1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/fm/fs/zfs.h> 28 #include <sys/spa.h> 29 #include <sys/spa_impl.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/uberblock_impl.h> 34 #include <sys/metaslab.h> 35 #include <sys/metaslab_impl.h> 36 #include <sys/space_map.h> 37 #include <sys/zio.h> 38 #include <sys/zap.h> 39 #include <sys/fs/zfs.h> 40 #include <sys/arc.h> 41 #include <sys/zil.h> 42 #include <sys/dsl_scan.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 &vdev_hole_ops, 58 NULL 59 }; 60 61 /* maximum scrub/resilver I/O queue per leaf vdev */ 62 int zfs_scrub_limit = 10; 63 64 /* 65 * Given a vdev type, return the appropriate ops vector. 66 */ 67 static vdev_ops_t * 68 vdev_getops(const char *type) 69 { 70 vdev_ops_t *ops, **opspp; 71 72 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 73 if (strcmp(ops->vdev_op_type, type) == 0) 74 break; 75 76 return (ops); 77 } 78 79 /* 80 * Default asize function: return the MAX of psize with the asize of 81 * all children. This is what's used by anything other than RAID-Z. 82 */ 83 uint64_t 84 vdev_default_asize(vdev_t *vd, uint64_t psize) 85 { 86 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 87 uint64_t csize; 88 89 for (int c = 0; c < vd->vdev_children; c++) { 90 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 91 asize = MAX(asize, csize); 92 } 93 94 return (asize); 95 } 96 97 /* 98 * Get the minimum allocatable size. We define the allocatable size as 99 * the vdev's asize rounded to the nearest metaslab. This allows us to 100 * replace or attach devices which don't have the same physical size but 101 * can still satisfy the same number of allocations. 102 */ 103 uint64_t 104 vdev_get_min_asize(vdev_t *vd) 105 { 106 vdev_t *pvd = vd->vdev_parent; 107 108 /* 109 * The our parent is NULL (inactive spare or cache) or is the root, 110 * just return our own asize. 111 */ 112 if (pvd == NULL) 113 return (vd->vdev_asize); 114 115 /* 116 * The top-level vdev just returns the allocatable size rounded 117 * to the nearest metaslab. 118 */ 119 if (vd == vd->vdev_top) 120 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 121 122 /* 123 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 124 * so each child must provide at least 1/Nth of its asize. 125 */ 126 if (pvd->vdev_ops == &vdev_raidz_ops) 127 return (pvd->vdev_min_asize / pvd->vdev_children); 128 129 return (pvd->vdev_min_asize); 130 } 131 132 void 133 vdev_set_min_asize(vdev_t *vd) 134 { 135 vd->vdev_min_asize = vdev_get_min_asize(vd); 136 137 for (int c = 0; c < vd->vdev_children; c++) 138 vdev_set_min_asize(vd->vdev_child[c]); 139 } 140 141 vdev_t * 142 vdev_lookup_top(spa_t *spa, uint64_t vdev) 143 { 144 vdev_t *rvd = spa->spa_root_vdev; 145 146 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 147 148 if (vdev < rvd->vdev_children) { 149 ASSERT(rvd->vdev_child[vdev] != NULL); 150 return (rvd->vdev_child[vdev]); 151 } 152 153 return (NULL); 154 } 155 156 vdev_t * 157 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 158 { 159 vdev_t *mvd; 160 161 if (vd->vdev_guid == guid) 162 return (vd); 163 164 for (int c = 0; c < vd->vdev_children; c++) 165 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 166 NULL) 167 return (mvd); 168 169 return (NULL); 170 } 171 172 void 173 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 174 { 175 size_t oldsize, newsize; 176 uint64_t id = cvd->vdev_id; 177 vdev_t **newchild; 178 179 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 180 ASSERT(cvd->vdev_parent == NULL); 181 182 cvd->vdev_parent = pvd; 183 184 if (pvd == NULL) 185 return; 186 187 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 188 189 oldsize = pvd->vdev_children * sizeof (vdev_t *); 190 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 191 newsize = pvd->vdev_children * sizeof (vdev_t *); 192 193 newchild = kmem_zalloc(newsize, KM_SLEEP); 194 if (pvd->vdev_child != NULL) { 195 bcopy(pvd->vdev_child, newchild, oldsize); 196 kmem_free(pvd->vdev_child, oldsize); 197 } 198 199 pvd->vdev_child = newchild; 200 pvd->vdev_child[id] = cvd; 201 202 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 203 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 204 205 /* 206 * Walk up all ancestors to update guid sum. 207 */ 208 for (; pvd != NULL; pvd = pvd->vdev_parent) 209 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 210 } 211 212 void 213 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 214 { 215 int c; 216 uint_t id = cvd->vdev_id; 217 218 ASSERT(cvd->vdev_parent == pvd); 219 220 if (pvd == NULL) 221 return; 222 223 ASSERT(id < pvd->vdev_children); 224 ASSERT(pvd->vdev_child[id] == cvd); 225 226 pvd->vdev_child[id] = NULL; 227 cvd->vdev_parent = NULL; 228 229 for (c = 0; c < pvd->vdev_children; c++) 230 if (pvd->vdev_child[c]) 231 break; 232 233 if (c == pvd->vdev_children) { 234 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 235 pvd->vdev_child = NULL; 236 pvd->vdev_children = 0; 237 } 238 239 /* 240 * Walk up all ancestors to update guid sum. 241 */ 242 for (; pvd != NULL; pvd = pvd->vdev_parent) 243 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 244 } 245 246 /* 247 * Remove any holes in the child array. 248 */ 249 void 250 vdev_compact_children(vdev_t *pvd) 251 { 252 vdev_t **newchild, *cvd; 253 int oldc = pvd->vdev_children; 254 int newc; 255 256 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 257 258 for (int c = newc = 0; c < oldc; c++) 259 if (pvd->vdev_child[c]) 260 newc++; 261 262 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 263 264 for (int c = newc = 0; c < oldc; c++) { 265 if ((cvd = pvd->vdev_child[c]) != NULL) { 266 newchild[newc] = cvd; 267 cvd->vdev_id = newc++; 268 } 269 } 270 271 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 272 pvd->vdev_child = newchild; 273 pvd->vdev_children = newc; 274 } 275 276 /* 277 * Allocate and minimally initialize a vdev_t. 278 */ 279 vdev_t * 280 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 281 { 282 vdev_t *vd; 283 284 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 285 286 if (spa->spa_root_vdev == NULL) { 287 ASSERT(ops == &vdev_root_ops); 288 spa->spa_root_vdev = vd; 289 } 290 291 if (guid == 0 && ops != &vdev_hole_ops) { 292 if (spa->spa_root_vdev == vd) { 293 /* 294 * The root vdev's guid will also be the pool guid, 295 * which must be unique among all pools. 296 */ 297 guid = spa_generate_guid(NULL); 298 } else { 299 /* 300 * Any other vdev's guid must be unique within the pool. 301 */ 302 guid = spa_generate_guid(spa); 303 } 304 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 305 } 306 307 vd->vdev_spa = spa; 308 vd->vdev_id = id; 309 vd->vdev_guid = guid; 310 vd->vdev_guid_sum = guid; 311 vd->vdev_ops = ops; 312 vd->vdev_state = VDEV_STATE_CLOSED; 313 vd->vdev_ishole = (ops == &vdev_hole_ops); 314 315 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 316 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 317 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 318 for (int t = 0; t < DTL_TYPES; t++) { 319 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 320 &vd->vdev_dtl_lock); 321 } 322 txg_list_create(&vd->vdev_ms_list, 323 offsetof(struct metaslab, ms_txg_node)); 324 txg_list_create(&vd->vdev_dtl_list, 325 offsetof(struct vdev, vdev_dtl_node)); 326 vd->vdev_stat.vs_timestamp = gethrtime(); 327 vdev_queue_init(vd); 328 vdev_cache_init(vd); 329 330 return (vd); 331 } 332 333 /* 334 * Allocate a new vdev. The 'alloctype' is used to control whether we are 335 * creating a new vdev or loading an existing one - the behavior is slightly 336 * different for each case. 337 */ 338 int 339 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 340 int alloctype) 341 { 342 vdev_ops_t *ops; 343 char *type; 344 uint64_t guid = 0, islog, nparity; 345 vdev_t *vd; 346 347 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 348 349 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 350 return (EINVAL); 351 352 if ((ops = vdev_getops(type)) == NULL) 353 return (EINVAL); 354 355 /* 356 * If this is a load, get the vdev guid from the nvlist. 357 * Otherwise, vdev_alloc_common() will generate one for us. 358 */ 359 if (alloctype == VDEV_ALLOC_LOAD) { 360 uint64_t label_id; 361 362 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 363 label_id != id) 364 return (EINVAL); 365 366 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 367 return (EINVAL); 368 } else if (alloctype == VDEV_ALLOC_SPARE) { 369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 370 return (EINVAL); 371 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 373 return (EINVAL); 374 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 376 return (EINVAL); 377 } 378 379 /* 380 * The first allocated vdev must be of type 'root'. 381 */ 382 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 383 return (EINVAL); 384 385 /* 386 * Determine whether we're a log vdev. 387 */ 388 islog = 0; 389 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 390 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 391 return (ENOTSUP); 392 393 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 394 return (ENOTSUP); 395 396 /* 397 * Set the nparity property for RAID-Z vdevs. 398 */ 399 nparity = -1ULL; 400 if (ops == &vdev_raidz_ops) { 401 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 402 &nparity) == 0) { 403 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 404 return (EINVAL); 405 /* 406 * Previous versions could only support 1 or 2 parity 407 * device. 408 */ 409 if (nparity > 1 && 410 spa_version(spa) < SPA_VERSION_RAIDZ2) 411 return (ENOTSUP); 412 if (nparity > 2 && 413 spa_version(spa) < SPA_VERSION_RAIDZ3) 414 return (ENOTSUP); 415 } else { 416 /* 417 * We require the parity to be specified for SPAs that 418 * support multiple parity levels. 419 */ 420 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 421 return (EINVAL); 422 /* 423 * Otherwise, we default to 1 parity device for RAID-Z. 424 */ 425 nparity = 1; 426 } 427 } else { 428 nparity = 0; 429 } 430 ASSERT(nparity != -1ULL); 431 432 vd = vdev_alloc_common(spa, id, guid, ops); 433 434 vd->vdev_islog = islog; 435 vd->vdev_nparity = nparity; 436 437 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 438 vd->vdev_path = spa_strdup(vd->vdev_path); 439 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 440 vd->vdev_devid = spa_strdup(vd->vdev_devid); 441 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 442 &vd->vdev_physpath) == 0) 443 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 445 vd->vdev_fru = spa_strdup(vd->vdev_fru); 446 447 /* 448 * Set the whole_disk property. If it's not specified, leave the value 449 * as -1. 450 */ 451 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 452 &vd->vdev_wholedisk) != 0) 453 vd->vdev_wholedisk = -1ULL; 454 455 /* 456 * Look for the 'not present' flag. This will only be set if the device 457 * was not present at the time of import. 458 */ 459 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 460 &vd->vdev_not_present); 461 462 /* 463 * Get the alignment requirement. 464 */ 465 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 466 467 /* 468 * Retrieve the vdev creation time. 469 */ 470 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 471 &vd->vdev_crtxg); 472 473 /* 474 * If we're a top-level vdev, try to load the allocation parameters. 475 */ 476 if (parent && !parent->vdev_parent && 477 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 478 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 479 &vd->vdev_ms_array); 480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 481 &vd->vdev_ms_shift); 482 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 483 &vd->vdev_asize); 484 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 485 &vd->vdev_removing); 486 } 487 488 if (parent && !parent->vdev_parent) { 489 ASSERT(alloctype == VDEV_ALLOC_LOAD || 490 alloctype == VDEV_ALLOC_ADD || 491 alloctype == VDEV_ALLOC_SPLIT || 492 alloctype == VDEV_ALLOC_ROOTPOOL); 493 vd->vdev_mg = metaslab_group_create(islog ? 494 spa_log_class(spa) : spa_normal_class(spa), vd); 495 } 496 497 /* 498 * If we're a leaf vdev, try to load the DTL object and other state. 499 */ 500 if (vd->vdev_ops->vdev_op_leaf && 501 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 502 alloctype == VDEV_ALLOC_ROOTPOOL)) { 503 if (alloctype == VDEV_ALLOC_LOAD) { 504 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 505 &vd->vdev_dtl_smo.smo_object); 506 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 507 &vd->vdev_unspare); 508 } 509 510 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 511 uint64_t spare = 0; 512 513 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 514 &spare) == 0 && spare) 515 spa_spare_add(vd); 516 } 517 518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 519 &vd->vdev_offline); 520 521 /* 522 * When importing a pool, we want to ignore the persistent fault 523 * state, as the diagnosis made on another system may not be 524 * valid in the current context. Local vdevs will 525 * remain in the faulted state. 526 */ 527 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 528 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 529 &vd->vdev_faulted); 530 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 531 &vd->vdev_degraded); 532 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 533 &vd->vdev_removed); 534 535 if (vd->vdev_faulted || vd->vdev_degraded) { 536 char *aux; 537 538 vd->vdev_label_aux = 539 VDEV_AUX_ERR_EXCEEDED; 540 if (nvlist_lookup_string(nv, 541 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 542 strcmp(aux, "external") == 0) 543 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 544 } 545 } 546 } 547 548 /* 549 * Add ourselves to the parent's list of children. 550 */ 551 vdev_add_child(parent, vd); 552 553 *vdp = vd; 554 555 return (0); 556 } 557 558 void 559 vdev_free(vdev_t *vd) 560 { 561 spa_t *spa = vd->vdev_spa; 562 563 /* 564 * vdev_free() implies closing the vdev first. This is simpler than 565 * trying to ensure complicated semantics for all callers. 566 */ 567 vdev_close(vd); 568 569 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 570 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 571 572 /* 573 * Free all children. 574 */ 575 for (int c = 0; c < vd->vdev_children; c++) 576 vdev_free(vd->vdev_child[c]); 577 578 ASSERT(vd->vdev_child == NULL); 579 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 580 581 /* 582 * Discard allocation state. 583 */ 584 if (vd->vdev_mg != NULL) { 585 vdev_metaslab_fini(vd); 586 metaslab_group_destroy(vd->vdev_mg); 587 } 588 589 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 590 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 591 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 592 593 /* 594 * Remove this vdev from its parent's child list. 595 */ 596 vdev_remove_child(vd->vdev_parent, vd); 597 598 ASSERT(vd->vdev_parent == NULL); 599 600 /* 601 * Clean up vdev structure. 602 */ 603 vdev_queue_fini(vd); 604 vdev_cache_fini(vd); 605 606 if (vd->vdev_path) 607 spa_strfree(vd->vdev_path); 608 if (vd->vdev_devid) 609 spa_strfree(vd->vdev_devid); 610 if (vd->vdev_physpath) 611 spa_strfree(vd->vdev_physpath); 612 if (vd->vdev_fru) 613 spa_strfree(vd->vdev_fru); 614 615 if (vd->vdev_isspare) 616 spa_spare_remove(vd); 617 if (vd->vdev_isl2cache) 618 spa_l2cache_remove(vd); 619 620 txg_list_destroy(&vd->vdev_ms_list); 621 txg_list_destroy(&vd->vdev_dtl_list); 622 623 mutex_enter(&vd->vdev_dtl_lock); 624 for (int t = 0; t < DTL_TYPES; t++) { 625 space_map_unload(&vd->vdev_dtl[t]); 626 space_map_destroy(&vd->vdev_dtl[t]); 627 } 628 mutex_exit(&vd->vdev_dtl_lock); 629 630 mutex_destroy(&vd->vdev_dtl_lock); 631 mutex_destroy(&vd->vdev_stat_lock); 632 mutex_destroy(&vd->vdev_probe_lock); 633 634 if (vd == spa->spa_root_vdev) 635 spa->spa_root_vdev = NULL; 636 637 kmem_free(vd, sizeof (vdev_t)); 638 } 639 640 /* 641 * Transfer top-level vdev state from svd to tvd. 642 */ 643 static void 644 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 645 { 646 spa_t *spa = svd->vdev_spa; 647 metaslab_t *msp; 648 vdev_t *vd; 649 int t; 650 651 ASSERT(tvd == tvd->vdev_top); 652 653 tvd->vdev_ms_array = svd->vdev_ms_array; 654 tvd->vdev_ms_shift = svd->vdev_ms_shift; 655 tvd->vdev_ms_count = svd->vdev_ms_count; 656 657 svd->vdev_ms_array = 0; 658 svd->vdev_ms_shift = 0; 659 svd->vdev_ms_count = 0; 660 661 tvd->vdev_mg = svd->vdev_mg; 662 tvd->vdev_ms = svd->vdev_ms; 663 664 svd->vdev_mg = NULL; 665 svd->vdev_ms = NULL; 666 667 if (tvd->vdev_mg != NULL) 668 tvd->vdev_mg->mg_vd = tvd; 669 670 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 671 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 672 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 673 674 svd->vdev_stat.vs_alloc = 0; 675 svd->vdev_stat.vs_space = 0; 676 svd->vdev_stat.vs_dspace = 0; 677 678 for (t = 0; t < TXG_SIZE; t++) { 679 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 680 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 681 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 682 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 683 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 684 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 685 } 686 687 if (list_link_active(&svd->vdev_config_dirty_node)) { 688 vdev_config_clean(svd); 689 vdev_config_dirty(tvd); 690 } 691 692 if (list_link_active(&svd->vdev_state_dirty_node)) { 693 vdev_state_clean(svd); 694 vdev_state_dirty(tvd); 695 } 696 697 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 698 svd->vdev_deflate_ratio = 0; 699 700 tvd->vdev_islog = svd->vdev_islog; 701 svd->vdev_islog = 0; 702 } 703 704 static void 705 vdev_top_update(vdev_t *tvd, vdev_t *vd) 706 { 707 if (vd == NULL) 708 return; 709 710 vd->vdev_top = tvd; 711 712 for (int c = 0; c < vd->vdev_children; c++) 713 vdev_top_update(tvd, vd->vdev_child[c]); 714 } 715 716 /* 717 * Add a mirror/replacing vdev above an existing vdev. 718 */ 719 vdev_t * 720 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 721 { 722 spa_t *spa = cvd->vdev_spa; 723 vdev_t *pvd = cvd->vdev_parent; 724 vdev_t *mvd; 725 726 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 727 728 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 729 730 mvd->vdev_asize = cvd->vdev_asize; 731 mvd->vdev_min_asize = cvd->vdev_min_asize; 732 mvd->vdev_ashift = cvd->vdev_ashift; 733 mvd->vdev_state = cvd->vdev_state; 734 mvd->vdev_crtxg = cvd->vdev_crtxg; 735 736 vdev_remove_child(pvd, cvd); 737 vdev_add_child(pvd, mvd); 738 cvd->vdev_id = mvd->vdev_children; 739 vdev_add_child(mvd, cvd); 740 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 741 742 if (mvd == mvd->vdev_top) 743 vdev_top_transfer(cvd, mvd); 744 745 return (mvd); 746 } 747 748 /* 749 * Remove a 1-way mirror/replacing vdev from the tree. 750 */ 751 void 752 vdev_remove_parent(vdev_t *cvd) 753 { 754 vdev_t *mvd = cvd->vdev_parent; 755 vdev_t *pvd = mvd->vdev_parent; 756 757 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 758 759 ASSERT(mvd->vdev_children == 1); 760 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 761 mvd->vdev_ops == &vdev_replacing_ops || 762 mvd->vdev_ops == &vdev_spare_ops); 763 cvd->vdev_ashift = mvd->vdev_ashift; 764 765 vdev_remove_child(mvd, cvd); 766 vdev_remove_child(pvd, mvd); 767 768 /* 769 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 770 * Otherwise, we could have detached an offline device, and when we 771 * go to import the pool we'll think we have two top-level vdevs, 772 * instead of a different version of the same top-level vdev. 773 */ 774 if (mvd->vdev_top == mvd) { 775 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 776 cvd->vdev_orig_guid = cvd->vdev_guid; 777 cvd->vdev_guid += guid_delta; 778 cvd->vdev_guid_sum += guid_delta; 779 } 780 cvd->vdev_id = mvd->vdev_id; 781 vdev_add_child(pvd, cvd); 782 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 783 784 if (cvd == cvd->vdev_top) 785 vdev_top_transfer(mvd, cvd); 786 787 ASSERT(mvd->vdev_children == 0); 788 vdev_free(mvd); 789 } 790 791 int 792 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 793 { 794 spa_t *spa = vd->vdev_spa; 795 objset_t *mos = spa->spa_meta_objset; 796 uint64_t m; 797 uint64_t oldc = vd->vdev_ms_count; 798 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 799 metaslab_t **mspp; 800 int error; 801 802 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 803 804 /* 805 * This vdev is not being allocated from yet or is a hole. 806 */ 807 if (vd->vdev_ms_shift == 0) 808 return (0); 809 810 ASSERT(!vd->vdev_ishole); 811 812 /* 813 * Compute the raidz-deflation ratio. Note, we hard-code 814 * in 128k (1 << 17) because it is the current "typical" blocksize. 815 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 816 * or we will inconsistently account for existing bp's. 817 */ 818 vd->vdev_deflate_ratio = (1 << 17) / 819 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 820 821 ASSERT(oldc <= newc); 822 823 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 824 825 if (oldc != 0) { 826 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 827 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 828 } 829 830 vd->vdev_ms = mspp; 831 vd->vdev_ms_count = newc; 832 833 for (m = oldc; m < newc; m++) { 834 space_map_obj_t smo = { 0, 0, 0 }; 835 if (txg == 0) { 836 uint64_t object = 0; 837 error = dmu_read(mos, vd->vdev_ms_array, 838 m * sizeof (uint64_t), sizeof (uint64_t), &object, 839 DMU_READ_PREFETCH); 840 if (error) 841 return (error); 842 if (object != 0) { 843 dmu_buf_t *db; 844 error = dmu_bonus_hold(mos, object, FTAG, &db); 845 if (error) 846 return (error); 847 ASSERT3U(db->db_size, >=, sizeof (smo)); 848 bcopy(db->db_data, &smo, sizeof (smo)); 849 ASSERT3U(smo.smo_object, ==, object); 850 dmu_buf_rele(db, FTAG); 851 } 852 } 853 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 854 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 855 } 856 857 if (txg == 0) 858 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 859 860 /* 861 * If the vdev is being removed we don't activate 862 * the metaslabs since we want to ensure that no new 863 * allocations are performed on this device. 864 */ 865 if (oldc == 0 && !vd->vdev_removing) 866 metaslab_group_activate(vd->vdev_mg); 867 868 if (txg == 0) 869 spa_config_exit(spa, SCL_ALLOC, FTAG); 870 871 return (0); 872 } 873 874 void 875 vdev_metaslab_fini(vdev_t *vd) 876 { 877 uint64_t m; 878 uint64_t count = vd->vdev_ms_count; 879 880 if (vd->vdev_ms != NULL) { 881 metaslab_group_passivate(vd->vdev_mg); 882 for (m = 0; m < count; m++) 883 if (vd->vdev_ms[m] != NULL) 884 metaslab_fini(vd->vdev_ms[m]); 885 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 886 vd->vdev_ms = NULL; 887 } 888 } 889 890 typedef struct vdev_probe_stats { 891 boolean_t vps_readable; 892 boolean_t vps_writeable; 893 int vps_flags; 894 } vdev_probe_stats_t; 895 896 static void 897 vdev_probe_done(zio_t *zio) 898 { 899 spa_t *spa = zio->io_spa; 900 vdev_t *vd = zio->io_vd; 901 vdev_probe_stats_t *vps = zio->io_private; 902 903 ASSERT(vd->vdev_probe_zio != NULL); 904 905 if (zio->io_type == ZIO_TYPE_READ) { 906 if (zio->io_error == 0) 907 vps->vps_readable = 1; 908 if (zio->io_error == 0 && spa_writeable(spa)) { 909 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 910 zio->io_offset, zio->io_size, zio->io_data, 911 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 912 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 913 } else { 914 zio_buf_free(zio->io_data, zio->io_size); 915 } 916 } else if (zio->io_type == ZIO_TYPE_WRITE) { 917 if (zio->io_error == 0) 918 vps->vps_writeable = 1; 919 zio_buf_free(zio->io_data, zio->io_size); 920 } else if (zio->io_type == ZIO_TYPE_NULL) { 921 zio_t *pio; 922 923 vd->vdev_cant_read |= !vps->vps_readable; 924 vd->vdev_cant_write |= !vps->vps_writeable; 925 926 if (vdev_readable(vd) && 927 (vdev_writeable(vd) || !spa_writeable(spa))) { 928 zio->io_error = 0; 929 } else { 930 ASSERT(zio->io_error != 0); 931 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 932 spa, vd, NULL, 0, 0); 933 zio->io_error = ENXIO; 934 } 935 936 mutex_enter(&vd->vdev_probe_lock); 937 ASSERT(vd->vdev_probe_zio == zio); 938 vd->vdev_probe_zio = NULL; 939 mutex_exit(&vd->vdev_probe_lock); 940 941 while ((pio = zio_walk_parents(zio)) != NULL) 942 if (!vdev_accessible(vd, pio)) 943 pio->io_error = ENXIO; 944 945 kmem_free(vps, sizeof (*vps)); 946 } 947 } 948 949 /* 950 * Determine whether this device is accessible by reading and writing 951 * to several known locations: the pad regions of each vdev label 952 * but the first (which we leave alone in case it contains a VTOC). 953 */ 954 zio_t * 955 vdev_probe(vdev_t *vd, zio_t *zio) 956 { 957 spa_t *spa = vd->vdev_spa; 958 vdev_probe_stats_t *vps = NULL; 959 zio_t *pio; 960 961 ASSERT(vd->vdev_ops->vdev_op_leaf); 962 963 /* 964 * Don't probe the probe. 965 */ 966 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 967 return (NULL); 968 969 /* 970 * To prevent 'probe storms' when a device fails, we create 971 * just one probe i/o at a time. All zios that want to probe 972 * this vdev will become parents of the probe io. 973 */ 974 mutex_enter(&vd->vdev_probe_lock); 975 976 if ((pio = vd->vdev_probe_zio) == NULL) { 977 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 978 979 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 980 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 981 ZIO_FLAG_TRYHARD; 982 983 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 984 /* 985 * vdev_cant_read and vdev_cant_write can only 986 * transition from TRUE to FALSE when we have the 987 * SCL_ZIO lock as writer; otherwise they can only 988 * transition from FALSE to TRUE. This ensures that 989 * any zio looking at these values can assume that 990 * failures persist for the life of the I/O. That's 991 * important because when a device has intermittent 992 * connectivity problems, we want to ensure that 993 * they're ascribed to the device (ENXIO) and not 994 * the zio (EIO). 995 * 996 * Since we hold SCL_ZIO as writer here, clear both 997 * values so the probe can reevaluate from first 998 * principles. 999 */ 1000 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1001 vd->vdev_cant_read = B_FALSE; 1002 vd->vdev_cant_write = B_FALSE; 1003 } 1004 1005 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1006 vdev_probe_done, vps, 1007 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1008 1009 /* 1010 * We can't change the vdev state in this context, so we 1011 * kick off an async task to do it on our behalf. 1012 */ 1013 if (zio != NULL) { 1014 vd->vdev_probe_wanted = B_TRUE; 1015 spa_async_request(spa, SPA_ASYNC_PROBE); 1016 } 1017 } 1018 1019 if (zio != NULL) 1020 zio_add_child(zio, pio); 1021 1022 mutex_exit(&vd->vdev_probe_lock); 1023 1024 if (vps == NULL) { 1025 ASSERT(zio != NULL); 1026 return (NULL); 1027 } 1028 1029 for (int l = 1; l < VDEV_LABELS; l++) { 1030 zio_nowait(zio_read_phys(pio, vd, 1031 vdev_label_offset(vd->vdev_psize, l, 1032 offsetof(vdev_label_t, vl_pad2)), 1033 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1034 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1035 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1036 } 1037 1038 if (zio == NULL) 1039 return (pio); 1040 1041 zio_nowait(pio); 1042 return (NULL); 1043 } 1044 1045 static void 1046 vdev_open_child(void *arg) 1047 { 1048 vdev_t *vd = arg; 1049 1050 vd->vdev_open_thread = curthread; 1051 vd->vdev_open_error = vdev_open(vd); 1052 vd->vdev_open_thread = NULL; 1053 } 1054 1055 boolean_t 1056 vdev_uses_zvols(vdev_t *vd) 1057 { 1058 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1059 strlen(ZVOL_DIR)) == 0) 1060 return (B_TRUE); 1061 for (int c = 0; c < vd->vdev_children; c++) 1062 if (vdev_uses_zvols(vd->vdev_child[c])) 1063 return (B_TRUE); 1064 return (B_FALSE); 1065 } 1066 1067 void 1068 vdev_open_children(vdev_t *vd) 1069 { 1070 taskq_t *tq; 1071 int children = vd->vdev_children; 1072 1073 /* 1074 * in order to handle pools on top of zvols, do the opens 1075 * in a single thread so that the same thread holds the 1076 * spa_namespace_lock 1077 */ 1078 if (vdev_uses_zvols(vd)) { 1079 for (int c = 0; c < children; c++) 1080 vd->vdev_child[c]->vdev_open_error = 1081 vdev_open(vd->vdev_child[c]); 1082 return; 1083 } 1084 tq = taskq_create("vdev_open", children, minclsyspri, 1085 children, children, TASKQ_PREPOPULATE); 1086 1087 for (int c = 0; c < children; c++) 1088 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1089 TQ_SLEEP) != NULL); 1090 1091 taskq_destroy(tq); 1092 } 1093 1094 /* 1095 * Prepare a virtual device for access. 1096 */ 1097 int 1098 vdev_open(vdev_t *vd) 1099 { 1100 spa_t *spa = vd->vdev_spa; 1101 int error; 1102 uint64_t osize = 0; 1103 uint64_t asize, psize; 1104 uint64_t ashift = 0; 1105 1106 ASSERT(vd->vdev_open_thread == curthread || 1107 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1108 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1109 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1110 vd->vdev_state == VDEV_STATE_OFFLINE); 1111 1112 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1113 vd->vdev_cant_read = B_FALSE; 1114 vd->vdev_cant_write = B_FALSE; 1115 vd->vdev_min_asize = vdev_get_min_asize(vd); 1116 1117 /* 1118 * If this vdev is not removed, check its fault status. If it's 1119 * faulted, bail out of the open. 1120 */ 1121 if (!vd->vdev_removed && vd->vdev_faulted) { 1122 ASSERT(vd->vdev_children == 0); 1123 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1124 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1125 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1126 vd->vdev_label_aux); 1127 return (ENXIO); 1128 } else if (vd->vdev_offline) { 1129 ASSERT(vd->vdev_children == 0); 1130 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1131 return (ENXIO); 1132 } 1133 1134 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 1135 1136 /* 1137 * Reset the vdev_reopening flag so that we actually close 1138 * the vdev on error. 1139 */ 1140 vd->vdev_reopening = B_FALSE; 1141 if (zio_injection_enabled && error == 0) 1142 error = zio_handle_device_injection(vd, NULL, ENXIO); 1143 1144 if (error) { 1145 if (vd->vdev_removed && 1146 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1147 vd->vdev_removed = B_FALSE; 1148 1149 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1150 vd->vdev_stat.vs_aux); 1151 return (error); 1152 } 1153 1154 vd->vdev_removed = B_FALSE; 1155 1156 /* 1157 * Recheck the faulted flag now that we have confirmed that 1158 * the vdev is accessible. If we're faulted, bail. 1159 */ 1160 if (vd->vdev_faulted) { 1161 ASSERT(vd->vdev_children == 0); 1162 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1163 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1164 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1165 vd->vdev_label_aux); 1166 return (ENXIO); 1167 } 1168 1169 if (vd->vdev_degraded) { 1170 ASSERT(vd->vdev_children == 0); 1171 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1172 VDEV_AUX_ERR_EXCEEDED); 1173 } else { 1174 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1175 } 1176 1177 /* 1178 * For hole or missing vdevs we just return success. 1179 */ 1180 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1181 return (0); 1182 1183 for (int c = 0; c < vd->vdev_children; c++) { 1184 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1185 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1186 VDEV_AUX_NONE); 1187 break; 1188 } 1189 } 1190 1191 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1192 1193 if (vd->vdev_children == 0) { 1194 if (osize < SPA_MINDEVSIZE) { 1195 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1196 VDEV_AUX_TOO_SMALL); 1197 return (EOVERFLOW); 1198 } 1199 psize = osize; 1200 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1201 } else { 1202 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1203 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1204 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1205 VDEV_AUX_TOO_SMALL); 1206 return (EOVERFLOW); 1207 } 1208 psize = 0; 1209 asize = osize; 1210 } 1211 1212 vd->vdev_psize = psize; 1213 1214 /* 1215 * Make sure the allocatable size hasn't shrunk. 1216 */ 1217 if (asize < vd->vdev_min_asize) { 1218 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1219 VDEV_AUX_BAD_LABEL); 1220 return (EINVAL); 1221 } 1222 1223 if (vd->vdev_asize == 0) { 1224 /* 1225 * This is the first-ever open, so use the computed values. 1226 * For testing purposes, a higher ashift can be requested. 1227 */ 1228 vd->vdev_asize = asize; 1229 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1230 } else { 1231 /* 1232 * Make sure the alignment requirement hasn't increased. 1233 */ 1234 if (ashift > vd->vdev_top->vdev_ashift) { 1235 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1236 VDEV_AUX_BAD_LABEL); 1237 return (EINVAL); 1238 } 1239 } 1240 1241 /* 1242 * If all children are healthy and the asize has increased, 1243 * then we've experienced dynamic LUN growth. If automatic 1244 * expansion is enabled then use the additional space. 1245 */ 1246 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1247 (vd->vdev_expanding || spa->spa_autoexpand)) 1248 vd->vdev_asize = asize; 1249 1250 vdev_set_min_asize(vd); 1251 1252 /* 1253 * Ensure we can issue some IO before declaring the 1254 * vdev open for business. 1255 */ 1256 if (vd->vdev_ops->vdev_op_leaf && 1257 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1258 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1259 VDEV_AUX_ERR_EXCEEDED); 1260 return (error); 1261 } 1262 1263 /* 1264 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1265 * resilver. But don't do this if we are doing a reopen for a scrub, 1266 * since this would just restart the scrub we are already doing. 1267 */ 1268 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1269 vdev_resilver_needed(vd, NULL, NULL)) 1270 spa_async_request(spa, SPA_ASYNC_RESILVER); 1271 1272 return (0); 1273 } 1274 1275 /* 1276 * Called once the vdevs are all opened, this routine validates the label 1277 * contents. This needs to be done before vdev_load() so that we don't 1278 * inadvertently do repair I/Os to the wrong device. 1279 * 1280 * This function will only return failure if one of the vdevs indicates that it 1281 * has since been destroyed or exported. This is only possible if 1282 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1283 * will be updated but the function will return 0. 1284 */ 1285 int 1286 vdev_validate(vdev_t *vd) 1287 { 1288 spa_t *spa = vd->vdev_spa; 1289 nvlist_t *label; 1290 uint64_t guid = 0, top_guid; 1291 uint64_t state; 1292 1293 for (int c = 0; c < vd->vdev_children; c++) 1294 if (vdev_validate(vd->vdev_child[c]) != 0) 1295 return (EBADF); 1296 1297 /* 1298 * If the device has already failed, or was marked offline, don't do 1299 * any further validation. Otherwise, label I/O will fail and we will 1300 * overwrite the previous state. 1301 */ 1302 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1303 uint64_t aux_guid = 0; 1304 nvlist_t *nvl; 1305 1306 if ((label = vdev_label_read_config(vd)) == NULL) { 1307 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1308 VDEV_AUX_BAD_LABEL); 1309 return (0); 1310 } 1311 1312 /* 1313 * Determine if this vdev has been split off into another 1314 * pool. If so, then refuse to open it. 1315 */ 1316 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1317 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1318 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1319 VDEV_AUX_SPLIT_POOL); 1320 nvlist_free(label); 1321 return (0); 1322 } 1323 1324 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1325 &guid) != 0 || guid != spa_guid(spa)) { 1326 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1327 VDEV_AUX_CORRUPT_DATA); 1328 nvlist_free(label); 1329 return (0); 1330 } 1331 1332 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1333 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1334 &aux_guid) != 0) 1335 aux_guid = 0; 1336 1337 /* 1338 * If this vdev just became a top-level vdev because its 1339 * sibling was detached, it will have adopted the parent's 1340 * vdev guid -- but the label may or may not be on disk yet. 1341 * Fortunately, either version of the label will have the 1342 * same top guid, so if we're a top-level vdev, we can 1343 * safely compare to that instead. 1344 * 1345 * If we split this vdev off instead, then we also check the 1346 * original pool's guid. We don't want to consider the vdev 1347 * corrupt if it is partway through a split operation. 1348 */ 1349 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1350 &guid) != 0 || 1351 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1352 &top_guid) != 0 || 1353 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1354 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1355 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1356 VDEV_AUX_CORRUPT_DATA); 1357 nvlist_free(label); 1358 return (0); 1359 } 1360 1361 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1362 &state) != 0) { 1363 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1364 VDEV_AUX_CORRUPT_DATA); 1365 nvlist_free(label); 1366 return (0); 1367 } 1368 1369 nvlist_free(label); 1370 1371 /* 1372 * If this is a verbatim import, no need to check the 1373 * state of the pool. 1374 */ 1375 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1376 spa_load_state(spa) == SPA_LOAD_OPEN && 1377 state != POOL_STATE_ACTIVE) 1378 return (EBADF); 1379 1380 /* 1381 * If we were able to open and validate a vdev that was 1382 * previously marked permanently unavailable, clear that state 1383 * now. 1384 */ 1385 if (vd->vdev_not_present) 1386 vd->vdev_not_present = 0; 1387 } 1388 1389 return (0); 1390 } 1391 1392 /* 1393 * Close a virtual device. 1394 */ 1395 void 1396 vdev_close(vdev_t *vd) 1397 { 1398 spa_t *spa = vd->vdev_spa; 1399 vdev_t *pvd = vd->vdev_parent; 1400 1401 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1402 1403 /* 1404 * If our parent is reopening, then we are as well, unless we are 1405 * going offline. 1406 */ 1407 if (pvd != NULL && pvd->vdev_reopening) 1408 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1409 1410 vd->vdev_ops->vdev_op_close(vd); 1411 1412 vdev_cache_purge(vd); 1413 1414 /* 1415 * We record the previous state before we close it, so that if we are 1416 * doing a reopen(), we don't generate FMA ereports if we notice that 1417 * it's still faulted. 1418 */ 1419 vd->vdev_prevstate = vd->vdev_state; 1420 1421 if (vd->vdev_offline) 1422 vd->vdev_state = VDEV_STATE_OFFLINE; 1423 else 1424 vd->vdev_state = VDEV_STATE_CLOSED; 1425 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1426 } 1427 1428 void 1429 vdev_hold(vdev_t *vd) 1430 { 1431 spa_t *spa = vd->vdev_spa; 1432 1433 ASSERT(spa_is_root(spa)); 1434 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1435 return; 1436 1437 for (int c = 0; c < vd->vdev_children; c++) 1438 vdev_hold(vd->vdev_child[c]); 1439 1440 if (vd->vdev_ops->vdev_op_leaf) 1441 vd->vdev_ops->vdev_op_hold(vd); 1442 } 1443 1444 void 1445 vdev_rele(vdev_t *vd) 1446 { 1447 spa_t *spa = vd->vdev_spa; 1448 1449 ASSERT(spa_is_root(spa)); 1450 for (int c = 0; c < vd->vdev_children; c++) 1451 vdev_rele(vd->vdev_child[c]); 1452 1453 if (vd->vdev_ops->vdev_op_leaf) 1454 vd->vdev_ops->vdev_op_rele(vd); 1455 } 1456 1457 /* 1458 * Reopen all interior vdevs and any unopened leaves. We don't actually 1459 * reopen leaf vdevs which had previously been opened as they might deadlock 1460 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1461 * If the leaf has never been opened then open it, as usual. 1462 */ 1463 void 1464 vdev_reopen(vdev_t *vd) 1465 { 1466 spa_t *spa = vd->vdev_spa; 1467 1468 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1469 1470 /* set the reopening flag unless we're taking the vdev offline */ 1471 vd->vdev_reopening = !vd->vdev_offline; 1472 vdev_close(vd); 1473 (void) vdev_open(vd); 1474 1475 /* 1476 * Call vdev_validate() here to make sure we have the same device. 1477 * Otherwise, a device with an invalid label could be successfully 1478 * opened in response to vdev_reopen(). 1479 */ 1480 if (vd->vdev_aux) { 1481 (void) vdev_validate_aux(vd); 1482 if (vdev_readable(vd) && vdev_writeable(vd) && 1483 vd->vdev_aux == &spa->spa_l2cache && 1484 !l2arc_vdev_present(vd)) 1485 l2arc_add_vdev(spa, vd); 1486 } else { 1487 (void) vdev_validate(vd); 1488 } 1489 1490 /* 1491 * Reassess parent vdev's health. 1492 */ 1493 vdev_propagate_state(vd); 1494 } 1495 1496 int 1497 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1498 { 1499 int error; 1500 1501 /* 1502 * Normally, partial opens (e.g. of a mirror) are allowed. 1503 * For a create, however, we want to fail the request if 1504 * there are any components we can't open. 1505 */ 1506 error = vdev_open(vd); 1507 1508 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1509 vdev_close(vd); 1510 return (error ? error : ENXIO); 1511 } 1512 1513 /* 1514 * Recursively initialize all labels. 1515 */ 1516 if ((error = vdev_label_init(vd, txg, isreplacing ? 1517 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1518 vdev_close(vd); 1519 return (error); 1520 } 1521 1522 return (0); 1523 } 1524 1525 void 1526 vdev_metaslab_set_size(vdev_t *vd) 1527 { 1528 /* 1529 * Aim for roughly 200 metaslabs per vdev. 1530 */ 1531 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1532 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1533 } 1534 1535 void 1536 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1537 { 1538 ASSERT(vd == vd->vdev_top); 1539 ASSERT(!vd->vdev_ishole); 1540 ASSERT(ISP2(flags)); 1541 1542 if (flags & VDD_METASLAB) 1543 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1544 1545 if (flags & VDD_DTL) 1546 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1547 1548 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1549 } 1550 1551 /* 1552 * DTLs. 1553 * 1554 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1555 * the vdev has less than perfect replication. There are four kinds of DTL: 1556 * 1557 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1558 * 1559 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1560 * 1561 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1562 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1563 * txgs that was scrubbed. 1564 * 1565 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1566 * persistent errors or just some device being offline. 1567 * Unlike the other three, the DTL_OUTAGE map is not generally 1568 * maintained; it's only computed when needed, typically to 1569 * determine whether a device can be detached. 1570 * 1571 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1572 * either has the data or it doesn't. 1573 * 1574 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1575 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1576 * if any child is less than fully replicated, then so is its parent. 1577 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1578 * comprising only those txgs which appear in 'maxfaults' or more children; 1579 * those are the txgs we don't have enough replication to read. For example, 1580 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1581 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1582 * two child DTL_MISSING maps. 1583 * 1584 * It should be clear from the above that to compute the DTLs and outage maps 1585 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1586 * Therefore, that is all we keep on disk. When loading the pool, or after 1587 * a configuration change, we generate all other DTLs from first principles. 1588 */ 1589 void 1590 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1591 { 1592 space_map_t *sm = &vd->vdev_dtl[t]; 1593 1594 ASSERT(t < DTL_TYPES); 1595 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1596 1597 mutex_enter(sm->sm_lock); 1598 if (!space_map_contains(sm, txg, size)) 1599 space_map_add(sm, txg, size); 1600 mutex_exit(sm->sm_lock); 1601 } 1602 1603 boolean_t 1604 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1605 { 1606 space_map_t *sm = &vd->vdev_dtl[t]; 1607 boolean_t dirty = B_FALSE; 1608 1609 ASSERT(t < DTL_TYPES); 1610 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1611 1612 mutex_enter(sm->sm_lock); 1613 if (sm->sm_space != 0) 1614 dirty = space_map_contains(sm, txg, size); 1615 mutex_exit(sm->sm_lock); 1616 1617 return (dirty); 1618 } 1619 1620 boolean_t 1621 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1622 { 1623 space_map_t *sm = &vd->vdev_dtl[t]; 1624 boolean_t empty; 1625 1626 mutex_enter(sm->sm_lock); 1627 empty = (sm->sm_space == 0); 1628 mutex_exit(sm->sm_lock); 1629 1630 return (empty); 1631 } 1632 1633 /* 1634 * Reassess DTLs after a config change or scrub completion. 1635 */ 1636 void 1637 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1638 { 1639 spa_t *spa = vd->vdev_spa; 1640 avl_tree_t reftree; 1641 int minref; 1642 1643 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1644 1645 for (int c = 0; c < vd->vdev_children; c++) 1646 vdev_dtl_reassess(vd->vdev_child[c], txg, 1647 scrub_txg, scrub_done); 1648 1649 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1650 return; 1651 1652 if (vd->vdev_ops->vdev_op_leaf) { 1653 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1654 1655 mutex_enter(&vd->vdev_dtl_lock); 1656 if (scrub_txg != 0 && 1657 (spa->spa_scrub_started || 1658 (scn && scn->scn_phys.scn_errors == 0))) { 1659 /* 1660 * We completed a scrub up to scrub_txg. If we 1661 * did it without rebooting, then the scrub dtl 1662 * will be valid, so excise the old region and 1663 * fold in the scrub dtl. Otherwise, leave the 1664 * dtl as-is if there was an error. 1665 * 1666 * There's little trick here: to excise the beginning 1667 * of the DTL_MISSING map, we put it into a reference 1668 * tree and then add a segment with refcnt -1 that 1669 * covers the range [0, scrub_txg). This means 1670 * that each txg in that range has refcnt -1 or 0. 1671 * We then add DTL_SCRUB with a refcnt of 2, so that 1672 * entries in the range [0, scrub_txg) will have a 1673 * positive refcnt -- either 1 or 2. We then convert 1674 * the reference tree into the new DTL_MISSING map. 1675 */ 1676 space_map_ref_create(&reftree); 1677 space_map_ref_add_map(&reftree, 1678 &vd->vdev_dtl[DTL_MISSING], 1); 1679 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1680 space_map_ref_add_map(&reftree, 1681 &vd->vdev_dtl[DTL_SCRUB], 2); 1682 space_map_ref_generate_map(&reftree, 1683 &vd->vdev_dtl[DTL_MISSING], 1); 1684 space_map_ref_destroy(&reftree); 1685 } 1686 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1687 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1688 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1689 if (scrub_done) 1690 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1691 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1692 if (!vdev_readable(vd)) 1693 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1694 else 1695 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1696 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1697 mutex_exit(&vd->vdev_dtl_lock); 1698 1699 if (txg != 0) 1700 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1701 return; 1702 } 1703 1704 mutex_enter(&vd->vdev_dtl_lock); 1705 for (int t = 0; t < DTL_TYPES; t++) { 1706 /* account for child's outage in parent's missing map */ 1707 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1708 if (t == DTL_SCRUB) 1709 continue; /* leaf vdevs only */ 1710 if (t == DTL_PARTIAL) 1711 minref = 1; /* i.e. non-zero */ 1712 else if (vd->vdev_nparity != 0) 1713 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1714 else 1715 minref = vd->vdev_children; /* any kind of mirror */ 1716 space_map_ref_create(&reftree); 1717 for (int c = 0; c < vd->vdev_children; c++) { 1718 vdev_t *cvd = vd->vdev_child[c]; 1719 mutex_enter(&cvd->vdev_dtl_lock); 1720 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1); 1721 mutex_exit(&cvd->vdev_dtl_lock); 1722 } 1723 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1724 space_map_ref_destroy(&reftree); 1725 } 1726 mutex_exit(&vd->vdev_dtl_lock); 1727 } 1728 1729 static int 1730 vdev_dtl_load(vdev_t *vd) 1731 { 1732 spa_t *spa = vd->vdev_spa; 1733 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1734 objset_t *mos = spa->spa_meta_objset; 1735 dmu_buf_t *db; 1736 int error; 1737 1738 ASSERT(vd->vdev_children == 0); 1739 1740 if (smo->smo_object == 0) 1741 return (0); 1742 1743 ASSERT(!vd->vdev_ishole); 1744 1745 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1746 return (error); 1747 1748 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1749 bcopy(db->db_data, smo, sizeof (*smo)); 1750 dmu_buf_rele(db, FTAG); 1751 1752 mutex_enter(&vd->vdev_dtl_lock); 1753 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1754 NULL, SM_ALLOC, smo, mos); 1755 mutex_exit(&vd->vdev_dtl_lock); 1756 1757 return (error); 1758 } 1759 1760 void 1761 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1762 { 1763 spa_t *spa = vd->vdev_spa; 1764 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1765 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1766 objset_t *mos = spa->spa_meta_objset; 1767 space_map_t smsync; 1768 kmutex_t smlock; 1769 dmu_buf_t *db; 1770 dmu_tx_t *tx; 1771 1772 ASSERT(!vd->vdev_ishole); 1773 1774 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1775 1776 if (vd->vdev_detached) { 1777 if (smo->smo_object != 0) { 1778 int err = dmu_object_free(mos, smo->smo_object, tx); 1779 ASSERT3U(err, ==, 0); 1780 smo->smo_object = 0; 1781 } 1782 dmu_tx_commit(tx); 1783 return; 1784 } 1785 1786 if (smo->smo_object == 0) { 1787 ASSERT(smo->smo_objsize == 0); 1788 ASSERT(smo->smo_alloc == 0); 1789 smo->smo_object = dmu_object_alloc(mos, 1790 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1791 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1792 ASSERT(smo->smo_object != 0); 1793 vdev_config_dirty(vd->vdev_top); 1794 } 1795 1796 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1797 1798 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1799 &smlock); 1800 1801 mutex_enter(&smlock); 1802 1803 mutex_enter(&vd->vdev_dtl_lock); 1804 space_map_walk(sm, space_map_add, &smsync); 1805 mutex_exit(&vd->vdev_dtl_lock); 1806 1807 space_map_truncate(smo, mos, tx); 1808 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1809 1810 space_map_destroy(&smsync); 1811 1812 mutex_exit(&smlock); 1813 mutex_destroy(&smlock); 1814 1815 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1816 dmu_buf_will_dirty(db, tx); 1817 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1818 bcopy(smo, db->db_data, sizeof (*smo)); 1819 dmu_buf_rele(db, FTAG); 1820 1821 dmu_tx_commit(tx); 1822 } 1823 1824 /* 1825 * Determine whether the specified vdev can be offlined/detached/removed 1826 * without losing data. 1827 */ 1828 boolean_t 1829 vdev_dtl_required(vdev_t *vd) 1830 { 1831 spa_t *spa = vd->vdev_spa; 1832 vdev_t *tvd = vd->vdev_top; 1833 uint8_t cant_read = vd->vdev_cant_read; 1834 boolean_t required; 1835 1836 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1837 1838 if (vd == spa->spa_root_vdev || vd == tvd) 1839 return (B_TRUE); 1840 1841 /* 1842 * Temporarily mark the device as unreadable, and then determine 1843 * whether this results in any DTL outages in the top-level vdev. 1844 * If not, we can safely offline/detach/remove the device. 1845 */ 1846 vd->vdev_cant_read = B_TRUE; 1847 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1848 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1849 vd->vdev_cant_read = cant_read; 1850 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1851 1852 return (required); 1853 } 1854 1855 /* 1856 * Determine if resilver is needed, and if so the txg range. 1857 */ 1858 boolean_t 1859 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1860 { 1861 boolean_t needed = B_FALSE; 1862 uint64_t thismin = UINT64_MAX; 1863 uint64_t thismax = 0; 1864 1865 if (vd->vdev_children == 0) { 1866 mutex_enter(&vd->vdev_dtl_lock); 1867 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1868 vdev_writeable(vd)) { 1869 space_seg_t *ss; 1870 1871 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1872 thismin = ss->ss_start - 1; 1873 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1874 thismax = ss->ss_end; 1875 needed = B_TRUE; 1876 } 1877 mutex_exit(&vd->vdev_dtl_lock); 1878 } else { 1879 for (int c = 0; c < vd->vdev_children; c++) { 1880 vdev_t *cvd = vd->vdev_child[c]; 1881 uint64_t cmin, cmax; 1882 1883 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1884 thismin = MIN(thismin, cmin); 1885 thismax = MAX(thismax, cmax); 1886 needed = B_TRUE; 1887 } 1888 } 1889 } 1890 1891 if (needed && minp) { 1892 *minp = thismin; 1893 *maxp = thismax; 1894 } 1895 return (needed); 1896 } 1897 1898 void 1899 vdev_load(vdev_t *vd) 1900 { 1901 /* 1902 * Recursively load all children. 1903 */ 1904 for (int c = 0; c < vd->vdev_children; c++) 1905 vdev_load(vd->vdev_child[c]); 1906 1907 /* 1908 * If this is a top-level vdev, initialize its metaslabs. 1909 */ 1910 if (vd == vd->vdev_top && !vd->vdev_ishole && 1911 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1912 vdev_metaslab_init(vd, 0) != 0)) 1913 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1914 VDEV_AUX_CORRUPT_DATA); 1915 1916 /* 1917 * If this is a leaf vdev, load its DTL. 1918 */ 1919 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1920 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1921 VDEV_AUX_CORRUPT_DATA); 1922 } 1923 1924 /* 1925 * The special vdev case is used for hot spares and l2cache devices. Its 1926 * sole purpose it to set the vdev state for the associated vdev. To do this, 1927 * we make sure that we can open the underlying device, then try to read the 1928 * label, and make sure that the label is sane and that it hasn't been 1929 * repurposed to another pool. 1930 */ 1931 int 1932 vdev_validate_aux(vdev_t *vd) 1933 { 1934 nvlist_t *label; 1935 uint64_t guid, version; 1936 uint64_t state; 1937 1938 if (!vdev_readable(vd)) 1939 return (0); 1940 1941 if ((label = vdev_label_read_config(vd)) == NULL) { 1942 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1943 VDEV_AUX_CORRUPT_DATA); 1944 return (-1); 1945 } 1946 1947 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1948 version > SPA_VERSION || 1949 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1950 guid != vd->vdev_guid || 1951 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1952 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1953 VDEV_AUX_CORRUPT_DATA); 1954 nvlist_free(label); 1955 return (-1); 1956 } 1957 1958 /* 1959 * We don't actually check the pool state here. If it's in fact in 1960 * use by another pool, we update this fact on the fly when requested. 1961 */ 1962 nvlist_free(label); 1963 return (0); 1964 } 1965 1966 void 1967 vdev_remove(vdev_t *vd, uint64_t txg) 1968 { 1969 spa_t *spa = vd->vdev_spa; 1970 objset_t *mos = spa->spa_meta_objset; 1971 dmu_tx_t *tx; 1972 1973 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 1974 1975 if (vd->vdev_dtl_smo.smo_object) { 1976 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0); 1977 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx); 1978 vd->vdev_dtl_smo.smo_object = 0; 1979 } 1980 1981 if (vd->vdev_ms != NULL) { 1982 for (int m = 0; m < vd->vdev_ms_count; m++) { 1983 metaslab_t *msp = vd->vdev_ms[m]; 1984 1985 if (msp == NULL || msp->ms_smo.smo_object == 0) 1986 continue; 1987 1988 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0); 1989 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx); 1990 msp->ms_smo.smo_object = 0; 1991 } 1992 } 1993 1994 if (vd->vdev_ms_array) { 1995 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 1996 vd->vdev_ms_array = 0; 1997 vd->vdev_ms_shift = 0; 1998 } 1999 dmu_tx_commit(tx); 2000 } 2001 2002 void 2003 vdev_sync_done(vdev_t *vd, uint64_t txg) 2004 { 2005 metaslab_t *msp; 2006 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2007 2008 ASSERT(!vd->vdev_ishole); 2009 2010 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2011 metaslab_sync_done(msp, txg); 2012 2013 if (reassess) 2014 metaslab_sync_reassess(vd->vdev_mg); 2015 } 2016 2017 void 2018 vdev_sync(vdev_t *vd, uint64_t txg) 2019 { 2020 spa_t *spa = vd->vdev_spa; 2021 vdev_t *lvd; 2022 metaslab_t *msp; 2023 dmu_tx_t *tx; 2024 2025 ASSERT(!vd->vdev_ishole); 2026 2027 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2028 ASSERT(vd == vd->vdev_top); 2029 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2030 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2031 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2032 ASSERT(vd->vdev_ms_array != 0); 2033 vdev_config_dirty(vd); 2034 dmu_tx_commit(tx); 2035 } 2036 2037 /* 2038 * Remove the metadata associated with this vdev once it's empty. 2039 */ 2040 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2041 vdev_remove(vd, txg); 2042 2043 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2044 metaslab_sync(msp, txg); 2045 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2046 } 2047 2048 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2049 vdev_dtl_sync(lvd, txg); 2050 2051 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2052 } 2053 2054 uint64_t 2055 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2056 { 2057 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2058 } 2059 2060 /* 2061 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2062 * not be opened, and no I/O is attempted. 2063 */ 2064 int 2065 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2066 { 2067 vdev_t *vd, *tvd; 2068 2069 spa_vdev_state_enter(spa, SCL_NONE); 2070 2071 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2072 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2073 2074 if (!vd->vdev_ops->vdev_op_leaf) 2075 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2076 2077 tvd = vd->vdev_top; 2078 2079 /* 2080 * We don't directly use the aux state here, but if we do a 2081 * vdev_reopen(), we need this value to be present to remember why we 2082 * were faulted. 2083 */ 2084 vd->vdev_label_aux = aux; 2085 2086 /* 2087 * Faulted state takes precedence over degraded. 2088 */ 2089 vd->vdev_delayed_close = B_FALSE; 2090 vd->vdev_faulted = 1ULL; 2091 vd->vdev_degraded = 0ULL; 2092 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2093 2094 /* 2095 * If this device has the only valid copy of the data, then 2096 * back off and simply mark the vdev as degraded instead. 2097 */ 2098 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2099 vd->vdev_degraded = 1ULL; 2100 vd->vdev_faulted = 0ULL; 2101 2102 /* 2103 * If we reopen the device and it's not dead, only then do we 2104 * mark it degraded. 2105 */ 2106 vdev_reopen(tvd); 2107 2108 if (vdev_readable(vd)) 2109 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2110 } 2111 2112 return (spa_vdev_state_exit(spa, vd, 0)); 2113 } 2114 2115 /* 2116 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2117 * user that something is wrong. The vdev continues to operate as normal as far 2118 * as I/O is concerned. 2119 */ 2120 int 2121 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2122 { 2123 vdev_t *vd; 2124 2125 spa_vdev_state_enter(spa, SCL_NONE); 2126 2127 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2128 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2129 2130 if (!vd->vdev_ops->vdev_op_leaf) 2131 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2132 2133 /* 2134 * If the vdev is already faulted, then don't do anything. 2135 */ 2136 if (vd->vdev_faulted || vd->vdev_degraded) 2137 return (spa_vdev_state_exit(spa, NULL, 0)); 2138 2139 vd->vdev_degraded = 1ULL; 2140 if (!vdev_is_dead(vd)) 2141 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2142 aux); 2143 2144 return (spa_vdev_state_exit(spa, vd, 0)); 2145 } 2146 2147 /* 2148 * Online the given vdev. If 'unspare' is set, it implies two things. First, 2149 * any attached spare device should be detached when the device finishes 2150 * resilvering. Second, the online should be treated like a 'test' online case, 2151 * so no FMA events are generated if the device fails to open. 2152 */ 2153 int 2154 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2155 { 2156 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2157 2158 spa_vdev_state_enter(spa, SCL_NONE); 2159 2160 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2161 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2162 2163 if (!vd->vdev_ops->vdev_op_leaf) 2164 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2165 2166 tvd = vd->vdev_top; 2167 vd->vdev_offline = B_FALSE; 2168 vd->vdev_tmpoffline = B_FALSE; 2169 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2170 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2171 2172 /* XXX - L2ARC 1.0 does not support expansion */ 2173 if (!vd->vdev_aux) { 2174 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2175 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2176 } 2177 2178 vdev_reopen(tvd); 2179 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2180 2181 if (!vd->vdev_aux) { 2182 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2183 pvd->vdev_expanding = B_FALSE; 2184 } 2185 2186 if (newstate) 2187 *newstate = vd->vdev_state; 2188 if ((flags & ZFS_ONLINE_UNSPARE) && 2189 !vdev_is_dead(vd) && vd->vdev_parent && 2190 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2191 vd->vdev_parent->vdev_child[0] == vd) 2192 vd->vdev_unspare = B_TRUE; 2193 2194 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2195 2196 /* XXX - L2ARC 1.0 does not support expansion */ 2197 if (vd->vdev_aux) 2198 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2199 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2200 } 2201 return (spa_vdev_state_exit(spa, vd, 0)); 2202 } 2203 2204 static int 2205 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2206 { 2207 vdev_t *vd, *tvd; 2208 int error = 0; 2209 uint64_t generation; 2210 metaslab_group_t *mg; 2211 2212 top: 2213 spa_vdev_state_enter(spa, SCL_ALLOC); 2214 2215 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2216 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2217 2218 if (!vd->vdev_ops->vdev_op_leaf) 2219 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2220 2221 tvd = vd->vdev_top; 2222 mg = tvd->vdev_mg; 2223 generation = spa->spa_config_generation + 1; 2224 2225 /* 2226 * If the device isn't already offline, try to offline it. 2227 */ 2228 if (!vd->vdev_offline) { 2229 /* 2230 * If this device has the only valid copy of some data, 2231 * don't allow it to be offlined. Log devices are always 2232 * expendable. 2233 */ 2234 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2235 vdev_dtl_required(vd)) 2236 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2237 2238 /* 2239 * If the top-level is a slog and it has had allocations 2240 * then proceed. We check that the vdev's metaslab group 2241 * is not NULL since it's possible that we may have just 2242 * added this vdev but not yet initialized its metaslabs. 2243 */ 2244 if (tvd->vdev_islog && mg != NULL) { 2245 /* 2246 * Prevent any future allocations. 2247 */ 2248 metaslab_group_passivate(mg); 2249 (void) spa_vdev_state_exit(spa, vd, 0); 2250 2251 error = spa_offline_log(spa); 2252 2253 spa_vdev_state_enter(spa, SCL_ALLOC); 2254 2255 /* 2256 * Check to see if the config has changed. 2257 */ 2258 if (error || generation != spa->spa_config_generation) { 2259 metaslab_group_activate(mg); 2260 if (error) 2261 return (spa_vdev_state_exit(spa, 2262 vd, error)); 2263 (void) spa_vdev_state_exit(spa, vd, 0); 2264 goto top; 2265 } 2266 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0); 2267 } 2268 2269 /* 2270 * Offline this device and reopen its top-level vdev. 2271 * If the top-level vdev is a log device then just offline 2272 * it. Otherwise, if this action results in the top-level 2273 * vdev becoming unusable, undo it and fail the request. 2274 */ 2275 vd->vdev_offline = B_TRUE; 2276 vdev_reopen(tvd); 2277 2278 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2279 vdev_is_dead(tvd)) { 2280 vd->vdev_offline = B_FALSE; 2281 vdev_reopen(tvd); 2282 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2283 } 2284 2285 /* 2286 * Add the device back into the metaslab rotor so that 2287 * once we online the device it's open for business. 2288 */ 2289 if (tvd->vdev_islog && mg != NULL) 2290 metaslab_group_activate(mg); 2291 } 2292 2293 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2294 2295 return (spa_vdev_state_exit(spa, vd, 0)); 2296 } 2297 2298 int 2299 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2300 { 2301 int error; 2302 2303 mutex_enter(&spa->spa_vdev_top_lock); 2304 error = vdev_offline_locked(spa, guid, flags); 2305 mutex_exit(&spa->spa_vdev_top_lock); 2306 2307 return (error); 2308 } 2309 2310 /* 2311 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2312 * vdev_offline(), we assume the spa config is locked. We also clear all 2313 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2314 */ 2315 void 2316 vdev_clear(spa_t *spa, vdev_t *vd) 2317 { 2318 vdev_t *rvd = spa->spa_root_vdev; 2319 2320 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2321 2322 if (vd == NULL) 2323 vd = rvd; 2324 2325 vd->vdev_stat.vs_read_errors = 0; 2326 vd->vdev_stat.vs_write_errors = 0; 2327 vd->vdev_stat.vs_checksum_errors = 0; 2328 2329 for (int c = 0; c < vd->vdev_children; c++) 2330 vdev_clear(spa, vd->vdev_child[c]); 2331 2332 /* 2333 * If we're in the FAULTED state or have experienced failed I/O, then 2334 * clear the persistent state and attempt to reopen the device. We 2335 * also mark the vdev config dirty, so that the new faulted state is 2336 * written out to disk. 2337 */ 2338 if (vd->vdev_faulted || vd->vdev_degraded || 2339 !vdev_readable(vd) || !vdev_writeable(vd)) { 2340 2341 /* 2342 * When reopening in reponse to a clear event, it may be due to 2343 * a fmadm repair request. In this case, if the device is 2344 * still broken, we want to still post the ereport again. 2345 */ 2346 vd->vdev_forcefault = B_TRUE; 2347 2348 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2349 vd->vdev_cant_read = B_FALSE; 2350 vd->vdev_cant_write = B_FALSE; 2351 2352 vdev_reopen(vd); 2353 2354 vd->vdev_forcefault = B_FALSE; 2355 2356 if (vd != rvd) 2357 vdev_state_dirty(vd->vdev_top); 2358 2359 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2360 spa_async_request(spa, SPA_ASYNC_RESILVER); 2361 2362 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2363 } 2364 2365 /* 2366 * When clearing a FMA-diagnosed fault, we always want to 2367 * unspare the device, as we assume that the original spare was 2368 * done in response to the FMA fault. 2369 */ 2370 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2371 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2372 vd->vdev_parent->vdev_child[0] == vd) 2373 vd->vdev_unspare = B_TRUE; 2374 } 2375 2376 boolean_t 2377 vdev_is_dead(vdev_t *vd) 2378 { 2379 /* 2380 * Holes and missing devices are always considered "dead". 2381 * This simplifies the code since we don't have to check for 2382 * these types of devices in the various code paths. 2383 * Instead we rely on the fact that we skip over dead devices 2384 * before issuing I/O to them. 2385 */ 2386 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2387 vd->vdev_ops == &vdev_missing_ops); 2388 } 2389 2390 boolean_t 2391 vdev_readable(vdev_t *vd) 2392 { 2393 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2394 } 2395 2396 boolean_t 2397 vdev_writeable(vdev_t *vd) 2398 { 2399 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2400 } 2401 2402 boolean_t 2403 vdev_allocatable(vdev_t *vd) 2404 { 2405 uint64_t state = vd->vdev_state; 2406 2407 /* 2408 * We currently allow allocations from vdevs which may be in the 2409 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2410 * fails to reopen then we'll catch it later when we're holding 2411 * the proper locks. Note that we have to get the vdev state 2412 * in a local variable because although it changes atomically, 2413 * we're asking two separate questions about it. 2414 */ 2415 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2416 !vd->vdev_cant_write && !vd->vdev_ishole); 2417 } 2418 2419 boolean_t 2420 vdev_accessible(vdev_t *vd, zio_t *zio) 2421 { 2422 ASSERT(zio->io_vd == vd); 2423 2424 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2425 return (B_FALSE); 2426 2427 if (zio->io_type == ZIO_TYPE_READ) 2428 return (!vd->vdev_cant_read); 2429 2430 if (zio->io_type == ZIO_TYPE_WRITE) 2431 return (!vd->vdev_cant_write); 2432 2433 return (B_TRUE); 2434 } 2435 2436 /* 2437 * Get statistics for the given vdev. 2438 */ 2439 void 2440 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2441 { 2442 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2443 2444 mutex_enter(&vd->vdev_stat_lock); 2445 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2446 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2447 vs->vs_state = vd->vdev_state; 2448 vs->vs_rsize = vdev_get_min_asize(vd); 2449 if (vd->vdev_ops->vdev_op_leaf) 2450 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2451 mutex_exit(&vd->vdev_stat_lock); 2452 2453 /* 2454 * If we're getting stats on the root vdev, aggregate the I/O counts 2455 * over all top-level vdevs (i.e. the direct children of the root). 2456 */ 2457 if (vd == rvd) { 2458 for (int c = 0; c < rvd->vdev_children; c++) { 2459 vdev_t *cvd = rvd->vdev_child[c]; 2460 vdev_stat_t *cvs = &cvd->vdev_stat; 2461 2462 mutex_enter(&vd->vdev_stat_lock); 2463 for (int t = 0; t < ZIO_TYPES; t++) { 2464 vs->vs_ops[t] += cvs->vs_ops[t]; 2465 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2466 } 2467 cvs->vs_scan_removing = cvd->vdev_removing; 2468 mutex_exit(&vd->vdev_stat_lock); 2469 } 2470 } 2471 } 2472 2473 void 2474 vdev_clear_stats(vdev_t *vd) 2475 { 2476 mutex_enter(&vd->vdev_stat_lock); 2477 vd->vdev_stat.vs_space = 0; 2478 vd->vdev_stat.vs_dspace = 0; 2479 vd->vdev_stat.vs_alloc = 0; 2480 mutex_exit(&vd->vdev_stat_lock); 2481 } 2482 2483 void 2484 vdev_scan_stat_init(vdev_t *vd) 2485 { 2486 vdev_stat_t *vs = &vd->vdev_stat; 2487 2488 for (int c = 0; c < vd->vdev_children; c++) 2489 vdev_scan_stat_init(vd->vdev_child[c]); 2490 2491 mutex_enter(&vd->vdev_stat_lock); 2492 vs->vs_scan_processed = 0; 2493 mutex_exit(&vd->vdev_stat_lock); 2494 } 2495 2496 void 2497 vdev_stat_update(zio_t *zio, uint64_t psize) 2498 { 2499 spa_t *spa = zio->io_spa; 2500 vdev_t *rvd = spa->spa_root_vdev; 2501 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2502 vdev_t *pvd; 2503 uint64_t txg = zio->io_txg; 2504 vdev_stat_t *vs = &vd->vdev_stat; 2505 zio_type_t type = zio->io_type; 2506 int flags = zio->io_flags; 2507 2508 /* 2509 * If this i/o is a gang leader, it didn't do any actual work. 2510 */ 2511 if (zio->io_gang_tree) 2512 return; 2513 2514 if (zio->io_error == 0) { 2515 /* 2516 * If this is a root i/o, don't count it -- we've already 2517 * counted the top-level vdevs, and vdev_get_stats() will 2518 * aggregate them when asked. This reduces contention on 2519 * the root vdev_stat_lock and implicitly handles blocks 2520 * that compress away to holes, for which there is no i/o. 2521 * (Holes never create vdev children, so all the counters 2522 * remain zero, which is what we want.) 2523 * 2524 * Note: this only applies to successful i/o (io_error == 0) 2525 * because unlike i/o counts, errors are not additive. 2526 * When reading a ditto block, for example, failure of 2527 * one top-level vdev does not imply a root-level error. 2528 */ 2529 if (vd == rvd) 2530 return; 2531 2532 ASSERT(vd == zio->io_vd); 2533 2534 if (flags & ZIO_FLAG_IO_BYPASS) 2535 return; 2536 2537 mutex_enter(&vd->vdev_stat_lock); 2538 2539 if (flags & ZIO_FLAG_IO_REPAIR) { 2540 if (flags & ZIO_FLAG_SCAN_THREAD) { 2541 dsl_scan_phys_t *scn_phys = 2542 &spa->spa_dsl_pool->dp_scan->scn_phys; 2543 uint64_t *processed = &scn_phys->scn_processed; 2544 2545 /* XXX cleanup? */ 2546 if (vd->vdev_ops->vdev_op_leaf) 2547 atomic_add_64(processed, psize); 2548 vs->vs_scan_processed += psize; 2549 } 2550 2551 if (flags & ZIO_FLAG_SELF_HEAL) 2552 vs->vs_self_healed += psize; 2553 } 2554 2555 vs->vs_ops[type]++; 2556 vs->vs_bytes[type] += psize; 2557 2558 mutex_exit(&vd->vdev_stat_lock); 2559 return; 2560 } 2561 2562 if (flags & ZIO_FLAG_SPECULATIVE) 2563 return; 2564 2565 /* 2566 * If this is an I/O error that is going to be retried, then ignore the 2567 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2568 * hard errors, when in reality they can happen for any number of 2569 * innocuous reasons (bus resets, MPxIO link failure, etc). 2570 */ 2571 if (zio->io_error == EIO && 2572 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2573 return; 2574 2575 /* 2576 * Intent logs writes won't propagate their error to the root 2577 * I/O so don't mark these types of failures as pool-level 2578 * errors. 2579 */ 2580 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2581 return; 2582 2583 mutex_enter(&vd->vdev_stat_lock); 2584 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2585 if (zio->io_error == ECKSUM) 2586 vs->vs_checksum_errors++; 2587 else 2588 vs->vs_read_errors++; 2589 } 2590 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2591 vs->vs_write_errors++; 2592 mutex_exit(&vd->vdev_stat_lock); 2593 2594 if (type == ZIO_TYPE_WRITE && txg != 0 && 2595 (!(flags & ZIO_FLAG_IO_REPAIR) || 2596 (flags & ZIO_FLAG_SCAN_THREAD) || 2597 spa->spa_claiming)) { 2598 /* 2599 * This is either a normal write (not a repair), or it's 2600 * a repair induced by the scrub thread, or it's a repair 2601 * made by zil_claim() during spa_load() in the first txg. 2602 * In the normal case, we commit the DTL change in the same 2603 * txg as the block was born. In the scrub-induced repair 2604 * case, we know that scrubs run in first-pass syncing context, 2605 * so we commit the DTL change in spa_syncing_txg(spa). 2606 * In the zil_claim() case, we commit in spa_first_txg(spa). 2607 * 2608 * We currently do not make DTL entries for failed spontaneous 2609 * self-healing writes triggered by normal (non-scrubbing) 2610 * reads, because we have no transactional context in which to 2611 * do so -- and it's not clear that it'd be desirable anyway. 2612 */ 2613 if (vd->vdev_ops->vdev_op_leaf) { 2614 uint64_t commit_txg = txg; 2615 if (flags & ZIO_FLAG_SCAN_THREAD) { 2616 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2617 ASSERT(spa_sync_pass(spa) == 1); 2618 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2619 commit_txg = spa_syncing_txg(spa); 2620 } else if (spa->spa_claiming) { 2621 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2622 commit_txg = spa_first_txg(spa); 2623 } 2624 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2625 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2626 return; 2627 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2628 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2629 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2630 } 2631 if (vd != rvd) 2632 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2633 } 2634 } 2635 2636 /* 2637 * Update the in-core space usage stats for this vdev, its metaslab class, 2638 * and the root vdev. 2639 */ 2640 void 2641 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2642 int64_t space_delta) 2643 { 2644 int64_t dspace_delta = space_delta; 2645 spa_t *spa = vd->vdev_spa; 2646 vdev_t *rvd = spa->spa_root_vdev; 2647 metaslab_group_t *mg = vd->vdev_mg; 2648 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2649 2650 ASSERT(vd == vd->vdev_top); 2651 2652 /* 2653 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2654 * factor. We must calculate this here and not at the root vdev 2655 * because the root vdev's psize-to-asize is simply the max of its 2656 * childrens', thus not accurate enough for us. 2657 */ 2658 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2659 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2660 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2661 vd->vdev_deflate_ratio; 2662 2663 mutex_enter(&vd->vdev_stat_lock); 2664 vd->vdev_stat.vs_alloc += alloc_delta; 2665 vd->vdev_stat.vs_space += space_delta; 2666 vd->vdev_stat.vs_dspace += dspace_delta; 2667 mutex_exit(&vd->vdev_stat_lock); 2668 2669 if (mc == spa_normal_class(spa)) { 2670 mutex_enter(&rvd->vdev_stat_lock); 2671 rvd->vdev_stat.vs_alloc += alloc_delta; 2672 rvd->vdev_stat.vs_space += space_delta; 2673 rvd->vdev_stat.vs_dspace += dspace_delta; 2674 mutex_exit(&rvd->vdev_stat_lock); 2675 } 2676 2677 if (mc != NULL) { 2678 ASSERT(rvd == vd->vdev_parent); 2679 ASSERT(vd->vdev_ms_count != 0); 2680 2681 metaslab_class_space_update(mc, 2682 alloc_delta, defer_delta, space_delta, dspace_delta); 2683 } 2684 } 2685 2686 /* 2687 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2688 * so that it will be written out next time the vdev configuration is synced. 2689 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2690 */ 2691 void 2692 vdev_config_dirty(vdev_t *vd) 2693 { 2694 spa_t *spa = vd->vdev_spa; 2695 vdev_t *rvd = spa->spa_root_vdev; 2696 int c; 2697 2698 /* 2699 * If this is an aux vdev (as with l2cache and spare devices), then we 2700 * update the vdev config manually and set the sync flag. 2701 */ 2702 if (vd->vdev_aux != NULL) { 2703 spa_aux_vdev_t *sav = vd->vdev_aux; 2704 nvlist_t **aux; 2705 uint_t naux; 2706 2707 for (c = 0; c < sav->sav_count; c++) { 2708 if (sav->sav_vdevs[c] == vd) 2709 break; 2710 } 2711 2712 if (c == sav->sav_count) { 2713 /* 2714 * We're being removed. There's nothing more to do. 2715 */ 2716 ASSERT(sav->sav_sync == B_TRUE); 2717 return; 2718 } 2719 2720 sav->sav_sync = B_TRUE; 2721 2722 if (nvlist_lookup_nvlist_array(sav->sav_config, 2723 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2724 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2725 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2726 } 2727 2728 ASSERT(c < naux); 2729 2730 /* 2731 * Setting the nvlist in the middle if the array is a little 2732 * sketchy, but it will work. 2733 */ 2734 nvlist_free(aux[c]); 2735 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2736 2737 return; 2738 } 2739 2740 /* 2741 * The dirty list is protected by the SCL_CONFIG lock. The caller 2742 * must either hold SCL_CONFIG as writer, or must be the sync thread 2743 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2744 * so this is sufficient to ensure mutual exclusion. 2745 */ 2746 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2747 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2748 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2749 2750 if (vd == rvd) { 2751 for (c = 0; c < rvd->vdev_children; c++) 2752 vdev_config_dirty(rvd->vdev_child[c]); 2753 } else { 2754 ASSERT(vd == vd->vdev_top); 2755 2756 if (!list_link_active(&vd->vdev_config_dirty_node) && 2757 !vd->vdev_ishole) 2758 list_insert_head(&spa->spa_config_dirty_list, vd); 2759 } 2760 } 2761 2762 void 2763 vdev_config_clean(vdev_t *vd) 2764 { 2765 spa_t *spa = vd->vdev_spa; 2766 2767 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2768 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2769 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2770 2771 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2772 list_remove(&spa->spa_config_dirty_list, vd); 2773 } 2774 2775 /* 2776 * Mark a top-level vdev's state as dirty, so that the next pass of 2777 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2778 * the state changes from larger config changes because they require 2779 * much less locking, and are often needed for administrative actions. 2780 */ 2781 void 2782 vdev_state_dirty(vdev_t *vd) 2783 { 2784 spa_t *spa = vd->vdev_spa; 2785 2786 ASSERT(vd == vd->vdev_top); 2787 2788 /* 2789 * The state list is protected by the SCL_STATE lock. The caller 2790 * must either hold SCL_STATE as writer, or must be the sync thread 2791 * (which holds SCL_STATE as reader). There's only one sync thread, 2792 * so this is sufficient to ensure mutual exclusion. 2793 */ 2794 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2795 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2796 spa_config_held(spa, SCL_STATE, RW_READER))); 2797 2798 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2799 list_insert_head(&spa->spa_state_dirty_list, vd); 2800 } 2801 2802 void 2803 vdev_state_clean(vdev_t *vd) 2804 { 2805 spa_t *spa = vd->vdev_spa; 2806 2807 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2808 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2809 spa_config_held(spa, SCL_STATE, RW_READER))); 2810 2811 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2812 list_remove(&spa->spa_state_dirty_list, vd); 2813 } 2814 2815 /* 2816 * Propagate vdev state up from children to parent. 2817 */ 2818 void 2819 vdev_propagate_state(vdev_t *vd) 2820 { 2821 spa_t *spa = vd->vdev_spa; 2822 vdev_t *rvd = spa->spa_root_vdev; 2823 int degraded = 0, faulted = 0; 2824 int corrupted = 0; 2825 vdev_t *child; 2826 2827 if (vd->vdev_children > 0) { 2828 for (int c = 0; c < vd->vdev_children; c++) { 2829 child = vd->vdev_child[c]; 2830 2831 /* 2832 * Don't factor holes into the decision. 2833 */ 2834 if (child->vdev_ishole) 2835 continue; 2836 2837 if (!vdev_readable(child) || 2838 (!vdev_writeable(child) && spa_writeable(spa))) { 2839 /* 2840 * Root special: if there is a top-level log 2841 * device, treat the root vdev as if it were 2842 * degraded. 2843 */ 2844 if (child->vdev_islog && vd == rvd) 2845 degraded++; 2846 else 2847 faulted++; 2848 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2849 degraded++; 2850 } 2851 2852 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2853 corrupted++; 2854 } 2855 2856 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2857 2858 /* 2859 * Root special: if there is a top-level vdev that cannot be 2860 * opened due to corrupted metadata, then propagate the root 2861 * vdev's aux state as 'corrupt' rather than 'insufficient 2862 * replicas'. 2863 */ 2864 if (corrupted && vd == rvd && 2865 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2866 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2867 VDEV_AUX_CORRUPT_DATA); 2868 } 2869 2870 if (vd->vdev_parent) 2871 vdev_propagate_state(vd->vdev_parent); 2872 } 2873 2874 /* 2875 * Set a vdev's state. If this is during an open, we don't update the parent 2876 * state, because we're in the process of opening children depth-first. 2877 * Otherwise, we propagate the change to the parent. 2878 * 2879 * If this routine places a device in a faulted state, an appropriate ereport is 2880 * generated. 2881 */ 2882 void 2883 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2884 { 2885 uint64_t save_state; 2886 spa_t *spa = vd->vdev_spa; 2887 2888 if (state == vd->vdev_state) { 2889 vd->vdev_stat.vs_aux = aux; 2890 return; 2891 } 2892 2893 save_state = vd->vdev_state; 2894 2895 vd->vdev_state = state; 2896 vd->vdev_stat.vs_aux = aux; 2897 2898 /* 2899 * If we are setting the vdev state to anything but an open state, then 2900 * always close the underlying device unless the device has requested 2901 * a delayed close (i.e. we're about to remove or fault the device). 2902 * Otherwise, we keep accessible but invalid devices open forever. 2903 * We don't call vdev_close() itself, because that implies some extra 2904 * checks (offline, etc) that we don't want here. This is limited to 2905 * leaf devices, because otherwise closing the device will affect other 2906 * children. 2907 */ 2908 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 2909 vd->vdev_ops->vdev_op_leaf) 2910 vd->vdev_ops->vdev_op_close(vd); 2911 2912 /* 2913 * If we have brought this vdev back into service, we need 2914 * to notify fmd so that it can gracefully repair any outstanding 2915 * cases due to a missing device. We do this in all cases, even those 2916 * that probably don't correlate to a repaired fault. This is sure to 2917 * catch all cases, and we let the zfs-retire agent sort it out. If 2918 * this is a transient state it's OK, as the retire agent will 2919 * double-check the state of the vdev before repairing it. 2920 */ 2921 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 2922 vd->vdev_prevstate != state) 2923 zfs_post_state_change(spa, vd); 2924 2925 if (vd->vdev_removed && 2926 state == VDEV_STATE_CANT_OPEN && 2927 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2928 /* 2929 * If the previous state is set to VDEV_STATE_REMOVED, then this 2930 * device was previously marked removed and someone attempted to 2931 * reopen it. If this failed due to a nonexistent device, then 2932 * keep the device in the REMOVED state. We also let this be if 2933 * it is one of our special test online cases, which is only 2934 * attempting to online the device and shouldn't generate an FMA 2935 * fault. 2936 */ 2937 vd->vdev_state = VDEV_STATE_REMOVED; 2938 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2939 } else if (state == VDEV_STATE_REMOVED) { 2940 vd->vdev_removed = B_TRUE; 2941 } else if (state == VDEV_STATE_CANT_OPEN) { 2942 /* 2943 * If we fail to open a vdev during an import, we mark it as 2944 * "not available", which signifies that it was never there to 2945 * begin with. Failure to open such a device is not considered 2946 * an error. 2947 */ 2948 if (spa_load_state(spa) == SPA_LOAD_IMPORT && 2949 vd->vdev_ops->vdev_op_leaf) 2950 vd->vdev_not_present = 1; 2951 2952 /* 2953 * Post the appropriate ereport. If the 'prevstate' field is 2954 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2955 * that this is part of a vdev_reopen(). In this case, we don't 2956 * want to post the ereport if the device was already in the 2957 * CANT_OPEN state beforehand. 2958 * 2959 * If the 'checkremove' flag is set, then this is an attempt to 2960 * online the device in response to an insertion event. If we 2961 * hit this case, then we have detected an insertion event for a 2962 * faulted or offline device that wasn't in the removed state. 2963 * In this scenario, we don't post an ereport because we are 2964 * about to replace the device, or attempt an online with 2965 * vdev_forcefault, which will generate the fault for us. 2966 */ 2967 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2968 !vd->vdev_not_present && !vd->vdev_checkremove && 2969 vd != spa->spa_root_vdev) { 2970 const char *class; 2971 2972 switch (aux) { 2973 case VDEV_AUX_OPEN_FAILED: 2974 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2975 break; 2976 case VDEV_AUX_CORRUPT_DATA: 2977 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2978 break; 2979 case VDEV_AUX_NO_REPLICAS: 2980 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2981 break; 2982 case VDEV_AUX_BAD_GUID_SUM: 2983 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2984 break; 2985 case VDEV_AUX_TOO_SMALL: 2986 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2987 break; 2988 case VDEV_AUX_BAD_LABEL: 2989 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2990 break; 2991 default: 2992 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2993 } 2994 2995 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 2996 } 2997 2998 /* Erase any notion of persistent removed state */ 2999 vd->vdev_removed = B_FALSE; 3000 } else { 3001 vd->vdev_removed = B_FALSE; 3002 } 3003 3004 if (!isopen && vd->vdev_parent) 3005 vdev_propagate_state(vd->vdev_parent); 3006 } 3007 3008 /* 3009 * Check the vdev configuration to ensure that it's capable of supporting 3010 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3011 * In addition, only a single top-level vdev is allowed and none of the leaves 3012 * can be wholedisks. 3013 */ 3014 boolean_t 3015 vdev_is_bootable(vdev_t *vd) 3016 { 3017 if (!vd->vdev_ops->vdev_op_leaf) { 3018 char *vdev_type = vd->vdev_ops->vdev_op_type; 3019 3020 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3021 vd->vdev_children > 1) { 3022 return (B_FALSE); 3023 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3024 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3025 return (B_FALSE); 3026 } 3027 } else if (vd->vdev_wholedisk == 1) { 3028 return (B_FALSE); 3029 } 3030 3031 for (int c = 0; c < vd->vdev_children; c++) { 3032 if (!vdev_is_bootable(vd->vdev_child[c])) 3033 return (B_FALSE); 3034 } 3035 return (B_TRUE); 3036 } 3037 3038 /* 3039 * Load the state from the original vdev tree (ovd) which 3040 * we've retrieved from the MOS config object. If the original 3041 * vdev was offline or faulted then we transfer that state to the 3042 * device in the current vdev tree (nvd). 3043 */ 3044 void 3045 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3046 { 3047 spa_t *spa = nvd->vdev_spa; 3048 3049 ASSERT(nvd->vdev_top->vdev_islog); 3050 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3051 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3052 3053 for (int c = 0; c < nvd->vdev_children; c++) 3054 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3055 3056 if (nvd->vdev_ops->vdev_op_leaf) { 3057 /* 3058 * Restore the persistent vdev state 3059 */ 3060 nvd->vdev_offline = ovd->vdev_offline; 3061 nvd->vdev_faulted = ovd->vdev_faulted; 3062 nvd->vdev_degraded = ovd->vdev_degraded; 3063 nvd->vdev_removed = ovd->vdev_removed; 3064 } 3065 } 3066 3067 /* 3068 * Determine if a log device has valid content. If the vdev was 3069 * removed or faulted in the MOS config then we know that 3070 * the content on the log device has already been written to the pool. 3071 */ 3072 boolean_t 3073 vdev_log_state_valid(vdev_t *vd) 3074 { 3075 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3076 !vd->vdev_removed) 3077 return (B_TRUE); 3078 3079 for (int c = 0; c < vd->vdev_children; c++) 3080 if (vdev_log_state_valid(vd->vdev_child[c])) 3081 return (B_TRUE); 3082 3083 return (B_FALSE); 3084 } 3085 3086 /* 3087 * Expand a vdev if possible. 3088 */ 3089 void 3090 vdev_expand(vdev_t *vd, uint64_t txg) 3091 { 3092 ASSERT(vd->vdev_top == vd); 3093 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3094 3095 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3096 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3097 vdev_config_dirty(vd); 3098 } 3099 } 3100 3101 /* 3102 * Split a vdev. 3103 */ 3104 void 3105 vdev_split(vdev_t *vd) 3106 { 3107 vdev_t *cvd, *pvd = vd->vdev_parent; 3108 3109 vdev_remove_child(pvd, vd); 3110 vdev_compact_children(pvd); 3111 3112 cvd = pvd->vdev_child[0]; 3113 if (pvd->vdev_children == 1) { 3114 vdev_remove_parent(cvd); 3115 cvd->vdev_splitting = B_TRUE; 3116 } 3117 vdev_propagate_state(cvd); 3118 } 3119