xref: /titanic_51/usr/src/uts/common/fs/zfs/vdev.c (revision 3db30c357c20c1eb09687fd0194e0ca62d6358cb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 
44 /*
45  * Virtual device management.
46  */
47 
48 static vdev_ops_t *vdev_ops_table[] = {
49 	&vdev_root_ops,
50 	&vdev_raidz_ops,
51 	&vdev_mirror_ops,
52 	&vdev_replacing_ops,
53 	&vdev_spare_ops,
54 	&vdev_disk_ops,
55 	&vdev_file_ops,
56 	&vdev_missing_ops,
57 	NULL
58 };
59 
60 /* maximum scrub/resilver I/O queue */
61 int zfs_scrub_limit = 70;
62 
63 /*
64  * Given a vdev type, return the appropriate ops vector.
65  */
66 static vdev_ops_t *
67 vdev_getops(const char *type)
68 {
69 	vdev_ops_t *ops, **opspp;
70 
71 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
72 		if (strcmp(ops->vdev_op_type, type) == 0)
73 			break;
74 
75 	return (ops);
76 }
77 
78 /*
79  * Default asize function: return the MAX of psize with the asize of
80  * all children.  This is what's used by anything other than RAID-Z.
81  */
82 uint64_t
83 vdev_default_asize(vdev_t *vd, uint64_t psize)
84 {
85 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
86 	uint64_t csize;
87 	uint64_t c;
88 
89 	for (c = 0; c < vd->vdev_children; c++) {
90 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91 		asize = MAX(asize, csize);
92 	}
93 
94 	return (asize);
95 }
96 
97 /*
98  * Get the replaceable or attachable device size.
99  * If the parent is a mirror or raidz, the replaceable size is the minimum
100  * psize of all its children. For the rest, just return our own psize.
101  *
102  * e.g.
103  *			psize	rsize
104  * root			-	-
105  *	mirror/raidz	-	-
106  *	    disk1	20g	20g
107  *	    disk2 	40g	20g
108  *	disk3 		80g	80g
109  */
110 uint64_t
111 vdev_get_rsize(vdev_t *vd)
112 {
113 	vdev_t *pvd, *cvd;
114 	uint64_t c, rsize;
115 
116 	pvd = vd->vdev_parent;
117 
118 	/*
119 	 * If our parent is NULL or the root, just return our own psize.
120 	 */
121 	if (pvd == NULL || pvd->vdev_parent == NULL)
122 		return (vd->vdev_psize);
123 
124 	rsize = 0;
125 
126 	for (c = 0; c < pvd->vdev_children; c++) {
127 		cvd = pvd->vdev_child[c];
128 		rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
129 	}
130 
131 	return (rsize);
132 }
133 
134 vdev_t *
135 vdev_lookup_top(spa_t *spa, uint64_t vdev)
136 {
137 	vdev_t *rvd = spa->spa_root_vdev;
138 
139 	ASSERT(spa_config_held(spa, RW_READER) ||
140 	    curthread == spa->spa_scrub_thread);
141 
142 	if (vdev < rvd->vdev_children)
143 		return (rvd->vdev_child[vdev]);
144 
145 	return (NULL);
146 }
147 
148 vdev_t *
149 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
150 {
151 	int c;
152 	vdev_t *mvd;
153 
154 	if (vd->vdev_guid == guid)
155 		return (vd);
156 
157 	for (c = 0; c < vd->vdev_children; c++)
158 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
159 		    NULL)
160 			return (mvd);
161 
162 	return (NULL);
163 }
164 
165 void
166 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
167 {
168 	size_t oldsize, newsize;
169 	uint64_t id = cvd->vdev_id;
170 	vdev_t **newchild;
171 
172 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
173 	ASSERT(cvd->vdev_parent == NULL);
174 
175 	cvd->vdev_parent = pvd;
176 
177 	if (pvd == NULL)
178 		return;
179 
180 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
181 
182 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
183 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
184 	newsize = pvd->vdev_children * sizeof (vdev_t *);
185 
186 	newchild = kmem_zalloc(newsize, KM_SLEEP);
187 	if (pvd->vdev_child != NULL) {
188 		bcopy(pvd->vdev_child, newchild, oldsize);
189 		kmem_free(pvd->vdev_child, oldsize);
190 	}
191 
192 	pvd->vdev_child = newchild;
193 	pvd->vdev_child[id] = cvd;
194 
195 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
196 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
197 
198 	/*
199 	 * Walk up all ancestors to update guid sum.
200 	 */
201 	for (; pvd != NULL; pvd = pvd->vdev_parent)
202 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
203 
204 	if (cvd->vdev_ops->vdev_op_leaf)
205 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
206 }
207 
208 void
209 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
210 {
211 	int c;
212 	uint_t id = cvd->vdev_id;
213 
214 	ASSERT(cvd->vdev_parent == pvd);
215 
216 	if (pvd == NULL)
217 		return;
218 
219 	ASSERT(id < pvd->vdev_children);
220 	ASSERT(pvd->vdev_child[id] == cvd);
221 
222 	pvd->vdev_child[id] = NULL;
223 	cvd->vdev_parent = NULL;
224 
225 	for (c = 0; c < pvd->vdev_children; c++)
226 		if (pvd->vdev_child[c])
227 			break;
228 
229 	if (c == pvd->vdev_children) {
230 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
231 		pvd->vdev_child = NULL;
232 		pvd->vdev_children = 0;
233 	}
234 
235 	/*
236 	 * Walk up all ancestors to update guid sum.
237 	 */
238 	for (; pvd != NULL; pvd = pvd->vdev_parent)
239 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
240 
241 	if (cvd->vdev_ops->vdev_op_leaf)
242 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
243 }
244 
245 /*
246  * Remove any holes in the child array.
247  */
248 void
249 vdev_compact_children(vdev_t *pvd)
250 {
251 	vdev_t **newchild, *cvd;
252 	int oldc = pvd->vdev_children;
253 	int newc, c;
254 
255 	ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER));
256 
257 	for (c = newc = 0; c < oldc; c++)
258 		if (pvd->vdev_child[c])
259 			newc++;
260 
261 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
262 
263 	for (c = newc = 0; c < oldc; c++) {
264 		if ((cvd = pvd->vdev_child[c]) != NULL) {
265 			newchild[newc] = cvd;
266 			cvd->vdev_id = newc++;
267 		}
268 	}
269 
270 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
271 	pvd->vdev_child = newchild;
272 	pvd->vdev_children = newc;
273 }
274 
275 /*
276  * Allocate and minimally initialize a vdev_t.
277  */
278 static vdev_t *
279 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
280 {
281 	vdev_t *vd;
282 
283 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
284 
285 	if (spa->spa_root_vdev == NULL) {
286 		ASSERT(ops == &vdev_root_ops);
287 		spa->spa_root_vdev = vd;
288 	}
289 
290 	if (guid == 0) {
291 		if (spa->spa_root_vdev == vd) {
292 			/*
293 			 * The root vdev's guid will also be the pool guid,
294 			 * which must be unique among all pools.
295 			 */
296 			while (guid == 0 || spa_guid_exists(guid, 0))
297 				guid = spa_get_random(-1ULL);
298 		} else {
299 			/*
300 			 * Any other vdev's guid must be unique within the pool.
301 			 */
302 			while (guid == 0 ||
303 			    spa_guid_exists(spa_guid(spa), guid))
304 				guid = spa_get_random(-1ULL);
305 		}
306 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
307 	}
308 
309 	vd->vdev_spa = spa;
310 	vd->vdev_id = id;
311 	vd->vdev_guid = guid;
312 	vd->vdev_guid_sum = guid;
313 	vd->vdev_ops = ops;
314 	vd->vdev_state = VDEV_STATE_CLOSED;
315 
316 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
317 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
318 	space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
319 	space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
320 	txg_list_create(&vd->vdev_ms_list,
321 	    offsetof(struct metaslab, ms_txg_node));
322 	txg_list_create(&vd->vdev_dtl_list,
323 	    offsetof(struct vdev, vdev_dtl_node));
324 	vd->vdev_stat.vs_timestamp = gethrtime();
325 	vdev_queue_init(vd);
326 	vdev_cache_init(vd);
327 
328 	return (vd);
329 }
330 
331 /*
332  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
333  * creating a new vdev or loading an existing one - the behavior is slightly
334  * different for each case.
335  */
336 int
337 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
338     int alloctype)
339 {
340 	vdev_ops_t *ops;
341 	char *type;
342 	uint64_t guid = 0, islog, nparity;
343 	vdev_t *vd;
344 
345 	ASSERT(spa_config_held(spa, RW_WRITER));
346 
347 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
348 		return (EINVAL);
349 
350 	if ((ops = vdev_getops(type)) == NULL)
351 		return (EINVAL);
352 
353 	/*
354 	 * If this is a load, get the vdev guid from the nvlist.
355 	 * Otherwise, vdev_alloc_common() will generate one for us.
356 	 */
357 	if (alloctype == VDEV_ALLOC_LOAD) {
358 		uint64_t label_id;
359 
360 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
361 		    label_id != id)
362 			return (EINVAL);
363 
364 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
365 			return (EINVAL);
366 	} else if (alloctype == VDEV_ALLOC_SPARE) {
367 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
368 			return (EINVAL);
369 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
370 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
371 			return (EINVAL);
372 	}
373 
374 	/*
375 	 * The first allocated vdev must be of type 'root'.
376 	 */
377 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
378 		return (EINVAL);
379 
380 	/*
381 	 * Determine whether we're a log vdev.
382 	 */
383 	islog = 0;
384 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
385 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
386 		return (ENOTSUP);
387 
388 	/*
389 	 * Set the nparity property for RAID-Z vdevs.
390 	 */
391 	nparity = -1ULL;
392 	if (ops == &vdev_raidz_ops) {
393 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
394 		    &nparity) == 0) {
395 			/*
396 			 * Currently, we can only support 2 parity devices.
397 			 */
398 			if (nparity == 0 || nparity > 2)
399 				return (EINVAL);
400 			/*
401 			 * Older versions can only support 1 parity device.
402 			 */
403 			if (nparity == 2 &&
404 			    spa_version(spa) < SPA_VERSION_RAID6)
405 				return (ENOTSUP);
406 		} else {
407 			/*
408 			 * We require the parity to be specified for SPAs that
409 			 * support multiple parity levels.
410 			 */
411 			if (spa_version(spa) >= SPA_VERSION_RAID6)
412 				return (EINVAL);
413 			/*
414 			 * Otherwise, we default to 1 parity device for RAID-Z.
415 			 */
416 			nparity = 1;
417 		}
418 	} else {
419 		nparity = 0;
420 	}
421 	ASSERT(nparity != -1ULL);
422 
423 	vd = vdev_alloc_common(spa, id, guid, ops);
424 
425 	vd->vdev_islog = islog;
426 	vd->vdev_nparity = nparity;
427 
428 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
429 		vd->vdev_path = spa_strdup(vd->vdev_path);
430 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
431 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
432 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
433 	    &vd->vdev_physpath) == 0)
434 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
435 
436 	/*
437 	 * Set the whole_disk property.  If it's not specified, leave the value
438 	 * as -1.
439 	 */
440 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
441 	    &vd->vdev_wholedisk) != 0)
442 		vd->vdev_wholedisk = -1ULL;
443 
444 	/*
445 	 * Look for the 'not present' flag.  This will only be set if the device
446 	 * was not present at the time of import.
447 	 */
448 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
449 	    &vd->vdev_not_present);
450 
451 	/*
452 	 * Get the alignment requirement.
453 	 */
454 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
455 
456 	/*
457 	 * If we're a top-level vdev, try to load the allocation parameters.
458 	 */
459 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
460 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
461 		    &vd->vdev_ms_array);
462 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
463 		    &vd->vdev_ms_shift);
464 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
465 		    &vd->vdev_asize);
466 	}
467 
468 	/*
469 	 * If we're a leaf vdev, try to load the DTL object and other state.
470 	 */
471 	if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) {
472 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
473 		    &vd->vdev_dtl.smo_object);
474 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
475 		    &vd->vdev_offline);
476 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
477 		    &vd->vdev_unspare);
478 		/*
479 		 * When importing a pool, we want to ignore the persistent fault
480 		 * state, as the diagnosis made on another system may not be
481 		 * valid in the current context.
482 		 */
483 		if (spa->spa_load_state == SPA_LOAD_OPEN) {
484 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
485 			    &vd->vdev_faulted);
486 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
487 			    &vd->vdev_degraded);
488 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
489 			    &vd->vdev_removed);
490 		}
491 	}
492 
493 	/*
494 	 * Add ourselves to the parent's list of children.
495 	 */
496 	vdev_add_child(parent, vd);
497 
498 	*vdp = vd;
499 
500 	return (0);
501 }
502 
503 void
504 vdev_free(vdev_t *vd)
505 {
506 	int c;
507 	spa_t *spa = vd->vdev_spa;
508 
509 	/*
510 	 * vdev_free() implies closing the vdev first.  This is simpler than
511 	 * trying to ensure complicated semantics for all callers.
512 	 */
513 	vdev_close(vd);
514 
515 
516 	ASSERT(!list_link_active(&vd->vdev_dirty_node));
517 
518 	/*
519 	 * Free all children.
520 	 */
521 	for (c = 0; c < vd->vdev_children; c++)
522 		vdev_free(vd->vdev_child[c]);
523 
524 	ASSERT(vd->vdev_child == NULL);
525 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
526 
527 	/*
528 	 * Discard allocation state.
529 	 */
530 	if (vd == vd->vdev_top)
531 		vdev_metaslab_fini(vd);
532 
533 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
534 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
535 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
536 
537 	/*
538 	 * Remove this vdev from its parent's child list.
539 	 */
540 	vdev_remove_child(vd->vdev_parent, vd);
541 
542 	ASSERT(vd->vdev_parent == NULL);
543 
544 	/*
545 	 * Clean up vdev structure.
546 	 */
547 	vdev_queue_fini(vd);
548 	vdev_cache_fini(vd);
549 
550 	if (vd->vdev_path)
551 		spa_strfree(vd->vdev_path);
552 	if (vd->vdev_devid)
553 		spa_strfree(vd->vdev_devid);
554 	if (vd->vdev_physpath)
555 		spa_strfree(vd->vdev_physpath);
556 
557 	if (vd->vdev_isspare)
558 		spa_spare_remove(vd);
559 	if (vd->vdev_isl2cache)
560 		spa_l2cache_remove(vd);
561 
562 	txg_list_destroy(&vd->vdev_ms_list);
563 	txg_list_destroy(&vd->vdev_dtl_list);
564 	mutex_enter(&vd->vdev_dtl_lock);
565 	space_map_unload(&vd->vdev_dtl_map);
566 	space_map_destroy(&vd->vdev_dtl_map);
567 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
568 	space_map_destroy(&vd->vdev_dtl_scrub);
569 	mutex_exit(&vd->vdev_dtl_lock);
570 	mutex_destroy(&vd->vdev_dtl_lock);
571 	mutex_destroy(&vd->vdev_stat_lock);
572 
573 	if (vd == spa->spa_root_vdev)
574 		spa->spa_root_vdev = NULL;
575 
576 	kmem_free(vd, sizeof (vdev_t));
577 }
578 
579 /*
580  * Transfer top-level vdev state from svd to tvd.
581  */
582 static void
583 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
584 {
585 	spa_t *spa = svd->vdev_spa;
586 	metaslab_t *msp;
587 	vdev_t *vd;
588 	int t;
589 
590 	ASSERT(tvd == tvd->vdev_top);
591 
592 	tvd->vdev_ms_array = svd->vdev_ms_array;
593 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
594 	tvd->vdev_ms_count = svd->vdev_ms_count;
595 
596 	svd->vdev_ms_array = 0;
597 	svd->vdev_ms_shift = 0;
598 	svd->vdev_ms_count = 0;
599 
600 	tvd->vdev_mg = svd->vdev_mg;
601 	tvd->vdev_ms = svd->vdev_ms;
602 
603 	svd->vdev_mg = NULL;
604 	svd->vdev_ms = NULL;
605 
606 	if (tvd->vdev_mg != NULL)
607 		tvd->vdev_mg->mg_vd = tvd;
608 
609 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
610 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
611 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
612 
613 	svd->vdev_stat.vs_alloc = 0;
614 	svd->vdev_stat.vs_space = 0;
615 	svd->vdev_stat.vs_dspace = 0;
616 
617 	for (t = 0; t < TXG_SIZE; t++) {
618 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
619 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
620 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
621 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
622 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
623 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
624 	}
625 
626 	if (list_link_active(&svd->vdev_dirty_node)) {
627 		vdev_config_clean(svd);
628 		vdev_config_dirty(tvd);
629 	}
630 
631 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
632 	svd->vdev_deflate_ratio = 0;
633 
634 	tvd->vdev_islog = svd->vdev_islog;
635 	svd->vdev_islog = 0;
636 }
637 
638 static void
639 vdev_top_update(vdev_t *tvd, vdev_t *vd)
640 {
641 	int c;
642 
643 	if (vd == NULL)
644 		return;
645 
646 	vd->vdev_top = tvd;
647 
648 	for (c = 0; c < vd->vdev_children; c++)
649 		vdev_top_update(tvd, vd->vdev_child[c]);
650 }
651 
652 /*
653  * Add a mirror/replacing vdev above an existing vdev.
654  */
655 vdev_t *
656 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
657 {
658 	spa_t *spa = cvd->vdev_spa;
659 	vdev_t *pvd = cvd->vdev_parent;
660 	vdev_t *mvd;
661 
662 	ASSERT(spa_config_held(spa, RW_WRITER));
663 
664 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
665 
666 	mvd->vdev_asize = cvd->vdev_asize;
667 	mvd->vdev_ashift = cvd->vdev_ashift;
668 	mvd->vdev_state = cvd->vdev_state;
669 
670 	vdev_remove_child(pvd, cvd);
671 	vdev_add_child(pvd, mvd);
672 	cvd->vdev_id = mvd->vdev_children;
673 	vdev_add_child(mvd, cvd);
674 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
675 
676 	if (mvd == mvd->vdev_top)
677 		vdev_top_transfer(cvd, mvd);
678 
679 	return (mvd);
680 }
681 
682 /*
683  * Remove a 1-way mirror/replacing vdev from the tree.
684  */
685 void
686 vdev_remove_parent(vdev_t *cvd)
687 {
688 	vdev_t *mvd = cvd->vdev_parent;
689 	vdev_t *pvd = mvd->vdev_parent;
690 
691 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
692 
693 	ASSERT(mvd->vdev_children == 1);
694 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
695 	    mvd->vdev_ops == &vdev_replacing_ops ||
696 	    mvd->vdev_ops == &vdev_spare_ops);
697 	cvd->vdev_ashift = mvd->vdev_ashift;
698 
699 	vdev_remove_child(mvd, cvd);
700 	vdev_remove_child(pvd, mvd);
701 	cvd->vdev_id = mvd->vdev_id;
702 	vdev_add_child(pvd, cvd);
703 	/*
704 	 * If we created a new toplevel vdev, then we need to change the child's
705 	 * vdev GUID to match the old toplevel vdev.  Otherwise, we could have
706 	 * detached an offline device, and when we go to import the pool we'll
707 	 * think we have two toplevel vdevs, instead of a different version of
708 	 * the same toplevel vdev.
709 	 */
710 	if (cvd->vdev_top == cvd) {
711 		pvd->vdev_guid_sum -= cvd->vdev_guid;
712 		cvd->vdev_guid_sum -= cvd->vdev_guid;
713 		cvd->vdev_guid = mvd->vdev_guid;
714 		cvd->vdev_guid_sum += mvd->vdev_guid;
715 		pvd->vdev_guid_sum += cvd->vdev_guid;
716 	}
717 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
718 
719 	if (cvd == cvd->vdev_top)
720 		vdev_top_transfer(mvd, cvd);
721 
722 	ASSERT(mvd->vdev_children == 0);
723 	vdev_free(mvd);
724 }
725 
726 int
727 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
728 {
729 	spa_t *spa = vd->vdev_spa;
730 	objset_t *mos = spa->spa_meta_objset;
731 	metaslab_class_t *mc;
732 	uint64_t m;
733 	uint64_t oldc = vd->vdev_ms_count;
734 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
735 	metaslab_t **mspp;
736 	int error;
737 
738 	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
739 		return (0);
740 
741 	dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc);
742 
743 	ASSERT(oldc <= newc);
744 
745 	if (vd->vdev_islog)
746 		mc = spa->spa_log_class;
747 	else
748 		mc = spa->spa_normal_class;
749 
750 	if (vd->vdev_mg == NULL)
751 		vd->vdev_mg = metaslab_group_create(mc, vd);
752 
753 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
754 
755 	if (oldc != 0) {
756 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
757 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
758 	}
759 
760 	vd->vdev_ms = mspp;
761 	vd->vdev_ms_count = newc;
762 
763 	for (m = oldc; m < newc; m++) {
764 		space_map_obj_t smo = { 0, 0, 0 };
765 		if (txg == 0) {
766 			uint64_t object = 0;
767 			error = dmu_read(mos, vd->vdev_ms_array,
768 			    m * sizeof (uint64_t), sizeof (uint64_t), &object);
769 			if (error)
770 				return (error);
771 			if (object != 0) {
772 				dmu_buf_t *db;
773 				error = dmu_bonus_hold(mos, object, FTAG, &db);
774 				if (error)
775 					return (error);
776 				ASSERT3U(db->db_size, >=, sizeof (smo));
777 				bcopy(db->db_data, &smo, sizeof (smo));
778 				ASSERT3U(smo.smo_object, ==, object);
779 				dmu_buf_rele(db, FTAG);
780 			}
781 		}
782 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
783 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
784 	}
785 
786 	return (0);
787 }
788 
789 void
790 vdev_metaslab_fini(vdev_t *vd)
791 {
792 	uint64_t m;
793 	uint64_t count = vd->vdev_ms_count;
794 
795 	if (vd->vdev_ms != NULL) {
796 		for (m = 0; m < count; m++)
797 			if (vd->vdev_ms[m] != NULL)
798 				metaslab_fini(vd->vdev_ms[m]);
799 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
800 		vd->vdev_ms = NULL;
801 	}
802 }
803 
804 int
805 vdev_probe(vdev_t *vd)
806 {
807 	if (vd == NULL)
808 		return (EINVAL);
809 
810 	/*
811 	 * Right now we only support status checks on the leaf vdevs.
812 	 */
813 	if (vd->vdev_ops->vdev_op_leaf)
814 		return (vd->vdev_ops->vdev_op_probe(vd));
815 
816 	return (0);
817 }
818 
819 /*
820  * Prepare a virtual device for access.
821  */
822 int
823 vdev_open(vdev_t *vd)
824 {
825 	int error;
826 	int c;
827 	uint64_t osize = 0;
828 	uint64_t asize, psize;
829 	uint64_t ashift = 0;
830 
831 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
832 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
833 	    vd->vdev_state == VDEV_STATE_OFFLINE);
834 
835 	if (vd->vdev_fault_mode == VDEV_FAULT_COUNT)
836 		vd->vdev_fault_arg >>= 1;
837 	else
838 		vd->vdev_fault_mode = VDEV_FAULT_NONE;
839 
840 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
841 
842 	if (!vd->vdev_removed && vd->vdev_faulted) {
843 		ASSERT(vd->vdev_children == 0);
844 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
845 		    VDEV_AUX_ERR_EXCEEDED);
846 		return (ENXIO);
847 	} else if (vd->vdev_offline) {
848 		ASSERT(vd->vdev_children == 0);
849 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
850 		return (ENXIO);
851 	}
852 
853 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
854 
855 	if (zio_injection_enabled && error == 0)
856 		error = zio_handle_device_injection(vd, ENXIO);
857 
858 	if (error) {
859 		if (vd->vdev_removed &&
860 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
861 			vd->vdev_removed = B_FALSE;
862 
863 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
864 		    vd->vdev_stat.vs_aux);
865 		return (error);
866 	}
867 
868 	vd->vdev_removed = B_FALSE;
869 
870 	if (vd->vdev_degraded) {
871 		ASSERT(vd->vdev_children == 0);
872 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
873 		    VDEV_AUX_ERR_EXCEEDED);
874 	} else {
875 		vd->vdev_state = VDEV_STATE_HEALTHY;
876 	}
877 
878 	for (c = 0; c < vd->vdev_children; c++)
879 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
880 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
881 			    VDEV_AUX_NONE);
882 			break;
883 		}
884 
885 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
886 
887 	if (vd->vdev_children == 0) {
888 		if (osize < SPA_MINDEVSIZE) {
889 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
890 			    VDEV_AUX_TOO_SMALL);
891 			return (EOVERFLOW);
892 		}
893 		psize = osize;
894 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
895 	} else {
896 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
897 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
898 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
899 			    VDEV_AUX_TOO_SMALL);
900 			return (EOVERFLOW);
901 		}
902 		psize = 0;
903 		asize = osize;
904 	}
905 
906 	vd->vdev_psize = psize;
907 
908 	if (vd->vdev_asize == 0) {
909 		/*
910 		 * This is the first-ever open, so use the computed values.
911 		 * For testing purposes, a higher ashift can be requested.
912 		 */
913 		vd->vdev_asize = asize;
914 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
915 	} else {
916 		/*
917 		 * Make sure the alignment requirement hasn't increased.
918 		 */
919 		if (ashift > vd->vdev_top->vdev_ashift) {
920 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
921 			    VDEV_AUX_BAD_LABEL);
922 			return (EINVAL);
923 		}
924 
925 		/*
926 		 * Make sure the device hasn't shrunk.
927 		 */
928 		if (asize < vd->vdev_asize) {
929 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
930 			    VDEV_AUX_BAD_LABEL);
931 			return (EINVAL);
932 		}
933 
934 		/*
935 		 * If all children are healthy and the asize has increased,
936 		 * then we've experienced dynamic LUN growth.
937 		 */
938 		if (vd->vdev_state == VDEV_STATE_HEALTHY &&
939 		    asize > vd->vdev_asize) {
940 			vd->vdev_asize = asize;
941 		}
942 	}
943 
944 	/*
945 	 * Ensure we can issue some IO before declaring the
946 	 * vdev open for business.
947 	 */
948 	error = vdev_probe(vd);
949 	if (error) {
950 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
951 		    VDEV_AUX_OPEN_FAILED);
952 		return (error);
953 	}
954 
955 	/*
956 	 * If this is a top-level vdev, compute the raidz-deflation
957 	 * ratio.  Note, we hard-code in 128k (1<<17) because it is the
958 	 * current "typical" blocksize.  Even if SPA_MAXBLOCKSIZE
959 	 * changes, this algorithm must never change, or we will
960 	 * inconsistently account for existing bp's.
961 	 */
962 	if (vd->vdev_top == vd) {
963 		vd->vdev_deflate_ratio = (1<<17) /
964 		    (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
965 	}
966 
967 	/*
968 	 * This allows the ZFS DE to close cases appropriately.  If a device
969 	 * goes away and later returns, we want to close the associated case.
970 	 * But it's not enough to simply post this only when a device goes from
971 	 * CANT_OPEN -> HEALTHY.  If we reboot the system and the device is
972 	 * back, we also need to close the case (otherwise we will try to replay
973 	 * it).  So we have to post this notifier every time.  Since this only
974 	 * occurs during pool open or error recovery, this should not be an
975 	 * issue.
976 	 */
977 	zfs_post_ok(vd->vdev_spa, vd);
978 
979 	return (0);
980 }
981 
982 /*
983  * Called once the vdevs are all opened, this routine validates the label
984  * contents.  This needs to be done before vdev_load() so that we don't
985  * inadvertently do repair I/Os to the wrong device.
986  *
987  * This function will only return failure if one of the vdevs indicates that it
988  * has since been destroyed or exported.  This is only possible if
989  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
990  * will be updated but the function will return 0.
991  */
992 int
993 vdev_validate(vdev_t *vd)
994 {
995 	spa_t *spa = vd->vdev_spa;
996 	int c;
997 	nvlist_t *label;
998 	uint64_t guid;
999 	uint64_t state;
1000 
1001 	for (c = 0; c < vd->vdev_children; c++)
1002 		if (vdev_validate(vd->vdev_child[c]) != 0)
1003 			return (EBADF);
1004 
1005 	/*
1006 	 * If the device has already failed, or was marked offline, don't do
1007 	 * any further validation.  Otherwise, label I/O will fail and we will
1008 	 * overwrite the previous state.
1009 	 */
1010 	if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) {
1011 
1012 		if ((label = vdev_label_read_config(vd)) == NULL) {
1013 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1014 			    VDEV_AUX_BAD_LABEL);
1015 			return (0);
1016 		}
1017 
1018 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1019 		    &guid) != 0 || guid != spa_guid(spa)) {
1020 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1021 			    VDEV_AUX_CORRUPT_DATA);
1022 			nvlist_free(label);
1023 			return (0);
1024 		}
1025 
1026 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1027 		    &guid) != 0 || guid != vd->vdev_guid) {
1028 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1029 			    VDEV_AUX_CORRUPT_DATA);
1030 			nvlist_free(label);
1031 			return (0);
1032 		}
1033 
1034 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1035 		    &state) != 0) {
1036 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1037 			    VDEV_AUX_CORRUPT_DATA);
1038 			nvlist_free(label);
1039 			return (0);
1040 		}
1041 
1042 		nvlist_free(label);
1043 
1044 		if (spa->spa_load_state == SPA_LOAD_OPEN &&
1045 		    state != POOL_STATE_ACTIVE)
1046 			return (EBADF);
1047 	}
1048 
1049 	/*
1050 	 * If we were able to open and validate a vdev that was previously
1051 	 * marked permanently unavailable, clear that state now.
1052 	 */
1053 	if (vd->vdev_not_present)
1054 		vd->vdev_not_present = 0;
1055 
1056 	return (0);
1057 }
1058 
1059 /*
1060  * Close a virtual device.
1061  */
1062 void
1063 vdev_close(vdev_t *vd)
1064 {
1065 	vd->vdev_ops->vdev_op_close(vd);
1066 
1067 	vdev_cache_purge(vd);
1068 
1069 	/*
1070 	 * We record the previous state before we close it, so  that if we are
1071 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1072 	 * it's still faulted.
1073 	 */
1074 	vd->vdev_prevstate = vd->vdev_state;
1075 
1076 	if (vd->vdev_offline)
1077 		vd->vdev_state = VDEV_STATE_OFFLINE;
1078 	else
1079 		vd->vdev_state = VDEV_STATE_CLOSED;
1080 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1081 }
1082 
1083 void
1084 vdev_reopen(vdev_t *vd)
1085 {
1086 	spa_t *spa = vd->vdev_spa;
1087 
1088 	ASSERT(spa_config_held(spa, RW_WRITER));
1089 
1090 	vdev_close(vd);
1091 	(void) vdev_open(vd);
1092 
1093 	/*
1094 	 * Call vdev_validate() here to make sure we have the same device.
1095 	 * Otherwise, a device with an invalid label could be successfully
1096 	 * opened in response to vdev_reopen().
1097 	 */
1098 	(void) vdev_validate(vd);
1099 
1100 	/*
1101 	 * Reassess parent vdev's health.
1102 	 */
1103 	vdev_propagate_state(vd);
1104 }
1105 
1106 int
1107 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1108 {
1109 	int error;
1110 
1111 	/*
1112 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1113 	 * For a create, however, we want to fail the request if
1114 	 * there are any components we can't open.
1115 	 */
1116 	error = vdev_open(vd);
1117 
1118 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1119 		vdev_close(vd);
1120 		return (error ? error : ENXIO);
1121 	}
1122 
1123 	/*
1124 	 * Recursively initialize all labels.
1125 	 */
1126 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1127 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1128 		vdev_close(vd);
1129 		return (error);
1130 	}
1131 
1132 	return (0);
1133 }
1134 
1135 /*
1136  * The is the latter half of vdev_create().  It is distinct because it
1137  * involves initiating transactions in order to do metaslab creation.
1138  * For creation, we want to try to create all vdevs at once and then undo it
1139  * if anything fails; this is much harder if we have pending transactions.
1140  */
1141 void
1142 vdev_init(vdev_t *vd, uint64_t txg)
1143 {
1144 	/*
1145 	 * Aim for roughly 200 metaslabs per vdev.
1146 	 */
1147 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1148 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1149 
1150 	/*
1151 	 * Initialize the vdev's metaslabs.  This can't fail because
1152 	 * there's nothing to read when creating all new metaslabs.
1153 	 */
1154 	VERIFY(vdev_metaslab_init(vd, txg) == 0);
1155 }
1156 
1157 void
1158 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1159 {
1160 	ASSERT(vd == vd->vdev_top);
1161 	ASSERT(ISP2(flags));
1162 
1163 	if (flags & VDD_METASLAB)
1164 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1165 
1166 	if (flags & VDD_DTL)
1167 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1168 
1169 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1170 }
1171 
1172 void
1173 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
1174 {
1175 	mutex_enter(sm->sm_lock);
1176 	if (!space_map_contains(sm, txg, size))
1177 		space_map_add(sm, txg, size);
1178 	mutex_exit(sm->sm_lock);
1179 }
1180 
1181 int
1182 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
1183 {
1184 	int dirty;
1185 
1186 	/*
1187 	 * Quick test without the lock -- covers the common case that
1188 	 * there are no dirty time segments.
1189 	 */
1190 	if (sm->sm_space == 0)
1191 		return (0);
1192 
1193 	mutex_enter(sm->sm_lock);
1194 	dirty = space_map_contains(sm, txg, size);
1195 	mutex_exit(sm->sm_lock);
1196 
1197 	return (dirty);
1198 }
1199 
1200 /*
1201  * Reassess DTLs after a config change or scrub completion.
1202  */
1203 void
1204 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1205 {
1206 	spa_t *spa = vd->vdev_spa;
1207 	int c;
1208 
1209 	ASSERT(spa_config_held(spa, RW_WRITER));
1210 
1211 	if (vd->vdev_children == 0) {
1212 		mutex_enter(&vd->vdev_dtl_lock);
1213 		/*
1214 		 * We're successfully scrubbed everything up to scrub_txg.
1215 		 * Therefore, excise all old DTLs up to that point, then
1216 		 * fold in the DTLs for everything we couldn't scrub.
1217 		 */
1218 		if (scrub_txg != 0) {
1219 			space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
1220 			space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
1221 		}
1222 		if (scrub_done)
1223 			space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1224 		mutex_exit(&vd->vdev_dtl_lock);
1225 		if (txg != 0)
1226 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1227 		return;
1228 	}
1229 
1230 	/*
1231 	 * Make sure the DTLs are always correct under the scrub lock.
1232 	 */
1233 	if (vd == spa->spa_root_vdev)
1234 		mutex_enter(&spa->spa_scrub_lock);
1235 
1236 	mutex_enter(&vd->vdev_dtl_lock);
1237 	space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
1238 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1239 	mutex_exit(&vd->vdev_dtl_lock);
1240 
1241 	for (c = 0; c < vd->vdev_children; c++) {
1242 		vdev_t *cvd = vd->vdev_child[c];
1243 		vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
1244 		mutex_enter(&vd->vdev_dtl_lock);
1245 		space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
1246 		space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
1247 		mutex_exit(&vd->vdev_dtl_lock);
1248 	}
1249 
1250 	if (vd == spa->spa_root_vdev)
1251 		mutex_exit(&spa->spa_scrub_lock);
1252 }
1253 
1254 static int
1255 vdev_dtl_load(vdev_t *vd)
1256 {
1257 	spa_t *spa = vd->vdev_spa;
1258 	space_map_obj_t *smo = &vd->vdev_dtl;
1259 	objset_t *mos = spa->spa_meta_objset;
1260 	dmu_buf_t *db;
1261 	int error;
1262 
1263 	ASSERT(vd->vdev_children == 0);
1264 
1265 	if (smo->smo_object == 0)
1266 		return (0);
1267 
1268 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1269 		return (error);
1270 
1271 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1272 	bcopy(db->db_data, smo, sizeof (*smo));
1273 	dmu_buf_rele(db, FTAG);
1274 
1275 	mutex_enter(&vd->vdev_dtl_lock);
1276 	error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
1277 	mutex_exit(&vd->vdev_dtl_lock);
1278 
1279 	return (error);
1280 }
1281 
1282 void
1283 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1284 {
1285 	spa_t *spa = vd->vdev_spa;
1286 	space_map_obj_t *smo = &vd->vdev_dtl;
1287 	space_map_t *sm = &vd->vdev_dtl_map;
1288 	objset_t *mos = spa->spa_meta_objset;
1289 	space_map_t smsync;
1290 	kmutex_t smlock;
1291 	dmu_buf_t *db;
1292 	dmu_tx_t *tx;
1293 
1294 	dprintf("%s in txg %llu pass %d\n",
1295 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1296 
1297 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1298 
1299 	if (vd->vdev_detached) {
1300 		if (smo->smo_object != 0) {
1301 			int err = dmu_object_free(mos, smo->smo_object, tx);
1302 			ASSERT3U(err, ==, 0);
1303 			smo->smo_object = 0;
1304 		}
1305 		dmu_tx_commit(tx);
1306 		dprintf("detach %s committed in txg %llu\n",
1307 		    vdev_description(vd), txg);
1308 		return;
1309 	}
1310 
1311 	if (smo->smo_object == 0) {
1312 		ASSERT(smo->smo_objsize == 0);
1313 		ASSERT(smo->smo_alloc == 0);
1314 		smo->smo_object = dmu_object_alloc(mos,
1315 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1316 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1317 		ASSERT(smo->smo_object != 0);
1318 		vdev_config_dirty(vd->vdev_top);
1319 	}
1320 
1321 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1322 
1323 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1324 	    &smlock);
1325 
1326 	mutex_enter(&smlock);
1327 
1328 	mutex_enter(&vd->vdev_dtl_lock);
1329 	space_map_walk(sm, space_map_add, &smsync);
1330 	mutex_exit(&vd->vdev_dtl_lock);
1331 
1332 	space_map_truncate(smo, mos, tx);
1333 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1334 
1335 	space_map_destroy(&smsync);
1336 
1337 	mutex_exit(&smlock);
1338 	mutex_destroy(&smlock);
1339 
1340 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1341 	dmu_buf_will_dirty(db, tx);
1342 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1343 	bcopy(smo, db->db_data, sizeof (*smo));
1344 	dmu_buf_rele(db, FTAG);
1345 
1346 	dmu_tx_commit(tx);
1347 }
1348 
1349 void
1350 vdev_load(vdev_t *vd)
1351 {
1352 	int c;
1353 
1354 	/*
1355 	 * Recursively load all children.
1356 	 */
1357 	for (c = 0; c < vd->vdev_children; c++)
1358 		vdev_load(vd->vdev_child[c]);
1359 
1360 	/*
1361 	 * If this is a top-level vdev, initialize its metaslabs.
1362 	 */
1363 	if (vd == vd->vdev_top &&
1364 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1365 	    vdev_metaslab_init(vd, 0) != 0))
1366 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1367 		    VDEV_AUX_CORRUPT_DATA);
1368 
1369 	/*
1370 	 * If this is a leaf vdev, load its DTL.
1371 	 */
1372 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1373 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1374 		    VDEV_AUX_CORRUPT_DATA);
1375 }
1376 
1377 /*
1378  * The special vdev case is used for hot spares and l2cache devices.  Its
1379  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1380  * we make sure that we can open the underlying device, then try to read the
1381  * label, and make sure that the label is sane and that it hasn't been
1382  * repurposed to another pool.
1383  */
1384 int
1385 vdev_validate_aux(vdev_t *vd)
1386 {
1387 	nvlist_t *label;
1388 	uint64_t guid, version;
1389 	uint64_t state;
1390 
1391 	if ((label = vdev_label_read_config(vd)) == NULL) {
1392 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1393 		    VDEV_AUX_CORRUPT_DATA);
1394 		return (-1);
1395 	}
1396 
1397 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1398 	    version > SPA_VERSION ||
1399 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1400 	    guid != vd->vdev_guid ||
1401 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1402 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1403 		    VDEV_AUX_CORRUPT_DATA);
1404 		nvlist_free(label);
1405 		return (-1);
1406 	}
1407 
1408 	/*
1409 	 * We don't actually check the pool state here.  If it's in fact in
1410 	 * use by another pool, we update this fact on the fly when requested.
1411 	 */
1412 	nvlist_free(label);
1413 	return (0);
1414 }
1415 
1416 void
1417 vdev_sync_done(vdev_t *vd, uint64_t txg)
1418 {
1419 	metaslab_t *msp;
1420 
1421 	dprintf("%s txg %llu\n", vdev_description(vd), txg);
1422 
1423 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1424 		metaslab_sync_done(msp, txg);
1425 }
1426 
1427 void
1428 vdev_sync(vdev_t *vd, uint64_t txg)
1429 {
1430 	spa_t *spa = vd->vdev_spa;
1431 	vdev_t *lvd;
1432 	metaslab_t *msp;
1433 	dmu_tx_t *tx;
1434 
1435 	dprintf("%s txg %llu pass %d\n",
1436 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1437 
1438 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1439 		ASSERT(vd == vd->vdev_top);
1440 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1441 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1442 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1443 		ASSERT(vd->vdev_ms_array != 0);
1444 		vdev_config_dirty(vd);
1445 		dmu_tx_commit(tx);
1446 	}
1447 
1448 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1449 		metaslab_sync(msp, txg);
1450 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1451 	}
1452 
1453 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1454 		vdev_dtl_sync(lvd, txg);
1455 
1456 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1457 }
1458 
1459 uint64_t
1460 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1461 {
1462 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1463 }
1464 
1465 const char *
1466 vdev_description(vdev_t *vd)
1467 {
1468 	if (vd == NULL || vd->vdev_ops == NULL)
1469 		return ("<unknown>");
1470 
1471 	if (vd->vdev_path != NULL)
1472 		return (vd->vdev_path);
1473 
1474 	if (vd->vdev_parent == NULL)
1475 		return (spa_name(vd->vdev_spa));
1476 
1477 	return (vd->vdev_ops->vdev_op_type);
1478 }
1479 
1480 /*
1481  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1482  * not be opened, and no I/O is attempted.
1483  */
1484 int
1485 vdev_fault(spa_t *spa, uint64_t guid)
1486 {
1487 	vdev_t *rvd, *vd;
1488 	uint64_t txg;
1489 
1490 	/*
1491 	 * Disregard a vdev fault request if the pool has
1492 	 * experienced a complete failure.
1493 	 *
1494 	 * XXX - We do this here so that we don't hold the
1495 	 * spa_namespace_lock in the event that we can't get
1496 	 * the RW_WRITER spa_config_lock.
1497 	 */
1498 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
1499 		return (EIO);
1500 
1501 	txg = spa_vdev_enter(spa);
1502 
1503 	rvd = spa->spa_root_vdev;
1504 
1505 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1506 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1507 	if (!vd->vdev_ops->vdev_op_leaf)
1508 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1509 
1510 	/*
1511 	 * Faulted state takes precedence over degraded.
1512 	 */
1513 	vd->vdev_faulted = 1ULL;
1514 	vd->vdev_degraded = 0ULL;
1515 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED,
1516 	    VDEV_AUX_ERR_EXCEEDED);
1517 
1518 	/*
1519 	 * If marking the vdev as faulted cause the toplevel vdev to become
1520 	 * unavailable, then back off and simply mark the vdev as degraded
1521 	 * instead.
1522 	 */
1523 	if (vdev_is_dead(vd->vdev_top)) {
1524 		vd->vdev_degraded = 1ULL;
1525 		vd->vdev_faulted = 0ULL;
1526 
1527 		/*
1528 		 * If we reopen the device and it's not dead, only then do we
1529 		 * mark it degraded.
1530 		 */
1531 		vdev_reopen(vd);
1532 
1533 		if (vdev_readable(vd)) {
1534 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1535 			    VDEV_AUX_ERR_EXCEEDED);
1536 		}
1537 	}
1538 
1539 	vdev_config_dirty(vd->vdev_top);
1540 
1541 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1542 
1543 	return (0);
1544 }
1545 
1546 /*
1547  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1548  * user that something is wrong.  The vdev continues to operate as normal as far
1549  * as I/O is concerned.
1550  */
1551 int
1552 vdev_degrade(spa_t *spa, uint64_t guid)
1553 {
1554 	vdev_t *rvd, *vd;
1555 	uint64_t txg;
1556 
1557 	/*
1558 	 * Disregard a vdev fault request if the pool has
1559 	 * experienced a complete failure.
1560 	 *
1561 	 * XXX - We do this here so that we don't hold the
1562 	 * spa_namespace_lock in the event that we can't get
1563 	 * the RW_WRITER spa_config_lock.
1564 	 */
1565 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
1566 		return (EIO);
1567 
1568 	txg = spa_vdev_enter(spa);
1569 
1570 	rvd = spa->spa_root_vdev;
1571 
1572 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1573 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1574 	if (!vd->vdev_ops->vdev_op_leaf)
1575 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1576 
1577 	/*
1578 	 * If the vdev is already faulted, then don't do anything.
1579 	 */
1580 	if (vd->vdev_faulted || vd->vdev_degraded) {
1581 		(void) spa_vdev_exit(spa, NULL, txg, 0);
1582 		return (0);
1583 	}
1584 
1585 	vd->vdev_degraded = 1ULL;
1586 	if (!vdev_is_dead(vd))
1587 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1588 		    VDEV_AUX_ERR_EXCEEDED);
1589 	vdev_config_dirty(vd->vdev_top);
1590 
1591 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1592 
1593 	return (0);
1594 }
1595 
1596 /*
1597  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1598  * any attached spare device should be detached when the device finishes
1599  * resilvering.  Second, the online should be treated like a 'test' online case,
1600  * so no FMA events are generated if the device fails to open.
1601  */
1602 int
1603 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags,
1604     vdev_state_t *newstate)
1605 {
1606 	vdev_t *rvd, *vd;
1607 	uint64_t txg;
1608 
1609 	/*
1610 	 * Disregard a vdev fault request if the pool has
1611 	 * experienced a complete failure.
1612 	 *
1613 	 * XXX - We do this here so that we don't hold the
1614 	 * spa_namespace_lock in the event that we can't get
1615 	 * the RW_WRITER spa_config_lock.
1616 	 */
1617 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
1618 		return (EIO);
1619 
1620 	txg = spa_vdev_enter(spa);
1621 
1622 	rvd = spa->spa_root_vdev;
1623 
1624 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1625 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1626 
1627 	if (!vd->vdev_ops->vdev_op_leaf)
1628 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1629 
1630 	vd->vdev_offline = B_FALSE;
1631 	vd->vdev_tmpoffline = B_FALSE;
1632 	vd->vdev_checkremove = (flags & ZFS_ONLINE_CHECKREMOVE) ?
1633 	    B_TRUE : B_FALSE;
1634 	vd->vdev_forcefault = (flags & ZFS_ONLINE_FORCEFAULT) ?
1635 	    B_TRUE : B_FALSE;
1636 	vdev_reopen(vd->vdev_top);
1637 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1638 
1639 	if (newstate)
1640 		*newstate = vd->vdev_state;
1641 	if ((flags & ZFS_ONLINE_UNSPARE) &&
1642 	    !vdev_is_dead(vd) && vd->vdev_parent &&
1643 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1644 	    vd->vdev_parent->vdev_child[0] == vd)
1645 		vd->vdev_unspare = B_TRUE;
1646 
1647 	vdev_config_dirty(vd->vdev_top);
1648 
1649 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1650 
1651 	/*
1652 	 * Must hold spa_namespace_lock in order to post resilver sysevent
1653 	 * w/pool name.
1654 	 */
1655 	mutex_enter(&spa_namespace_lock);
1656 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1657 	mutex_exit(&spa_namespace_lock);
1658 
1659 	return (0);
1660 }
1661 
1662 int
1663 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1664 {
1665 	vdev_t *rvd, *vd;
1666 	uint64_t txg;
1667 
1668 	/*
1669 	 * Disregard a vdev fault request if the pool has
1670 	 * experienced a complete failure.
1671 	 *
1672 	 * XXX - We do this here so that we don't hold the
1673 	 * spa_namespace_lock in the event that we can't get
1674 	 * the RW_WRITER spa_config_lock.
1675 	 */
1676 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
1677 		return (EIO);
1678 
1679 	txg = spa_vdev_enter(spa);
1680 
1681 	rvd = spa->spa_root_vdev;
1682 
1683 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1684 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1685 
1686 	if (!vd->vdev_ops->vdev_op_leaf)
1687 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1688 
1689 	/*
1690 	 * If the device isn't already offline, try to offline it.
1691 	 */
1692 	if (!vd->vdev_offline) {
1693 		/*
1694 		 * If this device's top-level vdev has a non-empty DTL,
1695 		 * don't allow the device to be offlined.
1696 		 *
1697 		 * XXX -- make this more precise by allowing the offline
1698 		 * as long as the remaining devices don't have any DTL holes.
1699 		 */
1700 		if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
1701 			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1702 
1703 		/*
1704 		 * Offline this device and reopen its top-level vdev.
1705 		 * If this action results in the top-level vdev becoming
1706 		 * unusable, undo it and fail the request.
1707 		 */
1708 		vd->vdev_offline = B_TRUE;
1709 		vdev_reopen(vd->vdev_top);
1710 		if (vdev_is_dead(vd->vdev_top)) {
1711 			vd->vdev_offline = B_FALSE;
1712 			vdev_reopen(vd->vdev_top);
1713 			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1714 		}
1715 	}
1716 
1717 	vd->vdev_tmpoffline = (flags & ZFS_OFFLINE_TEMPORARY) ?
1718 	    B_TRUE : B_FALSE;
1719 
1720 	vdev_config_dirty(vd->vdev_top);
1721 
1722 	return (spa_vdev_exit(spa, NULL, txg, 0));
1723 }
1724 
1725 /*
1726  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1727  * vdev_offline(), we assume the spa config is locked.  We also clear all
1728  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1729  * If reopen is specified then attempt to reopen the vdev if the vdev is
1730  * faulted or degraded.
1731  */
1732 void
1733 vdev_clear(spa_t *spa, vdev_t *vd, boolean_t reopen_wanted)
1734 {
1735 	int c;
1736 
1737 	if (vd == NULL)
1738 		vd = spa->spa_root_vdev;
1739 
1740 	vd->vdev_stat.vs_read_errors = 0;
1741 	vd->vdev_stat.vs_write_errors = 0;
1742 	vd->vdev_stat.vs_checksum_errors = 0;
1743 	vd->vdev_is_failing = B_FALSE;
1744 
1745 	for (c = 0; c < vd->vdev_children; c++)
1746 		vdev_clear(spa, vd->vdev_child[c], reopen_wanted);
1747 
1748 	/*
1749 	 * If we're in the FAULTED state, then clear the persistent state and
1750 	 * attempt to reopen the device.  We also mark the vdev config dirty, so
1751 	 * that the new faulted state is written out to disk.
1752 	 */
1753 	if (reopen_wanted && (vd->vdev_faulted || vd->vdev_degraded)) {
1754 		vd->vdev_faulted = vd->vdev_degraded = 0;
1755 		vdev_reopen(vd);
1756 		vdev_config_dirty(vd->vdev_top);
1757 
1758 		if (vd->vdev_faulted)
1759 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1760 
1761 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
1762 	}
1763 }
1764 
1765 int
1766 vdev_readable(vdev_t *vd)
1767 {
1768 	/* XXPOLICY */
1769 	return (!vdev_is_dead(vd));
1770 }
1771 
1772 int
1773 vdev_writeable(vdev_t *vd)
1774 {
1775 	return (!vdev_is_dead(vd) && !vd->vdev_is_failing);
1776 }
1777 
1778 int
1779 vdev_is_dead(vdev_t *vd)
1780 {
1781 	return (vd->vdev_state < VDEV_STATE_DEGRADED);
1782 }
1783 
1784 int
1785 vdev_error_inject(vdev_t *vd, zio_t *zio)
1786 {
1787 	int error = 0;
1788 
1789 	if (vd->vdev_fault_mode == VDEV_FAULT_NONE)
1790 		return (0);
1791 
1792 	if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0)
1793 		return (0);
1794 
1795 	switch (vd->vdev_fault_mode) {
1796 	case VDEV_FAULT_RANDOM:
1797 		if (spa_get_random(vd->vdev_fault_arg) == 0)
1798 			error = EIO;
1799 		break;
1800 
1801 	case VDEV_FAULT_COUNT:
1802 		if ((int64_t)--vd->vdev_fault_arg <= 0)
1803 			vd->vdev_fault_mode = VDEV_FAULT_NONE;
1804 		error = EIO;
1805 		break;
1806 	}
1807 
1808 	return (error);
1809 }
1810 
1811 /*
1812  * Get statistics for the given vdev.
1813  */
1814 void
1815 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
1816 {
1817 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1818 	int c, t;
1819 
1820 	mutex_enter(&vd->vdev_stat_lock);
1821 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
1822 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
1823 	vs->vs_state = vd->vdev_state;
1824 	vs->vs_rsize = vdev_get_rsize(vd);
1825 	mutex_exit(&vd->vdev_stat_lock);
1826 
1827 	/*
1828 	 * If we're getting stats on the root vdev, aggregate the I/O counts
1829 	 * over all top-level vdevs (i.e. the direct children of the root).
1830 	 */
1831 	if (vd == rvd) {
1832 		for (c = 0; c < rvd->vdev_children; c++) {
1833 			vdev_t *cvd = rvd->vdev_child[c];
1834 			vdev_stat_t *cvs = &cvd->vdev_stat;
1835 
1836 			mutex_enter(&vd->vdev_stat_lock);
1837 			for (t = 0; t < ZIO_TYPES; t++) {
1838 				vs->vs_ops[t] += cvs->vs_ops[t];
1839 				vs->vs_bytes[t] += cvs->vs_bytes[t];
1840 			}
1841 			vs->vs_read_errors += cvs->vs_read_errors;
1842 			vs->vs_write_errors += cvs->vs_write_errors;
1843 			vs->vs_checksum_errors += cvs->vs_checksum_errors;
1844 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
1845 			vs->vs_scrub_errors += cvs->vs_scrub_errors;
1846 			mutex_exit(&vd->vdev_stat_lock);
1847 		}
1848 	}
1849 }
1850 
1851 void
1852 vdev_clear_stats(vdev_t *vd)
1853 {
1854 	mutex_enter(&vd->vdev_stat_lock);
1855 	vd->vdev_stat.vs_space = 0;
1856 	vd->vdev_stat.vs_dspace = 0;
1857 	vd->vdev_stat.vs_alloc = 0;
1858 	mutex_exit(&vd->vdev_stat_lock);
1859 }
1860 
1861 void
1862 vdev_stat_update(zio_t *zio)
1863 {
1864 	vdev_t *vd = zio->io_vd;
1865 	vdev_t *pvd;
1866 	uint64_t txg = zio->io_txg;
1867 	vdev_stat_t *vs = &vd->vdev_stat;
1868 	zio_type_t type = zio->io_type;
1869 	int flags = zio->io_flags;
1870 
1871 	if (zio->io_error == 0) {
1872 		if (!(flags & ZIO_FLAG_IO_BYPASS)) {
1873 			mutex_enter(&vd->vdev_stat_lock);
1874 			vs->vs_ops[type]++;
1875 			vs->vs_bytes[type] += zio->io_size;
1876 			mutex_exit(&vd->vdev_stat_lock);
1877 		}
1878 		if ((flags & ZIO_FLAG_IO_REPAIR) &&
1879 		    zio->io_delegate_list == NULL) {
1880 			mutex_enter(&vd->vdev_stat_lock);
1881 			if (flags & ZIO_FLAG_SCRUB_THREAD)
1882 				vs->vs_scrub_repaired += zio->io_size;
1883 			else
1884 				vs->vs_self_healed += zio->io_size;
1885 			mutex_exit(&vd->vdev_stat_lock);
1886 		}
1887 		return;
1888 	}
1889 
1890 	if (flags & ZIO_FLAG_SPECULATIVE)
1891 		return;
1892 
1893 	if (vdev_readable(vd)) {
1894 		mutex_enter(&vd->vdev_stat_lock);
1895 		if (type == ZIO_TYPE_READ) {
1896 			if (zio->io_error == ECKSUM)
1897 				vs->vs_checksum_errors++;
1898 			else
1899 				vs->vs_read_errors++;
1900 		}
1901 		if (type == ZIO_TYPE_WRITE)
1902 			vs->vs_write_errors++;
1903 		mutex_exit(&vd->vdev_stat_lock);
1904 	}
1905 
1906 	if (type == ZIO_TYPE_WRITE) {
1907 		if (txg == 0 || vd->vdev_children != 0)
1908 			return;
1909 		if (flags & ZIO_FLAG_SCRUB_THREAD) {
1910 			ASSERT(flags & ZIO_FLAG_IO_REPAIR);
1911 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1912 				vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
1913 		}
1914 		if (!(flags & ZIO_FLAG_IO_REPAIR)) {
1915 			if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
1916 				return;
1917 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1918 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1919 				vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
1920 		}
1921 	}
1922 }
1923 
1924 void
1925 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
1926 {
1927 	int c;
1928 	vdev_stat_t *vs = &vd->vdev_stat;
1929 
1930 	for (c = 0; c < vd->vdev_children; c++)
1931 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
1932 
1933 	mutex_enter(&vd->vdev_stat_lock);
1934 
1935 	if (type == POOL_SCRUB_NONE) {
1936 		/*
1937 		 * Update completion and end time.  Leave everything else alone
1938 		 * so we can report what happened during the previous scrub.
1939 		 */
1940 		vs->vs_scrub_complete = complete;
1941 		vs->vs_scrub_end = gethrestime_sec();
1942 	} else {
1943 		vs->vs_scrub_type = type;
1944 		vs->vs_scrub_complete = 0;
1945 		vs->vs_scrub_examined = 0;
1946 		vs->vs_scrub_repaired = 0;
1947 		vs->vs_scrub_errors = 0;
1948 		vs->vs_scrub_start = gethrestime_sec();
1949 		vs->vs_scrub_end = 0;
1950 	}
1951 
1952 	mutex_exit(&vd->vdev_stat_lock);
1953 }
1954 
1955 /*
1956  * Update the in-core space usage stats for this vdev and the root vdev.
1957  */
1958 void
1959 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
1960     boolean_t update_root)
1961 {
1962 	int64_t dspace_delta = space_delta;
1963 	spa_t *spa = vd->vdev_spa;
1964 	vdev_t *rvd = spa->spa_root_vdev;
1965 
1966 	ASSERT(vd == vd->vdev_top);
1967 
1968 	/*
1969 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
1970 	 * factor.  We must calculate this here and not at the root vdev
1971 	 * because the root vdev's psize-to-asize is simply the max of its
1972 	 * childrens', thus not accurate enough for us.
1973 	 */
1974 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
1975 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
1976 	    vd->vdev_deflate_ratio;
1977 
1978 	mutex_enter(&vd->vdev_stat_lock);
1979 	vd->vdev_stat.vs_space += space_delta;
1980 	vd->vdev_stat.vs_alloc += alloc_delta;
1981 	vd->vdev_stat.vs_dspace += dspace_delta;
1982 	mutex_exit(&vd->vdev_stat_lock);
1983 
1984 	if (update_root) {
1985 		ASSERT(rvd == vd->vdev_parent);
1986 		ASSERT(vd->vdev_ms_count != 0);
1987 
1988 		/*
1989 		 * Don't count non-normal (e.g. intent log) space as part of
1990 		 * the pool's capacity.
1991 		 */
1992 		if (vd->vdev_mg->mg_class != spa->spa_normal_class)
1993 			return;
1994 
1995 		mutex_enter(&rvd->vdev_stat_lock);
1996 		rvd->vdev_stat.vs_space += space_delta;
1997 		rvd->vdev_stat.vs_alloc += alloc_delta;
1998 		rvd->vdev_stat.vs_dspace += dspace_delta;
1999 		mutex_exit(&rvd->vdev_stat_lock);
2000 	}
2001 }
2002 
2003 /*
2004  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2005  * so that it will be written out next time the vdev configuration is synced.
2006  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2007  */
2008 void
2009 vdev_config_dirty(vdev_t *vd)
2010 {
2011 	spa_t *spa = vd->vdev_spa;
2012 	vdev_t *rvd = spa->spa_root_vdev;
2013 	int c;
2014 
2015 	/*
2016 	 * The dirty list is protected by the config lock.  The caller must
2017 	 * either hold the config lock as writer, or must be the sync thread
2018 	 * (which holds the lock as reader).  There's only one sync thread,
2019 	 * so this is sufficient to ensure mutual exclusion.
2020 	 */
2021 	ASSERT(spa_config_held(spa, RW_WRITER) ||
2022 	    dsl_pool_sync_context(spa_get_dsl(spa)));
2023 
2024 	if (vd == rvd) {
2025 		for (c = 0; c < rvd->vdev_children; c++)
2026 			vdev_config_dirty(rvd->vdev_child[c]);
2027 	} else {
2028 		ASSERT(vd == vd->vdev_top);
2029 
2030 		if (!list_link_active(&vd->vdev_dirty_node))
2031 			list_insert_head(&spa->spa_dirty_list, vd);
2032 	}
2033 }
2034 
2035 void
2036 vdev_config_clean(vdev_t *vd)
2037 {
2038 	spa_t *spa = vd->vdev_spa;
2039 
2040 	ASSERT(spa_config_held(spa, RW_WRITER) ||
2041 	    dsl_pool_sync_context(spa_get_dsl(spa)));
2042 
2043 	ASSERT(list_link_active(&vd->vdev_dirty_node));
2044 	list_remove(&spa->spa_dirty_list, vd);
2045 }
2046 
2047 void
2048 vdev_propagate_state(vdev_t *vd)
2049 {
2050 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2051 	int degraded = 0, faulted = 0;
2052 	int corrupted = 0;
2053 	int c;
2054 	vdev_t *child;
2055 
2056 	if (vd->vdev_children > 0) {
2057 		for (c = 0; c < vd->vdev_children; c++) {
2058 			child = vd->vdev_child[c];
2059 			if (vdev_is_dead(child) && !vdev_readable(child))
2060 				faulted++;
2061 			else if (child->vdev_state <= VDEV_STATE_DEGRADED)
2062 				degraded++;
2063 
2064 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2065 				corrupted++;
2066 		}
2067 
2068 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2069 
2070 		/*
2071 		 * Root special: if there is a toplevel vdev that cannot be
2072 		 * opened due to corrupted metadata, then propagate the root
2073 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2074 		 * replicas'.
2075 		 */
2076 		if (corrupted && vd == rvd &&
2077 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2078 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2079 			    VDEV_AUX_CORRUPT_DATA);
2080 	}
2081 
2082 	if (vd->vdev_parent && !vd->vdev_islog)
2083 		vdev_propagate_state(vd->vdev_parent);
2084 }
2085 
2086 /*
2087  * Set a vdev's state.  If this is during an open, we don't update the parent
2088  * state, because we're in the process of opening children depth-first.
2089  * Otherwise, we propagate the change to the parent.
2090  *
2091  * If this routine places a device in a faulted state, an appropriate ereport is
2092  * generated.
2093  */
2094 void
2095 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2096 {
2097 	uint64_t save_state;
2098 
2099 	if (state == vd->vdev_state) {
2100 		vd->vdev_stat.vs_aux = aux;
2101 		return;
2102 	}
2103 
2104 	save_state = vd->vdev_state;
2105 
2106 	vd->vdev_state = state;
2107 	vd->vdev_stat.vs_aux = aux;
2108 
2109 	/*
2110 	 * If we are setting the vdev state to anything but an open state, then
2111 	 * always close the underlying device.  Otherwise, we keep accessible
2112 	 * but invalid devices open forever.  We don't call vdev_close() itself,
2113 	 * because that implies some extra checks (offline, etc) that we don't
2114 	 * want here.  This is limited to leaf devices, because otherwise
2115 	 * closing the device will affect other children.
2116 	 */
2117 	if (!vdev_readable(vd) && vd->vdev_ops->vdev_op_leaf)
2118 		vd->vdev_ops->vdev_op_close(vd);
2119 
2120 	if (vd->vdev_removed &&
2121 	    state == VDEV_STATE_CANT_OPEN &&
2122 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2123 		/*
2124 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2125 		 * device was previously marked removed and someone attempted to
2126 		 * reopen it.  If this failed due to a nonexistent device, then
2127 		 * keep the device in the REMOVED state.  We also let this be if
2128 		 * it is one of our special test online cases, which is only
2129 		 * attempting to online the device and shouldn't generate an FMA
2130 		 * fault.
2131 		 */
2132 		vd->vdev_state = VDEV_STATE_REMOVED;
2133 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2134 	} else if (state == VDEV_STATE_REMOVED) {
2135 		/*
2136 		 * Indicate to the ZFS DE that this device has been removed, and
2137 		 * any recent errors should be ignored.
2138 		 */
2139 		zfs_post_remove(vd->vdev_spa, vd);
2140 		vd->vdev_removed = B_TRUE;
2141 	} else if (state == VDEV_STATE_CANT_OPEN) {
2142 		/*
2143 		 * If we fail to open a vdev during an import, we mark it as
2144 		 * "not available", which signifies that it was never there to
2145 		 * begin with.  Failure to open such a device is not considered
2146 		 * an error.
2147 		 */
2148 		if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT &&
2149 		    vd->vdev_ops->vdev_op_leaf)
2150 			vd->vdev_not_present = 1;
2151 
2152 		/*
2153 		 * Post the appropriate ereport.  If the 'prevstate' field is
2154 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2155 		 * that this is part of a vdev_reopen().  In this case, we don't
2156 		 * want to post the ereport if the device was already in the
2157 		 * CANT_OPEN state beforehand.
2158 		 *
2159 		 * If the 'checkremove' flag is set, then this is an attempt to
2160 		 * online the device in response to an insertion event.  If we
2161 		 * hit this case, then we have detected an insertion event for a
2162 		 * faulted or offline device that wasn't in the removed state.
2163 		 * In this scenario, we don't post an ereport because we are
2164 		 * about to replace the device, or attempt an online with
2165 		 * vdev_forcefault, which will generate the fault for us.
2166 		 */
2167 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2168 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2169 		    vd != vd->vdev_spa->spa_root_vdev) {
2170 			const char *class;
2171 
2172 			switch (aux) {
2173 			case VDEV_AUX_OPEN_FAILED:
2174 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2175 				break;
2176 			case VDEV_AUX_CORRUPT_DATA:
2177 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2178 				break;
2179 			case VDEV_AUX_NO_REPLICAS:
2180 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2181 				break;
2182 			case VDEV_AUX_BAD_GUID_SUM:
2183 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2184 				break;
2185 			case VDEV_AUX_TOO_SMALL:
2186 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2187 				break;
2188 			case VDEV_AUX_BAD_LABEL:
2189 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2190 				break;
2191 			default:
2192 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2193 			}
2194 
2195 			zfs_ereport_post(class, vd->vdev_spa,
2196 			    vd, NULL, save_state, 0);
2197 		}
2198 
2199 		/* Erase any notion of persistent removed state */
2200 		vd->vdev_removed = B_FALSE;
2201 	} else {
2202 		vd->vdev_removed = B_FALSE;
2203 	}
2204 
2205 	if (!isopen)
2206 		vdev_propagate_state(vd);
2207 }
2208