1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/uberblock_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/space_map.h> 38 #include <sys/zio.h> 39 #include <sys/zap.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/arc.h> 42 #include <sys/zil.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 NULL 58 }; 59 60 /* maximum scrub/resilver I/O queue per leaf vdev */ 61 int zfs_scrub_limit = 10; 62 63 /* 64 * Given a vdev type, return the appropriate ops vector. 65 */ 66 static vdev_ops_t * 67 vdev_getops(const char *type) 68 { 69 vdev_ops_t *ops, **opspp; 70 71 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 72 if (strcmp(ops->vdev_op_type, type) == 0) 73 break; 74 75 return (ops); 76 } 77 78 /* 79 * Default asize function: return the MAX of psize with the asize of 80 * all children. This is what's used by anything other than RAID-Z. 81 */ 82 uint64_t 83 vdev_default_asize(vdev_t *vd, uint64_t psize) 84 { 85 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 86 uint64_t csize; 87 88 for (int c = 0; c < vd->vdev_children; c++) { 89 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 90 asize = MAX(asize, csize); 91 } 92 93 return (asize); 94 } 95 96 /* 97 * Get the minimum allocatable size. We define the allocatable size as 98 * the vdev's asize rounded to the nearest metaslab. This allows us to 99 * replace or attach devices which don't have the same physical size but 100 * can still satisfy the same number of allocations. 101 */ 102 uint64_t 103 vdev_get_min_asize(vdev_t *vd) 104 { 105 vdev_t *pvd = vd->vdev_parent; 106 107 /* 108 * The our parent is NULL (inactive spare or cache) or is the root, 109 * just return our own asize. 110 */ 111 if (pvd == NULL) 112 return (vd->vdev_asize); 113 114 /* 115 * The top-level vdev just returns the allocatable size rounded 116 * to the nearest metaslab. 117 */ 118 if (vd == vd->vdev_top) 119 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 120 121 /* 122 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 123 * so each child must provide at least 1/Nth of its asize. 124 */ 125 if (pvd->vdev_ops == &vdev_raidz_ops) 126 return (pvd->vdev_min_asize / pvd->vdev_children); 127 128 return (pvd->vdev_min_asize); 129 } 130 131 void 132 vdev_set_min_asize(vdev_t *vd) 133 { 134 vd->vdev_min_asize = vdev_get_min_asize(vd); 135 136 for (int c = 0; c < vd->vdev_children; c++) 137 vdev_set_min_asize(vd->vdev_child[c]); 138 } 139 140 vdev_t * 141 vdev_lookup_top(spa_t *spa, uint64_t vdev) 142 { 143 vdev_t *rvd = spa->spa_root_vdev; 144 145 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 146 147 if (vdev < rvd->vdev_children) { 148 ASSERT(rvd->vdev_child[vdev] != NULL); 149 return (rvd->vdev_child[vdev]); 150 } 151 152 return (NULL); 153 } 154 155 vdev_t * 156 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 157 { 158 vdev_t *mvd; 159 160 if (vd->vdev_guid == guid) 161 return (vd); 162 163 for (int c = 0; c < vd->vdev_children; c++) 164 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 165 NULL) 166 return (mvd); 167 168 return (NULL); 169 } 170 171 void 172 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 173 { 174 size_t oldsize, newsize; 175 uint64_t id = cvd->vdev_id; 176 vdev_t **newchild; 177 178 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 179 ASSERT(cvd->vdev_parent == NULL); 180 181 cvd->vdev_parent = pvd; 182 183 if (pvd == NULL) 184 return; 185 186 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 187 188 oldsize = pvd->vdev_children * sizeof (vdev_t *); 189 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 190 newsize = pvd->vdev_children * sizeof (vdev_t *); 191 192 newchild = kmem_zalloc(newsize, KM_SLEEP); 193 if (pvd->vdev_child != NULL) { 194 bcopy(pvd->vdev_child, newchild, oldsize); 195 kmem_free(pvd->vdev_child, oldsize); 196 } 197 198 pvd->vdev_child = newchild; 199 pvd->vdev_child[id] = cvd; 200 201 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 202 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 203 204 /* 205 * Walk up all ancestors to update guid sum. 206 */ 207 for (; pvd != NULL; pvd = pvd->vdev_parent) 208 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 209 210 if (cvd->vdev_ops->vdev_op_leaf) 211 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 212 } 213 214 void 215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 216 { 217 int c; 218 uint_t id = cvd->vdev_id; 219 220 ASSERT(cvd->vdev_parent == pvd); 221 222 if (pvd == NULL) 223 return; 224 225 ASSERT(id < pvd->vdev_children); 226 ASSERT(pvd->vdev_child[id] == cvd); 227 228 pvd->vdev_child[id] = NULL; 229 cvd->vdev_parent = NULL; 230 231 for (c = 0; c < pvd->vdev_children; c++) 232 if (pvd->vdev_child[c]) 233 break; 234 235 if (c == pvd->vdev_children) { 236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 237 pvd->vdev_child = NULL; 238 pvd->vdev_children = 0; 239 } 240 241 /* 242 * Walk up all ancestors to update guid sum. 243 */ 244 for (; pvd != NULL; pvd = pvd->vdev_parent) 245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 246 247 if (cvd->vdev_ops->vdev_op_leaf) 248 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 249 } 250 251 /* 252 * Remove any holes in the child array. 253 */ 254 void 255 vdev_compact_children(vdev_t *pvd) 256 { 257 vdev_t **newchild, *cvd; 258 int oldc = pvd->vdev_children; 259 int newc; 260 261 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 262 263 for (int c = newc = 0; c < oldc; c++) 264 if (pvd->vdev_child[c]) 265 newc++; 266 267 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 268 269 for (int c = newc = 0; c < oldc; c++) { 270 if ((cvd = pvd->vdev_child[c]) != NULL) { 271 newchild[newc] = cvd; 272 cvd->vdev_id = newc++; 273 } 274 } 275 276 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 277 pvd->vdev_child = newchild; 278 pvd->vdev_children = newc; 279 } 280 281 /* 282 * Allocate and minimally initialize a vdev_t. 283 */ 284 static vdev_t * 285 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 286 { 287 vdev_t *vd; 288 289 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 290 291 if (spa->spa_root_vdev == NULL) { 292 ASSERT(ops == &vdev_root_ops); 293 spa->spa_root_vdev = vd; 294 } 295 296 if (guid == 0) { 297 if (spa->spa_root_vdev == vd) { 298 /* 299 * The root vdev's guid will also be the pool guid, 300 * which must be unique among all pools. 301 */ 302 while (guid == 0 || spa_guid_exists(guid, 0)) 303 guid = spa_get_random(-1ULL); 304 } else { 305 /* 306 * Any other vdev's guid must be unique within the pool. 307 */ 308 while (guid == 0 || 309 spa_guid_exists(spa_guid(spa), guid)) 310 guid = spa_get_random(-1ULL); 311 } 312 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 313 } 314 315 vd->vdev_spa = spa; 316 vd->vdev_id = id; 317 vd->vdev_guid = guid; 318 vd->vdev_guid_sum = guid; 319 vd->vdev_ops = ops; 320 vd->vdev_state = VDEV_STATE_CLOSED; 321 322 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 323 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 324 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 325 for (int t = 0; t < DTL_TYPES; t++) { 326 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 327 &vd->vdev_dtl_lock); 328 } 329 txg_list_create(&vd->vdev_ms_list, 330 offsetof(struct metaslab, ms_txg_node)); 331 txg_list_create(&vd->vdev_dtl_list, 332 offsetof(struct vdev, vdev_dtl_node)); 333 vd->vdev_stat.vs_timestamp = gethrtime(); 334 vdev_queue_init(vd); 335 vdev_cache_init(vd); 336 337 return (vd); 338 } 339 340 /* 341 * Allocate a new vdev. The 'alloctype' is used to control whether we are 342 * creating a new vdev or loading an existing one - the behavior is slightly 343 * different for each case. 344 */ 345 int 346 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 347 int alloctype) 348 { 349 vdev_ops_t *ops; 350 char *type; 351 uint64_t guid = 0, islog, nparity; 352 vdev_t *vd; 353 354 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 355 356 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 357 return (EINVAL); 358 359 if ((ops = vdev_getops(type)) == NULL) 360 return (EINVAL); 361 362 /* 363 * If this is a load, get the vdev guid from the nvlist. 364 * Otherwise, vdev_alloc_common() will generate one for us. 365 */ 366 if (alloctype == VDEV_ALLOC_LOAD) { 367 uint64_t label_id; 368 369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 370 label_id != id) 371 return (EINVAL); 372 373 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 374 return (EINVAL); 375 } else if (alloctype == VDEV_ALLOC_SPARE) { 376 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 377 return (EINVAL); 378 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 379 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 380 return (EINVAL); 381 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 382 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 383 return (EINVAL); 384 } 385 386 /* 387 * The first allocated vdev must be of type 'root'. 388 */ 389 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 390 return (EINVAL); 391 392 /* 393 * Determine whether we're a log vdev. 394 */ 395 islog = 0; 396 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 397 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 398 return (ENOTSUP); 399 400 /* 401 * Set the nparity property for RAID-Z vdevs. 402 */ 403 nparity = -1ULL; 404 if (ops == &vdev_raidz_ops) { 405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 406 &nparity) == 0) { 407 /* 408 * Currently, we can only support 2 parity devices. 409 */ 410 if (nparity == 0 || nparity > 2) 411 return (EINVAL); 412 /* 413 * Older versions can only support 1 parity device. 414 */ 415 if (nparity == 2 && 416 spa_version(spa) < SPA_VERSION_RAID6) 417 return (ENOTSUP); 418 } else { 419 /* 420 * We require the parity to be specified for SPAs that 421 * support multiple parity levels. 422 */ 423 if (spa_version(spa) >= SPA_VERSION_RAID6) 424 return (EINVAL); 425 /* 426 * Otherwise, we default to 1 parity device for RAID-Z. 427 */ 428 nparity = 1; 429 } 430 } else { 431 nparity = 0; 432 } 433 ASSERT(nparity != -1ULL); 434 435 vd = vdev_alloc_common(spa, id, guid, ops); 436 437 vd->vdev_islog = islog; 438 vd->vdev_nparity = nparity; 439 440 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 441 vd->vdev_path = spa_strdup(vd->vdev_path); 442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 443 vd->vdev_devid = spa_strdup(vd->vdev_devid); 444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 445 &vd->vdev_physpath) == 0) 446 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 448 vd->vdev_fru = spa_strdup(vd->vdev_fru); 449 450 /* 451 * Set the whole_disk property. If it's not specified, leave the value 452 * as -1. 453 */ 454 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 455 &vd->vdev_wholedisk) != 0) 456 vd->vdev_wholedisk = -1ULL; 457 458 /* 459 * Look for the 'not present' flag. This will only be set if the device 460 * was not present at the time of import. 461 */ 462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 463 &vd->vdev_not_present); 464 465 /* 466 * Get the alignment requirement. 467 */ 468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 469 470 /* 471 * If we're a top-level vdev, try to load the allocation parameters. 472 */ 473 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 474 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 475 &vd->vdev_ms_array); 476 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 477 &vd->vdev_ms_shift); 478 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 479 &vd->vdev_asize); 480 } 481 482 /* 483 * If we're a leaf vdev, try to load the DTL object and other state. 484 */ 485 if (vd->vdev_ops->vdev_op_leaf && 486 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 487 alloctype == VDEV_ALLOC_ROOTPOOL)) { 488 if (alloctype == VDEV_ALLOC_LOAD) { 489 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 490 &vd->vdev_dtl_smo.smo_object); 491 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 492 &vd->vdev_unspare); 493 } 494 495 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 496 uint64_t spare = 0; 497 498 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 499 &spare) == 0 && spare) 500 spa_spare_add(vd); 501 } 502 503 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 504 &vd->vdev_offline); 505 506 /* 507 * When importing a pool, we want to ignore the persistent fault 508 * state, as the diagnosis made on another system may not be 509 * valid in the current context. 510 */ 511 if (spa->spa_load_state == SPA_LOAD_OPEN) { 512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 513 &vd->vdev_faulted); 514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 515 &vd->vdev_degraded); 516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 517 &vd->vdev_removed); 518 } 519 } 520 521 /* 522 * Add ourselves to the parent's list of children. 523 */ 524 vdev_add_child(parent, vd); 525 526 *vdp = vd; 527 528 return (0); 529 } 530 531 void 532 vdev_free(vdev_t *vd) 533 { 534 spa_t *spa = vd->vdev_spa; 535 536 /* 537 * vdev_free() implies closing the vdev first. This is simpler than 538 * trying to ensure complicated semantics for all callers. 539 */ 540 vdev_close(vd); 541 542 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 543 544 /* 545 * Free all children. 546 */ 547 for (int c = 0; c < vd->vdev_children; c++) 548 vdev_free(vd->vdev_child[c]); 549 550 ASSERT(vd->vdev_child == NULL); 551 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 552 553 /* 554 * Discard allocation state. 555 */ 556 if (vd == vd->vdev_top) 557 vdev_metaslab_fini(vd); 558 559 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 560 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 561 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 562 563 /* 564 * Remove this vdev from its parent's child list. 565 */ 566 vdev_remove_child(vd->vdev_parent, vd); 567 568 ASSERT(vd->vdev_parent == NULL); 569 570 /* 571 * Clean up vdev structure. 572 */ 573 vdev_queue_fini(vd); 574 vdev_cache_fini(vd); 575 576 if (vd->vdev_path) 577 spa_strfree(vd->vdev_path); 578 if (vd->vdev_devid) 579 spa_strfree(vd->vdev_devid); 580 if (vd->vdev_physpath) 581 spa_strfree(vd->vdev_physpath); 582 if (vd->vdev_fru) 583 spa_strfree(vd->vdev_fru); 584 585 if (vd->vdev_isspare) 586 spa_spare_remove(vd); 587 if (vd->vdev_isl2cache) 588 spa_l2cache_remove(vd); 589 590 txg_list_destroy(&vd->vdev_ms_list); 591 txg_list_destroy(&vd->vdev_dtl_list); 592 593 mutex_enter(&vd->vdev_dtl_lock); 594 for (int t = 0; t < DTL_TYPES; t++) { 595 space_map_unload(&vd->vdev_dtl[t]); 596 space_map_destroy(&vd->vdev_dtl[t]); 597 } 598 mutex_exit(&vd->vdev_dtl_lock); 599 600 mutex_destroy(&vd->vdev_dtl_lock); 601 mutex_destroy(&vd->vdev_stat_lock); 602 mutex_destroy(&vd->vdev_probe_lock); 603 604 if (vd == spa->spa_root_vdev) 605 spa->spa_root_vdev = NULL; 606 607 kmem_free(vd, sizeof (vdev_t)); 608 } 609 610 /* 611 * Transfer top-level vdev state from svd to tvd. 612 */ 613 static void 614 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 615 { 616 spa_t *spa = svd->vdev_spa; 617 metaslab_t *msp; 618 vdev_t *vd; 619 int t; 620 621 ASSERT(tvd == tvd->vdev_top); 622 623 tvd->vdev_ms_array = svd->vdev_ms_array; 624 tvd->vdev_ms_shift = svd->vdev_ms_shift; 625 tvd->vdev_ms_count = svd->vdev_ms_count; 626 627 svd->vdev_ms_array = 0; 628 svd->vdev_ms_shift = 0; 629 svd->vdev_ms_count = 0; 630 631 tvd->vdev_mg = svd->vdev_mg; 632 tvd->vdev_ms = svd->vdev_ms; 633 634 svd->vdev_mg = NULL; 635 svd->vdev_ms = NULL; 636 637 if (tvd->vdev_mg != NULL) 638 tvd->vdev_mg->mg_vd = tvd; 639 640 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 641 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 642 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 643 644 svd->vdev_stat.vs_alloc = 0; 645 svd->vdev_stat.vs_space = 0; 646 svd->vdev_stat.vs_dspace = 0; 647 648 for (t = 0; t < TXG_SIZE; t++) { 649 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 650 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 651 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 652 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 653 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 654 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 655 } 656 657 if (list_link_active(&svd->vdev_config_dirty_node)) { 658 vdev_config_clean(svd); 659 vdev_config_dirty(tvd); 660 } 661 662 if (list_link_active(&svd->vdev_state_dirty_node)) { 663 vdev_state_clean(svd); 664 vdev_state_dirty(tvd); 665 } 666 667 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 668 svd->vdev_deflate_ratio = 0; 669 670 tvd->vdev_islog = svd->vdev_islog; 671 svd->vdev_islog = 0; 672 } 673 674 static void 675 vdev_top_update(vdev_t *tvd, vdev_t *vd) 676 { 677 if (vd == NULL) 678 return; 679 680 vd->vdev_top = tvd; 681 682 for (int c = 0; c < vd->vdev_children; c++) 683 vdev_top_update(tvd, vd->vdev_child[c]); 684 } 685 686 /* 687 * Add a mirror/replacing vdev above an existing vdev. 688 */ 689 vdev_t * 690 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 691 { 692 spa_t *spa = cvd->vdev_spa; 693 vdev_t *pvd = cvd->vdev_parent; 694 vdev_t *mvd; 695 696 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 697 698 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 699 700 mvd->vdev_asize = cvd->vdev_asize; 701 mvd->vdev_min_asize = cvd->vdev_min_asize; 702 mvd->vdev_ashift = cvd->vdev_ashift; 703 mvd->vdev_state = cvd->vdev_state; 704 705 vdev_remove_child(pvd, cvd); 706 vdev_add_child(pvd, mvd); 707 cvd->vdev_id = mvd->vdev_children; 708 vdev_add_child(mvd, cvd); 709 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 710 711 if (mvd == mvd->vdev_top) 712 vdev_top_transfer(cvd, mvd); 713 714 return (mvd); 715 } 716 717 /* 718 * Remove a 1-way mirror/replacing vdev from the tree. 719 */ 720 void 721 vdev_remove_parent(vdev_t *cvd) 722 { 723 vdev_t *mvd = cvd->vdev_parent; 724 vdev_t *pvd = mvd->vdev_parent; 725 726 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 727 728 ASSERT(mvd->vdev_children == 1); 729 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 730 mvd->vdev_ops == &vdev_replacing_ops || 731 mvd->vdev_ops == &vdev_spare_ops); 732 cvd->vdev_ashift = mvd->vdev_ashift; 733 734 vdev_remove_child(mvd, cvd); 735 vdev_remove_child(pvd, mvd); 736 737 /* 738 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 739 * Otherwise, we could have detached an offline device, and when we 740 * go to import the pool we'll think we have two top-level vdevs, 741 * instead of a different version of the same top-level vdev. 742 */ 743 if (mvd->vdev_top == mvd) { 744 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 745 cvd->vdev_guid += guid_delta; 746 cvd->vdev_guid_sum += guid_delta; 747 } 748 cvd->vdev_id = mvd->vdev_id; 749 vdev_add_child(pvd, cvd); 750 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 751 752 if (cvd == cvd->vdev_top) 753 vdev_top_transfer(mvd, cvd); 754 755 ASSERT(mvd->vdev_children == 0); 756 vdev_free(mvd); 757 } 758 759 int 760 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 761 { 762 spa_t *spa = vd->vdev_spa; 763 objset_t *mos = spa->spa_meta_objset; 764 metaslab_class_t *mc; 765 uint64_t m; 766 uint64_t oldc = vd->vdev_ms_count; 767 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 768 metaslab_t **mspp; 769 int error; 770 771 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 772 return (0); 773 774 /* 775 * Compute the raidz-deflation ratio. Note, we hard-code 776 * in 128k (1 << 17) because it is the current "typical" blocksize. 777 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 778 * or we will inconsistently account for existing bp's. 779 */ 780 vd->vdev_deflate_ratio = (1 << 17) / 781 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 782 783 ASSERT(oldc <= newc); 784 785 if (vd->vdev_islog) 786 mc = spa->spa_log_class; 787 else 788 mc = spa->spa_normal_class; 789 790 if (vd->vdev_mg == NULL) 791 vd->vdev_mg = metaslab_group_create(mc, vd); 792 793 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 794 795 if (oldc != 0) { 796 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 797 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 798 } 799 800 vd->vdev_ms = mspp; 801 vd->vdev_ms_count = newc; 802 803 for (m = oldc; m < newc; m++) { 804 space_map_obj_t smo = { 0, 0, 0 }; 805 if (txg == 0) { 806 uint64_t object = 0; 807 error = dmu_read(mos, vd->vdev_ms_array, 808 m * sizeof (uint64_t), sizeof (uint64_t), &object, 809 DMU_READ_PREFETCH); 810 if (error) 811 return (error); 812 if (object != 0) { 813 dmu_buf_t *db; 814 error = dmu_bonus_hold(mos, object, FTAG, &db); 815 if (error) 816 return (error); 817 ASSERT3U(db->db_size, >=, sizeof (smo)); 818 bcopy(db->db_data, &smo, sizeof (smo)); 819 ASSERT3U(smo.smo_object, ==, object); 820 dmu_buf_rele(db, FTAG); 821 } 822 } 823 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 824 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 825 } 826 827 return (0); 828 } 829 830 void 831 vdev_metaslab_fini(vdev_t *vd) 832 { 833 uint64_t m; 834 uint64_t count = vd->vdev_ms_count; 835 836 if (vd->vdev_ms != NULL) { 837 for (m = 0; m < count; m++) 838 if (vd->vdev_ms[m] != NULL) 839 metaslab_fini(vd->vdev_ms[m]); 840 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 841 vd->vdev_ms = NULL; 842 } 843 } 844 845 typedef struct vdev_probe_stats { 846 boolean_t vps_readable; 847 boolean_t vps_writeable; 848 int vps_flags; 849 } vdev_probe_stats_t; 850 851 static void 852 vdev_probe_done(zio_t *zio) 853 { 854 spa_t *spa = zio->io_spa; 855 vdev_t *vd = zio->io_vd; 856 vdev_probe_stats_t *vps = zio->io_private; 857 858 ASSERT(vd->vdev_probe_zio != NULL); 859 860 if (zio->io_type == ZIO_TYPE_READ) { 861 if (zio->io_error == 0) 862 vps->vps_readable = 1; 863 if (zio->io_error == 0 && spa_writeable(spa)) { 864 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 865 zio->io_offset, zio->io_size, zio->io_data, 866 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 867 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 868 } else { 869 zio_buf_free(zio->io_data, zio->io_size); 870 } 871 } else if (zio->io_type == ZIO_TYPE_WRITE) { 872 if (zio->io_error == 0) 873 vps->vps_writeable = 1; 874 zio_buf_free(zio->io_data, zio->io_size); 875 } else if (zio->io_type == ZIO_TYPE_NULL) { 876 zio_t *pio; 877 878 vd->vdev_cant_read |= !vps->vps_readable; 879 vd->vdev_cant_write |= !vps->vps_writeable; 880 881 if (vdev_readable(vd) && 882 (vdev_writeable(vd) || !spa_writeable(spa))) { 883 zio->io_error = 0; 884 } else { 885 ASSERT(zio->io_error != 0); 886 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 887 spa, vd, NULL, 0, 0); 888 zio->io_error = ENXIO; 889 } 890 891 mutex_enter(&vd->vdev_probe_lock); 892 ASSERT(vd->vdev_probe_zio == zio); 893 vd->vdev_probe_zio = NULL; 894 mutex_exit(&vd->vdev_probe_lock); 895 896 while ((pio = zio_walk_parents(zio)) != NULL) 897 if (!vdev_accessible(vd, pio)) 898 pio->io_error = ENXIO; 899 900 kmem_free(vps, sizeof (*vps)); 901 } 902 } 903 904 /* 905 * Determine whether this device is accessible by reading and writing 906 * to several known locations: the pad regions of each vdev label 907 * but the first (which we leave alone in case it contains a VTOC). 908 */ 909 zio_t * 910 vdev_probe(vdev_t *vd, zio_t *zio) 911 { 912 spa_t *spa = vd->vdev_spa; 913 vdev_probe_stats_t *vps = NULL; 914 zio_t *pio; 915 916 ASSERT(vd->vdev_ops->vdev_op_leaf); 917 918 /* 919 * Don't probe the probe. 920 */ 921 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 922 return (NULL); 923 924 /* 925 * To prevent 'probe storms' when a device fails, we create 926 * just one probe i/o at a time. All zios that want to probe 927 * this vdev will become parents of the probe io. 928 */ 929 mutex_enter(&vd->vdev_probe_lock); 930 931 if ((pio = vd->vdev_probe_zio) == NULL) { 932 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 933 934 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 935 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 936 ZIO_FLAG_TRYHARD; 937 938 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 939 /* 940 * vdev_cant_read and vdev_cant_write can only 941 * transition from TRUE to FALSE when we have the 942 * SCL_ZIO lock as writer; otherwise they can only 943 * transition from FALSE to TRUE. This ensures that 944 * any zio looking at these values can assume that 945 * failures persist for the life of the I/O. That's 946 * important because when a device has intermittent 947 * connectivity problems, we want to ensure that 948 * they're ascribed to the device (ENXIO) and not 949 * the zio (EIO). 950 * 951 * Since we hold SCL_ZIO as writer here, clear both 952 * values so the probe can reevaluate from first 953 * principles. 954 */ 955 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 956 vd->vdev_cant_read = B_FALSE; 957 vd->vdev_cant_write = B_FALSE; 958 } 959 960 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 961 vdev_probe_done, vps, 962 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 963 964 if (zio != NULL) { 965 vd->vdev_probe_wanted = B_TRUE; 966 spa_async_request(spa, SPA_ASYNC_PROBE); 967 } 968 } 969 970 if (zio != NULL) 971 zio_add_child(zio, pio); 972 973 mutex_exit(&vd->vdev_probe_lock); 974 975 if (vps == NULL) { 976 ASSERT(zio != NULL); 977 return (NULL); 978 } 979 980 for (int l = 1; l < VDEV_LABELS; l++) { 981 zio_nowait(zio_read_phys(pio, vd, 982 vdev_label_offset(vd->vdev_psize, l, 983 offsetof(vdev_label_t, vl_pad2)), 984 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 985 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 986 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 987 } 988 989 if (zio == NULL) 990 return (pio); 991 992 zio_nowait(pio); 993 return (NULL); 994 } 995 996 static void 997 vdev_open_child(void *arg) 998 { 999 vdev_t *vd = arg; 1000 1001 vd->vdev_open_thread = curthread; 1002 vd->vdev_open_error = vdev_open(vd); 1003 vd->vdev_open_thread = NULL; 1004 } 1005 1006 void 1007 vdev_open_children(vdev_t *vd) 1008 { 1009 taskq_t *tq; 1010 int children = vd->vdev_children; 1011 1012 tq = taskq_create("vdev_open", children, minclsyspri, 1013 children, children, TASKQ_PREPOPULATE); 1014 1015 for (int c = 0; c < children; c++) 1016 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1017 TQ_SLEEP) != NULL); 1018 1019 taskq_destroy(tq); 1020 } 1021 1022 /* 1023 * Prepare a virtual device for access. 1024 */ 1025 int 1026 vdev_open(vdev_t *vd) 1027 { 1028 spa_t *spa = vd->vdev_spa; 1029 int error; 1030 uint64_t osize = 0; 1031 uint64_t asize, psize; 1032 uint64_t ashift = 0; 1033 1034 ASSERT(vd->vdev_open_thread == curthread || 1035 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1036 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1037 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1038 vd->vdev_state == VDEV_STATE_OFFLINE); 1039 1040 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1041 vd->vdev_cant_read = B_FALSE; 1042 vd->vdev_cant_write = B_FALSE; 1043 vd->vdev_min_asize = vdev_get_min_asize(vd); 1044 1045 if (!vd->vdev_removed && vd->vdev_faulted) { 1046 ASSERT(vd->vdev_children == 0); 1047 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1048 VDEV_AUX_ERR_EXCEEDED); 1049 return (ENXIO); 1050 } else if (vd->vdev_offline) { 1051 ASSERT(vd->vdev_children == 0); 1052 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1053 return (ENXIO); 1054 } 1055 1056 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 1057 1058 if (zio_injection_enabled && error == 0) 1059 error = zio_handle_device_injection(vd, NULL, ENXIO); 1060 1061 if (error) { 1062 if (vd->vdev_removed && 1063 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1064 vd->vdev_removed = B_FALSE; 1065 1066 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1067 vd->vdev_stat.vs_aux); 1068 return (error); 1069 } 1070 1071 vd->vdev_removed = B_FALSE; 1072 1073 if (vd->vdev_degraded) { 1074 ASSERT(vd->vdev_children == 0); 1075 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1076 VDEV_AUX_ERR_EXCEEDED); 1077 } else { 1078 vd->vdev_state = VDEV_STATE_HEALTHY; 1079 } 1080 1081 for (int c = 0; c < vd->vdev_children; c++) { 1082 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1083 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1084 VDEV_AUX_NONE); 1085 break; 1086 } 1087 } 1088 1089 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1090 1091 if (vd->vdev_children == 0) { 1092 if (osize < SPA_MINDEVSIZE) { 1093 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1094 VDEV_AUX_TOO_SMALL); 1095 return (EOVERFLOW); 1096 } 1097 psize = osize; 1098 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1099 } else { 1100 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1101 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1102 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1103 VDEV_AUX_TOO_SMALL); 1104 return (EOVERFLOW); 1105 } 1106 psize = 0; 1107 asize = osize; 1108 } 1109 1110 vd->vdev_psize = psize; 1111 1112 /* 1113 * Make sure the allocatable size hasn't shrunk. 1114 */ 1115 if (asize < vd->vdev_min_asize) { 1116 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1117 VDEV_AUX_BAD_LABEL); 1118 return (EINVAL); 1119 } 1120 1121 if (vd->vdev_asize == 0) { 1122 /* 1123 * This is the first-ever open, so use the computed values. 1124 * For testing purposes, a higher ashift can be requested. 1125 */ 1126 vd->vdev_asize = asize; 1127 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1128 } else { 1129 /* 1130 * Make sure the alignment requirement hasn't increased. 1131 */ 1132 if (ashift > vd->vdev_top->vdev_ashift) { 1133 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1134 VDEV_AUX_BAD_LABEL); 1135 return (EINVAL); 1136 } 1137 } 1138 1139 /* 1140 * If all children are healthy and the asize has increased, 1141 * then we've experienced dynamic LUN growth. If automatic 1142 * expansion is enabled then use the additional space. 1143 */ 1144 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1145 (vd->vdev_expanding || spa->spa_autoexpand)) 1146 vd->vdev_asize = asize; 1147 1148 vdev_set_min_asize(vd); 1149 1150 /* 1151 * Ensure we can issue some IO before declaring the 1152 * vdev open for business. 1153 */ 1154 if (vd->vdev_ops->vdev_op_leaf && 1155 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1156 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1157 VDEV_AUX_IO_FAILURE); 1158 return (error); 1159 } 1160 1161 /* 1162 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1163 * resilver. But don't do this if we are doing a reopen for a scrub, 1164 * since this would just restart the scrub we are already doing. 1165 */ 1166 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1167 vdev_resilver_needed(vd, NULL, NULL)) 1168 spa_async_request(spa, SPA_ASYNC_RESILVER); 1169 1170 return (0); 1171 } 1172 1173 /* 1174 * Called once the vdevs are all opened, this routine validates the label 1175 * contents. This needs to be done before vdev_load() so that we don't 1176 * inadvertently do repair I/Os to the wrong device. 1177 * 1178 * This function will only return failure if one of the vdevs indicates that it 1179 * has since been destroyed or exported. This is only possible if 1180 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1181 * will be updated but the function will return 0. 1182 */ 1183 int 1184 vdev_validate(vdev_t *vd) 1185 { 1186 spa_t *spa = vd->vdev_spa; 1187 nvlist_t *label; 1188 uint64_t guid, top_guid; 1189 uint64_t state; 1190 1191 for (int c = 0; c < vd->vdev_children; c++) 1192 if (vdev_validate(vd->vdev_child[c]) != 0) 1193 return (EBADF); 1194 1195 /* 1196 * If the device has already failed, or was marked offline, don't do 1197 * any further validation. Otherwise, label I/O will fail and we will 1198 * overwrite the previous state. 1199 */ 1200 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1201 1202 if ((label = vdev_label_read_config(vd)) == NULL) { 1203 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1204 VDEV_AUX_BAD_LABEL); 1205 return (0); 1206 } 1207 1208 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1209 &guid) != 0 || guid != spa_guid(spa)) { 1210 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1211 VDEV_AUX_CORRUPT_DATA); 1212 nvlist_free(label); 1213 return (0); 1214 } 1215 1216 /* 1217 * If this vdev just became a top-level vdev because its 1218 * sibling was detached, it will have adopted the parent's 1219 * vdev guid -- but the label may or may not be on disk yet. 1220 * Fortunately, either version of the label will have the 1221 * same top guid, so if we're a top-level vdev, we can 1222 * safely compare to that instead. 1223 */ 1224 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1225 &guid) != 0 || 1226 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1227 &top_guid) != 0 || 1228 (vd->vdev_guid != guid && 1229 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1230 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1231 VDEV_AUX_CORRUPT_DATA); 1232 nvlist_free(label); 1233 return (0); 1234 } 1235 1236 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1237 &state) != 0) { 1238 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1239 VDEV_AUX_CORRUPT_DATA); 1240 nvlist_free(label); 1241 return (0); 1242 } 1243 1244 nvlist_free(label); 1245 1246 if (spa->spa_load_state == SPA_LOAD_OPEN && 1247 state != POOL_STATE_ACTIVE) 1248 return (EBADF); 1249 1250 /* 1251 * If we were able to open and validate a vdev that was 1252 * previously marked permanently unavailable, clear that state 1253 * now. 1254 */ 1255 if (vd->vdev_not_present) 1256 vd->vdev_not_present = 0; 1257 } 1258 1259 return (0); 1260 } 1261 1262 /* 1263 * Close a virtual device. 1264 */ 1265 void 1266 vdev_close(vdev_t *vd) 1267 { 1268 spa_t *spa = vd->vdev_spa; 1269 1270 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1271 1272 vd->vdev_ops->vdev_op_close(vd); 1273 1274 vdev_cache_purge(vd); 1275 1276 /* 1277 * We record the previous state before we close it, so that if we are 1278 * doing a reopen(), we don't generate FMA ereports if we notice that 1279 * it's still faulted. 1280 */ 1281 vd->vdev_prevstate = vd->vdev_state; 1282 1283 if (vd->vdev_offline) 1284 vd->vdev_state = VDEV_STATE_OFFLINE; 1285 else 1286 vd->vdev_state = VDEV_STATE_CLOSED; 1287 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1288 } 1289 1290 void 1291 vdev_reopen(vdev_t *vd) 1292 { 1293 spa_t *spa = vd->vdev_spa; 1294 1295 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1296 1297 vdev_close(vd); 1298 (void) vdev_open(vd); 1299 1300 /* 1301 * Call vdev_validate() here to make sure we have the same device. 1302 * Otherwise, a device with an invalid label could be successfully 1303 * opened in response to vdev_reopen(). 1304 */ 1305 if (vd->vdev_aux) { 1306 (void) vdev_validate_aux(vd); 1307 if (vdev_readable(vd) && vdev_writeable(vd) && 1308 vd->vdev_aux == &spa->spa_l2cache && 1309 !l2arc_vdev_present(vd)) 1310 l2arc_add_vdev(spa, vd); 1311 } else { 1312 (void) vdev_validate(vd); 1313 } 1314 1315 /* 1316 * Reassess parent vdev's health. 1317 */ 1318 vdev_propagate_state(vd); 1319 } 1320 1321 int 1322 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1323 { 1324 int error; 1325 1326 /* 1327 * Normally, partial opens (e.g. of a mirror) are allowed. 1328 * For a create, however, we want to fail the request if 1329 * there are any components we can't open. 1330 */ 1331 error = vdev_open(vd); 1332 1333 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1334 vdev_close(vd); 1335 return (error ? error : ENXIO); 1336 } 1337 1338 /* 1339 * Recursively initialize all labels. 1340 */ 1341 if ((error = vdev_label_init(vd, txg, isreplacing ? 1342 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1343 vdev_close(vd); 1344 return (error); 1345 } 1346 1347 return (0); 1348 } 1349 1350 void 1351 vdev_metaslab_set_size(vdev_t *vd) 1352 { 1353 /* 1354 * Aim for roughly 200 metaslabs per vdev. 1355 */ 1356 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1357 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1358 } 1359 1360 void 1361 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1362 { 1363 ASSERT(vd == vd->vdev_top); 1364 ASSERT(ISP2(flags)); 1365 1366 if (flags & VDD_METASLAB) 1367 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1368 1369 if (flags & VDD_DTL) 1370 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1371 1372 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1373 } 1374 1375 /* 1376 * DTLs. 1377 * 1378 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1379 * the vdev has less than perfect replication. There are three kinds of DTL: 1380 * 1381 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1382 * 1383 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1384 * 1385 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1386 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1387 * txgs that was scrubbed. 1388 * 1389 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1390 * persistent errors or just some device being offline. 1391 * Unlike the other three, the DTL_OUTAGE map is not generally 1392 * maintained; it's only computed when needed, typically to 1393 * determine whether a device can be detached. 1394 * 1395 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1396 * either has the data or it doesn't. 1397 * 1398 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1399 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1400 * if any child is less than fully replicated, then so is its parent. 1401 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1402 * comprising only those txgs which appear in 'maxfaults' or more children; 1403 * those are the txgs we don't have enough replication to read. For example, 1404 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1405 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1406 * two child DTL_MISSING maps. 1407 * 1408 * It should be clear from the above that to compute the DTLs and outage maps 1409 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1410 * Therefore, that is all we keep on disk. When loading the pool, or after 1411 * a configuration change, we generate all other DTLs from first principles. 1412 */ 1413 void 1414 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1415 { 1416 space_map_t *sm = &vd->vdev_dtl[t]; 1417 1418 ASSERT(t < DTL_TYPES); 1419 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1420 1421 mutex_enter(sm->sm_lock); 1422 if (!space_map_contains(sm, txg, size)) 1423 space_map_add(sm, txg, size); 1424 mutex_exit(sm->sm_lock); 1425 } 1426 1427 boolean_t 1428 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1429 { 1430 space_map_t *sm = &vd->vdev_dtl[t]; 1431 boolean_t dirty = B_FALSE; 1432 1433 ASSERT(t < DTL_TYPES); 1434 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1435 1436 mutex_enter(sm->sm_lock); 1437 if (sm->sm_space != 0) 1438 dirty = space_map_contains(sm, txg, size); 1439 mutex_exit(sm->sm_lock); 1440 1441 return (dirty); 1442 } 1443 1444 boolean_t 1445 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1446 { 1447 space_map_t *sm = &vd->vdev_dtl[t]; 1448 boolean_t empty; 1449 1450 mutex_enter(sm->sm_lock); 1451 empty = (sm->sm_space == 0); 1452 mutex_exit(sm->sm_lock); 1453 1454 return (empty); 1455 } 1456 1457 /* 1458 * Reassess DTLs after a config change or scrub completion. 1459 */ 1460 void 1461 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1462 { 1463 spa_t *spa = vd->vdev_spa; 1464 avl_tree_t reftree; 1465 int minref; 1466 1467 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1468 1469 for (int c = 0; c < vd->vdev_children; c++) 1470 vdev_dtl_reassess(vd->vdev_child[c], txg, 1471 scrub_txg, scrub_done); 1472 1473 if (vd == spa->spa_root_vdev) 1474 return; 1475 1476 if (vd->vdev_ops->vdev_op_leaf) { 1477 mutex_enter(&vd->vdev_dtl_lock); 1478 if (scrub_txg != 0 && 1479 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { 1480 /* XXX should check scrub_done? */ 1481 /* 1482 * We completed a scrub up to scrub_txg. If we 1483 * did it without rebooting, then the scrub dtl 1484 * will be valid, so excise the old region and 1485 * fold in the scrub dtl. Otherwise, leave the 1486 * dtl as-is if there was an error. 1487 * 1488 * There's little trick here: to excise the beginning 1489 * of the DTL_MISSING map, we put it into a reference 1490 * tree and then add a segment with refcnt -1 that 1491 * covers the range [0, scrub_txg). This means 1492 * that each txg in that range has refcnt -1 or 0. 1493 * We then add DTL_SCRUB with a refcnt of 2, so that 1494 * entries in the range [0, scrub_txg) will have a 1495 * positive refcnt -- either 1 or 2. We then convert 1496 * the reference tree into the new DTL_MISSING map. 1497 */ 1498 space_map_ref_create(&reftree); 1499 space_map_ref_add_map(&reftree, 1500 &vd->vdev_dtl[DTL_MISSING], 1); 1501 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1502 space_map_ref_add_map(&reftree, 1503 &vd->vdev_dtl[DTL_SCRUB], 2); 1504 space_map_ref_generate_map(&reftree, 1505 &vd->vdev_dtl[DTL_MISSING], 1); 1506 space_map_ref_destroy(&reftree); 1507 } 1508 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1509 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1510 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1511 if (scrub_done) 1512 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1513 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1514 if (!vdev_readable(vd)) 1515 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1516 else 1517 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1518 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1519 mutex_exit(&vd->vdev_dtl_lock); 1520 1521 if (txg != 0) 1522 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1523 return; 1524 } 1525 1526 mutex_enter(&vd->vdev_dtl_lock); 1527 for (int t = 0; t < DTL_TYPES; t++) { 1528 if (t == DTL_SCRUB) 1529 continue; /* leaf vdevs only */ 1530 if (t == DTL_PARTIAL) 1531 minref = 1; /* i.e. non-zero */ 1532 else if (vd->vdev_nparity != 0) 1533 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1534 else 1535 minref = vd->vdev_children; /* any kind of mirror */ 1536 space_map_ref_create(&reftree); 1537 for (int c = 0; c < vd->vdev_children; c++) { 1538 vdev_t *cvd = vd->vdev_child[c]; 1539 mutex_enter(&cvd->vdev_dtl_lock); 1540 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1); 1541 mutex_exit(&cvd->vdev_dtl_lock); 1542 } 1543 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1544 space_map_ref_destroy(&reftree); 1545 } 1546 mutex_exit(&vd->vdev_dtl_lock); 1547 } 1548 1549 static int 1550 vdev_dtl_load(vdev_t *vd) 1551 { 1552 spa_t *spa = vd->vdev_spa; 1553 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1554 objset_t *mos = spa->spa_meta_objset; 1555 dmu_buf_t *db; 1556 int error; 1557 1558 ASSERT(vd->vdev_children == 0); 1559 1560 if (smo->smo_object == 0) 1561 return (0); 1562 1563 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1564 return (error); 1565 1566 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1567 bcopy(db->db_data, smo, sizeof (*smo)); 1568 dmu_buf_rele(db, FTAG); 1569 1570 mutex_enter(&vd->vdev_dtl_lock); 1571 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1572 NULL, SM_ALLOC, smo, mos); 1573 mutex_exit(&vd->vdev_dtl_lock); 1574 1575 return (error); 1576 } 1577 1578 void 1579 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1580 { 1581 spa_t *spa = vd->vdev_spa; 1582 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1583 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1584 objset_t *mos = spa->spa_meta_objset; 1585 space_map_t smsync; 1586 kmutex_t smlock; 1587 dmu_buf_t *db; 1588 dmu_tx_t *tx; 1589 1590 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1591 1592 if (vd->vdev_detached) { 1593 if (smo->smo_object != 0) { 1594 int err = dmu_object_free(mos, smo->smo_object, tx); 1595 ASSERT3U(err, ==, 0); 1596 smo->smo_object = 0; 1597 } 1598 dmu_tx_commit(tx); 1599 return; 1600 } 1601 1602 if (smo->smo_object == 0) { 1603 ASSERT(smo->smo_objsize == 0); 1604 ASSERT(smo->smo_alloc == 0); 1605 smo->smo_object = dmu_object_alloc(mos, 1606 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1607 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1608 ASSERT(smo->smo_object != 0); 1609 vdev_config_dirty(vd->vdev_top); 1610 } 1611 1612 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1613 1614 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1615 &smlock); 1616 1617 mutex_enter(&smlock); 1618 1619 mutex_enter(&vd->vdev_dtl_lock); 1620 space_map_walk(sm, space_map_add, &smsync); 1621 mutex_exit(&vd->vdev_dtl_lock); 1622 1623 space_map_truncate(smo, mos, tx); 1624 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1625 1626 space_map_destroy(&smsync); 1627 1628 mutex_exit(&smlock); 1629 mutex_destroy(&smlock); 1630 1631 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1632 dmu_buf_will_dirty(db, tx); 1633 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1634 bcopy(smo, db->db_data, sizeof (*smo)); 1635 dmu_buf_rele(db, FTAG); 1636 1637 dmu_tx_commit(tx); 1638 } 1639 1640 /* 1641 * Determine whether the specified vdev can be offlined/detached/removed 1642 * without losing data. 1643 */ 1644 boolean_t 1645 vdev_dtl_required(vdev_t *vd) 1646 { 1647 spa_t *spa = vd->vdev_spa; 1648 vdev_t *tvd = vd->vdev_top; 1649 uint8_t cant_read = vd->vdev_cant_read; 1650 boolean_t required; 1651 1652 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1653 1654 if (vd == spa->spa_root_vdev || vd == tvd) 1655 return (B_TRUE); 1656 1657 /* 1658 * Temporarily mark the device as unreadable, and then determine 1659 * whether this results in any DTL outages in the top-level vdev. 1660 * If not, we can safely offline/detach/remove the device. 1661 */ 1662 vd->vdev_cant_read = B_TRUE; 1663 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1664 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1665 vd->vdev_cant_read = cant_read; 1666 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1667 1668 return (required); 1669 } 1670 1671 /* 1672 * Determine if resilver is needed, and if so the txg range. 1673 */ 1674 boolean_t 1675 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1676 { 1677 boolean_t needed = B_FALSE; 1678 uint64_t thismin = UINT64_MAX; 1679 uint64_t thismax = 0; 1680 1681 if (vd->vdev_children == 0) { 1682 mutex_enter(&vd->vdev_dtl_lock); 1683 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1684 vdev_writeable(vd)) { 1685 space_seg_t *ss; 1686 1687 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1688 thismin = ss->ss_start - 1; 1689 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1690 thismax = ss->ss_end; 1691 needed = B_TRUE; 1692 } 1693 mutex_exit(&vd->vdev_dtl_lock); 1694 } else { 1695 for (int c = 0; c < vd->vdev_children; c++) { 1696 vdev_t *cvd = vd->vdev_child[c]; 1697 uint64_t cmin, cmax; 1698 1699 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1700 thismin = MIN(thismin, cmin); 1701 thismax = MAX(thismax, cmax); 1702 needed = B_TRUE; 1703 } 1704 } 1705 } 1706 1707 if (needed && minp) { 1708 *minp = thismin; 1709 *maxp = thismax; 1710 } 1711 return (needed); 1712 } 1713 1714 void 1715 vdev_load(vdev_t *vd) 1716 { 1717 /* 1718 * Recursively load all children. 1719 */ 1720 for (int c = 0; c < vd->vdev_children; c++) 1721 vdev_load(vd->vdev_child[c]); 1722 1723 /* 1724 * If this is a top-level vdev, initialize its metaslabs. 1725 */ 1726 if (vd == vd->vdev_top && 1727 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1728 vdev_metaslab_init(vd, 0) != 0)) 1729 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1730 VDEV_AUX_CORRUPT_DATA); 1731 1732 /* 1733 * If this is a leaf vdev, load its DTL. 1734 */ 1735 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1736 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1737 VDEV_AUX_CORRUPT_DATA); 1738 } 1739 1740 /* 1741 * The special vdev case is used for hot spares and l2cache devices. Its 1742 * sole purpose it to set the vdev state for the associated vdev. To do this, 1743 * we make sure that we can open the underlying device, then try to read the 1744 * label, and make sure that the label is sane and that it hasn't been 1745 * repurposed to another pool. 1746 */ 1747 int 1748 vdev_validate_aux(vdev_t *vd) 1749 { 1750 nvlist_t *label; 1751 uint64_t guid, version; 1752 uint64_t state; 1753 1754 if (!vdev_readable(vd)) 1755 return (0); 1756 1757 if ((label = vdev_label_read_config(vd)) == NULL) { 1758 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1759 VDEV_AUX_CORRUPT_DATA); 1760 return (-1); 1761 } 1762 1763 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1764 version > SPA_VERSION || 1765 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1766 guid != vd->vdev_guid || 1767 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1768 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1769 VDEV_AUX_CORRUPT_DATA); 1770 nvlist_free(label); 1771 return (-1); 1772 } 1773 1774 /* 1775 * We don't actually check the pool state here. If it's in fact in 1776 * use by another pool, we update this fact on the fly when requested. 1777 */ 1778 nvlist_free(label); 1779 return (0); 1780 } 1781 1782 void 1783 vdev_sync_done(vdev_t *vd, uint64_t txg) 1784 { 1785 metaslab_t *msp; 1786 1787 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1788 metaslab_sync_done(msp, txg); 1789 } 1790 1791 void 1792 vdev_sync(vdev_t *vd, uint64_t txg) 1793 { 1794 spa_t *spa = vd->vdev_spa; 1795 vdev_t *lvd; 1796 metaslab_t *msp; 1797 dmu_tx_t *tx; 1798 1799 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1800 ASSERT(vd == vd->vdev_top); 1801 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1802 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1803 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1804 ASSERT(vd->vdev_ms_array != 0); 1805 vdev_config_dirty(vd); 1806 dmu_tx_commit(tx); 1807 } 1808 1809 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1810 metaslab_sync(msp, txg); 1811 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1812 } 1813 1814 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1815 vdev_dtl_sync(lvd, txg); 1816 1817 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1818 } 1819 1820 uint64_t 1821 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1822 { 1823 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1824 } 1825 1826 /* 1827 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 1828 * not be opened, and no I/O is attempted. 1829 */ 1830 int 1831 vdev_fault(spa_t *spa, uint64_t guid) 1832 { 1833 vdev_t *vd; 1834 1835 spa_vdev_state_enter(spa); 1836 1837 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1838 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1839 1840 if (!vd->vdev_ops->vdev_op_leaf) 1841 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1842 1843 /* 1844 * Faulted state takes precedence over degraded. 1845 */ 1846 vd->vdev_faulted = 1ULL; 1847 vd->vdev_degraded = 0ULL; 1848 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); 1849 1850 /* 1851 * If marking the vdev as faulted cause the top-level vdev to become 1852 * unavailable, then back off and simply mark the vdev as degraded 1853 * instead. 1854 */ 1855 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) { 1856 vd->vdev_degraded = 1ULL; 1857 vd->vdev_faulted = 0ULL; 1858 1859 /* 1860 * If we reopen the device and it's not dead, only then do we 1861 * mark it degraded. 1862 */ 1863 vdev_reopen(vd); 1864 1865 if (vdev_readable(vd)) { 1866 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1867 VDEV_AUX_ERR_EXCEEDED); 1868 } 1869 } 1870 1871 return (spa_vdev_state_exit(spa, vd, 0)); 1872 } 1873 1874 /* 1875 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 1876 * user that something is wrong. The vdev continues to operate as normal as far 1877 * as I/O is concerned. 1878 */ 1879 int 1880 vdev_degrade(spa_t *spa, uint64_t guid) 1881 { 1882 vdev_t *vd; 1883 1884 spa_vdev_state_enter(spa); 1885 1886 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1887 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1888 1889 if (!vd->vdev_ops->vdev_op_leaf) 1890 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1891 1892 /* 1893 * If the vdev is already faulted, then don't do anything. 1894 */ 1895 if (vd->vdev_faulted || vd->vdev_degraded) 1896 return (spa_vdev_state_exit(spa, NULL, 0)); 1897 1898 vd->vdev_degraded = 1ULL; 1899 if (!vdev_is_dead(vd)) 1900 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1901 VDEV_AUX_ERR_EXCEEDED); 1902 1903 return (spa_vdev_state_exit(spa, vd, 0)); 1904 } 1905 1906 /* 1907 * Online the given vdev. If 'unspare' is set, it implies two things. First, 1908 * any attached spare device should be detached when the device finishes 1909 * resilvering. Second, the online should be treated like a 'test' online case, 1910 * so no FMA events are generated if the device fails to open. 1911 */ 1912 int 1913 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 1914 { 1915 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 1916 1917 spa_vdev_state_enter(spa); 1918 1919 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1920 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1921 1922 if (!vd->vdev_ops->vdev_op_leaf) 1923 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1924 1925 tvd = vd->vdev_top; 1926 vd->vdev_offline = B_FALSE; 1927 vd->vdev_tmpoffline = B_FALSE; 1928 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 1929 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 1930 1931 /* XXX - L2ARC 1.0 does not support expansion */ 1932 if (!vd->vdev_aux) { 1933 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 1934 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 1935 } 1936 1937 vdev_reopen(tvd); 1938 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 1939 1940 if (!vd->vdev_aux) { 1941 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 1942 pvd->vdev_expanding = B_FALSE; 1943 } 1944 1945 if (newstate) 1946 *newstate = vd->vdev_state; 1947 if ((flags & ZFS_ONLINE_UNSPARE) && 1948 !vdev_is_dead(vd) && vd->vdev_parent && 1949 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 1950 vd->vdev_parent->vdev_child[0] == vd) 1951 vd->vdev_unspare = B_TRUE; 1952 1953 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 1954 1955 /* XXX - L2ARC 1.0 does not support expansion */ 1956 if (vd->vdev_aux) 1957 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 1958 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 1959 } 1960 return (spa_vdev_state_exit(spa, vd, 0)); 1961 } 1962 1963 int 1964 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 1965 { 1966 vdev_t *vd, *tvd; 1967 int error; 1968 1969 spa_vdev_state_enter(spa); 1970 1971 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1972 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1973 1974 if (!vd->vdev_ops->vdev_op_leaf) 1975 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1976 1977 tvd = vd->vdev_top; 1978 1979 /* 1980 * If the device isn't already offline, try to offline it. 1981 */ 1982 if (!vd->vdev_offline) { 1983 /* 1984 * If this device has the only valid copy of some data, 1985 * don't allow it to be offlined. Log devices are always 1986 * expendable. 1987 */ 1988 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 1989 vdev_dtl_required(vd)) 1990 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 1991 1992 /* 1993 * Offline this device and reopen its top-level vdev. 1994 * If the top-level vdev is a log device then just offline 1995 * it. Otherwise, if this action results in the top-level 1996 * vdev becoming unusable, undo it and fail the request. 1997 */ 1998 vd->vdev_offline = B_TRUE; 1999 vdev_reopen(tvd); 2000 2001 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2002 vdev_is_dead(tvd)) { 2003 vd->vdev_offline = B_FALSE; 2004 vdev_reopen(tvd); 2005 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2006 } 2007 } 2008 2009 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2010 2011 if (!tvd->vdev_islog || !vdev_is_dead(tvd)) 2012 return (spa_vdev_state_exit(spa, vd, 0)); 2013 2014 (void) spa_vdev_state_exit(spa, vd, 0); 2015 2016 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 2017 NULL, DS_FIND_CHILDREN); 2018 if (error) { 2019 (void) vdev_online(spa, guid, 0, NULL); 2020 return (error); 2021 } 2022 /* 2023 * If we successfully offlined the log device then we need to 2024 * sync out the current txg so that the "stubby" block can be 2025 * removed by zil_sync(). 2026 */ 2027 txg_wait_synced(spa->spa_dsl_pool, 0); 2028 return (0); 2029 } 2030 2031 /* 2032 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2033 * vdev_offline(), we assume the spa config is locked. We also clear all 2034 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2035 */ 2036 void 2037 vdev_clear(spa_t *spa, vdev_t *vd) 2038 { 2039 vdev_t *rvd = spa->spa_root_vdev; 2040 2041 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2042 2043 if (vd == NULL) 2044 vd = rvd; 2045 2046 vd->vdev_stat.vs_read_errors = 0; 2047 vd->vdev_stat.vs_write_errors = 0; 2048 vd->vdev_stat.vs_checksum_errors = 0; 2049 2050 for (int c = 0; c < vd->vdev_children; c++) 2051 vdev_clear(spa, vd->vdev_child[c]); 2052 2053 /* 2054 * If we're in the FAULTED state or have experienced failed I/O, then 2055 * clear the persistent state and attempt to reopen the device. We 2056 * also mark the vdev config dirty, so that the new faulted state is 2057 * written out to disk. 2058 */ 2059 if (vd->vdev_faulted || vd->vdev_degraded || 2060 !vdev_readable(vd) || !vdev_writeable(vd)) { 2061 2062 vd->vdev_faulted = vd->vdev_degraded = 0; 2063 vd->vdev_cant_read = B_FALSE; 2064 vd->vdev_cant_write = B_FALSE; 2065 2066 vdev_reopen(vd); 2067 2068 if (vd != rvd) 2069 vdev_state_dirty(vd->vdev_top); 2070 2071 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2072 spa_async_request(spa, SPA_ASYNC_RESILVER); 2073 2074 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2075 } 2076 } 2077 2078 boolean_t 2079 vdev_is_dead(vdev_t *vd) 2080 { 2081 return (vd->vdev_state < VDEV_STATE_DEGRADED); 2082 } 2083 2084 boolean_t 2085 vdev_readable(vdev_t *vd) 2086 { 2087 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2088 } 2089 2090 boolean_t 2091 vdev_writeable(vdev_t *vd) 2092 { 2093 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2094 } 2095 2096 boolean_t 2097 vdev_allocatable(vdev_t *vd) 2098 { 2099 uint64_t state = vd->vdev_state; 2100 2101 /* 2102 * We currently allow allocations from vdevs which may be in the 2103 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2104 * fails to reopen then we'll catch it later when we're holding 2105 * the proper locks. Note that we have to get the vdev state 2106 * in a local variable because although it changes atomically, 2107 * we're asking two separate questions about it. 2108 */ 2109 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2110 !vd->vdev_cant_write); 2111 } 2112 2113 boolean_t 2114 vdev_accessible(vdev_t *vd, zio_t *zio) 2115 { 2116 ASSERT(zio->io_vd == vd); 2117 2118 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2119 return (B_FALSE); 2120 2121 if (zio->io_type == ZIO_TYPE_READ) 2122 return (!vd->vdev_cant_read); 2123 2124 if (zio->io_type == ZIO_TYPE_WRITE) 2125 return (!vd->vdev_cant_write); 2126 2127 return (B_TRUE); 2128 } 2129 2130 /* 2131 * Get statistics for the given vdev. 2132 */ 2133 void 2134 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2135 { 2136 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2137 2138 mutex_enter(&vd->vdev_stat_lock); 2139 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2140 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; 2141 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2142 vs->vs_state = vd->vdev_state; 2143 vs->vs_rsize = vdev_get_min_asize(vd); 2144 if (vd->vdev_ops->vdev_op_leaf) 2145 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2146 mutex_exit(&vd->vdev_stat_lock); 2147 2148 /* 2149 * If we're getting stats on the root vdev, aggregate the I/O counts 2150 * over all top-level vdevs (i.e. the direct children of the root). 2151 */ 2152 if (vd == rvd) { 2153 for (int c = 0; c < rvd->vdev_children; c++) { 2154 vdev_t *cvd = rvd->vdev_child[c]; 2155 vdev_stat_t *cvs = &cvd->vdev_stat; 2156 2157 mutex_enter(&vd->vdev_stat_lock); 2158 for (int t = 0; t < ZIO_TYPES; t++) { 2159 vs->vs_ops[t] += cvs->vs_ops[t]; 2160 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2161 } 2162 vs->vs_scrub_examined += cvs->vs_scrub_examined; 2163 mutex_exit(&vd->vdev_stat_lock); 2164 } 2165 } 2166 } 2167 2168 void 2169 vdev_clear_stats(vdev_t *vd) 2170 { 2171 mutex_enter(&vd->vdev_stat_lock); 2172 vd->vdev_stat.vs_space = 0; 2173 vd->vdev_stat.vs_dspace = 0; 2174 vd->vdev_stat.vs_alloc = 0; 2175 mutex_exit(&vd->vdev_stat_lock); 2176 } 2177 2178 void 2179 vdev_stat_update(zio_t *zio, uint64_t psize) 2180 { 2181 spa_t *spa = zio->io_spa; 2182 vdev_t *rvd = spa->spa_root_vdev; 2183 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2184 vdev_t *pvd; 2185 uint64_t txg = zio->io_txg; 2186 vdev_stat_t *vs = &vd->vdev_stat; 2187 zio_type_t type = zio->io_type; 2188 int flags = zio->io_flags; 2189 2190 /* 2191 * If this i/o is a gang leader, it didn't do any actual work. 2192 */ 2193 if (zio->io_gang_tree) 2194 return; 2195 2196 if (zio->io_error == 0) { 2197 /* 2198 * If this is a root i/o, don't count it -- we've already 2199 * counted the top-level vdevs, and vdev_get_stats() will 2200 * aggregate them when asked. This reduces contention on 2201 * the root vdev_stat_lock and implicitly handles blocks 2202 * that compress away to holes, for which there is no i/o. 2203 * (Holes never create vdev children, so all the counters 2204 * remain zero, which is what we want.) 2205 * 2206 * Note: this only applies to successful i/o (io_error == 0) 2207 * because unlike i/o counts, errors are not additive. 2208 * When reading a ditto block, for example, failure of 2209 * one top-level vdev does not imply a root-level error. 2210 */ 2211 if (vd == rvd) 2212 return; 2213 2214 ASSERT(vd == zio->io_vd); 2215 2216 if (flags & ZIO_FLAG_IO_BYPASS) 2217 return; 2218 2219 mutex_enter(&vd->vdev_stat_lock); 2220 2221 if (flags & ZIO_FLAG_IO_REPAIR) { 2222 if (flags & ZIO_FLAG_SCRUB_THREAD) 2223 vs->vs_scrub_repaired += psize; 2224 if (flags & ZIO_FLAG_SELF_HEAL) 2225 vs->vs_self_healed += psize; 2226 } 2227 2228 vs->vs_ops[type]++; 2229 vs->vs_bytes[type] += psize; 2230 2231 mutex_exit(&vd->vdev_stat_lock); 2232 return; 2233 } 2234 2235 if (flags & ZIO_FLAG_SPECULATIVE) 2236 return; 2237 2238 /* 2239 * If this is an I/O error that is going to be retried, then ignore the 2240 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2241 * hard errors, when in reality they can happen for any number of 2242 * innocuous reasons (bus resets, MPxIO link failure, etc). 2243 */ 2244 if (zio->io_error == EIO && 2245 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2246 return; 2247 2248 mutex_enter(&vd->vdev_stat_lock); 2249 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2250 if (zio->io_error == ECKSUM) 2251 vs->vs_checksum_errors++; 2252 else 2253 vs->vs_read_errors++; 2254 } 2255 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2256 vs->vs_write_errors++; 2257 mutex_exit(&vd->vdev_stat_lock); 2258 2259 if (type == ZIO_TYPE_WRITE && txg != 0 && 2260 (!(flags & ZIO_FLAG_IO_REPAIR) || 2261 (flags & ZIO_FLAG_SCRUB_THREAD))) { 2262 /* 2263 * This is either a normal write (not a repair), or it's a 2264 * repair induced by the scrub thread. In the normal case, 2265 * we commit the DTL change in the same txg as the block 2266 * was born. In the scrub-induced repair case, we know that 2267 * scrubs run in first-pass syncing context, so we commit 2268 * the DTL change in spa->spa_syncing_txg. 2269 * 2270 * We currently do not make DTL entries for failed spontaneous 2271 * self-healing writes triggered by normal (non-scrubbing) 2272 * reads, because we have no transactional context in which to 2273 * do so -- and it's not clear that it'd be desirable anyway. 2274 */ 2275 if (vd->vdev_ops->vdev_op_leaf) { 2276 uint64_t commit_txg = txg; 2277 if (flags & ZIO_FLAG_SCRUB_THREAD) { 2278 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2279 ASSERT(spa_sync_pass(spa) == 1); 2280 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2281 commit_txg = spa->spa_syncing_txg; 2282 } 2283 ASSERT(commit_txg >= spa->spa_syncing_txg); 2284 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2285 return; 2286 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2287 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2288 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2289 } 2290 if (vd != rvd) 2291 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2292 } 2293 } 2294 2295 void 2296 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 2297 { 2298 vdev_stat_t *vs = &vd->vdev_stat; 2299 2300 for (int c = 0; c < vd->vdev_children; c++) 2301 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 2302 2303 mutex_enter(&vd->vdev_stat_lock); 2304 2305 if (type == POOL_SCRUB_NONE) { 2306 /* 2307 * Update completion and end time. Leave everything else alone 2308 * so we can report what happened during the previous scrub. 2309 */ 2310 vs->vs_scrub_complete = complete; 2311 vs->vs_scrub_end = gethrestime_sec(); 2312 } else { 2313 vs->vs_scrub_type = type; 2314 vs->vs_scrub_complete = 0; 2315 vs->vs_scrub_examined = 0; 2316 vs->vs_scrub_repaired = 0; 2317 vs->vs_scrub_start = gethrestime_sec(); 2318 vs->vs_scrub_end = 0; 2319 } 2320 2321 mutex_exit(&vd->vdev_stat_lock); 2322 } 2323 2324 /* 2325 * Update the in-core space usage stats for this vdev and the root vdev. 2326 */ 2327 void 2328 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta, 2329 boolean_t update_root) 2330 { 2331 int64_t dspace_delta = space_delta; 2332 spa_t *spa = vd->vdev_spa; 2333 vdev_t *rvd = spa->spa_root_vdev; 2334 2335 ASSERT(vd == vd->vdev_top); 2336 2337 /* 2338 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2339 * factor. We must calculate this here and not at the root vdev 2340 * because the root vdev's psize-to-asize is simply the max of its 2341 * childrens', thus not accurate enough for us. 2342 */ 2343 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2344 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2345 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2346 vd->vdev_deflate_ratio; 2347 2348 mutex_enter(&vd->vdev_stat_lock); 2349 vd->vdev_stat.vs_space += space_delta; 2350 vd->vdev_stat.vs_alloc += alloc_delta; 2351 vd->vdev_stat.vs_dspace += dspace_delta; 2352 mutex_exit(&vd->vdev_stat_lock); 2353 2354 if (update_root) { 2355 ASSERT(rvd == vd->vdev_parent); 2356 ASSERT(vd->vdev_ms_count != 0); 2357 2358 /* 2359 * Don't count non-normal (e.g. intent log) space as part of 2360 * the pool's capacity. 2361 */ 2362 if (vd->vdev_mg->mg_class != spa->spa_normal_class) 2363 return; 2364 2365 mutex_enter(&rvd->vdev_stat_lock); 2366 rvd->vdev_stat.vs_space += space_delta; 2367 rvd->vdev_stat.vs_alloc += alloc_delta; 2368 rvd->vdev_stat.vs_dspace += dspace_delta; 2369 mutex_exit(&rvd->vdev_stat_lock); 2370 } 2371 } 2372 2373 /* 2374 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2375 * so that it will be written out next time the vdev configuration is synced. 2376 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2377 */ 2378 void 2379 vdev_config_dirty(vdev_t *vd) 2380 { 2381 spa_t *spa = vd->vdev_spa; 2382 vdev_t *rvd = spa->spa_root_vdev; 2383 int c; 2384 2385 /* 2386 * If this is an aux vdev (as with l2cache and spare devices), then we 2387 * update the vdev config manually and set the sync flag. 2388 */ 2389 if (vd->vdev_aux != NULL) { 2390 spa_aux_vdev_t *sav = vd->vdev_aux; 2391 nvlist_t **aux; 2392 uint_t naux; 2393 2394 for (c = 0; c < sav->sav_count; c++) { 2395 if (sav->sav_vdevs[c] == vd) 2396 break; 2397 } 2398 2399 if (c == sav->sav_count) { 2400 /* 2401 * We're being removed. There's nothing more to do. 2402 */ 2403 ASSERT(sav->sav_sync == B_TRUE); 2404 return; 2405 } 2406 2407 sav->sav_sync = B_TRUE; 2408 2409 if (nvlist_lookup_nvlist_array(sav->sav_config, 2410 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2411 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2412 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2413 } 2414 2415 ASSERT(c < naux); 2416 2417 /* 2418 * Setting the nvlist in the middle if the array is a little 2419 * sketchy, but it will work. 2420 */ 2421 nvlist_free(aux[c]); 2422 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); 2423 2424 return; 2425 } 2426 2427 /* 2428 * The dirty list is protected by the SCL_CONFIG lock. The caller 2429 * must either hold SCL_CONFIG as writer, or must be the sync thread 2430 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2431 * so this is sufficient to ensure mutual exclusion. 2432 */ 2433 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2434 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2435 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2436 2437 if (vd == rvd) { 2438 for (c = 0; c < rvd->vdev_children; c++) 2439 vdev_config_dirty(rvd->vdev_child[c]); 2440 } else { 2441 ASSERT(vd == vd->vdev_top); 2442 2443 if (!list_link_active(&vd->vdev_config_dirty_node)) 2444 list_insert_head(&spa->spa_config_dirty_list, vd); 2445 } 2446 } 2447 2448 void 2449 vdev_config_clean(vdev_t *vd) 2450 { 2451 spa_t *spa = vd->vdev_spa; 2452 2453 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2454 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2455 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2456 2457 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2458 list_remove(&spa->spa_config_dirty_list, vd); 2459 } 2460 2461 /* 2462 * Mark a top-level vdev's state as dirty, so that the next pass of 2463 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2464 * the state changes from larger config changes because they require 2465 * much less locking, and are often needed for administrative actions. 2466 */ 2467 void 2468 vdev_state_dirty(vdev_t *vd) 2469 { 2470 spa_t *spa = vd->vdev_spa; 2471 2472 ASSERT(vd == vd->vdev_top); 2473 2474 /* 2475 * The state list is protected by the SCL_STATE lock. The caller 2476 * must either hold SCL_STATE as writer, or must be the sync thread 2477 * (which holds SCL_STATE as reader). There's only one sync thread, 2478 * so this is sufficient to ensure mutual exclusion. 2479 */ 2480 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2481 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2482 spa_config_held(spa, SCL_STATE, RW_READER))); 2483 2484 if (!list_link_active(&vd->vdev_state_dirty_node)) 2485 list_insert_head(&spa->spa_state_dirty_list, vd); 2486 } 2487 2488 void 2489 vdev_state_clean(vdev_t *vd) 2490 { 2491 spa_t *spa = vd->vdev_spa; 2492 2493 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2494 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2495 spa_config_held(spa, SCL_STATE, RW_READER))); 2496 2497 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2498 list_remove(&spa->spa_state_dirty_list, vd); 2499 } 2500 2501 /* 2502 * Propagate vdev state up from children to parent. 2503 */ 2504 void 2505 vdev_propagate_state(vdev_t *vd) 2506 { 2507 spa_t *spa = vd->vdev_spa; 2508 vdev_t *rvd = spa->spa_root_vdev; 2509 int degraded = 0, faulted = 0; 2510 int corrupted = 0; 2511 vdev_t *child; 2512 2513 if (vd->vdev_children > 0) { 2514 for (int c = 0; c < vd->vdev_children; c++) { 2515 child = vd->vdev_child[c]; 2516 2517 if (!vdev_readable(child) || 2518 (!vdev_writeable(child) && spa_writeable(spa))) { 2519 /* 2520 * Root special: if there is a top-level log 2521 * device, treat the root vdev as if it were 2522 * degraded. 2523 */ 2524 if (child->vdev_islog && vd == rvd) 2525 degraded++; 2526 else 2527 faulted++; 2528 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2529 degraded++; 2530 } 2531 2532 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2533 corrupted++; 2534 } 2535 2536 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2537 2538 /* 2539 * Root special: if there is a top-level vdev that cannot be 2540 * opened due to corrupted metadata, then propagate the root 2541 * vdev's aux state as 'corrupt' rather than 'insufficient 2542 * replicas'. 2543 */ 2544 if (corrupted && vd == rvd && 2545 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2546 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2547 VDEV_AUX_CORRUPT_DATA); 2548 } 2549 2550 if (vd->vdev_parent) 2551 vdev_propagate_state(vd->vdev_parent); 2552 } 2553 2554 /* 2555 * Set a vdev's state. If this is during an open, we don't update the parent 2556 * state, because we're in the process of opening children depth-first. 2557 * Otherwise, we propagate the change to the parent. 2558 * 2559 * If this routine places a device in a faulted state, an appropriate ereport is 2560 * generated. 2561 */ 2562 void 2563 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2564 { 2565 uint64_t save_state; 2566 spa_t *spa = vd->vdev_spa; 2567 2568 if (state == vd->vdev_state) { 2569 vd->vdev_stat.vs_aux = aux; 2570 return; 2571 } 2572 2573 save_state = vd->vdev_state; 2574 2575 vd->vdev_state = state; 2576 vd->vdev_stat.vs_aux = aux; 2577 2578 /* 2579 * If we are setting the vdev state to anything but an open state, then 2580 * always close the underlying device. Otherwise, we keep accessible 2581 * but invalid devices open forever. We don't call vdev_close() itself, 2582 * because that implies some extra checks (offline, etc) that we don't 2583 * want here. This is limited to leaf devices, because otherwise 2584 * closing the device will affect other children. 2585 */ 2586 if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) 2587 vd->vdev_ops->vdev_op_close(vd); 2588 2589 if (vd->vdev_removed && 2590 state == VDEV_STATE_CANT_OPEN && 2591 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2592 /* 2593 * If the previous state is set to VDEV_STATE_REMOVED, then this 2594 * device was previously marked removed and someone attempted to 2595 * reopen it. If this failed due to a nonexistent device, then 2596 * keep the device in the REMOVED state. We also let this be if 2597 * it is one of our special test online cases, which is only 2598 * attempting to online the device and shouldn't generate an FMA 2599 * fault. 2600 */ 2601 vd->vdev_state = VDEV_STATE_REMOVED; 2602 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2603 } else if (state == VDEV_STATE_REMOVED) { 2604 /* 2605 * Indicate to the ZFS DE that this device has been removed, and 2606 * any recent errors should be ignored. 2607 */ 2608 zfs_post_remove(spa, vd); 2609 vd->vdev_removed = B_TRUE; 2610 } else if (state == VDEV_STATE_CANT_OPEN) { 2611 /* 2612 * If we fail to open a vdev during an import, we mark it as 2613 * "not available", which signifies that it was never there to 2614 * begin with. Failure to open such a device is not considered 2615 * an error. 2616 */ 2617 if (spa->spa_load_state == SPA_LOAD_IMPORT && 2618 vd->vdev_ops->vdev_op_leaf) 2619 vd->vdev_not_present = 1; 2620 2621 /* 2622 * Post the appropriate ereport. If the 'prevstate' field is 2623 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2624 * that this is part of a vdev_reopen(). In this case, we don't 2625 * want to post the ereport if the device was already in the 2626 * CANT_OPEN state beforehand. 2627 * 2628 * If the 'checkremove' flag is set, then this is an attempt to 2629 * online the device in response to an insertion event. If we 2630 * hit this case, then we have detected an insertion event for a 2631 * faulted or offline device that wasn't in the removed state. 2632 * In this scenario, we don't post an ereport because we are 2633 * about to replace the device, or attempt an online with 2634 * vdev_forcefault, which will generate the fault for us. 2635 */ 2636 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2637 !vd->vdev_not_present && !vd->vdev_checkremove && 2638 vd != spa->spa_root_vdev) { 2639 const char *class; 2640 2641 switch (aux) { 2642 case VDEV_AUX_OPEN_FAILED: 2643 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2644 break; 2645 case VDEV_AUX_CORRUPT_DATA: 2646 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2647 break; 2648 case VDEV_AUX_NO_REPLICAS: 2649 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2650 break; 2651 case VDEV_AUX_BAD_GUID_SUM: 2652 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2653 break; 2654 case VDEV_AUX_TOO_SMALL: 2655 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2656 break; 2657 case VDEV_AUX_BAD_LABEL: 2658 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2659 break; 2660 case VDEV_AUX_IO_FAILURE: 2661 class = FM_EREPORT_ZFS_IO_FAILURE; 2662 break; 2663 default: 2664 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2665 } 2666 2667 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 2668 } 2669 2670 /* Erase any notion of persistent removed state */ 2671 vd->vdev_removed = B_FALSE; 2672 } else { 2673 vd->vdev_removed = B_FALSE; 2674 } 2675 2676 if (!isopen && vd->vdev_parent) 2677 vdev_propagate_state(vd->vdev_parent); 2678 } 2679 2680 /* 2681 * Check the vdev configuration to ensure that it's capable of supporting 2682 * a root pool. Currently, we do not support RAID-Z or partial configuration. 2683 * In addition, only a single top-level vdev is allowed and none of the leaves 2684 * can be wholedisks. 2685 */ 2686 boolean_t 2687 vdev_is_bootable(vdev_t *vd) 2688 { 2689 if (!vd->vdev_ops->vdev_op_leaf) { 2690 char *vdev_type = vd->vdev_ops->vdev_op_type; 2691 2692 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 2693 vd->vdev_children > 1) { 2694 return (B_FALSE); 2695 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 2696 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 2697 return (B_FALSE); 2698 } 2699 } else if (vd->vdev_wholedisk == 1) { 2700 return (B_FALSE); 2701 } 2702 2703 for (int c = 0; c < vd->vdev_children; c++) { 2704 if (!vdev_is_bootable(vd->vdev_child[c])) 2705 return (B_FALSE); 2706 } 2707 return (B_TRUE); 2708 } 2709 2710 void 2711 vdev_load_log_state(vdev_t *vd, nvlist_t *nv) 2712 { 2713 uint_t children; 2714 nvlist_t **child; 2715 uint64_t val; 2716 spa_t *spa = vd->vdev_spa; 2717 2718 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 2719 &child, &children) == 0) { 2720 for (int c = 0; c < children; c++) 2721 vdev_load_log_state(vd->vdev_child[c], child[c]); 2722 } 2723 2724 if (vd->vdev_ops->vdev_op_leaf && nvlist_lookup_uint64(nv, 2725 ZPOOL_CONFIG_OFFLINE, &val) == 0 && val) { 2726 2727 /* 2728 * It would be nice to call vdev_offline() 2729 * directly but the pool isn't fully loaded and 2730 * the txg threads have not been started yet. 2731 */ 2732 spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_WRITER); 2733 vd->vdev_offline = val; 2734 vdev_reopen(vd->vdev_top); 2735 spa_config_exit(spa, SCL_STATE_ALL, FTAG); 2736 } 2737 } 2738 2739 /* 2740 * Expand a vdev if possible. 2741 */ 2742 void 2743 vdev_expand(vdev_t *vd, uint64_t txg) 2744 { 2745 ASSERT(vd->vdev_top == vd); 2746 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2747 2748 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 2749 VERIFY(vdev_metaslab_init(vd, txg) == 0); 2750 vdev_config_dirty(vd); 2751 } 2752 } 2753