1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/space_reftree.h> 40 #include <sys/zio.h> 41 #include <sys/zap.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/arc.h> 44 #include <sys/zil.h> 45 #include <sys/dsl_scan.h> 46 47 /* 48 * Virtual device management. 49 */ 50 51 static vdev_ops_t *vdev_ops_table[] = { 52 &vdev_root_ops, 53 &vdev_raidz_ops, 54 &vdev_mirror_ops, 55 &vdev_replacing_ops, 56 &vdev_spare_ops, 57 &vdev_disk_ops, 58 &vdev_file_ops, 59 &vdev_missing_ops, 60 &vdev_hole_ops, 61 NULL 62 }; 63 64 /* maximum scrub/resilver I/O queue per leaf vdev */ 65 int zfs_scrub_limit = 10; 66 67 /* 68 * When a vdev is added, it will be divided into approximately (but no 69 * more than) this number of metaslabs. 70 */ 71 int metaslabs_per_vdev = 200; 72 73 /* 74 * Given a vdev type, return the appropriate ops vector. 75 */ 76 static vdev_ops_t * 77 vdev_getops(const char *type) 78 { 79 vdev_ops_t *ops, **opspp; 80 81 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 82 if (strcmp(ops->vdev_op_type, type) == 0) 83 break; 84 85 return (ops); 86 } 87 88 /* 89 * Default asize function: return the MAX of psize with the asize of 90 * all children. This is what's used by anything other than RAID-Z. 91 */ 92 uint64_t 93 vdev_default_asize(vdev_t *vd, uint64_t psize) 94 { 95 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 96 uint64_t csize; 97 98 for (int c = 0; c < vd->vdev_children; c++) { 99 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 100 asize = MAX(asize, csize); 101 } 102 103 return (asize); 104 } 105 106 /* 107 * Get the minimum allocatable size. We define the allocatable size as 108 * the vdev's asize rounded to the nearest metaslab. This allows us to 109 * replace or attach devices which don't have the same physical size but 110 * can still satisfy the same number of allocations. 111 */ 112 uint64_t 113 vdev_get_min_asize(vdev_t *vd) 114 { 115 vdev_t *pvd = vd->vdev_parent; 116 117 /* 118 * If our parent is NULL (inactive spare or cache) or is the root, 119 * just return our own asize. 120 */ 121 if (pvd == NULL) 122 return (vd->vdev_asize); 123 124 /* 125 * The top-level vdev just returns the allocatable size rounded 126 * to the nearest metaslab. 127 */ 128 if (vd == vd->vdev_top) 129 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 130 131 /* 132 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 133 * so each child must provide at least 1/Nth of its asize. 134 */ 135 if (pvd->vdev_ops == &vdev_raidz_ops) 136 return (pvd->vdev_min_asize / pvd->vdev_children); 137 138 return (pvd->vdev_min_asize); 139 } 140 141 void 142 vdev_set_min_asize(vdev_t *vd) 143 { 144 vd->vdev_min_asize = vdev_get_min_asize(vd); 145 146 for (int c = 0; c < vd->vdev_children; c++) 147 vdev_set_min_asize(vd->vdev_child[c]); 148 } 149 150 vdev_t * 151 vdev_lookup_top(spa_t *spa, uint64_t vdev) 152 { 153 vdev_t *rvd = spa->spa_root_vdev; 154 155 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 156 157 if (vdev < rvd->vdev_children) { 158 ASSERT(rvd->vdev_child[vdev] != NULL); 159 return (rvd->vdev_child[vdev]); 160 } 161 162 return (NULL); 163 } 164 165 vdev_t * 166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 167 { 168 vdev_t *mvd; 169 170 if (vd->vdev_guid == guid) 171 return (vd); 172 173 for (int c = 0; c < vd->vdev_children; c++) 174 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 175 NULL) 176 return (mvd); 177 178 return (NULL); 179 } 180 181 static int 182 vdev_count_leaves_impl(vdev_t *vd) 183 { 184 int n = 0; 185 186 if (vd->vdev_ops->vdev_op_leaf) 187 return (1); 188 189 for (int c = 0; c < vd->vdev_children; c++) 190 n += vdev_count_leaves_impl(vd->vdev_child[c]); 191 192 return (n); 193 } 194 195 int 196 vdev_count_leaves(spa_t *spa) 197 { 198 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 199 } 200 201 void 202 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 203 { 204 size_t oldsize, newsize; 205 uint64_t id = cvd->vdev_id; 206 vdev_t **newchild; 207 spa_t *spa = cvd->vdev_spa; 208 209 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 210 ASSERT(cvd->vdev_parent == NULL); 211 212 cvd->vdev_parent = pvd; 213 214 if (pvd == NULL) 215 return; 216 217 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 218 219 oldsize = pvd->vdev_children * sizeof (vdev_t *); 220 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 221 newsize = pvd->vdev_children * sizeof (vdev_t *); 222 223 newchild = kmem_zalloc(newsize, KM_SLEEP); 224 if (pvd->vdev_child != NULL) { 225 bcopy(pvd->vdev_child, newchild, oldsize); 226 kmem_free(pvd->vdev_child, oldsize); 227 } 228 229 pvd->vdev_child = newchild; 230 pvd->vdev_child[id] = cvd; 231 232 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 233 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 234 235 /* 236 * Walk up all ancestors to update guid sum. 237 */ 238 for (; pvd != NULL; pvd = pvd->vdev_parent) 239 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 240 } 241 242 void 243 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 244 { 245 int c; 246 uint_t id = cvd->vdev_id; 247 248 ASSERT(cvd->vdev_parent == pvd); 249 250 if (pvd == NULL) 251 return; 252 253 ASSERT(id < pvd->vdev_children); 254 ASSERT(pvd->vdev_child[id] == cvd); 255 256 pvd->vdev_child[id] = NULL; 257 cvd->vdev_parent = NULL; 258 259 for (c = 0; c < pvd->vdev_children; c++) 260 if (pvd->vdev_child[c]) 261 break; 262 263 if (c == pvd->vdev_children) { 264 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 265 pvd->vdev_child = NULL; 266 pvd->vdev_children = 0; 267 } 268 269 /* 270 * Walk up all ancestors to update guid sum. 271 */ 272 for (; pvd != NULL; pvd = pvd->vdev_parent) 273 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 274 } 275 276 /* 277 * Remove any holes in the child array. 278 */ 279 void 280 vdev_compact_children(vdev_t *pvd) 281 { 282 vdev_t **newchild, *cvd; 283 int oldc = pvd->vdev_children; 284 int newc; 285 286 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 287 288 for (int c = newc = 0; c < oldc; c++) 289 if (pvd->vdev_child[c]) 290 newc++; 291 292 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 293 294 for (int c = newc = 0; c < oldc; c++) { 295 if ((cvd = pvd->vdev_child[c]) != NULL) { 296 newchild[newc] = cvd; 297 cvd->vdev_id = newc++; 298 } 299 } 300 301 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 302 pvd->vdev_child = newchild; 303 pvd->vdev_children = newc; 304 } 305 306 /* 307 * Allocate and minimally initialize a vdev_t. 308 */ 309 vdev_t * 310 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 311 { 312 vdev_t *vd; 313 314 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 315 316 if (spa->spa_root_vdev == NULL) { 317 ASSERT(ops == &vdev_root_ops); 318 spa->spa_root_vdev = vd; 319 spa->spa_load_guid = spa_generate_guid(NULL); 320 } 321 322 if (guid == 0 && ops != &vdev_hole_ops) { 323 if (spa->spa_root_vdev == vd) { 324 /* 325 * The root vdev's guid will also be the pool guid, 326 * which must be unique among all pools. 327 */ 328 guid = spa_generate_guid(NULL); 329 } else { 330 /* 331 * Any other vdev's guid must be unique within the pool. 332 */ 333 guid = spa_generate_guid(spa); 334 } 335 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 336 } 337 338 vd->vdev_spa = spa; 339 vd->vdev_id = id; 340 vd->vdev_guid = guid; 341 vd->vdev_guid_sum = guid; 342 vd->vdev_ops = ops; 343 vd->vdev_state = VDEV_STATE_CLOSED; 344 vd->vdev_ishole = (ops == &vdev_hole_ops); 345 346 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 347 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 348 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 349 for (int t = 0; t < DTL_TYPES; t++) { 350 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 351 &vd->vdev_dtl_lock); 352 } 353 txg_list_create(&vd->vdev_ms_list, 354 offsetof(struct metaslab, ms_txg_node)); 355 txg_list_create(&vd->vdev_dtl_list, 356 offsetof(struct vdev, vdev_dtl_node)); 357 vd->vdev_stat.vs_timestamp = gethrtime(); 358 vdev_queue_init(vd); 359 vdev_cache_init(vd); 360 361 return (vd); 362 } 363 364 /* 365 * Allocate a new vdev. The 'alloctype' is used to control whether we are 366 * creating a new vdev or loading an existing one - the behavior is slightly 367 * different for each case. 368 */ 369 int 370 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 371 int alloctype) 372 { 373 vdev_ops_t *ops; 374 char *type; 375 uint64_t guid = 0, islog, nparity; 376 vdev_t *vd; 377 378 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 379 380 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 381 return (SET_ERROR(EINVAL)); 382 383 if ((ops = vdev_getops(type)) == NULL) 384 return (SET_ERROR(EINVAL)); 385 386 /* 387 * If this is a load, get the vdev guid from the nvlist. 388 * Otherwise, vdev_alloc_common() will generate one for us. 389 */ 390 if (alloctype == VDEV_ALLOC_LOAD) { 391 uint64_t label_id; 392 393 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 394 label_id != id) 395 return (SET_ERROR(EINVAL)); 396 397 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 398 return (SET_ERROR(EINVAL)); 399 } else if (alloctype == VDEV_ALLOC_SPARE) { 400 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 401 return (SET_ERROR(EINVAL)); 402 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 403 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 404 return (SET_ERROR(EINVAL)); 405 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 406 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 407 return (SET_ERROR(EINVAL)); 408 } 409 410 /* 411 * The first allocated vdev must be of type 'root'. 412 */ 413 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 414 return (SET_ERROR(EINVAL)); 415 416 /* 417 * Determine whether we're a log vdev. 418 */ 419 islog = 0; 420 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 421 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 422 return (SET_ERROR(ENOTSUP)); 423 424 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 425 return (SET_ERROR(ENOTSUP)); 426 427 /* 428 * Set the nparity property for RAID-Z vdevs. 429 */ 430 nparity = -1ULL; 431 if (ops == &vdev_raidz_ops) { 432 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 433 &nparity) == 0) { 434 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 435 return (SET_ERROR(EINVAL)); 436 /* 437 * Previous versions could only support 1 or 2 parity 438 * device. 439 */ 440 if (nparity > 1 && 441 spa_version(spa) < SPA_VERSION_RAIDZ2) 442 return (SET_ERROR(ENOTSUP)); 443 if (nparity > 2 && 444 spa_version(spa) < SPA_VERSION_RAIDZ3) 445 return (SET_ERROR(ENOTSUP)); 446 } else { 447 /* 448 * We require the parity to be specified for SPAs that 449 * support multiple parity levels. 450 */ 451 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 452 return (SET_ERROR(EINVAL)); 453 /* 454 * Otherwise, we default to 1 parity device for RAID-Z. 455 */ 456 nparity = 1; 457 } 458 } else { 459 nparity = 0; 460 } 461 ASSERT(nparity != -1ULL); 462 463 vd = vdev_alloc_common(spa, id, guid, ops); 464 465 vd->vdev_islog = islog; 466 vd->vdev_nparity = nparity; 467 468 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 469 vd->vdev_path = spa_strdup(vd->vdev_path); 470 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 471 vd->vdev_devid = spa_strdup(vd->vdev_devid); 472 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 473 &vd->vdev_physpath) == 0) 474 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 475 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 476 vd->vdev_fru = spa_strdup(vd->vdev_fru); 477 478 /* 479 * Set the whole_disk property. If it's not specified, leave the value 480 * as -1. 481 */ 482 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 483 &vd->vdev_wholedisk) != 0) 484 vd->vdev_wholedisk = -1ULL; 485 486 /* 487 * Look for the 'not present' flag. This will only be set if the device 488 * was not present at the time of import. 489 */ 490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 491 &vd->vdev_not_present); 492 493 /* 494 * Get the alignment requirement. 495 */ 496 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 497 498 /* 499 * Retrieve the vdev creation time. 500 */ 501 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 502 &vd->vdev_crtxg); 503 504 /* 505 * If we're a top-level vdev, try to load the allocation parameters. 506 */ 507 if (parent && !parent->vdev_parent && 508 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 510 &vd->vdev_ms_array); 511 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 512 &vd->vdev_ms_shift); 513 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 514 &vd->vdev_asize); 515 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 516 &vd->vdev_removing); 517 } 518 519 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 520 ASSERT(alloctype == VDEV_ALLOC_LOAD || 521 alloctype == VDEV_ALLOC_ADD || 522 alloctype == VDEV_ALLOC_SPLIT || 523 alloctype == VDEV_ALLOC_ROOTPOOL); 524 vd->vdev_mg = metaslab_group_create(islog ? 525 spa_log_class(spa) : spa_normal_class(spa), vd); 526 } 527 528 /* 529 * If we're a leaf vdev, try to load the DTL object and other state. 530 */ 531 if (vd->vdev_ops->vdev_op_leaf && 532 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 533 alloctype == VDEV_ALLOC_ROOTPOOL)) { 534 if (alloctype == VDEV_ALLOC_LOAD) { 535 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 536 &vd->vdev_dtl_object); 537 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 538 &vd->vdev_unspare); 539 } 540 541 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 542 uint64_t spare = 0; 543 544 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 545 &spare) == 0 && spare) 546 spa_spare_add(vd); 547 } 548 549 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 550 &vd->vdev_offline); 551 552 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 553 &vd->vdev_resilver_txg); 554 555 /* 556 * When importing a pool, we want to ignore the persistent fault 557 * state, as the diagnosis made on another system may not be 558 * valid in the current context. Local vdevs will 559 * remain in the faulted state. 560 */ 561 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 562 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 563 &vd->vdev_faulted); 564 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 565 &vd->vdev_degraded); 566 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 567 &vd->vdev_removed); 568 569 if (vd->vdev_faulted || vd->vdev_degraded) { 570 char *aux; 571 572 vd->vdev_label_aux = 573 VDEV_AUX_ERR_EXCEEDED; 574 if (nvlist_lookup_string(nv, 575 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 576 strcmp(aux, "external") == 0) 577 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 578 } 579 } 580 } 581 582 /* 583 * Add ourselves to the parent's list of children. 584 */ 585 vdev_add_child(parent, vd); 586 587 *vdp = vd; 588 589 return (0); 590 } 591 592 void 593 vdev_free(vdev_t *vd) 594 { 595 spa_t *spa = vd->vdev_spa; 596 597 /* 598 * vdev_free() implies closing the vdev first. This is simpler than 599 * trying to ensure complicated semantics for all callers. 600 */ 601 vdev_close(vd); 602 603 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 604 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 605 606 /* 607 * Free all children. 608 */ 609 for (int c = 0; c < vd->vdev_children; c++) 610 vdev_free(vd->vdev_child[c]); 611 612 ASSERT(vd->vdev_child == NULL); 613 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 614 615 /* 616 * Discard allocation state. 617 */ 618 if (vd->vdev_mg != NULL) { 619 vdev_metaslab_fini(vd); 620 metaslab_group_destroy(vd->vdev_mg); 621 } 622 623 ASSERT0(vd->vdev_stat.vs_space); 624 ASSERT0(vd->vdev_stat.vs_dspace); 625 ASSERT0(vd->vdev_stat.vs_alloc); 626 627 /* 628 * Remove this vdev from its parent's child list. 629 */ 630 vdev_remove_child(vd->vdev_parent, vd); 631 632 ASSERT(vd->vdev_parent == NULL); 633 634 /* 635 * Clean up vdev structure. 636 */ 637 vdev_queue_fini(vd); 638 vdev_cache_fini(vd); 639 640 if (vd->vdev_path) 641 spa_strfree(vd->vdev_path); 642 if (vd->vdev_devid) 643 spa_strfree(vd->vdev_devid); 644 if (vd->vdev_physpath) 645 spa_strfree(vd->vdev_physpath); 646 if (vd->vdev_fru) 647 spa_strfree(vd->vdev_fru); 648 649 if (vd->vdev_isspare) 650 spa_spare_remove(vd); 651 if (vd->vdev_isl2cache) 652 spa_l2cache_remove(vd); 653 654 txg_list_destroy(&vd->vdev_ms_list); 655 txg_list_destroy(&vd->vdev_dtl_list); 656 657 mutex_enter(&vd->vdev_dtl_lock); 658 space_map_close(vd->vdev_dtl_sm); 659 for (int t = 0; t < DTL_TYPES; t++) { 660 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 661 range_tree_destroy(vd->vdev_dtl[t]); 662 } 663 mutex_exit(&vd->vdev_dtl_lock); 664 665 mutex_destroy(&vd->vdev_dtl_lock); 666 mutex_destroy(&vd->vdev_stat_lock); 667 mutex_destroy(&vd->vdev_probe_lock); 668 669 if (vd == spa->spa_root_vdev) 670 spa->spa_root_vdev = NULL; 671 672 kmem_free(vd, sizeof (vdev_t)); 673 } 674 675 /* 676 * Transfer top-level vdev state from svd to tvd. 677 */ 678 static void 679 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 680 { 681 spa_t *spa = svd->vdev_spa; 682 metaslab_t *msp; 683 vdev_t *vd; 684 int t; 685 686 ASSERT(tvd == tvd->vdev_top); 687 688 tvd->vdev_ms_array = svd->vdev_ms_array; 689 tvd->vdev_ms_shift = svd->vdev_ms_shift; 690 tvd->vdev_ms_count = svd->vdev_ms_count; 691 692 svd->vdev_ms_array = 0; 693 svd->vdev_ms_shift = 0; 694 svd->vdev_ms_count = 0; 695 696 if (tvd->vdev_mg) 697 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 698 tvd->vdev_mg = svd->vdev_mg; 699 tvd->vdev_ms = svd->vdev_ms; 700 701 svd->vdev_mg = NULL; 702 svd->vdev_ms = NULL; 703 704 if (tvd->vdev_mg != NULL) 705 tvd->vdev_mg->mg_vd = tvd; 706 707 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 708 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 709 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 710 711 svd->vdev_stat.vs_alloc = 0; 712 svd->vdev_stat.vs_space = 0; 713 svd->vdev_stat.vs_dspace = 0; 714 715 for (t = 0; t < TXG_SIZE; t++) { 716 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 717 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 718 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 719 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 720 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 721 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 722 } 723 724 if (list_link_active(&svd->vdev_config_dirty_node)) { 725 vdev_config_clean(svd); 726 vdev_config_dirty(tvd); 727 } 728 729 if (list_link_active(&svd->vdev_state_dirty_node)) { 730 vdev_state_clean(svd); 731 vdev_state_dirty(tvd); 732 } 733 734 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 735 svd->vdev_deflate_ratio = 0; 736 737 tvd->vdev_islog = svd->vdev_islog; 738 svd->vdev_islog = 0; 739 } 740 741 static void 742 vdev_top_update(vdev_t *tvd, vdev_t *vd) 743 { 744 if (vd == NULL) 745 return; 746 747 vd->vdev_top = tvd; 748 749 for (int c = 0; c < vd->vdev_children; c++) 750 vdev_top_update(tvd, vd->vdev_child[c]); 751 } 752 753 /* 754 * Add a mirror/replacing vdev above an existing vdev. 755 */ 756 vdev_t * 757 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 758 { 759 spa_t *spa = cvd->vdev_spa; 760 vdev_t *pvd = cvd->vdev_parent; 761 vdev_t *mvd; 762 763 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 764 765 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 766 767 mvd->vdev_asize = cvd->vdev_asize; 768 mvd->vdev_min_asize = cvd->vdev_min_asize; 769 mvd->vdev_max_asize = cvd->vdev_max_asize; 770 mvd->vdev_ashift = cvd->vdev_ashift; 771 mvd->vdev_state = cvd->vdev_state; 772 mvd->vdev_crtxg = cvd->vdev_crtxg; 773 774 vdev_remove_child(pvd, cvd); 775 vdev_add_child(pvd, mvd); 776 cvd->vdev_id = mvd->vdev_children; 777 vdev_add_child(mvd, cvd); 778 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 779 780 if (mvd == mvd->vdev_top) 781 vdev_top_transfer(cvd, mvd); 782 783 return (mvd); 784 } 785 786 /* 787 * Remove a 1-way mirror/replacing vdev from the tree. 788 */ 789 void 790 vdev_remove_parent(vdev_t *cvd) 791 { 792 vdev_t *mvd = cvd->vdev_parent; 793 vdev_t *pvd = mvd->vdev_parent; 794 795 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 796 797 ASSERT(mvd->vdev_children == 1); 798 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 799 mvd->vdev_ops == &vdev_replacing_ops || 800 mvd->vdev_ops == &vdev_spare_ops); 801 cvd->vdev_ashift = mvd->vdev_ashift; 802 803 vdev_remove_child(mvd, cvd); 804 vdev_remove_child(pvd, mvd); 805 806 /* 807 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 808 * Otherwise, we could have detached an offline device, and when we 809 * go to import the pool we'll think we have two top-level vdevs, 810 * instead of a different version of the same top-level vdev. 811 */ 812 if (mvd->vdev_top == mvd) { 813 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 814 cvd->vdev_orig_guid = cvd->vdev_guid; 815 cvd->vdev_guid += guid_delta; 816 cvd->vdev_guid_sum += guid_delta; 817 } 818 cvd->vdev_id = mvd->vdev_id; 819 vdev_add_child(pvd, cvd); 820 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 821 822 if (cvd == cvd->vdev_top) 823 vdev_top_transfer(mvd, cvd); 824 825 ASSERT(mvd->vdev_children == 0); 826 vdev_free(mvd); 827 } 828 829 int 830 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 831 { 832 spa_t *spa = vd->vdev_spa; 833 objset_t *mos = spa->spa_meta_objset; 834 uint64_t m; 835 uint64_t oldc = vd->vdev_ms_count; 836 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 837 metaslab_t **mspp; 838 int error; 839 840 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 841 842 /* 843 * This vdev is not being allocated from yet or is a hole. 844 */ 845 if (vd->vdev_ms_shift == 0) 846 return (0); 847 848 ASSERT(!vd->vdev_ishole); 849 850 /* 851 * Compute the raidz-deflation ratio. Note, we hard-code 852 * in 128k (1 << 17) because it is the "typical" blocksize. 853 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 854 * otherwise it would inconsistently account for existing bp's. 855 */ 856 vd->vdev_deflate_ratio = (1 << 17) / 857 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 858 859 ASSERT(oldc <= newc); 860 861 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 862 863 if (oldc != 0) { 864 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 865 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 866 } 867 868 vd->vdev_ms = mspp; 869 vd->vdev_ms_count = newc; 870 871 for (m = oldc; m < newc; m++) { 872 uint64_t object = 0; 873 874 if (txg == 0) { 875 error = dmu_read(mos, vd->vdev_ms_array, 876 m * sizeof (uint64_t), sizeof (uint64_t), &object, 877 DMU_READ_PREFETCH); 878 if (error) 879 return (error); 880 } 881 882 error = metaslab_init(vd->vdev_mg, m, object, txg, 883 &(vd->vdev_ms[m])); 884 if (error) 885 return (error); 886 } 887 888 if (txg == 0) 889 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 890 891 /* 892 * If the vdev is being removed we don't activate 893 * the metaslabs since we want to ensure that no new 894 * allocations are performed on this device. 895 */ 896 if (oldc == 0 && !vd->vdev_removing) 897 metaslab_group_activate(vd->vdev_mg); 898 899 if (txg == 0) 900 spa_config_exit(spa, SCL_ALLOC, FTAG); 901 902 return (0); 903 } 904 905 void 906 vdev_metaslab_fini(vdev_t *vd) 907 { 908 uint64_t m; 909 uint64_t count = vd->vdev_ms_count; 910 911 if (vd->vdev_ms != NULL) { 912 metaslab_group_passivate(vd->vdev_mg); 913 for (m = 0; m < count; m++) { 914 metaslab_t *msp = vd->vdev_ms[m]; 915 916 if (msp != NULL) 917 metaslab_fini(msp); 918 } 919 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 920 vd->vdev_ms = NULL; 921 } 922 } 923 924 typedef struct vdev_probe_stats { 925 boolean_t vps_readable; 926 boolean_t vps_writeable; 927 int vps_flags; 928 } vdev_probe_stats_t; 929 930 static void 931 vdev_probe_done(zio_t *zio) 932 { 933 spa_t *spa = zio->io_spa; 934 vdev_t *vd = zio->io_vd; 935 vdev_probe_stats_t *vps = zio->io_private; 936 937 ASSERT(vd->vdev_probe_zio != NULL); 938 939 if (zio->io_type == ZIO_TYPE_READ) { 940 if (zio->io_error == 0) 941 vps->vps_readable = 1; 942 if (zio->io_error == 0 && spa_writeable(spa)) { 943 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 944 zio->io_offset, zio->io_size, zio->io_data, 945 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 946 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 947 } else { 948 zio_buf_free(zio->io_data, zio->io_size); 949 } 950 } else if (zio->io_type == ZIO_TYPE_WRITE) { 951 if (zio->io_error == 0) 952 vps->vps_writeable = 1; 953 zio_buf_free(zio->io_data, zio->io_size); 954 } else if (zio->io_type == ZIO_TYPE_NULL) { 955 zio_t *pio; 956 957 vd->vdev_cant_read |= !vps->vps_readable; 958 vd->vdev_cant_write |= !vps->vps_writeable; 959 960 if (vdev_readable(vd) && 961 (vdev_writeable(vd) || !spa_writeable(spa))) { 962 zio->io_error = 0; 963 } else { 964 ASSERT(zio->io_error != 0); 965 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 966 spa, vd, NULL, 0, 0); 967 zio->io_error = SET_ERROR(ENXIO); 968 } 969 970 mutex_enter(&vd->vdev_probe_lock); 971 ASSERT(vd->vdev_probe_zio == zio); 972 vd->vdev_probe_zio = NULL; 973 mutex_exit(&vd->vdev_probe_lock); 974 975 while ((pio = zio_walk_parents(zio)) != NULL) 976 if (!vdev_accessible(vd, pio)) 977 pio->io_error = SET_ERROR(ENXIO); 978 979 kmem_free(vps, sizeof (*vps)); 980 } 981 } 982 983 /* 984 * Determine whether this device is accessible. 985 * 986 * Read and write to several known locations: the pad regions of each 987 * vdev label but the first, which we leave alone in case it contains 988 * a VTOC. 989 */ 990 zio_t * 991 vdev_probe(vdev_t *vd, zio_t *zio) 992 { 993 spa_t *spa = vd->vdev_spa; 994 vdev_probe_stats_t *vps = NULL; 995 zio_t *pio; 996 997 ASSERT(vd->vdev_ops->vdev_op_leaf); 998 999 /* 1000 * Don't probe the probe. 1001 */ 1002 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1003 return (NULL); 1004 1005 /* 1006 * To prevent 'probe storms' when a device fails, we create 1007 * just one probe i/o at a time. All zios that want to probe 1008 * this vdev will become parents of the probe io. 1009 */ 1010 mutex_enter(&vd->vdev_probe_lock); 1011 1012 if ((pio = vd->vdev_probe_zio) == NULL) { 1013 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1014 1015 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1016 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1017 ZIO_FLAG_TRYHARD; 1018 1019 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1020 /* 1021 * vdev_cant_read and vdev_cant_write can only 1022 * transition from TRUE to FALSE when we have the 1023 * SCL_ZIO lock as writer; otherwise they can only 1024 * transition from FALSE to TRUE. This ensures that 1025 * any zio looking at these values can assume that 1026 * failures persist for the life of the I/O. That's 1027 * important because when a device has intermittent 1028 * connectivity problems, we want to ensure that 1029 * they're ascribed to the device (ENXIO) and not 1030 * the zio (EIO). 1031 * 1032 * Since we hold SCL_ZIO as writer here, clear both 1033 * values so the probe can reevaluate from first 1034 * principles. 1035 */ 1036 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1037 vd->vdev_cant_read = B_FALSE; 1038 vd->vdev_cant_write = B_FALSE; 1039 } 1040 1041 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1042 vdev_probe_done, vps, 1043 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1044 1045 /* 1046 * We can't change the vdev state in this context, so we 1047 * kick off an async task to do it on our behalf. 1048 */ 1049 if (zio != NULL) { 1050 vd->vdev_probe_wanted = B_TRUE; 1051 spa_async_request(spa, SPA_ASYNC_PROBE); 1052 } 1053 } 1054 1055 if (zio != NULL) 1056 zio_add_child(zio, pio); 1057 1058 mutex_exit(&vd->vdev_probe_lock); 1059 1060 if (vps == NULL) { 1061 ASSERT(zio != NULL); 1062 return (NULL); 1063 } 1064 1065 for (int l = 1; l < VDEV_LABELS; l++) { 1066 zio_nowait(zio_read_phys(pio, vd, 1067 vdev_label_offset(vd->vdev_psize, l, 1068 offsetof(vdev_label_t, vl_pad2)), 1069 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1070 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1071 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1072 } 1073 1074 if (zio == NULL) 1075 return (pio); 1076 1077 zio_nowait(pio); 1078 return (NULL); 1079 } 1080 1081 static void 1082 vdev_open_child(void *arg) 1083 { 1084 vdev_t *vd = arg; 1085 1086 vd->vdev_open_thread = curthread; 1087 vd->vdev_open_error = vdev_open(vd); 1088 vd->vdev_open_thread = NULL; 1089 } 1090 1091 boolean_t 1092 vdev_uses_zvols(vdev_t *vd) 1093 { 1094 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1095 strlen(ZVOL_DIR)) == 0) 1096 return (B_TRUE); 1097 for (int c = 0; c < vd->vdev_children; c++) 1098 if (vdev_uses_zvols(vd->vdev_child[c])) 1099 return (B_TRUE); 1100 return (B_FALSE); 1101 } 1102 1103 void 1104 vdev_open_children(vdev_t *vd) 1105 { 1106 taskq_t *tq; 1107 int children = vd->vdev_children; 1108 1109 /* 1110 * in order to handle pools on top of zvols, do the opens 1111 * in a single thread so that the same thread holds the 1112 * spa_namespace_lock 1113 */ 1114 if (vdev_uses_zvols(vd)) { 1115 for (int c = 0; c < children; c++) 1116 vd->vdev_child[c]->vdev_open_error = 1117 vdev_open(vd->vdev_child[c]); 1118 return; 1119 } 1120 tq = taskq_create("vdev_open", children, minclsyspri, 1121 children, children, TASKQ_PREPOPULATE); 1122 1123 for (int c = 0; c < children; c++) 1124 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1125 TQ_SLEEP) != NULL); 1126 1127 taskq_destroy(tq); 1128 } 1129 1130 /* 1131 * Prepare a virtual device for access. 1132 */ 1133 int 1134 vdev_open(vdev_t *vd) 1135 { 1136 spa_t *spa = vd->vdev_spa; 1137 int error; 1138 uint64_t osize = 0; 1139 uint64_t max_osize = 0; 1140 uint64_t asize, max_asize, psize; 1141 uint64_t ashift = 0; 1142 1143 ASSERT(vd->vdev_open_thread == curthread || 1144 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1145 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1146 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1147 vd->vdev_state == VDEV_STATE_OFFLINE); 1148 1149 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1150 vd->vdev_cant_read = B_FALSE; 1151 vd->vdev_cant_write = B_FALSE; 1152 vd->vdev_min_asize = vdev_get_min_asize(vd); 1153 1154 /* 1155 * If this vdev is not removed, check its fault status. If it's 1156 * faulted, bail out of the open. 1157 */ 1158 if (!vd->vdev_removed && vd->vdev_faulted) { 1159 ASSERT(vd->vdev_children == 0); 1160 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1161 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1162 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1163 vd->vdev_label_aux); 1164 return (SET_ERROR(ENXIO)); 1165 } else if (vd->vdev_offline) { 1166 ASSERT(vd->vdev_children == 0); 1167 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1168 return (SET_ERROR(ENXIO)); 1169 } 1170 1171 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1172 1173 /* 1174 * Reset the vdev_reopening flag so that we actually close 1175 * the vdev on error. 1176 */ 1177 vd->vdev_reopening = B_FALSE; 1178 if (zio_injection_enabled && error == 0) 1179 error = zio_handle_device_injection(vd, NULL, ENXIO); 1180 1181 if (error) { 1182 if (vd->vdev_removed && 1183 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1184 vd->vdev_removed = B_FALSE; 1185 1186 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1187 vd->vdev_stat.vs_aux); 1188 return (error); 1189 } 1190 1191 vd->vdev_removed = B_FALSE; 1192 1193 /* 1194 * Recheck the faulted flag now that we have confirmed that 1195 * the vdev is accessible. If we're faulted, bail. 1196 */ 1197 if (vd->vdev_faulted) { 1198 ASSERT(vd->vdev_children == 0); 1199 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1200 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1201 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1202 vd->vdev_label_aux); 1203 return (SET_ERROR(ENXIO)); 1204 } 1205 1206 if (vd->vdev_degraded) { 1207 ASSERT(vd->vdev_children == 0); 1208 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1209 VDEV_AUX_ERR_EXCEEDED); 1210 } else { 1211 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1212 } 1213 1214 /* 1215 * For hole or missing vdevs we just return success. 1216 */ 1217 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1218 return (0); 1219 1220 for (int c = 0; c < vd->vdev_children; c++) { 1221 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1222 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1223 VDEV_AUX_NONE); 1224 break; 1225 } 1226 } 1227 1228 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1229 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1230 1231 if (vd->vdev_children == 0) { 1232 if (osize < SPA_MINDEVSIZE) { 1233 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1234 VDEV_AUX_TOO_SMALL); 1235 return (SET_ERROR(EOVERFLOW)); 1236 } 1237 psize = osize; 1238 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1239 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1240 VDEV_LABEL_END_SIZE); 1241 } else { 1242 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1243 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1244 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1245 VDEV_AUX_TOO_SMALL); 1246 return (SET_ERROR(EOVERFLOW)); 1247 } 1248 psize = 0; 1249 asize = osize; 1250 max_asize = max_osize; 1251 } 1252 1253 vd->vdev_psize = psize; 1254 1255 /* 1256 * Make sure the allocatable size hasn't shrunk. 1257 */ 1258 if (asize < vd->vdev_min_asize) { 1259 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1260 VDEV_AUX_BAD_LABEL); 1261 return (SET_ERROR(EINVAL)); 1262 } 1263 1264 if (vd->vdev_asize == 0) { 1265 /* 1266 * This is the first-ever open, so use the computed values. 1267 * For testing purposes, a higher ashift can be requested. 1268 */ 1269 vd->vdev_asize = asize; 1270 vd->vdev_max_asize = max_asize; 1271 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1272 } else { 1273 /* 1274 * Detect if the alignment requirement has increased. 1275 * We don't want to make the pool unavailable, just 1276 * issue a warning instead. 1277 */ 1278 if (ashift > vd->vdev_top->vdev_ashift && 1279 vd->vdev_ops->vdev_op_leaf) { 1280 cmn_err(CE_WARN, 1281 "Disk, '%s', has a block alignment that is " 1282 "larger than the pool's alignment\n", 1283 vd->vdev_path); 1284 } 1285 vd->vdev_max_asize = max_asize; 1286 } 1287 1288 /* 1289 * If all children are healthy and the asize has increased, 1290 * then we've experienced dynamic LUN growth. If automatic 1291 * expansion is enabled then use the additional space. 1292 */ 1293 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1294 (vd->vdev_expanding || spa->spa_autoexpand)) 1295 vd->vdev_asize = asize; 1296 1297 vdev_set_min_asize(vd); 1298 1299 /* 1300 * Ensure we can issue some IO before declaring the 1301 * vdev open for business. 1302 */ 1303 if (vd->vdev_ops->vdev_op_leaf && 1304 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1305 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1306 VDEV_AUX_ERR_EXCEEDED); 1307 return (error); 1308 } 1309 1310 /* 1311 * Track the min and max ashift values for normal data devices. 1312 */ 1313 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1314 !vd->vdev_islog && vd->vdev_aux == NULL) { 1315 if (vd->vdev_ashift > spa->spa_max_ashift) 1316 spa->spa_max_ashift = vd->vdev_ashift; 1317 if (vd->vdev_ashift < spa->spa_min_ashift) 1318 spa->spa_min_ashift = vd->vdev_ashift; 1319 } 1320 1321 /* 1322 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1323 * resilver. But don't do this if we are doing a reopen for a scrub, 1324 * since this would just restart the scrub we are already doing. 1325 */ 1326 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1327 vdev_resilver_needed(vd, NULL, NULL)) 1328 spa_async_request(spa, SPA_ASYNC_RESILVER); 1329 1330 return (0); 1331 } 1332 1333 /* 1334 * Called once the vdevs are all opened, this routine validates the label 1335 * contents. This needs to be done before vdev_load() so that we don't 1336 * inadvertently do repair I/Os to the wrong device. 1337 * 1338 * If 'strict' is false ignore the spa guid check. This is necessary because 1339 * if the machine crashed during a re-guid the new guid might have been written 1340 * to all of the vdev labels, but not the cached config. The strict check 1341 * will be performed when the pool is opened again using the mos config. 1342 * 1343 * This function will only return failure if one of the vdevs indicates that it 1344 * has since been destroyed or exported. This is only possible if 1345 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1346 * will be updated but the function will return 0. 1347 */ 1348 int 1349 vdev_validate(vdev_t *vd, boolean_t strict) 1350 { 1351 spa_t *spa = vd->vdev_spa; 1352 nvlist_t *label; 1353 uint64_t guid = 0, top_guid; 1354 uint64_t state; 1355 1356 for (int c = 0; c < vd->vdev_children; c++) 1357 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1358 return (SET_ERROR(EBADF)); 1359 1360 /* 1361 * If the device has already failed, or was marked offline, don't do 1362 * any further validation. Otherwise, label I/O will fail and we will 1363 * overwrite the previous state. 1364 */ 1365 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1366 uint64_t aux_guid = 0; 1367 nvlist_t *nvl; 1368 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1369 spa_last_synced_txg(spa) : -1ULL; 1370 1371 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1372 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1373 VDEV_AUX_BAD_LABEL); 1374 return (0); 1375 } 1376 1377 /* 1378 * Determine if this vdev has been split off into another 1379 * pool. If so, then refuse to open it. 1380 */ 1381 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1382 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1383 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1384 VDEV_AUX_SPLIT_POOL); 1385 nvlist_free(label); 1386 return (0); 1387 } 1388 1389 if (strict && (nvlist_lookup_uint64(label, 1390 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1391 guid != spa_guid(spa))) { 1392 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1393 VDEV_AUX_CORRUPT_DATA); 1394 nvlist_free(label); 1395 return (0); 1396 } 1397 1398 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1399 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1400 &aux_guid) != 0) 1401 aux_guid = 0; 1402 1403 /* 1404 * If this vdev just became a top-level vdev because its 1405 * sibling was detached, it will have adopted the parent's 1406 * vdev guid -- but the label may or may not be on disk yet. 1407 * Fortunately, either version of the label will have the 1408 * same top guid, so if we're a top-level vdev, we can 1409 * safely compare to that instead. 1410 * 1411 * If we split this vdev off instead, then we also check the 1412 * original pool's guid. We don't want to consider the vdev 1413 * corrupt if it is partway through a split operation. 1414 */ 1415 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1416 &guid) != 0 || 1417 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1418 &top_guid) != 0 || 1419 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1420 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1421 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1422 VDEV_AUX_CORRUPT_DATA); 1423 nvlist_free(label); 1424 return (0); 1425 } 1426 1427 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1428 &state) != 0) { 1429 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1430 VDEV_AUX_CORRUPT_DATA); 1431 nvlist_free(label); 1432 return (0); 1433 } 1434 1435 nvlist_free(label); 1436 1437 /* 1438 * If this is a verbatim import, no need to check the 1439 * state of the pool. 1440 */ 1441 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1442 spa_load_state(spa) == SPA_LOAD_OPEN && 1443 state != POOL_STATE_ACTIVE) 1444 return (SET_ERROR(EBADF)); 1445 1446 /* 1447 * If we were able to open and validate a vdev that was 1448 * previously marked permanently unavailable, clear that state 1449 * now. 1450 */ 1451 if (vd->vdev_not_present) 1452 vd->vdev_not_present = 0; 1453 } 1454 1455 return (0); 1456 } 1457 1458 /* 1459 * Close a virtual device. 1460 */ 1461 void 1462 vdev_close(vdev_t *vd) 1463 { 1464 spa_t *spa = vd->vdev_spa; 1465 vdev_t *pvd = vd->vdev_parent; 1466 1467 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1468 1469 /* 1470 * If our parent is reopening, then we are as well, unless we are 1471 * going offline. 1472 */ 1473 if (pvd != NULL && pvd->vdev_reopening) 1474 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1475 1476 vd->vdev_ops->vdev_op_close(vd); 1477 1478 vdev_cache_purge(vd); 1479 1480 /* 1481 * We record the previous state before we close it, so that if we are 1482 * doing a reopen(), we don't generate FMA ereports if we notice that 1483 * it's still faulted. 1484 */ 1485 vd->vdev_prevstate = vd->vdev_state; 1486 1487 if (vd->vdev_offline) 1488 vd->vdev_state = VDEV_STATE_OFFLINE; 1489 else 1490 vd->vdev_state = VDEV_STATE_CLOSED; 1491 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1492 } 1493 1494 void 1495 vdev_hold(vdev_t *vd) 1496 { 1497 spa_t *spa = vd->vdev_spa; 1498 1499 ASSERT(spa_is_root(spa)); 1500 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1501 return; 1502 1503 for (int c = 0; c < vd->vdev_children; c++) 1504 vdev_hold(vd->vdev_child[c]); 1505 1506 if (vd->vdev_ops->vdev_op_leaf) 1507 vd->vdev_ops->vdev_op_hold(vd); 1508 } 1509 1510 void 1511 vdev_rele(vdev_t *vd) 1512 { 1513 spa_t *spa = vd->vdev_spa; 1514 1515 ASSERT(spa_is_root(spa)); 1516 for (int c = 0; c < vd->vdev_children; c++) 1517 vdev_rele(vd->vdev_child[c]); 1518 1519 if (vd->vdev_ops->vdev_op_leaf) 1520 vd->vdev_ops->vdev_op_rele(vd); 1521 } 1522 1523 /* 1524 * Reopen all interior vdevs and any unopened leaves. We don't actually 1525 * reopen leaf vdevs which had previously been opened as they might deadlock 1526 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1527 * If the leaf has never been opened then open it, as usual. 1528 */ 1529 void 1530 vdev_reopen(vdev_t *vd) 1531 { 1532 spa_t *spa = vd->vdev_spa; 1533 1534 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1535 1536 /* set the reopening flag unless we're taking the vdev offline */ 1537 vd->vdev_reopening = !vd->vdev_offline; 1538 vdev_close(vd); 1539 (void) vdev_open(vd); 1540 1541 /* 1542 * Call vdev_validate() here to make sure we have the same device. 1543 * Otherwise, a device with an invalid label could be successfully 1544 * opened in response to vdev_reopen(). 1545 */ 1546 if (vd->vdev_aux) { 1547 (void) vdev_validate_aux(vd); 1548 if (vdev_readable(vd) && vdev_writeable(vd) && 1549 vd->vdev_aux == &spa->spa_l2cache && 1550 !l2arc_vdev_present(vd)) 1551 l2arc_add_vdev(spa, vd); 1552 } else { 1553 (void) vdev_validate(vd, B_TRUE); 1554 } 1555 1556 /* 1557 * Reassess parent vdev's health. 1558 */ 1559 vdev_propagate_state(vd); 1560 } 1561 1562 int 1563 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1564 { 1565 int error; 1566 1567 /* 1568 * Normally, partial opens (e.g. of a mirror) are allowed. 1569 * For a create, however, we want to fail the request if 1570 * there are any components we can't open. 1571 */ 1572 error = vdev_open(vd); 1573 1574 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1575 vdev_close(vd); 1576 return (error ? error : ENXIO); 1577 } 1578 1579 /* 1580 * Recursively load DTLs and initialize all labels. 1581 */ 1582 if ((error = vdev_dtl_load(vd)) != 0 || 1583 (error = vdev_label_init(vd, txg, isreplacing ? 1584 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1585 vdev_close(vd); 1586 return (error); 1587 } 1588 1589 return (0); 1590 } 1591 1592 void 1593 vdev_metaslab_set_size(vdev_t *vd) 1594 { 1595 /* 1596 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1597 */ 1598 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1599 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1600 } 1601 1602 void 1603 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1604 { 1605 ASSERT(vd == vd->vdev_top); 1606 ASSERT(!vd->vdev_ishole); 1607 ASSERT(ISP2(flags)); 1608 ASSERT(spa_writeable(vd->vdev_spa)); 1609 1610 if (flags & VDD_METASLAB) 1611 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1612 1613 if (flags & VDD_DTL) 1614 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1615 1616 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1617 } 1618 1619 void 1620 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1621 { 1622 for (int c = 0; c < vd->vdev_children; c++) 1623 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1624 1625 if (vd->vdev_ops->vdev_op_leaf) 1626 vdev_dirty(vd->vdev_top, flags, vd, txg); 1627 } 1628 1629 /* 1630 * DTLs. 1631 * 1632 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1633 * the vdev has less than perfect replication. There are four kinds of DTL: 1634 * 1635 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1636 * 1637 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1638 * 1639 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1640 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1641 * txgs that was scrubbed. 1642 * 1643 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1644 * persistent errors or just some device being offline. 1645 * Unlike the other three, the DTL_OUTAGE map is not generally 1646 * maintained; it's only computed when needed, typically to 1647 * determine whether a device can be detached. 1648 * 1649 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1650 * either has the data or it doesn't. 1651 * 1652 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1653 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1654 * if any child is less than fully replicated, then so is its parent. 1655 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1656 * comprising only those txgs which appear in 'maxfaults' or more children; 1657 * those are the txgs we don't have enough replication to read. For example, 1658 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1659 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1660 * two child DTL_MISSING maps. 1661 * 1662 * It should be clear from the above that to compute the DTLs and outage maps 1663 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1664 * Therefore, that is all we keep on disk. When loading the pool, or after 1665 * a configuration change, we generate all other DTLs from first principles. 1666 */ 1667 void 1668 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1669 { 1670 range_tree_t *rt = vd->vdev_dtl[t]; 1671 1672 ASSERT(t < DTL_TYPES); 1673 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1674 ASSERT(spa_writeable(vd->vdev_spa)); 1675 1676 mutex_enter(rt->rt_lock); 1677 if (!range_tree_contains(rt, txg, size)) 1678 range_tree_add(rt, txg, size); 1679 mutex_exit(rt->rt_lock); 1680 } 1681 1682 boolean_t 1683 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1684 { 1685 range_tree_t *rt = vd->vdev_dtl[t]; 1686 boolean_t dirty = B_FALSE; 1687 1688 ASSERT(t < DTL_TYPES); 1689 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1690 1691 mutex_enter(rt->rt_lock); 1692 if (range_tree_space(rt) != 0) 1693 dirty = range_tree_contains(rt, txg, size); 1694 mutex_exit(rt->rt_lock); 1695 1696 return (dirty); 1697 } 1698 1699 boolean_t 1700 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1701 { 1702 range_tree_t *rt = vd->vdev_dtl[t]; 1703 boolean_t empty; 1704 1705 mutex_enter(rt->rt_lock); 1706 empty = (range_tree_space(rt) == 0); 1707 mutex_exit(rt->rt_lock); 1708 1709 return (empty); 1710 } 1711 1712 /* 1713 * Returns the lowest txg in the DTL range. 1714 */ 1715 static uint64_t 1716 vdev_dtl_min(vdev_t *vd) 1717 { 1718 range_seg_t *rs; 1719 1720 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1721 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1722 ASSERT0(vd->vdev_children); 1723 1724 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1725 return (rs->rs_start - 1); 1726 } 1727 1728 /* 1729 * Returns the highest txg in the DTL. 1730 */ 1731 static uint64_t 1732 vdev_dtl_max(vdev_t *vd) 1733 { 1734 range_seg_t *rs; 1735 1736 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1737 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1738 ASSERT0(vd->vdev_children); 1739 1740 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1741 return (rs->rs_end); 1742 } 1743 1744 /* 1745 * Determine if a resilvering vdev should remove any DTL entries from 1746 * its range. If the vdev was resilvering for the entire duration of the 1747 * scan then it should excise that range from its DTLs. Otherwise, this 1748 * vdev is considered partially resilvered and should leave its DTL 1749 * entries intact. The comment in vdev_dtl_reassess() describes how we 1750 * excise the DTLs. 1751 */ 1752 static boolean_t 1753 vdev_dtl_should_excise(vdev_t *vd) 1754 { 1755 spa_t *spa = vd->vdev_spa; 1756 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1757 1758 ASSERT0(scn->scn_phys.scn_errors); 1759 ASSERT0(vd->vdev_children); 1760 1761 if (vd->vdev_resilver_txg == 0 || 1762 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1763 return (B_TRUE); 1764 1765 /* 1766 * When a resilver is initiated the scan will assign the scn_max_txg 1767 * value to the highest txg value that exists in all DTLs. If this 1768 * device's max DTL is not part of this scan (i.e. it is not in 1769 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1770 * for excision. 1771 */ 1772 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1773 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1774 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1775 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1776 return (B_TRUE); 1777 } 1778 return (B_FALSE); 1779 } 1780 1781 /* 1782 * Reassess DTLs after a config change or scrub completion. 1783 */ 1784 void 1785 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1786 { 1787 spa_t *spa = vd->vdev_spa; 1788 avl_tree_t reftree; 1789 int minref; 1790 1791 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1792 1793 for (int c = 0; c < vd->vdev_children; c++) 1794 vdev_dtl_reassess(vd->vdev_child[c], txg, 1795 scrub_txg, scrub_done); 1796 1797 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1798 return; 1799 1800 if (vd->vdev_ops->vdev_op_leaf) { 1801 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1802 1803 mutex_enter(&vd->vdev_dtl_lock); 1804 1805 /* 1806 * If we've completed a scan cleanly then determine 1807 * if this vdev should remove any DTLs. We only want to 1808 * excise regions on vdevs that were available during 1809 * the entire duration of this scan. 1810 */ 1811 if (scrub_txg != 0 && 1812 (spa->spa_scrub_started || 1813 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1814 vdev_dtl_should_excise(vd)) { 1815 /* 1816 * We completed a scrub up to scrub_txg. If we 1817 * did it without rebooting, then the scrub dtl 1818 * will be valid, so excise the old region and 1819 * fold in the scrub dtl. Otherwise, leave the 1820 * dtl as-is if there was an error. 1821 * 1822 * There's little trick here: to excise the beginning 1823 * of the DTL_MISSING map, we put it into a reference 1824 * tree and then add a segment with refcnt -1 that 1825 * covers the range [0, scrub_txg). This means 1826 * that each txg in that range has refcnt -1 or 0. 1827 * We then add DTL_SCRUB with a refcnt of 2, so that 1828 * entries in the range [0, scrub_txg) will have a 1829 * positive refcnt -- either 1 or 2. We then convert 1830 * the reference tree into the new DTL_MISSING map. 1831 */ 1832 space_reftree_create(&reftree); 1833 space_reftree_add_map(&reftree, 1834 vd->vdev_dtl[DTL_MISSING], 1); 1835 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1836 space_reftree_add_map(&reftree, 1837 vd->vdev_dtl[DTL_SCRUB], 2); 1838 space_reftree_generate_map(&reftree, 1839 vd->vdev_dtl[DTL_MISSING], 1); 1840 space_reftree_destroy(&reftree); 1841 } 1842 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1843 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1844 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1845 if (scrub_done) 1846 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1847 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1848 if (!vdev_readable(vd)) 1849 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1850 else 1851 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1852 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1853 1854 /* 1855 * If the vdev was resilvering and no longer has any 1856 * DTLs then reset its resilvering flag. 1857 */ 1858 if (vd->vdev_resilver_txg != 0 && 1859 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1860 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1861 vd->vdev_resilver_txg = 0; 1862 1863 mutex_exit(&vd->vdev_dtl_lock); 1864 1865 if (txg != 0) 1866 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1867 return; 1868 } 1869 1870 mutex_enter(&vd->vdev_dtl_lock); 1871 for (int t = 0; t < DTL_TYPES; t++) { 1872 /* account for child's outage in parent's missing map */ 1873 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1874 if (t == DTL_SCRUB) 1875 continue; /* leaf vdevs only */ 1876 if (t == DTL_PARTIAL) 1877 minref = 1; /* i.e. non-zero */ 1878 else if (vd->vdev_nparity != 0) 1879 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1880 else 1881 minref = vd->vdev_children; /* any kind of mirror */ 1882 space_reftree_create(&reftree); 1883 for (int c = 0; c < vd->vdev_children; c++) { 1884 vdev_t *cvd = vd->vdev_child[c]; 1885 mutex_enter(&cvd->vdev_dtl_lock); 1886 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1887 mutex_exit(&cvd->vdev_dtl_lock); 1888 } 1889 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1890 space_reftree_destroy(&reftree); 1891 } 1892 mutex_exit(&vd->vdev_dtl_lock); 1893 } 1894 1895 int 1896 vdev_dtl_load(vdev_t *vd) 1897 { 1898 spa_t *spa = vd->vdev_spa; 1899 objset_t *mos = spa->spa_meta_objset; 1900 int error = 0; 1901 1902 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1903 ASSERT(!vd->vdev_ishole); 1904 1905 error = space_map_open(&vd->vdev_dtl_sm, mos, 1906 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1907 if (error) 1908 return (error); 1909 ASSERT(vd->vdev_dtl_sm != NULL); 1910 1911 mutex_enter(&vd->vdev_dtl_lock); 1912 1913 /* 1914 * Now that we've opened the space_map we need to update 1915 * the in-core DTL. 1916 */ 1917 space_map_update(vd->vdev_dtl_sm); 1918 1919 error = space_map_load(vd->vdev_dtl_sm, 1920 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1921 mutex_exit(&vd->vdev_dtl_lock); 1922 1923 return (error); 1924 } 1925 1926 for (int c = 0; c < vd->vdev_children; c++) { 1927 error = vdev_dtl_load(vd->vdev_child[c]); 1928 if (error != 0) 1929 break; 1930 } 1931 1932 return (error); 1933 } 1934 1935 void 1936 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1937 { 1938 spa_t *spa = vd->vdev_spa; 1939 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 1940 objset_t *mos = spa->spa_meta_objset; 1941 range_tree_t *rtsync; 1942 kmutex_t rtlock; 1943 dmu_tx_t *tx; 1944 uint64_t object = space_map_object(vd->vdev_dtl_sm); 1945 1946 ASSERT(!vd->vdev_ishole); 1947 ASSERT(vd->vdev_ops->vdev_op_leaf); 1948 1949 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1950 1951 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 1952 mutex_enter(&vd->vdev_dtl_lock); 1953 space_map_free(vd->vdev_dtl_sm, tx); 1954 space_map_close(vd->vdev_dtl_sm); 1955 vd->vdev_dtl_sm = NULL; 1956 mutex_exit(&vd->vdev_dtl_lock); 1957 dmu_tx_commit(tx); 1958 return; 1959 } 1960 1961 if (vd->vdev_dtl_sm == NULL) { 1962 uint64_t new_object; 1963 1964 new_object = space_map_alloc(mos, tx); 1965 VERIFY3U(new_object, !=, 0); 1966 1967 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 1968 0, -1ULL, 0, &vd->vdev_dtl_lock)); 1969 ASSERT(vd->vdev_dtl_sm != NULL); 1970 } 1971 1972 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 1973 1974 rtsync = range_tree_create(NULL, NULL, &rtlock); 1975 1976 mutex_enter(&rtlock); 1977 1978 mutex_enter(&vd->vdev_dtl_lock); 1979 range_tree_walk(rt, range_tree_add, rtsync); 1980 mutex_exit(&vd->vdev_dtl_lock); 1981 1982 space_map_truncate(vd->vdev_dtl_sm, tx); 1983 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 1984 range_tree_vacate(rtsync, NULL, NULL); 1985 1986 range_tree_destroy(rtsync); 1987 1988 mutex_exit(&rtlock); 1989 mutex_destroy(&rtlock); 1990 1991 /* 1992 * If the object for the space map has changed then dirty 1993 * the top level so that we update the config. 1994 */ 1995 if (object != space_map_object(vd->vdev_dtl_sm)) { 1996 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 1997 "new object %llu", txg, spa_name(spa), object, 1998 space_map_object(vd->vdev_dtl_sm)); 1999 vdev_config_dirty(vd->vdev_top); 2000 } 2001 2002 dmu_tx_commit(tx); 2003 2004 mutex_enter(&vd->vdev_dtl_lock); 2005 space_map_update(vd->vdev_dtl_sm); 2006 mutex_exit(&vd->vdev_dtl_lock); 2007 } 2008 2009 /* 2010 * Determine whether the specified vdev can be offlined/detached/removed 2011 * without losing data. 2012 */ 2013 boolean_t 2014 vdev_dtl_required(vdev_t *vd) 2015 { 2016 spa_t *spa = vd->vdev_spa; 2017 vdev_t *tvd = vd->vdev_top; 2018 uint8_t cant_read = vd->vdev_cant_read; 2019 boolean_t required; 2020 2021 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2022 2023 if (vd == spa->spa_root_vdev || vd == tvd) 2024 return (B_TRUE); 2025 2026 /* 2027 * Temporarily mark the device as unreadable, and then determine 2028 * whether this results in any DTL outages in the top-level vdev. 2029 * If not, we can safely offline/detach/remove the device. 2030 */ 2031 vd->vdev_cant_read = B_TRUE; 2032 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2033 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2034 vd->vdev_cant_read = cant_read; 2035 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2036 2037 if (!required && zio_injection_enabled) 2038 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2039 2040 return (required); 2041 } 2042 2043 /* 2044 * Determine if resilver is needed, and if so the txg range. 2045 */ 2046 boolean_t 2047 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2048 { 2049 boolean_t needed = B_FALSE; 2050 uint64_t thismin = UINT64_MAX; 2051 uint64_t thismax = 0; 2052 2053 if (vd->vdev_children == 0) { 2054 mutex_enter(&vd->vdev_dtl_lock); 2055 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2056 vdev_writeable(vd)) { 2057 2058 thismin = vdev_dtl_min(vd); 2059 thismax = vdev_dtl_max(vd); 2060 needed = B_TRUE; 2061 } 2062 mutex_exit(&vd->vdev_dtl_lock); 2063 } else { 2064 for (int c = 0; c < vd->vdev_children; c++) { 2065 vdev_t *cvd = vd->vdev_child[c]; 2066 uint64_t cmin, cmax; 2067 2068 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2069 thismin = MIN(thismin, cmin); 2070 thismax = MAX(thismax, cmax); 2071 needed = B_TRUE; 2072 } 2073 } 2074 } 2075 2076 if (needed && minp) { 2077 *minp = thismin; 2078 *maxp = thismax; 2079 } 2080 return (needed); 2081 } 2082 2083 void 2084 vdev_load(vdev_t *vd) 2085 { 2086 /* 2087 * Recursively load all children. 2088 */ 2089 for (int c = 0; c < vd->vdev_children; c++) 2090 vdev_load(vd->vdev_child[c]); 2091 2092 /* 2093 * If this is a top-level vdev, initialize its metaslabs. 2094 */ 2095 if (vd == vd->vdev_top && !vd->vdev_ishole && 2096 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2097 vdev_metaslab_init(vd, 0) != 0)) 2098 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2099 VDEV_AUX_CORRUPT_DATA); 2100 2101 /* 2102 * If this is a leaf vdev, load its DTL. 2103 */ 2104 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2105 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2106 VDEV_AUX_CORRUPT_DATA); 2107 } 2108 2109 /* 2110 * The special vdev case is used for hot spares and l2cache devices. Its 2111 * sole purpose it to set the vdev state for the associated vdev. To do this, 2112 * we make sure that we can open the underlying device, then try to read the 2113 * label, and make sure that the label is sane and that it hasn't been 2114 * repurposed to another pool. 2115 */ 2116 int 2117 vdev_validate_aux(vdev_t *vd) 2118 { 2119 nvlist_t *label; 2120 uint64_t guid, version; 2121 uint64_t state; 2122 2123 if (!vdev_readable(vd)) 2124 return (0); 2125 2126 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2127 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2128 VDEV_AUX_CORRUPT_DATA); 2129 return (-1); 2130 } 2131 2132 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2133 !SPA_VERSION_IS_SUPPORTED(version) || 2134 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2135 guid != vd->vdev_guid || 2136 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2137 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2138 VDEV_AUX_CORRUPT_DATA); 2139 nvlist_free(label); 2140 return (-1); 2141 } 2142 2143 /* 2144 * We don't actually check the pool state here. If it's in fact in 2145 * use by another pool, we update this fact on the fly when requested. 2146 */ 2147 nvlist_free(label); 2148 return (0); 2149 } 2150 2151 void 2152 vdev_remove(vdev_t *vd, uint64_t txg) 2153 { 2154 spa_t *spa = vd->vdev_spa; 2155 objset_t *mos = spa->spa_meta_objset; 2156 dmu_tx_t *tx; 2157 2158 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2159 2160 if (vd->vdev_ms != NULL) { 2161 metaslab_group_t *mg = vd->vdev_mg; 2162 2163 metaslab_group_histogram_verify(mg); 2164 metaslab_class_histogram_verify(mg->mg_class); 2165 2166 for (int m = 0; m < vd->vdev_ms_count; m++) { 2167 metaslab_t *msp = vd->vdev_ms[m]; 2168 2169 if (msp == NULL || msp->ms_sm == NULL) 2170 continue; 2171 2172 mutex_enter(&msp->ms_lock); 2173 /* 2174 * If the metaslab was not loaded when the vdev 2175 * was removed then the histogram accounting may 2176 * not be accurate. Update the histogram information 2177 * here so that we ensure that the metaslab group 2178 * and metaslab class are up-to-date. 2179 */ 2180 metaslab_group_histogram_remove(mg, msp); 2181 2182 VERIFY0(space_map_allocated(msp->ms_sm)); 2183 space_map_free(msp->ms_sm, tx); 2184 space_map_close(msp->ms_sm); 2185 msp->ms_sm = NULL; 2186 mutex_exit(&msp->ms_lock); 2187 } 2188 2189 metaslab_group_histogram_verify(mg); 2190 metaslab_class_histogram_verify(mg->mg_class); 2191 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2192 ASSERT0(mg->mg_histogram[i]); 2193 2194 } 2195 2196 if (vd->vdev_ms_array) { 2197 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2198 vd->vdev_ms_array = 0; 2199 } 2200 dmu_tx_commit(tx); 2201 } 2202 2203 void 2204 vdev_sync_done(vdev_t *vd, uint64_t txg) 2205 { 2206 metaslab_t *msp; 2207 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2208 2209 ASSERT(!vd->vdev_ishole); 2210 2211 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2212 metaslab_sync_done(msp, txg); 2213 2214 if (reassess) 2215 metaslab_sync_reassess(vd->vdev_mg); 2216 } 2217 2218 void 2219 vdev_sync(vdev_t *vd, uint64_t txg) 2220 { 2221 spa_t *spa = vd->vdev_spa; 2222 vdev_t *lvd; 2223 metaslab_t *msp; 2224 dmu_tx_t *tx; 2225 2226 ASSERT(!vd->vdev_ishole); 2227 2228 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2229 ASSERT(vd == vd->vdev_top); 2230 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2231 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2232 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2233 ASSERT(vd->vdev_ms_array != 0); 2234 vdev_config_dirty(vd); 2235 dmu_tx_commit(tx); 2236 } 2237 2238 /* 2239 * Remove the metadata associated with this vdev once it's empty. 2240 */ 2241 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2242 vdev_remove(vd, txg); 2243 2244 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2245 metaslab_sync(msp, txg); 2246 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2247 } 2248 2249 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2250 vdev_dtl_sync(lvd, txg); 2251 2252 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2253 } 2254 2255 uint64_t 2256 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2257 { 2258 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2259 } 2260 2261 /* 2262 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2263 * not be opened, and no I/O is attempted. 2264 */ 2265 int 2266 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2267 { 2268 vdev_t *vd, *tvd; 2269 2270 spa_vdev_state_enter(spa, SCL_NONE); 2271 2272 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2273 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2274 2275 if (!vd->vdev_ops->vdev_op_leaf) 2276 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2277 2278 tvd = vd->vdev_top; 2279 2280 /* 2281 * We don't directly use the aux state here, but if we do a 2282 * vdev_reopen(), we need this value to be present to remember why we 2283 * were faulted. 2284 */ 2285 vd->vdev_label_aux = aux; 2286 2287 /* 2288 * Faulted state takes precedence over degraded. 2289 */ 2290 vd->vdev_delayed_close = B_FALSE; 2291 vd->vdev_faulted = 1ULL; 2292 vd->vdev_degraded = 0ULL; 2293 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2294 2295 /* 2296 * If this device has the only valid copy of the data, then 2297 * back off and simply mark the vdev as degraded instead. 2298 */ 2299 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2300 vd->vdev_degraded = 1ULL; 2301 vd->vdev_faulted = 0ULL; 2302 2303 /* 2304 * If we reopen the device and it's not dead, only then do we 2305 * mark it degraded. 2306 */ 2307 vdev_reopen(tvd); 2308 2309 if (vdev_readable(vd)) 2310 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2311 } 2312 2313 return (spa_vdev_state_exit(spa, vd, 0)); 2314 } 2315 2316 /* 2317 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2318 * user that something is wrong. The vdev continues to operate as normal as far 2319 * as I/O is concerned. 2320 */ 2321 int 2322 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2323 { 2324 vdev_t *vd; 2325 2326 spa_vdev_state_enter(spa, SCL_NONE); 2327 2328 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2329 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2330 2331 if (!vd->vdev_ops->vdev_op_leaf) 2332 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2333 2334 /* 2335 * If the vdev is already faulted, then don't do anything. 2336 */ 2337 if (vd->vdev_faulted || vd->vdev_degraded) 2338 return (spa_vdev_state_exit(spa, NULL, 0)); 2339 2340 vd->vdev_degraded = 1ULL; 2341 if (!vdev_is_dead(vd)) 2342 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2343 aux); 2344 2345 return (spa_vdev_state_exit(spa, vd, 0)); 2346 } 2347 2348 /* 2349 * Online the given vdev. 2350 * 2351 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2352 * spare device should be detached when the device finishes resilvering. 2353 * Second, the online should be treated like a 'test' online case, so no FMA 2354 * events are generated if the device fails to open. 2355 */ 2356 int 2357 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2358 { 2359 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2360 boolean_t postevent = B_FALSE; 2361 2362 spa_vdev_state_enter(spa, SCL_NONE); 2363 2364 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2365 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2366 2367 if (!vd->vdev_ops->vdev_op_leaf) 2368 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2369 2370 postevent = 2371 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ? 2372 B_TRUE : B_FALSE; 2373 2374 tvd = vd->vdev_top; 2375 vd->vdev_offline = B_FALSE; 2376 vd->vdev_tmpoffline = B_FALSE; 2377 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2378 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2379 2380 /* XXX - L2ARC 1.0 does not support expansion */ 2381 if (!vd->vdev_aux) { 2382 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2383 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2384 } 2385 2386 vdev_reopen(tvd); 2387 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2388 2389 if (!vd->vdev_aux) { 2390 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2391 pvd->vdev_expanding = B_FALSE; 2392 } 2393 2394 if (newstate) 2395 *newstate = vd->vdev_state; 2396 if ((flags & ZFS_ONLINE_UNSPARE) && 2397 !vdev_is_dead(vd) && vd->vdev_parent && 2398 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2399 vd->vdev_parent->vdev_child[0] == vd) 2400 vd->vdev_unspare = B_TRUE; 2401 2402 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2403 2404 /* XXX - L2ARC 1.0 does not support expansion */ 2405 if (vd->vdev_aux) 2406 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2407 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2408 } 2409 2410 if (postevent) 2411 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE); 2412 2413 return (spa_vdev_state_exit(spa, vd, 0)); 2414 } 2415 2416 static int 2417 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2418 { 2419 vdev_t *vd, *tvd; 2420 int error = 0; 2421 uint64_t generation; 2422 metaslab_group_t *mg; 2423 2424 top: 2425 spa_vdev_state_enter(spa, SCL_ALLOC); 2426 2427 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2428 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2429 2430 if (!vd->vdev_ops->vdev_op_leaf) 2431 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2432 2433 tvd = vd->vdev_top; 2434 mg = tvd->vdev_mg; 2435 generation = spa->spa_config_generation + 1; 2436 2437 /* 2438 * If the device isn't already offline, try to offline it. 2439 */ 2440 if (!vd->vdev_offline) { 2441 /* 2442 * If this device has the only valid copy of some data, 2443 * don't allow it to be offlined. Log devices are always 2444 * expendable. 2445 */ 2446 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2447 vdev_dtl_required(vd)) 2448 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2449 2450 /* 2451 * If the top-level is a slog and it has had allocations 2452 * then proceed. We check that the vdev's metaslab group 2453 * is not NULL since it's possible that we may have just 2454 * added this vdev but not yet initialized its metaslabs. 2455 */ 2456 if (tvd->vdev_islog && mg != NULL) { 2457 /* 2458 * Prevent any future allocations. 2459 */ 2460 metaslab_group_passivate(mg); 2461 (void) spa_vdev_state_exit(spa, vd, 0); 2462 2463 error = spa_offline_log(spa); 2464 2465 spa_vdev_state_enter(spa, SCL_ALLOC); 2466 2467 /* 2468 * Check to see if the config has changed. 2469 */ 2470 if (error || generation != spa->spa_config_generation) { 2471 metaslab_group_activate(mg); 2472 if (error) 2473 return (spa_vdev_state_exit(spa, 2474 vd, error)); 2475 (void) spa_vdev_state_exit(spa, vd, 0); 2476 goto top; 2477 } 2478 ASSERT0(tvd->vdev_stat.vs_alloc); 2479 } 2480 2481 /* 2482 * Offline this device and reopen its top-level vdev. 2483 * If the top-level vdev is a log device then just offline 2484 * it. Otherwise, if this action results in the top-level 2485 * vdev becoming unusable, undo it and fail the request. 2486 */ 2487 vd->vdev_offline = B_TRUE; 2488 vdev_reopen(tvd); 2489 2490 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2491 vdev_is_dead(tvd)) { 2492 vd->vdev_offline = B_FALSE; 2493 vdev_reopen(tvd); 2494 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2495 } 2496 2497 /* 2498 * Add the device back into the metaslab rotor so that 2499 * once we online the device it's open for business. 2500 */ 2501 if (tvd->vdev_islog && mg != NULL) 2502 metaslab_group_activate(mg); 2503 } 2504 2505 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2506 2507 return (spa_vdev_state_exit(spa, vd, 0)); 2508 } 2509 2510 int 2511 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2512 { 2513 int error; 2514 2515 mutex_enter(&spa->spa_vdev_top_lock); 2516 error = vdev_offline_locked(spa, guid, flags); 2517 mutex_exit(&spa->spa_vdev_top_lock); 2518 2519 return (error); 2520 } 2521 2522 /* 2523 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2524 * vdev_offline(), we assume the spa config is locked. We also clear all 2525 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2526 */ 2527 void 2528 vdev_clear(spa_t *spa, vdev_t *vd) 2529 { 2530 vdev_t *rvd = spa->spa_root_vdev; 2531 2532 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2533 2534 if (vd == NULL) 2535 vd = rvd; 2536 2537 vd->vdev_stat.vs_read_errors = 0; 2538 vd->vdev_stat.vs_write_errors = 0; 2539 vd->vdev_stat.vs_checksum_errors = 0; 2540 2541 for (int c = 0; c < vd->vdev_children; c++) 2542 vdev_clear(spa, vd->vdev_child[c]); 2543 2544 /* 2545 * If we're in the FAULTED state or have experienced failed I/O, then 2546 * clear the persistent state and attempt to reopen the device. We 2547 * also mark the vdev config dirty, so that the new faulted state is 2548 * written out to disk. 2549 */ 2550 if (vd->vdev_faulted || vd->vdev_degraded || 2551 !vdev_readable(vd) || !vdev_writeable(vd)) { 2552 2553 /* 2554 * When reopening in reponse to a clear event, it may be due to 2555 * a fmadm repair request. In this case, if the device is 2556 * still broken, we want to still post the ereport again. 2557 */ 2558 vd->vdev_forcefault = B_TRUE; 2559 2560 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2561 vd->vdev_cant_read = B_FALSE; 2562 vd->vdev_cant_write = B_FALSE; 2563 2564 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2565 2566 vd->vdev_forcefault = B_FALSE; 2567 2568 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2569 vdev_state_dirty(vd->vdev_top); 2570 2571 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2572 spa_async_request(spa, SPA_ASYNC_RESILVER); 2573 2574 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2575 } 2576 2577 /* 2578 * When clearing a FMA-diagnosed fault, we always want to 2579 * unspare the device, as we assume that the original spare was 2580 * done in response to the FMA fault. 2581 */ 2582 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2583 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2584 vd->vdev_parent->vdev_child[0] == vd) 2585 vd->vdev_unspare = B_TRUE; 2586 } 2587 2588 boolean_t 2589 vdev_is_dead(vdev_t *vd) 2590 { 2591 /* 2592 * Holes and missing devices are always considered "dead". 2593 * This simplifies the code since we don't have to check for 2594 * these types of devices in the various code paths. 2595 * Instead we rely on the fact that we skip over dead devices 2596 * before issuing I/O to them. 2597 */ 2598 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2599 vd->vdev_ops == &vdev_missing_ops); 2600 } 2601 2602 boolean_t 2603 vdev_readable(vdev_t *vd) 2604 { 2605 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2606 } 2607 2608 boolean_t 2609 vdev_writeable(vdev_t *vd) 2610 { 2611 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2612 } 2613 2614 boolean_t 2615 vdev_allocatable(vdev_t *vd) 2616 { 2617 uint64_t state = vd->vdev_state; 2618 2619 /* 2620 * We currently allow allocations from vdevs which may be in the 2621 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2622 * fails to reopen then we'll catch it later when we're holding 2623 * the proper locks. Note that we have to get the vdev state 2624 * in a local variable because although it changes atomically, 2625 * we're asking two separate questions about it. 2626 */ 2627 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2628 !vd->vdev_cant_write && !vd->vdev_ishole); 2629 } 2630 2631 boolean_t 2632 vdev_accessible(vdev_t *vd, zio_t *zio) 2633 { 2634 ASSERT(zio->io_vd == vd); 2635 2636 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2637 return (B_FALSE); 2638 2639 if (zio->io_type == ZIO_TYPE_READ) 2640 return (!vd->vdev_cant_read); 2641 2642 if (zio->io_type == ZIO_TYPE_WRITE) 2643 return (!vd->vdev_cant_write); 2644 2645 return (B_TRUE); 2646 } 2647 2648 /* 2649 * Get statistics for the given vdev. 2650 */ 2651 void 2652 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2653 { 2654 spa_t *spa = vd->vdev_spa; 2655 vdev_t *rvd = spa->spa_root_vdev; 2656 2657 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2658 2659 mutex_enter(&vd->vdev_stat_lock); 2660 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2661 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2662 vs->vs_state = vd->vdev_state; 2663 vs->vs_rsize = vdev_get_min_asize(vd); 2664 if (vd->vdev_ops->vdev_op_leaf) 2665 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2666 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2667 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2668 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2669 } 2670 2671 /* 2672 * If we're getting stats on the root vdev, aggregate the I/O counts 2673 * over all top-level vdevs (i.e. the direct children of the root). 2674 */ 2675 if (vd == rvd) { 2676 for (int c = 0; c < rvd->vdev_children; c++) { 2677 vdev_t *cvd = rvd->vdev_child[c]; 2678 vdev_stat_t *cvs = &cvd->vdev_stat; 2679 2680 for (int t = 0; t < ZIO_TYPES; t++) { 2681 vs->vs_ops[t] += cvs->vs_ops[t]; 2682 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2683 } 2684 cvs->vs_scan_removing = cvd->vdev_removing; 2685 } 2686 } 2687 mutex_exit(&vd->vdev_stat_lock); 2688 } 2689 2690 void 2691 vdev_clear_stats(vdev_t *vd) 2692 { 2693 mutex_enter(&vd->vdev_stat_lock); 2694 vd->vdev_stat.vs_space = 0; 2695 vd->vdev_stat.vs_dspace = 0; 2696 vd->vdev_stat.vs_alloc = 0; 2697 mutex_exit(&vd->vdev_stat_lock); 2698 } 2699 2700 void 2701 vdev_scan_stat_init(vdev_t *vd) 2702 { 2703 vdev_stat_t *vs = &vd->vdev_stat; 2704 2705 for (int c = 0; c < vd->vdev_children; c++) 2706 vdev_scan_stat_init(vd->vdev_child[c]); 2707 2708 mutex_enter(&vd->vdev_stat_lock); 2709 vs->vs_scan_processed = 0; 2710 mutex_exit(&vd->vdev_stat_lock); 2711 } 2712 2713 void 2714 vdev_stat_update(zio_t *zio, uint64_t psize) 2715 { 2716 spa_t *spa = zio->io_spa; 2717 vdev_t *rvd = spa->spa_root_vdev; 2718 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2719 vdev_t *pvd; 2720 uint64_t txg = zio->io_txg; 2721 vdev_stat_t *vs = &vd->vdev_stat; 2722 zio_type_t type = zio->io_type; 2723 int flags = zio->io_flags; 2724 2725 /* 2726 * If this i/o is a gang leader, it didn't do any actual work. 2727 */ 2728 if (zio->io_gang_tree) 2729 return; 2730 2731 if (zio->io_error == 0) { 2732 /* 2733 * If this is a root i/o, don't count it -- we've already 2734 * counted the top-level vdevs, and vdev_get_stats() will 2735 * aggregate them when asked. This reduces contention on 2736 * the root vdev_stat_lock and implicitly handles blocks 2737 * that compress away to holes, for which there is no i/o. 2738 * (Holes never create vdev children, so all the counters 2739 * remain zero, which is what we want.) 2740 * 2741 * Note: this only applies to successful i/o (io_error == 0) 2742 * because unlike i/o counts, errors are not additive. 2743 * When reading a ditto block, for example, failure of 2744 * one top-level vdev does not imply a root-level error. 2745 */ 2746 if (vd == rvd) 2747 return; 2748 2749 ASSERT(vd == zio->io_vd); 2750 2751 if (flags & ZIO_FLAG_IO_BYPASS) 2752 return; 2753 2754 mutex_enter(&vd->vdev_stat_lock); 2755 2756 if (flags & ZIO_FLAG_IO_REPAIR) { 2757 if (flags & ZIO_FLAG_SCAN_THREAD) { 2758 dsl_scan_phys_t *scn_phys = 2759 &spa->spa_dsl_pool->dp_scan->scn_phys; 2760 uint64_t *processed = &scn_phys->scn_processed; 2761 2762 /* XXX cleanup? */ 2763 if (vd->vdev_ops->vdev_op_leaf) 2764 atomic_add_64(processed, psize); 2765 vs->vs_scan_processed += psize; 2766 } 2767 2768 if (flags & ZIO_FLAG_SELF_HEAL) 2769 vs->vs_self_healed += psize; 2770 } 2771 2772 vs->vs_ops[type]++; 2773 vs->vs_bytes[type] += psize; 2774 2775 mutex_exit(&vd->vdev_stat_lock); 2776 return; 2777 } 2778 2779 if (flags & ZIO_FLAG_SPECULATIVE) 2780 return; 2781 2782 /* 2783 * If this is an I/O error that is going to be retried, then ignore the 2784 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2785 * hard errors, when in reality they can happen for any number of 2786 * innocuous reasons (bus resets, MPxIO link failure, etc). 2787 */ 2788 if (zio->io_error == EIO && 2789 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2790 return; 2791 2792 /* 2793 * Intent logs writes won't propagate their error to the root 2794 * I/O so don't mark these types of failures as pool-level 2795 * errors. 2796 */ 2797 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2798 return; 2799 2800 mutex_enter(&vd->vdev_stat_lock); 2801 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2802 if (zio->io_error == ECKSUM) 2803 vs->vs_checksum_errors++; 2804 else 2805 vs->vs_read_errors++; 2806 } 2807 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2808 vs->vs_write_errors++; 2809 mutex_exit(&vd->vdev_stat_lock); 2810 2811 if (type == ZIO_TYPE_WRITE && txg != 0 && 2812 (!(flags & ZIO_FLAG_IO_REPAIR) || 2813 (flags & ZIO_FLAG_SCAN_THREAD) || 2814 spa->spa_claiming)) { 2815 /* 2816 * This is either a normal write (not a repair), or it's 2817 * a repair induced by the scrub thread, or it's a repair 2818 * made by zil_claim() during spa_load() in the first txg. 2819 * In the normal case, we commit the DTL change in the same 2820 * txg as the block was born. In the scrub-induced repair 2821 * case, we know that scrubs run in first-pass syncing context, 2822 * so we commit the DTL change in spa_syncing_txg(spa). 2823 * In the zil_claim() case, we commit in spa_first_txg(spa). 2824 * 2825 * We currently do not make DTL entries for failed spontaneous 2826 * self-healing writes triggered by normal (non-scrubbing) 2827 * reads, because we have no transactional context in which to 2828 * do so -- and it's not clear that it'd be desirable anyway. 2829 */ 2830 if (vd->vdev_ops->vdev_op_leaf) { 2831 uint64_t commit_txg = txg; 2832 if (flags & ZIO_FLAG_SCAN_THREAD) { 2833 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2834 ASSERT(spa_sync_pass(spa) == 1); 2835 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2836 commit_txg = spa_syncing_txg(spa); 2837 } else if (spa->spa_claiming) { 2838 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2839 commit_txg = spa_first_txg(spa); 2840 } 2841 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2842 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2843 return; 2844 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2845 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2846 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2847 } 2848 if (vd != rvd) 2849 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2850 } 2851 } 2852 2853 /* 2854 * Update the in-core space usage stats for this vdev, its metaslab class, 2855 * and the root vdev. 2856 */ 2857 void 2858 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2859 int64_t space_delta) 2860 { 2861 int64_t dspace_delta = space_delta; 2862 spa_t *spa = vd->vdev_spa; 2863 vdev_t *rvd = spa->spa_root_vdev; 2864 metaslab_group_t *mg = vd->vdev_mg; 2865 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2866 2867 ASSERT(vd == vd->vdev_top); 2868 2869 /* 2870 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2871 * factor. We must calculate this here and not at the root vdev 2872 * because the root vdev's psize-to-asize is simply the max of its 2873 * childrens', thus not accurate enough for us. 2874 */ 2875 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2876 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2877 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2878 vd->vdev_deflate_ratio; 2879 2880 mutex_enter(&vd->vdev_stat_lock); 2881 vd->vdev_stat.vs_alloc += alloc_delta; 2882 vd->vdev_stat.vs_space += space_delta; 2883 vd->vdev_stat.vs_dspace += dspace_delta; 2884 mutex_exit(&vd->vdev_stat_lock); 2885 2886 if (mc == spa_normal_class(spa)) { 2887 mutex_enter(&rvd->vdev_stat_lock); 2888 rvd->vdev_stat.vs_alloc += alloc_delta; 2889 rvd->vdev_stat.vs_space += space_delta; 2890 rvd->vdev_stat.vs_dspace += dspace_delta; 2891 mutex_exit(&rvd->vdev_stat_lock); 2892 } 2893 2894 if (mc != NULL) { 2895 ASSERT(rvd == vd->vdev_parent); 2896 ASSERT(vd->vdev_ms_count != 0); 2897 2898 metaslab_class_space_update(mc, 2899 alloc_delta, defer_delta, space_delta, dspace_delta); 2900 } 2901 } 2902 2903 /* 2904 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2905 * so that it will be written out next time the vdev configuration is synced. 2906 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2907 */ 2908 void 2909 vdev_config_dirty(vdev_t *vd) 2910 { 2911 spa_t *spa = vd->vdev_spa; 2912 vdev_t *rvd = spa->spa_root_vdev; 2913 int c; 2914 2915 ASSERT(spa_writeable(spa)); 2916 2917 /* 2918 * If this is an aux vdev (as with l2cache and spare devices), then we 2919 * update the vdev config manually and set the sync flag. 2920 */ 2921 if (vd->vdev_aux != NULL) { 2922 spa_aux_vdev_t *sav = vd->vdev_aux; 2923 nvlist_t **aux; 2924 uint_t naux; 2925 2926 for (c = 0; c < sav->sav_count; c++) { 2927 if (sav->sav_vdevs[c] == vd) 2928 break; 2929 } 2930 2931 if (c == sav->sav_count) { 2932 /* 2933 * We're being removed. There's nothing more to do. 2934 */ 2935 ASSERT(sav->sav_sync == B_TRUE); 2936 return; 2937 } 2938 2939 sav->sav_sync = B_TRUE; 2940 2941 if (nvlist_lookup_nvlist_array(sav->sav_config, 2942 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2943 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2944 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2945 } 2946 2947 ASSERT(c < naux); 2948 2949 /* 2950 * Setting the nvlist in the middle if the array is a little 2951 * sketchy, but it will work. 2952 */ 2953 nvlist_free(aux[c]); 2954 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2955 2956 return; 2957 } 2958 2959 /* 2960 * The dirty list is protected by the SCL_CONFIG lock. The caller 2961 * must either hold SCL_CONFIG as writer, or must be the sync thread 2962 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2963 * so this is sufficient to ensure mutual exclusion. 2964 */ 2965 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2966 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2967 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2968 2969 if (vd == rvd) { 2970 for (c = 0; c < rvd->vdev_children; c++) 2971 vdev_config_dirty(rvd->vdev_child[c]); 2972 } else { 2973 ASSERT(vd == vd->vdev_top); 2974 2975 if (!list_link_active(&vd->vdev_config_dirty_node) && 2976 !vd->vdev_ishole) 2977 list_insert_head(&spa->spa_config_dirty_list, vd); 2978 } 2979 } 2980 2981 void 2982 vdev_config_clean(vdev_t *vd) 2983 { 2984 spa_t *spa = vd->vdev_spa; 2985 2986 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2987 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2988 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2989 2990 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2991 list_remove(&spa->spa_config_dirty_list, vd); 2992 } 2993 2994 /* 2995 * Mark a top-level vdev's state as dirty, so that the next pass of 2996 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2997 * the state changes from larger config changes because they require 2998 * much less locking, and are often needed for administrative actions. 2999 */ 3000 void 3001 vdev_state_dirty(vdev_t *vd) 3002 { 3003 spa_t *spa = vd->vdev_spa; 3004 3005 ASSERT(spa_writeable(spa)); 3006 ASSERT(vd == vd->vdev_top); 3007 3008 /* 3009 * The state list is protected by the SCL_STATE lock. The caller 3010 * must either hold SCL_STATE as writer, or must be the sync thread 3011 * (which holds SCL_STATE as reader). There's only one sync thread, 3012 * so this is sufficient to ensure mutual exclusion. 3013 */ 3014 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3015 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3016 spa_config_held(spa, SCL_STATE, RW_READER))); 3017 3018 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 3019 list_insert_head(&spa->spa_state_dirty_list, vd); 3020 } 3021 3022 void 3023 vdev_state_clean(vdev_t *vd) 3024 { 3025 spa_t *spa = vd->vdev_spa; 3026 3027 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3028 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3029 spa_config_held(spa, SCL_STATE, RW_READER))); 3030 3031 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3032 list_remove(&spa->spa_state_dirty_list, vd); 3033 } 3034 3035 /* 3036 * Propagate vdev state up from children to parent. 3037 */ 3038 void 3039 vdev_propagate_state(vdev_t *vd) 3040 { 3041 spa_t *spa = vd->vdev_spa; 3042 vdev_t *rvd = spa->spa_root_vdev; 3043 int degraded = 0, faulted = 0; 3044 int corrupted = 0; 3045 vdev_t *child; 3046 3047 if (vd->vdev_children > 0) { 3048 for (int c = 0; c < vd->vdev_children; c++) { 3049 child = vd->vdev_child[c]; 3050 3051 /* 3052 * Don't factor holes into the decision. 3053 */ 3054 if (child->vdev_ishole) 3055 continue; 3056 3057 if (!vdev_readable(child) || 3058 (!vdev_writeable(child) && spa_writeable(spa))) { 3059 /* 3060 * Root special: if there is a top-level log 3061 * device, treat the root vdev as if it were 3062 * degraded. 3063 */ 3064 if (child->vdev_islog && vd == rvd) 3065 degraded++; 3066 else 3067 faulted++; 3068 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3069 degraded++; 3070 } 3071 3072 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3073 corrupted++; 3074 } 3075 3076 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3077 3078 /* 3079 * Root special: if there is a top-level vdev that cannot be 3080 * opened due to corrupted metadata, then propagate the root 3081 * vdev's aux state as 'corrupt' rather than 'insufficient 3082 * replicas'. 3083 */ 3084 if (corrupted && vd == rvd && 3085 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3086 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3087 VDEV_AUX_CORRUPT_DATA); 3088 } 3089 3090 if (vd->vdev_parent) 3091 vdev_propagate_state(vd->vdev_parent); 3092 } 3093 3094 /* 3095 * Set a vdev's state. If this is during an open, we don't update the parent 3096 * state, because we're in the process of opening children depth-first. 3097 * Otherwise, we propagate the change to the parent. 3098 * 3099 * If this routine places a device in a faulted state, an appropriate ereport is 3100 * generated. 3101 */ 3102 void 3103 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3104 { 3105 uint64_t save_state; 3106 spa_t *spa = vd->vdev_spa; 3107 3108 if (state == vd->vdev_state) { 3109 vd->vdev_stat.vs_aux = aux; 3110 return; 3111 } 3112 3113 save_state = vd->vdev_state; 3114 3115 vd->vdev_state = state; 3116 vd->vdev_stat.vs_aux = aux; 3117 3118 /* 3119 * If we are setting the vdev state to anything but an open state, then 3120 * always close the underlying device unless the device has requested 3121 * a delayed close (i.e. we're about to remove or fault the device). 3122 * Otherwise, we keep accessible but invalid devices open forever. 3123 * We don't call vdev_close() itself, because that implies some extra 3124 * checks (offline, etc) that we don't want here. This is limited to 3125 * leaf devices, because otherwise closing the device will affect other 3126 * children. 3127 */ 3128 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3129 vd->vdev_ops->vdev_op_leaf) 3130 vd->vdev_ops->vdev_op_close(vd); 3131 3132 /* 3133 * If we have brought this vdev back into service, we need 3134 * to notify fmd so that it can gracefully repair any outstanding 3135 * cases due to a missing device. We do this in all cases, even those 3136 * that probably don't correlate to a repaired fault. This is sure to 3137 * catch all cases, and we let the zfs-retire agent sort it out. If 3138 * this is a transient state it's OK, as the retire agent will 3139 * double-check the state of the vdev before repairing it. 3140 */ 3141 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3142 vd->vdev_prevstate != state) 3143 zfs_post_state_change(spa, vd); 3144 3145 if (vd->vdev_removed && 3146 state == VDEV_STATE_CANT_OPEN && 3147 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3148 /* 3149 * If the previous state is set to VDEV_STATE_REMOVED, then this 3150 * device was previously marked removed and someone attempted to 3151 * reopen it. If this failed due to a nonexistent device, then 3152 * keep the device in the REMOVED state. We also let this be if 3153 * it is one of our special test online cases, which is only 3154 * attempting to online the device and shouldn't generate an FMA 3155 * fault. 3156 */ 3157 vd->vdev_state = VDEV_STATE_REMOVED; 3158 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3159 } else if (state == VDEV_STATE_REMOVED) { 3160 vd->vdev_removed = B_TRUE; 3161 } else if (state == VDEV_STATE_CANT_OPEN) { 3162 /* 3163 * If we fail to open a vdev during an import or recovery, we 3164 * mark it as "not available", which signifies that it was 3165 * never there to begin with. Failure to open such a device 3166 * is not considered an error. 3167 */ 3168 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3169 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3170 vd->vdev_ops->vdev_op_leaf) 3171 vd->vdev_not_present = 1; 3172 3173 /* 3174 * Post the appropriate ereport. If the 'prevstate' field is 3175 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3176 * that this is part of a vdev_reopen(). In this case, we don't 3177 * want to post the ereport if the device was already in the 3178 * CANT_OPEN state beforehand. 3179 * 3180 * If the 'checkremove' flag is set, then this is an attempt to 3181 * online the device in response to an insertion event. If we 3182 * hit this case, then we have detected an insertion event for a 3183 * faulted or offline device that wasn't in the removed state. 3184 * In this scenario, we don't post an ereport because we are 3185 * about to replace the device, or attempt an online with 3186 * vdev_forcefault, which will generate the fault for us. 3187 */ 3188 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3189 !vd->vdev_not_present && !vd->vdev_checkremove && 3190 vd != spa->spa_root_vdev) { 3191 const char *class; 3192 3193 switch (aux) { 3194 case VDEV_AUX_OPEN_FAILED: 3195 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3196 break; 3197 case VDEV_AUX_CORRUPT_DATA: 3198 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3199 break; 3200 case VDEV_AUX_NO_REPLICAS: 3201 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3202 break; 3203 case VDEV_AUX_BAD_GUID_SUM: 3204 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3205 break; 3206 case VDEV_AUX_TOO_SMALL: 3207 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3208 break; 3209 case VDEV_AUX_BAD_LABEL: 3210 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3211 break; 3212 default: 3213 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3214 } 3215 3216 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3217 } 3218 3219 /* Erase any notion of persistent removed state */ 3220 vd->vdev_removed = B_FALSE; 3221 } else { 3222 vd->vdev_removed = B_FALSE; 3223 } 3224 3225 if (!isopen && vd->vdev_parent) 3226 vdev_propagate_state(vd->vdev_parent); 3227 } 3228 3229 /* 3230 * Check the vdev configuration to ensure that it's capable of supporting 3231 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3232 * In addition, only a single top-level vdev is allowed and none of the leaves 3233 * can be wholedisks. 3234 */ 3235 boolean_t 3236 vdev_is_bootable(vdev_t *vd) 3237 { 3238 if (!vd->vdev_ops->vdev_op_leaf) { 3239 char *vdev_type = vd->vdev_ops->vdev_op_type; 3240 3241 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3242 vd->vdev_children > 1) { 3243 return (B_FALSE); 3244 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3245 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3246 return (B_FALSE); 3247 } 3248 } 3249 3250 for (int c = 0; c < vd->vdev_children; c++) { 3251 if (!vdev_is_bootable(vd->vdev_child[c])) 3252 return (B_FALSE); 3253 } 3254 return (B_TRUE); 3255 } 3256 3257 /* 3258 * Load the state from the original vdev tree (ovd) which 3259 * we've retrieved from the MOS config object. If the original 3260 * vdev was offline or faulted then we transfer that state to the 3261 * device in the current vdev tree (nvd). 3262 */ 3263 void 3264 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3265 { 3266 spa_t *spa = nvd->vdev_spa; 3267 3268 ASSERT(nvd->vdev_top->vdev_islog); 3269 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3270 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3271 3272 for (int c = 0; c < nvd->vdev_children; c++) 3273 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3274 3275 if (nvd->vdev_ops->vdev_op_leaf) { 3276 /* 3277 * Restore the persistent vdev state 3278 */ 3279 nvd->vdev_offline = ovd->vdev_offline; 3280 nvd->vdev_faulted = ovd->vdev_faulted; 3281 nvd->vdev_degraded = ovd->vdev_degraded; 3282 nvd->vdev_removed = ovd->vdev_removed; 3283 } 3284 } 3285 3286 /* 3287 * Determine if a log device has valid content. If the vdev was 3288 * removed or faulted in the MOS config then we know that 3289 * the content on the log device has already been written to the pool. 3290 */ 3291 boolean_t 3292 vdev_log_state_valid(vdev_t *vd) 3293 { 3294 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3295 !vd->vdev_removed) 3296 return (B_TRUE); 3297 3298 for (int c = 0; c < vd->vdev_children; c++) 3299 if (vdev_log_state_valid(vd->vdev_child[c])) 3300 return (B_TRUE); 3301 3302 return (B_FALSE); 3303 } 3304 3305 /* 3306 * Expand a vdev if possible. 3307 */ 3308 void 3309 vdev_expand(vdev_t *vd, uint64_t txg) 3310 { 3311 ASSERT(vd->vdev_top == vd); 3312 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3313 3314 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3315 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3316 vdev_config_dirty(vd); 3317 } 3318 } 3319 3320 /* 3321 * Split a vdev. 3322 */ 3323 void 3324 vdev_split(vdev_t *vd) 3325 { 3326 vdev_t *cvd, *pvd = vd->vdev_parent; 3327 3328 vdev_remove_child(pvd, vd); 3329 vdev_compact_children(pvd); 3330 3331 cvd = pvd->vdev_child[0]; 3332 if (pvd->vdev_children == 1) { 3333 vdev_remove_parent(cvd); 3334 cvd->vdev_splitting = B_TRUE; 3335 } 3336 vdev_propagate_state(cvd); 3337 } 3338 3339 void 3340 vdev_deadman(vdev_t *vd) 3341 { 3342 for (int c = 0; c < vd->vdev_children; c++) { 3343 vdev_t *cvd = vd->vdev_child[c]; 3344 3345 vdev_deadman(cvd); 3346 } 3347 3348 if (vd->vdev_ops->vdev_op_leaf) { 3349 vdev_queue_t *vq = &vd->vdev_queue; 3350 3351 mutex_enter(&vq->vq_lock); 3352 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3353 spa_t *spa = vd->vdev_spa; 3354 zio_t *fio; 3355 uint64_t delta; 3356 3357 /* 3358 * Look at the head of all the pending queues, 3359 * if any I/O has been outstanding for longer than 3360 * the spa_deadman_synctime we panic the system. 3361 */ 3362 fio = avl_first(&vq->vq_active_tree); 3363 delta = gethrtime() - fio->io_timestamp; 3364 if (delta > spa_deadman_synctime(spa)) { 3365 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3366 "delta %lluns, last io %lluns", 3367 fio->io_timestamp, delta, 3368 vq->vq_io_complete_ts); 3369 fm_panic("I/O to pool '%s' appears to be " 3370 "hung.", spa_name(spa)); 3371 } 3372 } 3373 mutex_exit(&vq->vq_lock); 3374 } 3375 } 3376