1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2011 by Delphix. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/zio.h> 40 #include <sys/zap.h> 41 #include <sys/fs/zfs.h> 42 #include <sys/arc.h> 43 #include <sys/zil.h> 44 #include <sys/dsl_scan.h> 45 46 /* 47 * Virtual device management. 48 */ 49 50 static vdev_ops_t *vdev_ops_table[] = { 51 &vdev_root_ops, 52 &vdev_raidz_ops, 53 &vdev_mirror_ops, 54 &vdev_replacing_ops, 55 &vdev_spare_ops, 56 &vdev_disk_ops, 57 &vdev_file_ops, 58 &vdev_missing_ops, 59 &vdev_hole_ops, 60 NULL 61 }; 62 63 /* maximum scrub/resilver I/O queue per leaf vdev */ 64 int zfs_scrub_limit = 10; 65 66 /* 67 * Given a vdev type, return the appropriate ops vector. 68 */ 69 static vdev_ops_t * 70 vdev_getops(const char *type) 71 { 72 vdev_ops_t *ops, **opspp; 73 74 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 75 if (strcmp(ops->vdev_op_type, type) == 0) 76 break; 77 78 return (ops); 79 } 80 81 /* 82 * Default asize function: return the MAX of psize with the asize of 83 * all children. This is what's used by anything other than RAID-Z. 84 */ 85 uint64_t 86 vdev_default_asize(vdev_t *vd, uint64_t psize) 87 { 88 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 89 uint64_t csize; 90 91 for (int c = 0; c < vd->vdev_children; c++) { 92 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 93 asize = MAX(asize, csize); 94 } 95 96 return (asize); 97 } 98 99 /* 100 * Get the minimum allocatable size. We define the allocatable size as 101 * the vdev's asize rounded to the nearest metaslab. This allows us to 102 * replace or attach devices which don't have the same physical size but 103 * can still satisfy the same number of allocations. 104 */ 105 uint64_t 106 vdev_get_min_asize(vdev_t *vd) 107 { 108 vdev_t *pvd = vd->vdev_parent; 109 110 /* 111 * The our parent is NULL (inactive spare or cache) or is the root, 112 * just return our own asize. 113 */ 114 if (pvd == NULL) 115 return (vd->vdev_asize); 116 117 /* 118 * The top-level vdev just returns the allocatable size rounded 119 * to the nearest metaslab. 120 */ 121 if (vd == vd->vdev_top) 122 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 123 124 /* 125 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 126 * so each child must provide at least 1/Nth of its asize. 127 */ 128 if (pvd->vdev_ops == &vdev_raidz_ops) 129 return (pvd->vdev_min_asize / pvd->vdev_children); 130 131 return (pvd->vdev_min_asize); 132 } 133 134 void 135 vdev_set_min_asize(vdev_t *vd) 136 { 137 vd->vdev_min_asize = vdev_get_min_asize(vd); 138 139 for (int c = 0; c < vd->vdev_children; c++) 140 vdev_set_min_asize(vd->vdev_child[c]); 141 } 142 143 vdev_t * 144 vdev_lookup_top(spa_t *spa, uint64_t vdev) 145 { 146 vdev_t *rvd = spa->spa_root_vdev; 147 148 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 149 150 if (vdev < rvd->vdev_children) { 151 ASSERT(rvd->vdev_child[vdev] != NULL); 152 return (rvd->vdev_child[vdev]); 153 } 154 155 return (NULL); 156 } 157 158 vdev_t * 159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 160 { 161 vdev_t *mvd; 162 163 if (vd->vdev_guid == guid) 164 return (vd); 165 166 for (int c = 0; c < vd->vdev_children; c++) 167 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 168 NULL) 169 return (mvd); 170 171 return (NULL); 172 } 173 174 void 175 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 176 { 177 size_t oldsize, newsize; 178 uint64_t id = cvd->vdev_id; 179 vdev_t **newchild; 180 181 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 182 ASSERT(cvd->vdev_parent == NULL); 183 184 cvd->vdev_parent = pvd; 185 186 if (pvd == NULL) 187 return; 188 189 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 190 191 oldsize = pvd->vdev_children * sizeof (vdev_t *); 192 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 193 newsize = pvd->vdev_children * sizeof (vdev_t *); 194 195 newchild = kmem_zalloc(newsize, KM_SLEEP); 196 if (pvd->vdev_child != NULL) { 197 bcopy(pvd->vdev_child, newchild, oldsize); 198 kmem_free(pvd->vdev_child, oldsize); 199 } 200 201 pvd->vdev_child = newchild; 202 pvd->vdev_child[id] = cvd; 203 204 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 205 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 206 207 /* 208 * Walk up all ancestors to update guid sum. 209 */ 210 for (; pvd != NULL; pvd = pvd->vdev_parent) 211 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 212 } 213 214 void 215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 216 { 217 int c; 218 uint_t id = cvd->vdev_id; 219 220 ASSERT(cvd->vdev_parent == pvd); 221 222 if (pvd == NULL) 223 return; 224 225 ASSERT(id < pvd->vdev_children); 226 ASSERT(pvd->vdev_child[id] == cvd); 227 228 pvd->vdev_child[id] = NULL; 229 cvd->vdev_parent = NULL; 230 231 for (c = 0; c < pvd->vdev_children; c++) 232 if (pvd->vdev_child[c]) 233 break; 234 235 if (c == pvd->vdev_children) { 236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 237 pvd->vdev_child = NULL; 238 pvd->vdev_children = 0; 239 } 240 241 /* 242 * Walk up all ancestors to update guid sum. 243 */ 244 for (; pvd != NULL; pvd = pvd->vdev_parent) 245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 246 } 247 248 /* 249 * Remove any holes in the child array. 250 */ 251 void 252 vdev_compact_children(vdev_t *pvd) 253 { 254 vdev_t **newchild, *cvd; 255 int oldc = pvd->vdev_children; 256 int newc; 257 258 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 259 260 for (int c = newc = 0; c < oldc; c++) 261 if (pvd->vdev_child[c]) 262 newc++; 263 264 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 265 266 for (int c = newc = 0; c < oldc; c++) { 267 if ((cvd = pvd->vdev_child[c]) != NULL) { 268 newchild[newc] = cvd; 269 cvd->vdev_id = newc++; 270 } 271 } 272 273 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 274 pvd->vdev_child = newchild; 275 pvd->vdev_children = newc; 276 } 277 278 /* 279 * Allocate and minimally initialize a vdev_t. 280 */ 281 vdev_t * 282 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 283 { 284 vdev_t *vd; 285 286 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 287 288 if (spa->spa_root_vdev == NULL) { 289 ASSERT(ops == &vdev_root_ops); 290 spa->spa_root_vdev = vd; 291 spa->spa_load_guid = spa_generate_guid(NULL); 292 } 293 294 if (guid == 0 && ops != &vdev_hole_ops) { 295 if (spa->spa_root_vdev == vd) { 296 /* 297 * The root vdev's guid will also be the pool guid, 298 * which must be unique among all pools. 299 */ 300 guid = spa_generate_guid(NULL); 301 } else { 302 /* 303 * Any other vdev's guid must be unique within the pool. 304 */ 305 guid = spa_generate_guid(spa); 306 } 307 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 308 } 309 310 vd->vdev_spa = spa; 311 vd->vdev_id = id; 312 vd->vdev_guid = guid; 313 vd->vdev_guid_sum = guid; 314 vd->vdev_ops = ops; 315 vd->vdev_state = VDEV_STATE_CLOSED; 316 vd->vdev_ishole = (ops == &vdev_hole_ops); 317 318 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 319 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 320 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 321 for (int t = 0; t < DTL_TYPES; t++) { 322 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 323 &vd->vdev_dtl_lock); 324 } 325 txg_list_create(&vd->vdev_ms_list, 326 offsetof(struct metaslab, ms_txg_node)); 327 txg_list_create(&vd->vdev_dtl_list, 328 offsetof(struct vdev, vdev_dtl_node)); 329 vd->vdev_stat.vs_timestamp = gethrtime(); 330 vdev_queue_init(vd); 331 vdev_cache_init(vd); 332 333 return (vd); 334 } 335 336 /* 337 * Allocate a new vdev. The 'alloctype' is used to control whether we are 338 * creating a new vdev or loading an existing one - the behavior is slightly 339 * different for each case. 340 */ 341 int 342 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 343 int alloctype) 344 { 345 vdev_ops_t *ops; 346 char *type; 347 uint64_t guid = 0, islog, nparity; 348 vdev_t *vd; 349 350 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 351 352 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 353 return (EINVAL); 354 355 if ((ops = vdev_getops(type)) == NULL) 356 return (EINVAL); 357 358 /* 359 * If this is a load, get the vdev guid from the nvlist. 360 * Otherwise, vdev_alloc_common() will generate one for us. 361 */ 362 if (alloctype == VDEV_ALLOC_LOAD) { 363 uint64_t label_id; 364 365 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 366 label_id != id) 367 return (EINVAL); 368 369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 370 return (EINVAL); 371 } else if (alloctype == VDEV_ALLOC_SPARE) { 372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 373 return (EINVAL); 374 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 376 return (EINVAL); 377 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 379 return (EINVAL); 380 } 381 382 /* 383 * The first allocated vdev must be of type 'root'. 384 */ 385 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 386 return (EINVAL); 387 388 /* 389 * Determine whether we're a log vdev. 390 */ 391 islog = 0; 392 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 393 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 394 return (ENOTSUP); 395 396 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 397 return (ENOTSUP); 398 399 /* 400 * Set the nparity property for RAID-Z vdevs. 401 */ 402 nparity = -1ULL; 403 if (ops == &vdev_raidz_ops) { 404 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 405 &nparity) == 0) { 406 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 407 return (EINVAL); 408 /* 409 * Previous versions could only support 1 or 2 parity 410 * device. 411 */ 412 if (nparity > 1 && 413 spa_version(spa) < SPA_VERSION_RAIDZ2) 414 return (ENOTSUP); 415 if (nparity > 2 && 416 spa_version(spa) < SPA_VERSION_RAIDZ3) 417 return (ENOTSUP); 418 } else { 419 /* 420 * We require the parity to be specified for SPAs that 421 * support multiple parity levels. 422 */ 423 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 424 return (EINVAL); 425 /* 426 * Otherwise, we default to 1 parity device for RAID-Z. 427 */ 428 nparity = 1; 429 } 430 } else { 431 nparity = 0; 432 } 433 ASSERT(nparity != -1ULL); 434 435 vd = vdev_alloc_common(spa, id, guid, ops); 436 437 vd->vdev_islog = islog; 438 vd->vdev_nparity = nparity; 439 440 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 441 vd->vdev_path = spa_strdup(vd->vdev_path); 442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 443 vd->vdev_devid = spa_strdup(vd->vdev_devid); 444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 445 &vd->vdev_physpath) == 0) 446 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 448 vd->vdev_fru = spa_strdup(vd->vdev_fru); 449 450 /* 451 * Set the whole_disk property. If it's not specified, leave the value 452 * as -1. 453 */ 454 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 455 &vd->vdev_wholedisk) != 0) 456 vd->vdev_wholedisk = -1ULL; 457 458 /* 459 * Look for the 'not present' flag. This will only be set if the device 460 * was not present at the time of import. 461 */ 462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 463 &vd->vdev_not_present); 464 465 /* 466 * Get the alignment requirement. 467 */ 468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 469 470 /* 471 * Retrieve the vdev creation time. 472 */ 473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 474 &vd->vdev_crtxg); 475 476 /* 477 * If we're a top-level vdev, try to load the allocation parameters. 478 */ 479 if (parent && !parent->vdev_parent && 480 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 482 &vd->vdev_ms_array); 483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 484 &vd->vdev_ms_shift); 485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 486 &vd->vdev_asize); 487 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 488 &vd->vdev_removing); 489 } 490 491 if (parent && !parent->vdev_parent) { 492 ASSERT(alloctype == VDEV_ALLOC_LOAD || 493 alloctype == VDEV_ALLOC_ADD || 494 alloctype == VDEV_ALLOC_SPLIT || 495 alloctype == VDEV_ALLOC_ROOTPOOL); 496 vd->vdev_mg = metaslab_group_create(islog ? 497 spa_log_class(spa) : spa_normal_class(spa), vd); 498 } 499 500 /* 501 * If we're a leaf vdev, try to load the DTL object and other state. 502 */ 503 if (vd->vdev_ops->vdev_op_leaf && 504 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 505 alloctype == VDEV_ALLOC_ROOTPOOL)) { 506 if (alloctype == VDEV_ALLOC_LOAD) { 507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 508 &vd->vdev_dtl_smo.smo_object); 509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 510 &vd->vdev_unspare); 511 } 512 513 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 514 uint64_t spare = 0; 515 516 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 517 &spare) == 0 && spare) 518 spa_spare_add(vd); 519 } 520 521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 522 &vd->vdev_offline); 523 524 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING, 525 &vd->vdev_resilvering); 526 527 /* 528 * When importing a pool, we want to ignore the persistent fault 529 * state, as the diagnosis made on another system may not be 530 * valid in the current context. Local vdevs will 531 * remain in the faulted state. 532 */ 533 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 535 &vd->vdev_faulted); 536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 537 &vd->vdev_degraded); 538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 539 &vd->vdev_removed); 540 541 if (vd->vdev_faulted || vd->vdev_degraded) { 542 char *aux; 543 544 vd->vdev_label_aux = 545 VDEV_AUX_ERR_EXCEEDED; 546 if (nvlist_lookup_string(nv, 547 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 548 strcmp(aux, "external") == 0) 549 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 550 } 551 } 552 } 553 554 /* 555 * Add ourselves to the parent's list of children. 556 */ 557 vdev_add_child(parent, vd); 558 559 *vdp = vd; 560 561 return (0); 562 } 563 564 void 565 vdev_free(vdev_t *vd) 566 { 567 spa_t *spa = vd->vdev_spa; 568 569 /* 570 * vdev_free() implies closing the vdev first. This is simpler than 571 * trying to ensure complicated semantics for all callers. 572 */ 573 vdev_close(vd); 574 575 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 576 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 577 578 /* 579 * Free all children. 580 */ 581 for (int c = 0; c < vd->vdev_children; c++) 582 vdev_free(vd->vdev_child[c]); 583 584 ASSERT(vd->vdev_child == NULL); 585 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 586 587 /* 588 * Discard allocation state. 589 */ 590 if (vd->vdev_mg != NULL) { 591 vdev_metaslab_fini(vd); 592 metaslab_group_destroy(vd->vdev_mg); 593 } 594 595 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 596 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 597 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 598 599 /* 600 * Remove this vdev from its parent's child list. 601 */ 602 vdev_remove_child(vd->vdev_parent, vd); 603 604 ASSERT(vd->vdev_parent == NULL); 605 606 /* 607 * Clean up vdev structure. 608 */ 609 vdev_queue_fini(vd); 610 vdev_cache_fini(vd); 611 612 if (vd->vdev_path) 613 spa_strfree(vd->vdev_path); 614 if (vd->vdev_devid) 615 spa_strfree(vd->vdev_devid); 616 if (vd->vdev_physpath) 617 spa_strfree(vd->vdev_physpath); 618 if (vd->vdev_fru) 619 spa_strfree(vd->vdev_fru); 620 621 if (vd->vdev_isspare) 622 spa_spare_remove(vd); 623 if (vd->vdev_isl2cache) 624 spa_l2cache_remove(vd); 625 626 txg_list_destroy(&vd->vdev_ms_list); 627 txg_list_destroy(&vd->vdev_dtl_list); 628 629 mutex_enter(&vd->vdev_dtl_lock); 630 for (int t = 0; t < DTL_TYPES; t++) { 631 space_map_unload(&vd->vdev_dtl[t]); 632 space_map_destroy(&vd->vdev_dtl[t]); 633 } 634 mutex_exit(&vd->vdev_dtl_lock); 635 636 mutex_destroy(&vd->vdev_dtl_lock); 637 mutex_destroy(&vd->vdev_stat_lock); 638 mutex_destroy(&vd->vdev_probe_lock); 639 640 if (vd == spa->spa_root_vdev) 641 spa->spa_root_vdev = NULL; 642 643 kmem_free(vd, sizeof (vdev_t)); 644 } 645 646 /* 647 * Transfer top-level vdev state from svd to tvd. 648 */ 649 static void 650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 651 { 652 spa_t *spa = svd->vdev_spa; 653 metaslab_t *msp; 654 vdev_t *vd; 655 int t; 656 657 ASSERT(tvd == tvd->vdev_top); 658 659 tvd->vdev_ms_array = svd->vdev_ms_array; 660 tvd->vdev_ms_shift = svd->vdev_ms_shift; 661 tvd->vdev_ms_count = svd->vdev_ms_count; 662 663 svd->vdev_ms_array = 0; 664 svd->vdev_ms_shift = 0; 665 svd->vdev_ms_count = 0; 666 667 tvd->vdev_mg = svd->vdev_mg; 668 tvd->vdev_ms = svd->vdev_ms; 669 670 svd->vdev_mg = NULL; 671 svd->vdev_ms = NULL; 672 673 if (tvd->vdev_mg != NULL) 674 tvd->vdev_mg->mg_vd = tvd; 675 676 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 677 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 678 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 679 680 svd->vdev_stat.vs_alloc = 0; 681 svd->vdev_stat.vs_space = 0; 682 svd->vdev_stat.vs_dspace = 0; 683 684 for (t = 0; t < TXG_SIZE; t++) { 685 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 686 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 687 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 688 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 689 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 690 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 691 } 692 693 if (list_link_active(&svd->vdev_config_dirty_node)) { 694 vdev_config_clean(svd); 695 vdev_config_dirty(tvd); 696 } 697 698 if (list_link_active(&svd->vdev_state_dirty_node)) { 699 vdev_state_clean(svd); 700 vdev_state_dirty(tvd); 701 } 702 703 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 704 svd->vdev_deflate_ratio = 0; 705 706 tvd->vdev_islog = svd->vdev_islog; 707 svd->vdev_islog = 0; 708 } 709 710 static void 711 vdev_top_update(vdev_t *tvd, vdev_t *vd) 712 { 713 if (vd == NULL) 714 return; 715 716 vd->vdev_top = tvd; 717 718 for (int c = 0; c < vd->vdev_children; c++) 719 vdev_top_update(tvd, vd->vdev_child[c]); 720 } 721 722 /* 723 * Add a mirror/replacing vdev above an existing vdev. 724 */ 725 vdev_t * 726 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 727 { 728 spa_t *spa = cvd->vdev_spa; 729 vdev_t *pvd = cvd->vdev_parent; 730 vdev_t *mvd; 731 732 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 733 734 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 735 736 mvd->vdev_asize = cvd->vdev_asize; 737 mvd->vdev_min_asize = cvd->vdev_min_asize; 738 mvd->vdev_ashift = cvd->vdev_ashift; 739 mvd->vdev_state = cvd->vdev_state; 740 mvd->vdev_crtxg = cvd->vdev_crtxg; 741 742 vdev_remove_child(pvd, cvd); 743 vdev_add_child(pvd, mvd); 744 cvd->vdev_id = mvd->vdev_children; 745 vdev_add_child(mvd, cvd); 746 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 747 748 if (mvd == mvd->vdev_top) 749 vdev_top_transfer(cvd, mvd); 750 751 return (mvd); 752 } 753 754 /* 755 * Remove a 1-way mirror/replacing vdev from the tree. 756 */ 757 void 758 vdev_remove_parent(vdev_t *cvd) 759 { 760 vdev_t *mvd = cvd->vdev_parent; 761 vdev_t *pvd = mvd->vdev_parent; 762 763 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 764 765 ASSERT(mvd->vdev_children == 1); 766 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 767 mvd->vdev_ops == &vdev_replacing_ops || 768 mvd->vdev_ops == &vdev_spare_ops); 769 cvd->vdev_ashift = mvd->vdev_ashift; 770 771 vdev_remove_child(mvd, cvd); 772 vdev_remove_child(pvd, mvd); 773 774 /* 775 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 776 * Otherwise, we could have detached an offline device, and when we 777 * go to import the pool we'll think we have two top-level vdevs, 778 * instead of a different version of the same top-level vdev. 779 */ 780 if (mvd->vdev_top == mvd) { 781 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 782 cvd->vdev_orig_guid = cvd->vdev_guid; 783 cvd->vdev_guid += guid_delta; 784 cvd->vdev_guid_sum += guid_delta; 785 } 786 cvd->vdev_id = mvd->vdev_id; 787 vdev_add_child(pvd, cvd); 788 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 789 790 if (cvd == cvd->vdev_top) 791 vdev_top_transfer(mvd, cvd); 792 793 ASSERT(mvd->vdev_children == 0); 794 vdev_free(mvd); 795 } 796 797 int 798 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 799 { 800 spa_t *spa = vd->vdev_spa; 801 objset_t *mos = spa->spa_meta_objset; 802 uint64_t m; 803 uint64_t oldc = vd->vdev_ms_count; 804 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 805 metaslab_t **mspp; 806 int error; 807 808 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 809 810 /* 811 * This vdev is not being allocated from yet or is a hole. 812 */ 813 if (vd->vdev_ms_shift == 0) 814 return (0); 815 816 ASSERT(!vd->vdev_ishole); 817 818 /* 819 * Compute the raidz-deflation ratio. Note, we hard-code 820 * in 128k (1 << 17) because it is the current "typical" blocksize. 821 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 822 * or we will inconsistently account for existing bp's. 823 */ 824 vd->vdev_deflate_ratio = (1 << 17) / 825 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 826 827 ASSERT(oldc <= newc); 828 829 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 830 831 if (oldc != 0) { 832 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 833 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 834 } 835 836 vd->vdev_ms = mspp; 837 vd->vdev_ms_count = newc; 838 839 for (m = oldc; m < newc; m++) { 840 space_map_obj_t smo = { 0, 0, 0 }; 841 if (txg == 0) { 842 uint64_t object = 0; 843 error = dmu_read(mos, vd->vdev_ms_array, 844 m * sizeof (uint64_t), sizeof (uint64_t), &object, 845 DMU_READ_PREFETCH); 846 if (error) 847 return (error); 848 if (object != 0) { 849 dmu_buf_t *db; 850 error = dmu_bonus_hold(mos, object, FTAG, &db); 851 if (error) 852 return (error); 853 ASSERT3U(db->db_size, >=, sizeof (smo)); 854 bcopy(db->db_data, &smo, sizeof (smo)); 855 ASSERT3U(smo.smo_object, ==, object); 856 dmu_buf_rele(db, FTAG); 857 } 858 } 859 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 860 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 861 } 862 863 if (txg == 0) 864 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 865 866 /* 867 * If the vdev is being removed we don't activate 868 * the metaslabs since we want to ensure that no new 869 * allocations are performed on this device. 870 */ 871 if (oldc == 0 && !vd->vdev_removing) 872 metaslab_group_activate(vd->vdev_mg); 873 874 if (txg == 0) 875 spa_config_exit(spa, SCL_ALLOC, FTAG); 876 877 return (0); 878 } 879 880 void 881 vdev_metaslab_fini(vdev_t *vd) 882 { 883 uint64_t m; 884 uint64_t count = vd->vdev_ms_count; 885 886 if (vd->vdev_ms != NULL) { 887 metaslab_group_passivate(vd->vdev_mg); 888 for (m = 0; m < count; m++) 889 if (vd->vdev_ms[m] != NULL) 890 metaslab_fini(vd->vdev_ms[m]); 891 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 892 vd->vdev_ms = NULL; 893 } 894 } 895 896 typedef struct vdev_probe_stats { 897 boolean_t vps_readable; 898 boolean_t vps_writeable; 899 int vps_flags; 900 } vdev_probe_stats_t; 901 902 static void 903 vdev_probe_done(zio_t *zio) 904 { 905 spa_t *spa = zio->io_spa; 906 vdev_t *vd = zio->io_vd; 907 vdev_probe_stats_t *vps = zio->io_private; 908 909 ASSERT(vd->vdev_probe_zio != NULL); 910 911 if (zio->io_type == ZIO_TYPE_READ) { 912 if (zio->io_error == 0) 913 vps->vps_readable = 1; 914 if (zio->io_error == 0 && spa_writeable(spa)) { 915 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 916 zio->io_offset, zio->io_size, zio->io_data, 917 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 918 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 919 } else { 920 zio_buf_free(zio->io_data, zio->io_size); 921 } 922 } else if (zio->io_type == ZIO_TYPE_WRITE) { 923 if (zio->io_error == 0) 924 vps->vps_writeable = 1; 925 zio_buf_free(zio->io_data, zio->io_size); 926 } else if (zio->io_type == ZIO_TYPE_NULL) { 927 zio_t *pio; 928 929 vd->vdev_cant_read |= !vps->vps_readable; 930 vd->vdev_cant_write |= !vps->vps_writeable; 931 932 if (vdev_readable(vd) && 933 (vdev_writeable(vd) || !spa_writeable(spa))) { 934 zio->io_error = 0; 935 } else { 936 ASSERT(zio->io_error != 0); 937 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 938 spa, vd, NULL, 0, 0); 939 zio->io_error = ENXIO; 940 } 941 942 mutex_enter(&vd->vdev_probe_lock); 943 ASSERT(vd->vdev_probe_zio == zio); 944 vd->vdev_probe_zio = NULL; 945 mutex_exit(&vd->vdev_probe_lock); 946 947 while ((pio = zio_walk_parents(zio)) != NULL) 948 if (!vdev_accessible(vd, pio)) 949 pio->io_error = ENXIO; 950 951 kmem_free(vps, sizeof (*vps)); 952 } 953 } 954 955 /* 956 * Determine whether this device is accessible by reading and writing 957 * to several known locations: the pad regions of each vdev label 958 * but the first (which we leave alone in case it contains a VTOC). 959 */ 960 zio_t * 961 vdev_probe(vdev_t *vd, zio_t *zio) 962 { 963 spa_t *spa = vd->vdev_spa; 964 vdev_probe_stats_t *vps = NULL; 965 zio_t *pio; 966 967 ASSERT(vd->vdev_ops->vdev_op_leaf); 968 969 /* 970 * Don't probe the probe. 971 */ 972 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 973 return (NULL); 974 975 /* 976 * To prevent 'probe storms' when a device fails, we create 977 * just one probe i/o at a time. All zios that want to probe 978 * this vdev will become parents of the probe io. 979 */ 980 mutex_enter(&vd->vdev_probe_lock); 981 982 if ((pio = vd->vdev_probe_zio) == NULL) { 983 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 984 985 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 986 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 987 ZIO_FLAG_TRYHARD; 988 989 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 990 /* 991 * vdev_cant_read and vdev_cant_write can only 992 * transition from TRUE to FALSE when we have the 993 * SCL_ZIO lock as writer; otherwise they can only 994 * transition from FALSE to TRUE. This ensures that 995 * any zio looking at these values can assume that 996 * failures persist for the life of the I/O. That's 997 * important because when a device has intermittent 998 * connectivity problems, we want to ensure that 999 * they're ascribed to the device (ENXIO) and not 1000 * the zio (EIO). 1001 * 1002 * Since we hold SCL_ZIO as writer here, clear both 1003 * values so the probe can reevaluate from first 1004 * principles. 1005 */ 1006 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1007 vd->vdev_cant_read = B_FALSE; 1008 vd->vdev_cant_write = B_FALSE; 1009 } 1010 1011 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1012 vdev_probe_done, vps, 1013 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1014 1015 /* 1016 * We can't change the vdev state in this context, so we 1017 * kick off an async task to do it on our behalf. 1018 */ 1019 if (zio != NULL) { 1020 vd->vdev_probe_wanted = B_TRUE; 1021 spa_async_request(spa, SPA_ASYNC_PROBE); 1022 } 1023 } 1024 1025 if (zio != NULL) 1026 zio_add_child(zio, pio); 1027 1028 mutex_exit(&vd->vdev_probe_lock); 1029 1030 if (vps == NULL) { 1031 ASSERT(zio != NULL); 1032 return (NULL); 1033 } 1034 1035 for (int l = 1; l < VDEV_LABELS; l++) { 1036 zio_nowait(zio_read_phys(pio, vd, 1037 vdev_label_offset(vd->vdev_psize, l, 1038 offsetof(vdev_label_t, vl_pad2)), 1039 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1040 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1041 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1042 } 1043 1044 if (zio == NULL) 1045 return (pio); 1046 1047 zio_nowait(pio); 1048 return (NULL); 1049 } 1050 1051 static void 1052 vdev_open_child(void *arg) 1053 { 1054 vdev_t *vd = arg; 1055 1056 vd->vdev_open_thread = curthread; 1057 vd->vdev_open_error = vdev_open(vd); 1058 vd->vdev_open_thread = NULL; 1059 } 1060 1061 boolean_t 1062 vdev_uses_zvols(vdev_t *vd) 1063 { 1064 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1065 strlen(ZVOL_DIR)) == 0) 1066 return (B_TRUE); 1067 for (int c = 0; c < vd->vdev_children; c++) 1068 if (vdev_uses_zvols(vd->vdev_child[c])) 1069 return (B_TRUE); 1070 return (B_FALSE); 1071 } 1072 1073 void 1074 vdev_open_children(vdev_t *vd) 1075 { 1076 taskq_t *tq; 1077 int children = vd->vdev_children; 1078 1079 /* 1080 * in order to handle pools on top of zvols, do the opens 1081 * in a single thread so that the same thread holds the 1082 * spa_namespace_lock 1083 */ 1084 if (vdev_uses_zvols(vd)) { 1085 for (int c = 0; c < children; c++) 1086 vd->vdev_child[c]->vdev_open_error = 1087 vdev_open(vd->vdev_child[c]); 1088 return; 1089 } 1090 tq = taskq_create("vdev_open", children, minclsyspri, 1091 children, children, TASKQ_PREPOPULATE); 1092 1093 for (int c = 0; c < children; c++) 1094 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1095 TQ_SLEEP) != NULL); 1096 1097 taskq_destroy(tq); 1098 } 1099 1100 /* 1101 * Prepare a virtual device for access. 1102 */ 1103 int 1104 vdev_open(vdev_t *vd) 1105 { 1106 spa_t *spa = vd->vdev_spa; 1107 int error; 1108 uint64_t osize = 0; 1109 uint64_t asize, psize; 1110 uint64_t ashift = 0; 1111 1112 ASSERT(vd->vdev_open_thread == curthread || 1113 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1114 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1115 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1116 vd->vdev_state == VDEV_STATE_OFFLINE); 1117 1118 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1119 vd->vdev_cant_read = B_FALSE; 1120 vd->vdev_cant_write = B_FALSE; 1121 vd->vdev_min_asize = vdev_get_min_asize(vd); 1122 1123 /* 1124 * If this vdev is not removed, check its fault status. If it's 1125 * faulted, bail out of the open. 1126 */ 1127 if (!vd->vdev_removed && vd->vdev_faulted) { 1128 ASSERT(vd->vdev_children == 0); 1129 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1130 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1131 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1132 vd->vdev_label_aux); 1133 return (ENXIO); 1134 } else if (vd->vdev_offline) { 1135 ASSERT(vd->vdev_children == 0); 1136 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1137 return (ENXIO); 1138 } 1139 1140 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 1141 1142 /* 1143 * Reset the vdev_reopening flag so that we actually close 1144 * the vdev on error. 1145 */ 1146 vd->vdev_reopening = B_FALSE; 1147 if (zio_injection_enabled && error == 0) 1148 error = zio_handle_device_injection(vd, NULL, ENXIO); 1149 1150 if (error) { 1151 if (vd->vdev_removed && 1152 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1153 vd->vdev_removed = B_FALSE; 1154 1155 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1156 vd->vdev_stat.vs_aux); 1157 return (error); 1158 } 1159 1160 vd->vdev_removed = B_FALSE; 1161 1162 /* 1163 * Recheck the faulted flag now that we have confirmed that 1164 * the vdev is accessible. If we're faulted, bail. 1165 */ 1166 if (vd->vdev_faulted) { 1167 ASSERT(vd->vdev_children == 0); 1168 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1169 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1170 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1171 vd->vdev_label_aux); 1172 return (ENXIO); 1173 } 1174 1175 if (vd->vdev_degraded) { 1176 ASSERT(vd->vdev_children == 0); 1177 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1178 VDEV_AUX_ERR_EXCEEDED); 1179 } else { 1180 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1181 } 1182 1183 /* 1184 * For hole or missing vdevs we just return success. 1185 */ 1186 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1187 return (0); 1188 1189 for (int c = 0; c < vd->vdev_children; c++) { 1190 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1191 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1192 VDEV_AUX_NONE); 1193 break; 1194 } 1195 } 1196 1197 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1198 1199 if (vd->vdev_children == 0) { 1200 if (osize < SPA_MINDEVSIZE) { 1201 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1202 VDEV_AUX_TOO_SMALL); 1203 return (EOVERFLOW); 1204 } 1205 psize = osize; 1206 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1207 } else { 1208 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1209 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1210 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1211 VDEV_AUX_TOO_SMALL); 1212 return (EOVERFLOW); 1213 } 1214 psize = 0; 1215 asize = osize; 1216 } 1217 1218 vd->vdev_psize = psize; 1219 1220 /* 1221 * Make sure the allocatable size hasn't shrunk. 1222 */ 1223 if (asize < vd->vdev_min_asize) { 1224 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1225 VDEV_AUX_BAD_LABEL); 1226 return (EINVAL); 1227 } 1228 1229 if (vd->vdev_asize == 0) { 1230 /* 1231 * This is the first-ever open, so use the computed values. 1232 * For testing purposes, a higher ashift can be requested. 1233 */ 1234 vd->vdev_asize = asize; 1235 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1236 } else { 1237 /* 1238 * Make sure the alignment requirement hasn't increased. 1239 */ 1240 if (ashift > vd->vdev_top->vdev_ashift) { 1241 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1242 VDEV_AUX_BAD_LABEL); 1243 return (EINVAL); 1244 } 1245 } 1246 1247 /* 1248 * If all children are healthy and the asize has increased, 1249 * then we've experienced dynamic LUN growth. If automatic 1250 * expansion is enabled then use the additional space. 1251 */ 1252 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1253 (vd->vdev_expanding || spa->spa_autoexpand)) 1254 vd->vdev_asize = asize; 1255 1256 vdev_set_min_asize(vd); 1257 1258 /* 1259 * Ensure we can issue some IO before declaring the 1260 * vdev open for business. 1261 */ 1262 if (vd->vdev_ops->vdev_op_leaf && 1263 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1264 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1265 VDEV_AUX_ERR_EXCEEDED); 1266 return (error); 1267 } 1268 1269 /* 1270 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1271 * resilver. But don't do this if we are doing a reopen for a scrub, 1272 * since this would just restart the scrub we are already doing. 1273 */ 1274 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1275 vdev_resilver_needed(vd, NULL, NULL)) 1276 spa_async_request(spa, SPA_ASYNC_RESILVER); 1277 1278 return (0); 1279 } 1280 1281 /* 1282 * Called once the vdevs are all opened, this routine validates the label 1283 * contents. This needs to be done before vdev_load() so that we don't 1284 * inadvertently do repair I/Os to the wrong device. 1285 * 1286 * This function will only return failure if one of the vdevs indicates that it 1287 * has since been destroyed or exported. This is only possible if 1288 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1289 * will be updated but the function will return 0. 1290 */ 1291 int 1292 vdev_validate(vdev_t *vd) 1293 { 1294 spa_t *spa = vd->vdev_spa; 1295 nvlist_t *label; 1296 uint64_t guid = 0, top_guid; 1297 uint64_t state; 1298 1299 for (int c = 0; c < vd->vdev_children; c++) 1300 if (vdev_validate(vd->vdev_child[c]) != 0) 1301 return (EBADF); 1302 1303 /* 1304 * If the device has already failed, or was marked offline, don't do 1305 * any further validation. Otherwise, label I/O will fail and we will 1306 * overwrite the previous state. 1307 */ 1308 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1309 uint64_t aux_guid = 0; 1310 nvlist_t *nvl; 1311 1312 if ((label = vdev_label_read_config(vd)) == NULL) { 1313 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1314 VDEV_AUX_BAD_LABEL); 1315 return (0); 1316 } 1317 1318 /* 1319 * Determine if this vdev has been split off into another 1320 * pool. If so, then refuse to open it. 1321 */ 1322 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1323 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1324 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1325 VDEV_AUX_SPLIT_POOL); 1326 nvlist_free(label); 1327 return (0); 1328 } 1329 1330 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1331 &guid) != 0 || guid != spa_guid(spa)) { 1332 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1333 VDEV_AUX_CORRUPT_DATA); 1334 nvlist_free(label); 1335 return (0); 1336 } 1337 1338 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1339 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1340 &aux_guid) != 0) 1341 aux_guid = 0; 1342 1343 /* 1344 * If this vdev just became a top-level vdev because its 1345 * sibling was detached, it will have adopted the parent's 1346 * vdev guid -- but the label may or may not be on disk yet. 1347 * Fortunately, either version of the label will have the 1348 * same top guid, so if we're a top-level vdev, we can 1349 * safely compare to that instead. 1350 * 1351 * If we split this vdev off instead, then we also check the 1352 * original pool's guid. We don't want to consider the vdev 1353 * corrupt if it is partway through a split operation. 1354 */ 1355 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1356 &guid) != 0 || 1357 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1358 &top_guid) != 0 || 1359 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1360 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1361 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1362 VDEV_AUX_CORRUPT_DATA); 1363 nvlist_free(label); 1364 return (0); 1365 } 1366 1367 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1368 &state) != 0) { 1369 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1370 VDEV_AUX_CORRUPT_DATA); 1371 nvlist_free(label); 1372 return (0); 1373 } 1374 1375 nvlist_free(label); 1376 1377 /* 1378 * If this is a verbatim import, no need to check the 1379 * state of the pool. 1380 */ 1381 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1382 spa_load_state(spa) == SPA_LOAD_OPEN && 1383 state != POOL_STATE_ACTIVE) 1384 return (EBADF); 1385 1386 /* 1387 * If we were able to open and validate a vdev that was 1388 * previously marked permanently unavailable, clear that state 1389 * now. 1390 */ 1391 if (vd->vdev_not_present) 1392 vd->vdev_not_present = 0; 1393 } 1394 1395 return (0); 1396 } 1397 1398 /* 1399 * Close a virtual device. 1400 */ 1401 void 1402 vdev_close(vdev_t *vd) 1403 { 1404 spa_t *spa = vd->vdev_spa; 1405 vdev_t *pvd = vd->vdev_parent; 1406 1407 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1408 1409 /* 1410 * If our parent is reopening, then we are as well, unless we are 1411 * going offline. 1412 */ 1413 if (pvd != NULL && pvd->vdev_reopening) 1414 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1415 1416 vd->vdev_ops->vdev_op_close(vd); 1417 1418 vdev_cache_purge(vd); 1419 1420 /* 1421 * We record the previous state before we close it, so that if we are 1422 * doing a reopen(), we don't generate FMA ereports if we notice that 1423 * it's still faulted. 1424 */ 1425 vd->vdev_prevstate = vd->vdev_state; 1426 1427 if (vd->vdev_offline) 1428 vd->vdev_state = VDEV_STATE_OFFLINE; 1429 else 1430 vd->vdev_state = VDEV_STATE_CLOSED; 1431 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1432 } 1433 1434 void 1435 vdev_hold(vdev_t *vd) 1436 { 1437 spa_t *spa = vd->vdev_spa; 1438 1439 ASSERT(spa_is_root(spa)); 1440 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1441 return; 1442 1443 for (int c = 0; c < vd->vdev_children; c++) 1444 vdev_hold(vd->vdev_child[c]); 1445 1446 if (vd->vdev_ops->vdev_op_leaf) 1447 vd->vdev_ops->vdev_op_hold(vd); 1448 } 1449 1450 void 1451 vdev_rele(vdev_t *vd) 1452 { 1453 spa_t *spa = vd->vdev_spa; 1454 1455 ASSERT(spa_is_root(spa)); 1456 for (int c = 0; c < vd->vdev_children; c++) 1457 vdev_rele(vd->vdev_child[c]); 1458 1459 if (vd->vdev_ops->vdev_op_leaf) 1460 vd->vdev_ops->vdev_op_rele(vd); 1461 } 1462 1463 /* 1464 * Reopen all interior vdevs and any unopened leaves. We don't actually 1465 * reopen leaf vdevs which had previously been opened as they might deadlock 1466 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1467 * If the leaf has never been opened then open it, as usual. 1468 */ 1469 void 1470 vdev_reopen(vdev_t *vd) 1471 { 1472 spa_t *spa = vd->vdev_spa; 1473 1474 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1475 1476 /* set the reopening flag unless we're taking the vdev offline */ 1477 vd->vdev_reopening = !vd->vdev_offline; 1478 vdev_close(vd); 1479 (void) vdev_open(vd); 1480 1481 /* 1482 * Call vdev_validate() here to make sure we have the same device. 1483 * Otherwise, a device with an invalid label could be successfully 1484 * opened in response to vdev_reopen(). 1485 */ 1486 if (vd->vdev_aux) { 1487 (void) vdev_validate_aux(vd); 1488 if (vdev_readable(vd) && vdev_writeable(vd) && 1489 vd->vdev_aux == &spa->spa_l2cache && 1490 !l2arc_vdev_present(vd)) 1491 l2arc_add_vdev(spa, vd); 1492 } else { 1493 (void) vdev_validate(vd); 1494 } 1495 1496 /* 1497 * Reassess parent vdev's health. 1498 */ 1499 vdev_propagate_state(vd); 1500 } 1501 1502 int 1503 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1504 { 1505 int error; 1506 1507 /* 1508 * Normally, partial opens (e.g. of a mirror) are allowed. 1509 * For a create, however, we want to fail the request if 1510 * there are any components we can't open. 1511 */ 1512 error = vdev_open(vd); 1513 1514 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1515 vdev_close(vd); 1516 return (error ? error : ENXIO); 1517 } 1518 1519 /* 1520 * Recursively initialize all labels. 1521 */ 1522 if ((error = vdev_label_init(vd, txg, isreplacing ? 1523 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1524 vdev_close(vd); 1525 return (error); 1526 } 1527 1528 return (0); 1529 } 1530 1531 void 1532 vdev_metaslab_set_size(vdev_t *vd) 1533 { 1534 /* 1535 * Aim for roughly 200 metaslabs per vdev. 1536 */ 1537 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1538 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1539 } 1540 1541 void 1542 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1543 { 1544 ASSERT(vd == vd->vdev_top); 1545 ASSERT(!vd->vdev_ishole); 1546 ASSERT(ISP2(flags)); 1547 ASSERT(spa_writeable(vd->vdev_spa)); 1548 1549 if (flags & VDD_METASLAB) 1550 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1551 1552 if (flags & VDD_DTL) 1553 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1554 1555 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1556 } 1557 1558 /* 1559 * DTLs. 1560 * 1561 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1562 * the vdev has less than perfect replication. There are four kinds of DTL: 1563 * 1564 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1565 * 1566 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1567 * 1568 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1569 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1570 * txgs that was scrubbed. 1571 * 1572 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1573 * persistent errors or just some device being offline. 1574 * Unlike the other three, the DTL_OUTAGE map is not generally 1575 * maintained; it's only computed when needed, typically to 1576 * determine whether a device can be detached. 1577 * 1578 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1579 * either has the data or it doesn't. 1580 * 1581 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1582 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1583 * if any child is less than fully replicated, then so is its parent. 1584 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1585 * comprising only those txgs which appear in 'maxfaults' or more children; 1586 * those are the txgs we don't have enough replication to read. For example, 1587 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1588 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1589 * two child DTL_MISSING maps. 1590 * 1591 * It should be clear from the above that to compute the DTLs and outage maps 1592 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1593 * Therefore, that is all we keep on disk. When loading the pool, or after 1594 * a configuration change, we generate all other DTLs from first principles. 1595 */ 1596 void 1597 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1598 { 1599 space_map_t *sm = &vd->vdev_dtl[t]; 1600 1601 ASSERT(t < DTL_TYPES); 1602 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1603 ASSERT(spa_writeable(vd->vdev_spa)); 1604 1605 mutex_enter(sm->sm_lock); 1606 if (!space_map_contains(sm, txg, size)) 1607 space_map_add(sm, txg, size); 1608 mutex_exit(sm->sm_lock); 1609 } 1610 1611 boolean_t 1612 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1613 { 1614 space_map_t *sm = &vd->vdev_dtl[t]; 1615 boolean_t dirty = B_FALSE; 1616 1617 ASSERT(t < DTL_TYPES); 1618 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1619 1620 mutex_enter(sm->sm_lock); 1621 if (sm->sm_space != 0) 1622 dirty = space_map_contains(sm, txg, size); 1623 mutex_exit(sm->sm_lock); 1624 1625 return (dirty); 1626 } 1627 1628 boolean_t 1629 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1630 { 1631 space_map_t *sm = &vd->vdev_dtl[t]; 1632 boolean_t empty; 1633 1634 mutex_enter(sm->sm_lock); 1635 empty = (sm->sm_space == 0); 1636 mutex_exit(sm->sm_lock); 1637 1638 return (empty); 1639 } 1640 1641 /* 1642 * Reassess DTLs after a config change or scrub completion. 1643 */ 1644 void 1645 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1646 { 1647 spa_t *spa = vd->vdev_spa; 1648 avl_tree_t reftree; 1649 int minref; 1650 1651 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1652 1653 for (int c = 0; c < vd->vdev_children; c++) 1654 vdev_dtl_reassess(vd->vdev_child[c], txg, 1655 scrub_txg, scrub_done); 1656 1657 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1658 return; 1659 1660 if (vd->vdev_ops->vdev_op_leaf) { 1661 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1662 1663 mutex_enter(&vd->vdev_dtl_lock); 1664 if (scrub_txg != 0 && 1665 (spa->spa_scrub_started || 1666 (scn && scn->scn_phys.scn_errors == 0))) { 1667 /* 1668 * We completed a scrub up to scrub_txg. If we 1669 * did it without rebooting, then the scrub dtl 1670 * will be valid, so excise the old region and 1671 * fold in the scrub dtl. Otherwise, leave the 1672 * dtl as-is if there was an error. 1673 * 1674 * There's little trick here: to excise the beginning 1675 * of the DTL_MISSING map, we put it into a reference 1676 * tree and then add a segment with refcnt -1 that 1677 * covers the range [0, scrub_txg). This means 1678 * that each txg in that range has refcnt -1 or 0. 1679 * We then add DTL_SCRUB with a refcnt of 2, so that 1680 * entries in the range [0, scrub_txg) will have a 1681 * positive refcnt -- either 1 or 2. We then convert 1682 * the reference tree into the new DTL_MISSING map. 1683 */ 1684 space_map_ref_create(&reftree); 1685 space_map_ref_add_map(&reftree, 1686 &vd->vdev_dtl[DTL_MISSING], 1); 1687 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1688 space_map_ref_add_map(&reftree, 1689 &vd->vdev_dtl[DTL_SCRUB], 2); 1690 space_map_ref_generate_map(&reftree, 1691 &vd->vdev_dtl[DTL_MISSING], 1); 1692 space_map_ref_destroy(&reftree); 1693 } 1694 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1695 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1696 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1697 if (scrub_done) 1698 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1699 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1700 if (!vdev_readable(vd)) 1701 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1702 else 1703 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1704 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1705 mutex_exit(&vd->vdev_dtl_lock); 1706 1707 if (txg != 0) 1708 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1709 return; 1710 } 1711 1712 mutex_enter(&vd->vdev_dtl_lock); 1713 for (int t = 0; t < DTL_TYPES; t++) { 1714 /* account for child's outage in parent's missing map */ 1715 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1716 if (t == DTL_SCRUB) 1717 continue; /* leaf vdevs only */ 1718 if (t == DTL_PARTIAL) 1719 minref = 1; /* i.e. non-zero */ 1720 else if (vd->vdev_nparity != 0) 1721 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1722 else 1723 minref = vd->vdev_children; /* any kind of mirror */ 1724 space_map_ref_create(&reftree); 1725 for (int c = 0; c < vd->vdev_children; c++) { 1726 vdev_t *cvd = vd->vdev_child[c]; 1727 mutex_enter(&cvd->vdev_dtl_lock); 1728 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1); 1729 mutex_exit(&cvd->vdev_dtl_lock); 1730 } 1731 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1732 space_map_ref_destroy(&reftree); 1733 } 1734 mutex_exit(&vd->vdev_dtl_lock); 1735 } 1736 1737 static int 1738 vdev_dtl_load(vdev_t *vd) 1739 { 1740 spa_t *spa = vd->vdev_spa; 1741 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1742 objset_t *mos = spa->spa_meta_objset; 1743 dmu_buf_t *db; 1744 int error; 1745 1746 ASSERT(vd->vdev_children == 0); 1747 1748 if (smo->smo_object == 0) 1749 return (0); 1750 1751 ASSERT(!vd->vdev_ishole); 1752 1753 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1754 return (error); 1755 1756 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1757 bcopy(db->db_data, smo, sizeof (*smo)); 1758 dmu_buf_rele(db, FTAG); 1759 1760 mutex_enter(&vd->vdev_dtl_lock); 1761 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1762 NULL, SM_ALLOC, smo, mos); 1763 mutex_exit(&vd->vdev_dtl_lock); 1764 1765 return (error); 1766 } 1767 1768 void 1769 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1770 { 1771 spa_t *spa = vd->vdev_spa; 1772 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1773 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1774 objset_t *mos = spa->spa_meta_objset; 1775 space_map_t smsync; 1776 kmutex_t smlock; 1777 dmu_buf_t *db; 1778 dmu_tx_t *tx; 1779 1780 ASSERT(!vd->vdev_ishole); 1781 1782 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1783 1784 if (vd->vdev_detached) { 1785 if (smo->smo_object != 0) { 1786 int err = dmu_object_free(mos, smo->smo_object, tx); 1787 ASSERT3U(err, ==, 0); 1788 smo->smo_object = 0; 1789 } 1790 dmu_tx_commit(tx); 1791 return; 1792 } 1793 1794 if (smo->smo_object == 0) { 1795 ASSERT(smo->smo_objsize == 0); 1796 ASSERT(smo->smo_alloc == 0); 1797 smo->smo_object = dmu_object_alloc(mos, 1798 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1799 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1800 ASSERT(smo->smo_object != 0); 1801 vdev_config_dirty(vd->vdev_top); 1802 } 1803 1804 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1805 1806 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1807 &smlock); 1808 1809 mutex_enter(&smlock); 1810 1811 mutex_enter(&vd->vdev_dtl_lock); 1812 space_map_walk(sm, space_map_add, &smsync); 1813 mutex_exit(&vd->vdev_dtl_lock); 1814 1815 space_map_truncate(smo, mos, tx); 1816 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1817 1818 space_map_destroy(&smsync); 1819 1820 mutex_exit(&smlock); 1821 mutex_destroy(&smlock); 1822 1823 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1824 dmu_buf_will_dirty(db, tx); 1825 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1826 bcopy(smo, db->db_data, sizeof (*smo)); 1827 dmu_buf_rele(db, FTAG); 1828 1829 dmu_tx_commit(tx); 1830 } 1831 1832 /* 1833 * Determine whether the specified vdev can be offlined/detached/removed 1834 * without losing data. 1835 */ 1836 boolean_t 1837 vdev_dtl_required(vdev_t *vd) 1838 { 1839 spa_t *spa = vd->vdev_spa; 1840 vdev_t *tvd = vd->vdev_top; 1841 uint8_t cant_read = vd->vdev_cant_read; 1842 boolean_t required; 1843 1844 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1845 1846 if (vd == spa->spa_root_vdev || vd == tvd) 1847 return (B_TRUE); 1848 1849 /* 1850 * Temporarily mark the device as unreadable, and then determine 1851 * whether this results in any DTL outages in the top-level vdev. 1852 * If not, we can safely offline/detach/remove the device. 1853 */ 1854 vd->vdev_cant_read = B_TRUE; 1855 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1856 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1857 vd->vdev_cant_read = cant_read; 1858 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1859 1860 if (!required && zio_injection_enabled) 1861 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 1862 1863 return (required); 1864 } 1865 1866 /* 1867 * Determine if resilver is needed, and if so the txg range. 1868 */ 1869 boolean_t 1870 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1871 { 1872 boolean_t needed = B_FALSE; 1873 uint64_t thismin = UINT64_MAX; 1874 uint64_t thismax = 0; 1875 1876 if (vd->vdev_children == 0) { 1877 mutex_enter(&vd->vdev_dtl_lock); 1878 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1879 vdev_writeable(vd)) { 1880 space_seg_t *ss; 1881 1882 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1883 thismin = ss->ss_start - 1; 1884 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1885 thismax = ss->ss_end; 1886 needed = B_TRUE; 1887 } 1888 mutex_exit(&vd->vdev_dtl_lock); 1889 } else { 1890 for (int c = 0; c < vd->vdev_children; c++) { 1891 vdev_t *cvd = vd->vdev_child[c]; 1892 uint64_t cmin, cmax; 1893 1894 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1895 thismin = MIN(thismin, cmin); 1896 thismax = MAX(thismax, cmax); 1897 needed = B_TRUE; 1898 } 1899 } 1900 } 1901 1902 if (needed && minp) { 1903 *minp = thismin; 1904 *maxp = thismax; 1905 } 1906 return (needed); 1907 } 1908 1909 void 1910 vdev_load(vdev_t *vd) 1911 { 1912 /* 1913 * Recursively load all children. 1914 */ 1915 for (int c = 0; c < vd->vdev_children; c++) 1916 vdev_load(vd->vdev_child[c]); 1917 1918 /* 1919 * If this is a top-level vdev, initialize its metaslabs. 1920 */ 1921 if (vd == vd->vdev_top && !vd->vdev_ishole && 1922 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1923 vdev_metaslab_init(vd, 0) != 0)) 1924 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1925 VDEV_AUX_CORRUPT_DATA); 1926 1927 /* 1928 * If this is a leaf vdev, load its DTL. 1929 */ 1930 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1931 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1932 VDEV_AUX_CORRUPT_DATA); 1933 } 1934 1935 /* 1936 * The special vdev case is used for hot spares and l2cache devices. Its 1937 * sole purpose it to set the vdev state for the associated vdev. To do this, 1938 * we make sure that we can open the underlying device, then try to read the 1939 * label, and make sure that the label is sane and that it hasn't been 1940 * repurposed to another pool. 1941 */ 1942 int 1943 vdev_validate_aux(vdev_t *vd) 1944 { 1945 nvlist_t *label; 1946 uint64_t guid, version; 1947 uint64_t state; 1948 1949 if (!vdev_readable(vd)) 1950 return (0); 1951 1952 if ((label = vdev_label_read_config(vd)) == NULL) { 1953 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1954 VDEV_AUX_CORRUPT_DATA); 1955 return (-1); 1956 } 1957 1958 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1959 version > SPA_VERSION || 1960 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1961 guid != vd->vdev_guid || 1962 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1963 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1964 VDEV_AUX_CORRUPT_DATA); 1965 nvlist_free(label); 1966 return (-1); 1967 } 1968 1969 /* 1970 * We don't actually check the pool state here. If it's in fact in 1971 * use by another pool, we update this fact on the fly when requested. 1972 */ 1973 nvlist_free(label); 1974 return (0); 1975 } 1976 1977 void 1978 vdev_remove(vdev_t *vd, uint64_t txg) 1979 { 1980 spa_t *spa = vd->vdev_spa; 1981 objset_t *mos = spa->spa_meta_objset; 1982 dmu_tx_t *tx; 1983 1984 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 1985 1986 if (vd->vdev_dtl_smo.smo_object) { 1987 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0); 1988 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx); 1989 vd->vdev_dtl_smo.smo_object = 0; 1990 } 1991 1992 if (vd->vdev_ms != NULL) { 1993 for (int m = 0; m < vd->vdev_ms_count; m++) { 1994 metaslab_t *msp = vd->vdev_ms[m]; 1995 1996 if (msp == NULL || msp->ms_smo.smo_object == 0) 1997 continue; 1998 1999 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0); 2000 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx); 2001 msp->ms_smo.smo_object = 0; 2002 } 2003 } 2004 2005 if (vd->vdev_ms_array) { 2006 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2007 vd->vdev_ms_array = 0; 2008 vd->vdev_ms_shift = 0; 2009 } 2010 dmu_tx_commit(tx); 2011 } 2012 2013 void 2014 vdev_sync_done(vdev_t *vd, uint64_t txg) 2015 { 2016 metaslab_t *msp; 2017 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2018 2019 ASSERT(!vd->vdev_ishole); 2020 2021 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2022 metaslab_sync_done(msp, txg); 2023 2024 if (reassess) 2025 metaslab_sync_reassess(vd->vdev_mg); 2026 } 2027 2028 void 2029 vdev_sync(vdev_t *vd, uint64_t txg) 2030 { 2031 spa_t *spa = vd->vdev_spa; 2032 vdev_t *lvd; 2033 metaslab_t *msp; 2034 dmu_tx_t *tx; 2035 2036 ASSERT(!vd->vdev_ishole); 2037 2038 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2039 ASSERT(vd == vd->vdev_top); 2040 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2041 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2042 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2043 ASSERT(vd->vdev_ms_array != 0); 2044 vdev_config_dirty(vd); 2045 dmu_tx_commit(tx); 2046 } 2047 2048 /* 2049 * Remove the metadata associated with this vdev once it's empty. 2050 */ 2051 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2052 vdev_remove(vd, txg); 2053 2054 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2055 metaslab_sync(msp, txg); 2056 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2057 } 2058 2059 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2060 vdev_dtl_sync(lvd, txg); 2061 2062 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2063 } 2064 2065 uint64_t 2066 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2067 { 2068 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2069 } 2070 2071 /* 2072 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2073 * not be opened, and no I/O is attempted. 2074 */ 2075 int 2076 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2077 { 2078 vdev_t *vd, *tvd; 2079 2080 spa_vdev_state_enter(spa, SCL_NONE); 2081 2082 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2083 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2084 2085 if (!vd->vdev_ops->vdev_op_leaf) 2086 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2087 2088 tvd = vd->vdev_top; 2089 2090 /* 2091 * We don't directly use the aux state here, but if we do a 2092 * vdev_reopen(), we need this value to be present to remember why we 2093 * were faulted. 2094 */ 2095 vd->vdev_label_aux = aux; 2096 2097 /* 2098 * Faulted state takes precedence over degraded. 2099 */ 2100 vd->vdev_delayed_close = B_FALSE; 2101 vd->vdev_faulted = 1ULL; 2102 vd->vdev_degraded = 0ULL; 2103 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2104 2105 /* 2106 * If this device has the only valid copy of the data, then 2107 * back off and simply mark the vdev as degraded instead. 2108 */ 2109 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2110 vd->vdev_degraded = 1ULL; 2111 vd->vdev_faulted = 0ULL; 2112 2113 /* 2114 * If we reopen the device and it's not dead, only then do we 2115 * mark it degraded. 2116 */ 2117 vdev_reopen(tvd); 2118 2119 if (vdev_readable(vd)) 2120 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2121 } 2122 2123 return (spa_vdev_state_exit(spa, vd, 0)); 2124 } 2125 2126 /* 2127 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2128 * user that something is wrong. The vdev continues to operate as normal as far 2129 * as I/O is concerned. 2130 */ 2131 int 2132 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2133 { 2134 vdev_t *vd; 2135 2136 spa_vdev_state_enter(spa, SCL_NONE); 2137 2138 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2139 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2140 2141 if (!vd->vdev_ops->vdev_op_leaf) 2142 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2143 2144 /* 2145 * If the vdev is already faulted, then don't do anything. 2146 */ 2147 if (vd->vdev_faulted || vd->vdev_degraded) 2148 return (spa_vdev_state_exit(spa, NULL, 0)); 2149 2150 vd->vdev_degraded = 1ULL; 2151 if (!vdev_is_dead(vd)) 2152 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2153 aux); 2154 2155 return (spa_vdev_state_exit(spa, vd, 0)); 2156 } 2157 2158 /* 2159 * Online the given vdev. If 'unspare' is set, it implies two things. First, 2160 * any attached spare device should be detached when the device finishes 2161 * resilvering. Second, the online should be treated like a 'test' online case, 2162 * so no FMA events are generated if the device fails to open. 2163 */ 2164 int 2165 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2166 { 2167 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2168 2169 spa_vdev_state_enter(spa, SCL_NONE); 2170 2171 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2172 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2173 2174 if (!vd->vdev_ops->vdev_op_leaf) 2175 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2176 2177 tvd = vd->vdev_top; 2178 vd->vdev_offline = B_FALSE; 2179 vd->vdev_tmpoffline = B_FALSE; 2180 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2181 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2182 2183 /* XXX - L2ARC 1.0 does not support expansion */ 2184 if (!vd->vdev_aux) { 2185 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2186 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2187 } 2188 2189 vdev_reopen(tvd); 2190 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2191 2192 if (!vd->vdev_aux) { 2193 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2194 pvd->vdev_expanding = B_FALSE; 2195 } 2196 2197 if (newstate) 2198 *newstate = vd->vdev_state; 2199 if ((flags & ZFS_ONLINE_UNSPARE) && 2200 !vdev_is_dead(vd) && vd->vdev_parent && 2201 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2202 vd->vdev_parent->vdev_child[0] == vd) 2203 vd->vdev_unspare = B_TRUE; 2204 2205 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2206 2207 /* XXX - L2ARC 1.0 does not support expansion */ 2208 if (vd->vdev_aux) 2209 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2210 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2211 } 2212 return (spa_vdev_state_exit(spa, vd, 0)); 2213 } 2214 2215 static int 2216 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2217 { 2218 vdev_t *vd, *tvd; 2219 int error = 0; 2220 uint64_t generation; 2221 metaslab_group_t *mg; 2222 2223 top: 2224 spa_vdev_state_enter(spa, SCL_ALLOC); 2225 2226 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2227 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2228 2229 if (!vd->vdev_ops->vdev_op_leaf) 2230 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2231 2232 tvd = vd->vdev_top; 2233 mg = tvd->vdev_mg; 2234 generation = spa->spa_config_generation + 1; 2235 2236 /* 2237 * If the device isn't already offline, try to offline it. 2238 */ 2239 if (!vd->vdev_offline) { 2240 /* 2241 * If this device has the only valid copy of some data, 2242 * don't allow it to be offlined. Log devices are always 2243 * expendable. 2244 */ 2245 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2246 vdev_dtl_required(vd)) 2247 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2248 2249 /* 2250 * If the top-level is a slog and it has had allocations 2251 * then proceed. We check that the vdev's metaslab group 2252 * is not NULL since it's possible that we may have just 2253 * added this vdev but not yet initialized its metaslabs. 2254 */ 2255 if (tvd->vdev_islog && mg != NULL) { 2256 /* 2257 * Prevent any future allocations. 2258 */ 2259 metaslab_group_passivate(mg); 2260 (void) spa_vdev_state_exit(spa, vd, 0); 2261 2262 error = spa_offline_log(spa); 2263 2264 spa_vdev_state_enter(spa, SCL_ALLOC); 2265 2266 /* 2267 * Check to see if the config has changed. 2268 */ 2269 if (error || generation != spa->spa_config_generation) { 2270 metaslab_group_activate(mg); 2271 if (error) 2272 return (spa_vdev_state_exit(spa, 2273 vd, error)); 2274 (void) spa_vdev_state_exit(spa, vd, 0); 2275 goto top; 2276 } 2277 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0); 2278 } 2279 2280 /* 2281 * Offline this device and reopen its top-level vdev. 2282 * If the top-level vdev is a log device then just offline 2283 * it. Otherwise, if this action results in the top-level 2284 * vdev becoming unusable, undo it and fail the request. 2285 */ 2286 vd->vdev_offline = B_TRUE; 2287 vdev_reopen(tvd); 2288 2289 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2290 vdev_is_dead(tvd)) { 2291 vd->vdev_offline = B_FALSE; 2292 vdev_reopen(tvd); 2293 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2294 } 2295 2296 /* 2297 * Add the device back into the metaslab rotor so that 2298 * once we online the device it's open for business. 2299 */ 2300 if (tvd->vdev_islog && mg != NULL) 2301 metaslab_group_activate(mg); 2302 } 2303 2304 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2305 2306 return (spa_vdev_state_exit(spa, vd, 0)); 2307 } 2308 2309 int 2310 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2311 { 2312 int error; 2313 2314 mutex_enter(&spa->spa_vdev_top_lock); 2315 error = vdev_offline_locked(spa, guid, flags); 2316 mutex_exit(&spa->spa_vdev_top_lock); 2317 2318 return (error); 2319 } 2320 2321 /* 2322 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2323 * vdev_offline(), we assume the spa config is locked. We also clear all 2324 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2325 */ 2326 void 2327 vdev_clear(spa_t *spa, vdev_t *vd) 2328 { 2329 vdev_t *rvd = spa->spa_root_vdev; 2330 2331 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2332 2333 if (vd == NULL) 2334 vd = rvd; 2335 2336 vd->vdev_stat.vs_read_errors = 0; 2337 vd->vdev_stat.vs_write_errors = 0; 2338 vd->vdev_stat.vs_checksum_errors = 0; 2339 2340 for (int c = 0; c < vd->vdev_children; c++) 2341 vdev_clear(spa, vd->vdev_child[c]); 2342 2343 /* 2344 * If we're in the FAULTED state or have experienced failed I/O, then 2345 * clear the persistent state and attempt to reopen the device. We 2346 * also mark the vdev config dirty, so that the new faulted state is 2347 * written out to disk. 2348 */ 2349 if (vd->vdev_faulted || vd->vdev_degraded || 2350 !vdev_readable(vd) || !vdev_writeable(vd)) { 2351 2352 /* 2353 * When reopening in reponse to a clear event, it may be due to 2354 * a fmadm repair request. In this case, if the device is 2355 * still broken, we want to still post the ereport again. 2356 */ 2357 vd->vdev_forcefault = B_TRUE; 2358 2359 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2360 vd->vdev_cant_read = B_FALSE; 2361 vd->vdev_cant_write = B_FALSE; 2362 2363 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2364 2365 vd->vdev_forcefault = B_FALSE; 2366 2367 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2368 vdev_state_dirty(vd->vdev_top); 2369 2370 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2371 spa_async_request(spa, SPA_ASYNC_RESILVER); 2372 2373 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2374 } 2375 2376 /* 2377 * When clearing a FMA-diagnosed fault, we always want to 2378 * unspare the device, as we assume that the original spare was 2379 * done in response to the FMA fault. 2380 */ 2381 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2382 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2383 vd->vdev_parent->vdev_child[0] == vd) 2384 vd->vdev_unspare = B_TRUE; 2385 } 2386 2387 boolean_t 2388 vdev_is_dead(vdev_t *vd) 2389 { 2390 /* 2391 * Holes and missing devices are always considered "dead". 2392 * This simplifies the code since we don't have to check for 2393 * these types of devices in the various code paths. 2394 * Instead we rely on the fact that we skip over dead devices 2395 * before issuing I/O to them. 2396 */ 2397 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2398 vd->vdev_ops == &vdev_missing_ops); 2399 } 2400 2401 boolean_t 2402 vdev_readable(vdev_t *vd) 2403 { 2404 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2405 } 2406 2407 boolean_t 2408 vdev_writeable(vdev_t *vd) 2409 { 2410 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2411 } 2412 2413 boolean_t 2414 vdev_allocatable(vdev_t *vd) 2415 { 2416 uint64_t state = vd->vdev_state; 2417 2418 /* 2419 * We currently allow allocations from vdevs which may be in the 2420 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2421 * fails to reopen then we'll catch it later when we're holding 2422 * the proper locks. Note that we have to get the vdev state 2423 * in a local variable because although it changes atomically, 2424 * we're asking two separate questions about it. 2425 */ 2426 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2427 !vd->vdev_cant_write && !vd->vdev_ishole); 2428 } 2429 2430 boolean_t 2431 vdev_accessible(vdev_t *vd, zio_t *zio) 2432 { 2433 ASSERT(zio->io_vd == vd); 2434 2435 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2436 return (B_FALSE); 2437 2438 if (zio->io_type == ZIO_TYPE_READ) 2439 return (!vd->vdev_cant_read); 2440 2441 if (zio->io_type == ZIO_TYPE_WRITE) 2442 return (!vd->vdev_cant_write); 2443 2444 return (B_TRUE); 2445 } 2446 2447 /* 2448 * Get statistics for the given vdev. 2449 */ 2450 void 2451 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2452 { 2453 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2454 2455 mutex_enter(&vd->vdev_stat_lock); 2456 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2457 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2458 vs->vs_state = vd->vdev_state; 2459 vs->vs_rsize = vdev_get_min_asize(vd); 2460 if (vd->vdev_ops->vdev_op_leaf) 2461 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2462 mutex_exit(&vd->vdev_stat_lock); 2463 2464 /* 2465 * If we're getting stats on the root vdev, aggregate the I/O counts 2466 * over all top-level vdevs (i.e. the direct children of the root). 2467 */ 2468 if (vd == rvd) { 2469 for (int c = 0; c < rvd->vdev_children; c++) { 2470 vdev_t *cvd = rvd->vdev_child[c]; 2471 vdev_stat_t *cvs = &cvd->vdev_stat; 2472 2473 mutex_enter(&vd->vdev_stat_lock); 2474 for (int t = 0; t < ZIO_TYPES; t++) { 2475 vs->vs_ops[t] += cvs->vs_ops[t]; 2476 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2477 } 2478 cvs->vs_scan_removing = cvd->vdev_removing; 2479 mutex_exit(&vd->vdev_stat_lock); 2480 } 2481 } 2482 } 2483 2484 void 2485 vdev_clear_stats(vdev_t *vd) 2486 { 2487 mutex_enter(&vd->vdev_stat_lock); 2488 vd->vdev_stat.vs_space = 0; 2489 vd->vdev_stat.vs_dspace = 0; 2490 vd->vdev_stat.vs_alloc = 0; 2491 mutex_exit(&vd->vdev_stat_lock); 2492 } 2493 2494 void 2495 vdev_scan_stat_init(vdev_t *vd) 2496 { 2497 vdev_stat_t *vs = &vd->vdev_stat; 2498 2499 for (int c = 0; c < vd->vdev_children; c++) 2500 vdev_scan_stat_init(vd->vdev_child[c]); 2501 2502 mutex_enter(&vd->vdev_stat_lock); 2503 vs->vs_scan_processed = 0; 2504 mutex_exit(&vd->vdev_stat_lock); 2505 } 2506 2507 void 2508 vdev_stat_update(zio_t *zio, uint64_t psize) 2509 { 2510 spa_t *spa = zio->io_spa; 2511 vdev_t *rvd = spa->spa_root_vdev; 2512 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2513 vdev_t *pvd; 2514 uint64_t txg = zio->io_txg; 2515 vdev_stat_t *vs = &vd->vdev_stat; 2516 zio_type_t type = zio->io_type; 2517 int flags = zio->io_flags; 2518 2519 /* 2520 * If this i/o is a gang leader, it didn't do any actual work. 2521 */ 2522 if (zio->io_gang_tree) 2523 return; 2524 2525 if (zio->io_error == 0) { 2526 /* 2527 * If this is a root i/o, don't count it -- we've already 2528 * counted the top-level vdevs, and vdev_get_stats() will 2529 * aggregate them when asked. This reduces contention on 2530 * the root vdev_stat_lock and implicitly handles blocks 2531 * that compress away to holes, for which there is no i/o. 2532 * (Holes never create vdev children, so all the counters 2533 * remain zero, which is what we want.) 2534 * 2535 * Note: this only applies to successful i/o (io_error == 0) 2536 * because unlike i/o counts, errors are not additive. 2537 * When reading a ditto block, for example, failure of 2538 * one top-level vdev does not imply a root-level error. 2539 */ 2540 if (vd == rvd) 2541 return; 2542 2543 ASSERT(vd == zio->io_vd); 2544 2545 if (flags & ZIO_FLAG_IO_BYPASS) 2546 return; 2547 2548 mutex_enter(&vd->vdev_stat_lock); 2549 2550 if (flags & ZIO_FLAG_IO_REPAIR) { 2551 if (flags & ZIO_FLAG_SCAN_THREAD) { 2552 dsl_scan_phys_t *scn_phys = 2553 &spa->spa_dsl_pool->dp_scan->scn_phys; 2554 uint64_t *processed = &scn_phys->scn_processed; 2555 2556 /* XXX cleanup? */ 2557 if (vd->vdev_ops->vdev_op_leaf) 2558 atomic_add_64(processed, psize); 2559 vs->vs_scan_processed += psize; 2560 } 2561 2562 if (flags & ZIO_FLAG_SELF_HEAL) 2563 vs->vs_self_healed += psize; 2564 } 2565 2566 vs->vs_ops[type]++; 2567 vs->vs_bytes[type] += psize; 2568 2569 mutex_exit(&vd->vdev_stat_lock); 2570 return; 2571 } 2572 2573 if (flags & ZIO_FLAG_SPECULATIVE) 2574 return; 2575 2576 /* 2577 * If this is an I/O error that is going to be retried, then ignore the 2578 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2579 * hard errors, when in reality they can happen for any number of 2580 * innocuous reasons (bus resets, MPxIO link failure, etc). 2581 */ 2582 if (zio->io_error == EIO && 2583 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2584 return; 2585 2586 /* 2587 * Intent logs writes won't propagate their error to the root 2588 * I/O so don't mark these types of failures as pool-level 2589 * errors. 2590 */ 2591 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2592 return; 2593 2594 mutex_enter(&vd->vdev_stat_lock); 2595 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2596 if (zio->io_error == ECKSUM) 2597 vs->vs_checksum_errors++; 2598 else 2599 vs->vs_read_errors++; 2600 } 2601 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2602 vs->vs_write_errors++; 2603 mutex_exit(&vd->vdev_stat_lock); 2604 2605 if (type == ZIO_TYPE_WRITE && txg != 0 && 2606 (!(flags & ZIO_FLAG_IO_REPAIR) || 2607 (flags & ZIO_FLAG_SCAN_THREAD) || 2608 spa->spa_claiming)) { 2609 /* 2610 * This is either a normal write (not a repair), or it's 2611 * a repair induced by the scrub thread, or it's a repair 2612 * made by zil_claim() during spa_load() in the first txg. 2613 * In the normal case, we commit the DTL change in the same 2614 * txg as the block was born. In the scrub-induced repair 2615 * case, we know that scrubs run in first-pass syncing context, 2616 * so we commit the DTL change in spa_syncing_txg(spa). 2617 * In the zil_claim() case, we commit in spa_first_txg(spa). 2618 * 2619 * We currently do not make DTL entries for failed spontaneous 2620 * self-healing writes triggered by normal (non-scrubbing) 2621 * reads, because we have no transactional context in which to 2622 * do so -- and it's not clear that it'd be desirable anyway. 2623 */ 2624 if (vd->vdev_ops->vdev_op_leaf) { 2625 uint64_t commit_txg = txg; 2626 if (flags & ZIO_FLAG_SCAN_THREAD) { 2627 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2628 ASSERT(spa_sync_pass(spa) == 1); 2629 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2630 commit_txg = spa_syncing_txg(spa); 2631 } else if (spa->spa_claiming) { 2632 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2633 commit_txg = spa_first_txg(spa); 2634 } 2635 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2636 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2637 return; 2638 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2639 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2640 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2641 } 2642 if (vd != rvd) 2643 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2644 } 2645 } 2646 2647 /* 2648 * Update the in-core space usage stats for this vdev, its metaslab class, 2649 * and the root vdev. 2650 */ 2651 void 2652 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2653 int64_t space_delta) 2654 { 2655 int64_t dspace_delta = space_delta; 2656 spa_t *spa = vd->vdev_spa; 2657 vdev_t *rvd = spa->spa_root_vdev; 2658 metaslab_group_t *mg = vd->vdev_mg; 2659 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2660 2661 ASSERT(vd == vd->vdev_top); 2662 2663 /* 2664 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2665 * factor. We must calculate this here and not at the root vdev 2666 * because the root vdev's psize-to-asize is simply the max of its 2667 * childrens', thus not accurate enough for us. 2668 */ 2669 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2670 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2671 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2672 vd->vdev_deflate_ratio; 2673 2674 mutex_enter(&vd->vdev_stat_lock); 2675 vd->vdev_stat.vs_alloc += alloc_delta; 2676 vd->vdev_stat.vs_space += space_delta; 2677 vd->vdev_stat.vs_dspace += dspace_delta; 2678 mutex_exit(&vd->vdev_stat_lock); 2679 2680 if (mc == spa_normal_class(spa)) { 2681 mutex_enter(&rvd->vdev_stat_lock); 2682 rvd->vdev_stat.vs_alloc += alloc_delta; 2683 rvd->vdev_stat.vs_space += space_delta; 2684 rvd->vdev_stat.vs_dspace += dspace_delta; 2685 mutex_exit(&rvd->vdev_stat_lock); 2686 } 2687 2688 if (mc != NULL) { 2689 ASSERT(rvd == vd->vdev_parent); 2690 ASSERT(vd->vdev_ms_count != 0); 2691 2692 metaslab_class_space_update(mc, 2693 alloc_delta, defer_delta, space_delta, dspace_delta); 2694 } 2695 } 2696 2697 /* 2698 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2699 * so that it will be written out next time the vdev configuration is synced. 2700 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2701 */ 2702 void 2703 vdev_config_dirty(vdev_t *vd) 2704 { 2705 spa_t *spa = vd->vdev_spa; 2706 vdev_t *rvd = spa->spa_root_vdev; 2707 int c; 2708 2709 ASSERT(spa_writeable(spa)); 2710 2711 /* 2712 * If this is an aux vdev (as with l2cache and spare devices), then we 2713 * update the vdev config manually and set the sync flag. 2714 */ 2715 if (vd->vdev_aux != NULL) { 2716 spa_aux_vdev_t *sav = vd->vdev_aux; 2717 nvlist_t **aux; 2718 uint_t naux; 2719 2720 for (c = 0; c < sav->sav_count; c++) { 2721 if (sav->sav_vdevs[c] == vd) 2722 break; 2723 } 2724 2725 if (c == sav->sav_count) { 2726 /* 2727 * We're being removed. There's nothing more to do. 2728 */ 2729 ASSERT(sav->sav_sync == B_TRUE); 2730 return; 2731 } 2732 2733 sav->sav_sync = B_TRUE; 2734 2735 if (nvlist_lookup_nvlist_array(sav->sav_config, 2736 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2737 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2738 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2739 } 2740 2741 ASSERT(c < naux); 2742 2743 /* 2744 * Setting the nvlist in the middle if the array is a little 2745 * sketchy, but it will work. 2746 */ 2747 nvlist_free(aux[c]); 2748 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2749 2750 return; 2751 } 2752 2753 /* 2754 * The dirty list is protected by the SCL_CONFIG lock. The caller 2755 * must either hold SCL_CONFIG as writer, or must be the sync thread 2756 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2757 * so this is sufficient to ensure mutual exclusion. 2758 */ 2759 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2760 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2761 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2762 2763 if (vd == rvd) { 2764 for (c = 0; c < rvd->vdev_children; c++) 2765 vdev_config_dirty(rvd->vdev_child[c]); 2766 } else { 2767 ASSERT(vd == vd->vdev_top); 2768 2769 if (!list_link_active(&vd->vdev_config_dirty_node) && 2770 !vd->vdev_ishole) 2771 list_insert_head(&spa->spa_config_dirty_list, vd); 2772 } 2773 } 2774 2775 void 2776 vdev_config_clean(vdev_t *vd) 2777 { 2778 spa_t *spa = vd->vdev_spa; 2779 2780 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2781 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2782 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2783 2784 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2785 list_remove(&spa->spa_config_dirty_list, vd); 2786 } 2787 2788 /* 2789 * Mark a top-level vdev's state as dirty, so that the next pass of 2790 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2791 * the state changes from larger config changes because they require 2792 * much less locking, and are often needed for administrative actions. 2793 */ 2794 void 2795 vdev_state_dirty(vdev_t *vd) 2796 { 2797 spa_t *spa = vd->vdev_spa; 2798 2799 ASSERT(spa_writeable(spa)); 2800 ASSERT(vd == vd->vdev_top); 2801 2802 /* 2803 * The state list is protected by the SCL_STATE lock. The caller 2804 * must either hold SCL_STATE as writer, or must be the sync thread 2805 * (which holds SCL_STATE as reader). There's only one sync thread, 2806 * so this is sufficient to ensure mutual exclusion. 2807 */ 2808 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2809 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2810 spa_config_held(spa, SCL_STATE, RW_READER))); 2811 2812 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2813 list_insert_head(&spa->spa_state_dirty_list, vd); 2814 } 2815 2816 void 2817 vdev_state_clean(vdev_t *vd) 2818 { 2819 spa_t *spa = vd->vdev_spa; 2820 2821 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2822 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2823 spa_config_held(spa, SCL_STATE, RW_READER))); 2824 2825 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2826 list_remove(&spa->spa_state_dirty_list, vd); 2827 } 2828 2829 /* 2830 * Propagate vdev state up from children to parent. 2831 */ 2832 void 2833 vdev_propagate_state(vdev_t *vd) 2834 { 2835 spa_t *spa = vd->vdev_spa; 2836 vdev_t *rvd = spa->spa_root_vdev; 2837 int degraded = 0, faulted = 0; 2838 int corrupted = 0; 2839 vdev_t *child; 2840 2841 if (vd->vdev_children > 0) { 2842 for (int c = 0; c < vd->vdev_children; c++) { 2843 child = vd->vdev_child[c]; 2844 2845 /* 2846 * Don't factor holes into the decision. 2847 */ 2848 if (child->vdev_ishole) 2849 continue; 2850 2851 if (!vdev_readable(child) || 2852 (!vdev_writeable(child) && spa_writeable(spa))) { 2853 /* 2854 * Root special: if there is a top-level log 2855 * device, treat the root vdev as if it were 2856 * degraded. 2857 */ 2858 if (child->vdev_islog && vd == rvd) 2859 degraded++; 2860 else 2861 faulted++; 2862 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2863 degraded++; 2864 } 2865 2866 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2867 corrupted++; 2868 } 2869 2870 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2871 2872 /* 2873 * Root special: if there is a top-level vdev that cannot be 2874 * opened due to corrupted metadata, then propagate the root 2875 * vdev's aux state as 'corrupt' rather than 'insufficient 2876 * replicas'. 2877 */ 2878 if (corrupted && vd == rvd && 2879 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2880 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2881 VDEV_AUX_CORRUPT_DATA); 2882 } 2883 2884 if (vd->vdev_parent) 2885 vdev_propagate_state(vd->vdev_parent); 2886 } 2887 2888 /* 2889 * Set a vdev's state. If this is during an open, we don't update the parent 2890 * state, because we're in the process of opening children depth-first. 2891 * Otherwise, we propagate the change to the parent. 2892 * 2893 * If this routine places a device in a faulted state, an appropriate ereport is 2894 * generated. 2895 */ 2896 void 2897 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2898 { 2899 uint64_t save_state; 2900 spa_t *spa = vd->vdev_spa; 2901 2902 if (state == vd->vdev_state) { 2903 vd->vdev_stat.vs_aux = aux; 2904 return; 2905 } 2906 2907 save_state = vd->vdev_state; 2908 2909 vd->vdev_state = state; 2910 vd->vdev_stat.vs_aux = aux; 2911 2912 /* 2913 * If we are setting the vdev state to anything but an open state, then 2914 * always close the underlying device unless the device has requested 2915 * a delayed close (i.e. we're about to remove or fault the device). 2916 * Otherwise, we keep accessible but invalid devices open forever. 2917 * We don't call vdev_close() itself, because that implies some extra 2918 * checks (offline, etc) that we don't want here. This is limited to 2919 * leaf devices, because otherwise closing the device will affect other 2920 * children. 2921 */ 2922 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 2923 vd->vdev_ops->vdev_op_leaf) 2924 vd->vdev_ops->vdev_op_close(vd); 2925 2926 /* 2927 * If we have brought this vdev back into service, we need 2928 * to notify fmd so that it can gracefully repair any outstanding 2929 * cases due to a missing device. We do this in all cases, even those 2930 * that probably don't correlate to a repaired fault. This is sure to 2931 * catch all cases, and we let the zfs-retire agent sort it out. If 2932 * this is a transient state it's OK, as the retire agent will 2933 * double-check the state of the vdev before repairing it. 2934 */ 2935 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 2936 vd->vdev_prevstate != state) 2937 zfs_post_state_change(spa, vd); 2938 2939 if (vd->vdev_removed && 2940 state == VDEV_STATE_CANT_OPEN && 2941 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2942 /* 2943 * If the previous state is set to VDEV_STATE_REMOVED, then this 2944 * device was previously marked removed and someone attempted to 2945 * reopen it. If this failed due to a nonexistent device, then 2946 * keep the device in the REMOVED state. We also let this be if 2947 * it is one of our special test online cases, which is only 2948 * attempting to online the device and shouldn't generate an FMA 2949 * fault. 2950 */ 2951 vd->vdev_state = VDEV_STATE_REMOVED; 2952 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2953 } else if (state == VDEV_STATE_REMOVED) { 2954 vd->vdev_removed = B_TRUE; 2955 } else if (state == VDEV_STATE_CANT_OPEN) { 2956 /* 2957 * If we fail to open a vdev during an import or recovery, we 2958 * mark it as "not available", which signifies that it was 2959 * never there to begin with. Failure to open such a device 2960 * is not considered an error. 2961 */ 2962 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 2963 spa_load_state(spa) == SPA_LOAD_RECOVER) && 2964 vd->vdev_ops->vdev_op_leaf) 2965 vd->vdev_not_present = 1; 2966 2967 /* 2968 * Post the appropriate ereport. If the 'prevstate' field is 2969 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2970 * that this is part of a vdev_reopen(). In this case, we don't 2971 * want to post the ereport if the device was already in the 2972 * CANT_OPEN state beforehand. 2973 * 2974 * If the 'checkremove' flag is set, then this is an attempt to 2975 * online the device in response to an insertion event. If we 2976 * hit this case, then we have detected an insertion event for a 2977 * faulted or offline device that wasn't in the removed state. 2978 * In this scenario, we don't post an ereport because we are 2979 * about to replace the device, or attempt an online with 2980 * vdev_forcefault, which will generate the fault for us. 2981 */ 2982 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2983 !vd->vdev_not_present && !vd->vdev_checkremove && 2984 vd != spa->spa_root_vdev) { 2985 const char *class; 2986 2987 switch (aux) { 2988 case VDEV_AUX_OPEN_FAILED: 2989 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2990 break; 2991 case VDEV_AUX_CORRUPT_DATA: 2992 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2993 break; 2994 case VDEV_AUX_NO_REPLICAS: 2995 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2996 break; 2997 case VDEV_AUX_BAD_GUID_SUM: 2998 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2999 break; 3000 case VDEV_AUX_TOO_SMALL: 3001 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3002 break; 3003 case VDEV_AUX_BAD_LABEL: 3004 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3005 break; 3006 default: 3007 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3008 } 3009 3010 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3011 } 3012 3013 /* Erase any notion of persistent removed state */ 3014 vd->vdev_removed = B_FALSE; 3015 } else { 3016 vd->vdev_removed = B_FALSE; 3017 } 3018 3019 if (!isopen && vd->vdev_parent) 3020 vdev_propagate_state(vd->vdev_parent); 3021 } 3022 3023 /* 3024 * Check the vdev configuration to ensure that it's capable of supporting 3025 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3026 * In addition, only a single top-level vdev is allowed and none of the leaves 3027 * can be wholedisks. 3028 */ 3029 boolean_t 3030 vdev_is_bootable(vdev_t *vd) 3031 { 3032 if (!vd->vdev_ops->vdev_op_leaf) { 3033 char *vdev_type = vd->vdev_ops->vdev_op_type; 3034 3035 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3036 vd->vdev_children > 1) { 3037 return (B_FALSE); 3038 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3039 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3040 return (B_FALSE); 3041 } 3042 } else if (vd->vdev_wholedisk == 1) { 3043 return (B_FALSE); 3044 } 3045 3046 for (int c = 0; c < vd->vdev_children; c++) { 3047 if (!vdev_is_bootable(vd->vdev_child[c])) 3048 return (B_FALSE); 3049 } 3050 return (B_TRUE); 3051 } 3052 3053 /* 3054 * Load the state from the original vdev tree (ovd) which 3055 * we've retrieved from the MOS config object. If the original 3056 * vdev was offline or faulted then we transfer that state to the 3057 * device in the current vdev tree (nvd). 3058 */ 3059 void 3060 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3061 { 3062 spa_t *spa = nvd->vdev_spa; 3063 3064 ASSERT(nvd->vdev_top->vdev_islog); 3065 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3066 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3067 3068 for (int c = 0; c < nvd->vdev_children; c++) 3069 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3070 3071 if (nvd->vdev_ops->vdev_op_leaf) { 3072 /* 3073 * Restore the persistent vdev state 3074 */ 3075 nvd->vdev_offline = ovd->vdev_offline; 3076 nvd->vdev_faulted = ovd->vdev_faulted; 3077 nvd->vdev_degraded = ovd->vdev_degraded; 3078 nvd->vdev_removed = ovd->vdev_removed; 3079 } 3080 } 3081 3082 /* 3083 * Determine if a log device has valid content. If the vdev was 3084 * removed or faulted in the MOS config then we know that 3085 * the content on the log device has already been written to the pool. 3086 */ 3087 boolean_t 3088 vdev_log_state_valid(vdev_t *vd) 3089 { 3090 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3091 !vd->vdev_removed) 3092 return (B_TRUE); 3093 3094 for (int c = 0; c < vd->vdev_children; c++) 3095 if (vdev_log_state_valid(vd->vdev_child[c])) 3096 return (B_TRUE); 3097 3098 return (B_FALSE); 3099 } 3100 3101 /* 3102 * Expand a vdev if possible. 3103 */ 3104 void 3105 vdev_expand(vdev_t *vd, uint64_t txg) 3106 { 3107 ASSERT(vd->vdev_top == vd); 3108 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3109 3110 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3111 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3112 vdev_config_dirty(vd); 3113 } 3114 } 3115 3116 /* 3117 * Split a vdev. 3118 */ 3119 void 3120 vdev_split(vdev_t *vd) 3121 { 3122 vdev_t *cvd, *pvd = vd->vdev_parent; 3123 3124 vdev_remove_child(pvd, vd); 3125 vdev_compact_children(pvd); 3126 3127 cvd = pvd->vdev_child[0]; 3128 if (pvd->vdev_children == 1) { 3129 vdev_remove_parent(cvd); 3130 cvd->vdev_splitting = B_TRUE; 3131 } 3132 vdev_propagate_state(cvd); 3133 } 3134