3U(db->db_size, >=, sizeof (smo)); 857 bcopy(db->db_data, &smo, sizeof (smo)); 858 ASSERT3U(smo.smo_object, ==, object); 859 dmu_buf_rele(db, FTAG); 860 } 861 } 862 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 863 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 864 } 865 866 if (txg == 0) 867 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 868 869 /* 870 * If the vdev is being removed we don't activate 871 * the metaslabs since we want to ensure that no new 872 * allocations are performed on this device. 873 */ 874 if (oldc == 0 && !vd->vdev_removing) 875 metaslab_group_activate(vd->vdev_mg); 876 877 if (txg == 0) 878 spa_config_exit(spa, SCL_ALLOC, FTAG); 879 880 return (0); 881 } 882 883 void 884 vdev_metaslab_fini(vdev_t *vd) 885 { 886 uint64_t m; 887 uint64_t count = vd->vdev_ms_count; 888 889 if (vd->vdev_ms != NULL) { 890 metaslab_group_passivate(vd->vdev_mg); 891 for (m = 0; m < count; m++) 892 if (vd->vdev_ms[m] != NULL) 893 metaslab_fini(vd->vdev_ms[m]); 894 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 895 vd->vdev_ms = NULL; 896 } 897 } 898 899 typedef struct vdev_probe_stats { 900 boolean_t vps_readable; 901 boolean_t vps_writeable; 902 int vps_flags; 903 } vdev_probe_stats_t; 904 905 static void 906 vdev_probe_done(zio_t *zio) 907 { 908 spa_t *spa = zio->io_spa; 909 vdev_t *vd = zio->io_vd; 910 vdev_probe_stats_t *vps = zio->io_private; 911 912 ASSERT(vd->vdev_probe_zio != NULL); 913 914 if (zio->io_type == ZIO_TYPE_READ) { 915 if (zio->io_error == 0) 916 vps->vps_readable = 1; 917 if (zio->io_error == 0 && spa_writeable(spa)) { 918 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 919 zio->io_offset, zio->io_size, zio->io_data, 920 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 921 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 922 } else { 923 zio_buf_free(zio->io_data, zio->io_size); 924 } 925 } else if (zio->io_type == ZIO_TYPE_WRITE) { 926 if (zio->io_error == 0) 927 vps->vps_writeable = 1; 928 zio_buf_free(zio->io_data, zio->io_size); 929 } else if (zio->io_type == ZIO_TYPE_NULL) { 930 zio_t *pio; 931 932 vd->vdev_cant_read |= !vps->vps_readable; 933 vd->vdev_cant_write |= !vps->vps_writeable; 934 935 if (vdev_readable(vd) && 936 (vdev_writeable(vd) || !spa_writeable(spa))) { 937 zio->io_error = 0; 938 } else { 939 ASSERT(zio->io_error != 0); 940 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 941 spa, vd, NULL, 0, 0); 942 zio->io_error = SET_ERROR(ENXIO); 943 } 944 945 mutex_enter(&vd->vdev_probe_lock); 946 ASSERT(vd->vdev_probe_zio == zio); 947 vd->vdev_probe_zio = NULL; 948 mutex_exit(&vd->vdev_probe_lock); 949 950 while ((pio = zio_walk_parents(zio)) != NULL) 951 if (!vdev_accessible(vd, pio)) 952 pio->io_error = SET_ERROR(ENXIO); 953 954 kmem_free(vps, sizeof (*vps)); 955 } 956 } 957 958 /* 959 * Determine whether this device is accessible. 960 * 961 * Read and write to several known locations: the pad regions of each 962 * vdev label but the first, which we leave alone in case it contains 963 * a VTOC. 964 */ 965 zio_t * 966 vdev_probe(vdev_t *vd, zio_t *zio) 967 { 968 spa_t *spa = vd->vdev_spa; 969 vdev_probe_stats_t *vps = NULL; 970 zio_t *pio; 971 972 ASSERT(vd->vdev_ops->vdev_op_leaf); 973 974 /* 975 * Don't probe the probe. 976 */ 977 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 978 return (NULL); 979 980 /* 981 * To prevent 'probe storms' when a device fails, we create 982 * just one probe i/o at a time. All zios that want to probe 983 * this vdev will become parents of the probe io. 984 */ 985 mutex_enter(&vd->vdev_probe_lock); 986 987 if ((pio = vd->vdev_probe_zio) == NULL) { 988 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 989 990 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 991 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 992 ZIO_FLAG_TRYHARD; 993 994 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 995 /* 996 * vdev_cant_read and vdev_cant_write can only 997 * transition from TRUE to FALSE when we have the 998 * SCL_ZIO lock as writer; otherwise they can only 999 * transition from FALSE to TRUE. This ensures that 1000 * any zio looking at these values can assume that 1001 * failures persist for the life of the I/O. That's 1002 * important because when a device has intermittent 1003 * connectivity problems, we want to ensure that 1004 * they're ascribed to the device (ENXIO) and not 1005 * the zio (EIO). 1006 * 1007 * Since we hold SCL_ZIO as writer here, clear both 1008 * values so the probe can reevaluate from first 1009 * principles. 1010 */ 1011 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1012 vd->vdev_cant_read = B_FALSE; 1013 vd->vdev_cant_write = B_FALSE; 1014 } 1015 1016 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1017 vdev_probe_done, vps, 1018 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1019 1020 /* 1021 * We can't change the vdev state in this context, so we 1022 * kick off an async task to do it on our behalf. 1023 */ 1024 if (zio != NULL) { 1025 vd->vdev_probe_wanted = B_TRUE; 1026 spa_async_request(spa, SPA_ASYNC_PROBE); 1027 } 1028 } 1029 1030 if (zio != NULL) 1031 zio_add_child(zio, pio); 1032 1033 mutex_exit(&vd->vdev_probe_lock); 1034 1035 if (vps == NULL) { 1036 ASSERT(zio != NULL); 1037 return (NULL); 1038 } 1039 1040 for (int l = 1; l < VDEV_LABELS; l++) { 1041 zio_nowait(zio_read_phys(pio, vd, 1042 vdev_label_offset(vd->vdev_psize, l, 1043 offsetof(vdev_label_t, vl_pad2)), 1044 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1045 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1046 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1047 } 1048 1049 if (zio == NULL) 1050 return (pio); 1051 1052 zio_nowait(pio); 1053 return (NULL); 1054 } 1055 1056 static void 1057 vdev_open_child(void *arg) 1058 { 1059 vdev_t *vd = arg; 1060 1061 vd->vdev_open_thread = curthread; 1062 vd->vdev_open_error = vdev_open(vd); 1063 vd->vdev_open_thread = NULL; 1064 } 1065 1066 boolean_t 1067 vdev_uses_zvols(vdev_t *vd) 1068 { 1069 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1070 strlen(ZVOL_DIR)) == 0) 1071 return (B_TRUE); 1072 for (int c = 0; c < vd->vdev_children; c++) 1073 if (vdev_uses_zvols(vd->vdev_child[c])) 1074 return (B_TRUE); 1075 return (B_FALSE); 1076 } 1077 1078 void 1079 vdev_open_children(vdev_t *vd) 1080 { 1081 taskq_t *tq; 1082 int children = vd->vdev_children; 1083 1084 /* 1085 * in order to handle pools on top of zvols, do the opens 1086 * in a single thread so that the same thread holds the 1087 * spa_namespace_lock 1088 */ 1089 if (vdev_uses_zvols(vd)) { 1090 for (int c = 0; c < children; c++) 1091 vd->vdev_child[c]->vdev_open_error = 1092 vdev_open(vd->vdev_child[c]); 1093 return; 1094 } 1095 tq = taskq_create("vdev_open", children, minclsyspri, 1096 children, children, TASKQ_PREPOPULATE); 1097 1098 for (int c = 0; c < children; c++) 1099 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1100 TQ_SLEEP) != NULL); 1101 1102 taskq_destroy(tq); 1103 } 1104 1105 /* 1106 * Prepare a virtual device for access. 1107 */ 1108 int 1109 vdev_open(vdev_t *vd) 1110 { 1111 spa_t *spa = vd->vdev_spa; 1112 int error; 1113 uint64_t osize = 0; 1114 uint64_t max_osize = 0; 1115 uint64_t asize, max_asize, psize; 1116 uint64_t ashift = 0; 1117 1118 ASSERT(vd->vdev_open_thread == curthread || 1119 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1120 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1121 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1122 vd->vdev_state == VDEV_STATE_OFFLINE); 1123 1124 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1125 vd->vdev_cant_read = B_FALSE; 1126 vd->vdev_cant_write = B_FALSE; 1127 vd->vdev_min_asize = vdev_get_min_asize(vd); 1128 1129 /* 1130 * If this vdev is not removed, check its fault status. If it's 1131 * faulted, bail out of the open. 1132 */ 1133 if (!vd->vdev_removed && vd->vdev_faulted) { 1134 ASSERT(vd->vdev_children == 0); 1135 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1136 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1137 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1138 vd->vdev_label_aux); 1139 return (SET_ERROR(ENXIO)); 1140 } else if (vd->vdev_offline) { 1141 ASSERT(vd->vdev_children == 0); 1142 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1143 return (SET_ERROR(ENXIO)); 1144 } 1145 1146 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1147 1148 /* 1149 * Reset the vdev_reopening flag so that we actually close 1150 * the vdev on error. 1151 */ 1152 vd->vdev_reopening = B_FALSE; 1153 if (zio_injection_enabled && error == 0) 1154 error = zio_handle_device_injection(vd, NULL, ENXIO); 1155 1156 if (error) { 1157 if (vd->vdev_removed && 1158 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1159 vd->vdev_removed = B_FALSE; 1160 1161 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1162 vd->vdev_stat.vs_aux); 1163 return (error); 1164 } 1165 1166 vd->vdev_removed = B_FALSE; 1167 1168 /* 1169 * Recheck the faulted flag now that we have confirmed that 1170 * the vdev is accessible. If we're faulted, bail. 1171 */ 1172 if (vd->vdev_faulted) { 1173 ASSERT(vd->vdev_children == 0); 1174 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1175 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1176 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1177 vd->vdev_label_aux); 1178 return (SET_ERROR(ENXIO)); 1179 } 1180 1181 if (vd->vdev_degraded) { 1182 ASSERT(vd->vdev_children == 0); 1183 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1184 VDEV_AUX_ERR_EXCEEDED); 1185 } else { 1186 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1187 } 1188 1189 /* 1190 * For hole or missing vdevs we just return success. 1191 */ 1192 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1193 return (0); 1194 1195 for (int c = 0; c < vd->vdev_children; c++) { 1196 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1197 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1198 VDEV_AUX_NONE); 1199 break; 1200 } 1201 } 1202 1203 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1204 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1205 1206 if (vd->vdev_children == 0) { 1207 if (osize < SPA_MINDEVSIZE) { 1208 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1209 VDEV_AUX_TOO_SMALL); 1210 return (SET_ERROR(EOVERFLOW)); 1211 } 1212 psize = osize; 1213 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1214 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1215 VDEV_LABEL_END_SIZE); 1216 } else { 1217 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1218 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1219 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1220 VDEV_AUX_TOO_SMALL); 1221 return (SET_ERROR(EOVERFLOW)); 1222 } 1223 psize = 0; 1224 asize = osize; 1225 max_asize = max_osize; 1226 } 1227 1228 vd->vdev_psize = psize; 1229 1230 /* 1231 * Make sure the allocatable size hasn't shrunk. 1232 */ 1233 if (asize < vd->vdev_min_asize) { 1234 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1235 VDEV_AUX_BAD_LABEL); 1236 return (SET_ERROR(EINVAL)); 1237 } 1238 1239 if (vd->vdev_asize == 0) { 1240 /* 1241 * This is the first-ever open, so use the computed values. 1242 * For testing purposes, a higher ashift can be requested. 1243 */ 1244 vd->vdev_asize = asize; 1245 vd->vdev_max_asize = max_asize; 1246 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1247 } else { 1248 /* 1249 * Detect if the alignment requirement has increased. 1250 * We don't want to make the pool unavailable, just 1251 * issue a warning instead. 1252 */ 1253 if (ashift > vd->vdev_top->vdev_ashift && 1254 vd->vdev_ops->vdev_op_leaf) { 1255 cmn_err(CE_WARN, 1256 "Disk, '%s', has a block alignment that is " 1257 "larger than the pool's alignment\n", 1258 vd->vdev_path); 1259 } 1260 vd->vdev_max_asize = max_asize; 1261 } 1262 1263 /* 1264 * If all children are healthy and the asize has increased, 1265 * then we've experienced dynamic LUN growth. If automatic 1266 * expansion is enabled then use the additional space. 1267 */ 1268 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1269 (vd->vdev_expanding || spa->spa_autoexpand)) 1270 vd->vdev_asize = asize; 1271 1272 vdev_set_min_asize(vd); 1273 1274 /* 1275 * Ensure we can issue some IO before declaring the 1276 * vdev open for business. 1277 */ 1278 if (vd->vdev_ops->vdev_op_leaf && 1279 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1280 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1281 VDEV_AUX_ERR_EXCEEDED); 1282 return (error); 1283 } 1284 1285 /* 1286 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1287 * resilver. But don't do this if we are doing a reopen for a scrub, 1288 * since this would just restart the scrub we are already doing. 1289 */ 1290 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1291 vdev_resilver_needed(vd, NULL, NULL)) 1292 spa_async_request(spa, SPA_ASYNC_RESILVER); 1293 1294 return (0); 1295 } 1296 1297 /* 1298 * Called once the vdevs are all opened, this routine validates the label 1299 * contents. This needs to be done before vdev_load() so that we don't 1300 * inadvertently do repair I/Os to the wrong device. 1301 * 1302 * If 'strict' is false ignore the spa guid check. This is necessary because 1303 * if the machine crashed during a re-guid the new guid might have been written 1304 * to all of the vdev labels, but not the cached config. The strict check 1305 * will be performed when the pool is opened again using the mos config. 1306 * 1307 * This function will only return failure if one of the vdevs indicates that it 1308 * has since been destroyed or exported. This is only possible if 1309 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1310 * will be updated but the function will return 0. 1311 */ 1312 int 1313 vdev_validate(vdev_t *vd, boolean_t strict) 1314 { 1315 spa_t *spa = vd->vdev_spa; 1316 nvlist_t *label; 1317 uint64_t guid = 0, top_guid; 1318 uint64_t state; 1319 1320 for (int c = 0; c < vd->vdev_children; c++) 1321 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1322 return (SET_ERROR(EBADF)); 1323 1324 /* 1325 * If the device has already failed, or was marked offline, don't do 1326 * any further validation. Otherwise, label I/O will fail and we will 1327 * overwrite the previous state. 1328 */ 1329 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1330 uint64_t aux_guid = 0; 1331 nvlist_t *nvl; 1332 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1333 spa_last_synced_txg(spa) : -1ULL; 1334 1335 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1336 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1337 VDEV_AUX_BAD_LABEL); 1338 return (0); 1339 } 1340 1341 /* 1342 * Determine if this vdev has been split off into another 1343 * pool. If so, then refuse to open it. 1344 */ 1345 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1346 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1347 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1348 VDEV_AUX_SPLIT_POOL); 1349 nvlist_free(label); 1350 return (0); 1351 } 1352 1353 if (strict && (nvlist_lookup_uint64(label, 1354 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1355 guid != spa_guid(spa))) { 1356 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1357 VDEV_AUX_CORRUPT_DATA); 1358 nvlist_free(label); 1359 return (0); 1360 } 1361 1362 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1363 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1364 &aux_guid) != 0) 1365 aux_guid = 0; 1366 1367 /* 1368 * If this vdev just became a top-level vdev because its 1369 * sibling was detached, it will have adopted the parent's 1370 * vdev guid -- but the label may or may not be on disk yet. 1371 * Fortunately, either version of the label will have the 1372 * same top guid, so if we're a top-level vdev, we can 1373 * safely compare to that instead. 1374 * 1375 * If we split this vdev off instead, then we also check the 1376 * original pool's guid. We don't want to consider the vdev 1377 * corrupt if it is partway through a split operation. 1378 */ 1379 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1380 &guid) != 0 || 1381 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1382 &top_guid) != 0 || 1383 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1384 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1385 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1386 VDEV_AUX_CORRUPT_DATA); 1387 nvlist_free(label); 1388 return (0); 1389 } 1390 1391 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1392 &state) != 0) { 1393 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1394 VDEV_AUX_CORRUPT_DATA); 1395 nvlist_free(label); 1396 return (0); 1397 } 1398 1399 nvlist_free(label); 1400 1401 /* 1402 * If this is a verbatim import, no need to check the 1403 * state of the pool. 1404 */ 1405 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1406 spa_load_state(spa) == SPA_LOAD_OPEN && 1407 state != POOL_STATE_ACTIVE) 1408 return (SET_ERROR(EBADF)); 1409 1410 /* 1411 * If we were able to open and validate a vdev that was 1412 * previously marked permanently unavailable, clear that state 1413 * now. 1414 */ 1415 if (vd->vdev_not_present) 1416 vd->vdev_not_present = 0; 1417 } 1418 1419 return (0); 1420 } 1421 1422 /* 1423 * Close a virtual device. 1424 */ 1425 void 1426 vdev_close(vdev_t *vd) 1427 { 1428 spa_t *spa = vd->vdev_spa; 1429 vdev_t *pvd = vd->vdev_parent; 1430 1431 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1432 1433 /* 1434 * If our parent is reopening, then we are as well, unless we are 1435 * going offline. 1436 */ 1437 if (pvd != NULL && pvd->vdev_reopening) 1438 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1439 1440 vd->vdev_ops->vdev_op_close(vd); 1441 1442 vdev_cache_purge(vd); 1443 1444 /* 1445 * We record the previous state before we close it, so that if we are 1446 * doing a reopen(), we don't generate FMA ereports if we notice that 1447 * it's still faulted. 1448 */ 1449 vd->vdev_prevstate = vd->vdev_state; 1450 1451 if (vd->vdev_offline) 1452 vd->vdev_state = VDEV_STATE_OFFLINE; 1453 else 1454 vd->vdev_state = VDEV_STATE_CLOSED; 1455 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1456 } 1457 1458 void 1459 vdev_hold(vdev_t *vd) 1460 { 1461 spa_t *spa = vd->vdev_spa; 1462 1463 ASSERT(spa_is_root(spa)); 1464 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1465 return; 1466 1467 for (int c = 0; c < vd->vdev_children; c++) 1468 vdev_hold(vd->vdev_child[c]); 1469 1470 if (vd->vdev_ops->vdev_op_leaf) 1471 vd->vdev_ops->vdev_op_hold(vd); 1472 } 1473 1474 void 1475 vdev_rele(vdev_t *vd) 1476 { 1477 spa_t *spa = vd->vdev_spa; 1478 1479 ASSERT(spa_is_root(spa)); 1480 for (int c = 0; c < vd->vdev_children; c++) 1481 vdev_rele(vd->vdev_child[c]); 1482 1483 if (vd->vdev_ops->vdev_op_leaf) 1484 vd->vdev_ops->vdev_op_rele(vd); 1485 } 1486 1487 /* 1488 * Reopen all interior vdevs and any unopened leaves. We don't actually 1489 * reopen leaf vdevs which had previously been opened as they might deadlock 1490 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1491 * If the leaf has never been opened then open it, as usual. 1492 */ 1493 void 1494 vdev_reopen(vdev_t *vd) 1495 { 1496 spa_t *spa = vd->vdev_spa; 1497 1498 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1499 1500 /* set the reopening flag unless we're taking the vdev offline */ 1501 vd->vdev_reopening = !vd->vdev_offline; 1502 vdev_close(vd); 1503 (void) vdev_open(vd); 1504 1505 /* 1506 * Call vdev_validate() here to make sure we have the same device. 1507 * Otherwise, a device with an invalid label could be successfully 1508 * opened in response to vdev_reopen(). 1509 */ 1510 if (vd->vdev_aux) { 1511 (void) vdev_validate_aux(vd); 1512 if (vdev_readable(vd) && vdev_writeable(vd) && 1513 vd->vdev_aux == &spa->spa_l2cache && 1514 !l2arc_vdev_present(vd)) 1515 l2arc_add_vdev(spa, vd); 1516 } else { 1517 (void) vdev_validate(vd, B_TRUE); 1518 } 1519 1520 /* 1521 * Reassess parent vdev's health. 1522 */ 1523 vdev_propagate_state(vd); 1524 } 1525 1526 int 1527 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1528 { 1529 int error; 1530 1531 /* 1532 * Normally, partial opens (e.g. of a mirror) are allowed. 1533 * For a create, however, we want to fail the request if 1534 * there are any components we can't open. 1535 */ 1536 error = vdev_open(vd); 1537 1538 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1539 vdev_close(vd); 1540 return (error ? error : ENXIO); 1541 } 1542 1543 /* 1544 * Recursively initialize all labels. 1545 */ 1546 if ((error = vdev_label_init(vd, txg, isreplacing ? 1547 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1548 vdev_close(vd); 1549 return (error); 1550 } 1551 1552 return (0); 1553 } 1554 1555 void 1556 vdev_metaslab_set_size(vdev_t *vd) 1557 { 1558 /* 1559 * Aim for roughly 200 metaslabs per vdev. 1560 */ 1561 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1562 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1563 } 1564 1565 void 1566 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1567 { 1568 ASSERT(vd == vd->vdev_top); 1569 ASSERT(!vd->vdev_ishole); 1570 ASSERT(ISP2(flags)); 1571 ASSERT(spa_writeable(vd->vdev_spa)); 1572 1573 if (flags & VDD_METASLAB) 1574 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1575 1576 if (flags & VDD_DTL) 1577 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1578 1579 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1580 } 1581 1582 /* 1583 * DTLs. 1584 * 1585 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1586 * the vdev has less than perfect replication. There are four kinds of DTL: 1587 * 1588 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1589 * 1590 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1591 * 1592 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1593 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1594 * txgs that was scrubbed. 1595 * 1596 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1597 * persistent errors or just some device being offline. 1598 * Unlike the other three, the DTL_OUTAGE map is not generally 1599 * maintained; it's only computed when needed, typically to 1600 * determine whether a device can be detached. 1601 * 1602 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1603 * either has the data or it doesn't. 1604 * 1605 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1606 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1607 * if any child is less than fully replicated, then so is its parent. 1608 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1609 * comprising only those txgs which appear in 'maxfaults' or more children; 1610 * those are the txgs we don't have enough replication to read. For example, 1611 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1612 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1613 * two child DTL_MISSING maps. 1614 * 1615 * It should be clear from the above that to compute the DTLs and outage maps 1616 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1617 * Therefore, that is all we keep on disk. When loading the pool, or after 1618 * a configuration change, we generate all other DTLs from first principles. 1619 */ 1620 void 1621 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1622 { 1623 space_map_t *sm = &vd->vdev_dtl[t]; 1624 1625 ASSERT(t < DTL_TYPES); 1626 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1627 ASSERT(spa_writeable(vd->vdev_spa)); 1628 1629 mutex_enter(sm->sm_lock); 1630 if (!space_map_contains(sm, txg, size)) 1631 space_map_add(sm, txg, size); 1632 mutex_exit(sm->sm_lock); 1633 } 1634 1635 boolean_t 1636 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1637 { 1638 space_map_t *sm = &vd->vdev_dtl[t]; 1639 boolean_t dirty = B_FALSE; 1640 1641 ASSERT(t < DTL_TYPES); 1642 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1643 1644 mutex_enter(sm->sm_lock); 1645 if (sm->sm_space != 0) 1646 dirty = space_map_contains(sm, txg, size); 1647 mutex_exit(sm->sm_lock); 1648 1649 return (dirty); 1650 } 1651 1652 boolean_t 1653 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1654 { 1655 space_map_t *sm = &vd->vdev_dtl[t]; 1656 boolean_t empty; 1657 1658 mutex_enter(sm->sm_lock); 1659 empty = (sm->sm_space == 0); 1660 mutex_exit(sm->sm_lock); 1661 1662 return (empty); 1663 } 1664 1665 /* 1666 * Reassess DTLs after a config change or scrub completion. 1667 */ 1668 void 1669 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1670 { 1671 spa_t *spa = vd->vdev_spa; 1672 avl_tree_t reftree; 1673 int minref; 1674 1675 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1676 1677 for (int c = 0; c < vd->vdev_children; c++) 1678 vdev_dtl_reassess(vd->vdev_child[c], txg, 1679 scrub_txg, scrub_done); 1680 1681 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1682 return; 1683 1684 if (vd->vdev_ops->vdev_op_leaf) { 1685 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1686 1687 mutex_enter(&vd->vdev_dtl_lock); 1688 if (scrub_txg != 0 && 1689 (spa->spa_scrub_started || 1690 (scn && scn->scn_phys.scn_errors == 0))) { 1691 /* 1692 * We completed a scrub up to scrub_txg. If we 1693 * did it without rebooting, then the scrub dtl 1694 * will be valid, so excise the old region and 1695 * fold in the scrub dtl. Otherwise, leave the 1696 * dtl as-is if there was an error. 1697 * 1698 * There's little trick here: to excise the beginning 1699 * of the DTL_MISSING map, we put it into a reference 1700 * tree and then add a segment with refcnt -1 that 1701 * covers the range [0, scrub_txg). This means 1702 * that each txg in that range has refcnt -1 or 0. 1703 * We then add DTL_SCRUB with a refcnt of 2, so that 1704 * entries in the range [0, scrub_txg) will have a 1705 * positive refcnt -- either 1 or 2. We then convert 1706 * the reference tree into the new DTL_MISSING map. 1707 */ 1708 space_map_ref_create(&reftree); 1709 space_map_ref_add_map(&reftree, 1710 &vd->vdev_dtl[DTL_MISSING], 1); 1711 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1712 space_map_ref_add_map(&reftree, 1713 &vd->vdev_dtl[DTL_SCRUB], 2); 1714 space_map_ref_generate_map(&reftree, 1715 &vd->vdev_dtl[DTL_MISSING], 1); 1716 space_map_ref_destroy(&reftree); 1717 } 1718 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1719 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1720 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1721 if (scrub_done) 1722 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1723 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1724 if (!vdev_readable(vd)) 1725 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1726 else 1727 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1728 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1729 mutex_exit(&vd->vdev_dtl_lock); 1730 1731 if (txg != 0) 1732 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1733 return; 1734 } 1735 1736 mutex_enter(&vd->vdev_dtl_lock); 1737 for (int t = 0; t < DTL_TYPES; t++) { 1738 /* account for child's outage in parent's missing map */ 1739 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1740 if (t == DTL_SCRUB) 1741 continue; /* leaf vdevs only */ 1742 if (t == DTL_PARTIAL) 1743 minref = 1; /* i.e. non-zero */ 1744 else if (vd->vdev_nparity != 0) 1745 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1746 else 1747 minref = vd->vdev_children; /* any kind of mirror */ 1748 space_map_ref_create(&reftree); 1749 for (int c = 0; c < vd->vdev_children; c++) { 1750 vdev_t *cvd = vd->vdev_child[c]; 1751 mutex_enter(&cvd->vdev_dtl_lock); 1752 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1); 1753 mutex_exit(&cvd->vdev_dtl_lock); 1754 } 1755 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1756 space_map_ref_destroy(&reftree); 1757 } 1758 mutex_exit(&vd->vdev_dtl_lock); 1759 } 1760 1761 static int 1762 vdev_dtl_load(vdev_t *vd) 1763 { 1764 spa_t *spa = vd->vdev_spa; 1765 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1766 objset_t *mos = spa->spa_meta_objset; 1767 dmu_buf_t *db; 1768 int error; 1769 1770 ASSERT(vd->vdev_children == 0); 1771 1772 if (smo->smo_object == 0) 1773 return (0); 1774 1775 ASSERT(!vd->vdev_ishole); 1776 1777 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1778 return (error); 1779 1780 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1781 bcopy(db->db_data, smo, sizeof (*smo)); 1782 dmu_buf_rele(db, FTAG); 1783 1784 mutex_enter(&vd->vdev_dtl_lock); 1785 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1786 NULL, SM_ALLOC, smo, mos); 1787 mutex_exit(&vd->vdev_dtl_lock); 1788 1789 return (error); 1790 } 1791 1792 void 1793 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1794 { 1795 spa_t *spa = vd->vdev_spa; 1796 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1797 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1798 objset_t *mos = spa->spa_meta_objset; 1799 space_map_t smsync; 1800 kmutex_t smlock; 1801 dmu_buf_t *db; 1802 dmu_tx_t *tx; 1803 1804 ASSERT(!vd->vdev_ishole); 1805 1806 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1807 1808 if (vd->vdev_detached) { 1809 if (smo->smo_object != 0) { 1810 int err = dmu_object_free(mos, smo->smo_object, tx); 1811 ASSERT0(err); 1812 smo->smo_object = 0; 1813 } 1814 dmu_tx_commit(tx); 1815 return; 1816 } 1817 1818 if (smo->smo_object == 0) { 1819 ASSERT(smo->smo_objsize == 0); 1820 ASSERT(smo->smo_alloc == 0); 1821 smo->smo_object = dmu_object_alloc(mos, 1822 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1823 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1824 ASSERT(smo->smo_object != 0); 1825 vdev_config_dirty(vd->vdev_top); 1826 } 1827 1828 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1829 1830 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1831 &smlock); 1832 1833 mutex_enter(&smlock); 1834 1835 mutex_enter(&vd->vdev_dtl_lock); 1836 space_map_walk(sm, space_map_add, &smsync); 1837 mutex_exit(&vd->vdev_dtl_lock); 1838 1839 space_map_truncate(smo, mos, tx); 1840 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1841 space_map_vacate(&smsync, NULL, NULL); 1842 1843 space_map_destroy(&smsync); 1844 1845 mutex_exit(&smlock); 1846 mutex_destroy(&smlock); 1847 1848 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1849 dmu_buf_will_dirty(db, tx); 1850 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1851 bcopy(smo, db->db_data, sizeof (*smo)); 1852 dmu_buf_rele(db, FTAG); 1853 1854 dmu_tx_commit(tx); 1855 } 1856 1857 /* 1858 * Determine whether the specified vdev can be offlined/detached/removed 1859 * without losing data. 1860 */ 1861 boolean_t 1862 vdev_dtl_required(vdev_t *vd) 1863 { 1864 spa_t *spa = vd->vdev_spa; 1865 vdev_t *tvd = vd->vdev_top; 1866 uint8_t cant_read = vd->vdev_cant_read; 1867 boolean_t required; 1868 1869 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1870 1871 if (vd == spa->spa_root_vdev || vd == tvd) 1872 return (B_TRUE); 1873 1874 /* 1875 * Temporarily mark the device as unreadable, and then determine 1876 * whether this results in any DTL outages in the top-level vdev. 1877 * If not, we can safely offline/detach/remove the device. 1878 */ 1879 vd->vdev_cant_read = B_TRUE; 1880 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1881 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1882 vd->vdev_cant_read = cant_read; 1883 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1884 1885 if (!required && zio_injection_enabled) 1886 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 1887 1888 return (required); 1889 } 1890 1891 /* 1892 * Determine if resilver is needed, and if so the txg range. 1893 */ 1894 boolean_t 1895 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1896 { 1897 boolean_t needed = B_FALSE; 1898 uint64_t thismin = UINT64_MAX; 1899 uint64_t thismax = 0; 1900 1901 if (vd->vdev_children == 0) { 1902 mutex_enter(&vd->vdev_dtl_lock); 1903 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1904 vdev_writeable(vd)) { 1905 space_seg_t *ss; 1906 1907 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1908 thismin = ss->ss_start - 1; 1909 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1910 thismax = ss->ss_end; 1911 needed = B_TRUE; 1912 } 1913 mutex_exit(&vd->vdev_dtl_lock); 1914 } else { 1915 for (int c = 0; c < vd->vdev_children; c++) { 1916 vdev_t *cvd = vd->vdev_child[c]; 1917 uint64_t cmin, cmax; 1918 1919 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1920 thismin = MIN(thismin, cmin); 1921 thismax = MAX(thismax, cmax); 1922 needed = B_TRUE; 1923 } 1924 } 1925 } 1926 1927 if (needed && minp) { 1928 *minp = thismin; 1929 *maxp = thismax; 1930 } 1931 return (needed); 1932 } 1933 1934 void 1935 vdev_load(vdev_t *vd) 1936 { 1937 /* 1938 * Recursively load all children. 1939 */ 1940 for (int c = 0; c < vd->vdev_children; c++) 1941 vdev_load(vd->vdev_child[c]); 1942 1943 /* 1944 * If this is a top-level vdev, initialize its metaslabs. 1945 */ 1946 if (vd == vd->vdev_top && !vd->vdev_ishole && 1947 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1948 vdev_metaslab_init(vd, 0) != 0)) 1949 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1950 VDEV_AUX_CORRUPT_DATA); 1951 1952 /* 1953 * If this is a leaf vdev, load its DTL. 1954 */ 1955 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1956 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1957 VDEV_AUX_CORRUPT_DATA); 1958 } 1959 1960 /* 1961 * The special vdev case is used for hot spares and l2cache devices. Its 1962 * sole purpose it to set the vdev state for the associated vdev. To do this, 1963 * we make sure that we can open the underlying device, then try to read the 1964 * label, and make sure that the label is sane and that it hasn't been 1965 * repurposed to another pool. 1966 */ 1967 int 1968 vdev_validate_aux(vdev_t *vd) 1969 { 1970 nvlist_t *label; 1971 uint64_t guid, version; 1972 uint64_t state; 1973 1974 if (!vdev_readable(vd)) 1975 return (0); 1976 1977 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 1978 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1979 VDEV_AUX_CORRUPT_DATA); 1980 return (-1); 1981 } 1982 1983 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1984 !SPA_VERSION_IS_SUPPORTED(version) || 1985 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1986 guid != vd->vdev_guid || 1987 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1988 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1989 VDEV_AUX_CORRUPT_DATA); 1990 nvlist_free(label); 1991 return (-1); 1992 } 1993 1994 /* 1995 * We don't actually check the pool state here. If it's in fact in 1996 * use by another pool, we update this fact on the fly when requested. 1997 */ 1998 nvlist_free(label); 1999 return (0); 2000 } 2001 2002 void 2003 vdev_remove(vdev_t *vd, uint64_t txg) 2004 { 2005 spa_t *spa = vd->vdev_spa; 2006 objset_t *mos = spa->spa_meta_objset; 2007 dmu_tx_t *tx; 2008 2009 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2010 2011 if (vd->vdev_dtl_smo.smo_object) { 2012 ASSERT0(vd->vdev_dtl_smo.smo_alloc); 2013 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx); 2014 vd->vdev_dtl_smo.smo_object = 0; 2015 } 2016 2017 if (vd->vdev_ms != NULL) { 2018 for (int m = 0; m < vd->vdev_ms_count; m++) { 2019 metaslab_t *msp = vd->vdev_ms[m]; 2020 2021 if (msp == NULL || msp->ms_smo.smo_object == 0) 2022 continue; 2023 2024 ASSERT0(msp->ms_smo.smo_alloc); 2025 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx); 2026 msp->ms_smo.smo_object = 0; 2027 } 2028 } 2029 2030 if (vd->vdev_ms_array) { 2031 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2032 vd->vdev_ms_array = 0; 2033 vd->vdev_ms_shift = 0; 2034 } 2035 dmu_tx_commit(tx); 2036 } 2037 2038 void 2039 vdev_sync_done(vdev_t *vd, uint64_t txg) 2040 { 2041 metaslab_t *msp; 2042 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2043 2044 ASSERT(!vd->vdev_ishole); 2045 2046 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2047 metaslab_sync_done(msp, txg); 2048 2049 if (reassess) 2050 metaslab_sync_reassess(vd->vdev_mg); 2051 } 2052 2053 void 2054 vdev_sync(vdev_t *vd, uint64_t txg) 2055 { 2056 spa_t *spa = vd->vdev_spa; 2057 vdev_t *lvd; 2058 metaslab_t *msp; 2059 dmu_tx_t *tx; 2060 2061 ASSERT(!vd->vdev_ishole); 2062 2063 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2064 ASSERT(vd == vd->vdev_top); 2065 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2066 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2067 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2068 ASSERT(vd->vdev_ms_array != 0); 2069 vdev_config_dirty(vd); 2070 dmu_tx_commit(tx); 2071 } 2072 2073 /* 2074 * Remove the metadata associated with this vdev once it's empty. 2075 */ 2076 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2077 vdev_remove(vd, txg); 2078 2079 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2080 metaslab_sync(msp, txg); 2081 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2082 } 2083 2084 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2085 vdev_dtl_sync(lvd, txg); 2086 2087 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2088 } 2089 2090 uint64_t 2091 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2092 { 2093 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2094 } 2095 2096 /* 2097 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2098 * not be opened, and no I/O is attempted. 2099 */ 2100 int 2101 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2102 { 2103 vdev_t *vd, *tvd; 2104 2105 spa_vdev_state_enter(spa, SCL_NONE); 2106 2107 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2108 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2109 2110 if (!vd->vdev_ops->vdev_op_leaf) 2111 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2112 2113 tvd = vd->vdev_top; 2114 2115 /* 2116 * We don't directly use the aux state here, but if we do a 2117 * vdev_reopen(), we need this value to be present to remember why we 2118 * were faulted. 2119 */ 2120 vd->vdev_label_aux = aux; 2121 2122 /* 2123 * Faulted state takes precedence over degraded. 2124 */ 2125 vd->vdev_delayed_close = B_FALSE; 2126 vd->vdev_faulted = 1ULL; 2127 vd->vdev_degraded = 0ULL; 2128 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2129 2130 /* 2131 * If this device has the only valid copy of the data, then 2132 * back off and simply mark the vdev as degraded instead. 2133 */ 2134 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2135 vd->vdev_degraded = 1ULL; 2136 vd->vdev_faulted = 0ULL; 2137 2138 /* 2139 * If we reopen the device and it's not dead, only then do we 2140 * mark it degraded. 2141 */ 2142 vdev_reopen(tvd); 2143 2144 if (vdev_readable(vd)) 2145 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2146 } 2147 2148 return (spa_vdev_state_exit(spa, vd, 0)); 2149 } 2150 2151 /* 2152 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2153 * user that something is wrong. The vdev continues to operate as normal as far 2154 * as I/O is concerned. 2155 */ 2156 int 2157 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2158 { 2159 vdev_t *vd; 2160 2161 spa_vdev_state_enter(spa, SCL_NONE); 2162 2163 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2164 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2165 2166 if (!vd->vdev_ops->vdev_op_leaf) 2167 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2168 2169 /* 2170 * If the vdev is already faulted, then don't do anything. 2171 */ 2172 if (vd->vdev_faulted || vd->vdev_degraded) 2173 return (spa_vdev_state_exit(spa, NULL, 0)); 2174 2175 vd->vdev_degraded = 1ULL; 2176 if (!vdev_is_dead(vd)) 2177 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2178 aux); 2179 2180 return (spa_vdev_state_exit(spa, vd, 0)); 2181 } 2182 2183 /* 2184 * Online the given vdev. 2185 * 2186 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2187 * spare device should be detached when the device finishes resilvering. 2188 * Second, the online should be treated like a 'test' online case, so no FMA 2189 * events are generated if the device fails to open. 2190 */ 2191 int 2192 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2193 { 2194 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2195 2196 spa_vdev_state_enter(spa, SCL_NONE); 2197 2198 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2199 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2200 2201 if (!vd->vdev_ops->vdev_op_leaf) 2202 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2203 2204 tvd = vd->vdev_top; 2205 vd->vdev_offline = B_FALSE; 2206 vd->vdev_tmpoffline = B_FALSE; 2207 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2208 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2209 2210 /* XXX - L2ARC 1.0 does not support expansion */ 2211 if (!vd->vdev_aux) { 2212 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2213 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2214 } 2215 2216 vdev_reopen(tvd); 2217 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2218 2219 if (!vd->vdev_aux) { 2220 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2221 pvd->vdev_expanding = B_FALSE; 2222 } 2223 2224 if (newstate) 2225 *newstate = vd->vdev_state; 2226 if ((flags & ZFS_ONLINE_UNSPARE) && 2227 !vdev_is_dead(vd) && vd->vdev_parent && 2228 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2229 vd->vdev_parent->vdev_child[0] == vd) 2230 vd->vdev_unspare = B_TRUE; 2231 2232 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2233 2234 /* XXX - L2ARC 1.0 does not support expansion */ 2235 if (vd->vdev_aux) 2236 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2237 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2238 } 2239 return (spa_vdev_state_exit(spa, vd, 0)); 2240 } 2241 2242 static int 2243 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2244 { 2245 vdev_t *vd, *tvd; 2246 int error = 0; 2247 uint64_t generation; 2248 metaslab_group_t *mg; 2249 2250 top: 2251 spa_vdev_state_enter(spa, SCL_ALLOC); 2252 2253 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2254 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2255 2256 if (!vd->vdev_ops->vdev_op_leaf) 2257 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2258 2259 tvd = vd->vdev_top; 2260 mg = tvd->vdev_mg; 2261 generation = spa->spa_config_generation + 1; 2262 2263 /* 2264 * If the device isn't already offline, try to offline it. 2265 */ 2266 if (!vd->vdev_offline) { 2267 /* 2268 * If this device has the only valid copy of some data, 2269 * don't allow it to be offlined. Log devices are always 2270 * expendable. 2271 */ 2272 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2273 vdev_dtl_required(vd)) 2274 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2275 2276 /* 2277 * If the top-level is a slog and it has had allocations 2278 * then proceed. We check that the vdev's metaslab group 2279 * is not NULL since it's possible that we may have just 2280 * added this vdev but not yet initialized its metaslabs. 2281 */ 2282 if (tvd->vdev_islog && mg != NULL) { 2283 /* 2284 * Prevent any future allocations. 2285 */ 2286 metaslab_group_passivate(mg); 2287 (void) spa_vdev_state_exit(spa, vd, 0); 2288 2289 error = spa_offline_log(spa); 2290 2291 spa_vdev_state_enter(spa, SCL_ALLOC); 2292 2293 /* 2294 * Check to see if the config has changed. 2295 */ 2296 if (error || generation != spa->spa_config_generation) { 2297 metaslab_group_activate(mg); 2298 if (error) 2299 return (spa_vdev_state_exit(spa, 2300 vd, error)); 2301 (void) spa_vdev_state_exit(spa, vd, 0); 2302 goto top; 2303 } 2304 ASSERT0(tvd->vdev_stat.vs_alloc); 2305 } 2306 2307 /* 2308 * Offline this device and reopen its top-level vdev. 2309 * If the top-level vdev is a log device then just offline 2310 * it. Otherwise, if this action results in the top-level 2311 * vdev becoming unusable, undo it and fail the request. 2312 */ 2313 vd->vdev_offline = B_TRUE; 2314 vdev_reopen(tvd); 2315 2316 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2317 vdev_is_dead(tvd)) { 2318 vd->vdev_offline = B_FALSE; 2319 vdev_reopen(tvd); 2320 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2321 } 2322 2323 /* 2324 * Add the device back into the metaslab rotor so that 2325 * once we online the device it's open for business. 2326 */ 2327 if (tvd->vdev_islog && mg != NULL) 2328 metaslab_group_activate(mg); 2329 } 2330 2331 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2332 2333 return (spa_vdev_state_exit(spa, vd, 0)); 2334 } 2335 2336 int 2337 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2338 { 2339 int error; 2340 2341 mutex_enter(&spa->spa_vdev_top_lock); 2342 error = vdev_offline_locked(spa, guid, flags); 2343 mutex_exit(&spa->spa_vdev_top_lock); 2344 2345 return (error); 2346 } 2347 2348 /* 2349 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2350 * vdev_offline(), we assume the spa config is locked. We also clear all 2351 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2352 */ 2353 void 2354 vdev_clear(spa_t *spa, vdev_t *vd) 2355 { 2356 vdev_t *rvd = spa->spa_root_vdev; 2357 2358 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2359 2360 if (vd == NULL) 2361 vd = rvd; 2362 2363 vd->vdev_stat.vs_read_errors = 0; 2364 vd->vdev_stat.vs_write_errors = 0; 2365 vd->vdev_stat.vs_checksum_errors = 0; 2366 2367 for (int c = 0; c < vd->vdev_children; c++) 2368 vdev_clear(spa, vd->vdev_child[c]); 2369 2370 /* 2371 * If we're in the FAULTED state or have experienced failed I/O, then 2372 * clear the persistent state and attempt to reopen the device. We 2373 * also mark the vdev config dirty, so that the new faulted state is 2374 * written out to disk. 2375 */ 2376 if (vd->vdev_faulted || vd->vdev_degraded || 2377 !vdev_readable(vd) || !vdev_writeable(vd)) { 2378 2379 /* 2380 * When reopening in reponse to a clear event, it may be due to 2381 * a fmadm repair request. In this case, if the device is 2382 * still broken, we want to still post the ereport again. 2383 */ 2384 vd->vdev_forcefault = B_TRUE; 2385 2386 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2387 vd->vdev_cant_read = B_FALSE; 2388 vd->vdev_cant_write = B_FALSE; 2389 2390 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2391 2392 vd->vdev_forcefault = B_FALSE; 2393 2394 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2395 vdev_state_dirty(vd->vdev_top); 2396 2397 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2398 spa_async_request(spa, SPA_ASYNC_RESILVER); 2399 2400 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2401 } 2402 2403 /* 2404 * When clearing a FMA-diagnosed fault, we always want to 2405 * unspare the device, as we assume that the original spare was 2406 * done in response to the FMA fault. 2407 */ 2408 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2409 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2410 vd->vdev_parent->vdev_child[0] == vd) 2411 vd->vdev_unspare = B_TRUE; 2412 } 2413 2414 boolean_t 2415 vdev_is_dead(vdev_t *vd) 2416 { 2417 /* 2418 * Holes and missing devices are always considered "dead". 2419 * This simplifies the code since we don't have to check for 2420 * these types of devices in the various code paths. 2421 * Instead we rely on the fact that we skip over dead devices 2422 * before issuing I/O to them. 2423 */ 2424 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2425 vd->vdev_ops == &vdev_missing_ops); 2426 } 2427 2428 boolean_t 2429 vdev_readable(vdev_t *vd) 2430 { 2431 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2432 } 2433 2434 boolean_t 2435 vdev_writeable(vdev_t *vd) 2436 { 2437 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2438 } 2439 2440 boolean_t 2441 vdev_allocatable(vdev_t *vd) 2442 { 2443 uint64_t state = vd->vdev_state; 2444 2445 /* 2446 * We currently allow allocations from vdevs which may be in the 2447 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2448 * fails to reopen then we'll catch it later when we're holding 2449 * the proper locks. Note that we have to get the vdev state 2450 * in a local variable because although it changes atomically, 2451 * we're asking two separate questions about it. 2452 */ 2453 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2454 !vd->vdev_cant_write && !vd->vdev_ishole); 2455 } 2456 2457 boolean_t 2458 vdev_accessible(vdev_t *vd, zio_t *zio) 2459 { 2460 ASSERT(zio->io_vd == vd); 2461 2462 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2463 return (B_FALSE); 2464 2465 if (zio->io_type == ZIO_TYPE_READ) 2466 return (!vd->vdev_cant_read); 2467 2468 if (zio->io_type == ZIO_TYPE_WRITE) 2469 return (!vd->vdev_cant_write); 2470 2471 return (B_TRUE); 2472 } 2473 2474 /* 2475 * Get statistics for the given vdev. 2476 */ 2477 void 2478 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2479 { 2480 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2481 2482 mutex_enter(&vd->vdev_stat_lock); 2483 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2484 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2485 vs->vs_state = vd->vdev_state; 2486 vs->vs_rsize = vdev_get_min_asize(vd); 2487 if (vd->vdev_ops->vdev_op_leaf) 2488 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2489 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2490 mutex_exit(&vd->vdev_stat_lock); 2491 2492 /* 2493 * If we're getting stats on the root vdev, aggregate the I/O counts 2494 * over all top-level vdevs (i.e. the direct children of the root). 2495 */ 2496 if (vd == rvd) { 2497 for (int c = 0; c < rvd->vdev_children; c++) { 2498 vdev_t *cvd = rvd->vdev_child[c]; 2499 vdev_stat_t *cvs = &cvd->vdev_stat; 2500 2501 mutex_enter(&vd->vdev_stat_lock); 2502 for (int t = 0; t < ZIO_TYPES; t++) { 2503 vs->vs_ops[t] += cvs->vs_ops[t]; 2504 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2505 } 2506 cvs->vs_scan_removing = cvd->vdev_removing; 2507 mutex_exit(&vd->vdev_stat_lock); 2508 } 2509 } 2510 } 2511 2512 void 2513 vdev_clear_stats(vdev_t *vd) 2514 { 2515 mutex_enter(&vd->vdev_stat_lock); 2516 vd->vdev_stat.vs_space = 0; 2517 vd->vdev_stat.vs_dspace = 0; 2518 vd->vdev_stat.vs_alloc = 0; 2519 mutex_exit(&vd->vdev_stat_lock); 2520 } 2521 2522 void 2523 vdev_scan_stat_init(vdev_t *vd) 2524 { 2525 vdev_stat_t *vs = &vd->vdev_stat; 2526 2527 for (int c = 0; c < vd->vdev_children; c++) 2528 vdev_scan_stat_init(vd->vdev_child[c]); 2529 2530 mutex_enter(&vd->vdev_stat_lock); 2531 vs->vs_scan_processed = 0; 2532 mutex_exit(&vd->vdev_stat_lock); 2533 } 2534 2535 void 2536 vdev_stat_update(zio_t *zio, uint64_t psize) 2537 { 2538 spa_t *spa = zio->io_spa; 2539 vdev_t *rvd = spa->spa_root_vdev; 2540 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2541 vdev_t *pvd; 2542 uint64_t txg = zio->io_txg; 2543 vdev_stat_t *vs = &vd->vdev_stat; 2544 zio_type_t type = zio->io_type; 2545 int flags = zio->io_flags; 2546 2547 /* 2548 * If this i/o is a gang leader, it didn't do any actual work. 2549 */ 2550 if (zio->io_gang_tree) 2551 return; 2552 2553 if (zio->io_error == 0) { 2554 /* 2555 * If this is a root i/o, don't count it -- we've already 2556 * counted the top-level vdevs, and vdev_get_stats() will 2557 * aggregate them when asked. This reduces contention on 2558 * the root vdev_stat_lock and implicitly handles blocks 2559 * that compress away to holes, for which there is no i/o. 2560 * (Holes never create vdev children, so all the counters 2561 * remain zero, which is what we want.) 2562 * 2563 * Note: this only applies to successful i/o (io_error == 0) 2564 * because unlike i/o counts, errors are not additive. 2565 * When reading a ditto block, for example, failure of 2566 * one top-level vdev does not imply a root-level error. 2567 */ 2568 if (vd == rvd) 2569 return; 2570 2571 ASSERT(vd == zio->io_vd); 2572 2573 if (flags & ZIO_FLAG_IO_BYPASS) 2574 return; 2575 2576 mutex_enter(&vd->vdev_stat_lock); 2577 2578 if (flags & ZIO_FLAG_IO_REPAIR) { 2579 if (flags & ZIO_FLAG_SCAN_THREAD) { 2580 dsl_scan_phys_t *scn_phys = 2581 &spa->spa_dsl_pool->dp_scan->scn_phys; 2582 uint64_t *processed = &scn_phys->scn_processed; 2583 2584 /* XXX cleanup? */ 2585 if (vd->vdev_ops->vdev_op_leaf) 2586 atomic_add_64(processed, psize); 2587 vs->vs_scan_processed += psize; 2588 } 2589 2590 if (flags & ZIO_FLAG_SELF_HEAL) 2591 vs->vs_self_healed += psize; 2592 } 2593 2594 vs->vs_ops[type]++; 2595 vs->vs_bytes[type] += psize; 2596 2597 mutex_exit(&vd->vdev_stat_lock); 2598 return; 2599 } 2600 2601 if (flags & ZIO_FLAG_SPECULATIVE) 2602 return; 2603 2604 /* 2605 * If this is an I/O error that is going to be retried, then ignore the 2606 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2607 * hard errors, when in reality they can happen for any number of 2608 * innocuous reasons (bus resets, MPxIO link failure, etc). 2609 */ 2610 if (zio->io_error == EIO && 2611 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2612 return; 2613 2614 /* 2615 * Intent logs writes won't propagate their error to the root 2616 * I/O so don't mark these types of failures as pool-level 2617 * errors. 2618 */ 2619 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2620 return; 2621 2622 mutex_enter(&vd->vdev_stat_lock); 2623 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2624 if (zio->io_error == ECKSUM) 2625 vs->vs_checksum_errors++; 2626 else 2627 vs->vs_read_errors++; 2628 } 2629 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2630 vs->vs_write_errors++; 2631 mutex_exit(&vd->vdev_stat_lock); 2632 2633 if (type == ZIO_TYPE_WRITE && txg != 0 && 2634 (!(flags & ZIO_FLAG_IO_REPAIR) || 2635 (flags & ZIO_FLAG_SCAN_THREAD) || 2636 spa->spa_claiming)) { 2637 /* 2638 * This is either a normal write (not a repair), or it's 2639 * a repair induced by the scrub thread, or it's a repair 2640 * made by zil_claim() during spa_load() in the first txg. 2641 * In the normal case, we commit the DTL change in the same 2642 * txg as the block was born. In the scrub-induced repair 2643 * case, we know that scrubs run in first-pass syncing context, 2644 * so we commit the DTL change in spa_syncing_txg(spa). 2645 * In the zil_claim() case, we commit in spa_first_txg(spa). 2646 * 2647 * We currently do not make DTL entries for failed spontaneous 2648 * self-healing writes triggered by normal (non-scrubbing) 2649 * reads, because we have no transactional context in which to 2650 * do so -- and it's not clear that it'd be desirable anyway. 2651 */ 2652 if (vd->vdev_ops->vdev_op_leaf) { 2653 uint64_t commit_txg = txg; 2654 if (flags & ZIO_FLAG_SCAN_THREAD) { 2655 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2656 ASSERT(spa_sync_pass(spa) == 1); 2657 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2658 commit_txg = spa_syncing_txg(spa); 2659 } else if (spa->spa_claiming) { 2660 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2661 commit_txg = spa_first_txg(spa); 2662 } 2663 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2664 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2665 return; 2666 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2667 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2668 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2669 } 2670 if (vd != rvd) 2671 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2672 } 2673 } 2674 2675 /* 2676 * Update the in-core space usage stats for this vdev, its metaslab class, 2677 * and the root vdev. 2678 */ 2679 void 2680 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2681 int64_t space_delta) 2682 { 2683 int64_t dspace_delta = space_delta; 2684 spa_t *spa = vd->vdev_spa; 2685 vdev_t *rvd = spa->spa_root_vdev; 2686 metaslab_group_t *mg = vd->vdev_mg; 2687 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2688 2689 ASSERT(vd == vd->vdev_top); 2690 2691 /* 2692 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2693 * factor. We must calculate this here and not at the root vdev 2694 * because the root vdev's psize-to-asize is simply the max of its 2695 * childrens', thus not accurate enough for us. 2696 */ 2697 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2698 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2699 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2700 vd->vdev_deflate_ratio; 2701 2702 mutex_enter(&vd->vdev_stat_lock); 2703 vd->vdev_stat.vs_alloc += alloc_delta; 2704 vd->vdev_stat.vs_space += space_delta; 2705 vd->vdev_stat.vs_dspace += dspace_delta; 2706 mutex_exit(&vd->vdev_stat_lock); 2707 2708 if (mc == spa_normal_class(spa)) { 2709 mutex_enter(&rvd->vdev_stat_lock); 2710 rvd->vdev_stat.vs_alloc += alloc_delta; 2711 rvd->vdev_stat.vs_space += space_delta; 2712 rvd->vdev_stat.vs_dspace += dspace_delta; 2713 mutex_exit(&rvd->vdev_stat_lock); 2714 } 2715 2716 if (mc != NULL) { 2717 ASSERT(rvd == vd->vdev_parent); 2718 ASSERT(vd->vdev_ms_count != 0); 2719 2720 metaslab_class_space_update(mc, 2721 alloc_delta, defer_delta, space_delta, dspace_delta); 2722 } 2723 } 2724 2725 /* 2726 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2727 * so that it will be written out next time the vdev configuration is synced. 2728 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2729 */ 2730 void 2731 vdev_config_dirty(vdev_t *vd) 2732 { 2733 spa_t *spa = vd->vdev_spa; 2734 vdev_t *rvd = spa->spa_root_vdev; 2735 int c; 2736 2737 ASSERT(spa_writeable(spa)); 2738 2739 /* 2740 * If this is an aux vdev (as with l2cache and spare devices), then we 2741 * update the vdev config manually and set the sync flag. 2742 */ 2743 if (vd->vdev_aux != NULL) { 2744 spa_aux_vdev_t *sav = vd->vdev_aux; 2745 nvlist_t **aux; 2746 uint_t naux; 2747 2748 for (c = 0; c < sav->sav_count; c++) { 2749 if (sav->sav_vdevs[c] == vd) 2750 break; 2751 } 2752 2753 if (c == sav->sav_count) { 2754 /* 2755 * We're being removed. There's nothing more to do. 2756 */ 2757 ASSERT(sav->sav_sync == B_TRUE); 2758 return; 2759 } 2760 2761 sav->sav_sync = B_TRUE; 2762 2763 if (nvlist_lookup_nvlist_array(sav->sav_config, 2764 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2765 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2766 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2767 } 2768 2769 ASSERT(c < naux); 2770 2771 /* 2772 * Setting the nvlist in the middle if the array is a little 2773 * sketchy, but it will work. 2774 */ 2775 nvlist_free(aux[c]); 2776 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2777 2778 return; 2779 } 2780 2781 /* 2782 * The dirty list is protected by the SCL_CONFIG lock. The caller 2783 * must either hold SCL_CONFIG as writer, or must be the sync thread 2784 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2785 * so this is sufficient to ensure mutual exclusion. 2786 */ 2787 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2788 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2789 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2790 2791 if (vd == rvd) { 2792 for (c = 0; c < rvd->vdev_children; c++) 2793 vdev_config_dirty(rvd->vdev_child[c]); 2794 } else { 2795 ASSERT(vd == vd->vdev_top); 2796 2797 if (!list_link_active(&vd->vdev_config_dirty_node) && 2798 !vd->vdev_ishole) 2799 list_insert_head(&spa->spa_config_dirty_list, vd); 2800 } 2801 } 2802 2803 void 2804 vdev_config_clean(vdev_t *vd) 2805 { 2806 spa_t *spa = vd->vdev_spa; 2807 2808 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2809 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2810 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2811 2812 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2813 list_remove(&spa->spa_config_dirty_list, vd); 2814 } 2815 2816 /* 2817 * Mark a top-level vdev's state as dirty, so that the next pass of 2818 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2819 * the state changes from larger config changes because they require 2820 * much less locking, and are often needed for administrative actions. 2821 */ 2822 void 2823 vdev_state_dirty(vdev_t *vd) 2824 { 2825 spa_t *spa = vd->vdev_spa; 2826 2827 ASSERT(spa_writeable(spa)); 2828 ASSERT(vd == vd->vdev_top); 2829 2830 /* 2831 * The state list is protected by the SCL_STATE lock. The caller 2832 * must either hold SCL_STATE as writer, or must be the sync thread 2833 * (which holds SCL_STATE as reader). There's only one sync thread, 2834 * so this is sufficient to ensure mutual exclusion. 2835 */ 2836 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2837 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2838 spa_config_held(spa, SCL_STATE, RW_READER))); 2839 2840 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2841 list_insert_head(&spa->spa_state_dirty_list, vd); 2842 } 2843 2844 void 2845 vdev_state_clean(vdev_t *vd) 2846 { 2847 spa_t *spa = vd->vdev_spa; 2848 2849 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2850 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2851 spa_config_held(spa, SCL_STATE, RW_READER))); 2852 2853 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2854 list_remove(&spa->spa_state_dirty_list, vd); 2855 } 2856 2857 /* 2858 * Propagate vdev state up from children to parent. 2859 */ 2860 void 2861 vdev_propagate_state(vdev_t *vd) 2862 { 2863 spa_t *spa = vd->vdev_spa; 2864 vdev_t *rvd = spa->spa_root_vdev; 2865 int degraded = 0, faulted = 0; 2866 int corrupted = 0; 2867 vdev_t *child; 2868 2869 if (vd->vdev_children > 0) { 2870 for (int c = 0; c < vd->vdev_children; c++) { 2871 child = vd->vdev_child[c]; 2872 2873 /* 2874 * Don't factor holes into the decision. 2875 */ 2876 if (child->vdev_ishole) 2877 continue; 2878 2879 if (!vdev_readable(child) || 2880 (!vdev_writeable(child) && spa_writeable(spa))) { 2881 /* 2882 * Root special: if there is a top-level log 2883 * device, treat the root vdev as if it were 2884 * degraded. 2885 */ 2886 if (child->vdev_islog && vd == rvd) 2887 degraded++; 2888 else 2889 faulted++; 2890 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2891 degraded++; 2892 } 2893 2894 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2895 corrupted++; 2896 } 2897 2898 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2899 2900 /* 2901 * Root special: if there is a top-level vdev that cannot be 2902 * opened due to corrupted metadata, then propagate the root 2903 * vdev's aux state as 'corrupt' rather than 'insufficient 2904 * replicas'. 2905 */ 2906 if (corrupted && vd == rvd && 2907 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2908 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2909 VDEV_AUX_CORRUPT_DATA); 2910 } 2911 2912 if (vd->vdev_parent) 2913 vdev_propagate_state(vd->vdev_parent); 2914 } 2915 2916 /* 2917 * Set a vdev's state. If this is during an open, we don't update the parent 2918 * state, because we're in the process of opening children depth-first. 2919 * Otherwise, we propagate the change to the parent. 2920 * 2921 * If this routine places a device in a faulted state, an appropriate ereport is 2922 * generated. 2923 */ 2924 void 2925 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2926 { 2927 uint64_t save_state; 2928 spa_t *spa = vd->vdev_spa; 2929 2930 if (state == vd->vdev_state) { 2931 vd->vdev_stat.vs_aux = aux; 2932 return; 2933 } 2934 2935 save_state = vd->vdev_state; 2936 2937 vd->vdev_state = state; 2938 vd->vdev_stat.vs_aux = aux; 2939 2940 /* 2941 * If we are setting the vdev state to anything but an open state, then 2942 * always close the underlying device unless the device has requested 2943 * a delayed close (i.e. we're about to remove or fault the device). 2944 * Otherwise, we keep accessible but invalid devices open forever. 2945 * We don't call vdev_close() itself, because that implies some extra 2946 * checks (offline, etc) that we don't want here. This is limited to 2947 * leaf devices, because otherwise closing the device will affect other 2948 * children. 2949 */ 2950 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 2951 vd->vdev_ops->vdev_op_leaf) 2952 vd->vdev_ops->vdev_op_close(vd); 2953 2954 /* 2955 * If we have brought this vdev back into service, we need 2956 * to notify fmd so that it can gracefully repair any outstanding 2957 * cases due to a missing device. We do this in all cases, even those 2958 * that probably don't correlate to a repaired fault. This is sure to 2959 * catch all cases, and we let the zfs-retire agent sort it out. If 2960 * this is a transient state it's OK, as the retire agent will 2961 * double-check the state of the vdev before repairing it. 2962 */ 2963 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 2964 vd->vdev_prevstate != state) 2965 zfs_post_state_change(spa, vd); 2966 2967 if (vd->vdev_removed && 2968 state == VDEV_STATE_CANT_OPEN && 2969 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2970 /* 2971 * If the previous state is set to VDEV_STATE_REMOVED, then this 2972 * device was previously marked removed and someone attempted to 2973 * reopen it. If this failed due to a nonexistent device, then 2974 * keep the device in the REMOVED state. We also let this be if 2975 * it is one of our special test online cases, which is only 2976 * attempting to online the device and shouldn't generate an FMA 2977 * fault. 2978 */ 2979 vd->vdev_state = VDEV_STATE_REMOVED; 2980 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2981 } else if (state == VDEV_STATE_REMOVED) { 2982 vd->vdev_removed = B_TRUE; 2983 } else if (state == VDEV_STATE_CANT_OPEN) { 2984 /* 2985 * If we fail to open a vdev during an import or recovery, we 2986 * mark it as "not available", which signifies that it was 2987 * never there to begin with. Failure to open such a device 2988 * is not considered an error. 2989 */ 2990 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 2991 spa_load_state(spa) == SPA_LOAD_RECOVER) && 2992 vd->vdev_ops->vdev_op_leaf) 2993 vd->vdev_not_present = 1; 2994 2995 /* 2996 * Post the appropriate ereport. If the 'prevstate' field is 2997 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2998 * that this is part of a vdev_reopen(). In this case, we don't 2999 * want to post the ereport if the device was already in the 3000 * CANT_OPEN state beforehand. 3001 * 3002 * If the 'checkremove' flag is set, then this is an attempt to 3003 * online the device in response to an insertion event. If we 3004 * hit this case, then we have detected an insertion event for a 3005 * faulted or offline device that wasn't in the removed state. 3006 * In this scenario, we don't post an ereport because we are 3007 * about to replace the device, or attempt an online with 3008 * vdev_forcefault, which will generate the fault for us. 3009 */ 3010 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3011 !vd->vdev_not_present && !vd->vdev_checkremove && 3012 vd != spa->spa_root_vdev) { 3013 const char *class; 3014 3015 switch (aux) { 3016 case VDEV_AUX_OPEN_FAILED: 3017 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3018 break; 3019 case VDEV_AUX_CORRUPT_DATA: 3020 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3021 break; 3022 case VDEV_AUX_NO_REPLICAS: 3023 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3024 break; 3025 case VDEV_AUX_BAD_GUID_SUM: 3026 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3027 break; 3028 case VDEV_AUX_TOO_SMALL: 3029 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3030 break; 3031 case VDEV_AUX_BAD_LABEL: 3032 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3033 break; 3034 default: 3035 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3036 } 3037 3038 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3039 } 3040 3041 /* Erase any notion of persistent removed state */ 3042 vd->vdev_removed = B_FALSE; 3043 } else { 3044 vd->vdev_removed = B_FALSE; 3045 } 3046 3047 if (!isopen && vd->vdev_parent) 3048 vdev_propagate_state(vd->vdev_parent); 3049 } 3050 3051 /* 3052 * Check the vdev configuration to ensure that it's capable of supporting 3053 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3054 * In addition, only a single top-level vdev is allowed and none of the leaves 3055 * can be wholedisks. 3056 */ 3057 boolean_t 3058 vdev_is_bootable(vdev_t *vd) 3059 { 3060 if (!vd->vdev_ops->vdev_op_leaf) { 3061 char *vdev_type = vd->vdev_ops->vdev_op_type; 3062 3063 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3064 vd->vdev_children > 1) { 3065 return (B_FALSE); 3066 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3067 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3068 return (B_FALSE); 3069 } 3070 } else if (vd->vdev_wholedisk == 1) { 3071 return (B_FALSE); 3072 } 3073 3074 for (int c = 0; c < vd->vdev_children; c++) { 3075 if (!vdev_is_bootable(vd->vdev_child[c])) 3076 return (B_FALSE); 3077 } 3078 return (B_TRUE); 3079 } 3080 3081 /* 3082 * Load the state from the original vdev tree (ovd) which 3083 * we've retrieved from the MOS config object. If the original 3084 * vdev was offline or faulted then we transfer that state to the 3085 * device in the current vdev tree (nvd). 3086 */ 3087 void 3088 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3089 { 3090 spa_t *spa = nvd->vdev_spa; 3091 3092 ASSERT(nvd->vdev_top->vdev_islog); 3093 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3094 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3095 3096 for (int c = 0; c < nvd->vdev_children; c++) 3097 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3098 3099 if (nvd->vdev_ops->vdev_op_leaf) { 3100 /* 3101 * Restore the persistent vdev state 3102 */ 3103 nvd->vdev_offline = ovd->vdev_offline; 3104 nvd->vdev_faulted = ovd->vdev_faulted; 3105 nvd->vdev_degraded = ovd->vdev_degraded; 3106 nvd->vdev_removed = ovd->vdev_removed; 3107 } 3108 } 3109 3110 /* 3111 * Determine if a log device has valid content. If the vdev was 3112 * removed or faulted in the MOS config then we know that 3113 * the content on the log device has already been written to the pool. 3114 */ 3115 boolean_t 3116 vdev_log_state_valid(vdev_t *vd) 3117 { 3118 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3119 !vd->vdev_removed) 3120 return (B_TRUE); 3121 3122 for (int c = 0; c < vd->vdev_children; c++) 3123 if (vdev_log_state_valid(vd->vdev_child[c])) 3124 return (B_TRUE); 3125 3126 return (B_FALSE); 3127 } 3128 3129 /* 3130 * Expand a vdev if possible. 3131 */ 3132 void 3133 vdev_expand(vdev_t *vd, uint64_t txg) 3134 { 3135 ASSERT(vd->vdev_top == vd); 3136 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3137 3138 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3139 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3140 vdev_config_dirty(vd); 3141 } 3142 } 3143 3144 /* 3145 * Split a vdev. 3146 */ 3147 void 3148 vdev_split(vdev_t *vd) 3149 { 3150 vdev_t *cvd, *pvd = vd->vdev_parent; 3151 3152 vdev_remove_child(pvd, vd); 3153 vdev_compact_children(pvd); 3154 3155 cvd = pvd->vdev_child[0]; 3156 if (pvd->vdev_children == 1) { 3157 vdev_remove_parent(cvd); 3158 cvd->vdev_splitting = B_TRUE; 3159 } 3160 vdev_propagate_state(cvd); 3161 } 3162 3163 void 3164 vdev_deadman(vdev_t *vd) 3165 { 3166 for (int c = 0; c < vd->vdev_children; c++) { 3167 vdev_t *cvd = vd->vdev_child[c]; 3168 3169 vdev_deadman(cvd); 3170 } 3171 3172 if (vd->vdev_ops->vdev_op_leaf) { 3173 vdev_queue_t *vq = &vd->vdev_queue; 3174 3175 mutex_enter(&vq->vq_lock); 3176 if (avl_numnodes(&vq->vq_pending_tree) > 0) { 3177 spa_t *spa = vd->vdev_spa; 3178 zio_t *fio; 3179 uint64_t delta; 3180 3181 /* 3182 * Look at the head of all the pending queues, 3183 * if any I/O has been outstanding for longer than 3184 * the spa_deadman_synctime we panic the system. 3185 */ 3186 fio = avl_first(&vq->vq_pending_tree); 3187 delta = gethrtime() - fio->io_timestamp; 3188 if (delta > spa_deadman_synctime(spa)) { 3189 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3190 "delta %lluns, last io %lluns", 3191 fio->io_timestamp, delta, 3192 vq->vq_io_complete_ts); 3193 fm_panic("I/O to pool '%s' appears to be " 3194 "hung.", spa_name(spa)); 3195 } 3196 } 3197 mutex_exit(&vq->vq_lock); 3198 } 3199 } 3200